
Politecnico di Torino

Master’s Degree in CIVIL ENGINEERING

Structural Optimization with
Swarm-based Algorithms

Master Degree Thesis

Supervisor:
Prof. G. C. Marano

Co-supervisor:
Ph.D. Student R. Cucuzza

Candidate:
Marco Martino Rosso

Student’s ID:
S264386

October 2020
A.Y. 2019/2020

Abstract

The purpose of the present dissertation is not only to introduce different meth-
ods for solving optimization problems, but also to expose a new strategy to deal
with constrained structural optimization problems which combines modern Artifi-
cial Intelligence and machine learning methods. In the first introductory part, the
classical resolution methods are exposed mainly focusing on the Lagrange multiplier
rule and the most used mathematical programming methods of the past. These ap-
proaches, based on the calculation of the gradient of the objective function, usually
solve optimization problems in a sequential way. Afterwards, an overview of the
most popular modern meta-heuristic approaches to solve optimization problems is
presented. Inspired by Nature, these methods are included within the framework
of Soft Computing, which is a still very active research sub-field of Artificial In-
telligence. The attention is mainly focused on the Particle Swarm Optimization
(PSO) algorithm which is based on the emerging intelligent convergent behaviour
of a swarm influenced by social and cognitive interactions that are inspired by nat-
ural bird flocking behaviour. Originally formalized in 1995, the PSO is nowadays
still under study to improve the search process performances. For this reason, many
variants and several constraint handling strategies have been developed during the
recent years. Although the penalty functions still remain the most adopted indi-
rect method to deal with constrained problems, due to their several drawbacks, in
this Thesis a new non-penalty constraint handling approach is discussed. The PSO
is thus combined with a constraint handling technique to preserve the feasibility
of candidate solutions, which is based on the predictive model generated by the
Support Vector Machine (SVM), a machine learning method usually adopted for
classification problems. Because of its generality, the constraint handling with SVM
appears to be more adaptive both to non-linear and discontinuous boundary. How-
ever, to improve the performance of the algorithm, e.g. when the feasible region is
little and narrow, a relaxation function of the constraints is also adopted to enlarge
the actual search region.

In the final part of the present work, to assess the convergence properties of
the new PSO-SVM algorithm, two numerical benchmark literature problems, which
statements are located into the Appendix A, are discussed and compared in terms of
objective function value with the well-known meta-heuristic genetic algorithm (GA)
and with a PSO penalty-based. Subsequently, two structural examples are discussed
concerning respectively the size optimization of constant cross section simply sup-
ported beam and the shape and size optimization of a planar steel warren truss
beam with hollow core section profiles. In particular, this latter example highlights
not only the importance of the optimization process to get the highest structural
performances with the minimum costs, but also that the optimization algorithms
represent, from the technical point of view, an essential tool for civil engineers, which
strongly influences the decision process during the design phase. Therefore, the op-
timization algorithms are valuable and essential tools, which support the designers
to identify the best technical solution among the infinite possibilities.

Sommario

Il presente elaborato tratta alcuni dei più noti metodi di risoluzione dei proble-
mi di ottimizzazione, presentando anche una nuova tecnica per risolvere problemi di
ottimizzazione strutturale vincolata che adotta e combina i moderni metodi di Intel-
ligenza Artificiale e le tecniche di machine learning. Nella parte iniziale introduttiva,
vengono presentati i classici metodi di risoluzione come il metodo dei moltiplicatori
di Lagrange e i metodi di programmazione matematica, i più adottati in passato.
Tali approcci sono di solito basati sul calcolo del gradiente della funzione obiettivo e
adottano spesso tecniche di risoluzione sequenziale. Successivamente, viene esposta
una breve presentazione di alcuni dei più famosi moderni metodi euristici per la
risoluzione di problemi di ottimizzazione. Ispirati dalla Natura, questi metodi fan-
no parte delle cosiddette tecniche di Soft Computing, un ramo di ricerca ancora
molto attivo nell’ambito dell’Intelligenza Artificiale. La trattazione si concentra poi
principalmente sull’algoritmo di ottimizzazione con sciami di particelle (PSO) che è
basato sull’emergente comportamento intelligente di sciami di individui che conver-
gono verso il punto di ottimo grazie a interazioni sociali e cognitive, le quali sono
state direttamente mutuate dallo studio del comportamento di veri stormi di uccelli
in natura. Formalizzato per la prima volta nel 1995, ancora oggi il PSO è oggetto di
ricerca e sviluppo, principalmente per migliorare le prestazioni di ricerca dello scia-
me, a tale scopo molte varianti e diverse tecniche per la gestione del vincolo sono
state sviluppate nel corso degli anni. Sebbene la gestione del vincolo basata sulle
funzioni di penalità sia ancora oggi il metodo più largamente diffuso, esso presenta
anche numerosi inconvenienti e, pertanto, in questa Tesi viene presentato un inno-
vativo approccio per la gestione del vincolo. Il PSO viene quindi combinato con una
nuova tecnica di gestione del vincolo per preservare l’ammissibilità delle soluzioni
candidate basandosi su un modello predittivo generato da una macchina a vettori di
supporto (SVM), una tecnica di machine learning usualmente adottata nei problemi
di classificazione. Grazie alla sua generalità, la gestione del vincolo basata sul SVM
sembra essere più adattiva anche per vincoli con contorni non lineari e/o disconti-
nui. Tuttavia, per migliorare le prestazioni dell’algoritmo, ad esempio con regioni
ammissibili di piccole dimensioni e/o molto strette, è stata adottata una funzione di
rilassamento dei vincoli che consente di allargare l’effettivo spazio di ricerca anche
a una piccola zona non ammissibile, ma considerando solamente quelle ammissibili
come soluzioni possibili del problema.
Nella parte finale del presente elaborato, per verificare le proprietà di convergenza
del nuovo algoritmo PSO-SVM, due problemi numerici di riferimento tratti dalla
letteratura tecnica, le cui formulazioni sono riportate in Appendice A, sono stati
studiati e confrontati in termini di funzione obiettivo con il ben noto algoritmo ge-
netico (GA) e con il codice PSO dotato di funzioni di penalità. Successivamente,
sono stati analizzati due problemi strutturali che riguardano rispettivamente l’ot-
timizzazione dimensionale di una trave a sezione costante in semplice appoggio e
l’ottimizzazione di forma e dimensionale di una trave reticolare piana di tipo War-
ren con profili scatolati in acciaio. Nella fattispecie, quest’ultimo esempio ha messo

in luce non solo l’importanza che ricopre il processo di ottimizzazione nell’otteni-
mento del massimo rapporto di sfruttamento strutturale dell’acciaio con il minimo
consumo di materiale, ma, soprattutto, il fatto che gli algoritmi di ottimizzazione,
dal punto di vista tecnico-pratico, sono uno strumento essenziale per gli ingegneri
civili in quanto possono influenzare enormemente il processo decisionale durante le
fasi di progettazione e, pertanto, svolgere una essenziale funzione di supporto per
i progettisti al fine di individuare, tra le infinite scelte, la miglior soluzione tecnica
possibile.

To the people I love
Alle persone a cui tengo

Acknowledgements

First and foremost, I would like to express my sincere gratitude to professor G. C.
Marano for giving me this opportunity to work with him, for guiding me and firstly
introducing me to the fascinating world of the Structural Optimization field with
particular interest to the new modern technologies. I should also express my thanks
to the PhD student Eng. R. Cucuzza for his valuable help and his careful revision
work.

Furthermore, I would like to dedicate the present Dissertation to all the people
who love me. In particular, I would like to thank my family for always supporting me
during the University years allowing me to cross the finish line in the best possible
way. I am grateful to my mum Samai and my dad Giuseppe for being wonderful
parents and for their immeasurable moral and economic support. I would like to
thank also my brothers and sister, Roberta, Davide and Danilo, and their respective
families for their support. I would like to warmly thank especially my nephews
Leonardo and Gabriele because they have filled my heart with their smiles for over
a year.

I wish a natural and honest gratitude to my girlfriend Simona, who has always
been there for me during all these years. Substantially, we grow up together during
the adolescence, enriching each other during the years, facing together all the ob-
stacles and sharing all the joyful moments of our youth. I would like also to thank
her for the revision work and for helping me to improve my English exposition. A
special consideration to her dad Bruno, her mum Laura, her sister Marzia with the
husband Enrico for always supporting me and, in particular, to my nieces Melissa
and Noemi for their love towards me.

Last but not least, I express sincere gratitude to all my University mates with
whom I shared a lot and who have always been for me a point of reference both
from a professional and human perspective.

Ringraziamenti

Innanzitutto, è doveroso ringraziare vivamente il professor G. C. Marano per avermi
offerto questa opportunità di collaborazione, per avermi trasmesso la sua passione e
la sua energia, per avermi seguito e guidato introducendomi al mondo dell’ottimiz-
zazione strutturale e alle più moderne potenzialità tecnologiche oggi disponibili in
ambito ingegneristico. Ringrazio intensamente anche il dottorando Ing. R. Cucuz-
za per il suo preziosissimo aiuto, per i numerosi momenti di confronto e per il suo
curato lavoro di revisione.
Vorrei inoltre dedicare il presente elaborato a tutte le persone che mi vogliono bene.
In particolare, vorrei ringraziare la mia famiglia per avermi sempre sostenuto in que-
sti anni di università consentendomi di tagliare questo importantissimo traguardo
nel migliore dei modi. Un grazie speciale alla mia mamma Samai e al mio papà Giu-
seppe per i meravigliosi genitori che sono e per il loro incommensurabile aiuto sia
morale, ma anche di sostegno economico in questi anni di studio. Ringrazio anche
i miei fratelli, Roberta, Davide e Danilo, e le rispettive famiglie per il loro conti-
nuo supporto. Soprattutto ringrazio calorosamente i miei due nipotini, Leonardo e
Gabriele, che da oltre un anno ormai riempiono di gioia le mie giornate con i loro
sorrisi.
Un naturale e sincero omaggio va alla mia ragazza, Simona, che mi è sempre stata
accanto in tutti questi anni fin dalla scuola superiore. Siamo praticamente cresciuti
insieme arricchendoci vicendevolmente per tutti questi anni, affrontando insieme e
con amore anche i momenti di difficoltà e vivendo appieno i momenti più felici di
questa nostra gioventù. Altresì, la ringrazio intensamente per il suo prezioso contri-
buto nella revisione di alcune parti di questo lavoro e, nella fattispecie, per i suoi
preziosissimi consigli che mi hanno aiutato a migliorare la qualità dell’esposizione in
lingua Inglese. Un ringraziamento speciale va anche a suo papà Bruno, sua mamma
Laura, sua sorella Marzia con il marito Enrico per il loro costante e sentito appoggio
ma soprattutto alle mie nipotine Melissa e Noemi per il loro amore per me.
In ultimo, ma non per importanza, vorrei altresì ringraziare tutti i miei compagni
di università con cui ho condiviso davvero tanto e che sono sempre stati per me un
punto di riferimento sia professionale sia dal punto di vista umano.

Contents

1 Introduction 1

2 Optimization Procedures Review 6
2.1 Single-Objective Optimization Problems 6
2.2 Multi-Objective Optimization Problems 9
2.3 Classical Approaches . 13

2.3.1 Lagrange Multipliers methods 16
2.3.2 Linear, Quadratic and Non-linear Programming 21

2.4 Meta-heuristic Approaches . 37
2.4.1 Evolutionary algorithms . 39
2.4.2 Physics-based, Bio-inspired, Nature-inspired Algorithms 48
2.4.3 Swarm-based Algorithms . 52

3 Particle Swarm Optimization Algorithm 56
3.1 PSO framework . 57
3.2 Historical Overview and main variants 60

3.2.1 Structural applications and main Hybridizations 69
3.3 State of the art in Constraint handling 71

3.3.1 Penalty function-based methods 75

4 A new non-penalty Machine Learning constraint handling approach 81
4.1 Artificial Intelligence: brief overview and main scopes 81
4.2 Support Vector Machine: theoretical overview 87
4.3 A new machine learning-based approach to handle constraints: PSO-

SVM . 96

5 Case Studies 102
5.1 Numerical Benchmarks Problems . 102

5.1.1 Numerical Example 1: Sickle Problem [54] 102
5.1.2 Numerical Example 2: five design variables optimization problem109

5.2 Structural optimization Problems . 111
5.2.1 Structural Example 1: simply supported beam 111
5.2.2 Structural Example 2: Optimization of a Warren Truss Beam . 119

6 Conclusions 127

A Test Functions Constrained Problems 129

I

Bibliography 130

II

List of Figures

1.1 On the left column, starting design situation are presented; on the
right column, optimized design are depicted. (a) Size optimization,
image taken by [9]; (b) Shape optimization of a Warren truss beam;
(c) Shape optimization with a parametric function h(z), image in-
spired by [9]; (d) Continuum Topology optimization of a rectangular
cross section under a bending moment in elastic stage, image taken
by [66]; (e) Topology optmization on a discrete grid, image inspired
by [13]. 3

2.1 Multi-objective optimization problem (minimization case): Design space
visualization and Objective space considering a three-dimensional de-
sign vector and a bi-dimensional OFs vector. The Pareto Front is en-
lighten in red. The output vectors t,u,v,w are enlightened to show
the dominance relations (u as reference vector): u � v, u ≺≺ t and
u ≺� w. 11

2.2 Image inspired by [48]: graphical representation of the Pareto front in
the objective space of some different minimization and maximization
multi-objective problems with two OFs. 12

2.3 (a) An example of a convex function y = x2; (b) An example of a
non-convex function y = x3− x+ (2− x2)

2; if it was possible to split
this function at the local maximum, the two resulting functions, taken
alone, would be convex. 15

2.4 An example of LP structural problem with a portal frame plastic
design taking into account the different collapse mechanism: in (1)
the beam mechanism is caused by the assumption F2 � F1; in (2)
the lateral mechanism is caused by the assumption F1 � F2; in (3)
the combined mechanism is taken into account because F1 and F2 are
in the same order of magnitude. In the force space, it is possible to
notice that the feasible region (safe region) is inside the limit collapse
lines (light blue area). 23

III

2.5 An example of LP problem with a fixed beam subjected to concen-
trated external load F which is incrementally risen by the load factor
λ. The structure is only apparently three times hyperstatic. Due to
symmetric conditions and considering only flexural problem, it be-
comes only one time hyperstatic which determine the presence of
only one hyperstatic unknown X. The red dot of the graph on the
right represent the peak value of the load factor which rounds down
the real collapse load factor through the static theorem of the theory
of plasticity. 24

2.6 Image taken from [18]. Classification of meta-heuristic algorithms. . . 37
2.7 Representation of the working principles of the ACO with a problem

with three discrete design variables (three layers). On the left, at a
generic iteration different by the first one, the different arcs between
two layer have different probability to be chosen. The k-th ant, in this
case, identifies a path with a certain probability (blue lines) which will
be conditioned by its trail pheromone. The values of the nodes crossed
by the ant define the k-th design vector, which is presented on the
right part of the image. This image is inspired by [64]. 53

3.1 Graphical representation of the standard Newtonian PSO mechanism.
The three main contribution of the velocity vector k+1vi stated in
(3.1.1) for the i-th particle are depicted: the Inertia term is related
to the Newtonian dynamic-based mechanism and depends on the pre-
vious velocity vector kvi; the Cognitive term is related to the attrac-
tion of the Pbest, kxPbi (best position visited by the particle up to
iteration k); the Social term is related to the attraction of the Gbest,
kxGbi (best position visited by the entire swarm up to iteration k). . . 58

3.2 Some examples of PSO Neighborhood Topologies 62
3.3 Visual representation of the main box-constraint approaches (image

inspired by [70]) . 72
3.4 Graphical representation of the constraint wall theory exposed in [41]. 74
3.5 Graphical representation of the exterior penalty exponent influence

on a uni-dimensional example. On the left, β = 0; in the center,
0 < β ≤ 1; on the right, β = 2; image inspired by [64]. 76

3.6 Graphical representation of the extended penalty approach; image
inspired by [79]. 77

3.7 Graphical representation of the penalty-function approach on a bi-
dimensional example. (a) Planar view of the OF f(x) represented
as contour black solid lines in the design variables’ space. The con-
straint, depicted as the red solid line, divide the feasible region from
the unfeasible one. The box search space boundaries are drawn as
dashed lines: x(l)

i is the design variable lower bound and x
(u)
i is the

design variable upper bound, with i = 1, 2; (b) Three-dimensional
representation of the OF surface on the entire box search space; (c)
Death penalty approach graphical representation; (d) Static penalty
approach taking into account the degree of violation of the constraint. 78

IV

4.1 Scheme of AI applied for problem-solving computing techniques (ma-
chine intelligence), image inspired by [22]. 83

4.2 Scopes of Soft Computing sub-field in order to locate the meta-heuristic
approaches in the vast field of AI; image inspired by [22]. 83

4.3 Representation of the machine learning main approaches: supervised
learning, reinforcement learning and unsupervised learning. 85

4.4 Support Vector Machine pragmatic graphical example in two dimen-
sions (x1, x2): on the left the optimal hyperplane is showed according
to the rule of the maximum margin; on the right it is graphically
demonstrated how to obtain the measurement of the distance between
the two margins. 87

4.5 Support Vector Machine: soft margin concept and slack variables
ξi graphical representation in a bi-dimensional problem with non-
separable data. 90

4.6 Example of mapping the data from a unidimensional space to a
bi-dimensional space to transform the original non linearly separa-
ble dataset in a linearly separable dataset. The original data are
mapped to a bi-dimensional space through an explicit mapping func-
tion φ(x) = x2

1. In this new higher dimensional space, the data are
now linearly separable and it is possible to apply the SVM to find the
margins and the optimal hyperplane position (red solid lines). The in-
tersections between the hyperplane and the mapping function (dashed
line) are remapped through φ−1(x) in order to find the position of the
separator between the two classes in the original unidimensional space. 93

4.7 Example of mapping the data from a bi-dimensional space to a three-
dimensional space in order to transform the original non linearly sep-
arable dataset in a linearly separable dataset. The original data are
mapped to a three-dimensional space through an explicit mapping
function. φ(x). In this new higher dimensional space, the data are
now linearly separable and it is possible to apply the SVM to find
the margins and the optimal hyperplane position (green plane on
the right). The points which belong to the optimal hyperplane are
remapped in the original bi-dimensional space through φ−1(x), in or-
der to find the non-linear separation boundary between the two classes
in the original bi-dimensional space. Image taken by [65]. 94

4.8 Inner product as a measure of similarity: the two vectors tend to
maximize the margin in the left picture; in the center one, the two
vectors are redundant for the SVM and do not add other information;
on the right, the two orthogonal vectors do not count at all because
their inner product is zero. 95

4.9 General Flowchart of the proposed PSO-SVM algorithm. 97
4.10 Flowchart of the “Max Position Correction” block. The bisection al-

gorithm part is underlined by the dashed line. 98

V

5.1 Example 1 (Sickle Problem [54]), case No relax constraints function;
(a) Three-dimensional graph of Sickle problem design space; (b) Gen-
eration 1. 103

5.2 Example 1 (Sickle Problem [54]), case No relax constraints function;
(a) Generation 2; (b) Generation 50. 104

5.3 Example 1 (Sickle Problem [54]), case No relax constraints function;
(a) Generation 100; (b) Objective function history. 105

5.4 Example 1 (Sickle Problem [54]), case constant relax constraints func-
tion; (a) Generation 1; (b) Generation 2. 106

5.5 Example 1 (Sickle Problem [54]), case constant relax constraints func-
tion; (a) Generation 50; (b) Generation 100. 107

5.6 Example 1 (Sickle Problem [54]), case constant relax constraints func-
tion, objective function history. 108

5.7 Numerical Example 2: Objective value history comparison among dif-
ferent relax constraint functions for a single run. 110

5.8 Problem formulation: simply supported beam with constant cross sec-
tion. 112

5.9 Structural example 1: simply supported beam, case piecewise linear
decreasing relax function; (a) Three-dimensional graph of simply sup-
ported beam problem design space; (b) Generation 1. 114

5.10 Structural example 1: simply supported beam, case piecewise linear
decreasing relax function; (a) Generation 2; (b) Generation 50. 115

5.11 Structural example 1: simply supported beam, case piecewise linear
decreasing relax function; (a) Generation 100; (b) objective function
history. 116

5.12 Problem formulation: simply supported truss Warren beam. 119
5.13 Square hollow core tubular section design variables. 120
5.14 Structural example 2: Warren Truss. Results from 50 times run PSO-

SVM. 121
5.15 Optimal Warren Truss. Black solid line: undeformed shape; blue dashed

line: deformed shape. 124
5.16 Model of the warren truss beam in Midas Gen R©. 124
5.17 Planar view of the warren truss beam on Midas Gen R© with the axial

force values. 125

VI

List of Tables

5.1 Numerical Example 1 (Sickle Problem [54]), comparison PSO-SVM,
GA and PSO-penalty. 109

5.2 Numerical Example 2, comparison among PSO-SVM with different
relax constraint fuctions (check the Appendix and [67]). 109

5.3 Numerical Example 2, results from PSO-SVM without relax con-
straints, PSO-Penalty and GA (check the Appendix and [67]). 110

5.4 Structural Example 1, results from PSO-SVM piecewise linear de-
creasing relax constraints, PSO-Penalty and GA. 117

5.5 Structural Example 2, Mean values µ and standard deviations σ of
best results from 21 solution over 50 runs of PSO-SVM with OF less
than 3.1 t; Last three columns: Best exact solution, Trivial rounded-
up solution and Refined industrial solution. 122

5.6 Structural Example 2, Best exact solution cross section 123
5.7 Comparison between Midas model and Matlab axial force elements . 126

VII

Chapter 1

Introduction

The structural engineering problems can be roughly subdivided into modelling, sim-
ulation and optimization problems, as stated in [22]. The modelling problems are
related to the formulation of a reliable description of the mechanical behaviour of the
structure under certain load conditions and compatibility constraints through ana-
lytical or numerical formulations. This involves not only the accurate identification
of the stress-strain laws (constitutive laws) of the materials and the failure criteria,
but also the inverse problem, e.g. the dynamic identification of existing structures.
Simulation problems involve the performing of structural safety analysis through
the reproduction of the structural response under known load conditions in order
to assess the performance of the structures, e.g. in the seismic analysis. The aim of
the optimization problems is to find the best solution for a certain problem. When
the problem is the cost optimization, the aim is to reduce the amount of material
usage in order to lessen the related costs, whereas, in the performance optimization
problems, the purpose is to find the best way to situate the material in order to
obtain the highest possible rate in the structural performances. As stated in [22],
the optimization problems can be further divided into control problems, related to
the definition of the external actions which are able to lead to a specific desired
response, or synthesis problems is the design optimization.

An optimization problem is nothing more than the solving of a minimization
problem of a function which is called objective function (OF) or merit function
f(x) which depends on a certain choice of design variables or decision variables x .
When the OF is constrained, the problems are denoted as constrained optimization
problems, otherwise they are called unconstrained optimization problems. Without
loss of generality, a maximization problem can be converted into a minimization
one referring to the opposite of the OF −f(x). An important property of the OF
is that its behaviour is not affected if a positive constant is multiplied, divided or
algebraically summed to it [64], therefore, in these cases, the optimum does not
change its position. The structural optimization target is to find the best design,
under certain points of view, with respect to other possible decisions. Based on
the number of the goals an optimization problem wants to fulfil, the problems can
be subdivided in: Single Objective optimization problems, in which only one OF
is considered, and Multi-Objective problems, in which the optimal solution is a
compromise among different OFs.

1

Marco Martino Rosso Chapter 1. Introduction

According to [9, 22], it is possible to define three main different fields in struc-
tural optimization problems: size optimization, shape optimization and topology
optimization.
The target of size optimization is to find the optimal cross section of the structural
elements subjected to stress and displacement constraints. Size optimization is also
related to the cost minimization, because it aims to define the minimum usage of
material. The design variables are the cross section dimensions of each structural
member and they are usually discrete because limited by the use of commercial steel
profile or related to construction limitations in site for RC structures [59]. Due to
the complexity to deal with discrete problems, as stated in [13], the design variables
are usually treated as continuous and, at the end of the optimization process, they
are finally rounded to the nearest discrete possible value. In order to reduce the
complexity of the problem, one possible strategy is to reduce the number of design
variables e.g. gathering together the same typology of elements and associating the
cross sections properties not to each structural member but to each group of elements
[13]. An example of size optimization is presented in Figure 1.1 (a) in which the
various elements of a cantilever truss beam have different sizes because they are
stressed in different ways according to the load path toward the external restraints.

The shape or geometry optimization purpose is to find an optimal shape through
the definition of some key points whose movements condition the overall shape of
the structure with a fixed topology and/or some fixed boundary conditions [59, 13].
For example, considering a truss structure, the key points are the nodes where the
members converge. Moving the node, all the connected elements have to adjust their
length and inclination, therefore it condition the overall shape of the structure. The
shape can change even maintaining e.g. the same topology (a specific type of truss
structure), e.g. changing the height of a planar warren truss simply supported beam
as depicted in Figure 1.1 (b). For some structures, considering the shape defined by
the adoption of certain shape functions, it can be convenient to reduce the complexity
of the problem or numerical efficiency, as shown in 1.1 (c). As reported in [13], in
the past the form-finding problem was carried out with physical models. According
to the Hook’s principle, the model was realized by tied ropes with hanging weights
(hanging models or inverted models) and, reversing the obtained funicular form, it
was stated that the same shape could work as an arch in pure compressive state with
the same loads reversed in sign. The most famous Spanish architect Gaudí used to
study the form of its creations with this approach without any mathematical solving
of the shape optimization problem [13]. Later on, the form-finding was studied with
graphic static and nowadays with computer simulations and specific approaches [13].

The topology optimization not only aims to find the best spatial arrangement of
the structural elements inside a certain fixed domain which influences the structural
layout, but also analyses how the available material can be organized to obtain the
best structural performances [59, 22]. As stated in [13], the topology optimization
started in 1904, when the Australian researcher Michell studied the optimal layout
of truss structures based on considerations about the isostatic lines and the strain
field. For instance, for a fixed span, the topology optimization goal is to define the
type of truss to use for the specific loads and boundary conditions. Another possible
approach to perform topology optimization in continuum design space is related to

2

Marco Martino Rosso Chapter 1. Introduction

F F

(a)

(b)

z

F F

h(z)=cost

h(z)

z

(c)

bmax

hmax M

(d)

F F

(e)

Figure 1.1: On the left column, starting design situation are presented; on the right col-
umn, optimized design are depicted. (a) Size optimization, image taken by [9]; (b) Shape
optimization of a Warren truss beam; (c) Shape optimization with a parametric function
h(z), image inspired by [9]; (d) Continuum Topology optimization of a rectangular cross
section under a bending moment in elastic stage, image taken by [66]; (e) Topology opt-
mization on a discrete grid, image inspired by [13].

3

Marco Martino Rosso Chapter 1. Introduction

the removal of the less stressed material and, on the contrary, adding material in
the most stressed regions [13]. For example, in [66], considering a rectangular sec-
tion with fixed height under a bending moment load condition in elastic stage, the
topology optimization leads to an ideal shape which reminds an I-section profile, as
reported in Figure 1.1 (d). Another possible approach to deal with continuum topol-
ogy optimization is converting it to a discrete topology optimization by meshing the
design space and creating cavities or adding material inside the set grid, as depicted
in Figure 1.1 (e). This approach is also known as the “ground structure method”
[13]. According to [23], the optimization process of a structure does not usually
solve simultaneously size, shape and topology optimization. As a matter of fact, as
stated in [59], once defined an initial structural layout, it is possible to proceed with
a refined shape optimization. As affirmed in [13], size optimization usually is the
last one to be performed. As a matter of fact, considering thin shells structures like
a dome, the shape strongly influences the internal action distributions and, once the
shape is fixed, the size optimization procedure can be adopted to identify the best
thickness of the shell [13].

The modern study of the optimization problems dates back to World War II,
when the British army recruited a group of mathematicians to face the issue of em-
ploying limited resources in an optimal way [43, 64]. The first methods were formal-
ized into the so called mathematical programming techniques which now belong to
the branch of mathematics called operations research. Earlier developments started
with Newton and Leibniz with differential calculus, afterwards, other fundamental
contributions were given by the greatest mathematicians of the history: Cauchy,
Bernoulli, Euler, Lagrange, Weierstrass and others [64]. Later on, new heuristic ap-
proaches were developed to solve those problems in which classical methods failed or
required extremely high computational costs. These new methodologies were mainly
inspired by the Nature, intelligent behaviour and survival strategies of animals.
These paradigms also introduced to Artificial Intelligence field (AI) and were mathe-
matically formalized under the category of methods called meta-heuristic algorithms
to solve optimization problems.

In the present Thesis, in Chapter 2 an overview of the traditional mathematical
methods to deal with optimization problems, such as the Lagrange multiplier ap-
proach and the mathematical programming methods, is presented. In the last part of
this chapter, a brief review of the modern approaches which adopt heuristic to solve
complex optimization problems is treated. In Chapter 3, the attention is focused on
the meta-heuristic Particle Swarm Optimization (PSO) algorithm which is inspired
by the natural swarm intelligent social behaviour of animals such as bird flockings.
This intelligent behaviour was adopted to solve optimization problems from its for-
malization in 1995, but some of the many existing variants presented in this Chapter
demonstrate that it is still currently under development in order to improve the per-
formance of the classic algorithm. In the final part of the Chapter, a state of the
art on the constraint handling approaches is shown, with particular reference to
the most used penalty approaches. After a short digression on Artificial Intelligence
(AI) scopes, in Chapter 4 a new non-penalty machine learning constraint handling

4

Marco Martino Rosso Chapter 1. Introduction

approach is presented. The Support Vector Machine (SVM) is combined with PSO
as a new method to deal with constrained problems in order to reduce the search
space to the feasible region. Finally, in Chapter 5, to test the search performance
of the new PSO-SVM algorithm, two numerical literature benchmark problems and
two structural examples are presented. The results obtained in the final case studies
demonstrate that the PSO-SVM is a new valid alternative which combines the mod-
ern AI approaches to solve constrained optimization problems even in the structural
optimization field.

5

Chapter 2

Optimization Procedures Review

2.1 Single-Objective Optimization Problems
One of the several possible classification for the optimization problems is based
on the number of OFs which have to be optimized. A problem where the OF is
only one is called single-objective optimization problem. In mathematical terms, as
stated in [70], the OF is a function which have to be minimized and which maps a
n-dimensional domain to the set of real numbers f(x) : Rn → R. A single-objective
optimization problem can be unconstrained or constrained. The mathematical form
for an unconstrained one is: Find x such that

min
x∈Ω
{f(x)}, (2.1.1)

whereas if the problem is constrained it is written as: Find x such that

min
x∈Ω
{f(x)},

s.t. gq(x) ≤ 0 ∀q = 1, ..., nq,

hr(x) = 0 ∀r = 1, ..., nr,

(2.1.2)

in which x = {x1, ..., xj, ..., xn} is the design variable vector whose components are
real numbers, f(x) is the objective function (OF) to be minimized and Ω is a box-type
search space. For instance, if [xlj, x

u
j] is the admissible interval for the j-th variable

(xlj and xuj are its lower and the upper bounds, respectively), then

Ω = [xl1, x
u
1]× ...× [xlj, x

u
j]× ...× [xln, x

u
n] (2.1.3)

where the symbol × denotes the Cartesian product between intervals. The con-
straints of the optimization problem defined by (2.1.2) can be inequalities gq(x)
and/or equalities hr(x). Without any loss of generality, all equalities can be easily
converted into inequalities. Considering an equality constraint hr(x) : Rn → R and
considering a certain small tolerance ε (usually set to 10−6, [70]), it is possible to
transform a equality constraint into a couple of inequalities considering |hr(x)| ≤ ε.
Therefore, it is possible to consider a problem subjected only to inequality con-
straints, e.g. gp(x) ≤ 0, for p = 1, ..., nq, nq+1, ..., np, being np = nq + 2nr. As

6

Marco Martino Rosso Chapter 2. Optimization Procedures

reported in [59], in the real-world structural optimization problem usually inequal-
ity constraint only are present.
In structural optimization, as affirmed in [64], constraints can be represented as e.g.
a physical limitation (“geometric or side constraints”) or a performance limitation
(“behavior or functional constraints”). In short, constraints represent a limitation of
the design space and divide it into two hyperspace: the feasible region and the unfea-
sible one. At the end of the optimization process, the optimal solution must respect
the constraints and it must lie in the feasible region. As stated in [64], the hyper-
surface which divides the feasible region from the unfeasible one is called constraint
surface and it is usually a “composite surface” because related to the combination of
different constraints. It is not necessary that all the constraints must contribute to
the hyper-surface and, for this reason, it is possible to distinguish active constraints
from inactive ones. In mathematical terms, an active constraints is when happen
that at the optimum point x̃ the value of the j-th inequality constraint become
gj(x̃) = 0 whereas the constraint is called inactive if gj(x̃) < 0 [64]. A typical ex-
ample of OF in structural optimization problems is represented by the weight of the
structure. In general, it is possible to write the weight as the sum of the weight of
all the structural members, which are in total Nel, under the hypothesis of using
homogeneous1 members:

f(x) =

Nel∑
i=1

ρiVi(x), (2.1.4)

where ρi is the density of the i-th member and Vi is the volume of each member
which directly depends on the design variable vector x. Under the assumption of
using prismatic elements which have constant area Ai(x) along their length Li, it is
possible to further simplify the previous OF as:

f(x) = ρ ·
Nel∑
i=1

AiLi. (2.1.5)

As one can check, in the OF there are other terms besides the design variables, such
as the density in (2.1.4) and (2.1.5). These quantities are usually predetermined and
fixed as known data and so they are called preassigned parameters in [64].
This kind of OF is not the unique possible but the choice of an appropriate OF
depends on the nature of the problem and what is the aim of the problem that an
engineer is asked to solve. In civil engineering is typical to look for a minimum cost
therefore it is required to use a different OF maybe taking into account not only
the construction material costs but also e.g. the labor and maintenance costs [23].
Other times, it is required to find the best mechanical performance for a component
and the OF could be different from the previous cases.

Another very interesting structural problem which can be modelled as single-
objective optimization problem is the parametric identification problem for the dy-
namic identification of a structure [62]. In fact, starting from experimental data
collected in situ, the problem is to make a reliable non-linear FEM model which ex-
haustively characterize the dynamic response of the structure under study. In that

1Each i-th member is made of the same material.

7

Marco Martino Rosso Chapter 2. Optimization Procedures

sense, the design vector x is a vector of non-linear model parameters and the OF
is a measure of the similarity between the experimental response of the structure ŷ
and the simulated numerical response of the model y(x). As stated in [62] the OF
can be assumed as the normalized mean square error which has to be minimized
finding the best non-linear parameters vector,

f(x) =
100

Nσ2
y

[ŷ − y(x)]T [ŷ − y(x)], (2.1.6)

where N is the number of the data point and σ2
y is the variance of the measured

response of the structure under study [62].
Based on the nature of the design variables and how they are allowed to vary

in the design space, the optimization problems can be divided in two categories.
The first category is called discrete problems and it is related to the fact that the
design variables can assume only discrete values in a finite set of possible values. A
typical example of discrete problem is the optimization a steel structure composed
by commercial profiles. As a matter of fact, the cross section properties can assume
only discrete values respect to the specific dimensions available on the steel profiles
commercial tables.
The second category is called continuous problems because the design variable can
vary continuously in the design space. As reported in [59], in general, it is possible to
write that the i-th design variable belong to a bounded set which can be composed
by or continuous or discrete values:

xi ∈ Xi for i = 1, ..., n (2.1.7)

For continuous problems, the search space is also called box-type search space be-
cause, as expressed in (2.1.3), each design variable is upper and lower bounded,
xli ≤ xi ≤ xui , and it can continuously vary inside its admissible interval. As sug-
gested by [59], when it is possible, discrete problems are treated as continuous ones
and at the end of the optimization process a rounding-off procedure is performed
in order to assign to the design variables the closest discrete values to the optimal
numerical continuous results. This is done because it is more simple to handle with
continuous problems respect to discrete ones.

The most used methods to solve optimization problems are distinct in two main
groups. The first main group of methods are called, in general, gradient-based meth-
ods which are also called deterministic or mathematical methods in [59]. These meth-
ods require the information about the gradient and, in general, the OF needs to be
regular enough and differentiable to solve the minimization problem. The second
main group of methods are called meta-heuristic methods and are also called proba-
bilistic methods in [59]. These new modern approaches do not require the gradient
information and so don’t require the OF is regular. They make a certain use of proba-
bilistic mechanism and they are also called Nature-inspired because their derivation
takes inspiration by Nature, genetic mechanism, Darwinian evolution theory, be-
haviour of swarms and flocks, etc.
A detailed overview of all these methodologies is treated in the following of this
Thesis.

8

Marco Martino Rosso Chapter 2. Optimization Procedures

2.2 Multi-Objective Optimization Problems
In analogy with the above, an optimization problem where there are present more
than one OFs is called multi-objective optimization problem.
In more general terms, in [59] a multi-objective optimization problem (or also known
as multicriteria optimization, multiperformance or vector optimization problem [11])
can be formulated as in the following

Find x = [x1, ..., xn]T ∈ Ω ⊆ Rn such that
min
x
f(x), with f(x) ∈ Rm

s.t. gq(x) ≤ 0 ∀q = 1, ..., nq,

hr(x) = 0 ∀r = 1, ..., nr,

(2.2.1)

where the design variables vector x has n dimensions with a box-constraint to each
variable (xli ≤ xi ≤ xui which are also called side constraints) whereas the vector
of the OFs f(x) = [f1(x), ..., fm(x)]T has m components. According to [19], when
m is substantially big, the problem can also be identified as a many-objective op-
timization problem. As already explained before, the equality constraints can be
transformed into couples of inequality constraints leading to a formulation of the
problem subjected to only inequality constraints. As showed above, in the multi-
objective optimization problems usually two Euclidean space are involved [11]: the
design variables space which is n-dimensional and where the coordinate axis are
represented by each design variable; the objective space (or OFs space) which is m-
dimensional and where the coordinate axis are represented by each OF. As stated
in [11], each point in the design variables space represents a potential solution and,
through an evaluation of the OFs, it is mapped to output vectors in the objective
space where it is possible to evaluate the quality of the potential solution. The image
of the feasible region in the objective space is also called criterion space in [59] or
attained set. In mathematical terms

f : Ω −→ Rm. (2.2.2)

As stated in [59], since in real-world problems the OFs are related to contrasting aims
which may not be minimized simultaneously, the optimal solution often is not well
defined in multi-objective optimization problems. In fact, considering all the OFs
together, it may happen that none solution is better than others but the optimality
is reached in a sort of trade-off. As affirmed in [11], in the contest of multi-objective
optimization problems,

“the term optimize means finding such a solution which would give the
values of all the objective functions acceptable to the decision maker ”.

In order to assess the quality of a certain solution, the evaluation of the OFs is
needed. In [11], the OFs can be classified as “commensurable” if they are measured
in the same units otherwise they are “non-commensurable”. The feasible set is com-
pletely ordered in a single-objective optimization problem and between two different
solutions it is always possible to establish which one is better through a simple evalu-
ation of the OF [59]. Instead, in a multi-objective optimization problem the feasible

9

Marco Martino Rosso Chapter 2. Optimization Procedures

set is only partially ordered and it is not possible to unequivocally compare two
possible solutions. For this reason, to evaluate the quality of the solutions it is nec-
essary to adopt the Pareto order theory for a minimization problem (also denoted
as Edgeworth-Pareto order theory in [11]) which involves binary relations between
two candidates solutions. Referring to [19], given two output vectors in the objective
space u ∈ Rm and v ∈ Rm, it is said that u Pareto dominate v (u ≺ v) if and only
if

ui ≤ vi, ∀i = 1, 2, ...,m,

uj < vj, ∃j = 1, 2, ...,m,
(2.2.3)

and in [11] it is said that u weakly Pareto dominate v (u � v) if only the first
condition in (2.2.3) occurs. The vector u is said to strictly Pareto dominate v (in
symbols u ≺≺ v) if and only if [59]

ui < vi, ∀i = 1, 2, ...,m. (2.2.4)

In [59], two vectors u,v are called incomparable or indifferent (in symbols u ≺� v)
if does not hold neither u � v nor v � u. In [11], in the design space, a vector x̃ is
called Pareto optimal with respect to Ω if and only if there no exist another vector
x for which v ∈ Rm, such that v = F (x) = [f1(x), ..., fm(x)], dominates u ∈ Rm,
such that u = F (x̃) = [f1(x̃), ..., fm(x̃)]. As stated in [64], the Pareto optimal is a
feasible solution for which does not exist any other feasible solution that can reduce
some OFs without generating a simultaneous rise in at least one of the other OFs.
The Pareto optimal set is nothing more than the collection of the output vectors of
the all the Pareto optimal points which are also called non-dominated solutions in
the objective space, in symbols

P = {x̃ ∈ Ω such that @x, F (x) � F (x̃)}, (2.2.5)

and the Pareto front is defined as

PF = {u = F (x) with x ∈ P}. (2.2.6)

As affirmed in [48], the pareto optimal front represent substantially the projection
of the Pareto optimal set in the objective space. For a maximization problem the
definitions above changes but it is sufficient to reverse the symbols � (≺) with �
(�) and the symbols ≤ (<) with ≥ (>). All the previous definition can be considered
both in local sense (referring to a neighbourhood) or in a global sense (referring to
the entire domain).

According to [59], the points on the Pareto front are “optimal in the sense that
they cannot be improved in one objective without causing deterioration in the other
objective”. As depicted in Figure 2.1, an example of the dominance relations are
graphically showed in a case with two OFs. Setting the reference vector as u, it
weakly dominate the vector v (u � v) because f1,u = f1,v and f2,u < f2,v. Instead,
u is strictly dominate the vector t (u ≺≺ t) because fi,u < fi,t i = 1, 2, whereas it is
incomparable with w (u ≺� w) because despite f1,u < f1,w, the second component
is f2,u > f2,w. In fact, due to the fact that the problem require to minimize both
f1 and f2 in this last case it is not possible to evaluate which one solution is better
only looking to the OF evaluations.

10

Marco Martino Rosso Chapter 2. Optimization Procedures

Referring to the Figure 2.2, the top-left figure shows the Pareto front in a min-
imization problem of two OFs and the top-right figure illustrates the Pareto front
in the opposite maximization problem. Despite these two cases, it is often that the
OF aim to opposite or conflicting interests and maybe a multi-objective require to
maximize some OFs and minimize others, and vice versa. In Figure 2.2, the bottom-
left image presents the Pareto front resulting by considering to maximize the OF f1

and to minimize the OF f2, on the contrary the bottom-right image shows a prob-
lem which require to minimize f1 and maximize (f2). The decision maker needs to
consider the best solution taking into account the Pareto front which represents the
trade-offs between the various OFs. As illustrated in the top-left image of the Figure
2.2, as stated in [27], a possible way to help the decision maker is finding the Utopia
point (or utopical or ideal vector [11]), which is an ideal point which minimizes all
the OFs, and considering the minimum distance, measured in a certain metrics (e.g.
the euclidean distance), between this utopical vector and the Pareto front.

As stated in [48, 19], respect to the moment when the decision maker has to
point out which is the best optimal trade-off among the different OFs, it is possible
to classify the multi-objective optimization problem in three way adding this addi-
tional information: a priori, interactive and a posterior methods. In the first one a
prior ordering in the objective space is done by the decision maker before perform-
ing the optimization algorithm, e.g. giving some weight to each OF and adopting
some utility functions. In the a posteriori methods, the partial ordering is taken into
account by the Pareto optimal theory and the decision maker gets the information
of the Pareto front of the non-dominated solutions after the optimization process.
In the interactive (or online or progressive) methods, the decision maker can decide
to perform some refinement based on online feedbacks given back to him during the
optimization procedure. This latter is substantially a combination of a priori and a
posterior methods and, notwithstanding it represents the current most interesting
solution, often the multi-objective optimization problems are still dealt with a pos-

f(x) f1 � minf 2 � minDesign space Objective space

Feasible
region

Pareto
front

u

v

t

w

Figure 2.1: Multi-objective optimization problem (minimization case): Design space vi-
sualization and Objective space considering a three-dimensional design vector and a bi-
dimensional OFs vector. The Pareto Front is enlighten in red. The output vectors t,u,v,w
are enlightened to show the dominance relations (u as reference vector): u � v, u ≺≺ t
and u ≺� w.

11

Marco Martino Rosso Chapter 2. Optimization Procedures

teriori approach [19].

In [64], a simple approach to solve multi-objective optimization problems is to
reconduct towards a single-objective optimization problem creating a new OF as a
linear combination of the m OFs:

f ∗(x) =
m∑
i=1

wi · fi(x). (2.2.7)

The coefficients wi can be assumed constant and they play a role of weights of a sort
of priority of the different OFs. Therefore, they contribute to give much importance
to some OFs respect to others. This solution is also called scalarization method in
[27] or weighted-sum method or linear weighting method in [59] and it can be iden-
tified as a priori method. The weights can be chosen equally or taking into account a
sort of rank methods through literature relations. It is important to stress that these
weights are arbitrary chosen by the decision maker and they may not necessarilyf1 � minf 2 � min Feasible

region

Pareto
front f1 � maxf 2 � max Feasible

region
Pareto
frontf1 � maxf 2 � min Feasible

region

Pareto
front f1 � minf 2 � max Feasible

region

Pareto
front

Utopia Point

d min
Figure 2.2: Image inspired by [48]: graphical representation of the Pareto front in the
objective space of some different minimization and maximization multi-objective problems
with two OFs.

12

Marco Martino Rosso Chapter 2. Optimization Procedures

represent the relative importance of each OFs. The OFs to be minimized are consid-
ered with negative sign, whilst the OFs which has to be maximized are considered
with positive sign [27]. For furthermore readings about specific techniques which
has been developed to face multi-objective optimization problems, one can refer to
[11, 19, 27, 48].

The multi-objective optimization problems are encountered very often in real-
world problems; a typical example in the structural optimization field can be related
to optimization in seismic design. As exposed in [60], it is possible to perform an
initial seismic design adopting a constrained single-objective optimization problem
taking into account the minimum cost for reinforced concrete (RC) structures and
the minimum weight for steel structures. Although this first simplification, consid-
ering the entire life-cycle costs which take into account also repairing costs after
an earthquake, it transforms the problem in a multi-objective optimization prob-
lem. The main difficulties are related to the accurate definition of the restoration
costs and, moreover, it should be necessary also considering the uncertainties. As
reminded in [60], they are mainly related to the probabilistic nature of the earth-
quake and to the uncertainty on the material side. This latter is mainly due to the
fact that the response of a structure is in non-linear field. Therefore, it is necessary
to assess the seismic performances (capacity and demand) at a specific limit state
using non-linear approaches. The current methods in practise are to adopt the non-
linear static analysis (pushover analysis) or the non-linear dynamic analysis (time
history analysis). The early methods to solve the seismic multi-objective optimal
design were gradient-based approaches such as linear and quadratic programming,
feasible directions and other mathematical methods. As underlined in [60], although
their computational efficiency, these approaches required that was possible to ex-
plicit the design variables from the OFs and the constraints. To solve this issue the
Principle of Virtual Work was adopted looking to closed-form analytical relations or
approximated ones. Later, because of research developments in the FEA and in the
improvements of computer calculating capacity, the gradient-based methods were
abandoned to promote meta-heuristic approaches. One can refer to [60] for further-
more reading of a complete overview about this topic.

2.3 Classical Approaches
There are different kind of approaches inside the Operation Research fields: the
mathematical programming methods involves a set of design variables even subjected
to a number of constraints; the stochastic methods involves problems with a set of
random variables with known probability distribution; statistical methods involves
experimental data analysis in order to create empirical models which laws best
represent the data. The classical approaches are usually related to the gradient-
based or mathematical methods. They are called classical methods to distinguish
respect to the modern meta-heuristic approaches and because are mathematically
“well posed” methods. A optimization problem is nothing less than a minimization

13

Marco Martino Rosso Chapter 2. Optimization Procedures

problem of a function and, for this reason, some basic concepts of Mathematical
Analysis I are reminded below.
As stated in [5] “One calls x0 ∈ dom f a relative (or local) maximum point for f if
there is a neighbourhood Ir(x0) of x0 such that :

∀x ∈ Ir(x0) ∩ dom f, f(x) ≤ f(x0). (2.3.1)

Then f(x0) is a relative (or local) maximum of f ”. If it is valid the same as above
not only for the intersection of a neighbourhood with dom f but for the entire
dom f , the point is an absolute maximum of f. Exchanging the ≤ symbol with the
≥ symobl one gets the definition of both local and global minimum of a map. “A
minimum or maximum point shall be referred to generically as an extremum (point)
of f ” [5]. Considering a single variable continuous function y = f(x) such that
f : I ⊆ R → R on a closed bounded interval [a, b], the Weierstrass Theorem states
that this continuous map “admits minimum and maximum” [5]. When the map is
differentiable, the extremum is also called a stationary point (or critical point) and
its first derivative is equal to zero f ′(x0) = 0 (Fermat Theorem). In order to find the
minimum points of a function in the classic “Qualitative study of a function” one
can refer to the theorems of Rolle, Lagrange and Cauchy which are also the basis
of the differential calculus. It is also important remind the convexity properties.
Considering the same map f , which is differentiable in x0, and naming the tangent
function as t(x) = f(x0) + f ′(x0)(x − x0), “the map f is convex at x0 if there is a
neighbourhood Ir(x0) ⊆ dom f such that

∀x ∈ Ir(x0), f(x) ≥ t(x); (2.3.2)

f strictly convex if f(x) > t(x), ∀x 6= x0” [5]. It is possible to extend the convexity
concept to the concavity considering the symbol ≤ and it is possible to define the
inflection points where the map change from convexity to concavity and vice versa.
Considering an interval I, the convexity is also related to the second derivative of f
stating that ([5]):

f ′′(x) ≥ 0, ∀x ∈ I ⇐⇒ f is convex on I, (2.3.3)

and it is strictly convex considering the symbol >. A graphical interpretation of
the convexity is that, considering the epigraph2 of a map, a segment composed by
any two point taken in the epigraph or even belonging to the graph of the map,
it is entirely contained in this region [59] as depited in Figure 2.3. As stated in
[59], a global minimum is also a local minimum but the converse it is true if and
only if the function is convex so there exist only one global minimum. According
to [64], in general terms, “a function f(x) is convex if the Hessian matrix H(x) =
[∂2f(x)/∂xi∂xj] is positive semidefinite”3. The sufficient condition that a stationary
point of a function is also a relative minimum is that the Hessian is positive definite,

2It is the part of the plane above the graph of a function
3As stated in [64], a matrix A is positive (negative) definite when all the eigenvalues λ re-

sulting from the resolution of its secular (or characteristic) polynomial or determinantal equation
det[A− λI] = 0 are positive (negative). Instead, it is positive (negative) semidefinite if all the
eigenvalues are nonnegative (nonpositive).

14

Marco Martino Rosso Chapter 2. Optimization Procedures

-4 -2 0 2

4

-2

2

Global Minimum

A

B

Epigraph

x

y

4

(a)

-4 -2 0 2

4

-2

2

Local Minimum

Global Minimum

A

B

Epigraph

x

y

4

(b)

Figure 2.3: (a) An example of a convex function y = x2; (b) An example of a non-
convex function y = x3− x+

(
2− x2

)2; if it was possible to split this function at the local
maximum, the two resulting functions, taken alone, would be convex.

whereas to have a relative maximum the Hessian need to be negative definite [64].
According to [59], the mathematical approaches are identified also as local methods
because they need the study of the second order derivative, which represents the
information about the local curvature. In general, a n-dimensional set S is a convex
set if their elements respect this condition:

Taken any x1,x2 ∈ S, ⇒ x(λ) = λx1 + (1− λ)x2 ∈ S, 0 ≤ λ ≤ 1, (2.3.4)

in which x represents a line segment in n dimensions between x1 and x2. A set
which contains only one point is always convex [64]. It is also possible to generalize
the convex set definition to the convex combination of r points in the set [64]

x(µ1, ..., µj, ..., µr) = µ1x1 + ...+ µjxj + ...+ µrxr, (2.3.5)

where each 1 ≤ µj ≤ 1 and the condition
∑r

j=1 µj = 1 is respected.
The classical approaches make a strong use of differential calculus methods and

this implies that the OF needs to be regular and at least a class C2 function on the
domain4. Therefore, the mathematical approaches have a very limited field of ap-
plication in practical optimization problems but they represent a fundamental basis
for further and more sophisticated resolution methods [64]. According to [59], the
convergence of the mathematical programming methods is faster because they are
able to exploit the gradient information finding a sort of a maximum slope direction
towards the optimum when they are close to it. Unfortunately, these approaches
can very easily being entrapped in local optima and so that they do not ensure the
reaching of the global optima. Another important issue to take into account is the
very high computational effort in applying them into the structural optimization

4The function must be differentiable two times and its derivatives are continuous.

15

Marco Martino Rosso Chapter 2. Optimization Procedures

fields in particular because a high rate of operations are already necessarily spent to
solve the Finite Element Analysis (FEA) verifying the equilibrium of the structure,
as affirmed in [59].

2.3.1 Lagrange Multipliers methods

In order to solve single-objective optimization problems with n design variables sub-
jected to m ≤ n equality constraints5 there are several theoretical methods available
but only some of them are practically applied. For instance, the direct substitution
method stated in [64] consist in create a new unconstrained objective function de-
pending only onm−n independent variables. This approach seems extremely simple
but it can be applied only for extremely simple problems e.g. when the constraints
expressions allow to explicit a design variable alone which can be directly substituted
in the OF reducing the dimension of the problem. Another possible approach is the
constrained variation method which aims to find a closed-form of the total differen-
tial of a map f at which the equality constraints are satisfied [64]. The name of this
latter is given by the fact that in order to get the total differential df it is necessary
to consider the arbitrary total variations of its variables dxi. This method poses the
theoretical basis for the most popular Lagrange multiplier method. Considering a
simple example taken by [64],

min f(x1, x2),

s.t. g(x1, x2) = 0,
(2.3.6)

the total differental of f is given by considering two arbitrary variations of each
variables:

df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2. (2.3.7)

The constraint must be satisfied at the extremum point (x̃1, x̃2) and the arbitrary
variation must be admissible, this means that considering a small total variation
from the extremum point, the resulting point must still belong to the constraint
function.

g(x̃1 + dx1, x̃2 + dx2) = 0. (2.3.8)

Considering also the Taylor’s expansion series it yields to

dg(x̃1 + dx1, x̃2 + dx2) =

[
∂g

∂x1

dx1 +
∂g

∂x2

dx2

]
(x̃1,x̃2)

= 0. (2.3.9)

Assuming that ∂g
∂x2
6= 0 the dx2 can be expressed in terms of dx1 and substituting

everything inside the (2.3.7) it is possible to get

df =

(
∂f

∂x1

− ∂g/∂x1

∂g/∂x2

∂f

∂x2

)∣∣∣∣
(x̃1,x̃2)

dx1 = 0. (2.3.10)

5As stated in [64], if m is greater than n, the problem is overconstrained and it is generally
impossible to solve.

16

Marco Martino Rosso Chapter 2. Optimization Procedures

Since dx1 is arbitrary, the necessary condition of existence of an extremum point is
given by ([64]): (

∂f

∂x1

− ∂g/∂x1

∂g/∂x2

∂f

∂x2

)∣∣∣∣
(x̃1,x̃2)

= 0. (2.3.11)

From the previous condition, it is possible to define the Lagrange multiplier λ as

λ =

(
∂f/∂x2

∂g/∂x2

)∣∣∣∣
(x̃1,x̃2)

(2.3.12)

Substituting (2.3.12) in (2.3.11), it is possible to get(
∂f

∂x1

+ λ
∂g

∂x1

)∣∣∣∣
(x̃1,x̃2)

= 0, (2.3.13)

and reversing the (2.3.12) it is possible to get(
∂f

∂x2

+ λ
∂g

∂x2

)∣∣∣∣
(x̃1,x̃2)

= 0, (2.3.14)

and remembering that the constraint must be satisfied at the extremum point

g(x1, x2)|(x̃1,x̃2) = 0, (2.3.15)

this three latter relations represent the necessary conditions of the Lagrange mul-
tiplier method to have an extremum point. Since it was decided that the arbitrary
variation was dx1, performing the same procedures as before but assuming that dx2

as arbitrary expression, one can check that the necessary conditions for the Lagrange
multiplier methods require at least one of the partial derivative of g be non-zero at
an extremum point [64]. The Lagrange multiplier method for this problem require
to create a Lagrange or Lagrangian function L:

L(x1, x2, λ) = f(x1, x2) + λ · g(x1, x2) (2.3.16)

and studying its stationary points, thus posing to zero all the partial derivative of
L respect to all the variables and the Lagrange multipliers:

∂L

∂x1

=
∂f

∂x1

(x1, x2) + λ · ∂g
∂x1

(x1, x2) = 0,

∂L

∂x2

=
∂f

∂x2

(x1, x2) + λ · ∂g
∂x2

(x1, x2) = 0,

∂L

∂λ
= g(x1, x2) = 0,

(2.3.17)

As stated in [64], in general terms, for a single-objective optimization problem
with n variables subjected to nr equality constraints, with n ≥ nr,

min f(x),

s.t. hr(x) = 0 ∀r = 1, ..., nr,
(2.3.18)

17

Marco Martino Rosso Chapter 2. Optimization Procedures

considering a Lagrange multiplier λr for each constraint it is possible to get the
Lagrangian function as

L(x1, x2, ..., xn, λ1, λ2, ..., λnr) = f(x) +
nr∑
r=1

λr · hr(x). (2.3.19)

In order to solve the problem it is necessary to study the stationary point of this
function performing the first partial derivative respect to each variable of the design
vector and respect to each Lagrange multiplier, i.e.

∂L

∂xi
=
∂f

∂xi
+

nr∑
r=1

λr ·
∂hr
∂xi

= 0, i = 1, 2, ..., n,

∂L

∂λr
= hr(x) = 0, r = 1, 2, ..., nr.

(2.3.20)

The above obtained system have n+m equations in m+n unknowns which are the
optimal design vector x̃ and the vector of the Lagrange multipliers λ̃. According to
[64], the sufficient condition for a relative minimum to exist x̃ is that the following
quadratic form Q is positive definite for all admissible variation dx for which the
constraints are satisfied,

Q =
n∑
i=1

n∑
j=1

∂2L

∂xi∂xj
dxidxj. (2.3.21)

In [64], the Lagrange multipliers represent the degree of relaxation or tightness of the
OF to the equality constraint at the optimum point, which is also called “sensitivity
or rate of change”. Since they can affect the optimal value of the OF, they are also
called shadow prices.

Dealing with a single-objective optimization problem subjected to nq inequality
constraints

min f(x),

s.t. gq(x) ≤ 0 ∀q = 1, ..., nq,
(2.3.22)

the approach proposed in [64] is to transform this problem into an equivalent one
subjected only to equality constraints introducing non-negative slack variables ξ2

q

obtaining the following problem

min f(x),

s.t. Gq(x, ξ) = gq(x) + ξ2
q = 0 ∀q = 1, ..., nq.

(2.3.23)

Therefore, it is possible to solve it using the Lagrange multiplier rule writing the
Lagrangian function as

L(x,λ, ξ) = f(x) +

nq∑
q=1

λq ·Gq(x, ξ), (2.3.24)

18

Marco Martino Rosso Chapter 2. Optimization Procedures

and studying its stationary points obtaining a n+2nq equations in n+2nq unknowns
which are x̃, λ̃ and ξ̃:

∂L

∂xi
(x,λ, ξ) =

∂f

∂xi
(x) +

nq∑
q=1

λq ·
∂gq
∂xi

(x) = 0, i = 1, 2, ..., n,

∂L

∂λq
(x,λ, ξ) = Gq(x, ξ) = gq(x) + ξ2

q = 0, q = 1, 2, ..., nq,

∂L

∂ξq
(x,λ, ξ) = 2λqξq = 0, q = 1, 2, ..., nq.

(2.3.25)

The second equation of (2.3.25) ensures the respect of the constraints whereas the
third equation implies that or ξq = 0 or λq = 0. When λq = 0 this means that the
q-th constraint at the optimum is inactive, whilst when ξq = 0 the q-th constraint
at the optimum is active. Considering the active or inactive condition, it is possible
to separate the constraints in two subset where J1 represent the active set and J2

the inactive one. As stated in [64], is made in order to simplify the first equation of
the system (2.3.25) as

∂L

∂xi
(x,λ, ξ) =

∂f

∂xi
(x) +

∑
q∈J1

λq ·
∂gq
∂xi

(x) = 0, i = 1, 2, ..., n, (2.3.26)

and it is also possible to rewrite the second equation as

gq(x) = 0, q ∈ J1,

gq(x) + ξ2
q = 0 = 0, q ∈ J2.

(2.3.27)

obtaining now a system of n + p + (nq − p) equations in n + nq unknowns which
are xi (i = 1, 2, ..., n), λq (q ∈ J1), ξq (q ∈ J2), where p is the number of active
constraints. The (2.3.26) can thus be rewritten considering only p constraints as

−∇f = λ1∇g1 + λ1∇g1 + ...+ λp∇gp, (2.3.28)

which express that, at the optimum point, the negative gradient of the OF is a lin-
ear combination of the gradients of the active constraints weighted by the Lagrange
multipliers (the symbol ∇ denotes the gradient operator). As stated in [64], dealing
with a minimization problem, all the λq (with q ∈ J1) have to be positive and this
is related to geometric reasons due to the feasible direction vector (vice versa they
have to be negative for a maximization problem).

Summarizing the above results, the conditions that are necessary to be satisfied
at a relative minimum of the OF of a constrained minimization problem are called
Kuhn-Tucker conditions

∂f

∂xi
(x) +

∑
q∈J1

λq ·
∂gq
∂xi

(x) = 0, i = 1, 2, ..., n,

λq > 0, q ∈ J1

(2.3.29)

19

Marco Martino Rosso Chapter 2. Optimization Procedures

As reported in [64], it is worth noting that during the derivation of these condi-
tions, one fundamental requirement for their applicability is that “at least one of the
Jacobians of the nq constraints and nq of the n + nq design and slack variables be
nonzero”. Unfortunately, in general, these conditions are not sufficient to ensure that
the solution is a relative minimum but for the convex programming problems class
they are both necessary and sufficient to ensure the global minimum. As a matter
of fact, the convex programming problems are defined as such problems in which
both the OF and the constraints are convex functions. The Lagrangian function is
in the form of (2.3.23), and it is simple to notice that, since for a minimization prob-
lem λq ≥ 0 and λqξq = 0, the Lagrangian function is also convex because a linear
combination of convex functions. This implies that the Kuhn-Tucker conditions are
necessary and sufficient to ensure the unique existence of a global optimum because
there are not present neither local minima nor saddle points.
As stated in [64], in general, if the active constraints are not known, the Kuhn-Tucker
conditions are written as

∂f

∂xi
(x) +

np∑
q=1

λq ·
∂gq
∂xi

(x) = 0, i = 1, 2, ..., n,

λqgq = 0, q = 1, 2, ..., nq,

gq ≤ 0, q = 1, 2, ..., nq,

λq ≥ 0, q = 1, 2, ..., nq,

(2.3.30)

where the second condition comes from the third equation of the system (2.3.25).

When the optimization problem in general involves both equality and inequality
constraints such as in the problem statement (2.1.2), the Kuhn-Tucker conditions
become

∇f +

nq∑
q=1

λq∇gq −
nr∑
r=1

βr∇hr = 0,

λqgq = 0, q = 1, 2, ..., nq,

gq ≤ 0, q = 1, 2, ..., nq,

hr = 0, r = 1, 2, ..., nr,

λq ≥ 0, q = 1, 2, ..., nq,

(2.3.31)

where βr and λq are respectivelyt he Lagrange multipliers of the equality and in-
equality constraints. The optimality is ensured, i.e. there exist λ̃ and β̃ which satisfy
the Kuhn-Tucker conditions, if ∇gq(x̃) with q ∈ J1 and hr(x̃) with r = 1, ..., nr are
linearly independent (this property is also called constraint qualification in [64]). As
stated in [15], the second condition is called as Karush-Kuhn-Tucker complemen-
tarity condition and it implies that the Lagrange multipliers are λq ≥ 0 for active
constraints and λq = 0 for inactive ones.

20

Marco Martino Rosso Chapter 2. Optimization Procedures

2.3.2 Linear, Quadratic and Non-linear Programming

In this section, some mathematical programming techniques are mentioned. For fur-
ther and deepen readings, one can mainly refer to [64] from which the materials of
the following paragraphs are taken.

As stated in [64], Linear programming (LP) involves problems in which OF and
constraints are linear functions. In general terms, the statement of s LP problem is
given in scalar form or matrix form. The scalar form is

min f(x1, ..., xn) = c1x1 + ...+ cnxn,

s.t. a11x1 + ...+ a1nxn = b1,

a21x1 + ...+ a2nxn = b2,

...
am1x1 + ...+ annxn = bm,

x1, ..., xn ≥ 0

(2.3.32)

where cj (cost coefficients), bj and aij with i = 1, ...,m and j = 1, ..., n are con-
stants. It is important to notice that in a LP problem the design variables must be
non-negative [64]. In fact they usually represents some physical quantities, but if the
problem require to deal with also negative dimensions, they can be transformed as
the difference of two non-negative variables xj = x′j − x′′j . As stated in [64], all the
possible values of xj, negative sign, zero value or positive sign, is taken into account
considering if x′′j is greater, equal or less than x′j.
Moreover, if the problem deal with q inequality constraints, they can be trans-
formed in equality constraints adding non-negative slack variables xn+1, ..., xn+q if
the inequality are in the type of “≤”, or subtracting non-negative surplus variables
otherwise. For instance, considering only one additional inequality constraint in the
type of “≤”, the transformation is

am+1,1x1 + ...+ am+1,nxn ≤ bm+1, −→ am+1,1x1 + ...+ am+1,nxn + xn+1 = bm+1,

whereas considering only one additional inequality constraint in the type of “≤”, the
transformation is

am+1,1x1 + ...+ am+1,nxn ≥ bm+1, −→ am+1,1x1 + ...+ am+1,nxn − xn+1 = bm+1,

According to [64], the LP solution of interest is when n ≤ m because there is infinite
solution to the problems and it is possible to look for the optimal solution with the
minimum OF, whilst if m = n an unique solution exist without any possible opti-
mization and if m > n it means that there are possibly m−n redundant constraints
that can be removed. In [64] it is stated that:

“A linear programming problem may have (i) a unique and finite op-
timum solution, (ii) an infinite number of optimal solutions, (iii) an
unbounded solution, (iv) no solution, or (v) a unique feasible point”.

21

Marco Martino Rosso Chapter 2. Optimization Procedures

Furthermore it is stated that if the LP is correctly formulated, the feasible region is
a convex set and the optima occurs at a vertex or point of this feasible polygon.
Collecting the various terms of (2.3.32) in matrix and vector form, the matrix for-
mulation is

min f(x) = cTx,

s.t. Ax = b,

x ≥ 0

(2.3.33)

with obviously meaning of each term.

As one can check in [6, 64], a typical LP structural problem is the plastic design
of a hyperstatic frame (system of Euler-Bernoulli beams) proportionally loaded by
concentrated forces, as depicted in the example in Figure 2.4. The solution of the
application of the static theorem of plasticity (lower-bound theorem) coincides with a
solution of a LP problem [6]. Instead in [64], the Neil-Symonds method (combination
of mechanisms methods) is applied. If the energy absorbing capacity (U) is greater
or at limit equal to the external loads energy (E) for each collapse mechanism, the
design will be safe. A collapse mechanism is generated when a sufficient number of
plastic hinges develops which always starts from the peak of the moment diagram.
The aim is to determine the ultimate moment capacity for each collapse mechanism
which lead to the minimum weight of the entire structure.
The weight of the structure is equal to the sum of the weights of both beams and
columns, and it is proportional to the cross section properties of each element. These
properties conditions the ultimate moment capacity, therefore, according to [64], it is
possible to assume that the OF is a linear function of the plastic moment capacities
f(Mp,b,Mp,c) through a constant factor a which represent the weight per unit length
of a member with unitary plastic moment capacity:

f(Mp,b,Mp,c) =
∑
b, c

weight ≈ a · f(Mp,b,Mp,c), (2.3.34)

whereMp,b, Mp,c are respectively the plastic ultimate moment of beams and columns
composing the structure under consideration.
In [6], a hyperstatic structure is reconducted to an equivalent isostatic structure
with the methods of forces, introducing a number n of internal releases (hinges) in
order to take into account hyperstatic moment unknowns (Xj). The moment along
the structure is

M(z) = λM (0) +
n∑
j=1

XjM
(j), (2.3.35)

where λ is the static multiplier of the external loads which are all assumed to change
proportionally with respect to the same multiplier, M (0) is the moment due to ex-
ternal load in the section at coordinate z and M (j) is the moment in the considered
section with unitary hyperstatic unknown. The static theorem requires the respect
of the equilibrium between the statically admissible internal actions with external
loads. Substantially, the moment along the structure can not violate the plasticity
condition which is given by the plastic moment ±Mp of the section. In general, it is

22

Marco Martino Rosso Chapter 2. Optimization Procedures

F2F1
a

a

F2F1 Mp
Mp

u2�
F2F1 u1

�

F2F1 u1
�

u2�

u2
(1) (2) (3)

u1
F1F2

4Mp /a8Mp /a (1)

(3)

(2)

Feasible
region

Figure 2.4: An example of LP structural problem with a portal frame plastic design
taking into account the different collapse mechanism: in (1) the beam mechanism is caused
by the assumption F2 � F1; in (2) the lateral mechanism is caused by the assumption
F1 � F2; in (3) the combined mechanism is taken into account because F1 and F2 are in
the same order of magnitude. In the force space, it is possible to notice that the feasible
region (safe region) is inside the limit collapse lines (light blue area).

possible to refer to m critical sections where the moment M(z) is expected to reach
the plastic moment value. In practise, considering only the m critical sections the
(2.3.35) become

Mi = λM
(0)
i +

n∑
j=1

XjM
(j)
i , i = 1, 2, ...,m, (2.3.36)

and, considering the static theorem, the (2.3.36) is limited at the plastic conditions
and become

−Mp ≤Mi ≤ +Mp, i = 1, 2, ...,m, (2.3.37)

which exactly represent 2m constraints of a LP problem in the variables λ and Xj.
With the static theorem, the optimal value is the maximum possible value of the
λ because it rounds down to the real collapse factor (the red dot in the graph in
Figure 2.5).

The solution to LP problems can be obtained in a graphical way only if the
design variables are two, but, in general, it can be automatically obtained adopting
the most popular simplex method by George Dantzig [64]. The traditional method
to solve a square system of equation in the form Ax = b is to perform Gauss opera-
tions (also known as pivoting operations) in order to get a triangular system which

23

Marco Martino Rosso Chapter 2. Optimization Procedures

l

λF

λF

X X

λ /4
X

Mp /Fl2Mp /Fl
Mp /Fl

Mp /Fl
Mp /Fl

Figure 2.5: An example of LP problem with a fixed beam subjected to concentrated
external load F which is incrementally risen by the load factor λ. The structure is only
apparently three times hyperstatic. Due to symmetric conditions and considering only
flexural problem, it becomes only one time hyperstatic which determine the presence of
only one hyperstatic unknown X. The red dot of the graph on the right represent the peak
value of the load factor which rounds down the real collapse load factor through the static
theorem of the theory of plasticity.

can be easily handled to obtain the unique solution. With a rectangular system
in the form of (2.3.33), if the system is consistent6 the pivoting operations can be
done in order to get the canonical form of it. From this latter, it is possible to get
a basic solution which is a special solution immediately obtained by the system in
that canonical form. With additional pivotal operations starting from this canonical
form, it is possible to get all the other basic solutions because only one per time is
non-zero. It is possible to analyze one solution per time, but many of them could
be unfeasible. It is important to notice that this approach become computationally
heavy especially when the number of rowm and the dimension of the design vector n
are very large7. Therefore, a more powerful research scheme was implemented thanks
to the simplex method introducing non-negative m additional artificial variables to
get an auxiliary problem in canonical form from which immediately obtain a basic
feasible solution which is then refined and optimized in a second phase of pivoting
operations [64]. Despite its advantages, the simplex method requires a quite great
amount of computational time and storage memory, therefore, to overcome these
issues, a revised simplex method was proposed later. It requires the definition of a
dual form of the LP problem which is characterized by the transformation of a min-
imization problem in a simpler maximization problem which has the same optimal
feasible solutions, if they exist. Later other techniques were proposed referring to
specific classes of problems or in order to make more efficient the algorithm. For

6In [64], it means that the rectangular system have less row than column and it admits at least
one solution.

7As affirmed in [64], the number of basic solutions to be inspected is equal to the binomial
coefficient

(
n
m

)
.

24

Marco Martino Rosso Chapter 2. Optimization Procedures

instance for special problems which have wide dimensions and a great number of
constraints the decomposition principle by Dantzing and Wolfe [64] can be adopted.
This allows to split the original problems in a number of sub-problems which are
solved almost independently. For furthermore reading about LP methods, one can
refer to [64].

According to [64], quadratic programming problem (QP) is an example of non-linear
programming which is characterized to have a quadratic OF subjected to linear
constraints:

min f(x) = cTx+
1

2
xTDx,

s.t. Ax ≤ b,
x ≥ 0

(2.3.38)

where x is the n× 1 design vector, c is a n× 1 vector, b is the constant terms m× 1
vector,A is the coefficients’ m×n matrix andD is a n×n square symmetric positive
definite matrix which denotes the quadratic part of the OF. If this part disappear,
e.g. D = 0, it becomes again a LP problem.
To solve the QP in the form (2.3.38), it is possible to adopt the Lagrange multi-
plier rule transforming the inequality constraints in equality constraints introducing
slack variables and surplus variables as showed before in (2.3.23). Denoting Ai as
the column vectors of the matrix A, each inequality is converted into an equality
introducing slack variables s2

i

AT
i x+ s2

i = bi, i = 1, ...,m. (2.3.39)

The non-negative condition on the design variables is written introducing some
surplus variables t2j

− xj + t2j = 0, j = 1, ..., n. (2.3.40)

The Lagrangian function is then given by

L(x, s, t,λ,θ) = cTx+
1

2
xTDx+

m∑
i=1

λi(A
T
i x+s2

i − bi)+
n∑
j=1

θj(−xj + t2j) (2.3.41)

In order to find a solution, it is necessary to study the stationaryness of the La-
grangian function respect each variable from which it depends on:

∂L

∂xj
= cj +

n∑
i=1

dijxi +
m∑
i=1

λiaij − θj = 0, j = 1, ..., n, (2.3.42)

∂L

∂si
= 2λisi = 0, i = 1, ...,m, (2.3.43)

∂L

∂tj
= 2θjtj = 0 j = 1, ..., n, (2.3.44)

∂L

∂λi
= AT

i x+ s2
i − bi = 0 i = 1, ...,m, (2.3.45)

25

Marco Martino Rosso Chapter 2. Optimization Procedures

∂L

∂θj
= −xj + t2j = 0 j = 1, ..., n, (2.3.46)

Recalling the slack variables as Yi = s2
i ≥ 0, the equation (2.3.45) become

AT
i x− bi = −s2

i = −Yi, (2.3.47)

and multiplying the (2.3.43) by si and the (2.3.44) by tj they become

λis
2
i = λiYi = 0, (2.3.48)

θjt
2
j = 0. (2.3.49)

Combining now the equations (2.3.47) with (2.3.48) and (2.3.46) with (2.3.49), two
new conditions are obtained

λi(A
T
i x− bi) = 0, (2.3.50)

θjxj = 0. (2.3.51)

As stated in [64], in the end, the solution of the original QP problem can be obtained
by solving the following necessary conditions as a system of 2(n + m) equations in
2(n+m) non-negative unknowns λi, θj, xj, Yi:

cj +
n∑
i=1

dijxi +
m∑
i=1

λiaij − θj = 0, j = 1, ..., n, (2.3.52)

AT
i x− bi = −Yi, i = 1, ...,m, (2.3.53)

xj ≥ 0 j = 1, ..., n, (2.3.54)
Yi ≥ 0 i = 1, ...,m, (2.3.55)
λi ≥ 0 i = 1, ...,m, (2.3.56)
θj ≥ 0 j = 1, ..., n, (2.3.57)
λiYi = 0 i = 1, ...,m, (2.3.58)
θjxj = 0 j = 1, ..., n. (2.3.59)

As noticed in [64], the equations (2.3.52), (2.3.53) are linear function of the non-
negative unknowns, but it is not true for the last two equations (2.3.58) and (2.3.59).
Since the D matrix were defined as symmetric positive definite matrix, this implies
that the OF is strictly convex and, therefore, the solution is unique because, by
definition, any local minimum is also a global minimum. As affirmed by [64], this
kind of problem can also be reconducted to solving a LP with simplex methods
adding non-negative artificial variables but imposing at any time the respect of the
non-linear conditions (2.3.58) and (2.3.59).

Usually, in real-world engineering problems, the OF and the constraints are com-
plicated to allow solving them analytically because they need to manipulate and
explicit the functions in terms of the design variables. For instance, in [64], the
problem of minimum weight of a planar truss simply supported beam is showed

26

Marco Martino Rosso Chapter 2. Optimization Procedures

adopting an OF in the form of (2.1.5). For truss problems, usually the deformability
problems conditioned the design, therefore the constraints are set as limiting the
maximum displacement of each node uj at a certain limit δ in each direction con-
sidered g(x) = |uj| − ulim ≤ 0 with j = 1, ..., n number of nodes. Reminding that,
in the matrix automatic computation of the structures, the problem is governed
by Kδ = F , where the K is the stiffness matrix, δ is the vector of the displace-
ments and F is the vector of the forces, it is not possible to explicit the functions
to solve it analytically. For this reason, the non-linear programming (NLP) methods
are usually configured as numerical iterative approaches which exploit the gradient
information and local curvature information in order to find a search direction to-
wards the optima [59]. As expressed in [64], in general, the NLP methods start with
a trial solution x1 and look for a search direction Si with some criteria. After de-
fined the step length of search λ∗i , the point is moved in that direction with that step
obtaining a new approximation which is called also “efficiency of the optimization
method”,

xi+1 = xi + λ∗iSi. (2.3.60)
At that point, the optimum check is performed in order to understand if the pro-
cedure has to stop or to start again. Since the OF depends on x but it is approxi-
mated to xi+1, the OF can be rewritten as a problem to determine the step λi which
minimize the OF. Early search methods were developed to solve uni-dimensional
problems (OF is only function of λi) such as eliminations methods which assumes
a simpler but not efficient fixed step length or an accelerated step length. Exhaus-
tive method is called simultaneous methods and it is usually applied when it is
known that the optimal is contained in a finite interval considering for example a
starting solution and a level of uncertainty around this value. More efficient sequen-
tial searches are usually adopted such as the dichotomous approach which split the
uncertain set at each time. This reduces to the bisection method if it halve the in-
terval at each iteration. Other splitting procedures are available such as Fibonacci
search or Golden search. Interpolation methods try to approximate the gradient of
a uni-dimensional OF respect to λ∗i variable in order to determine the best step λ∗i .
Similarly to what happens in FEM, the shape functions adopted to perform the
interpolations can be roof functions (piecewise linear functions), but usually best
results are obtained with quadratic interpolation and cubic interpolation (spline).
The direct root methods foresees to approximate the derivative of the OF as Tay-
lor’s expansion series stopped at least at the second-order and search for the root of
the resulting expression. The Newton’s method, better known as Newton-Raphson,
operates in an iterative way and corresponds to an equivalent quadratic approxima-
tion of the function. The Newton-Raphson method and also its main variant called
modified Newton-Raphson are often use when, in combination with FEA, it is nec-
essary to take into account the non-linearity stage. In fact, after the elastic stage,
the material damaging is taken into account updating the stiffness matrix which
affects the forces distribution along the structure. If the second-order derivative is
non-zero, the Newton method has a very fast convergence which is called quadratic
convergence. When it is not possible to easily differentiate the function or it is not
available in closed form, the quasi-Newton method is more suitable because approx-
imate the function using the finite difference formulas. In the secant method, the

27

Marco Martino Rosso Chapter 2. Optimization Procedures

first derivative is approximated between two points in a linear secant way, which
implies that the function is approximated as a second-order function. In [64] it is
stated that when interpolation polynomials are not representative of the behaviour
of the OF, the Fibonacci and Golden search will probably operate better, whilst
when the interval of uncertain is not available quadratic and quasi-Newton methods
it is expected to be more effective. In the cases when the fist derivatives is available,
cubic interpolation or secant methods should be the most suitable.

Despite the unconstrained problems rarely appear in real-life engineering prob-
lems, the unconstrained search methods represents the basis for many mathematical
programming constrained search. Some complex problems can anyway be recon-
ducted to unconstrained search such as the study of displacement response of a
structure under any load condition. As a matter of fact, it can be solved by the
general method of minimizing the potential energy. This is a useful approach for
example adopted in the buckling analysis. As already said before, the minimum of
a function is situated in a stationary point (∂f/∂xi|x∗ = 0, ∀i = 1, ..., n) and in
general it is guaranteed if the Hessian matrix is positive definite. However, if the
OF is not differentiable it is not possible to apply this criterion, therefore the di-
rect search methods, also known as nongradient methods, were developed. They are
also called zeroth-order methods because they only require the evaluation of the OF
and do not require any condition on its differentiability. Since all of the numerical
approaches perform an iterative sequential procedure, the evaluation of the success
of this procedure is performed looking at the rate of convergence. It represents a
ratio between the norm of the absolute errors measured in two consecutive iteration
respect to the real optima point [64]:

‖xi+1 − x∗‖
‖xi − x∗‖p

≤ T, (2.3.61)

where the norm of a n-dimensional vector is ‖x‖ =
√∑n

i=1 x
2
i , T ≥ 0 is a certain

tolerance and p ≥ 1 affects the order of the denominator. If p = 1 and 0 ≤ T ≤ 1
the algorithm is defined as linearly convergent, whereas if p = 2 the convergence is
more fast and it is denoted as quadratically convergent. This latter means that a
quadratic function is minimized in a finite number of operation, in particular in n
steps or less [64].
The random search method exploits random numbers generators to explore the box
search space assigning random values to each design variable. Through an evaluation
of the OF, it is possible to establish which point is the best found up to this iteration.
This is not an efficient approach but in order to improve this system the random walk
method was formulated. It assumes the approximation at i-th iteration as (2.3.60)
but fixing the step length λ̃i to a prescribed constant value and defining a unit
random vector ui to fix a new random search direction at each iteration:

xi+1 = xi + λ̃iui. (2.3.62)

This system was further improved in the random walk method with direction exploita-
tion which further implements a uni-dimensional search to find the best optimal step

28

Marco Martino Rosso Chapter 2. Optimization Procedures

λ∗i . The grid search methods create an ideal mesh in the design space and evaluate
the OF at each node establishing which one is the best. Since the great number of
OF evaluations needed, this procedure is not very efficient, especially with dense
grids. In the univariate method, the problem is reconducted to a one-dimensional
minimization because at each iteration only one variable in turn is changed. This
procedure does not converge so rapidly and another drawback is the tendency to
oscillate when it is close to the optimum. In pattern search methods the allowed
direction is only that direction parallel to coordinate axis but also here the conver-
gence may be slow. An extension of that method is the Powell’s method which adopt
the quadratic approximation of a non-linear function and exploit the concept of the
conjugate directions8. In [64] it is demonstrated that that method is quadratically
convergent. The simplex is a geometric figure which in the plane corresponds to a
triangle, in the three-dimensional space correspond to a tetrahedron and, in general,
it is formed by a set of n + 1 points. It is said to be regular if the points which
form it are equidistant. The simplex method substantially adopts this figure which
can move in an iterative process in the design hyperspace and the OF is evaluated
at the n + 1 vertices of this figure. The method adopts some geometrical rules as
the reflection property, expansion property and the contraction property to make a
robust search avoiding the stall in a non-optimal solution.
The indirect search or descent methods require the differentiability of the OF at
the fist-order or sometimes also at the second-order, besides the OF evaluations.
For this reason, they are also called gradient methods of first-order or second-order
methods if they respectively require the fist order or the second order derivative.
The most important local property of the gradient of a n dimensional function is
that it represents the direction where the function increases at the maximum rate
and it is called direction of steepest ascent. On the contrary, considering the nega-
tive gradient, this becomes the direction of steepest descent. In order to reduce the
numerical errors and bad conditioning of the Hessian matrix, it can be useful to
perform a scaling procedure in order to rescale the design variables (reducing to a
diagonal matrix) and also normalizing them (reducing to a unit matrix) through the
formulations suggested in [64]. The formulations are given for quadratic functions
but it is usual in gradient-based approaches to locally approximate the OF with a
second-order Taylor’s expansion series.
The evaluation of the gradient by analytical calculation of all the partial derivatives
respect to all design variables may not always be easy. It is possible that it requires
large computations or it may also be impossible because the gradient is not always
defined. In this latter case, one has to abandon the gradient methods adopting a
direct search method as above. In the other cases, it is possible to use the forward
finite-difference formula to approximate the gradient

∂f

∂xi

∣∣∣∣
xm

' f(xm + ∆xiui)− f(x)

∆xi
, i = 1, ..., n, (2.3.63)

where xm is called base point, ∆xi is the step length measured forward respect to
8Considering a n× n matrix A, a set of n vectors which define a direction {si} is A-conjugate

if sTi Asj = 0, ∀i 6= j, with i, j = 1, ..., n. The orthogonal direction definition is contained in this
definition because it is only a special case i.e. when A = I.

29

Marco Martino Rosso Chapter 2. Optimization Procedures

the base point and ui is a vector which has the only the i-th component non-zero
and equal to one. As enlighten in [64], n OF evaluations are needed to estimate
the gradient of the OF in the considered point xm. In order to get better results,
it is possible to estimate the gradient using the central finite-difference formula but
taking into account two additional OF evaluation for each partial derivative:

∂f

∂xi

∣∣∣∣
xm

' f(xm + ∆xiui)− f(xm −∆xiui)

2∆xi
, i = 1, ..., n. (2.3.64)

The step length ∆xi may be chosen with care because, if it is too small, numerical
rounding-off errors may prevail, on the contrary, if it is chosen too large, the trun-
cation errors will prevail.
The most ancient gradient method dates back to 1847 when Cauchy formulated the
steepest descendent method. Starting from an arbitrary point x1 at iteration i = 1, an
iterative procedure moves the point along the steepest descendent direction toward
the minimum of the OF. The search direction si is

si = −∇fi = −∇f(xi). (2.3.65)

The optimal step length λ∗i is determined in the direction si through one of the
previous uni-dimensional search procedures. The value of the approximated point in
the next iteration is equal to

xi+1 = xi + λ∗isi = xi − λ∗i∇fi. (2.3.66)

The convergence criteria can set in three different ways: as in (2.3.67), when the
absolute value of the OF value in two consecutive iteration is smaller than a positive
small constant ε1; as in (2.3.68), when the partial derivatives become smaller than
a positive small constant ε2; as in (2.3.69), when the change in the design variables
in two consecutive iteration become smaller than a positive small constant ε3.∣∣∣∣f(xi+1)− f(xi)

f(xi)

∣∣∣∣ ≤ ε1 (2.3.67)∣∣∣∣ ∂f∂xi
∣∣∣∣ ≤ ε2 (2.3.68)

|xi+1 − xi| ≤ ε3 (2.3.69)

Notwithstanding its general good behaviour, since the gradient steepest direction is
a local property, its convergence is affected by the initial solution.
The conjugate gradient method or also know as Fletcher-Reeves method, try to
improve the steepest descendent method manipulating it to make it quadratically
convergent using the conjugate direction search. It is better than the cauchy methods
because it can successfully deals with ill-conditioned quadratic problems but it is
less efficient than the following method.
The Newton’s method can be applied also to multi-variable function problems and it
is based on the quadratic approximation of the OF through Taylor’s series expansion
centred in xi,

f(x) ' f(xi) +∇fTi (x− xi) +
1

2
(x− xi)TH i(x− xi), (2.3.70)

30

Marco Martino Rosso Chapter 2. Optimization Procedures

where H i = H|xi is the Hessian matrix evaluated in xi. Since this method require
the Hessian matrix, the Newton’s method is classified as a second-order method.
The necessary condition to get a stationary point is to set the partial derivative of
(2.3.70) to zero:

∂f(x)

∂xj
= 0, j = 1, ..., n. (2.3.71)

The two previous equations lead to the following approximated stationariness con-
dition

∇f = ∇fi +H i(x− xi) = 0. (2.3.72)

If the Hessian matrix is not singular, setting x = xi+1, the improved approximation
at the next iteration is obtained as

xi+1 = xi −H−1
i ∇fi. (2.3.73)

As stated in [64], since the higher order terms has been neglected in (2.3.70), the
(2.3.73) has to be adopted iteratively to get the optimal solution x̃. If the OF is
not a quadratic function it is possible that the method may diverge or converge to
saddle or maxima points. To avoid this, in [64], a modification of (2.3.73) is proposed
taking into account the optimal step length λ∗i :

xi+1 = xi − λ∗iH−1
i ∇fi. (2.3.74)

The main drawbacks of this procedure is that it need to compute and store the
Hessian matrix, then it require its inversion at each step which lead to huge compu-
tational effort.
The Marquardt method tries to combine the advantages of both the steepest de-
scended method and the Newton’s methods by a modification of the diagonal of the
Hessian matrix. The modification is done adding positive constants αi which values
is tuned in order to have the resulting Hessian H̃ i positive definite:

H̃ i = H i + αiI. (2.3.75)

As affirmed in [64], if that constants are sufficiently large, in the order of the 104, this
method reduces to the steepest descendent method because only the substantially
diagonal dominate

H̃ i
−1

= (H i + αiI)−1 ≈ (αiI)−1 =
1

αi
I. (2.3.76)

Usually, the constant values are large at the first iterations and they gradually
reduce to zero toward the end of the algorithm, therefore passing from a steepest
methods at the beginning to a Newton’s method at the end. This method can also
be easily adapted to take into account the optimal step length λ∗i obtained by a
uni-dimensional search procedure.
Another important class of gradient-based formulation is the quasi-Newton methods.
In these procedures, the approximation is always the same in (2.3.73), but this time
the Hessian matrix is approximated by another matrix H i ≈ Ai as well as its

31

Marco Martino Rosso Chapter 2. Optimization Procedures

inverse matrix H−1
i ≈ Bi using only the first partial derivatives of the OF. At each

iteration it is necessary to follow update rules of the approximated matrix in order
to guarantee the positive definiteness:

Bi+1 = Bi + ∆Bi. (2.3.77)

Respect to the formulation proposed in the literature for the correction matrix ∆Bi,
the most popular quasi-Netwon methods are denoted as Davidon–Fletcher–Powell
(DFP) and Broydon–Fletcher–Goldfarb–Shanno (BFGS). This latter iteratively up-
dates the Hessian and not its inverse which is approximated (indirect update method).
As stated in [64], it is numerically proved that BFGS is superior because it is not
affected by errors that could occur in the optimal step length λ∗i . In short, the BFGS
can be considered a quasi-Newton, conjugate gradient and variable metric method.
As underlined by [64], in practical applications, it is possible that Bi become indefi-
nite or singular; in that case, some periodical resetting of the matrix to the identity
matrix I has to be performed to improve the algorithm.

In order to deal with constrained non-linear problems, other specific mathemati-
cal approaches were developed and they can be classified in two main categories: the
direct methods and the indirect methods. In [64] a series of cases of how the presence
of constraints can affect the solution of the problem is presented. If the optimum is
inside the feasible region, the presence of the constraints may not affect the results.
In this case, considering a box-type search space, an unconstrained search will give
always the same solution of the constrained problem. Hence, the necessary condi-
tions about the stationariness of the gradient of the OF and the positive definition of
the Hessian matrix are also sufficient to solve the problem. In many other cases, the
presence of the constraints lead to reduce the feasible space and the optimum can
be found on the edge of the feasible region. In that case, the necessary conditions
are the Kuhn-Tucker conditions which implies that “the negative gradient of the OF
is a positive linear combination of the gradients of the active constraints”. It is also
possible that, due to the fact that the constraints cut the original feasible region,
their presence can induce more that one local minimum points which do not exist
before.

The direct methods directly take into account the presence of the constraints.
The random search method randomly extract trial design vector and verify the sat-
isfaction of the constraints. If it violated any constraint, the random generation con-
tinues, otherwise the solution is stored if the OF is lower than the previous stored
solution. From this general layout, many variants were proposed, e.g. combining a
feasible directions methods in order to improve the search after randomly finding a
feasible solution. Despite its simplicity, it is not efficient but it is useful to find a
good starting solution for more sophisticated methods.
The complex method by Box in 1965, started as an extension of the simplex method
to the constrained problems. Unfortunately, this approach is not able to handle
equality constraints. Similarly to the simplex method, the complex method adopts
a geometric figure composed of k ≥ n + 1 vertices under the assumption to start
with vertex as an initial feasible point. The other k − 1 points are generated ran-

32

Marco Martino Rosso Chapter 2. Optimization Procedures

domly and, for each point, the satisfaction of the constraints is performed. If a point
xj violates any constraint, it is iteratively moved halfway toward the centroid of
the points already placed in the feasible region until it becomes also feasible. The
centroid is defined as

x0 =
1

j − 1

j−1∑
l=1

xl. (2.3.78)

After placing all the vertices, the OF is evaluated for all of them establishing the
best and the worst. For this latter, which is denoted as xh, in analogy with the
simplex method, the reflection procedure is performed respect to the centroid x0 of
all vertices except that point

x0 =
1

k − 1

k∑
l=1

xl · (xl 6= xh). (2.3.79)

For the new obtained point the feasibility is tested and also the OF value. If it is
feasible and it has a lower OF, the point is replaced, whereas its distance is iteratively
halved moving closer to the centroid until it becomes feasible or the distance is lower
a certain tolerance. In that case, the original point xh is left in its original position
and the entire reflection procedure is performed for the second worst vertices (second
point with an highest value of the OF). The convergence criteria can be set in two
way: when the complex shrink too much and the distance among the vertices become
smaller than a positive small constant ε1; when the standard deviation of the OF of
all the vertices become lower than a positive small constant ε2√√√√1

k

k∑
j=1

[f(x)− f(xj)]2 ≤ ε2. (2.3.80)

Box suggest to adopt a large number of vertices at least k ' 2n in order to avoid
that the complex collapse when it meets the first constraint.
The sequential linear programming method (SLP) by Cheney, Goldstein and Kelly
tries to solve constrained non-linear problem by solving a number of LP sub-problems
by adopting an approximation at the first order of the Taylor’s expansion series of
both the OF and the constraints. Starting from the initial optima xi considering
only the box-search space (side constraints for the design variables), the next LP
problem can be solved considering a linearization of the constraints in the point
xi. The LP problem can be treated for example with the simplex method to find
a new optima xi+1. This latter solution becomes the starting point for the next
sub-problem which require a further linearization centred, this time, in xi+1. Due
to the linearization, for most of the time it is possible that the temporary optimal
solutions which lie outside the feasible space and only at the end of the process it
become feasible (especially with a convex programming [64]). The SLP is also called
cutting plane method because, through a linearization of the constraints, the feasible
region is approximated by a series of hyperplane which cut the box-search space
approximating the actual non-linear feasible region boundary. In short, considering

33

Marco Martino Rosso Chapter 2. Optimization Procedures

an example problem subjected to only one constraint g(x) ≤ 0, at the first iteration
the starting problem considers only the side constraints,

min f(x),

s.t. xl ≤ x ≤ xu.
(2.3.81)

Posing that the optimal solution is x1, at the second iteration the linearization of
the constraint is added to the previous problem:

min f(x),

s.t. xl ≤ x ≤ xu.
g2(x) ' g2(x1) +∇g2(x1)T (x− x1) ≤ 0,

(2.3.82)

which optimal solution is x2. At the k-th iteration the problem will be in the fol-
lowing form

min f(x),

s.t. xl ≤ x ≤ xu.
g2(x) ' g2(x1) +∇g2(x1)T (x− x1) ≤ 0,

...
gk(x) ' gk(xk−1) +∇gk(xk−1)T (x− xk−1) ≤ 0,

(2.3.83)

During each iteration a new constraint is added to the previous subproblem providing
a new sub-problem because the new linearization have to be centred in the optima
of the previous LP sub-problem.
There exist other direct approaches such as the methods of the feasible directions
which tries to choose the step length λ in such a manner that the new point lies in the
feasible region. In order to take into account the constraints some different rules were
proposed, such as the Zoutendijk’s method or the gradient projection by Rosen, in
order to find a feasible direction which also minimize the OF. The generalized reduced
gradient method (GRG) is based on the elimination of the variables concept. In fact,
due to equality constraints (the inequalities are converted in equalities with slack
variables), it is theoretically possible to affirm that the design variables are not all
independent each other. Therefore, it is possible to split the design vector in two
set: one set of the design or independent variables and the other one of the state or
dependent variables. In that way, the reduced gradient represent the projection of
the n-dimensional gradient in a less dimensional feasible space. After compute the
reduced gradient, it is possible to proceed as an unconstrained search.
The most popular direct approach is the sequential quadratic programming method
(SQP), which similarly to the SLP, which is based on a linearization of the OF and
the constraints, the SQP is based on a quadratic approximation of the Lagrangian
function. Considering a minimization problem with p equality constraints only, the
Lagrangian function is

L = f(x) +

p∑
k=1

λkhk(x). (2.3.84)

34

Marco Martino Rosso Chapter 2. Optimization Procedures

Applying the Kuhn-Tucker necessary conditions, they assume the following form

∇L = 0 or ∇f +

p∑
k=1

λk∇hk = 0 or ∇f +

p∑
k=1

ATλk = 0, (2.3.85)

hk(x) = 0, k = 1, ..., p, (2.3.86)

where each column of the n × p matrix A represent the gradient of hk. The above
n+p equations in n+p unknowns can be solved adopting the Newton’s method [64].
At each j-th iteration the value of the increments ∆x and the λj+1 are obtained. It
is possible to notice that the final solution at the end of iteration j-th is the same
to consider the solution of the following QP sub-problem: Find ∆x such as

min ∇fT ∆x+
1

2
∆xTHL∆x,

s.t. hk +∇hTk∆x = 0, k = 1, ..., p,
(2.3.87)

where HL is the Hessian of the Lagrangian function (2.3.84). The Lagrangian func-
tion of the QP sub-problem (2.3.87) is

L̃ = ∇fT ∆x+
1

2
∆xTHL∆x+

p∑
k=1

λk(hk +∇hTk∆x). (2.3.88)

and the Kuhn-Tucker conditions are

∇f +HL∆x+∇hkλ = 0, (2.3.89)
hk +∇hTk∆x = 0, k = 1, ..., p. (2.3.90)

The original problem can be solved sequentially solving the above QP subproblem if
only equality constraints are considered. It is possible to consider also m inequality
constraints in the original problem whose Lagrangian become

L̃ = f(x) +
m∑
j=1

λjgj(x) +

p∑
k=1

λm+khk(x), (2.3.91)

and the QP statement become: Find ∆x such as

min ∇fT ∆x+
1

2
∆xTHL∆x,

s.t. gj +∇gTj ∆x = 0, j = 1, ...,m,

hk +∇hTk∆x = 0, k = 1, ..., p.

(2.3.92)

The value of the increment at each iteration ∆x can be considered as a search di-
rection and thus rewrite all the previous QP sub-problems in the design variable s.
Once the search direction is found, the new position is given by (2.3.60) where the
optimal step length can be found minimizing a merit function [59] which is substan-
tially an external penalty function [64]. Once the next position is found, the update
of the Hessian can be taken into account with quasi-Newton procedures such as the

35

Marco Martino Rosso Chapter 2. Optimization Procedures

BFGS method [59, 64].

The indirect methods foresee to solve a sequence of unconstrained problems in
order to obtain the solution of the original constrained problem. Transformation
techniques are suitable only for problems whose constraints are simple explicit func-
tions. In fact, this method tries to perform a change of variable in order to transform
the constrained problem in an equivalent unconstrained one. The most used method
is a penalty-function based approach which will be explained in the following of this
Thesis. Another approach is the augmented Lagrangian multipliers method (ALM)
which combines the Lagrange multiplier method with the penalty function approach.
For further readings one can refer to [64].

36

Marco Martino Rosso Chapter 2. Optimization Procedures

2.4 Meta-heuristic Approaches

Figure 2.6: Image taken from [18]. Classification of meta-heuristic algorithms.

The word heuristic comes from ancient Greek word “heuretikos” and it substan-
tially means to discover, find out. In [43], the definition of meta-heuristic by Sörensen
and Glover is given:

“A metaheuristic is a high-level problem-independent algorithmic frame-
work that provides a set of guidelines or strategies to develop heuristic
optimization algorithms. The term is also used to refer to a problem-
specific implementation of a heuristic optimization algorithm according
to the guidelines expressed in such a framework.”

From the above definition, it is worth noting that the term indicates a set of concept
and strategies developed to find new methods to deal with optimization problems
(the high-level framework), but at the same time is related to the specific implemen-
tations and algorithms based on this framework which have been proposed during
the years starting from the middle of the last century [43].
The meta-heuristic approaches represent nowadays very interesting methods in struc-
tural optimization fields, besides the advantage of no prior requirements on differen-
tiability conditions of the OF and constraints. As a matter of fact, as affirmed by [64],
engineers are not interested in the exact resolution of the mathematical problem,
but they have to find an acceptable design which represents the best solution regard-
ing to some criteria. Therefore, the probabilistic approach given by meta-heuristic
algorithms is a very interesting and powerful method to find a “good” solution, re-
spectful of the constraint and quite close to the mathematical exact optimum. This
idea is also confirmed in [18], where it is the motivation of a continuous research
of new meta-heuristic approaches because of their simplicity in implementation and
their effectiveness in solve practical real-life engineering problems. The majority of
optimum design engineering problems can be modeled as continuous non-linear opti-
mization problems, in which the original search space is reduced due to the existence

37

Marco Martino Rosso Chapter 2. Optimization Procedures

of various constraints. Despite their natural imprecision and not well-posed math-
ematical theories, the adoption of the meta-heuristic approaches allows to develop
new experience-based technique and new methodologies in problem-solving reaching
new discoveries in research [43]. Due to this success, they are nowadays adopted to
speed up in finding satisfactory engineering results in a reasonable time when clas-
sical approaches fail or require too much computational effort. In this part of the
present Thesis, firstly a general overview of meta-heuristic algorithms is presented
with particular reference to evolutionary. The swarm intelligent particle swarm op-
timization (PSO) algorithm is only mentioned here but it is widely treated in the
next chapter.
From a historical point of view, in the 1950s the mathematical stochastic random
search methods were completely formalized. They are mathematical optimization
methods which are able to deal with problems where the quantities involved are
random variables [64]. This allows, for example, to take into account uncertainties
in various engineering problems such as in [59]. Then, in the following years, around
the 1960s, the meta-heuristic approaches started to develop and they are still un-
der study and research nowadays. The early approaches were also called artificial
intelligence (AI) but later these two branches take quite different paths notwith-
standing they remained to be linked each other [43]. These developments started in
those years because of the increase in the availability of more and more powerful
computers. The new computational possibilities created the ideal climate for exper-
imenting, testing and demonstrate the effectiveness of meta-heuristic approaches in
solving even complex problems in a more efficient way where traditional mathemat-
ical methods fail or required too much time or efforts. Despite the human brain have
a natural aptitude to the heuristics, the systematic study of the heuristic (for this
reason called meta-heuristic) is a relatively new research field [43]. In that sense, it is
fundamental to notice that the meta-heuristic approaches were already adopted for
such a long time before the coinage of its term around the 1980s. As described in [43],
in everyday life the human beings and also animals have to solve optimization prob-
lems for their survival and they are quite immediately solved by intuition and past
experience, by heuristics, and there is no guarantee that it is the exact optimum.
Even in early childhood, the human brain is capable to learn to approximatively
solving practical problems without knowing the mathematical programming theory.
Some authors argue that it is a legacy from the past, when human beings were still
hunter-gatherers and the brain evolves in order to quickly calculate the trajectory
of a spear to hit a prey to ensure food resources for their survival in the natural
environment. These problems were solved by heuristics because the most important
thing was to solve it in a good way as quickly as possible instead of knowing exactly
which was the best optimal mathematical trajectory to impose to the spear [43].
The meta-heuristic approaches are not deterministic but they make a strong use of
probability concept and, for this reason, are also classified in the so called prob-
ability optimization category [59]. As depicted in Figure 2.6 the current available
meta-heuristic approaches are many and they can be classified according to their
conceptual idea or natural phenomena they try to mimic. As affirmed in [18], regard-
less of the type of meta-heuristic approach adopted, it is important to focus on the
exploration and the exploitation of the algorithm adopted. The exploration means

38

Marco Martino Rosso Chapter 2. Optimization Procedures

that the algorithm is able to systematically explore all the areas of the design space
in order to find the optimum region. The exploitation means that the algorithm is
able to ensure a refined search of the optimum point in a local region. A fine tuning
of the balance between these two aspects is really difficult due to the stochastic na-
ture of them, but it will also significantly affect the performance of the algorithm. In
fact, an optimal balance may allow to reduce at minimum the computational effort
and it may find the optimal solution in few calculus steps regardless of the starting
point.

It is always important to keep in mind the No Free Lunch (NLF) Theorems
(Wolpert and Macready, 1997) for optimization which is pragmatically summarized
in [59]:

“There is no optimization algorithm capable of handling efficiently every
optimization problem.”

This statement justifies why it is still needed to explore searching for new algorithms
and new approaches in order to find the best suitable one for a specific class of
problems, but, in particular, making comparisons with other techniques and do not
only rely on one single meta-heuristic approach.

2.4.1 Evolutionary algorithms

Evolutionary algorithms are the first class of meta-heuristic which have been im-
plemented and they take inspiration by what naturally happens in the biological
context where a population of individuals evolves, according to the Darwinian The-
ory of Evolution and natural selection, to better adapt to the existing environment
[59]. This paradigm can be ideally transposed to a numerical procedure which leads
a population of trial solutions to evolve toward the global optimum of the opti-
mization problem adapting to the environment which is represented by the feasible
region reduced by the presence of the constraints. Substantially, these agents are
competing for the resource and only the survival of the fittest to the environment
will pass to the next generation [62]. Evolutionary algorithms (EAs) can be consid-
ered general and versatile tools for solving constrained optimization problems. The
research interest for this class of optimizers is continuously increasing, mainly be-
cause objective functions (OF) and constraints are not required to be differentiable,
continuous, or even explicit. In addition, no preliminary assumptions or a priori
information are needed for solving constrained optimization problems by means of
EAs. Moreover, EAs have a better global search ability compared to traditional
numerical strategies (i.e., gradient-based algorithms) and a good starting design is
not essential, since they operate on a population of individuals (coded candidate
solutions of the optimization problem) which are efficiently handled during the evo-
lutionary search. In contrast, EAs lack of well-posed theories about their convergence
and a large number of function evaluations and computational effort may be needed
to converge. Moreover, Evolutionary optimization algorithms were originally devel-
oped for solving unconstrained optimization problems, thus, they naturally lacked
of a mechanisms to handle the constraints of the problem at hand. Nonetheless, the

39

Marco Martino Rosso Chapter 2. Optimization Procedures

unavoidable existence of several restrictions either from a mathematical and an engi-
neering point-of-view leads to a huge contraction of the available design space, thus,
reducing the number of the admissible solutions. It is obvious that the resolution
of constrained optimization problems is much more complicated, especially when a
large number of constraints are involved which can reduce the size and increase the
complexity of the feasible domain dramatically. In these circumstances, both effec-
tiveness and correctness of the evolutionary-based search can be jeopardized and the
final results can be unsatisfactory. In fact, it is very probable to achieve an infeasible
final solution if the search of the best objective function value does not efficiently
take into account the imposed constraints. In contrast, the optimizer could be en-
trapped into a sub-optimal area if the exploration of the search space is conducted
by taking into account feasible solutions only. Therefore, the implementation of ef-
fective constraint-handling mechanisms is considered a crucial issue for all biological
inspired optimizers, [17, 10, 81, 45]. It is much evident that a competitive technique
for handling constraints in evolutionary computation should be able to achieve the
best possible compromise between conflicting requirements. In the following, some
of the most important EAs are mentioned.

The first formal systematic study of the Genetic Algorithm (GA) is related to
the work of John Holland in 1975 at the University of Michigan, and it was ex-
tended later mainly by his student David E. Goldberg [43]. In reality, the first ideas
about biological evolutions started around the 1960s with the mathematician Bar-
ricelli at first and the biologist Rechenberg after which are considered the fathers of
the artificial life research [64]. The GA takes inspiration from the genetic field. The
characteristics of an individual are transmitted to the offspring through chromo-
some which contains a series of information called alleles. The set of alleles is called
genotype. These genetic information are traduced in the external observable world
as physical characteristics which are called the phenotype. From this paradigm, the
GA implement numerical operators which try to mimic this mechanism. In this
approach, a population of n individuals composed by a set of design vectors, also
called trial vectors, is considered. Each individual is encoded in binary strings form-
ing a chromosome in which each bit is an allele [59]. When no further information
is available, the population is initialized randomly and to preserve the diversity the
Latin hypercube sampling is suggested [43]. The dimension of the population is
suggested to be at least from 2n to 4n if n is the number of the design variables
[64]. As reported in [59], Goldberg proposed to set the population size according
to this relation npop = 2k(q/n) where q is the length of the binary string. If each
design variable is coded as a q length string, a single trial vector will be a string
whose total length is nq. Due to this representation, the GA naturally started as
an optimization procedure for discrete or integer problems. In fact, given a binary
string in the form bqbq−1bq−2...b1b0, the equivalent decimal number is y =

∑q
k=0 2kbk.

This discrete representation can be also used for a continuous variable with side
constraints (x(l)

i ≤ xi ≤ x
(u)
i) using this conversion formula

xi = x
(l)
i +

x
(u)
i − x

(l)
i

2q − 1

q∑
k=0

2kbk, (2.4.1)

40

Marco Martino Rosso Chapter 2. Optimization Procedures

but, in that case, to obtain a sufficient accuracy ∆x, it is necessary to adopt a large
number of bit q according to this relation

2q ≥ x
(u)
i − x

(l)
i

∆x
+ 1. (2.4.2)

There are also possible different representations such as a variable-length array or
the random key encoding when the permutation and sorting order have to be taken
into account such as in the Traveling Salesman problem [43]. Nowadays is also pos-
sible an implementation with a real encoding representation of the design variable.
The GA is based on the Darwin’s theory of survival of the fittest. In practice by
a crude imitation of what happens in Nature, species whose individuals are better
evolve to the next generation. In numerical terms, the trial solutions in the popula-
tion will compete each other because only the individuals with a highest fitness (the
phenotype in traditional genetics [43]) will survive to the next generations. In this
terms, the fitness evaluation F (x) is substantially the OF evaluation F (x) = f(x)
and, for this reason, the GA started as a resolution method for a maximization
problems [64]. GA started as an unconstrained method, therefore it is possible to
adopt indirect methods such as the penalty functions to transform the constrained
problem in an unconstrained one. A minimization problem can be easily converted
in a maximization one, but in terms of GA this conversion may be more useful if
the fitness function is non-negative [64]

F (x) =
1

1 + f(x)
. (2.4.3)

The core of the GA is based on three mathematical operators which occur in this
order at each generation: reproduction, crossover and mutation. At the final step,
the convergence criteria are checked and if they are not still reached, the GA cycle
starts again.
The reproduction operator can be seen as a selection operator because randomly
select which elements will enter in the mating pool to generate the next generation.
The probabilistic procedure of the selection procedure is based on the OF of each
individual associating to each string a selection probability pi to enter in the mating
pool,

pi =
Fi∑n
j=1 Fj

, i = 1, ..., n. (2.4.4)

The concept can be transposed to a spinning roulette wheel with a selection pointer.
Its circumference is divided into segments and each segment length is proportionally
to the extraction probability. In this way, the best individuals will have a greater
probability to be selected than the worse individuals. It is also possible to assume a
selection rule based on the cumulative probability of i-th string Pi =

∑i
j=1 pj. The

roulette wheel circumference is divided into segments whose length is proportional
to (Pi−1−Pi). The selection of an individual is thus performed generating a random
number between 0 and 1 and picking up the string corresponding to this number.
As it is possible to notice the fittest feasible members are encouraged to be selected
but the worst and maybe infeasible members are not excluded at all because they

41

Marco Martino Rosso Chapter 2. Optimization Procedures

contain important information when the optimum is located at the boundary of the
feasible region [62]. As underlined in [64], in this phase, no new string is generated
but they are only selected from the original population to create the mating pool.
Other many selection rules were also be developed in years. One of the most popu-
lar methods is the stochastic universal selection of Baker [43] in which the roulette
wheel presents a number of spinners (selection pointer) equally spaced around the
circumference. This procedure allows to reduce the stochastic probability to extract
some individuals too many times or not enough times. Another possible approach
is the Tournament selection operator which randomly extracts different small sets
of individuals from the population. As exposed in [62], the fittest individual of each
set will enter into the mating pool. The size of the subsets is called tournament size
and it is typically varying between 2 (binary tournament [43]) and 4 . As stated in
[59], this latter approach appeared to Goldberg to be more efficient than the classic
roulette wheel rule. The ranking scheme sorts the individuals from the best to the
worst according to their fitness but then assigns to each chromosome a selection
probability based in their rank and not directly on the value of the OF. In the eli-
tist approach, in order to avoid losses of information regarding to the best current
individual, the fittest member or a small set of the fittest individuals directly pass
to the next generation without any reproduction stage [59, 62].
To the crossover operator, also called recombination operator in [62], is now de-
manded to generate new strings starting from two parents randomly chosen in the
mating pool. The new offspring will be a combination of information contained in
the parents. To perform this combination several rule of crossover were exposed in
the years. The most simple rule is the so called single-point crossover which ran-
domly defines a crossover point among the alleles the parents and swaps one of the
resulting sub-strings between the two parents forming two new offspring strings [64].
For instance, from two parent strings

Parent 1: 10010|1010111

Parent 2: 01011|1000001

two child strings can be obtained using the single-point crossover

Offspring 1: 10010|1000001

Offspring 2: 01011|1010111

There exist also a multi-point or n-point crossover which randomly determine n
crossover points. As stated in [59], the uniform crossover is a generalization of the
single-point crossover. In this strategy, a random binary string of the same length
of the parents’ chromosomes is generated and it is logically decoded as a crossover
mask. If a bit of the mask is 1 the alleles associated with the parents corresponding
to the mask’s bit position are swapped between the two parents, otherwise if the
bit of the mask is 0 they are not swapped. This operator performs in a better way
because it enables to increase the diversity between the population members. Below

42

Marco Martino Rosso Chapter 2. Optimization Procedures

an example of uniform crossover is presented:

Parent 1: 100101010111

Parent 2: 010111000001

Mask: 100011000001

↓ ↓↓ ↓
Offspring 1: 000111010111

Offspring 2: 110101000001

Due to its random nature, the resulting offspring may or not be better than the par-
ents. In that latter case, no great issues are arising because the selection process will
discard the worst in the next generation. In reality, to preserve the integrity of some
good existing parents and avoiding losses of information, a crossover probability pc
is also set. In that way, only 100pc percent of mating pool’s strings will be subjected
to crossover and the others 100(1− pc) percent remains unchanged.
If some good information are lost, the selection and the crossover operators may not
be able to recover them. In that sense, a further random operator, the mutation op-
erator can perform a random perturbation of a bit change in one allele. This is done
mainly to allow al locally alteration of an allele in order to recover lost alleles during
the various generations [59]. Furthermore, the mutation operator allows to take into
account the random changing which leads to the appearance of new possible un-
seen characteristics which occur in a real population. This helps to avoid premature
convergence because it enables to maintain the diversity among the individuals [59].

Original String: 010111010111

Mutated String: 010101010111

The mutation is a rare event also in real populations, therefore it is taken into
account with a mutation probability pm priorly fixed. In the GA, a random number
is generated between 0 and 1 and if this number is greater than pm the mutation
does not occur, otherwise it does.
The convergence criteria can be set in two way [64]: the first is trivially considering
a maximum number of allowable generations kmax; the second criterion can be set
when the fitness of the entire population reach a standard deviation value σmax lower
than a certain small positive constant.
Quite early, many variants of the standard GA were also proposed; for instance,
the real-encoded GA become popular for its simpler implementation due to the fact
that the binary encoding process was not adopted [62]. The principles of the various
GA operators are always the same, but they have to be adapted to operate with
real numbers and no more with binary strings. For instance, in [62] the heuristic
crossover operator generate new offspring k+1o1 for the next generation selecting
two random parents from the mating pool kx1,

kx2 following the below relation,
k+1o1 = k+1r

(
kx1 − kx2

)
+ kx1, (2.4.5)

where k+1r = rand[0, 1] is a random number between 0 and 1 and the parent kx1

is assumed to be the fittest (f(kx1) < f(kx2)). Other real-valued crossover opera-
tors are also presented in [62] such as the Laplace crossover and the average-bound

43

Marco Martino Rosso Chapter 2. Optimization Procedures

crossover. The same adaptation need to be performed to the mutation operator for
instance adopting the wavelet mutation presented in [62] by Ling and Leung. In any
case if the offspring after crossover and mutation lie in the unfeasible region, it can
also be reinitialized randomly.
Due to the GA random nature, unfortunately there are no mathematical proofs of
its convergence, but numerically studies demonstrated than they are able to suc-
ceed also dealing with highly non-linear, non-convex and discontinuous domains.
Furthermore, since the GA require only the OF evaluation and not require any in-
formation about the gradient, its computational effort will be lower compared with
mathematical programming techniques such as NLP methods [59]. Furthermore, in
literature, it is possible to see many proposals to improve the convergence of GA,
to dynamically adapt the various operators in order to promote exploration in the
first generations and enhance the exploitation towards the end [62]. Also the prior
user-defined values of the hyper-parameters, such as the population size, the prob-
ability of crossover and the probability mutation, has to be carefully chosen but
no general guideline are available but only literature suggestions and a fine tuning
trial-and-error search is always necessary [62].

The Evolution Strategies methods (ES) were formalized by Rechenberg and
Schwefel at the Technical University of Berlin around the 1960s [43]. They are based
on the biological imitation similar to GA but, in particular, referring to the branch
called organic evolution. The ES was early adopted also in structural optimization
problems with dynamic load and earthquake design [59]. There exist two main cat-
egories of ES. The first one is related to the so called two-membered ES in which
only one parent is able to produce only one offspring. The second category is the
multi-membered ES in which a population of n parents can produce in general m
offspring.
The two-membered ES, also called (1+1)-ES in [2], operates in two steps. In the first
step a mutation operator, different than GA, occurs and generate an intermediate
population. At the generation k, the new offspring xo,k is generated by the parent
xp,k adding a random n-tuple z = [z1, ..., zn]T :

xo,k = xp,k + z. (2.4.6)

The name of this operator is due to the fact that the mutation is an event which
rarely occurs with great changes and more frequently provides very little changes.
This idea lead to choose z from a normal or Gaussian probability distribution
N(0, σi) with nil mean and a standard deviation σi [59]. To choose an appropri-
ate standard deviation, also called mutation strength in [2], some tuning approaches
can be done because σi directly affect the rate of change. This is because it represents
a sort of average value of the length of the random step length to which the parents
are subjected to generate the offspring. If it is chosen too large, the optimum point
could be easily straddled, whereas if it is too low the convergence will be too slow.
It is worth noting that, using a Gaussian bell-shaped distribution, the algorithm is
mainly promoting the exploration in a certain neighbourhood of the selected parent.
In the second step a selection operator define which individual will survive and be-
come the parent at the next generation xp,k+1. The selection operate in a binary

44

Marco Martino Rosso Chapter 2. Optimization Procedures

competition between the offspring and the parent

xp,k+1 =

{
xo,k if xo,k is feasible and f(xo,k) ≤ f(xp,k)

xp,k otherwise
(2.4.7)

In an advanced later version of the two-membered ES, the multi-membered ES
started to implement also a recombination operator [43]. To increase the exploration
the so called (µ + λ)-ES scheme was adopted. Substantially, a set with µ parents
is selected from the n members of the current population. This set of parents is
able to produce λ ≥ 1 offspring. From this set of parents and offspring, a µ + λ
intermediate population is subjected to a deterministic selection operator able to
produce the next generation. In order to maintain the population size n, λ members
are discarded from the intermediate population of µ + λ individuals based on their
fitness according to a natural selection scheme [2, 59]. Another variant of the multi-
membered ES is the so called (µ, λ)-ES scheme where the selection operator acts
only on the λ offspring and the parents are lost regardless if they were good or not.
in this way, to maintain the population size, the recombination operator have to
generate λ > µ offspring [2]. Since the parents are not considered in the selection
phase, each individual can not live more than one generation [59]. This latter scheme
were numerically proven that provided good results in dynamic problem (where the
optimum change in time) and with noisy OF [59].
Regardless the multi-membered ES selection scheme, the recombination operator
is quite different from GA because it can produce offspring also from one, two or
even more parents. As reported in [43], the intermediate recombination is able to
produce offspring from an average of a set of parents, whereas the Weighted multi-
recombination operates in a similar way but adopting a weighted mean based on
the fitness of the parents. In [59] is presented a recombination rule in which, for n-
dimensional continuous problems, the µ parents’ population is composed by a set of
temporary n-dimensional parent vectors x̃ = [x̃1, ...x̃n]T . Each i-th component x̃i of
each temporary parent vector can be chosen adopting one of the following strategies

x̃i =

xi,a or xi,b randomly (a)

0.5 · (xi,a + xi,b) (b)

xrandi (c)

xi,a or xrandi (d)

0.5 · (xi,a + xrandi) (e)

(2.4.8)

where xi,a and xi,b are the i-th components of two random vector chosen from the
current population xa and xb, whereas the term xrandi is the i-th component of a
randomly chosen temporary parent vector already defined. In [59], two convergence
criteria are proposed: the first check if the absolute or relative difference of the OF
between the worst and the best individual is less than a small positive constant
ε1; the second criterion check if the mean of the OF has stalled to the same value,
within a relative tolerance ε2, for at least the last 2n generations.
In modern approaches, some new principles as the strategy parameters (which con-
trol the probability distribution for each design variable), the self-adaptation concept

45

Marco Martino Rosso Chapter 2. Optimization Procedures

or some hybridization with some mathematical methods (such as in the is covari-
ance matrix adaptation CMA-ES) were also implemented to make more robust and
reliable search processes in ES [43].

The Differential Evolutionary algorithm (DEa or simply DE) is one of the most
recent stochastic, population-based global optimization method which stay under
the umbrella of the EAs which was proposed by Storn and Price in the 1997 [23, 62].
It is always based on the natural evolution process but it operates in a quite differ-
ent way. The main difference with GA is not only the framework of the selection,
mutation and crossover operators but also the order they act. In fact, in the DE,
such as in ES, the mutation operator come first of the crossover operator and, in
this approach, it represents the explorative operator. As usual in EAs, at first, a
population of N design vectors with n design variables is usually randomly initial-
ized adopting the Latin Hypercube Sampling (LHS) in order to generate an initial
population with the minimum correlation between samples [23]. After that, the mu-
tation operator randomly choose two vectors from the population and calculate the
differences between them term by term. This geometric approach is what denote the
name of the procedure and it means that the DE tries to estimate the gradient in
that zone rather than locally in a single point. This difference, weighted in some way
by the mutation operator, is added to a third randomly chosen vector in the popu-
lation which is called target vector. The resulting vector obtained from the mutation
operator is called mutant vector. The mutation operator act in order to generate a
mutant vector k+1vi for the iteration k+1 for each member of the original population
at the iteration k. There are also many variants in literature which consider differ-
ent weights or different number of vectors needed in the difference calculus. These
frameworks are usually denoted as DE/a/b/c in which the a represent the way to
construct the mutant vector, b is the number of random differences considered and c
is referred to a specific type of crossover operator. As reported in [23, 62], the most
used framework are the following

rand/1/bin k+1vi = kxr1 + F1(kxr2 − kxr3), (2.4.9)
best/1/bin k+1vi = kxbest + F1(kxr1 − kxr2), (2.4.10)
current-to-best/1/bin k+1vi = kxi + F2(kxbest − kxi) + F1(kxr1 − kxr2), (2.4.11)
best/2/bin k+1vi = kxbest + F2(kxr1 − kxr2) + F1(kxr3 − kxr4), (2.4.12)
rand/2/bin k+1vi = kxr1 + F2(kxr2 − kxr3) + F1(kxr4 − kxr5), (2.4.13)

where r1, r2, r3, r4 are random integer value chosen in the set {1, ..., i−1, i+1, ..., N},
kxbest denote the fittest individual at the iteration k and F1, F2, called mutation
coefficients, are real positive constants which weight and scale the differences and
govern their amplitude. There are some literature suggestions which say to adopt
a constant value of 0.5 for the mutation coefficients. The adoption of this type of
mutation permit to enhance the diversity between the population members [23]. As
stated in [62], a projection scheme is usually adopted after mutation in order to
verify the satisfaction of the side constraints (x(l)

j ≤ xj ≤ x
(u)
j) for each j-th design

46

Marco Martino Rosso Chapter 2. Optimization Procedures

variable. One possible simple approach is

k+1vij =

x

(l)
j , if k+1vij < x

(l)
j ,

x
(u)
j , if k+1vij > x

(u)
j ,

k+1vij, otherwise.

(2.4.14)

After the mutation operator, the mutated vector k+1vi and the corresponding
original vector k+1xi are subjected to the crossover operator. The two main used
crossover operators in DE are called exponential crossover (labelled as DE/a/b/exp)
and binomial crossover (labelled as DE/a/b/bin). As affirmed in [43], they respec-
tively remind the two-point crossover and the uniform crossover of the GA. As stated
in [23], the binomial crossover generates an offspring k+1ui, called trial vector, adopt-
ing the following rule for each j-th component of the i-th trial vector

k+1uij =

{
k+1vij, if u ≤ pc or j = randint[1, n],

xij, otherwise,
(2.4.15)

where u is a pseudo-random number drawn in the interval [0, 1] with a uniform
probability distribution whereas pc is the crossover probability (also called crossover
ratio or probability of reproduction) priorly defined by the user. There are some
literature suggestions for a proper choice of pc, e.g. Storn and Price suggest to adopt
a constant value between 0.8 and 1. The index j is a integer randomly chosen in
the set {1, ..., n}, with n total number of the design variables. This latter additional
condition is adopted in order to ensure that the offspring vector and the original
vector differs for at least one component [62]. In practice, this ensures that at least
one term of the mutated vector is taken into account in the construction of the
offspring trial vector.
After that, if the optimization problem is unconstrained, the selection operator sim-
ply acts as a one-to-one competition, based on the OF evaluation, between the
offspring k+1ui and the original vector kxi in order to define the new design vector
k+1xi at the next k + 1 generation,

k+1xi =

{
k+1ui, if f(k+1ui) < f(kxi),

kxi, otherwise.
(2.4.16)

If the DE is dealing with a constrained problem, the selection operator is modified
in order to naturally implement a strategy to handle the constraints adopting the
Deb feasibility rules and the dominance concept. This latter has been already ex-
plained in the Section 2.2 of the present Thesis. As reported in [23], considering the
original design vector k+1xi and its offspring k+1ui, it is possible to say that k+1ui
is dominated by k+1xi and this condition is written in symbols as k+1xi ≺ k+1ui.
In order to consider the feasibility, the Deb’s rule permit to preferably choose the
feasible members respect to the unfeasible ones taking into account the degree of
violation of the constraints. This violation can be written for the i-th member as

Φ(k+1xi) =

np∑
p=1

max{0, gp(k+1xi)} ≥ 0, (2.4.17)

47

Marco Martino Rosso Chapter 2. Optimization Procedures

which is nil if and only if all the constraints are all satisfied. As stated in [23], the
feasibility dominance selection rule can assume the following form

k+1xi ≺ k+1ui ⇔

f(k+1xi) < f(k+1ui) and

(
Φ(k+1xi) = 0

)
∧
(
Φ(k+1ui) = 0

)
,(

Φ(k+1xi) = 0
)
∧
(
Φ(k+1ui) > 0

)
,

Φ(k+1xi) < Φ(k+1ui), with Φ(k+1xi),Φ(k+1ui) > 0.
(2.4.18)

As explained in [23], the previous conditions say that k+1xi dominate k+1ui, and
therefore k+1xi will survive in the next generation when: 1) both are feasible but
k+1xi has a lower OF than k+1ui; 2) k+1xi is feasible and k+1ui not; 3) both are
unfeasible but k+1xi is preferable because it has the minimum degree of violation.
This static dominance scheme ensure the survival of feasible solution respect to the
unfeasible ones.
Finally, as usual, a convergence stopping criterion needs to be adopted. Usually, a
maximum number of iterations is set, despite it is not known a priori which is the
best value to adopt but it is always necessary to perform some trial-and-error or
adopting some literature suggestions. As stated in [43], the DE has a natural self-
adapting behaviour because during the process it is able to automatically modify the
direction and the entity of the movements because the differences tend to decrease
if the population converge toward the optima. As reminded by [62], the main issue
in adopting DE is the proper choice of their hyper-parameters starting from the
population size. As a matter of fact, a too small population will lead to premature
convergence, whilst a too large size will lead to stagnation and a high computational
effort. In literature, it is suggested to adopt a size in the order of magnitude of
ten times the number of the design variables to optimize. Many other variants of
the standard DE were proposed during the years to mitigate these drawbacks e.g.
introducing some hybridization or, for instance, some adaptive control parameters
in which there is a dynamically choice of the mutation coefficients or the probability
of crossover.

2.4.2 Physics-based, Bio-inspired, Nature-inspired Algorithms

The physics-based algorithms take inspiration by intelligent agents which explore
the design space and whose movements are governed by some physics rules such as
gravitational, electromagnetic or inertia force and many others [18]. One of the most
popular algorithms is the Simulated Annealing (SA) initially developed in 1983 by
Kirpatrick [82] which has its roots in the cooling process of metals in metallurgy
processes [64]. When a metal is heated beyond its fusion critical temperature, it
reaches its molten state. In this physics state of matter, the particles are free to
move because of its fluid nature and the high kinetic energy of the atoms due to the
high thermal energy level. As the temperature starts to decrease, particles tend to
lose their kinetic energy and gradually find a position in the crystalline lattice of the
material with the minimum internal energy until it again comes back to the solid
state. In metallurgy, if the cooling process is fast, the particles are not able to reach

48

Marco Martino Rosso Chapter 2. Optimization Procedures

a compact state and the polycrystalline state of the metal will be characterized by
a disorganized structure with larger grains and both significant internal stresses in
the material. If the cooling process is slow the atoms have enough time to reach
the ideal position with minimum internal energy and the resulting polycrystalline
structure will have much ordered structure and fine grains and quasi-nil internal
stresses. This latter process used in metallurgy and both in glass production [43] is
known as annealing [64]. The SA tries to simulate this process taking into account of
a temperature parameter T and adopting the Boltzmann’s probability distribution.
Posing that k is the Boltzmann’s constant, this law explains that the energy E of
a body in thermal equilibrium at a temperature T is distributed according to the
following distribution law

P (E) = e−
E
kT . (2.4.19)

The term P (E) represents the probability of achieving the level of energy E at that
fixed temperature. From this negative exponential rule, it is possible to notice that
at high temperatures the probability is quite uniform for each energy state level,
whereas at low temperatures the system has a low probability to have a high energy
level. As stated in [64], Metropolis et al. around 1950s try to adopt this principle in
the minimization problems associating the OF evaluation in xi to the energy state
of a thermodynamic system Ei,

Ei = fi = f(x). (2.4.20)

The Metropolis criterion establishes that the probability of the next design point
xi+1 chosen randomly in the design space is related to the difference of the energy
respect to a design reference state xi at a fixed temperature levelT ,

∆E = Ei+1 − Ei = ∆f = fi+1 − fi, (2.4.21)

and, adopting the (2.4.19), the probability associated to this new state xi+1 is

P (Ei+1) = min
{

1 ; e−
∆E
kT

}
. (2.4.22)

Despite its physical meaning, the context of the SA the Boltzmann’s constant k acts
merely as a scaling factor, therefore it can be set to a unity value. When the result
of (2.4.21) is negative, the new state xi+1 is accepted with a unitary probability
because it give a lower value of the OF. On the contrary, if this value is positive,
it means that the new point is related to a worse value of the OF and, in a normal
optimization process, it would simply be discarded. In the SA instead it is accepted
with a certain probability, it means that, generating a random number z between
0 and 1, if this random number is greater than the probability value obtained by
(2.4.22) the new point xi+1 is accepted, otherwise it is discarded. In symbols{

if z = rand[0, 1] ≥ P (Ei+1) = e−
∆E
kT < 1⇒ xi+1 is accepted

otherwise xi+1 is discarded
(2.4.23)

This process is one iteration and at a fixed level of temperature T the total number
of iteration is n. In literature, it is suggested to choose n in an interval from 50 to

49

Marco Martino Rosso Chapter 2. Optimization Procedures

100 but there is not a unique choice for this hyper-parameter and a trial and error
search need to be performed for the specific problem under study. In fact, it can
strongly affect the convergence of the procedure: if n is too large, the computational
effort will be high but the exploration level will be great, whereas if n is too small,
it may not explore the entire design space resulting in a premature convergence to
a local optimum. After performing n iteration at a fixed temperature level T , the
temperature is reduced to the next level by a rational reduction factor c called cool-
ing schedule, with 0 < c < 1, which is directly multiplied to the temperature cT .
In literature, it is suggested to choose c between 0.4 and 0.6. Also here this hyper-
parameter strongly affect the performance of the SA, because an excessively small
value will lead to a strong reduction of T and thus the probability which not allow
a good exploration of the design space, whereas a high value of c will lead to an
extremely high computational effort because too many steps will be required to per-
form an imposed interval of thermal variation. The possible convergence criteria are
related to reaching a relatively small value of temperature or when the ∆f becomes
relatively small. Similarly to EAs, also in the SA, there are no requirements on the
differentiability of the OF and the constraints. For problems involving constraints
satisfaction, an indirect method with penalty function to transform the problem in
an unconstrained problem is also possible [64].

In the group of the physics-based algorithm, there are also some other tech-
niques which are inspired by human behaviour. Some of the most popular examples
of such techniques are the Harmony Search (HS) and and the Tabu Search (TS) [18].

According to the classification in the Figure 2.6, the Bio-inspired algorithms
take inspiration from the biology field and adopt their models to solve engineering
problems. For instance, one of the most popular techniques is the Artificial Immune
System (AIS). It tries to use the paradigm of the adaptive molecular processes of the
human immune system which is able to detect, recognize and tackle the pathogen
substances and dangerous for the human body [43]. As a matter of fact, it can be
considered as an intelligent system because it is also able to learn from the past,
therefore it possesses a memory. The immune system is a complex system composed
of tissues, organs, cells and specific agents such as the antibodies which collaborate
together in a very coordinate way. Furthermore, the AIS is able to solve complex
classification problems and recognize the various external biological agents, harmful
substances, bacteria, viruses which the human body comes in contact with. As stated
in [53], the AIS has its roots in the theoretical immunology and the empirical ob-
served immune functions. All of this aspect from the biological field were transposed
to the problem-solving techniques and soft computing and computational intelli-
gence. This metaphor inspired researchers to start to develop this system from the
1990s, reaching nowadays some robust methods which are applied in multi-objective
optimization problems and for pattern recognition problems [43]. For instance, In
[53], the AIS was used to solve multi-objective structural optimization problems of
composite structure to find the best design with minimum weight and cost. The
framework of the AIS foresees the adoption of a mutation operator, a cloning op-
erator (which is an asexual reproduction operator) and some memory cells which
are used to store the best performing search agents during the evaluation and the

50

Marco Martino Rosso Chapter 2. Optimization Procedures

selection phase. A sort of evolution is also used in the AIS because the agents can
die in a final stage and new better search agents are generated by cloning. Some
specific strategies are also adopted to maintain diversity in the population [53].

Despite the majority of the meta-heuristic algorithms take inspiration by Nature,
as presented in the Figure 2.6, in [18] the Nature-inspired algorithms are treated as
an apart class which collects all the methods which are not included in the other
classes. In particular, these methodologies take inspiration by specific aspects of
natural behaviours of certain animals. To cite an example, the Cuckoo Search (CS)
algorithm developed by Xin-She Yang and Suash Deb in 2009 mimics the reproduc-
tion behaviour of the cuckoos which is characterized by the so called brood parasite
[82]. This algorithm was also adopted to solve structural optimization problems, one
can refer for example to [24].
In the 2004 and 2005 Artificial Bee Colonies (ABC) algorithm was developed. It
takes inspiration by the hierarchical society of honey-bees which congregates in
colonies and in each of them there are three different types of bees: the worker bees,
the queens and the drones. The workers bees conduct the most important tasks for
foraging because they collect and store the honey. Biologists observed that bees can
communicate each other using the so called “waggle dance”, therefore they perform
some social interaction [82]. In the ABC, a prior user-defined number Ns of “food
sources” (local attractors) is set in the design space adopting the Monte Carlo ran-
domization respecting the side constraints (x(l)

j ≤ xj ≤ x
(u)
j with j = 1, ..., n where

n in the number of the design variables) of each design variables

xi,j = xlj + rand[0, 1] · (xuj − xlj), i = 1, ..., Ns (2.4.24)

with rand[0, 1] a random number drawn by a uniform distribution between 0 and 1.
An employer bee xk (a candidate solution of the population) is associated to each
food source xi and it has to explore the neighbour of the local attractor according
to the following equation defining a new artificial position yi:

yij = xij + φij(xij − xkj), i 6= k (2.4.25)

where φij is a random value between −1 and 1 and the indexes of the components
are randomly chosen to respect the condition i 6= k. If yi has a lower OF it will
replace xi. The employer bees communicate the results of their local exploration
to the other bees in the hive which is randomly initialized in a point of the design
space. In the hive, there are present the onlooker bees which, after the news received
by the employer bees, decide which food source to explore with a certain probability
based on the fitness of the food sources. The scout bees are a third different kind
of artificial bees which randomly explore the neighbour of the hive to verify the
presence of better points close to the hive respect to the food sources [16]. The ABC
algorithm was also adopted to solve structural optimization problems of trusses; for
furthermore readings, one can refer for instance to [75, 16].
In 2010, the behaviour of bats inspired Xin-She Yang in 2010 to develop the Bat
algorithm (BA). During the hunting phase, bats emit in 5-20ms ultrasonic pulses
with a frequency range of 25-150 kHz to detect, throughout the returned echoes,

51

Marco Martino Rosso Chapter 2. Optimization Procedures

the external environment with a resolution of few millimeters, in the same order of
magnitude of insects they are hunting for [82]. This echolocation mechanism was
adapted in order to heuristically solve engineering problems adopting an emission
rate and a loudness parameter to control the exploration and the exploitation of the
algorithm.
All of the previous examples can be considered both nature-inspired algorithms,
because the adoption of their biologically inspired rules, but also swarm-based algo-
rithms because of the adoption of some concepts like social interaction and communi-
cation [82]. One example of Nature-inspired only is the Flower Pollination algorithm
(FPA) proposed by Xin-She Yang based on the biological studies on the mechanism
of biotic and abiotic pollination of some species of flower and plant which adopt
Lévy flights and random walk principles [82].

2.4.3 Swarm-based Algorithms

The swarm-based algorithms are based on the collective behaviour of some animals
which communicate and interact in order to find the food source in the natural
environment. As stated in [82], the swarm-based algorithms started around 1990s
with Marco Dorigo which proposed in his PhD dissertation a first example of ant
colony optimization (ACO). In this case, the insects aggregate in colonies of huge
size about from 2 to 25 millions of individuals [82]. Despite their dimensions, the
experts observed that these insects have an emerging well-organized and cooperative
global behaviour and they adopt local interactions by scent or trail of chemicals
or pheromone and local rules which govern their movements in order to find the
shortest or, in general, the best path to a food source [64]. In that sense, ACO
tries to mimic the foraging search of these insects in order to solve many scheduling
problems and finding the optimal route. When an agent passes on a specific path
it releases a certain pheromone quantity. Then other insects will probably follow
this specific path if the pheromone quantity is larger than other possible paths. To
take into account a real situation such as the flow of time, some evaporation rules
are adopted to decrease the concentration of the pheromone in time in order to
abandon some possible not optimal routes. According to [64], ACO is suitable to
solve discrete optimization problems. As a matter of fact, the optimization problem
can be represented as a multi-layered graph in which the number of layers is equal
to the number of design variables to optimize and the number of nodes in each layer
is equal to the discrete permitted values for each design variable. In that sense,
when an ant defines a specific path, the value of the node crossed by the ant defines
the design vector (candidate solution). For a better clearness, one can refer to the
Figure 2.7 in which the k-th ant of the colony defines a specific path from the nest
to the food source. The values of the variable (nodes) which have been crossed
by the ant in each layer form the design vector xk. Many variants of ACO are
given by adopting different laws for pheromone release and its dynamic evaporation
during the iterations. Two commonly used laws are incremental and exponential
decay respectively adopted for the pheromone release and its evaporation [82]. In

52

Marco Martino Rosso Chapter 2. Optimization Procedures

NestGeneric iteration:

Layer 1 (x1)
Layer 2 (x2)
Layer 3 (x3) x11 x12 x13 x14x21 x22 x23 x24 x25x31 x32 x33

Food

k-th ant k-th antk-th pathk-th design vector

xk x23= x32x12
Figure 2.7: Representation of the working principles of the ACO with a problem with
three discrete design variables (three layers). On the left, at a generic iteration different by
the first one, the different arcs between two layer have different probability to be chosen.
The k-th ant, in this case, identifies a path with a certain probability (blue lines) which
will be conditioned by its trail pheromone. The values of the nodes crossed by the ant
define the k-th design vector, which is presented on the right part of the image. This image
is inspired by [64].

[64] the mechanism of the ACO applied to optimization problems it is analyzed. In
particular, at the first iteration, all the paths are initialized with an equal dose of
pheromone, thus they have the same probability to be chosen. A colony of N ants
start to choose each path from the nest till the end node where the ideal food source
is located. The k-th ant at the i-th node of the layer P , chooses a specific j node in
the next layer Q with a certain probability pij which depend on the concentration
cij of the scent pheromone [82]

pij =
cαij · d

β
ij∑nQ

j=1 c
α
ij · d

β
ij

, (2.4.26)

where α > 0 and β ≥ 0 are called influence parameter or degree of importance of the
pheromones, nQ is the total number of nodes at the next layer Q and dij represent
a parameter of desirability of the route. For example, this latter can represent the
length of the arc between the node i and j when it is important to find the shortest
path. The simplest case is to consider only the concentration as in [64] and this means
setting β = 0. It is important to remember that an ant moves always forward until
it reaches the end node. Afterwards, in a hypothetical cyclic way, a new iteration
begins and the ants start again from the nest toward the end node and so on. When
the k-th ant reach the end node, the path it has followed was subjected to an increase
of the trail pheromone concentration. This amount, in each arc of the travelled path,
is ∆c

(k)
ij and it is given by a local update rule which take into account e.g. the the

53

Marco Martino Rosso Chapter 2. Optimization Procedures

total length of the path Lk of the k-th ant,

∆c
(k)
ij =

Q

Lk)
, if (i, j) ∈ path of the ant k,

0 otherwise,
(2.4.27)

where Q is a fixed constant. It can be useful when the problem ask to find the
shortest path. Instead, since one single path globally define a candidate solution of
the optimization problem (a design vector xk), the update rule can take into account
the fitness of the k-th design vector [28]:

∆c
(k)
ij =

Q

f(xk)
, if (i, j) ∈ path of the ant k,

0 otherwise,
(2.4.28)

It is important to notice that only the arc crossed by the k-th ant will rise its con-
centration of pheromone. In order to promote the exploration of new paths leaving
the worse old paths, an evaporation rule is also considered. As proposed in [64] the
residual concentration after the evaporation c(res)

ij is given by the following relation
which is governed by a fixed evaporation rate, also known as pheromone decay factor,
ρ ∈ (0, 1],

c
(res)
ij = (1− ρ)cij, (2.4.29)

where cij is the pre-existing concentration value in the arc (i, j) without considering
any new increment. Since the number of the ant of the colony is N , the single
arc (i, j) will be subjected to a global variation of concentration equal to the old
concentration reduced by the evaporation rule and the sum of the increment of
concentration of each ant which passed in that arc. In symbols the concentration
c

(new)
ij of the arc (i, j) at the next iteration is

c
(new)
ij = c

(res)
ij +

N∑
k=1

∆c
(k)
ij = (1− ρ)cij +

N∑
k=1

∆c
(k)
ij . (2.4.30)

In [64] it is proposed an update rule for concentration variation which take into
account the best and the worst path among all the ants of the colony:

∆c
(k)
ij =

ζfbest
fworst

if (i, j) ∈ global best path

0 otherwise,
(2.4.31)

where ζ is a scale factor which governs the amount of pheromone released in function
of the ratio between the best OF fbest and the worst OF fworst among all the paths.
This latter pheromone update rule aims to promote the exploitation supporting the
path which lead to the best OF.
As usual, the stopping criterion can be set when the OF stalls for a prescribed num-
ber of iterations or when a certain maximum number of allowed iterations is reached
[64].

54

Marco Martino Rosso Chapter 2. Optimization Procedures

Later, in 1995 James Kennedy and Russell C. Eberhardt, [34] proposed the most
popular swarm intelligent algorithm in the intelligent computing field, the particle
swarm optimization (PSO). It was inspired by the metaphor of the collective and
social behaviour of communities of individuals called swarms such as bird flocking,
fish schooling, or swarming of insects with an emergent intelligent and structured
system. A specific insight of this topic is presented in the next chapter because it is
the base algorithm adopted in the experimentation of a new technique in constraint
handling proposed in the present Thesis.

55

Chapter 3

Particle Swarm Optimization
Algorithm

Within the framework of soft computing methodologies, a large number of non-
conventional paradigms have been explored in order to create efficient and user-
friendly optimizers. Nowadays, a wide variety of biological, social and physical
metaphors has been analyzed and tested. In the present Thesis, the class of op-
timizers based on swarm intelligence, the so-called Particle Swarm Optimization
algorithms are considered, which have been proposed in 1995 by James Kennedy
and Russell C. Eberhardt, [34]. To make some first comparisons with EAs we can
refer to [62]. EAs are based on simulation of natural Darwin’s theory evolution pro-
cess with the survival of fittest members, whereas the swarm intelligence is based on
a collective behaviour in which each element move independently in search space.
Thanks to somehow interaction among members of community, the entire swarm
shows an intelligent global behaviour moving toward the optimal solution. This
emerging class of optimizers is inspired by social behaviours observable in certain
natural aggregations, such as bird flocking, fish schooling, or swarming of insects
when they search for food, resources or protection. Every member of the population
searches in its neighbourhood for the best outcome, learns from its own experience
as well as from the other members’ findings. Typically, if a member of the swarm
discovers a desirable path to go, then the rest of the swarm will follow quickly.
Adopting the AI notation, the swarm population is composed of simple intelligent
search agents whose movements it is not governed from an external control unit but
they interact each other and with the environment to realize a collective intelligent
global behaviour [62]. Thus, similar to other EAs, a PSO is a population-based opti-
mizer and can solve complex non-convex optimization problems. PSO is based on the
principle that social sharing of information among the individuals of the population
can lead to optimum solutions. In fact, as affirmed in [59], every particle possesses a
memory of the best position it has visited. Hence an appropriate combining of the
self-experience of every particle with the global best position of the entire swarm,
we can find a balance between exploration and exploitation. It is a quite simple al-
gorithm since it requires few lines of code in any programming language and a small
set of parameters have to be defined and tuned. PSO is not complicated, resulting in
an attractive tool for non-experts in the field of evolutionary computation. Several

56

Marco Martino Rosso Chapter 3. PSO

studies (e.g., Kennedy and Eberhart [35]) demonstrated that this optimizer has a
good convergence rate.

3.1 PSO framework
Based on the swarm intelligence theory, two different categories of PSO optimizers
can be formalized:

• PSO algorithms in which it is assumed that a Newtonian dynamics regulates
the movement of the particles.

• Quantum-behaved (Q-PSO) algorithms, in which the Newtonian hypothesis is
rejected. In this case, the usual metaphors for PSO are replaced with physical
paradigms related to the movement of particles in the atomic or sub-atomic
scale. Thus, the classical mechanic approach adopted for representing the dy-
namics in traditional PSO is replaced with the quantum mechanics process
where the term “trajectory” is meaningless.

In this thesis, the first class of PSO optimizers is considered in the final practical
applications, in which according to Newton’s theory, both position and velocity of
the swarm can be determined simultaneously.

In the general formulation of PSO, also called canonical formulation [43], the
ith particle (i = 1, ..., N , where N denotes the population size) at iteration k has
two attributes, that are its velocity kvi = {kvi1, ..., kvij, ..., kvin} and position kxi =
{kxi1, ..., kxij, ..., kxin}. To protect the cohesion of the swarm, the velocity kvij is
forced to be (in absolute value) less than a maximum velocity vmax

j with vmax =
{vmax

1 , ..., vmax
j , ..., vmax

n }. Typically, it is assumed that vmax = γ(xu−xl)/τ , in which
the time-related parameter τ = 1 is introduced to assign a physical meaning to
the formula and γ defines how far a particle can move starting from its current
position [62]. Nevertheless, there is not sufficient degree of uniformity about the
choice of γ whose numerical value can vary significantly, usually in the range [0.1, 1]
and generally it is set to γ = 0.50 [62]. Since there are usually not additional
information about the optimization problem to deal with (black-box optimization
problem [43]), the initial values 0xi for i = 1, ..., N are derived by generating pseudo-
randomly the collection of N solutions within the assigned search space. Moreover,
0vij is pseudo-randomly generated using a uniform distribution between −vmax

j and
+vmax

j . For this purpose, the Latin Hypercube Sampling (LHS) technique has been
iteratively used to generate the best initial population with minimum correlation
between samples (see also Monti et al. [49]). According to [59], making a comparison
with EAs, it is possible to interpret the randomness in the setting of velocity particles
as a “directional mutation operator". At iteration k + 1 the velocity (k+1)vi and the
position (k+1)xi vectors are evaluated as follows

(k+1)vi = kvi + c1
(k+1)r1i ∗

[
kxPbi − kxi

]
+ c2

(k+1)r2i ∗
[
kxGbi − kxi

]
, (3.1.1)

(k+1)xi = kxi + τ (k+1)vi (τ = 1). (3.1.2)

57

Marco Martino Rosso Chapter 3. PSO

k
x
Pb

k
x
Gb

i

i

k
x
i

k
v
i

k+1
v
i

Inertia
term

k+1
x
i

Social
term

Cognitive
term

Figure 3.1: Graphical representation of the standard Newtonian PSO mechanism. The
three main contribution of the velocity vector k+1vi stated in (3.1.1) for the i-th particle
are depicted: the Inertia term is related to the Newtonian dynamic-based mechanism and
depends on the previous velocity vector kvi; the Cognitive term is related to the attraction
of the Pbest, kxPbi (best position visited by the particle up to iteration k); the Social term
is related to the attraction of the Gbest, kxGbi (best position visited by the entire swarm
up to iteration k).

where kxPbi is the best previous position of the ith particle (also known as pbest)

kxPbi =

{
kxi, if f(kxi) < f((k−1)xPbi),
(k−1)xi, otherwise.

(3.1.3)

given that 0xPbi = 0xi. The term kxGb is called gbest and it is the best performer
among the entire swarm or among a set of particles belonging to a certain neighbour-
hood. According to the adopted definition for the neighbourhood, one can obtain
different schemes of PSO which are analyzed in the next Section of the present The-
sis. Supposing now that all the particles are able to share information with each
other about the best performer of the swarm, the gbest can be obtained adopting
the following relation

kxGb = argmin
i
{f(kxi)}. (3.1.4)

The acceleration factors c1 and c2 in (3.1.1) (both positive scalars) are called cog-
nitive and social parameters, respectively. Moreover, (k+1)r1i and (k+1)r2i are vectors
whose terms are pseudo-random numbers uniformly distributed in the interval [0, 1],
while the symbol ∗ denotes the term-by-term vector multiplication (Hadamard prod-
uct [59]). A graphical representation of the PSO velocity update mechanism stated
in (3.1.1) is depicted in Figure 3.1. Adopting the AI notation, it is possible to state
that the intelligent search agents exhibit a stochastically biased movements influ-
enced by the pbest and gbest which lead to a global convergent behaviour of the
swarm [43]. The superscripts on the left and the subscripts on the right denote that
a different couple of pseudo-random vectors is needed for each particle at any it-
eration. It should be mentioned at this point that the formulation (3.1.1) is rather
uncommon, in the sense that the majority of researchers in the field adopt a unique

58

Marco Martino Rosso Chapter 3. PSO

set of pseudo-random terms for any dimension of the search space. Nonetheless,
Liang et al. [40] pointed out that Eq. (3.1.1) yields better performance because of
its problem-invariant property. The check on the maximum admissible velocity for
any particle i is performed at iteration k in the following manner

kvij =

{
sign[kvij]v

max
j , if

∣∣kvij∣∣ > ∣∣kvmaxj

∣∣,
kvij, otherwise

∀j = 1, ..., n. (3.1.5)

where sign[·] is the sign operator. Another check is needed to verify that the particle
is within the feasible search space, respecting the side constraints,

(
kxij,

kvij
)

=

(
kxij,

kvij
)
, if xlj ≤ kxij ≤ xuj ,(

kxij = xlj,
kvij = 0

)
, if kxij < xlj,(

kxij = xuj ,
kvij = 0,

)
, otherwise.

(3.1.6)

The infeasible particles’ velocity is fixed to zero in (3.1.6) for the next iteration
to avoid considering any points outside the search space. Following iteratively this
simple set of instructions, the swarm is expected to “fly” towards the global optimum
of the problem. Since the required number of iterations L is not known a priori
and therefore a stopping criterion is needed. In general, stopping criteria in PSO
can be similar to those typically adopted for several EAs, see for instance [50] and
its references. In this study, the search is terminated once a maximum number of
iterations L is achieved. Although this strategy has the disadvantage to require
some information about the problem or some preliminary runs, it appears to be
useful when some parameters of the optimizer have to be iteratively tuned during
the process. The interested reader is referred to the work by Li and Xiao [37] for a
useful discussion on the selection of the number of iterations for PSO.

The performance of PSO strongly depends on choosing control parameter values,
see Quaranta 2020 [62]. Firstly, although it might seem better to choose swarm
size N as bigger as possible it would lead to a very slow algorithm. Moreover,
its choice should be based on the number of design variables n, but it has been
experimentally demonstrated which there is no substantial difference when N varies
in the range [20, 100] for a maximum number of design variables nmax = 30 [62].
Furthermore version of PSO called micro-PSO (µPSO) which can work also with
very small swarm size was also developed in years. Inertia weight and acceleration
factors are also control parameter values which can affect the performances. The
use of inertia weights in PSO has been proposed by Shi and Eberhart [73], where
the authors introduced this parameter in an effort to improve the convergence of
the standard PSO. This concept is not new in soft computing community; actually,
it is similar to the momentum term in a gradient descent artificial neural network
training algorithm, or the temperature adjustment schedule for simulated annealing
algorithms. Typical range of values for w was [0.8, 1.2]. In a subsequent study by
the same authors, a linearly decreasing inertia weight has been adopted [74]

(k+1)vi = kw kvi + c1
(k+1)r1i ∗

[
kxPbi − kxi

]
+ c2

(k+1)r2i ∗
[
kxGbi − kxi

]
, (3.1.7)

with
kw = (0w − Lw)

L− k
L

+ Lw (3.1.8)

59

Marco Martino Rosso Chapter 3. PSO

in which 0w and Lw are the initial and the final values of the inertia weight, respec-
tively. In principle, the inertia weight is a scaling factor of the previous velocity of
the particle and its role is to control the exploration of the swarm: a large inertia
weight will force larger velocity at the next generation and the swarm is expected to
explore a larger region of the search space. In contrast, small inertia values have to
be introduced to improve the local exploration. Some authors proposed also Non-
Linear updating law for inertia weight e.g. in [59] define a three stages reduction
of inertia weight using a cubic polynomial function in order to have fast reduction
at initial stages and slower reduction at last iterations. One can check for further
Non-Linear formulation about inertia weight in [71]. Concerning acceleration factors,
some authors proposed varying models but usually they are assumed statically fixed
to c1 = c2 = 2 [62]. In another version of PSO, inertia weight is not considered and
it is replaced with a constriction factor χ which multiply the whole second member
of the velocity expression (3.1.1):

(k+1)vi = χ
[
kvi + c1

(k+1)r1i ∗
(
kxPbi − kxi

)
+ c2

(k+1)r2i ∗
(
kxGbi − kxi

)]
. (3.1.9)

The constriction factor expression is the following [62]

χ =
2∣∣∣2− ϕ−√ϕ2 − 4ϕ

∣∣∣ , with ϕ = c1 + c2 > 4. (3.1.10)

According to [62], typically it is assumed ϕ = 4.1 which implies χ = 0.729 and,
setting the same value to acceleration factor, it leads to c1 = c2 = 2.05. Although
dynamic (deterministic and non-deterministic) models exist for social/cognitive fac-
tors and inertia weights, in this study it is assumed which all of them are constant
values equal to c1 = c2 = 2, 0w = 0.90 and Lw = 0.40 [57].

3.2 Historical Overview and main variants
The use of evolutionary and swarm intelligence algorithms is constantly gaining
popularity and many complex optimum design problems have been efficiently solved
using Nature-inspired memetic and meta-heuristic methods. In recent years, effi-
cient optimizers based on swarm intelligence, namely, Particle Swarm Optimization
algorithms, proposed originally by Kennedy and Eberhart in 1995 [34], have evolved.

The canonical formulation of PSO posed immediately some issues related to the
choice of the hyper-parameters because, in practice, every prior user-defined decision
strongly affect the behaviour and the convergence of the PSO [43]. As one can notice
from the velocity rule update (3.1.1), for the best particle gbest is equal to pbest
and so the cognitive and the social terms can be combined together. The velocity
vector for the best particle in the early formulation took the following form

(k+1)vi = kvi + c
[
kxGbi − kxi

]
, (3.2.1)

were c = c1 + c2. If c1 + c2 ≥ 4, the early version was subjected to an exces-
sively increase of the velocity vector which lead to the so called swarm explo-
sion effect [43]. For this reason the first improvements posed a velocity clamping

60

Marco Martino Rosso Chapter 3. PSO

(−vmax
j ≤ (k+1)vj ≤ +vmax

j) and the inertia weight term to avoid this problem, as
already explained in the previous Section. Afterwards, in 2002 M. Clerc and J.
Kennedy performed the first convergence and stability analysis of PSO assuming
the early formulation with 1-dimensional particles without stochasticity but con-
sidering the velocity clamping [43]. The outcome of the study were a proposal of
the optimal hyper-parameters of the constrinction factor and the social and cogni-
tive factors, obtained in a closed form. Therefore, they suggest to adopt χ = 0.729
and c1 = c2 = 1.49 when PSO is implemented and, nowadays, it is still a common
solution [43].

Later, the attention was focused on the neighbourhood concept. In fact, it repre-
sents the way in which the information are transmitted among the particles. Without
an efficient exchange of these information, the swarm can not exhibit the collective
convergent behaviour. In particular, the structure of the neighbourhood, also known
as neighbourhood topology, defines the way in which the particles are interconnected
and, therefore, how the information are channelled among the particles, whereas
the size of the neighbourhood affect the influence of the swarm on each particle
[43]. If kxGb denotes the best position among all the particles in the swarm, the
so called gbest as defined in (3.1.4), then the swarm is denoted as fully informed
or fully connected. When the PSO adopt this scheme, it is named as global PSO
model or simply gbest model [43, 62, 71]. This is the most popular time-invariant
neighbourhood because of its ease and rapid implementation. As one can see in the
Figure 3.2 (a), in this topology scheme, all the particles influence each other in a
fully connected net which brings to speed up convergence rate toward the global
best particle position. However, it is even more probable that the swarm could be
entrapped in a local minimum due to the high influence rate on the entire swarm of
the entrapped particles [43]. Therefore, some local strategies were implemented in
order to reduce the size or even change the structure of the neighbourhood. These
strategies are denoted as local PSO models or simply lbest models [43, 62, 71]. These
methods can be implemented considering that each particle in the numerical vector
has a unique index, therefore each particle can unequivocally be selected to enter in
a neighbourhood through its index [44]. The easiest to be implemented local PSO
neighbourhood is the ring topology, Figures 3.2 (c) and (d). As explained in [44],
this topology forms a neighbourhood considering the nearest indexes of the particle
under consideration, resulting in an ideal circular interconnection. The amount of
the particles which enter in the neighbourhood considered is called radius R. In the
Figure 3.2 (c) the ring neighbourhood with radius R = 2 is showed, whereas in Fig-
ure 3.2 (d) there is the ring neighbourhood with radius R = 4. The resulting scheme
create small sets of neighbourhood for each particle and, therefore, it slows down
the information transmission. In fact, when a certain neighbourhood find the global
optimum, it has to communicate to their nearest neighbourhood which in turn will
communicate to the others and so on. Another possible way, it is the star, focal
or wheel neighbourhood [70] presented in the Figure 3.2 (b). In this topology, all
the information have to pass through a central focal particle which can be selected
randomly in the population. This central particle acts as a filter or buffer for the
information transmission. As a matter of fact, all the particles tend to follow the
central one which in turn is attracted from the best ones of the entire swarm. The

61

Marco Martino Rosso Chapter 3. PSO

(a) Fully-connected (b) Star

(c) Ring (R=2) (d) Ring (R=4)

(e) Mesh (f) Toroidal

(g) Tree

Figure 3.2: Some examples of PSO Neighborhood Topologies

62

Marco Martino Rosso Chapter 3. PSO

resulting scheme enhance the exploration to avoid the entrapping in local minima
but it slows down the convergence rate [44]. In the mesh topology, the particles are
organized in a quite different way because they assume an idealized lattice scheme
with a particle at each vertices. This scheme is graphically depicted in Figure 3.2
(e). Every central particle is connected to the four nearest particles, but the bound-
ary particles are connected only with three and the corner ones only with two. A
little variation of this scheme leads to the toroidal topology, also called grid or von
Neumann topology in [70]. As shown in Figure 3.2 (f), to avoid the unbalance of
the neighbourhood size of the boundary and corner particles of the mesh scheme,
these particles are connected to the symmetric corner or boundary particles. In this
way, every particle is connected to four particles and this leads to an idealized three-
dimensional scheme. This latter reminds the geometrical closed surface torus and
this explains why this neighbourhood is also called Clifford torus [44]. As stated in
[70], it is also possible to adopt a random neighbourhood topology defined adopting
a certain distribution. A completely different neighbourhood topology scheme is the
tree topology. This is based on a hierarchical scheme where, at the first layer, a ran-
dom particle is selected as a root node. This latter is connected to two child particles
(binary tree) and it can communicate with them in order to find the best attractor.
Every child particle can communicate with another sub-layer of two child particles
but also with the parent particle. As depicted in Figure 3.2 (g), at the same layer
the particles can not communicate each other but the information have to pass to
the parent node and, afterwards, they can be transmitted to the other child particle.
As stated in [44], the binary resulting tree has to be symmetrical in order to avoid
unbalances. All the previous neighbourhood topologies are called static topologies
in [70] when they remain fixed for all the iterations, whereas they are denoted as
dynamic when they change during the iterations. In fact, starting with lower size
topologies can improve the exploration and, afterwards, enlarging the size of the
neighbourhood until it reduces to the fully connected model, it can enhance the
exploitation and the convergence speed rate. Another dynamic example consists in
dividing the swam in small random neighbourhoods which are periodically randomly
reassembled, as proposed in [70]. As demonstrated in [44], better convergence results
were obtained adopting the lbest model respect to the gbest model, in particular
the widely used ring topology, because it slows down the convergence speed rate but
avoiding the premature convergence. In fact, as stated in [43] the neighbourhood
topology has to be carefully defined in order to balance the exploration and the
exploitation capabilities of the algorithm.

Since there are usually not prior available information about the optimization
problem to solve, which is called black-box optimization problem, the random ini-
tialization of the particles’ positions remains the standard procedure. If some infor-
mation are available, there are many variants which introduce other initialization
models or simply modify the probability distribution used in the random initial-
ization to biased it in a certain manner [43]. As proposed in [70], another possible
solution is the initialization of the swarm with all the velocities set to zero or even
considering random pairs of particles and posing the starting velocity as the mean
of the two considered positions. For the termination criteria, there are also many

63

Marco Martino Rosso Chapter 3. PSO

variants because it is possible to define a stagnation criterion when all the parti-
cle collapse in a certain point for a certain number of iterations, or posing some
limitation on the computational time detecting the number of OF evaluations [43].

According to [70], some other variants proposed to improve the self-adaptation of
the PSO introducing a time-varying parameter adaptation in which the constriction
factor χ, the cognitive factor c1 and the social factor c2 dynamically change during
the iterations. For example, a simple approach is to set a linear decreasing law for χ
with the increase of the iteration number. In order to enhance the exploration at the
beginning and the exploitation at the end, c1 is set with a decreasing law, whereas
c2 with an increasing law with the proceeding of the iterations.

Some specific techniques were proposed to deal with specific class of problem
which aim to transform the OF in order to remove the local optima points. For in-
stance, the stretching technique consists of a global transformation through a filled
function which detect the local minima points and tries to alleviate the OF in those
points. Unfortunately, this can also lead to the introduction of new local minima
and also to the Mexican hat effect. Therefore the deflection technique act similarly
to the stretching but only locally around the local minimum detected [43].

From the historical point of view, [43] provides an overview on the main variants
of the 1995 canonical PSO by Kennedy and Eberhardt. In 1997, a binary encoding
variant was proposed in the so called Binary PSO (BPSO). In this variant, the j-th
component of the position of the i-th particle is defined as

(k+1)xij =

{
1 if rand[0, 1] < S

(
(k+1)vij

)
,

0 otherwise,
(3.2.2)

where S((k+1)vij) denotes that the velocity vector is transformed into a moving
probability through a sigmoid function which is defined as

S(x) =
1

1 + e−x
. (3.2.3)

In 2002 researchers proposed the Guaranteed Convergence PSO (GCPSO) be-
cause they noticed an issue that prevent the convergence with the gbest model
equipped with inertia weight strategy. In fact, when the particle position coincides
with the pbest and the gbest, the velocity update rule relies only on the inertia
term. If the velocity tends to be zero, this results in a immobility of the particle and
the gbest position stalls and can no more improve. Therefore, researchers proposed
a different update rule of the gbest particle adding some randomness and a dynam-
ically defined scaling factor which try to refine the optimal solution and to address
the stagnation problem [43].

According to [70], in the same year, Kennedy proposed also two other versions
of PSO called social only PSO, in which the cognitive factor c1 was zeroed, and
the cognition-only PSO in which, on the contrary, no gbest attractor was adopted,
setting c2 to zero.

64

Marco Martino Rosso Chapter 3. PSO

As reported in [44], in 2002 Clerc and Kennedy analytically proved that each
particle converges to the average weight of the global attractor and the cognitive
best visited position

lim
k→+∞

(k+1)xij =
c1

(k+1)xPbij + c2
(k+1)xGbij

c1 + c2

. (3.2.4)

The above weighted mean highlight that the canonical PSO strongly depends on
the parameter choice. This led researchers to try to find new variants in order to
reduce the parameter dependency and, in 2003, the Bare Bones PSO (BBPSO)
was introduced by Kennedy [44]. This variant replaces the velocity and the position
update rules stated in (3.1.1) and (3.1.2) with a random Gaussian extraction around
the best positions:

(k+1)xij ∼ N
(
µij(k), σ2

ij(k)
)
, (3.2.5)

where the mean value and the variance are respectively equal to

µij(k) =
(k)xGbij + (k)xPbij

2
, σ2

ij(k) =
∣∣(k)xGbij − (k)xPbij

∣∣. (3.2.6)

As stated in [43], in 2004, a variant named as Fully Informed PSO (FIPS) ex-
tended the concept of neighbourhood influence to a global view. As a matter of fact,
respect the canonical version in which the velocity update rule only depends on the
cognitive and the global attractors, in this variant the attraction of the all defined
neighbourhood is considered. In the FIPS the two equations (3.1.1) and (3.1.2) are
replaced by

(k+1)xij = (k)xij + χ
(

(k)xij − (k−1)xij
)

+
∑
q∈NBi

Cq
(

(k)xPbqj − (k)xqj
)
, (3.2.7)

where the sum is conducted on all the elements belonging to the neighbourhood of
the i-th particle denoted as NBi, and Cq is a random coefficient drawn from a uni-
form distribution U[0, c/si] with c = c1+c2 as usual and si is the neighbourhood size.

According to [43], always in 2004, a new variant of PSO, the Quantum PSO
(QPSO), drastically changed the framework abandoning the Newtonian dynamics
laws for a quantum mechanics governed environment. In a Newtonian field, both the
position and the velocity of a particle can be defined simultaneously, but it is not
true in quantum mechanics because of the uncertainty principle in which the term
“trajectory” is meaningless. As a matter of fact, a particle possesses a quantum state
which can be defined by a wave function Ψ(x, t) which depends on the position of
the particle and the time. This is a state function for a system and it is connected
to the probability density function (|Ψ|2) to find a particle in a elementary volume
(dxdydz) in a certain position of the physical space (x, y, z). At the microscopic level,
the time-dependency properties of the particles are governed by the Schrödinger
equation [78]. The first QPSO proposal assumed that the state of a PSO particle
x in the quantized search space was governed by the Delta potential well function,
with center in the point p [78]:

Ψ =
1

L
e−‖p−x‖/L, (3.2.8)

65

Marco Martino Rosso Chapter 3. PSO

where the term L is defined below. This assumption allows the swarm to converge
to p without the explosion of the swarm [77]. In the quantized search space, it is
possible to know only the probability that a particle appears in a certain region
but, in order to perform the OF evaluation, the position is an absolutely necessary
information. Therefore, the quantized space is transformed into a classic solution
space to make possible the measurement of the particle position [77]. As stated
in [78], they adopt the Monte Carlo Method to numerically simulate the process
of measurement finding the positions of the particles with a sufficient accuracy.
Therefore, in the original QPSO formulation, after randomly initialized the swarm
population, and after defining the gbest particle in a fully informed neighbourhood,
the next position (k+1)xi is given by the following relation

(k+1)xi =

{
(k)pi − L · ln (1/u) , if rand[0, 1] > 0.5,
(k)pi + L · ln (1/u) , otherwise,

(3.2.9)

where u = rand[0, 1] and, considering the converge of the PSO particles (3.2.4), the
center of the Delta well function, (k)pi can be assumed as

(k)pi =
ϕ1

(k)xPbi + ϕ2
(k)xGbi

ϕ1 + ϕ2

, (3.2.10)

with ϕ1, ϕ2 = rand[0, 1] and the parameter L, called creativity or imagination of the
particle in [77], is given by

L = β ·
∥∥(k)xi − (k)xPbi

∥∥, (3.2.11)

where β is a positive user-defined control parameter called creativity coefficient in
[77] or contraction–expansion coefficient in [62]. A revised QPSO was later proposed
by the same authors modifying the (3.2.11) as below to improve the convergence
rate and the performance of the algorithm,

L = β ·
∥∥(k)xi − (k)xMb

i

∥∥. (3.2.12)

The new above definition of L take into account not only the cognitive best visited
position (k)xPbi but the mean best positions of the entire swarm (k)xMb called mbest,

(k)xMb =
N∑
i=1

(k)pi/N, (3.2.13)

where N is the swarm size. As stated in [78], a particle has a certain probability
z to appear in a certain zone, therefore in order that the quantum state converges
to the center p it is necessary that z > 0.5. This explains why the new position
given by the (3.2.9) is defined by two different laws with a certain probability. In
[78], to guarantee the convergence of the swarm towards the center p, the limit of
L with k →∞ need to be zero. Therefore the creativity parameter β was originally
proposed to be β < 1/ ln

(√
2
)
. The main advantages of adopting the quantum PSO

are related to the fact that the PSO was adapted to a complex non-linear system in

66

Marco Martino Rosso Chapter 3. PSO

which the principle of superposition of the states holds and which is based on the
uncertainty, which is quite different from the classical stochastic concept. In fact, as
explained in [77], before the measurement phase, the particle can appear anywhere
with a certain probability in the quantized search space because it does not follow
the rule of a deterministic classical trajectory, thus allows a better exploration of the
search space. Later, other main variants of the QPSO have been proposed adopting
different mathematical form for the quantum mechanics potential field e.g. the Har-
monic Oscillator function or the Square Well function [43].

In 2004, according to [43, 56], the Unified PSO (UPSO) tried to unified the gbest
model with the lbest model defining the update velocity relation as

(k+1)vij = u (k+1)Gij + (1− u) (k+1)Lij (3.2.14)

where u ∈ [0, 1] is called unification factor and govern the relative weight of the
lbest model (k+1)Lij defined as

(k+1)Lij = χ (k)vij + c3((k)xPbij − (k)xij) + c4((k)xNBiij − (k)xij). (3.2.15)

where (k)xNBiij is the best attractor of the neighbourhood of the i-th particle, and
the gbest model (k+1)Gij defined as

(k+1)Gij = χ (k)vij + c3((k)xPbij − (k)xij) + c4((k)xGbij − (k)xij). (3.2.16)

Two later versions introduced a stochastic parameter r ∼ N(µ, σ2) to the (k+1)Gij

or to the (k+1)Lij in (3.2.14) which simulates the mutation operator of the EAs.
In 2004, another PSO variant called Cooperative PSO (CPSO) was also presented

[43]. This variant was based on a multi-population scheme in which each population
performed a research only a smaller restricted region of the entire search space but
they cooperated together in the combining phase to find the optimum.

Starting from 2005, the PSO was integrated with mathematical local search
algorithms giving rise to the so called Memetic PSO (MPSO). For example, the
gradient-based optimization methods were implemented to perform a refined search
of the gbest found or in order to enhance the search in a specific direction [43].

Instead in 2006, the Comprehensive Learning PSO (CLPSO) was proposed to
reduce the tendency to premature convergence adopting an update velocity rule in
which the best attractor was selected with a random rule among all the particles
e.g. with a tournament probabilistic selection scheme [43].

In the same year, the TRIBE algorithm was released. This algorithm is based to
create a number of local neighbourhoods (the so called tribes) in which the particles
shared together the best cognitive position (informant particles). The various tribes
have at least one particle which is also informant of another different neighbourhood
to allow information transmission among the tribes. The tribes can also be dynam-
ically changed as stated in [70]. It is also characterized by a high self-adaptability
because, according to the fitness of the particles, each tribe has a leader which per-
form as local attractor and through a comparison with other tribes they can also
be eliminated and substituted by new ones [43] or they can be subjected to some

67

Marco Martino Rosso Chapter 3. PSO

mutation operators to enhance the exploration capabilities [70].
When the aim is to locate and track al the local minimum of a multimodal problem,
the niching PSO algorithm was proposed adopting some specific operators for this
aim. In 2006 before, later in 2007 and, finally, in 2011 the Standard PSO (SPSO)
tried to propose a unique baseline of the PSO algorithm for all the future implemen-
tations collecting together the so far theoretical developments in the PSO research
fields.

Since the box-type search space define side constraints for each design variable
(x(l)

j ≤ xj ≤ x
(u)
j), in the 2008 [43], the concept of opposite point give rise to the

so called Generalized Opposition-based PSO (GPSO). Considering the j-th design
variable, the opposite point of xj is defined as

x′j = x
(l)
j + x

(u)
j − xj. (3.2.17)

In the GPSO, two different swarm are initialized: the first one is randomly selected
and the second one adopt the above definition of the opposite point with a random-
ness coefficient r = rand[0, 1], in symbols

(0)x′ij = r
(

(0)x
(l)
ij + (0)x

(u)
ij

)
− (0)xij. (3.2.18)

After the evaluation of the two swarms, the first N best particles are selected to
become the actual swarm of the PSO algorithm. Afterwards, at each iteration some
randomness are introduced, e.g. a sort of mutation operator, to increase the explo-
ration capability of the algorithm.

In 2012 Kar et al [32], proposed a new variant called Craziness PSO (CRPSO),
introducing a craziness operator which simulate a mutation operator in the GA. In
order to enhance the diversity in the population and avoid premature convergence,
the velocity update rule is changed to take into account that in a real swarm the
individual suddenly can change their direction in a random way. The two parameter
r1i, r2i of (3.1.1) are assumed to be independent, but [32] they assumed to take a
unique random term r1 = rand[0, 1]. To balance the various term a second random
term r2 was also introduced whilst a third term r3 was introduce to consider a
possibly random reversal of the previous velocity not related to an inertia term,
with r2, r3 = rand[0, 1],

(k+1)vi = r2sign(r3) kvi+(1−r2)c1r1∗
[
kxPbi − kxi

]
+(1−r2)c2(1−r1)∗

[
kxGbi − kxi

]
,

(3.2.19)
where

sign(r3) =

{
−1 r3 ≤ 0.05,

1 r3 > 0.05.
(3.2.20)

After that, the velocity is further subjected to the craziness operator, that sud-
denly change its value with a rare craziness probability Pcr (similarly as a mutation
operator)

(k+1)vi = (k+1)vi + P (r4) · sign(r4) · vcraziness
i , (3.2.21)

68

Marco Martino Rosso Chapter 3. PSO

where each component vcraziness
ij is randomly drawn by the velocity admissible interval

[−vmax
j ,+vmax

j], whereas the craziness factor P (r4) is given by

P (r4) =

{
1 r4 ≤ Pcr,

0 r4 > Pcr,
(3.2.22)

and

sign(r4) =

{
−1 r4 ≥ 0.5,

1 r4 < 0.5,
(3.2.23)

with r4 = rand[0, 1]. As one can see, in this way, the reversal of the velocity vector is
a rare event, therefore its activation is related to a very low probability (r3 ≤ 0.05),
whereas it is suggested to adopt Pcr ≤ 0.3 in order to avoid excessive oscillations
when the algorithm almost reaches the convergence to the optimum. The term
sign(r4) is used to consider an equal probability of reversal of the craziness ve-
locity term [32].

Some PSO variants were also successfully adopted to deal with multi-objective
optimization problems. As stated in [43], the simplest approach is the weighted
aggregation method which allows to transform the problem in a single objective
optimization problem. This method was already mentioned at the end of the Sec-
tion 2.2 of the present Thesis. In the PSO field, early applications appeared in
2002 when the conventional weighted aggregation implemented a PSO approach
with fixed weights during all the iterations. Later also dynamic approaches were
proposed. Another possible approach to deal with this kind of problem with PSO
is to consider a number of swarms, which work in parallel, equal to the number
of the OFs to optimize. This second approach is also known as Vector Evaluated
PSO (VEPSO). Each swarm is related to a specific OF but the information can be
exchanged among them through certain migration schemes or neighbourhood con-
nections as explained in [43]. In [52], the VEPSO is applied to solve a structural
multi-objective optimization problem related to the optimal design of composite
structures.

3.2.1 Structural applications and main Hybridizations

Several researchers have applied PSO algorithms to solve various types of structural
optimization applications with continuous or discrete design variables, mainly for
truss problems (Perez and Behdinan [57]; Li et al. [39]; Hasançebi et al. [29]; among
others) and composite structures (Omkar et al. [52]; Bloomfield et al. [4]). Kaveh and
Talatahari [33] combined PSO with Ant Colony Optimization (ACO) and Harmony
Search (HS) to obtain a hybrid scheme which has been implemented for the opti-
mization of truss structures. Plevris and Papadrakakis [58] combined PSO with an
efficient mathematical programming method (Sequential Quadratic Programming
SQP) to improve the local convergence rate of PSO via gradient-based SQP and
applied this hybrid scheme to optimize typical trusses. Rao and Sivasubramanian
[63] presented a computational system for the active vibration control of seismically

69

Marco Martino Rosso Chapter 3. PSO

excited buildings by combining a multi-objective PSO algorithm with a fuzzy logic
controller. Ge et al. [25] combined PSO with dynamic recurrent neural networks
to perform speed control for ultrasonic motors. Begambre and Laier [1] proposed a
hybrid PSO that has been combined with a Simplex algorithm to deal with struc-
tural damage identification problems. Seyedpoor et al. [72], implemented PSO for
the optimum shape design of arch dams under earthquake loading using a fuzzy
inference system and wavelet neural networks for the reduction of enormous com-
putational cost. Under this perspective, Gholizadeh and Salajegheh [26] performed
optimal design of steel frames subjected to earthquake loading by swarm intelli-
gence and advanced neural network metamodels. Similarly, Praveen and Duvigneau
[61] proposed the combination of PSO with radial basis function approximations
to solve demanding aerodynamic shape design problems. Furthermore, in order to
reduce the computational cost Kalivarapu et al. [31], presented the application of
PSO in a parallel computing environment, in which digital pheromones have been
used to coordinate swarms within the explored design spaces.

As one can find in [71], in the last decades’ many hybrid algorithms were for-
mulated in order to overcome the drawbacks of a single approach implementing
different optimization strategies to find the optimal trade-off between exploration
and exploitation, reducing computational efforts and avoiding the swarm to be en-
trapped into local sub-optimal solution. Both for constrained and unconstrained
problems, there exist an integration with Genetic Algorithm operators named GA-
PSO. These two approaches are referred to different contexts as one can check in
[59]: GA is the oldest approach and is referred to a biological context implementing
genetic operators (selection, crossover, mutation) while PSO is based on a social con-
text. These two strategies can be used both sequentially, where PSO allows to speed
up global exploration whereas GA is mainly used in the exploitation phase and also
to guarantee the diversity of members in the exploration phase, or using them in
parallel. Other hybrid approaches integrate Differential Evolution Algorithm, DEA
(by Storn and Price, 1997) with PSO. They are also known as SDEA (Swarm Dif-
ferential Evolution Algorithm) or DEPSO. In this latter, at the origins, PSO and
DEAs operators sequentially work alternating at odd and even iterations [69]. In
order to solve multi-objective problems an integration between PSO and Simulated
Annealing (SA). Some approaches focused on implementing an adaptive updating of
memory of particles’ best solutions. Further hybridization was performed with Ant
Colony Optimization (ACO) in order to find optimal solutions for highly non-convex
problems. There are some other approaches based on Cuckoo Search (CS) which was
inspired by behaviour of cuckoos integrated with Levy flight nature of birds. In these
CSPSO approaches, cuckoos which reached a good solution communicate it to other
members and then local exploitation of PSO is used. Later, another effort was done
integrating CSPSO with DE. Always inspired by Nature, researchers proposed Ar-
tificial Bee Colony (ABC) in parallel with PSO allowing exchanging information
between swarm and bees and then many other developments. There was also an
integration between PSO and other social metaheuristic approaches like Artificial
Immune System (AIS), Bat Algorithm (BA), Firefly Algorithm (FA), Glow Worm
Swarm Optimization (GSO). As explained in [71], using algorithms in parallel allows

70

Marco Martino Rosso Chapter 3. PSO

to improve each search mechanism thanks to information exchange between them.
Mota et al. 2018 [21] implement a hybrid PSO with Iterated Local Search (ILS) op-
erator which is based on a deterministic hill climbing phase to improve local search
around current gbest.

3.3 State of the art in Constraint handling
As already mentioned before, the optimization problems can be classified in two
main categories: if they have any external constraints which reduce the feasible
search space, they are denoted as constrained problems, otherwise they are called
unconstrained optimization problems. Regardless of the type of the problem, in or-
der to avoid unbounded search which could potentially lead to an infinite number
of iteration of any algorithm if an actual optimal solution does not exist, the side
constraints are usually set defining an enclosed box-type search space [64]. The side
constraints pose to each design variable an upper bound and a lower bound thus
the search is done inside this interval. According to [70], there are at least eight
strategies to deal with a particle that, after the position update given by (3.1.2),
it is located outside the box-search space, which are summarized in Figure 4.9. It
worth noting that in the Figure they are all depicted together to produce a compact
representation, but usually only one technique is adopted for a specific implemen-
tation. In the absorption method, the side constraints act as an ideal wall which
can absorb whichever possible impact of a particle which ends its trajectory on the
side constraint. In the reflection method it always acts as an ideal wall perfectly
smooth which is able to reflect whichever impact. The part of the trajectory which
lies outside the box constraints is therefore reflected inside the box search space.
In the velocity scaling approach when the final position is detected to lie outside
the box search space, the modulus of the velocity vector is progressively reduced
for example with a halve method (bisection method) or adopting certain reducing
laws e.g. a hyperbolic scaling law as proposed in [70]. The infinity method acts sim-
ilarly to a death penalty method which is discussed in the following. The most used
method for its simplicity and rapid implementation, which is also adopted in this
Thesis, is the nearest method which is mathematically described by the relations
in (3.1.6). In practice, after computing the final position of the particle given by
(3.1.2), this method operates on each single design variable in turn. The approach
remaps the single design variable xj to the nearest boundary of the admissible in-
terval

[
x

(l)
j , x

(u)
j

]
if its value lie outside of this interval. Another trivial approach is

the random method which randomly reinitializes the particle when they lie outside
the admissible box-search space. This latter approach could also be a good approach
to enhance the exploration because of the new random generation of the unfeasible
particle. As stated in [70], the random method can also be applied only to that de-
sign variables which violate their admissible search interval. In the simply periodic
method prosed in [70] foresees to ideally consider the OF on the box search space
as periodically repeated all around the actual search space. In this way the particles
seem unbounded in the design space but, knowing the size of the initial search space

71

Marco Martino Rosso Chapter 3. PSO

x2
LB

x1
LB

x1
UB

x1

x2
UB

x2

Absorption

Reflection

Velocity
scaling

Infinity
Nearest

Random Simply Periodic

Bounded Mirror

k
xi

k+1
xi

k+1
xi

k+1
xi

k+1
xi

k+1
xi

k+1
xi k

xi

k
xi

k
xi

k
xi

k
xi

�

��

k+1
xi

k
xi

k+1
xj

k
xj

k+1
xi

k
xi

k+1
xj

k
xj

Figure 3.3: Visual representation of the main box-constraint approaches (image inspired
by [70])

(in practice, the period), it is always possible to reconduct the position to a new
position inside the original search space. A similar approach is the bounded mirror
method where the OF is periodically repeated but this time is also mirrored. This
latter acts as a combination of periodic and reflection method in which, this time,
the search space is only doubled respect to its original size, as stated in [70]. Usually,
also the velocities are modified when the particles violate the side constraints. The
usual approach is to pose them to zero (for example in the absorption or in the
nearest method) but it can also be reversed (for example in the reflection method)
or even randomly changed [70].

In order to solve constrained optimization problems with PSO, several numerical
techniques were incorporated for handling various types of constraints. It should
be stressed that the selection of an appropriate technique for solving constrained
optimization problems is a very important step because the performance of the
optimizers strongly depends on the underlying mechanism for handling constraints.
Motivated by this fact, various methodologies have been proposed in recent years
and in this Thesis a new one is proposed. These methods have been classified by
different authors into certain categories (see for instance the state-of-the-art review
by Coello [10], Koziel and Michalewicz [36]; Michalewicz and Fogel [47]):

• penalty function-based methods,

• methods based on special operators and representations,

• methods based on repair algorithms,

• methods based on the separation between OF and constraints,

72

Marco Martino Rosso Chapter 3. PSO

• hybrid methods.
One of the most critical issues when searching multi-constrained non-convex

design spaces is the preservation of the population diversity. The brutal elimination
of the unfeasible solutions during the evolutionary search jeopardizes a complete
exploration of the feasible domain. Therefore, it is crucial to maintain diversity
in the population in order to keep track of the solutions inside and outside the
feasible region [10, 46]. Moreover, it has been verified that several traditional penalty-
based approaches may not be adequate to deal with highly complex search spaces,
especially for problems in which several constraints are active in the optimum [68].
In these circumstances, unfeasible individuals may have very important information,
thus, their role can be significant when looking for the global optimal solution.

An example of a very simple constraint handling approach in PSO consists in
exploiting the randomness in velocity expression (3.1.1) and recalculate it until the
new position of a particle becomes feasible. This simple approach is really time-
consuming in particular for problems with a little feasible region. The penalty func-
tion approach allows to transform constrained problems into unconstrained ones
[30, 41]. Since its simplicity, the death penalty was the most widespread at the be-
ginning. It introduced a strong penalty to unfeasible positions in order to consider
only feasible ones. Later some authors proposed an adaptive penalty in order to
evaluate the degree of violation of the unfeasible points. In fact, the optimum solu-
tion is often situated at the boundary between feasible and unfeasible region. Due
to this fact, the degree of violation represents an extremely useful information in
order to conduct the search along the boundary. Thanks to this latter information
it is possible to implement a repairing operator which redirects the unfeasible point
to the feasible region. It is important to set the velocity of redirected particles to
zero in order to improve local boundary search, as illustrated in [59]. As one can
check also in [30], there also exist some approaches based on searching for feasibility
operators. In Kohler et al. 2016 [41], a new variant called PSO+ based on preserv-
ing of feasibility is presented. Some authors such as [41], described the constraint
boundary with a wall metaphor and defined for it three different possible impact
behaviour, which are also depicted in Figure 3.4. When the potential final position
of a particle lies in the unfeasible region it implies that its trajectory ideally crosses
the constraints function in the classic Newtonian PSO version. If the constraint
acts as an ideal absorbing wall, it is able to stop the particle on its impact area.
In this sense, the constraint represents a wall made of an ideal material which is
able to adsorb whichever energy of any impact and stopping the particle on its sur-
face. Instead, in the reflection wall concept, the constraint acts as an ideal perfectly
reflecting wall. In fact, when a particle would cross the constraint surface, it will
impact with this surface and the particle is rebounded behind without loss of energy.
This means that the final position reached after the impact would be the reversed
part of the uncovered trajectory in the unfeasible region. In general, the constraint
usually acts as an invisible wall: it means that it does not influence the trajectory of
the particle in any way. This implies that the preservation of the feasibility has to
be treated in another way with specific operators. Unfortunately, this wall metaphor
can be simply applied to the side constraints of each design variable, but it is much
more difficult to implement when one is dealing with general non-linear constraints

73

Marco Martino Rosso Chapter 3. PSO

kxi

k+1 xi

k+1 xi

k xi

Unfeasible region

Feasible region

k+1 xi

k xi

x1

x2

Absorbing
wall

Reflecting
wall

Invisible
wall

k+1 xi

Figure 3.4: Graphical representation of the constraint wall theory exposed in [41].

functions defined inside the design space. In Kohler et al. 2016 [41], a new variant
called PSO+ based on preserving of feasibility is presented. In this approach, an
arithmetical crossover operator is used to computationally improve the generation
of feasible initial population. Then the search for the new positions is conducted
with the Footholds concept. Footholds are some fixed random generated unfeasible
points which do not belong to the swarm but they can affect the search direction
likewise e.g. the gbest point. The unfeasible particles are then repaired with the
crossover operator in order to obtain again a feasible point. For further information,
Jordehi 2014 [30] has made a review of the general constraint handling methods in
heuristic algorithms mainly focusing on pro and cons of the methodologies applied
in PSO. Herein, it illustrated main characteristics about static, dynamic and death
penalties approaches, separatist mechanism such as Deb’s approach, MO-based sep-
aratist mechanism, Co-evolutionary-based separatist mechanism, stochastic ranking
α-Constrained PSO which define a satisfaction level, ε-Constrained PSO which in-
troduce a relaxation factor in Deb’s approach and other constraint mechanisms such
as Del Valle’s approach and general hybrid approaches.

74

Marco Martino Rosso Chapter 3. PSO

3.3.1 Penalty function-based methods

One of the most used indirect technique to solve constrained optimization problem is
represented by the penalty function-based methods. These methods allow to trans-
form the constrained optimization problem in an equivalent unconstrained version.
As a matter of fact, they tend to modify the actual OF in order to take into account
of the presence of the constraints which divide the box-search space in the feasible
and the unfeasible regions. The actual OF f(x) of the original optimization problem
stated in (2.1.2) is transformed in a new OF φ(x) by adding, in the most general
way, a certain penalty function P (x). This penalty function P (x), in general, is
equal to the sum of a penalty function related to the inequality constraints G(x)
and a term related to the penalty of the equality constraints H(x). These two terms
are, in general, respectively weighted by two positive penalty factors c and k. In
symbols [30]

φ(x) = f(x) + P (x) = f(x) +

[
nq∑
j=1

cjGj(x) +
nr∑
i=1

kiHi(x)

]
, (3.3.1)

where nq is the total number of inequality constraints, and nr is the total number
of equality constraints.

As stated in [64], there exist essentially two types of penalty functions. The
interior penalty functions act in the feasible region (this explains their appellation)
augmenting the value of the OF where the design space approaches the constraints.
When a particle is in the feasible region, the penalty function tends to be zero,
whereas if the particle comes closer to the constraint, the penalty function increases
its value till blowing up to infinite when it is critically satisfied [64]. This means that
the constraint acts as an ideal barrier and for this reason this type of penalty is also
called barrier method [30, 64], reminding the above mentioned wall metaphor [41].
Two examples of most used interior penalty function forms are

Gj(x) = − 1

gj(x)
, Gj(x) = − log [−gj(x)] . (3.3.2)

With these interior models there are many drawbacks because, at first, they neces-
sary require to work with initially feasible points, which can lead to complications
in the initialization of the swarm or a higher computational effort. Furthermore, it
is complicated to establish a prior suitable value of the penalty factors, therefore,
in [64], a dynamic approach is proposed in which the penalty factors start with a
great value and, during the iterations, they tend to zero in order to compensate a
probable blow up of the penalty term.

On the contrary, the second type of penalty functions are called exterior penalty.
These functions act a modification of the OF in the unfeasible region and maintain
the actual OF in the feasible region. Because this feature, it is able to take into ac-
count the degree of violation of the constraints. Therefore exterior penalty functions
take, in general, the following form for the inequality constraints

Gj(x) = max {0, gj(x)}β , (3.3.3)

75

Marco Martino Rosso Chapter 3. PSO

f(x)

f,� Feasible
region

�(x)=f+c

xg(x)

f(x)

f,� Feasible
region

�(x)

xg(x)

f(x)

f,� Feasible
region

�(x)

xg(x)

Figure 3.5: Graphical representation of the exterior penalty exponent influence on a uni-
dimensional example. On the left, β = 0; in the center, 0 < β ≤ 1; on the right, β = 2;
image inspired by [64].

where β is a positive constant and

max {0, gj(x)} =

{
gj(x), if gj(x) > 0 (constraint is violated),
0, if gj(x) ≤ 0 (constraint is satisfied),

whilst, for the equality constraints, the penalty function terms take the following
form

Hi(x) = |hi(x)|γ (3.3.4)

where γ is a positive constant. As stated in [30], β and γ are usually set to 1 or
2 in order to give a further weight to the degree of violation, whereas the penalty
factors cj and ki have to be carefully chosen. As a matter of fact, in [64] it is
highlithed that if the OF have a minimum point in the unfeasible region, if the
penalty are not big enough, the algorithm can stall and spend a lot exploration
in the unfeasible region without finding a solution which respect the constraints.
Instead, if the penalty factors are too large the unfeasible region risk to not be
sufficiently explored, as affirmed in [30]. Because of the consideration of the degree
of violation without modifying the OF inside the feasible region, the external penalty
approaches are the most commonly adopted when the constraints are handled with
a penalty-based approach. In Figure 3.5 the influence of β is represented on a uni-
dimensional example, inspired by [64]. In fact, if it is set to zero, the only penalty
added is the penalty factor leading to a piecewise function with a jump discontinuity,
whereas if the value is 0 < β ≤ 1 the function is continuous but with a corner point,
and if it is set to β = 2 the function is still continuous but, at a very low degree
of violation it tend to follow the original OF whereas, when the violation increase,
the penalty factor increase with power two. Similar considerations are done for the
γ exponent.

In literature [64, 79], there also exist some modifications of the classical interior
penalty functions which are called extended interior penalty functions. These vari-
ants are a combination of the interior and the exterior penalty function methods.
In these approaches, the condition of blowing up to infinite when the constraints
are critically satisfied is removed and the penalty start to increase the actual OF in
the feasible region and still continues with a certain slope (linear, quadratic) also in

76

Marco Martino Rosso Chapter 3. PSO

P(x)

Feasible region

Interior penalty

g(x)0

Unfeasible region

Quadratic
extended
penalty

Linear
extended
penalty

Figure 3.6: Graphical representation of the extended penalty approach; image inspired
by [79].

the unfeasible region. In Figure 3.6 an example of the extended penalty approach is
represented.

In [30], a review of the most used constraint handling approaches adopted in PSO
is presented. The static penalty-based techniques are one of the most popular tools
in structural optimization, as stated in [29]. They are called in that way because
the penalty functions do not change during the proceeding of the iterations of the
algorithm. The most popular form of static penalty function is [12, 30]

Ps(x) = w1PNV C(x) + w2PSV C(x), (3.3.5)

in which PNV C is the number constraints that are violated by the particle x and
PSV C is the sum of the constraint violations

PSV C(x) =

np∑
p=1

max{0, gp(x)}, (3.3.6)

where np is the total number of constraints, whereas w1 and w2 are the static weight
parameters of the penalty scheme. Unfortunately, in literature, there is no concor-
dance in a proper suggested choice of the penalty parameters, also because they are
problem dependent and, therefore, they have to be carefully tuned for the specific
problem with a trial and error procedure. They are usually assumed as integer be-
tween 1 and 999 as stated in [12] and, for example, [30] stated that in an application
the authors used the value 20 without any apparent reason or, as well as, Parsopou-
los and Vrahatis [56] which adopted w1 = w2 = 100.
A three-dimensional graphical representation of the static penalty is given in Figure
3.7 (d). As one can see, the static penalty acts an uplift of the actual OF only in
the unfeasible region, in which the height of the uplift depends on how much the

77

Marco Martino Rosso Chapter 3. PSO

x2
LB

x1
LB

x1
UB

x2
UB

x2

x1

(a) (b)

(c) (d)

Figure 3.7: Graphical representation of the penalty-function approach on a bi-dimensional
example. (a) Planar view of the OF f(x) represented as contour black solid lines in the
design variables’ space. The constraint, depicted as the red solid line, divide the feasible
region from the unfeasible one. The box search space boundaries are drawn as dashed lines:
x

(l)
i is the design variable lower bound and x(u)

i is the design variable upper bound, with
i = 1, 2; (b) Three-dimensional representation of the OF surface on the entire box search
space; (c) Death penalty approach graphical representation; (d) Static penalty approach
taking into account the degree of violation of the constraint.

constraint is violated.

The extreme case of the static penalty approach is represented by the so called
death penalty. The main advantage is that this approach avoids the choice of the
penalty parameters because they are set to infinite [30]. This fact lead to have a
piecewise OF with a jump discontinuity across the constraints, as depicted in Figure
3.7 (c). From the numerical point of view, to simulate the infinite value, the penalty
parameters are set to a value greater several order of magnitude respect to the actual
OF.

78

Marco Martino Rosso Chapter 3. PSO

In general, the penalty function strongly modifies the performance of the algo-
rithm when it deal with constrained optimization problems. To improve the quality
of the results, some dynamic penalty functions were proposed to increase the algo-
rithm’s performance. They are also called non-stationary penalty function in [64]
because the penalty parameters dynamically change with the iteration number k.

To this end, the equation (3.3.1) is modified as follows

φ(x) = f(x) + khPd(x) (3.3.7)

in which kh is a dynamic penalty whose numerical value is suggested to be [64, 30]
kh = (ck)α (3.3.8)

where c is a penalty coefficent and α is an exponent which is suggest to be equal to
2 in [64]. The the dynamic penalty function Pd(x) is given by [30]

Pd(x) =
nr∑
i=1

Hi(x) +

nq∑
j=1

[Gj(x)]β , (3.3.9)

where nq is the total number of inequality constraints, and nr is the total number
of equality constraints, with

Hi(x) =

{
0 if ε ≤ Hi(x) ≤ ε,

Hi(x) otherwise
(3.3.10)

and
Gj(x) = max {0, gj(x)} . (3.3.11)

As proposed in [30], transforming all the constraints in inequality constraints,
a multi-stage dynamic penalty approach for PSO was also proposed. The modified
OF had the same the form of (3.3.7), but the dynamic penalty factor was assumed
as [64, 30]

kh =
√
k, (3.3.12)

and the penalty function assumed the following form

Pd(x) =

np∑
p=1

θ (qp(x)) qp(x)eγ(qp(x)), (3.3.13)

with qp(x) = max {0, gp(x)} where typical assignments for the penalty parameters
are (see for instance [55])

θ (qp(x)) =

10 if qp(x) ≤ 0.001,

20 if 0.001 < qp(x) ≤ 0.100,

100 if 0.100 < qp(x) ≤ 1.000,

300 otherwise.

(3.3.14)

γ (qp(x)) =

{
1 if qp(x) ≤ 1,

2 otherwise.
(3.3.15)

79

Marco Martino Rosso Chapter 3. PSO

It is evident that dynamic penalty methods require a larger number of control pa-
rameters in comparison to the static one, however, it was numerically demonstrated
to give better results respect the static approaches [64].

Since the presented dynamic method also take into account the degree of vio-
lation, they could also be classified as adaptive penalty methods. In reality, in the
adaptive penalty methods, the penalty parameter is defined at each k-th generation
for each j-th constraint taking into account both the OF value of the particle x and
also the global degree of violation, e.g. [7]

khj = |f(x)| qj(x)∑np
p=1 [qp(x)]2

, (3.3.16)

with qj(x) = max {0, gj(x)}. For furthermore readings about adaptive penalty
schemes one can refer to [7], in which this latter technique was adopted in CRPSO
for solving structural optimization problems.

80

Chapter 4

A new non-penalty Machine
Learning constraint handling
approach

In the following, after a brief excursus on Artificial Intelligence, a review on the sup-
port vector machine (SVM) technique is presented and, after that, the new constraint
handling non-penalty proposed approach is reported in detail. The main advantage
of adopting a new non-penalty based constraint handling approach is related to the
generality of the classification machine learning algorithm employed. As a matter of
fact, the SVM depends only on the inner product of the data and it is able to gen-
erate a predictive model. This latter represents substantially the boundary between
the feasible positions of the swarm from the unfeasible ones. This predictive model
is more adaptive than a typical penalty function approach because works fine both
with discontinuous and non-linear constraints. In the next chapter, some practical
applications of this new PSO-SVM proposed variant are presented.

4.1 Artificial Intelligence: brief overview and main
scopes

Artificial Intelligence (AI) is a very large research field which is still under develop-
ment and it represents the present but also the future of the research. The purpose
of this section is to make a brief excursus of AI and understand where the meta-
heuristic algorithms are located in this vast research field. Especially related to the
computer science field, in [20] AI is defined as the process to simulate the human
brain reasoning on a digital computer:

“Through research of intelligent systems we can try to understand how
the human brain works and then model or simulate it on the computer.
[...] AI has as its constant goal the creation of intelligent agents for as
many different tasks as possible.”.

According to the above definition, AI aims to produce systems that are able to
reason, solve problems and take decisions an intelligent manner likewise a human

81

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

brain would have done. The strongest point of human intelligence still remains the
great adaptability to many situations exploiting a process called learning, therefore
the machine learning represents one of the most important branches of AI [20]. From
the above definition, it is even possible to state that it is not possible to realize a
perfect system which is able to deal with any type of problem. For this reason,
AI adopts different agents whose features are different according to the target they
aim. An agent is defined as a program (in computer science) or, in more general
terms, a system which is able to process some input data and give an output. In
mathematical terms, it is substantially a map function of the inputs to the outputs.
The agents live in a certain space which is called environment and it can sound its
state through sensors which give back some feedback. The agents can also interact
with the environment changing its current state through their actions or decisions.
As stated in [20], these agents are classified in different categories in function of
the type of intelligence. If they react in function of the input and also from a past
memory, they are called agents with memory, whereas if they only react to the
current input and do not possess any memory, they are called reflex agents. These
latter are usefully adopted in Markov decision processes which foresee to take an
optimal decision only based on the knowledge of the current state or conditions [20].
The learning agents are a different type of agent which can change the mapping of
the input to the output in function of new information given by a training phase
e.g. from known examples or exploiting the feedbacks given back from the sensors.
When intelligent behaviour is exhibited from some interactions of the entire group
of agents, they are called distributed agents. Therefore, adopting the AI language,
the PSO is composed of learning distributed agents with memory.

From the historical point of view, the bases of AI were set in the 1930s with Gödel
and Turing which founded logic and the theoretical computer science [20]. Someone
else set the born of AI in 1943, when McCulloch and Pitts formalized the first model
of neural network with two neurons, describing the simplified working mechanism
of a single neuron from the neuroscience in a mathematical formulation. The name
“Artificial Intelligence” was firstly adopted by McCarthy in 1956 [20]. As reported
in [43], in the early period, also the meta-heuristic algorithm were associated to
AI, because they also try to mimic the intelligent behaviour of species of animals
in the natural environment with the Darwinian scheme (EAs). Later, starting from
the 1960s, the two disciplines started to take different directions, however they still
remain in contact even nowadays. As a matter of fact, nowadays, AI and the meta-
heuristic techniques are sometimes considered two different fields whereas sometimes
AI is considered the general field which embeds also a branch called computational
intelligence which comprises EAs, Swarm intelligent algorithm and, in general, all
the meta-heuristic approaches. As a matter of fact, as reported in [62]

“the computational intelligence [...] is defined as a branch of artificial
intelligence dealing with the study of adaptive mechanisms to enable or
facilitate intelligent behavior in complex and changing environments.”

Nowadays, AI field is a multidisciplinary field and its scopes and methods can be
classified in different ways relating to the branch of Science these techniques ap-
plied and/or adapted. In more general terms, the part of AI which aims to develop

82

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

Artificial Intelligence

Soft ComputingHard Computing

Symbolic Logic
Reasoning

Traditional
Numerical

Modeling and
Search

Computational
intelligence

Probabilistic
Computing

Figure 4.1: Scheme of AI applied for problem-solving computing techniques (machine
intelligence), image inspired by [22].

Soft Computing

Fuzzy
Computing

Artificial Neural
Networks

Additional
techniques

Meta-heuristic
Computing

Swarm
Intelligence

Evolutionary
Computing

Other heuristic
search

Figure 4.2: Scopes of Soft Computing sub-field in order to locate the meta-heuristic
approaches in the vast field of AI; image inspired by [22].

intelligent algorithms for the problem-solving is called machine intelligence or sim-
ply AI. This vast branch consists of two different sub-fields. The first one is the so
called hard computing which is related to solve problems in a traditional way, there-
fore adopting analytical resolutions, mathematical programming techniques and se-
quential approaches to reach an exact solution [22]. These techniques are adopted
with precise analytical modelled problems and adopt exact resolution methods. The
second sub-field is the so called soft computing. According to [22], this term was
introduced for the first time by Zadeh in 1992 and it is defined as “the union of
computational intelligence paradigms and probabilistic computing” as stated in [62].

83

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

This implies that the computational intelligence is an embedded part of the more
vast field of soft computing techniques. In fact, as stated in [22], soft computing
is divided into the so called approximate reasoning and the randomize search ap-
proaches. In these techniques, the problems to solve can also take into account the
uncertainties, which are typical in civil engineering problems, and also of ambiguity
or noise input or even verbose problem statements which are dealt with the so-called
Fuzzy Logic techniques [64]. As presented in Figure 4.1, a summary scheme of the
machine intelligence scopes is presented and, in Figure 4.2, the main approaches
of soft computing are depicted. Thanks to these representations is now possible
to better locate the PSO algorithms inside the vast world of AI. A review of the
most adopted soft computing technique for modeling, simulation and optimization
problems in Civil Engineering for can be found in [22].

Due to the fact that all these fields are still under research, there is no concor-
dance in the scientific community about this classification and it isn’t the unique
possible, but it seems to be the best representative for the current state of the art.

One of the most current important fields in AI is the so called machine learning
which is defined as “the application and science of algorithms that make sense of
data” in [65]. This brief definition exposes the aim of the machine learning which is
to develop algorithms to analyze data in order to identify schemes or, in general, ex-
tract apparently hidden information through an automatic learning approach. The
obtained output model of the data is, in general, a predictive model which is used
to make future forecast and decisions e.g. with adding new input data. There are
two main types of problems in which machine learning is adopted: the first one is
the classification problems in which the data have to be labelled in different classes,
whereas the regression problem aims to define a predictive model to explain how
continuous data are correlated [65]. The data are organized in samples and, before
starting the algorithm, may be necessary to preprocess them in order to improve
the performance of the machine learning algorithm e.g. adopting a normalization
process and scaling of the data. In particular, a fundamental step in this phase is
to separate the data in a training set and in a test or validation set with usual split
proportion as 60:40 or 70:30 or even 80:20 on the entire available dataset [65]. In fact,
as affirmed in [64], almost all the numerical procedures can fail because of several or-
ders of magnitude of difference among the values of the design variables. This could
happen in structural optimization problems e.g. where the length of the elements is
at the order of some meters and the thickness of the steel section profiles is at the
order of few millimeters. This aspect can lead to biased and distorted evaluation
of objective function and numerical errors. One possible solution is to scale all the
design variables making them dimensionless so that all of them can vary between 0
and 1. The same problem could happen in the evaluation of the constraints which
need to be also normalized.
Afterwards, the initial phase of a machine learning algorithm is the training phase.
In particular, there are three main types of learning processes. The supervised learn-
ing requires both input and output data which have to be priorly known (priorly
labelled) to allow the training phase. In the unsupervised learning, the output data
are unknown, therefore the data are not priorly labelled but these techniques try to

84

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

Machine Learning

Supervised
Learning

Regression
Problems

Classification
Problems Cluster analisys Dimensionality

reduction

Unsupervised
Learning

Reinforcement
Learning

Logistic Regression
Linear Regression

Decision Tree
Decision Forests

Support Vector machine
K-nearest neighbours

Figure 4.3: Representation of the machine learning main approaches: supervised learning,
reinforcement learning and unsupervised learning.

find intrinsic structures inside the given dataset based on measurements of similari-
ties among them such as in the cluster analysis. The reinforcement learning is based
on the AI learning agents which has sensors which can acquire new information
during the learning phase through interactions with the environment. In that sense,
the reinforcement learning process can be considered a supervised learning process
because the output is known after the agents received the feedback (reward signal)
from the sensors [65]. After the learning phase and before performing the prediction
on new unseen input data, the test data set is adopted to evaluate the quality of
the predictive model e.g. through cross-validation techniques. This phase is funda-
mental because it allows to detect possible underfitting or overfitting problems. The
underfitting is substantially when the predictive model does not represent the real
structure of the data because of a lack of learning (it is said that the predictive model
has a high bias). On the contrary, the overfitting problem is when the predictions
perfectly fit with the test subset but it badly performs with new unseen data. In
that sense, in the overfitting, the predictive model has been too much adapted to
the initial data and it is not able to correctly label new unseen data. In that case,
it is said that the predictive model has a high variance because it excessively fit the
training data introducing unnecessary oscillations and errors in labelling new data.

As presented in Figure 4.3, the most adopted machine learning techniques are
the Neural Networks (NN), which insight nowadays identify a new sub-branch called
Deep Neural Networks (DNN), logistic regression, the Support Vector Machine, the
decision tree and the decision forest, the k-nearest neighbour (KNN), as supervised
learning methods, and the cluster analysis and dimensionality reduction, as unsu-
pervised methods. For further insight in the machine learning field, one can refer to
[3, 51, 65]

85

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

In the present Thesis, a novel non-penalty constraint handling approach tries to
combine the Support Vector Machine to create predictive model in order to han-
dle constraints in the search space of the optimization problem under study. In
the following section, a brief theoretical review of the Support Vector Machine is
presented.

86

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

4.2 Support Vector Machine: theoretical overview

x1

x2 Class label: +1

Class label: -1

M
argin

Optim
al Hyperplane

w

xi

M
argin

(a)

x1

x2 Class label: +1

Class label: -1

w

xi,-

xi,+

xi,+-xi,-

(b)

Figure 4.4: Support Vector Machine pragmatic graphical example in two dimensions
(x1, x2): on the left the optimal hyperplane is showed according to the rule of the maximum
margin; on the right it is graphically demonstrated how to obtain the measurement of the
distance between the two margins.

Support Vector Machine (SVM) is a supervised classification learning method
based on statistical learning theory [80]. During the learning process, the machine
“ learns from examples” [80] contained in a known training data set which could be
composed by both input and output data (supervised) or only input data (unsu-
pervised) [3]. The result of this process is a predictive model that could map the
output of other new input data. If the output is a variable from a finite set which
represents the class (or category or label) of the input data, the problem is defined
as a classification (or pattern recognition) problem [3, 51].

As depicted in Figure 4.4 (a), a two-class classification problem (even called
binary classification [3]) is now considered in which a training data set defined as
{(xi, yi)}Ni=1, where xi ∈ Rn are the N known data labelled by y ∈ {+1,−1}. In
order to classify new input data, it is necessary to define a decision boundary and
the data are defined as linearly separable [80] if exists a vector w (linear separator)
and a scalar b (bias) for which the decision rule takes the following form:

w · xi + b ≥ 1 if yi = 1,

w · xi + b ≤ −1 if yi = −1.

where the operator “ · ” denotes the inner product. For convenience, it is possible
to rewrite the two inequalities as

yi(w · xi + b) ≥ 1. (4.2.1)

The parameters w and b may define different possible hyperplanes1 which linearly
separate data. In SVM a unique optimal hyperplane is defined according to the

1As stated in [64], an hyperplane in n-dimensional space is defined as a set of points which

87

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

principle of the maximal margin [14] which is “the smallest distance between the
decision boundary and any of the samples" [3]. The optimal hyperplane is in the
following form

w0 · x+ b0 = 0. (4.2.2)

As depicted in Figure 4.4 (b), it is possible to give a graphical representation of the
method to obtain the widthW of the maximal margin. Considering that w is always
orthogonal to the margins and these latter have always to pass through the extreme
points which are the closest points belonging to the two different classes denoted as
x+,x−, it is possible to write

W = (x+ − x−) · w
‖w‖

, (4.2.3)

where ‖w‖ is the norm of the vector w. Recalling the (4.2.1), it becomes an equality
for those points which belong to the margin. For the positive labelled sample x+

which label is y+ = +1, it is possible to write that

(w · x+ + b) = 1, ⇒ w · x+ = 1− b, (4.2.4)

whilst for the negative labelled sample x− which label is y− = −1, it is possible to
write that

− (w · x− + b) = 1, ⇒ −w · x− = 1 + b. (4.2.5)

Therefore, considering the (4.2.3) and substituting the terms obtained in (4.2.4) and
(4.2.5), the term b is simplified and the resulting width is equal to

W =
2

‖w‖
(4.2.6)

According to the maximal margin principle, it is possible to demonstrate which to
maximize the margin correspond to max 1/‖w‖ (neglecting the constant 2) which,
for mathematical convenience, is equivalent to the following quadratic programming
problem (quadratic OF subjected to linear constraints) [3, 14]: For all {(xi, yi)}Ni=1,
find w and b such that

min
1

2
‖w‖2,

s.t. yi(w · xi + b) ≥ 1.
(4.2.7)

Using the Lagrange multiplier rule, it is possible to solve the quadratic optimization
problem defining the Lagrangian such as

L =
1

2
‖w‖2 −

N∑
i=1

αi [yi(w · x+ b)− 1] , (4.2.8)

coordinates respect the following linear condition a1x1 + ... + anxn = aTx = b. An hyperplane
in n-dimensional space has n− 1 dimensions. As a matter of fact, in three-dimensional space it is
a plane, whilst in a bi-dimensional space it is a line. The hyperplane separates the space in two
closed half-space which can be respectively defined as those set of points for which aTx ≥ b and
aTx ≤ b [64].

88

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

where αi are the not negative Lagrange multipliers. Imposing the stationariness of
the (4.2.8) respect to w and b one obtains

∂L

∂w
= 0 ⇒ w0 =

N∑
i=1

αiyixi, (4.2.9)

∂L

∂b
= 0 ⇒

N∑
i=1

αiyi = 0, (4.2.10)

where (4.2.9) is called decision vector. According to [14] it is worth noting that
“the optimal hyperplane solution can be written as a linear combination of training
vectors". Substituting the (4.2.9) in the (4.2.8) and taking into account the (4.2.10),
one finally obtains the following dual problem: Find αi such that

max L =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj

s.t.
N∑
i=1

αiyi = 0,

αiyi ≥ 0, ∀i = 1, ..., N.

(4.2.11)

It is important noting that, in the (4.2.11), the optimal hyperplane depends only
on inner product of pairs of samples [80]. The optimal solution must satisfy the
Karush-Kuhn-Tucker (KKT) conditions which state that “any Lagrange multiplier
and its corresponding constraint are connected by an equality” [14]

αi [yi(xi ·w0 + b0)− 1] = 0, i = 1, ..., N. (4.2.12)

Since the (4.2.12) holds, it implies that the Lagrange multipliers αi are different
from zero only for a small amount of vectors x(SV) which belong to the margin.
These particular vectors, for which the (4.2.1) become an equality

yi(xi ·w0 + b)− 1 = 0, (4.2.13)

are called support vectors [3, 14]. The sum in the (4.2.9) is therefore restricted to
the smaller set which considers only the support vectors [38]

w0 =
∑
i∈SV

αiyixi. (4.2.14)

This is the main property of SVM called sparseness which identifies the SVM also
as a Kernel Sparse Method in [15]. During the classification process “once the model
is trained, a significant proportion of the data points can be discarded and only the
support vectors retained ” [3]. The result of the prediction not change if one considers
either all the training data set or only the support vectors as the training data set
[15].

89

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

x1

x2 Class label: +1

Class label: -1

ξi=0

ξi<1
ξi>1

Figure 4.5: Support Vector Machine: soft margin concept and slack variables ξi graphical
representation in a bi-dimensional problem with non-separable data.

Non-separable training data are defined as those data which can not be linearly
divided without committing a certain error [14]. One can refer to the situation
depicted in Figure 4.5. According to [38], in order to define the optimal hyperplane
called, in this case, soft margin hyperplane, the slack variables ξi ≥ 0 are introduced,
one for each datum point. These slack variables measure the classification error in
terms of distance from the margin as depicted in 4.5. A slack variable is zero if the
point lie inside the correct margin boundary, otherwise it takes value in the interval
(0, 1] if the point is inside the margin and finally its value would be greater than
one if it lies on the wrong side [3, 51]. Afterwards, similar passages than the above
mentioned for the linear separable data are followed. The main idea of this method
is to minimize the sum of the deviations

∑N
i ξi, besides to maximize the width of the

margin. Therefore, it is possible reconducts these two aims to minimize the following
functional [3]

C
N∑
i=1

ξi +
1

2
‖w‖2, (4.2.15)

in which the parameter C > 0 a penalty parameter. The statement of the mini-
mization problem becomes the following: For all {(xi, yi)}Ni=1, find w and b such
that

min C

N∑
i=1

ξi +
1

2
‖w‖2,

s.t. yi(w · xi + b) ≥ 1− ξi,
ξi ≥ 0.

(4.2.16)

Applying the same procedure as before with the Lagrange multiplier method, in the
end, one can obtain the dual formulation which is similar to linear separable case

90

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

given by the (4.2.11). The Lagrangian function of the problem (4.2.16) become [15]

L(w, b, ξ,α,µ) =
‖w‖2

2
+ C

N∑
i=1

ξi −
N∑
i=1

αi [yi(w · xi + b)− 1 + ξi]−
N∑
i=1

µiξi,

(4.2.17)
where the αi, µi ≥ 0 are the Lagrange multipliers [3]. Imposing the stationariness of
the Lagrangian it is possible to obtain

∂L

∂w
= w −

N∑
i=1

yiαixi = 0, (4.2.18)

∂L

∂ξi
= C − αi − µi = 0, (4.2.19)

∂L

∂b
=

N∑
i=1

yiαi. (4.2.20)

Substituting the above equations obtained by the stationariness inside the starting
Lagrangian function (4.2.17), the dual OF is given by

L =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj (4.2.21)

which is identical to the linear separable case [15]. The main difference is the presence
of a new constraint C − αi − µi = 0, which implies that αi ≤ C since µi ≥ 0 due
to the Lagrange multipliers method. According to [3], if αi < C the (4.2.19) implies
that µi > 0, but remembering the KKT condition which state µiξi = 0, it require
that ξi = 0. On the contrary, if µi = 0 it implies that ξi 6= 0 and therefore αi = C
[15]. The remaining KKT complementary conditions [15] are

αi [yi(w · xi + b)− 1 + ξi] = 0,

ξi(αi − C) = 0,
(4.2.22)

which implies that ξi are different from zero only if αi = C to respect the conditions,
which are those points which lie inside the margin and can be correctly labelled if
ξi ≤ 1 or misclassified if ξi > 1 [3]. The statement of the dual problem becomes:
Find αi such that

max L =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj (xi · xj)

s.t.
N∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, ∀i = 1, ..., N

(4.2.23)

The main difference respect to the linear separable case is in the constraint on the
non-negativity of the Lagrange multipliers of the dual problem,

0 ≤ αi ≤ C,

91

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

which set an upper limit of the value of the Lagrange multipliers. This aspect is also
known as box constraint, as stated in [3].

The C > 0 is a penalty parameter (or regularization parameter) which controls
the trade-off between the slack variable penalty (tolerance on training errors) and the
margin and complexity of the model [3, 51, 38]. As stated in [15], the value of C limit
the influence of the outliers because without it the Lagrange multipliers would have
a very large value. In [51] it is suggested to choose C = 1

νN
where 0 < ν ≤ 1 directly

take into account the number of allowable misclassified point (ν-SVM classifier). If
the value of C is set to infinity (C =∞), the soft margin come back to the original
version treated in the linear separable data case without any box constraint and, to
distinguish it from the soft margin case, it is called hard margin [15].
It is worth noting that, after solved the dual problem, the optimal w0 and b0 are
known, and the classification of new input data x can be performed only studying
the sign function of the (4.2.2) which directly give the labels y(x):

y(x) = sign [w0 · x+ b0] = sign

[∑
i∈SV

αiyixi · x+ b0

]
. (4.2.24)

When the training data are separable but not in linear way in the input space,
this is the case of non-linearly separable data. The idea is to map the input data to
another space (feature space) usually with higher dimension [15] where the data are
linearly separable. For greater clarity about the mapping concept, one can refer to
the Figures 4.6 and 4.7. In these Figures are presented two examples where the data
are separable in somehow but not in a linear way. Therefore, through a mapping
function, the data are projected in a higher dimensional space in order to obtain
a new dataset which is now linearly separable in that new space. After performing
the SVM, the optimal hyperplane position is known but it lies in the new space. In
order to find the non-linear separator in the original space, the points which belong
to the optimal hyperplane have to be remapped with the inverse of the mapping
function.

In the non-linear SVM, the transformation is performed by a Kernel Function
which is a real-valued function of two arguments K(xi,xj) ∈ R for xi,xj ∈ Rn

typically symmetric (K(xi,xj) = K(xj,xi)) and non negative (K(xi,xj) ≥ 0) [51].
The use of this type of function directly descends from the property which in SVM
the classification depends only on the inner product of the training data, as a matter
of fact, the Kernel function represents the inner product in the feature space [3]. This
operation is also called Kernel Trick to the point of view of the algorithm [51]:

“Rather than defining our feature vector in terms of kernels,
φ(x) = [K(x, x1), ..., K(x, xN)], we can instead work with the original fea-
ture vectors x, but modify the algorithm so that it replaces all inner prod-
ucts of the form x · x′ with a call to the kernel function, K(x, x′). This
is called the kernel trick. [...] Note that we require that the kernel be a
Mercer kernel for this trick to work".

Before the classification, one has to perform a non linear transformation x → φ(x)
from the input space to the feature space and then in the feature space one have to

92

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

x1

x1
2

x1

ϕ(x)=x1
2

ϕ-1(x)ϕ-1(x)

1D

2D

Figure 4.6: Example of mapping the data from a unidimensional space to a bi-dimensional
space to transform the original non linearly separable dataset in a linearly separable
dataset. The original data are mapped to a bi-dimensional space through an explicit map-
ping function φ(x) = x2

1. In this new higher dimensional space, the data are now linearly
separable and it is possible to apply the SVM to find the margins and the optimal hyper-
plane position (red solid lines). The intersections between the hyperplane and the mapping
function (dashed line) are remapped through φ−1(x) in order to find the position of the
separator between the two classes in the original unidimensional space.

search the optimal hyperplane with maximal margin principle:

f(x) = φ(xj) ·w + b. (4.2.25)

Generalizing equation (4.2.9), it is possible to write

w =
N∑
i=1

yiαiφ(xi), (4.2.26)

then it is possible to rewrite the (4.2.25) as

f(x) =
N∑
i=1

yiαiφ(xi) · φ(xj) + b. (4.2.27)

Considering the general forms of the inner product in a Hilbert space [14]

K(xi,xj) = φ(xi) · φ(xj), (4.2.28)

93

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

ϕ(x)

x1

x2
ϕ-1(x)

Figure 4.7: Example of mapping the data from a bi-dimensional space to a three-
dimensional space in order to transform the original non linearly separable dataset in
a linearly separable dataset. The original data are mapped to a three-dimensional space
through an explicit mapping function. φ(x). In this new higher dimensional space, the data
are now linearly separable and it is possible to apply the SVM to find the margins and the
optimal hyperplane position (green plane on the right). The points which belong to the
optimal hyperplane are remapped in the original bi-dimensional space through φ−1(x), in
order to find the non-linear separation boundary between the two classes in the original
bi-dimensional space. Image taken by [65].

it is possible to write the decision function as the following sign function [38]

f(x) = sign

(
N∑
i=1

yiαiK(xi,xj) + b

)
. (4.2.29)

In conclusion, since the SVM is based on inner product in feature space, one can
avoid explicitly writing the transformation φ(x) of training data into the feature
space, but one can operate directly defining a properly kernel function, as stated in
[3]. This approach is called in [15] as implicit mapping or implicit embedding. In
order to work with the kernel trick, in [51] is underlined the importance to choose a
valid kernel i.e. it correctly represents the inner product in the feature space, hence
it must be a Mercer kernel. According to [38], typical widely spread kernel functions
are polynomial kernels

K(xi,xj) = [(xi · xj) + 1]d (4.2.30)

with d ∈ N, Gaussian kernel [3, 15]

K(xi,xj) = exp(−‖xi − xj‖2/2σ2) (4.2.31)

where σ2 is called bandwidth. This latter kernel type is the isotropic form of radial
basis kernel, RBF [51]. Multilayer perceptron kernels (MLP) or sigmoid kernels

K(xi,xj) = tanh(γ(xi · xj) + r) (4.2.32)

with γ, r ∈ R are also examples of kernel and their name is due to the fact that the
same function is typically used in Neural Networks.

94

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

x1

x2

xi

xj

(a)
x1

x
2

xi

xj

(b)

x
2

x1

xi

xj

(c)

Figure 4.8: Inner product as a measure of similarity: the two vectors tend to maximize
the margin in the left picture; in the center one, the two vectors are redundant for the
SVM and do not add other information; on the right, the two orthogonal vectors do not
count at all because their inner product is zero.

The SVM can also be adapted for multi-class classification problem e.g. adopting
the approach “one-versus-the-rest”. If the number of classes is K > 2, this method
consists in training K SVMs posing the i-th class under study as the positive class
and all the other as the negative class, with i = 1, 2, ..., K. This method has some
drawbacks therefore other techniques were developed to tackling this problem.

The SVM can also be adapted for regression problems minimizing a certain error
function. For further readings about multi-class SVM and regression SVM, one can
refer to [3, 51].

Before concluding the present section, it is worth noting that the inner product
has a crucial importance in SVM. The inner product typically measure the similarity
among the data as affirmed in [83]. In Figure 4.8, a graphical representation of the
inner product as a measure of similarity in the bi-dimensional space is presented. If
the two vectors belong to two different classes they tend to maximize the margin as
demonstrated in (4.2.3), if the two vectors belong to the same class are redundant for
the SVM and if the two vectors are orthogonal they do not count at all. Furthermore,
also the kernel trick is based on a certain type of functions which try to generalize
the concept of similarity of pairs of data from the input space to the feature space
in which the kernel represents the inner product [3].

95

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

4.3 A new machine learning-based approach to han-
dle constraints: PSO-SVM

In the proposed approach the aim is to integrate the classical PSO algorithm with
SVM classification algorithm in order to separate feasible positions from the unfea-
sible ones. The main idea is to reduce the search space as also stated in [41].

Starting from the initial random population sampled with the LHS technique,
it is possible to label feasible initial positions and the unfeasible ones with respect
to the constraints evaluations. In general, through the SVM, a hyperplane which
linearly divides data is constructed in any higher-dimensional space (feature space)
and it is possible to reconstruct a non-linear boundary in the starting design space.
Indeed, this is a way to reduce the search space because, after the learning phase,
the trained SVM model can predict if new unseen points are in the feasible design
region or in the unfeasible one. In order to get an accurate boundary of the feasible
region even from the beginning, it would be necessary to sample a very huge swarm
size. However, considering the PSO mechanisms, at every generation, the swarm
moves in a new different configuration, leading to new available positions. Therefore,
labelling these new positions, it is possible to increase the knowledge database and
train a new improved SVM model. Therefore, during the evolutionary stage of PSO,
a new boundary is calculated at each generation considering all the visited labelled
positions until the current iteration. This incremental approach has been adopted
in the new proposed PSO-SVM and it has been implemented in Matlab R© code. As
above mentioned, in the various PSO framework, constraint handling techniques do
not work very well with equality constraints but they are more suitable for inequality
constraint only. Therefore, the problem has to be expressed in the form of (2.1.2)
without equality constraints. For a maximization problem with objective function
f(x), it is sufficient consider −f(x) to transform it into a minimization problem.

In Figure 4.9 the flowchart of the proposed algorithm is shown. At first, the
initialization phase of the swarm adopts the LHS technique to generate the initial
population with a minimum correlation between samples (see also Monti et al. [49]).
After that, this initial swam is labelled into the design space considering all the
inequality constraints. Since these latter are defined as gq ≤ 0, if at least one of
them is greater than zero the entire i-th n-tuple (which is a single individual, a
candidate solution) is labelled as unfeasible (yi = −1) otherwise it is labeled as
feasible (yi = +1). Unfortunately, sometimes, the SVM really struggles to work
properly, e.g. with a very narrow search space. In fact, the preservation of the feasible
points only, into a wide unfeasible space, leads to instabilities such as overfitting or
underfitting problems of the SVM. To improve the performance of the algorithm,
a relax constraint function ψi(k) is defined, wherein the subscript i refers to i-th
constraint whereas the k refers to the current generation. This approach leads to
enlarging the real feasible space to a fictitious wider one using a relaxation of the
constraints. This means that the real constraints are “moved" from their actual
position to a fictitious one through a proper choice of ψi(k) which is not trivial to
generalize. This procedure acts as substituting the original inequality constraints
with the following relaxed constraints:

96

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

Label individuals
 from constraints

Population Randomic
Generation

yi=1 if ∀gq (xi)� 0
yi= -1 otherwise

SVM �rst train model
and de�ne boundary

of Feasible region

Resampling
Unfeasible data

Swarm initialization
(Velocities, Inertia,

etc.)

Swarm Evolution
 (For cycle)

Update Inertia,
Velocities, etc.

Max Velocities
Correction

Max Position
Correction

Update SVM
Boundary

Resampling
Unfeasible data

No

Yes

Max Iteration?

End

Start

Update pbest
and gbest

Figure 4.9: General Flowchart of the proposed PSO-SVM algorithm.

97

Marco Martino Rosso Chapter 4. The proposed PSO-SVM techniqueMax PositionCorrection STARTCheck Lower and Upper Bound of each variable k+1xtmp = kx + k+1vIf k+1xtmp,i > xi,max k+1xtmp,i = xi,max k+1vi = k+1xtmp,i - kxIf k+1xtmp,i < xi,min k+1xtmp,i = xi,min k+1vi = k+1xtmp,i - kxyi=+1yi= -1Predict Label from SVMp=2 ; vtmp=v/pk+1xtmp = kx + k+1vtmp Assign new positionk+1x = k+1xtmpyi= -1Predict Label from SVMp = p·2yesNo vtmp ≃ 0 ?Leave the old positionk+1x = k+1x Max PositionCorrection ENDk+1v = 0yi=+1 k+1v = 0Bisection Algorithm
Figure 4.10: Flowchart of the “Max Position Correction” block. The bisection algorithm
part is underlined by the dashed line.

98

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

gi,k(x) ≤ ψi(k) =⇒ gi,k(x)− ψi(k) ≤ 0. (4.3.1)

The ψi(k) factor is tuned on the standard deviation σu,k of the amount of all unfea-
sible points detected in all generations until the current one. This approach allows a
better exploration in the first generations and then it could be forced to zero imple-
menting a decreasing function which directly depends on the current generation k
and the number of maximum generations kmax. Defining a further reduction factor
λ of the standard deviation directly chosen by the user, the following relaxation
functions are implemented:

• Constant Relax:

ψi(k) = λσu,k;

• Piecewise Constant Relax:

ψi(k) =

{
λσu,k, if k ≤ kmax/2

0, otherwise;

• Linear decreasing Relax:

ψi(k) = λσu,k −
λσu,k
kmax

k;

• Piecewise Linear decreasing Relax:

ψi(k) =

{
λσu,k − 2λσu,k

kmax
k, if k ≤ kmax/2

0, otherwise;

• Parabolic decreasing Relax:

ψi(k) = λσu,k −
λσu,k
k2
max

k2;

• Piecewise Parabolic decreasing Relax:

ψi(k) =

{
λσu,k − 4λσu,k

k2
max

k2, if k ≤ kmax/2

0, otherwise;

The reduction factor λ have to be chosen by the user in order to get the best
trade-off between performances, exploration vs exploitation, computational speed. In
Matlab R© the training phase of the SVMmodel is performed by the function fitcsvm.
The user has to define two important parameters which can affect the SVM model.
The first is the type of kernel function to use (we especially adopt the rbf Gaussian
kernel function). The second parameter is the box-constraint which takes value from
1 to inf which affects the softness of the maximal margin. In fact, fitcsvm naturally
implements the soft margin with the C = 1. If we set C =inf then we are using
a hard maximal margin but this can lead to numerical instabilities if the data are

99

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

not perfectly separable. In any case, using a proper hard margin create a higher
computational effort and it very slows down the algorithm. The proposed algorithm
implements SVM with soft margin with regularization parameter C = 100. Indeed,
respect to a hard margin, to speed up the algorithm it is numerically convenient
to adopt a high box-constraint value, e.g. between 100 and 1000, allowing a certain
misclassification rate but assuring all the possible solutions lie in the feasible space
boundary respecting the constraints with a certain engineering tolerance.

After the training phase, the unfeasible points of the initial population have to
be re-sampled in the feasible region. The Matlab function predict allows to get the
label of new entry data in the design space based on the trained SVM model. So,
the unfeasible points are randomly sampled with LHS technique in the entire design
space and they are discarded and sampled again until their label becomes yi = +1.

At this point, the initial velocity of the particles is randomly sampled always
using LHS and then the evolutionary phase of the algorithm can begin. The velocity
for the next generation is calculated as in equation (3.1.1) but it is necessary to
check if it respect the allowable maximum velocity as in (3.1.5) (“Max Velocities
Correction” block in Figure 4.9). The next block “Max Position Correction” is a fun-
damental step because it is the assessment of the feasibility of the position given by
(3.1.2) and, for greater clarity, this block is expanded in Figure 4.10. The temporary
positions are computed with equation (3.1.2). Then, considering the side constraints,
a first possible correction of the temporary positions can be performed in order to
maintain the particles inside or at least on the edges of the hyper-rectangle design
space Ω. If the temporary position label is yi = +1, the new temporary position
lies in the feasible region and, therefore, it is accepted and stored. Otherwise, if
the label is negative, a simple bisection approach is performed. The velocity vector
which leads to the temporary position is firstly halved by a factor p = 2 obtain-
ing a new temporary position. If the label of this new temporary position becomes
positive, this new position is accepted for the next generation. Otherwise, if it is
still negative, the algorithm will increment p doubling it, getting a new temporary
velocity vector which leads to a new temporary position to label and so on. When
all the elements of the temporary velocity vector tend to zero, it is possible to leave
the original position for the next generation without moving that particle. In this
way, the particle can move only if the destination position is into the feasible region,
otherwise it does not move anywhere during the current generation.

At the end of each evolutionary stage, new positions are available to increase
the knowledge database to train a new better SVM model and update the feasible
region boundary. As before, it is necessary to label the new points from the con-
straint expressions and start the new training phase.After that, a new boundary is
defined but some of the points which were inside the previous boundary now may
lie outside of the new region. In this case, it is necessary to re-sample these points
as before using LHS until their labels become positive. Despite this latter naive ap-
proach may slow the algorithm, it is beneficial for the diversity of the population,
allowing new starting search positions. The update of the gbest is performed only on
the real feasible points respect to the original constraints and not the relaxed ones.
This procedure ensures the algorithm performs good results also using a constant
relax constraint function during the generations. In fact, at each generation, it will

100

Marco Martino Rosso Chapter 4. The proposed PSO-SVM technique

update the global optimum point (gbest) looking to the minimum objective function
value only of those points which lie into the real feasible region. A further strategy
to improve the behaviour of the PSO is reducing the maximum possible velocity
range of the particles, governed by γ, updating this latter during the generations.
In the proposed algorithm it is set γ/2 starting from kmax/3 then it is set to a min-
imum value e.g. γ = 0.1 in the last generations from 2kmax/3 to kmax, where kmax
represents the max allowable generations. The stopping criterion of the algorithm
is the achievement of a maximum number of iterations. It is possible which there
exist an entire front of optimal solutions so one has always to check the convergent
history of best solutions during the post-processing phase.

In the next chapter, the proposed approach is firstly tested on some numerical
mathematical literature problems which statements are reported in the Appendix.
After that, two structural optimization problems are developed. To make some com-
parison of the results, in these last examples the objective function value is compared
with the genetic algorithm of Matlab R© and the PSO with penalty approach provided
from the code proposed by [42].

101

Chapter 5

Case Studies

In order to verify the convergence of the new code in terms of objective function, in
the present chapter, the proposed PSO-SVM algorithm is adopted in two numerical
literature benchmark examples and it is compared with a PSO with penalty func-
tion code and with a genetic algorithm (GA) code. In the end part of the present
chapter, the proposed PSO-SVM is adopted into the structural optimization field
analyzing two different examples. The first one is concerning the size optimization
of a simply supported beam with constant rectangular cross section subjected to a
constant load condition. Despite its theoretical simplicity, this problem was selected
because, reducing the design variables to only two, it is possible to give a graphical
representation of the problem in the design space. As a matter of fact, the graphical
obtained results highlight the generality of the SVM to handle piecewise non-linear
constraints with a good approximation in the neighbourhood of the optimal point
and a roughly approximation elsewhere. The second example is regarding shape and
size optimization of a warren truss plane beam which can be used in the design
of a steel truss arc bridge. The PSO-SVM optimal results are compared in terms
of total weight with the result obtained in [23] where differential evolutionary al-
gorithm (DEA) is adopted. The exact solution needs to be industrialized choosing
a real existing profile dimensions both with a simple rounding-off of the optimal
solution and with a more refined post-processing approach. Making a comparison
between these latter industrial solutions the total weight of the structure does not
change significantly and a simple rounding-off approach can be easily adopted by
the designer without jeopardizing the entire optimization process.

5.1 Numerical Benchmarks Problems

5.1.1 Numerical Example 1: Sickle Problem [54]

The first numerical example (from literature [54]) is the benchmark test 1 stated
in the Appendix also known as Sickle function. Since this optimization problem
has two design variables, it can be depicted in a graphical representation in the
bi-dimensional design space of the search process performed by PSO-SVM algo-
rithm. In Figure 5.1 (a), the objective function and the constraints are graphically
represented as a 3D graph and it is possible to notice that the objective function

102

Marco Martino Rosso Chapter 5. Case Studies

(a)

0 2 4 6 8 10
14

14.5

15

15.5
Generation 1

-6
0
0
0

-3
0
0
0

OF

g
1

g
2

Unfeasible Pt

Feasible Pt

Boundary

SV

(b)

Figure 5.1: Example 1 (Sickle Problem [54]), case No relax constraints function;
(a) Three-dimensional graph of Sickle problem design space; (b) Generation 1.

103

Marco Martino Rosso Chapter 5. Case Studies

0 2 4 6 8 10
14

14.5

15

15.5
Generation 2

-6000

-3000

O.F.
g1
g2
Boundary
Swarm Pos.
Gbest

(a)

0 2 4 6 8 10
14

14.5

15

15.5
Generation 50

-6
0
0
0

-3
0
0
0

O.F.

g
1

g
2

Boundary

Swarm Pos.

Gbest

(b)

Figure 5.2: Example 1 (Sickle Problem [54]), case No relax constraints function;
(a) Generation 2; (b) Generation 50.

104

Marco Martino Rosso Chapter 5. Case Studies

0 2 4 6 8 10
14

14.5

15

15.5
Generation 100

-6
0
0
0

-3
0
0
0

O.F.

g
1

g
2

Boundary

Swarm Pos.

Gbest

(a)

0 20 40 60 80 100

Iteration

-6500

-6000

-5500

-5000

-4500

-4000

-3500

-3000

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

(b)

Figure 5.3: Example 1 (Sickle Problem [54]), case No relax constraints function;
(a) Generation 100; (b) Objective function history.

105

Marco Martino Rosso Chapter 5. Case Studies

0 2 4 6 8 10
14

14.5

15

15.5
Generation 1

-6
0
0
0

-3
0
0
0

OF

g
1

g
2

Unfeasible Pt

Feasible Pt

Boundary

SV

(a)

0 2 4 6 8 10
14

14.5

15

15.5
Generation 2

-6000

-3000

O.F.
g1
g2
Boundary
Swarm Pos.
Gbest

(b)

Figure 5.4: Example 1 (Sickle Problem [54]), case constant relax constraints function;
(a) Generation 1; (b) Generation 2.

106

Marco Martino Rosso Chapter 5. Case Studies

0 2 4 6 8 10
14

14.5

15

15.5
Generation 50

-6
0
0
0

-3
0
0
0

O.F.

g
1

g
2

Boundary

Swarm Pos.

Gbest

(a)

0 2 4 6 8 10
14

14.5

15

15.5
Generation 100

-6
0
0
0

-3
0
0
0

O.F.

g
1

g
2

Boundary

Swarm Pos.

Gbest

(b)

Figure 5.5: Example 1 (Sickle Problem [54]), case constant relax constraints function;
(a) Generation 50; (b) Generation 100.

107

Marco Martino Rosso Chapter 5. Case Studies

0 20 40 60 80 100

Iteration

-7000

-6500

-6000

-5500

-5000
O

b
je

c
ti
v
e

 f
u

n
c
ti
o

n

Figure 5.6: Example 1 (Sickle Problem [54]), case constant relax constraints function,
objective function history.

is substantially planar in the search space. The projection on the design variables
plane of the feasible region is really narrow because it is formed by the space between
the two constraints parabolas. For this problem, a population size of 50 individuals
is set and in Figure 5.1 (b) the first random generation is shown and the support
vectors are emphasized. After that, the unfeasible points are re-sampled until all the
population falls inside the SVM-based boundary. At each generation, new points are
added to the SVM training data and the boundary is improved. Since the search
space is really narrow, running the algorithm with no relax constraint function it
results in poor performance in defining the SVM boundary (black solid line) with
respect to the actual one (dashed lines) as shown in Figures 5.2 and 5.3. It is pos-
sible to improve the performance in terms of objective function decreasing history
using the relax of constraints, as e.g. constant relax function shown in Figures 5.4-
5.5-5.6. In this latter example, the reduction factor of standard deviation of the
unfeasible point is chosen as λ = 0.5. The PSO-SVM performances using constant
relax function is compared with other algorithms in Table 5.1. The comparison is
done in terms of objective function value to the optimal solution after 50 runs with
kmax = 100 each run and collecting mean value µ, standard deviations σ, best OF
and worst OF. As one can check, the convergence of the new proposed method is
satisfied as the objective function value is getting close to the global optimum with
a little standard deviation as the other existing methods.

108

Marco Martino Rosso Chapter 5. Case Studies

Table 5.1: Numerical Example 1 (Sickle Problem [54]), comparison PSO-SVM, GA and
PSO-penalty.

PSO-SVM PSO-Penalty GA
µx1 0.8433 0.8721 0.8502
σx1 0.0004 1.121e-15 0.0172
µx2 14.0952 14.1091 14.0986
σx2 0.0002 8.972e-15 0.0087
µOF -6.9614e+03 -6.9291e+03 -6.9537e+03
σOF 0.4609 4.59e-12 19.2968
Best OF -6.9595e+03 -6.93e+03 -6.9618e+03
Worst OF -6.96e+03 -6.93e+03 -6.8547e+03

5.1.2 Numerical Example 2: five design variables optimiza-
tion problem

The second numerical example statement reported in the Appendix is a literature
benchmark test optimization problem with five design variables and six constraints.
In this example, a comparison between different histories of the objective function
using different relax constraint functions is performed. As shown in Figure 5.7, all
the examples give a good result and tend to converge to the exact solution with a
different decreasing rate. In general, one can notice that in piecewise functions, the
algorithm generally boosts the exploration instead of the exploitation that is usually
performed in the second half with a zero relax coefficient. This feature is important
because can affect the performance of the proposed algorithm with different kind
of problems and the user need to try different relax functions in order to find the
most suitable for this kind of problem. In Tables 5.2 and 5.3, a comparison with
the GA and the PSO-Penalty is performed in terms of objective function value
and optimal design points running the codes 50 times with kmax = 100 each run

Table 5.2: Numerical Example 2, comparison among PSO-SVM with different relax con-
straint fuctions (check the Appendix and [67]).

Comparison among Constraint Relax Functions in PSO-SVM

Design
Var. No relax Const.

relax
Piecewise

const. Lin. relax Piecewise
lin.

Parabolic
relax

Piecewise
Par.

µx1
78.0004 78.0086 78.0026 78.0009 78.0006 78.0027 78.0077

σx1
0.0013 0.0243 0.0120 0.0038 0.0041 0.0100 0.0526

µx2
33.0062 33.0040 33.0056 33.0104 33.0107 33.0740 33.0052

σx2
0.0158 0.0183 0.0143 0.0438 0.0322 0.2274 0.0158

µx3
30.0027 29.9985 30.0037 30.0009 30.0038 30.0366 30.0027

σx3
0.0101 0.0105 0.0125 0.0235 0.0178 0.1217 0.0160

µx4
44.6569 44.2360 44.3643 44.9858 44.8002 44.0814 44.6662

σx4
1.5986 2.9630 2.0027 0.0617 1.0734 3.2862 1.3233

µx5 36.8981 37.0755 37.0136 36.7671 36.8360 37.0446 36.8931
σx5

0.6444 1.1956 0.8036 0.0652 0.4310 1.3843 0.5324

µOF -3.0655e+04 -3.0644e+04 -3.0647e+04 -3.0664e+04 -3.0659e+04 -3.0634e+04 -3.0655e+04
σOF 43.0187 78.9205 53.7773 3.9918 28.9931 87.9967 36.2059

Best OF -3.0666e+04 -3.0666e+04 -3.0666e+04 -3.0666e+04 -3.0666e+04 -3.0666e+04 -3.0666e+04

Worst OF -3.0375e+04 -3.0185e+04 -3.0449e+04 -3.0643e+04 -3.0468e+04 -3.0186e+04 -3.0452e+04

109

Marco Martino Rosso Chapter 5. Case Studies

Table 5.3: Numerical Example 2, results from PSO-SVM without relax constraints, PSO-
Penalty and GA (check the Appendix and [67]).

PSO-SVM PSO-Penalty GA
µx1 78.0004 78 78.0004
σx1 0.0013 0 0.0024
µx2 33.0062 33 34.2398
σx2 0.0158 0 0.7052
µx3 30.0027 29.9967 30.801
σx3 0.0101 2.15e-14 0.378
µx4 44.6569 45 45
σx4 1.5986 0 0
µx5 36.8981 36.7736 34.8023
σx5 0.6444 0.00e+00 0.9057
µOF -3.0655e+04 -3.0665e+04 -3.0531e+04
σOF 43.0187 1.47E-11 65.8031
Best OF -3.0666e+04 -3.0665e+04 -3.0660e+04
Worst OF -3.0375e+04 -3.0665e+04 -3.0378e+04

and collecting mean value µ, standard deviation σ, worst and best. Also with this
more complex optimization problem, the convergence of the new proposed method
is satisfied getting an objective function value close to the global optimum with a
little standard deviation as the other existing methods.

0 10 20 30 40 50 60 70 80 90 100

Iteration

-3.08

-3.06

-3.04

-3.02

-3

-2.98

-2.96

-2.94

-2.92

-2.9

-2.88

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

104 PSO-SVM comparison relax constraint functions

No relax

Const relax

Piecewise const relax

Linear decreasing relax

Piecewise linear decreasing relax

Parabolic decreasing relax

Piecewise parabolic decreasing relax

Figure 5.7: Numerical Example 2: Objective value history comparison among different
relax constraint functions for a single run.

110

Marco Martino Rosso Chapter 5. Case Studies

5.2 Structural optimization Problems

5.2.1 Structural Example 1: simply supported beam

In Figure 5.8 it is considered an ideal simply supported beam of length L with a
constant cross section A = b · h loaded with a distributed constant load q which is
supposed to be much grater than the self weight for the sake of simplicity. The aim
is to minimize the weight of this structure respecting the tensional constraints and
maximum deflection constraint due to only the q load. The self weight is proportional
to the volume V of the material as stated by [76]. The objective function is f(d) =
ρV = ρAL, where d is the design vector and ρ is the material density which is
supposed to be constant. In this case, only stress constraints on normal stress σ,
tangential stress τ and on the maximum deflection v(z) are considered. This is a
typical sizing optimization problem. The design vector dT = {d1, d2} contains the
design variables which are changed during the optimization process, i.e. in this case
d1 = b, d2 = h. Since the cross section must be greater than zero as well as the
cross sectional dimensions, it implies the presence of a new constraint to satisfy.
Performing an elastic analysis, the maximum allowable stress is the yielding stress
σy and it is possible to use the Navier Formula and the Jourawsky Formula for the
normal and tangential stress respectively. The maximum moment

MEd(z =
L

2
) =

qL2

8

is in the middle span and the maximum shear force

VEd =
qL

2

is in correspondence of the supports z = 0, z = L. Recalling the elastic resistance
modulus for a rectangular section

Wel =
bh2

6
=
d1d

2
2

6

and using the Navier formula it is possible to write the maximum normal stress in
the middle span as

σ
(
z =

L

2

)
=
MEd

Wel

=
3

4

qL2

d1d2
2

. (5.2.1)

Using the Jourawsky formula, it is possible to write the maximum tangential stress
in the middle of cross section y = 0 (parabolic tangential stress diagram on a
rectangular section) as

τ(z = 0, z = L) =
VEdS

∗
x(y = 0)

Ixb
=

3

2

VEd
bh

=
3

4

qL

d1d2

. (5.2.2)

In order to take into account both normal and tangential stresses it is necessary
to refer to a yield criterion. In this case, the Von Mises yield criterion is adopted:√

σ2(z) + 3τ 2(z) ≤ σid (5.2.3)

111

Marco Martino Rosso Chapter 5. Case Studies

Figure 5.8: Problem formulation: simply supported beam with constant cross section.

Substituting the (5.2.1) and the (5.2.2) into (5.2.3) respectively it is possible to
obtain the two expression of the stress constraints in middle span z = L/2 (pure
moment) and in z = 0, L (pure shear):

3

4

qL2

d1d2
2

≤ σid, (5.2.4)

3

4

qL

d1d2

≤ σid√
3
. (5.2.5)

The maximum deflection v(z = L
2
) can be calculated using the virtual work principle

obtaining

v
(
z =

L

2

)
=

5

384

qL4

EIx
=

5

32

qL4

Ed1d3
2

. (5.2.6)

The complete statement of the optimization problem is the following:

min f(d1, d2) = d1d2,

s.t. d1 > 0, d2 > 0,

3

4

qL2

d1d2
2

− σid ≤ 0,

3

4

qL

d1d2

− σid√
3
≤ 0,

5

32

qL4

Ed1d3
2

− vmax ≤ 0,

(5.2.7)

where the constant ρL is dropped by the objective function as stated in similar
problems analyzed in [9], σid is the ideal Von Mises normal stress and vmax is the
maximum deflection admissible by reference design codes i.e. in this case it is fixed to
vmax = L/250. It is possible to define the fixed variables vector bT = {b1, b2, b3, b4, b5}
which contains problem data which not change during the optimization process, i.e.
in this case b1 = q, b2 = L, b3 = σid, b4 = E, b5 = vmax. Since the amount of
fixed parameters, it is more convenient work with a dimensionless form of the same
problem. Posing d̃1 = b/L and d̃2 = h/L, the new dimensionless objective function
become

f̃(d̃1, d̃2) = f(d1, d2)/L2 = d̃1d̃2,

112

Marco Martino Rosso Chapter 5. Case Studies

whilst the normal stress constraint (5.2.4), the shear constraint (5.2.5) and the de-
flection constraint (5.2.6) become respectively as

3

4

(
q

L σid

)
1

d̃1d̃2
2

≤ 1, (5.2.8)

3
√

3

4

(
q

L σid

)
1

d̃1d̃2

≤ 1, (5.2.9)

5 · 125

16

(
q

E L

)
1

d̃1d̃3
2

≤ 1. (5.2.10)

It is useful to define two dimensionless non-negative parameters, collected in b̃, which
completely characterize the fixed variables of the problem:

ψσ =
q

L σid
, (5.2.11)

ψE =
q

E L
. (5.2.12)

Finally, the following dimensionless version of the problem is formulated (5.2.7)

min f̃(d̃1, d̃2) = d̃1d̃2,

s.t. d̃1 > 0, d̃2 > 0,

3

4
ψσ

1

d̃1d̃2
2

≤ 1,

3
√

3

4
ψσ

1

d̃1d̃2

≤ 1,

5 · 125

16
ψE

1

d̃1d̃3
2

≤ 1.

(5.2.13)

To solve this problem, the PSO-SVM is adopted with the piecewise linear de-
creasing relax constraint function with a user coefficient λ for standard deviation of
the unfeasible points fixed to λ = 0.05. For academic purposes, in order to graphi-
cally analyze the behaviour of the constraint handling, the dimensionless parameters
are fixed as ψσ = ψE = 0.2, looking for a optimal solution in design domain for the
dimensionless design variables as 0 ≤ d̃1 ≤ 1.5 and 0 ≤ d̃2 ≤ 1. In this way, with
this particular choice of the dimensionless parameters the constraints intersect each
other creating discontinuous non-linear boundary of the feasible region. The popu-
lation size is always 50 individuals and the maximum iterations are 100. After 50
runs the results shown a quite great variability of the design variables but always
at the same objective function value. This fact enlightens the presence of a front
of possible optimal solutions. In fact, as showed in the graphical representations in
Figures 5.9-5.10-5.11, for this specific choice of b̃, only two constraints are active and
there exists a region of optimal solutions on the τ constraint boundary line. In the
following, the comparison table with PSO-SVM, PSO-Penalty and GA shows the

113

Marco Martino Rosso Chapter 5. Case Studies

(a)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
Generation 1

0
.4

0.4

0.8

1.2OF

g
1
: constr.

g
2
: constr.

g3: v
max

 constr.

Unfeasible Pt

Feasible Pt

Boundary

SV

(b)

Figure 5.9: Structural example 1: simply supported beam, case piecewise linear decreas-
ing relax function;
(a) Three-dimensional graph of simply supported beam problem design space; (b) Gener-
ation 1.

114

Marco Martino Rosso Chapter 5. Case Studies

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
Generation 2

0.4

0.4

0.8

1.2

O.F.
g1: constr.
g2: constr.
g3: vmax constr.
Boundary
Swarm Pos.
Gbest

(a)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
Generation 50

0.4

0.4

0.8

1.2O.F.
g1: constr.
g2: constr.
g3: vmax constr.
Boundary
Swarm Pos.
Gbest

d

d

(b)

Figure 5.10: Structural example 1: simply supported beam, case piecewise linear decreas-
ing relax function;
(a) Generation 2; (b) Generation 50.

115

Marco Martino Rosso Chapter 5. Case Studies

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
Generation 100

0.4

0.4

0.8

1.2O.F.
g1: constr.
g2: constr.
g3: vmax constr.
Boundary
Swarm Pos.
Gbest

d

d

(a)

0 20 40 60 80 100

Iteration

0.259

0.26

0.261

0.262

0.263

0.264

0.265

0.266

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

(b)

Figure 5.11: Structural example 1: simply supported beam, case piecewise linear decreas-
ing relax function;
(a) Generation 100; (b) objective function history.

116

Marco Martino Rosso Chapter 5. Case Studies

mean value and the standard deviation of the best objective function value obtained
after 50 runs.

In order to find the entire front of the all optimal possible solutions for this
specific problem, it is necessary to find the all the pairs (d̃1,opt, d̃2,opt) posing the
objective function as f(d̃1, d̃2) = d̃1 · d̃2 ≈ 0.2598. As one can see in Figures 5.9-5.10-
5.11, this optimal front corresponds to a part of the τ constraint (5.2.9) posed as
an equality. Referring to the d̃1 optimal possible values, the optimum front is upper
bounded from the σ constraint (5.2.8) posed as an equality and lower bounded from
the box search space limits. Then, to calculate the optimal upper bound d̃1,opt,UB it is
necessary to calculate the intersection between the two aforementioned constraints

3

4
ψσ

1

d̃1d̃2
2

= 1,

3
√

3

4
ψσ

1

d̃1d̃2

= 1,

=⇒
d̃2 =

√
3

4
ψσ

1

d̃1

,

d̃2 =
3
√

3

4
ψσ

1

d̃1

,

=⇒

√
3

4
ψσ

1

d̃1

=
3
√

3

4
ψσ

1

d̃1

=⇒ d̃1,opt,UB =
9

4
ψσ = 0.45.

(5.2.14)

As before, to calculate the optimal lower bound d̃1,opt,LB it is necessary to calculate
the intersection between the equality τ constraint and the horizontal line d̃2 = 1,
obtaining

3
√

3

4
ψσ

1

d̃1d̃2

= 1,

d̃2 = 1,

=⇒ d̃1,opt,LB =
3
√

3

4
ψσ = 0.2598. (5.2.15)

Finally, considering (5.2.14) and (5.2.15), it is possible to obtain all the optimal
pairs (d̃1,opt,
d̃2,opt) using the following equation:

d̃2,opt =
0.2598

d̃1,opt
, with 0.2598 ≤ d̃1,opt ≤ 0.45. (5.2.16)

Since the algorithm works with dimensionless parameters, in order to find the
physical dimensions of the optimized cross-section it is sufficient to multiply the

Table 5.4: Structural Example 1, results from PSO-SVM piecewise linear decreasing relax
constraints, PSO-Penalty and GA.

PSO-SVM PSO-Penalty GA
µOF 0.2598076 0.2598076 0.2610035
σOF 2.04e-09 5.61e-17 2.58e-03
Best OF 0.2598076 0.259808 0.2598076
Worst OF 0.2598076 0.259808 0.2664507

117

Marco Martino Rosso Chapter 5. Case Studies

obtained values (d̃1,opt, d̃2,opt) by L.

To show a technical possibly application coming from this simple example, a only
concrete beam with span length L = 3 m is now considered. Disregarding for the
moment the self-weight load, the q load set to 15 kN/m represents only a live load.
The concrete modulus is set to E = 25 GPa and the Von Mises ideal stress is related
to the tensile stress of concrete set to σid = 3 MPa. Considering the box search space
as 0 ≤ b ≤ 40 cm and 0 ≤ h ≤ 45 cm, the algorithm found the minimum weight
respecting the constraints with b = 16.67 cm and h = 42 cm. Rounding-off these
values, the self-weight associated to a concrete beam with b = 18 cm and and h = 45
cm is equal to:

G = γconcrete · b · h = 24 · 0.18 · 0.45 = 1.944 kN/m.

For sake of simplicity, adding G to q a new load equal to 16.944 kN/m which takes
into account also the self-weight is defined. Launching again the algorithm, new
optimal exact dimensions are now obtained: b = 18.83 cm and h = 45 cm. Rounding-
up the exact solution, a new self-weight equal to G = 2.16 kN/m is coming from
a section with b = 20 cm and h = 45 cm. Now the convergence is reached because
the new optimal exact solution is b = 19.07 cm and h = 45 cm. Finally, the optimal
cross-section for this concrete beam which minimize the self-weight is given by b = 20
cm and h = 45 cm.

118

Marco Martino Rosso Chapter 5. Case Studies

5.2.2 Structural Example 2: Optimization of a Warren Truss
Beam

Figure 5.12: Problem formulation: simply supported truss Warren beam.

The second structural example comes from [23]. In that work the weight opti-
mization of an in-plane Warren truss simply supported beam, depicted in Figure
5.12, is performed with Differential Evolutionary Algorithm (DEA). The steel pro-
file used for truss members is a square hollow core section, as shown in Figure 5.13.
This kind of profile ensures good stability against buckling and it represents a good
solution for this type of structure because of its high strength-to-weight ratio [23].
On the other hand, joint connections are usually welded and so, in order to reduce
the total cost, it is important to reduce the size of sections to be welded.

Regarding to the size optimization problem, as shown in Figure 5.13, this kind
of sections are completely described by only two independent design variables: the
outer dimension of the cross section B and the thickness of the webs s. In this
problem the truss has m members belonging to four different type of cross sections
as reported in Figure 5.12: lower chord (B1, s1), upper chord (B2, s2), internal webs
(B3, s3) and external webs (B4, s4). To perform the shape optimization further two
design variables are considered: vertical height of the external webs Hmin and the
maximum height Hmax. The design vector is therefore defined as

x = (B1, B2, B3, B4, s1, s2, s3, s4, Hmin, Hmax), (5.2.17)

and the box search space domain Ω is defined by:

60 ≤Bi ≤ 360 mm,
4 ≤si ≤ 30 mm,

50 ≤H ≤ L mm,
(5.2.18)

where i = 1, 2, 3 and 4 and L is the total span lenght. Considering the maximum
value of thickness smax = 30 mm, the minimum value of dimension B cannot be as-
sumed less than 2smax due to geometric limits. The objective function is represented

119

Marco Martino Rosso Chapter 5. Case Studies

Figure 5.13: Square hollow core tubular section design variables.

by the total weight of the structure (Marano et al., 2006):

W (x) =
m∑
i=1

ρiliAi, (5.2.19)

where ρi = 7.85 t/m3 is the steel density supposed equal for all members, li is the
length and Ai is the cross section of the i-th member. The structural steel used
in this example is a S275 and the modulus of elasticity of the steel is 210 GPa.
Regarding topology optimization, in [23] for fixed length L = 20 m, the optimal
number of bays in which divide the lower chord is 20. The external load is as a
uniformly distributed load q = 100 kN/m applied on the lower chord acting as
point loads in the nodes of the truss. The constrains are represented by the strength
verifications about tensile stress (without any holes) (5.2.20), compression stress
(5.2.21) and buckling instability (5.2.22) according to Eurocode 3 (EN 1993-1 2005
and EN 1993-2 2006). Despite from the Eurocode γM0 = 1 and γM1 = 1.1 for bridges
are recommended, to be more safe the partial safety factors are set both equal to
γM0 = γM1 = 1.1.

NEd

Nt,Rd

≤ 1, where Nt,Rd =
Afy
γM0

, (5.2.20)

NEd

Nc,Rd

≤ 1, where for classes 1,2,3 Nc,Rd =
Afy
γM0

,

while for class 4 Nc,Rd =
Aefffy
γM1

,

(5.2.21)

NEd

Nb,Rd

≤ 1, where for classes 1,2,3 Nc,Rd = χ
Afy
γM1

,

while for class 4 Nc,Rd = χ
Aefffy
γM1

.

(5.2.22)

Another constraint to satisfy is the maximum deflection which is usually set to
ulim = L/500 for bridges like that. In order to make a comparison with the results
of [23], for academic reasons, there is no distinction of the load combination for the
strength verifications and for the deformability checks. The verification equations

120

Marco Martino Rosso Chapter 5. Case Studies

0 5 10 15 20 25 30 35 40 45 50

Run

3

3.5

4

4.5

5

5.5

O
b

je
c
ti
v
e

 f
u
n
c
ti
o

n
 [
t]

Figure 5.14: Structural example 2: Warren Truss. Results from 50 times run PSO-SVM.

not need to deeper examination because this is beyond the scope of the present
document. Therefore, the optimization problem statement is the following [23]: Find
x ∈ Ω such that

min f(x) = W (x),

s.t.
NEd

Nt,Rd

≤ 1,

NEd

Nc,Rd

≤ 1,

NEd

Nb,Rd

≤ 1,

umax ≤ ulim.

(5.2.23)

In order to solve (5.2.23), the FEM structural analysis was performed in the
Matlab R© CALFEM and PSO-SVM was adopted for the optimization process. In the
PSO-SVM a population size of 100 individuals is set with kmax = 200 iterations and
a constant relax function with user parameter λ = 3 applied to standard deviation
of unfeasible points. It is performed 50 times runs and the best-obtained solutions
are collected in Figure 5.14. As one can see in Figure 5.14, due to the complexity of
the problem, sometimes the algorithm not reach the optimum and stack in a local
minimum. As shown in the graph, the optimum solution is around 3.1 t, then it is
possible to cut the graph considering only the 21 runs over the total 50 which are
characterized by a best OF solution lower than 3.1 t (dashed line). In this way, the
possible outliers are excluded and now it is possible to perform the post-processing
searching for the real best solution.

Considering the above-mentioned solutions, the obtained results showed in Ta-
ble 5.5 has a quite large standard deviation in terms of design variables but very
low in terms of objective function. This means that it is possible to find many

121

Marco Martino Rosso Chapter 5. Case Studies

Table 5.5: Structural Example 2, Mean values µ and standard deviations σ of best results
from 21 solution over 50 runs of PSO-SVM with OF less than 3.1 t; Last three columns:
Best exact solution, Trivial rounded-up solution and Refined industrial solution.

[mm]
µ

Exact
Sol.

σ
Exact
Sol.

Best
Sol.

Trivial
Industrial

Sol.

Best
Industrial

Sol.
B1 72.5 15.7 94.2 95 95
B2 190.2 70.2 128.1 130 105
B3 128.9 1.4 128.8 130 130
B4 211.7 107.9 132.1 135 110
s1 6.0 1.5 4 4 4
s2 14.7 7.4 18.8 20 26
s3 4.0 0.03 4 4 4
s4 14.0 8.4 14.7 15 19
Hmin 399.4 21.5 410.5 410 410
Hmax 4064.7 113.5 4145.0 4145 4145

OF [t] 3.0898 0.0071 3.074 3.189 3.092

combinations of design variables which is giving always the almost same objective
function. The best design value of the 50 runs, also reported in table 5.5, is taken
into consideration. It is possible to compare this latter objective function (3.074 t)
with the optimal exact solution given by the original DEA code output [23]. The
DEA optimal solution was characterized by the weight of 2.95 t so this is in the
right order of magnitude. The comparison of the design variables is based only on
general observation in accordance with the literature, as affirmed in [23]. In fact,
for instance, it is expected that, mainly due to instability problems, upper chord
and external diagonals would be bigger than the lower chord and internal diagonals.
Finally, the best exact solution may be trivially rounded-up to get an industrialized
more realistic design. The new design variables are reported in 5.5 and as one can see
this solution is more conservative and it leads to an increased total weight (3.189 t).

If one want to find a more accurate industrial solution it is necessary to perform a
more accurate analysis of the obtained results. Since the topology optimization was
already taken into account in [23], one have to remember that in the design variables
the algorithm is performing the size optimization and the shape optimization. This
latter is regarding to the definition of the Hmin and Hmax values. Considering only
the above-mentioned 21 solutions and the standard deviations of Hmin and Hmax,
it is possible to assume that the rounded-up values of the best exact solution can
represent a good result for shape optimal parameters values:

Hmin ≈ 410 mm,
Hmax ≈ 4145 mm.

(5.2.24)

Once solved the shape optimization, regarding to the size optimization firstly the

122

Marco Martino Rosso Chapter 5. Case Studies

Table 5.6: Structural Example 2, Best exact solution cross section

[mm,mm2] (B; s)exact
Requested

Area (B; s)bestindustrial

Provided
Area

Lower Chord (94.2 ; 4) 1442.46 (95 ; 4) 1456
Upper Chord (128.1 ; 18.8) 8206.18 (105 ; 26) 8216
Internal Webs (128.8 ; 4) 1996.81 (130 ; 4) 2016
External Webs (132.1 ; 14.7) 6907.21 (110 ; 19) 6916

best exact solution as the optimal one. One have to remember that Bi and si were
chosen as design parameters because of their independence, but in the optimiza-
tion process, they are connected. In fact, in both objective function evaluation and
constraints evaluation, these two parameters are combined into the resisting cross
section value. It is possible to obtain almost the same value of cross section with
different combinations of the design parameters. In particular, one can refer to the
optimal exact solution in terms of resisting cross sections which represent the best
solution in terms of both strength verification and minimization of the weight. As
one can check, for the best exact solution, the section class of all members is 1, but
other optimal solutions within the 21 considered are characterized by class 4 profile.
In this case, to get the strength verification satisfied, it is necessary to refer to the
resisting effective area. Usually in the design when it is possible it is preferred to
avoid class 4 profiles and the best condition is to find an optimal solution with class
1 profile. Therefore, the best industrial solution which respects all the constraint
is given by all the pairs (Bi, si) with i = 1, 2, 3 and 4 which gives class 1 profiles
and which gives the minimum value of area greater or equal than the effective areas
requested by the best solution in Table 5.6. This procedure allows us to find the best
solution which respects the strength verification only. For the instability verification,
it is necessary to take into account also the second moment of inertia which con-
dition the Euler’s critical load Ncr and consequently the dimensionless slenderness
λ which influence the reduction factor χ. Fixing the thickness si to discrete values
(rounded with 1 mm of precision), starting from the best-found solution and mak-
ing an iterative discrete research to find the Bi (rounded with 5 mm of precision)
respectful of our above-mentioned design rule, the best optimal industrial solution is
found and reported in the last column of Table 5.5. As one can check, the minimum
cross area of internal webs could be assured by the pair (B3, s3) = (105 ; 5) mm
but, due to instability problems, it is necessary to take into account the inertia and
choose a profile that ensures both strength and instability verifications.
The best industrial structure is verified to all strength and instability constraints.
Making a comparison between the two last columns of the Table 5.5, also the trivial
rounded-up solution represents a good optimal solution in terms of objective func-
tion. In fact, minimizing the weight is important but the total cost is also affected by
other aspects e.g welding and detailing, labour cost, etc. So, the solution obtained by
trivial rounded-up the exact one it can be considered an acceptable optimal result.
In Figure 5.15 the undeformed and the deformed shape are depicted. It is possible

123

Marco Martino Rosso Chapter 5. Case Studies

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
L [mm] 104

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

H
 [m

m
]

Node 7

Figure 5.15: Optimal Warren Truss. Black solid line: undeformed shape; blue dashed line:
deformed shape.

Figure 5.16: Model of the warren truss beam in Midas Gen R©.

to appreciate which the node 7 and, due to symmetry, the node 15 are the nodes
that undergo the most deflection umax = 39.8 mm however it is respectfully of the
service limit L/500 = 40 mm.

In order to assess the validity of the results of the optimization process, the
warren truss beam is modelled with FEM professional software MIDAS Gen R©. The
assessment is made not only in terms of axial force for each member, but in particular
in terms of performance ratio. This latter represents an efficiency percentage of the
usage of the steel and is given by the strength ratio between the demand and the

124

Marco Martino Rosso Chapter 5. Case Studies

Figure 5.17: Planar view of the warren truss beam on Midas Gen R© with the axial force
values.

capacity. The simply supported warren truss is modelled through truss elements in
order to guarantee pure axial behaviour of each member. The section properties
of the trivial best industrial results from Table 5.5 are assigned to each element.
The adopted steel is always a S275 and the uniformly distributed load q = 100
kN/m acting on the lower chord is reconducted as a hanged load directly applied
at lower chord nodes acting as concentrated forces, as depicted in Figure 5.16. As
already remarked, in order to get results which are directly comparable with the
Matlab code and with DEA code from [23] and for the sake of simplicity, none load
combination is considered. The aim is to demonstrate that the proposed algorithm
provides comparable results with DEA code which is used as a benchmark and
not making a perfect design completely respectful of the current codes. In order to
take into account this latter issue, it is sufficient to consider the correct the load
combination at ULS for the strength verification and SLS for the maximum allowable
displacement.

As reported in Figure 5.17 and in Table 5.7, the results obtained from the Matlab
code are equal to the FEM software. The overall behaviour shows that the upper
chord is entirely compressed whereas the lower chord is entirely tensed. The inter-
nal webs are alternatively compressed and tensed as usual for truss beam of this
typology. Calculating the strength ratio, it is worth noting that a performance ratio
between 75% to 98% is obtained for the members. These remarkable results show the
importance of the optimization process during the design phase which can strongly
support the decision process of the designer.

125

Marco Martino Rosso Chapter 5. Case Studies

Table 5.7: Comparison between Midas model and Matlab axial force elements

Midas
Element

Matlab
Element |NEd| |NRd|

1 1 350.47 364.00
2 2 166.18 364.00
3 3 255.42 364.00
4 4 238.70 364.00
5 5 179.70 364.00
6 6 99.54 364.00
7 7 7.27 364.00
8 8 92.60 364.00
9 9 197.58 364.00
10 10 306.16 364.00
11 11 306.16 364.00
12 12 197.58 364.00
13 13 92.60 364.00
14 14 7.27 364.00
15 15 99.54 364.00
16 16 179.70 364.00
17 17 238.70 364.00
18 18 255.42 364.00
19 19 166.18 364.00
80 20 350.47 364.00
40 21 1692.70 2200.00
41 22 1918.80 2200.00
42 23 1939.50 2200.00
43 24 1892.10 2200.00
44 25 1813.70 2200.00
45 26 1718.60 2200.00
46 27 1613.50 2200.00
47 28 1501.80 2200.00
48 29 1385.70 2200.00
49 30 1228.10 2200.00
78 31 1385.70 2200.00
77 32 1501.80 2200.00
76 33 1613.50 2200.00
75 34 1718.60 2200.00
74 35 1813.70 2200.00
73 36 1892.10 2200.00
72 37 1939.50 2200.00
71 38 1918.80 2200.00
70 39 1692.70 2200.00
21 40 498.81 504.00

Midas
Element

Matlab
Element |NEd| |NRd|

23 41 150.24 504.00
25 42 20.80 504.00
27 43 66.77 504.00
29 44 139.27 504.00
31 45 204.59 504.00
33 46 265.90 504.00
35 47 324.76 504.00
37 48 382.00 504.00
39 49 50.75 504.00
68 50 482.83 504.00
66 51 425.57 504.00
64 52 366.75 504.00
62 53 305.56 504.00
60 54 240.59 504.00
58 55 169.06 504.00
56 56 84.69 504.00
54 57 30.40 504.00
52 58 252.62 504.00
22 59 252.62 504.00
24 60 30.40 504.00
26 61 84.69 504.00
28 62 169.06 504.00
30 63 240.59 504.00
32 64 305.56 504.00
34 65 366.75 504.00
36 66 425.57 504.00
38 67 482.83 504.00
69 68 50.75 504.00
67 69 382.00 504.00
65 70 324.76 504.00
63 71 265.90 504.00
61 72 204.59 504.00
59 73 139.27 504.00
57 74 66.77 504.00
55 75 20.80 504.00
53 76 150.24 504.00
51 77 498.81 504.00
20 78 1523.00 1800.00
50 79 1523.00 1800.00

126

Chapter 6

Conclusions

First and foremost, it is important to point out that the present Thesis does not
intend to be excessively pretentious or even exhaustive about the vast world of the
Optimization. Nevertheless, this work could be rather considered as a valid, albeit
brief, introduction for those who want to approach and explore for the first time
the optimization field from its origin up to the current development with AI and
machine learning, with special regard to the structural optimization sub-field. The
present dissertation even offers some solid literature references for deepened insights
in the subject. Furthermore, the present Thesis could be treated, in turn, as a refer-
ence for future researches and further developments in order to contribute enriching
the scientific knowledge.

After an introductory part concerning the classical mathematical approaches
which are mainly gradient-based, some of the most important meta-heuristic opti-
mization procedures have been presented highlighting not only the advantages but
also the drawbacks of these modern search procedures. In the central part of the
Thesis, the attention is mainly focused on the particle swarm optimization (PSO)
algorithm showing that this subject is still under development in order to improve
and make more robust the search process. Therefore, in this Thesis, a new constraint
handling approach have been introduced combining the machine learning method of
Support Vector Machine (SVM) with classical Newtonian PSO.

The PSO-SVM represents a new valid alternative not-penalty method to solve
constrained optimization problems. Its main advantage respect to the most used
nowadays penalty approach is represented by the generality of the machine learning
SVM algorithm. Since it depends intrinsically on the inner product of the data, it
is more adaptive even with discontinuous and non-linear boundary of the feasible
region in the design space. In order to improve the behaviour of the proposed algo-
rithm to deal with very sharp and narrow feasible region, a relax constraint function
has also been implemented. From the computational point of view, the trade-off was
found by adopting a limited population size and by using an incremental boundary
update. It would be also possible sampling a huge initial random data and leaving
the boundary fixed during the generations, however, this procedure does not lead to
a good result in terms of objective function.

Finally, the two numerical benchmark examples demonstrate the convergence

127

Marco Martino Rosso Chapter 6. Conclusions

of the new method in comparison with another penalty approach and with a GA.
The last two examples highlight the adaptability of this new method even into the
structural optimization field. In particular, in the warren truss beam problem, the
optimization algorithm provided a numerical exact solution which can be easily
industrialized by the designer with a trivial rounding-off without jeopardizing the
optimization process. Although the warren truss beam example is performed under
simplified assumption in order to make comparisons with DEA code from [23], from
a technical point of view, the new optimization algorithm becomes a really useful
and powerful support for the designer during the design and the decision process. It
is important to stress that working with meta-heuristic algorithms always involves
the definition of the value of many arbitrary parameters. Starting from literature
suggestions for these values, it is always strongly suggested to perform a fine-tuning
of some of these parameters, even with a trial-and-error approach for each specific
problem in order to find the best optimal results in terms of objective function
convergence, computational effort and elaboration time.

128

Appendix A

Test Functions Constrained Problems

The following mathematical problems were tested for the proposed PSO-SVM algo-
rithm.

1. The following problem is taken by [54] and it is called Sickle function.

min f(x) = (x1 − 20)3 + (x2 − 10)3

s.t. g1(x) = (x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0

g2(x) = −(x1 − 5)2 − (x2 − 5)2 + 82.81 ≥ 0,

where the search space is defined as 0 ≤ x1 ≤ 10 and 14 ≤ x2 ≤ 15.5. The
global optimum is located at x∗ = [14.095, 0.84296] where f(x) = −6961.8139.

2. The following problem is taken from [67] and it is a multi-variable problem
with five design variables and six constraints.

min f(x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141

s.t. g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0,

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0,

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0,

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0,

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0,

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0,

where the search space is defined as 78 ≤ x1 ≤ 102 and 33 ≤ x2 ≤ 45 and 27 ≤
x3, x4, x5 ≤ 45. The optimum is located at x∗ = [78, 33, 29.995256025682, 45,
36.775812905788] where f(x) = −30, 665.539.

129

Bibliography

[1] Begambre O., Laier J.E., “A hybrid Particle Swarm Optimization – Simplex algo-
rithm (PSOS) for structural damage identification”, Advances in Engineering Soft-
ware, 40(9), 883-891, 2009.

[2] Beyer, H., Schwefel, H., “Evolution strategies – A comprehensive introduction". Nat-
ural Computing 1, 3–52 (2002). https://doi.org/10.1023/A:1015059928466

[3] Bishop, C. M. “Pattern Recognition and Machine Learning", Springer Sci-
ence+Business Media (2006) pp. 3, 291-296, 325-336

[4] Bloomfield M.W., Herencia J.E., Weaver P.M., “Analysis and benchmarking of meta-
heuristic techniques for lay-up optimization”, Computers & Structures, 88(5-6), 272-
282, 2010.

[5] Canuto, C. and Tabacco, A., “Mathematical Analysis I ”, Springer Science+Business
Media, Second Edition, Springer International Publishing Switzerland, 2015.

[6] Carpinteri, A. “Scienza delle costruzioni 2", Vol. 2, Terza Edizione, Pitagora Editrice,
Bologna (1995)

[7] Carvalho, É.C.R., Bernardino, H.S., Hallak, P.H. et al. “An adaptive penalty scheme
to solve constrained structural optimization problems by a Craziness based Particle
Swarm Optimization". Optim Eng 18, 693–722 (2017). https://doi.org/10.1007/
s11081-016-9344-z

[8] Chen T.-Y., Chi T.-M., “On the improvements of the particle swarm optimization
algorithm”, Advances in Engineering Software, 41(2), 229-239, 2010.

[9] Christensen, P.W. et al. “An Introduction to Structural Optimization", Springer
Netherlands, Springer Science+Business Media B.V. (2009) pp. 44

[10] Coello C.A.C., “Theoretical and numerical constraint handling techniques used with
evolutionary algorithms: A survey of the state of the art”, Computer Methods in
Applied Mechanics and Engineering, 191(11-12), 1245-1287, 2002.

[11] Coello Coello, C. A., Lamont, G. B., van Veldhuizen, D. A., “Evolutionary Algorithms
for Solving Multi-Objective Problems”, Springer Science+Business Media, Second Edi-
tion, New York, USA, 2007.

[12] Coello, C. A. C., “Self-adaptive penalties for GA-based optimization," Proceedings
of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406),
Washington, DC, USA, 1999, pp. 573-580 Vol. 1, doi: https://doi.org/10.1109/CEC.
1999.781984.

[13] Congiu, E., “Parametric design and optimization of arched trusses under vertical and
horizontal multi-load cases", PhD in Civil Engineering and Architecture, Università
degli Studi di Cagliari (2020) http://hdl.handle.net/11584/290547

130

https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1007/s11081-016-9344-z
https://doi.org/10.1007/s11081-016-9344-z
https://doi.org/10.1109/CEC.1999.781984
https://doi.org/10.1109/CEC.1999.781984
http://hdl.handle.net/11584/290547

Marco Martino Rosso Bibliography

[14] Cortes C. and Vapnik V. “Support-Vector Networks", Kluwer Academic Publishers,
Boston (1995)

[15] Cristianini N. and Schölkopf B. “Support Vector Machines and Kernel Methods", AI
Magazine Volume 23 Number 3 (2002)

[16] de Castro Lemonge, A.C., Duarte, G.R., da Fonseca, L.G. “An algorithm inspired by
bee colonies coupled to an adaptive penalty method for truss structural optimization
problems". J Braz. Soc. Mech. Sci. Eng. 41, 126 (2019). https://doi.org/10.1007/
s40430-019-1629-7

[17] Deb K., “An efficient constraint handling method for genetic algorithms”, Computer
Methods in Applied Mechanics and Engineering, 186(2-4), 311–338, 2000.

[18] Dhiman, G., Kumar, V. “Spotted hyena optimizer: A novel bio-inspired based meta-
heuristic technique for engineering applications", Adv. Eng. Softw. 114 (2017): 48-70.

[19] Emmerich, M.T.M., Deutz, A.H. “A tutorial on multiobjective optimization: fun-
damentals and evolutionary methods". Springer, Natural Computing Journal 17,
585–609 (2018). https://doi.org/10.1007/s11047-018-9685-y

[20] Ertel, W., “Introduction to Artificial Intelligence", Springer Nature, Springer Inter-
national Publishing AG (2017)

[21] F. Mota, V. Almeida, E. F. Wanner and G. Moreira, “Hybrid PSO Algorithm with It-
erated Local Search Operator for Equality Constraints Problems", 2018 IEEE Congress
on Evolutionary Computation (CEC), Rio de Janeiro, 2018, pp. 1-6.

[22] Falcone, R., Lima, C., Martinelli, E. “Soft computing techniques in structural and
earthquake engineering: a literature review", Engineering Structures, Vol. 207, (2020),
https://doi.org/10.1016/j.engstruct.2020.110269

[23] Fiore, A., Marano, G.C., Greco, R. et al. “Structural optimization of hollow-section
steel trusses by differential evolution algorithm". Int J Steel Struct 16, 411–423 (2016).
https://doi.org/10.1007/s13296-016-6013-1

[24] Gandomi, A.H., Yang, X., Alavi, A.H., “Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems". Engineering with Computers 29,
17–35 (2013). https://doi.org/10.1007/s00366-011-0241-y

[25] Ge H.-W., Liang Y.-C., Marchese M., “A modified particle swarm optimization-based
dynamic recurrent neural network for identifying and controlling nonlinear systems”,
Computers and Structures, 85(21-22), 1611-1622, 2007.

[26] Gholizadeh S., Salajegheh E., “Optimal design of structures subjected to time history
loading by swarm intelligence and an advanced metamodel ”, Computer Methods in
Applied Mechanics and Engineering, 198(37-40), 2936-2949, 2009.

[27] Gunantara, N. “A review of multi-objective optimization: Methods and its ap-
plications". Cogent Engineering, 5(1), 1502242. (2018) https://doi.org/10.1080/
23311916.2018.1502242

[28] Haddad, O.B., Solgi, M., Loáiciga, H.A., “Meta-Heuristic and Evolutionary Algo-
rithms for Engineering Optimization". John Wiley & Sons, USA (2017).

[29] Hasançebi O., Çarbaş S., Doğan E., Erdal F., Saka M.P., “Performance evaluation of
metaheuristic search techniques in the optimum design of real size pin jointed struc-
tures”, Computers and Structures, 87(5-6), 284-302, 2009.

131

https://doi.org/10.1007/s40430-019-1629-7
https://doi.org/10.1007/s40430-019-1629-7
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1016/j.engstruct.2020.110269
https://doi.org/10.1007/s13296-016-6013-1
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242

Marco Martino Rosso Bibliography

[30] Jordehi, A.R. “A review on constraint handling strategies in particle swarm optimi-
sation". Neural Comput & Applic 26, 1265–1275 (2015). https://doi.org/10.1007/
s00521-014-1808-5

[31] Kalivarapu V., Foo J.-L., Winer E., “Synchronous parallelization of Particle Swarm
Optimization with digital pheromones”, Advances in Engineering Software, 40(10),
975-985, 2009.

[32] Kar, R., Mandal, D., Mondal, S., Ghoshal, S.P. “Craziness based Particle Swarm
Optimization algorithm for FIR band stop filter design", Swarm and Evolutionary
Computation, Vol. 7, 58-64, (2012) https://doi.org/10.1016/j.swevo.2012.05.002

[33] Kaveh A., Talatahari S., “Particle swarm optimizer, ant colony strategy and harmony
search scheme hybridized for optimization of truss structures”, Computers and Struc-
tures, 87(5-6), 267-283, 2009.

[34] Kennedy J., Eberhart R.C., “Particle swarm optimization", in Proc. of the IEEE Int.
Conf. on Neural Networks, Piscataway, NJ, Vol. 4, 1942-1948, 1995.

[35] Kennedy J., Eberhart R.C., “Swarm Intelligence", Morgan Kaufmann, San Francisco,
CA, 2001.

[36] Koziel S., Michalewicz Z., “Evolutionary Algorithms, Homomorphous Mappings, and
Constrained Parameter Optimization”, Evolutionary Computation, 7(1), 19-44, 1999.

[37] Li B., Xiao R.Y., “The Particle Swarm Optimization Algorithm: How to Select the
Number of Iteration”, Third International Conference on Intelligent Information Hid-
ing and Multimedia Signal Processing IIHMSP 2007, Kaohsiung, Vol. 2, 191-196,
2007.

[38] LI Hong-shuang, LÜ Zhen-zhou, YUE Zhu-feng “Support Vector Machine for struc-
tural reliability analysis", Applied Mathematics and Mechanics English Ed. (2006)

[39] Li L.J., Huang Z.B., Liu F., “A heuristic particle swarm optimization method for truss
structures with discrete variables”, Computers and Structures, 87(7-8), 435-443, 2009.

[40] Liang J.J., Qin A.K., Suganthan P.N., Baskar S., “Comprehensive Learning Particle
Swarm Optimizer for Global Optimization of Multimodal Functions”, IEEE Transac-
tions on Evolutionary Computation, 10(3), 281-295, 2006.

[41] M. Kohler, L. Forero, M. Vellasco, R. Tanscheit and M. A. Pacheco, “PSO+: A nonlin-
ear constraints-handling particle swarm optimization", 2016 IEEE Congress on Evo-
lutionary Computation (CEC), Vancouver, BC, 2016, pp. 2518-2523.

[42] Mahamad Nabab Alam, “Codes in MATLAB for Particle Swarm Optimization Re-
search Scholar, ResearchGate, March 2016, DOI: 10.13140/RG.2.1.1078.7608

[43] Martí, R., Pardalos, P. M., Resende, M. G. “Handbook of Heuristics", Springer Nature
Switzerland (2018)

[44] Medina, A. J. R. et al. “A Comparative Study of Neighborhood Topologies for Particle
Swarm Optimizers". IJCCI 2009: 152-159, Proceedings Of The International Joint
Conference On Computational Intelligence, (2009)

[45] Mezura-Montes E. (Ed.), “Constraint-Handling in Evolutionary Optimization”, Stud-
ies in Computational Intelligence Series Vol. 198, Springer, 2009.

[46] Mezura-Montes E., Coello C.A.C., “A simple multimembered evolution strategy to
solve constrained optimization problems”, IEEE Transactions on Evolutionary Com-
putation, 9(1), 1-17, 2005.

132

https://doi.org/10.1007/s00521-014-1808-5
https://doi.org/10.1007/s00521-014-1808-5
https://doi.org/10.1016/j.swevo.2012.05.002

Marco Martino Rosso Bibliography

[47] Michalewicz Z., Fogel D.B., “How to Solve It: Modern Heuristics, Springer, Berlin,
2000.

[48] MirjaliliJin, S., Dong , J.S. “Multi-Objective Optimization using Artificial Intelli-
gence Techniques". SpringerBriefs in Computational Intelligence, Switzerland (2020).
https://doi.org/10.1007/s11047-018-9685-y

[49] Monti G., Quaranta G., Marano G.C., “Genetic-Algorithm-Based Strategies for Dy-
namic Identification of Nonlinear Systems with Noise-Corrupted Response”, ASCE
Journal of Computing in Civil Engineering, 24(2), 173-187, 2010.

[50] Monti G., Quaranta G., Marano G.C., “Genetic-Algorithm-Based Strategies for Dy-
namic Identification of Nonlinear Systems with Noise-Corrupted Response”, ASCE
Journal of Computing in Civil Engineering, 24(2), 173-187, 2010.

[51] Murphy, K. P. “Machine Learning: A Probabilistic Perspective", Massachusetts Insti-
tute of Technology Press (2012) pp. 2-3, 479-481, 488, 496-501

[52] Omkar S.N., Mudigere D., Naik G.N., Gopalakrishnan S., “Vector evaluated particle
swarm optimization (VEPSO) for multi-objective design optimization of composite
structures”, Computers and Structures, 86(1-2), 1-14, 2008.

[53] Omkar, S.N. et al. “Artificial immune system for multi-objective design optimization
of composite structures", Engineering Applications of Artificial Intelligence, Vol. 21-8,
(2008) Pag. 1416-1429, https://doi.org/10.1016/j.engappai.2008.01.002

[54] P. A. Simionescu, D. G. Beale and G. V. Dozier, “Constrained optimization problem
solving using estimation of distribution algorithms", Proceedings of the 2004 Congress
on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 2004,
pp. 296-302 Vol.1, doi: 10.1109/CEC.2004.1330870.

[55] Parsopoulos K.E., Vrahatis M.N. “Particle Swarm Optimization Method for Con-
strained Optimization Problems".In Proceedings of the Euro-International Sympo-
sium on Computational Intelligence (2002)

[56] Parsopoulos K.E., Vrahatis M.N. “Unified Particle Swarm Optimization for Solv-
ing Constrained Engineering Optimization Problems". In: Wang L., Chen K., Ong
Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Com-
puter Science, vol 3612. Springer, Berlin, Heidelberg. (2005) https://doi.org/10.
1007/11539902_71

[57] Perez R.E., Behdinan K., “Particle swarm approach for structural design optimiza-
tion”, Computers and Structures, 85(19-20), 1579-1588, 2007.

[58] Plevris V., Papadrakakis M., “A hybrid Particle Swarm-Gradient algorithm for global
structural optimization”, Computer-Aided Civil and Infrastructure Engineering, 2010
https://doi.org/10.1111/j.1467-8667.2010.00664.x.

[59] Plevris, V. Innovative Computational Techniques for the Optimum Structural Design
Considering Uncertainties, National Technical University of Athens, Athens (2009)

[60] Plevris, V., Mitropoulou, C.C., Lagaros, N.D. “Structural Seismic Design Optimiza-
tion and Earthquake Engineering: Formulations and Applications". IGI Global, First
edition (2012)

[61] Praveen C., Duvigneau R., “Low cost PSO using metamodels and inexact pre-
evaluation: Application to aerodynamic shape design”, Computer Methods in Applied
Mechanics and Engineering, 198(9-12), 1087-1096, 2009.

133

https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1016/j.engappai.2008.01.002
https://doi.org/10.1007/11539902_71
https://doi.org/10.1007/11539902_71
https://doi.org/10.1111/j.1467-8667.2010.00664.x

Marco Martino Rosso Bibliography

[62] Quaranta, G., Lacarbonara, W. & Masri, S.F. “A review on computational intelligence
for identification of nonlinear dynamical systems", Nonlinear Dyn 99, 1709–1761
(2020). https://doi.org/10.1007/s11071-019-05430-7

[63] Rao A.R.M., Sivasubramanian K., “Multi-objective optimal design of fuzzy logic con-
troller using a self configurable swarm intelligence algorithm”, Computers and Struc-
tures, 86(23-24), 2141-2154, 2008.

[64] Rao Singiresu S., Engineering Optimization Theory and Practice, John Wiley & Sons,
Fifth Edition, USA (2019)

[65] Raschka, S., Mirjalili, V., “Python machine learning", II ed., Packt Publishing Ltd,
Birmingham, UK (2017)

[66] Rothwell, A., “Optimization Methods in Structural Design", Solid Mechanics and Its
Applications, Springer Nature, Springer International Publishing AG, Switzerland
(2017)

[67] Runarsson, T. P., Yao, X. “Search biases in constrained evolutionary optimization",
in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 35, no. 2, pp. 233-243, May 2005.

[68] Runarsson, T. P., Yao, X. “Stochastic ranking for constrained evolutionary optimiza-
tion”, IEEE Transactions on Evolutionary Computation, 4(3), 284-294, 2000.

[69] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-
Art", in IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4-31,
Feb. 2011.

[70] Schmitt, B. I. “Convergence Analysis for Particle Swarm Optimization", FAU Uni-
versity Press, Erlangen, Nürnberg, Germany (2015)

[71] Sengupta, S.; Basak, S.; Peters, R.A., II. Particle Swarm Optimization: A Survey of
Historical and Recent Developments with Hybridization Perspectives, Mach. Learn.
Knowl. Extr. 2019, 1, 157-191

[72] Seyedpoor S.M., Salajegheh J., Salajegheh E., Gholizadeh S., “Optimum shape design
of arch dams for earthquake loading using a fuzzy inference system and wavelet neural
networks”, Engineering Optimization, 41(5), 473-493, 2009.

[73] Shi Y., Eberhart R.C., “A modified particle swarm optimizer ”, IEEE World Congress
on Computational Intelligence, Anchorage, AK, USA, 69-73, 1998.

[74] Shi Y., Eberhart R.C., “Empirical study of particle swarm optimization”, Congress on
evolutionary computation, Washington D.C., Vol. 3, pp 1945–1950, 1999.

[75] Sonmez, M. “Artificial Bee Colony algorithm for optimization of truss structures",
Applied Soft Computing, Vol. 11-2, (2011) https://doi.org/10.1016/j.asoc.2010.
09.003

[76] Spillers, W.R. et al. “Structural Optimization", Springer US, Springer-Verlag US
(2009) pp. 1-5

[77] Sun, J., Feng, B., Xu, W. “A global search strategy of quantum-behaved particle swarm
optimization", IEEE Conference on Cybernetics and Intelligent Systems, 2004., Sin-
gapore, 2004, pp. 111-116 vol.1, https://doi.org/10.1109/ICCIS.2004.1460396

[78] Sun, J., Feng, B., Xu, W. “Particle swarm optimization with particles having quantum
behavior", Proceedings of the 2004 Congress on Evolutionary Computation (IEEE

134

https://doi.org/10.1007/s11071-019-05430-7
https://doi.org/10.1016/j.asoc.2010.09.003
https://doi.org/10.1016/j.asoc.2010.09.003
https://doi.org/10.1109/ICCIS.2004.1460396

Marco Martino Rosso Bibliography

Cat. No.04TH8753), Portland, OR, USA, 2004, pp. 325-331 Vol.1, https://doi.org/
10.1109/CEC.2004.1330875

[79] Vanderplaats, G.N. “Very Large Scale Optimization". National Aeronautics and Space
Administration, NASA/CR-2002 211768, Vanderplaats Research and Development,
Inc. Colorado Springs, CO, USA (2002)

[80] Vapnik, V. N. “Statistical Learning Theory", John Wiley & Sons, Inc. New York
(1998) pp. 19-20, 24-25, 401-406, 421-422

[81] Wang Y., Cai Z., Zhou Y., Fan Z., “Constrained optimization based on hybrid evolu-
tionary algorithm and adaptive constraint-handling technique”, Structural and Multi-
disciplinary Optimization, 37(4), 395-413, 2009.

[82] Yang, XS., He, XS. “Mathematical Foundations of Nature-Inspired Algorithms",
SpringerBriefs in Optimization, Springer Nature Switzerland (2019) https://doi.org/
10.1007/978-3-030-16936-7

[83] Zhu, X., Gong, P. Zhao, Z., Zhang, C. “Learning similarity metric with SVM ", The
2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD,
(2012) https://doi.org/10.1109/IJCNN.2012.6252829

135

https://doi.org/10.1109/CEC.2004.1330875
https://doi.org/10.1109/CEC.2004.1330875
https://doi.org/10.1007/978-3-030-16936-7
https://doi.org/10.1007/978-3-030-16936-7
https://doi.org/10.1109/IJCNN.2012.6252829

	Introduction
	Optimization Procedures Review
	Single-Objective Optimization Problems
	Multi-Objective Optimization Problems
	Classical Approaches
	Lagrange Multipliers methods
	Linear, Quadratic and Non-linear Programming

	Meta-heuristic Approaches
	Evolutionary algorithms
	Physics-based, Bio-inspired, Nature-inspired Algorithms
	Swarm-based Algorithms

	Particle Swarm Optimization Algorithm
	PSO framework
	Historical Overview and main variants
	Structural applications and main Hybridizations

	State of the art in Constraint handling
	Penalty function-based methods

	A new non-penalty Machine Learning constraint handling approach
	Artificial Intelligence: brief overview and main scopes
	Support Vector Machine: theoretical overview
	A new machine learning-based approach to handle constraints: PSO-SVM

	Case Studies
	Numerical Benchmarks Problems
	Numerical Example 1: Sickle Problem testsickle
	Numerical Example 2: five design variables optimization problem

	Structural optimization Problems
	Structural Example 1: simply supported beam
	Structural Example 2: Optimization of a Warren Truss Beam

	Conclusions
	Test Functions Constrained Problems
	Bibliography

