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Abstract

The present Master’s Thesis regards the impact of Scandium doping on Aluminum Nitride
(AlN) thin films. Two very interesting applications of Sc-doped AlN (ScAlN) are treated
in depth, namely the improvement in MEMS piezoelectric resonator performances and the
study of its ferroelectric properties. While the first study poses itself as an optimization
of something already present, the second one represents a step towards the opening of
new research lines. The present work is divided into three main Chapters.

The first one is the introduction of the Thesis work, describing the state of the art
in the field of MEMS resonators. Moreover, physical descriptions of the phenomena of
piezoelectricity and ferroelectricity, the ones on which the studied technologies rely, are
given. Finally, the electrical description of piezoelectric MEMS resonators, together with
the working mechanisms of a specific topology of filters which uses them as building
blocks, are given.

The second chapter introduces a relatively new technology of piezoelectric MEMS
resonators called Cross-Sectional Lame’ Mode Resonator (CLMR) and explains why it
poses itself as an improvement to the current state of the art. A systematic optimization
study is performed on AlN CLMRs, concerning both the geometrical structure and the
electrode materials. Moreover, the impact of Scandium doping of AlN thin films is
quantified as regards the performances of CLMRs, obtaining noteworthy improvements
compared to the case of pure AlN. In addition, two experimental plans have been designed
and clearly described in order to verify the theoretical and simulation analysis, one on
AlN and the other on 30% doped ScAlN.

The third chapter regards ScAlN ferroelectricity. Firstly, an explanation of the
appearance of this phenomenon is given, together with the applications that such a
discovery is able to open in the field of RF MEMS. After that, descriptions of the employed
thin films sputtering and characterization tools are given. With those, experimental
results obtained on ScAlN ferroelectric capacitors fabricated in-house are shown, with
interesting considerations on how the film properties vary according to different deposition
and measurement parameters. Finally, for the first time, a Finite Element Model (FEM)
utilizing the commercial software COMSOL Multiphysics able to describe the behaviour
of ferroelectric materials is developed and clearly explained. Starting from an empiric
mathematical model, the hysteresis and butterfly curves are obtained from COMSOL
with a desirable level of agreement, at least for this early stage of development. Moreover,
the model is embedded in the simulation of a reconfigurable resonator, opening the
possibility of simulating this kind of MEMS devices.



Note about the impact of Covid-19 on the present
work
The present work has been carried out during the infamous year of the COVID-19
pandemic. I started my reasearch in the second half of February, and by mid
March the lab was closed, together with the cleanroom. Unluckily, this fact had
great impact on my Thesis work: in the original plans, I should have followed
a highly experimental-oriented project named DARPA TUFEN. In this project
framework, I would have mastered the usage of an industrial tool (EVATEC-
clusterline) used to sputter AlN and doped AlN, optimizing the recipe in order to
deposit high quality films. Moreover, I would have characterized them, and I would
have fabricated structures such as suspended resonators to extract the mechanical,
dielectric and piezoelectric coefficients, and study how those quantities and its
ferroelectric behavior vary with the different Scandium concentration up to 40%.

Since everything was closed, I had to come up with new ideas. Chapter 2 of
the present work is a really interesting analysis, and the topic is strictly bound to
ScAlN and MEMS resonator technology. Concerning the third chapter, since one
of the focus of the Thesis would have been ScAlN ferroelectricity, a tool to make
simulative analysis of ferroelectric materials has been developed. Its presence will
play a vital role in the second phase of the TUFEN project, in which innovative
structures will be fabricated taking advantage of the possibilities of simulating
them in advance.

Anyway, in the last month the lab reopened and I could also work on some-
thing pratical, i.e. the characterization of ScAlN thin films which were in-house
fabricated.
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Chapter 1

Introduction

1.1 Introduction

In the past decades, Micro-Electromechanical Systems (MEMS) have proven to
be a killer application in very different fields, including telecommunications, trans-
portation, health care, internet of things (IoT) and automation in general. MEMS
are defined as any device including moving parts or fluid in the µm - mm range, and
which use a photolithography process for manufacturing [1]. This definition is very
general, and Micro-Electromechanical (MEM) devices vary from relatively simple
structures to extremely complex systems, in which the devices are monolithically
integrated with microelectronics. The concept of continuous miniaturization of
devices, which led to today’s micro and nano-sized sensors and actuators, was
introduced in 1959 by the physicist Richard Feynman in his famous speech "There’s
Plenty of Room at the Bottom". The speech had a great response, to the point that
MEMS technology has radically changed our lifestyle in just half a century. The
first techniques of surface micromachining, key step for the fabrication of MEMS,
were developed in 1980s by U.C. Berkeley [2]. In 1990s, Analog Devices Inc. used a
MEM accelerator in a commercial product, namely an accelerometer for automotive
applications. From there, the MEMS market has been in a continuous growth [1],
and is expected to keep growing in the following, with a forecast of Compound
Annual Growth Rate (CAGR) of 6.34% until 2025 [3]. The expected growth lies in
the always higher interest in IoT, smart consumer electronics, wearable devices.
There is almost no field that has not taken advantage of the MEMS technology.

It is accurate to say that modern communication has been enabled by MEMS.
The reason lies in the high performances, compact footprint at Radio Frequency (RF)
and low cost associated to them. In particular, MEMS resonators have allowed the
replacement of bigger quartz resonators and the simpler integration of the devices
with electronic circuits. Moreover, filters made with MEMS resonators constitute
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the RF front-end (FE) of most of the commercial devices in the communication
sector, and the main player in the MEMS market is Broadcom, a company involved
in RF, communication and resonators.

The first paper regarding an electromechanical resonating structure was pub-
lished in 1967 [4]. In a vibrating mechanical system, there is a continuous conversion
between kinetic and potential energy [5]. The transfer of energy is optimum (i.e.
the losses are minimized) at specific frequencies, called the resonant frequencies
of the system. At those frequencies, the system response peaks and its motion
follows a particular unique pattern known as mode shape. The simplest resonator
structure is constituted by a mass-spring system. Losses can be taken into ac-
count by a damper. The equation describing the motion of a uni-dimensional
mass-damper-spring system shown in Fig. 1.1 is [5]:

Meff
d2x

dt2
+ ξeff

dx

dt
+Keffx = Fin (1.1)

where Meff , ξeff and Keff are the effective mass, losses and stiffness of the
system, respectively, and Fin is the applied force. The transfer function of the
system can be expressed as:

H(s) = X(s)
Fin(s) = 1

Meffs2 + ξeffs+Keff

= 1
Keff

· ω2
0

s2 + ω0
Q
s+ ω2

0
(1.2)

where s is the complex frequency, ω0 the undamped (natural) frequency of the
system and Q the quality factor. In particular, ω0 is defined as:

ω0 = 2πf0 =
ó
Keff

Meff

(1.3)

Figure 1.1: Drawing of a mass-damper-spring resonant structure, from [5].
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while the quality factor is:

Q = 2πAverage energy stored
Energy lost per cycle

(1.4)

Therefore, the Q is an effective measure of the loss mechanisms inside the device.
A MEMS resonator is a mechanically vibrating micro-structure brought in

resonance by an electrical signal. The transduction mechanisms, i.e. the mechanisms
through which the electrical signal can effectively put the system in resonance
and sense it, are numerous. The most exploited ones are the capacitive, the
thermal/piezoresistive and the piezoelectric one [5]. A brief description of each
of them is given in the following. It has to be pointed out that the choice of the
particular mechanism has a strong impact on the resonator performances, size,
efficiency in energy conversion, ease of implementation and power consumption.

1. Capacitive: the exploited mechanism consists of the induced motion of a
plate free to move when a voltage is applied between its electrodes. Conversely,
the change in capacitance induced as a result of one of the plates movement,
generates an electric current. Usually the resonant body constitutes one of the
electrodes of the capacitive resonator. Thus, as a requirement, it has to be
highly conductive. Doped Silicon and polysilicon have been the most natural
choice [6]. The principle is very simple as the physical implementation. Thus,
it is not surprising that the first micromachined resonator to be published
was based on such a mechanism [4]. For the same reason, capacitive MEMS
resonators are still today a very common choice.
Concerning the physics of the transduction, it is shown in [5] that the elec-
tromechanical coupling factor η, i.e. the ratio of the output mechanical force
and the input electrical voltage, has the form:

η = Vp
dC

dx
(1.5)

where Vp is the polarization voltage, C the capacitance and x the displacement
of the resonating plate. The coupling factor tends to have really low values,
showing that the transduction mechanism is not very efficient. Improvements
can be done by reducing the gap between the electrodes or increasing the
capacitive area. Nevertheless, it is difficult to scale those kind of resonators to
frequencies higher that 100 MHz. An alternative can be found by filling the
gap with a compliant dielectric, and high-Q capacitive resonators with this
feature have been proven to work at frequencies beyond 1 GHz [7].

2. Thermal/piezoresistive: unlike the capacitive mechanism, which is able to
actuate and sense, both the thermal and the piezoresistive can just do one

3



Introduction

of them (one-way transduction), that’s why they are combined together. In
particular, the first is used in the actuation, and the latter in the sensing.
The two mechanisms are characterized by their ease of implementation, which
counterbalances the drawback of the one-way transduction. In fact, only a
conductive material is needed: an electric current is made pass through it to
either generate heat (thermal actuation) or measure resistance (piezoresistive
sensing). Concerning the actuation part, the resonant vibration is excited
once there is a matching between the thermal wave induced by the current
and the mechanical resonance frequency. This kind of actuation is especially
desired when a large force is needed to put in resonance structures immersed in
fluid. The efficiency depends on the thermal time constant of the system. As
regards the sensing, the piezoresistive effect consists of a change in resistivity
in response to stress. Concerning the materials, single crystalline Silicon
has incredibly sensing capabilities due to its high piezoresistive coefficients
[8]. Piezoresistivity increases its effect when scaling, as opposed to other
transduction mechanisms, that’s why it’s a common choice for very small scale
resonators. Moreover, it is CMOS-compatible.

3. Piezoelectric: resonators based on piezoelectricity exploit the capability of
converting mechanical stress in electric polarization (direct effect) or vice versa
(indirect piezoelectricity). More detailed analysis on the physical effect is given
in the next section. Piezoelectric resonators are the most popular, and the
reasons are their self-generating nature (i.e. piezoelectricity is intrinsic in the
material and does not require any external input) and large electromechanical
couplings. The main complication in such a technology, is the difficulty
in integration with electronics. In particular, single crystal materials such
as Quartz and Lithium Niobate (LN) are not CMOS-compatible in their
machining. AlN is one of the most promising piezoelectric materials and
is nowadays the most commercially exploited, even though its resonator
performances are much lower compared to the ones of the single crystal
piezo-material. In particular, as well explained in Section 2.1, thin-Film Bulk
Acoustic Resonators (FBARs) are the most common choice when it comes
to build filters for wireless communications. Piezoelectric resonators are the
focus of the present work.

1.2 Physics of piezoelectricity
Piezoelectricity was first discovered by the Curie brothers in 1880 on materials such
as quartz, topaz and tourmaline, which showed the presence of electric charges
when mechanical forces were applied to them (direct piezoelectric effect). The term
piezoelectricity, in fact, comes from the Greek and means "electricity due to pressure".
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The inverse effect was mathematically derived the next year by Lippmann, and
confirmed experimentally by the Curie brothers immediately after. The piezoelectric
effect provides a linear interaction between mechanical and electrical quantities,
and finds a great number of applications, from process measurement technology to
medicine, from energy harvesting to consumer electronics. All materials showing
piezoelectricity are called piezoelectric. This effect is related to their lattice
structure, i.e. to their particular crystal symmetry. There are 32 identified crystal
point groups. Among them, 21 are noncentrosymmetric, necessary condition to
show the piezoelectric effect. Only 20 of them are piezoelectric, and are often
referred to piezoelectric point groups.

For the sake of clarity, let’s consider the example of a Quartz (i.e. SiO2) crystal
described in [9] and shown in a simplified view in Fig. 1.2. The material, consisting
of the chemical bonds between Silicon and Oxygen atoms, has the top and bottom
surfaces metallized. In Fig. 1.2a, no force is acting on it, while in Fig. 1.2b-c, it is
mechanically loaded with the force F in two different directions, which leads to
different deformations. As can be observed, when no force is applied, the center

Figure 1.2: Simplified structure of a quartz crystal with metal electrodes on top
and bottom. In a), the crystal is in the original state without any mechanical load.
In b) and c) the longitudinal and transverse piezoelectric effect, respectively, are
shown. The centers of charge, namely CQ+ and CQ− are also included. The figure
is from [9]
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CQ− of negative charges (the Oxygen ions) geometrically coincides with the center
CQ+ of positive charges (the Silicon ions). This results in an electrically neutral
material to the outside. On the other hand, when a mechanical force is applied, the
centers of the charges are shifted, and do not coincide anymore, creating electric
dipole moments from CQ− to CQ+. The dipole moment shows electric polarization
P . To compensate it, i.e. an electric imbalance inside the material, charges are
electrostatically induced on the electrodes. If there exist a short circuit between
them, a current flow will occur. Conversely, for the inverse piezoelectric effect,
the same process takes place but in the opposite direction: an electric voltage
applied to the electrodes electrostatically induces charges on them, constituting
an electric imbalance compensated by a dipole moment inside the material. As
can be observed in Fig. 1.2b-c, in a general case the direction of the applied force
generates a different dipole moment. In this case, in Fig. 1.2b the moment has the
same direction of the applied field (longitudinal mode), while in Fig. 1.2c they are
perpendicular (transverse mode).

Concerning the math behind piezoelectricity, as shown in [9], it can be derived
from the first law of thermodynamics:

dU = dW + dQ = dWmech + dWelec + dQ (1.6)

This formula states that a change of internal energy dU in a closed system is
equal to the work dW done on the system and the heat energy dQ added to it. All
those quantities are per unit of volume. For a piezoelectric material, the work can
be divided into its electrical and mechanical components. Under the assumption of
small changes, Eq. (1.6) can be rewritten as:

dU = EmdDm + TijdSij + θdS (1.7)

Where Em and Dm are the electric field intensity and flux density, respectively,
Tij and Sij are the mechanical stress and strain and θ and S the temperature
and entropy, respectively. Therefore, dU results from changes in Dm, Sij and
S , which are called extensive variables. However, from a practical point of view,
the description of the phenomenon is preferred as a function of the others, called
intensive variables. Therefore, the Gibbs free energy G is introduced:

G = U − EmDm − TijSij − θS (1.8)

When the condition of thermodynamic equilibrium is reached, the Gibbs free
energy is minimized, meaning:

dG = 0 = −DmdEm − SijdTij −S dθ (1.9)
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From it, the extensive state variables can be computed:

Dm = −( ∂G
∂Em

)T,θ , Sij = −( ∂G
∂Tij

)E,θ , S = −(∂G
∂θ

)T,E (1.10)

In this way, the linearized state equations for the extensive variables can be
written as:

dDm = (∂Dm

∂En
)T,θ dEn + (∂Dm

∂Tkl
)E,θ dTkl + (∂Dm

∂θ
)T,E dθ (1.11)

dSij = (∂Sij
∂En

)T,θ dEn + (∂Sij
∂Tkl

)E,θ dTkl + (∂Sij
∂θ

)T,E dθ (1.12)

dS = ( ∂S
∂En

)T,θ dEn + ( ∂S
∂Tkl

)E,θ dTkl + (∂S
∂θ

)T,E dθ (1.13)

In the previous equations, each partial derivative represents a material parameter
that characterizes a specific linearized coupling mechanism. The ones of interest are
described later in this section. If temperature changes are neglected, i.e. isothermal
change in state, the two material laws of piezoelectricity can be derived from
Eqs. (1.11)-(1.12):

dDm = εTmndEn + dmkldTkl (1.14)

dSij = dijndEn + sEijkldTkl (1.15)

where the partial derivative have been substituted with the related material
parameters: ε is the dielectric constant, d the piezoelectric strain coefficient and s
the elastic compliance. The variables in the superscripts indicate that the parameter
has been computed with it taken as constant. They are tensors, respectively of
rank 2,3 and 4. Assuming that Dm, En, Sij and Tkl are zero in the initial state,
the equations can be rewritten as:

Dm = εTmnEn + dmklTkl (1.16)

Sij = dijnEn + sEijlkTkl (1.17)

Eqs. (1.16) and (1.17) represent the so called d-form of the material law for
linear piezoelectricity, also named strain-charge form. There exist another very
used form called the e-form or stress-charge:

Dm = εSmnEn + emklSkl (1.18)
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Tij = −eijnEn + cEijlkTkl (1.19)

where e is the piezoelectric stress coefficient and c the elastic stiffness constant.
There exist other forms but they are not relevant for the studies of this work.
Thanks to symmetries, the tensors equations can be transformed in matrices by
making use of the Voigt Notation:

D = [εT ]E + [d]T , S = [d]tE + [sE]T (1.20)

D = [εS]E + [e]S , T = −[e]tE + [cE]S (1.21)

The vectors D and E contain three components, while T and S have six
independent ones. Therefore, the elastic, piezoelectric and dielectric matrices will
be 6 × 6, 3 × 6 and 3 × 3, respectively, with 63 independent components in the
most general case. The matrix equations for the d-form are shown, where the
subscripts follow the notation of Fig. 1.3.

Figure 1.3: Notation used for the piezoelectric constitutive equations with respect
to the cartesian xyz three-dimensional coordinate system. The figure is from [9]
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D1
D2
D3

 =

ε
T
11 εT12 εT13
εT21 εT22 εT23
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E1
E2
E3

 +
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Actually, thanks to symmetries of the crystals, the number of independent
components is considerably reduced. For example, for the AlN and ScAlN which
are treated in Chapter 2, they become:

D1
D2
D3

 =

ε
T
11 0 0
0 εT11 0
0 0 εT33


E1
E2
E3

 +

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0




T1
T2
T3
T4
T5
T6


(1.24)



S1
S2
S3
S4
S5
S6


=



0 0 d31
0 0 d31
0 0 d33
0 d15 0
d15 0 0
0 0 0


E1
E2
E3

 +



sE11 sE12 sE13 0 0 0
sE12 sE11 sE13 0 0 0
sE13 sE13 sE33 0E 0 0
0 0 0 sE44 0 0
0 0 0 0 sE44 0

0E 0 0 0 0 sE
11+sE

22
2





T1
T2
T3
T4
T5
T6


(1.25)

As previously stated, piezoelectricity is a phenomenon that relates the electrical
and mechanical domains. Nevertheless, in a piezo-material, not all the mechanical
energy is converted to electrical and vice versa. The parameter k2, i.e. the
electromechanical coupling, quantifies the efficiency of conversion. In particular, it
is defined as:

k2 = mechanical energy converted into electrical energy

mechanical input energy
(1.26)
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k2 = electrical energy converted into mechanical energy

electrical input energy
(1.27)

As demonstrated in [9], the electromechanical couplings the same for both the
conversion directions, and is always lower than 1.

1.3 BVD Model
As seen in Section 1.1, the equations describing a resonator are not trivial. Moreover,
MEMS resonators require laws relating the electrical and mechanical domain,
resulting in very complicated transcendental equations. The Butterworth Van-
Dike (BVD) model [10] provides a simple description of the piezoelectric device,
modeling it as an electrical circuit. The schematic is shown in Fig. 1.4 for a one-port
resonator. As it can be observed, it consists of two branches in parallel, namely the
motional and the static one. The static branch consists of a capacitance, named the
static capacitance of the system, which is the real electric capacitance between the
electrodes of the resonator. Its value has to be tuned in order to match a specific
value, typically 50 Ω, as seen in Appendix A. Concerning the mechanical behaviour,
it is represented by the motional branch, in which the inductor Lm represents the
mass, the capacitor Cm the compliance of the structure and the resistor Rm the
losses. The admittance of such a circuit is:

YBVD = jωC0 + 1
Rm + jωLm + 1/Cm

(1.28)

and can be rewritten as:

YBVD = 2πjfC0
1− (f/fa)2 + j(f/fa)Q−1

a

1− (f/fres)2 + j(f/fres)Q−1
r

(1.29)

Figure 1.4: Butterworth-Van Dyke model of a piezoelectric MEMS resonator.
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where j is the imaginary unit, f the frequency, fres, Qr and and fa, Qa the
frequency and the quality factor at resonance and anti-resonance, respectively.
From Eqs. (1.28)-(1.29), the following quantities can be obtained [11]:

fres = 1
2π
√
LmCm

(1.30)

fa = 1
2π

ñ
Lm(C−1

m + C−1
0 )−1

(1.31)

Qr = 2πfresLm
Rm

(1.32)

Qa = 2πfaLm
Rm

(1.33)
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Figure 1.5: Example of the admittance of a MEMS resonator with resonant and
anti-resonant frequency.
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More often, anyway, the circuit parameters are not known, and are extracted
from a simulated or experimental resonance. A typical one is shown in Fig. 1.5. As
it can be observed, the admittance reaches its maximum value at resonance and its
minimum at anti-resonance. The admittance value does not diverge at resonance
thanks to the presence of the motional resistance. Given the knowledge of the
static capacitance, of the resonant frequency and of the quality factor at resonance,
the values of the circuit elements are found from:

Rm = π2

8
1

k2
tQrC0ωres

(1.34)

Lm = π2

8
1

k2
tC0ω2

res

(1.35)

Cm = 8
π2k

2
tC0 (1.36)

Finally, the quantity k2
t , namely the electromechanical coupling defined in

Section 1.2, can be directly extracted from the admittance curve [12]:

k2
t = π8

8
f 2
res − f 2

a

f 2
res

(1.37)

1.4 MEMS resonator ladder filters
As stated in Section 1.1, MEMS resonators are building blocks for RF filters. In this
section, a brief introduction on a specific topology, namely the ladder filter, is given.
This filter topology allows to fabricate band-pass filters, i.e. filters that attenuate
a signal unless its frequency is included in the pass-band. In order to better
understand the filter characteristics, the Scattering parameters are introduced.

Let’s consider the case of a N-port system. For it, a N × N scattering matrix can
be defined. In particular, its elements, named scattering parameters, are defined
as function of incident and reflected power waves, ai and bi, respectively, for the
i-th port. Assuming that the reference impedance is the same for each port, these
quantities are given by the following equations [13]:

ai = 1
2
Vi + Z0Iiñ
Re(Z0)

(1.38)

bi = 1
2
Vi − Z∗

0Iiñ
Re(Z0)

(1.39)
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where Re(Z0) denotes its real part, the superscript * the complex conjugate. Vi
and Ii are complex amplitudes of voltage and current at the i-th port, respectively.

These quantities are related by:

b = S · a (1.40)
In a 2-port system, as in the case of a MEMS ladder filter, the explicit matrix

equation becomes:

C
b1
b2

D
=

C
S11 S12
S21 S22

D C
a1
a2

D
(1.41)

Fig. 1.6a-d shows the four scattering parameters of a first order ladder filter
which was included in the experimental tapeout described in Section 2.7.2. The
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Figure 1.6: Showcase of the scattering parameters of a first order ladder filter
made by MEMS resonators. This specific filter has been included in the tapeout
described in Section 2.7.2.
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most interesting of the parameters is S21, from which the pass-band can be clearly
observed. In this specific case, S12 and S21 are equal, and for this reason the
network is called reciprocal.

Concerning the structure of a resonator ladder filter, it is shown in Fig. 1.7. It
is constituted by the cascade of N resonator L-networks. The single L-network is
highlighted in Fig. 1.7. The number N defines the order of the filter. All the series
resonators have the same resonant and anti-resonant frequency, same thing for the
parallel ones. The center frequency of the filter is set by the resonance of the series
blocks. At that frequency, the series circuit branch has the lowest impedance, so
the transmission is maximized. In order not to lose power in the parallel branch,
it is important that at that frequency the parallel resonators have the maximum
impedance. That’s why the anti-resonant frequency of the shunt resonators have to
match the one of the series ones as in Fig 1.8. Concerning the notches in Fig. 1.6c:

1. The first notch is originated by the resonance of the shunt resonators: at that
frequency, the impedance of the shunt branches is minimized and all the signal
is sent to ground.

2. The second notch comes from the anti-resonance of the series resonators, at
which the impedance of the series branch is maximized and therefore the signal
that passes from the first to the second port is minimized.

Let’s define some important parameters of the filters, namely the out-of-band
rejection S21rej , the insertion loss IL and the fractional bandwidth FBW. The first
one consist in the value of S21 outside the pass-band, the smaller, the better. This
quantity is controlled by the capacitive voltage divider nature of the circuit and is

Figure 1.7: Schematic of a third-order ladder filter. A single L-network is
highlighted.
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in general expressed in dB. In particular, the equation describing it is [14]:

S21rej ≈
1

(1 + C02
C01

)N
(1.42)

where N is the number of L-networks and C01 and C02 are the static capacitances
of the series and parallel resonators, respectively. Therefore, in order to increase
the out-of-band rejection, the filter order or the capacitance ratio between the
series and shunt resonators should be increased.

The second parameter is the IL, which is a measure of how much a signal in the
pass-band passing through the filter is degraded and is also generally expressed in
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Figure 1.8: Showcase of how the resonance of the series resonator and the
anti-resonance of the shunt one should overlap in order to maximize the filter
transmission at the pass-band center frequency
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dB. Its equation is [14]:

IL ≈ 1− N

4πfCC01Z0k2
tQr

(1.43)

where fC is the filter center frequency. As it can be straightforwardly observed,
the IL increases with an increasing number of series resonators. This makes sense,
since the signal has to pass through more filter building blocks, meaning more signal
dissipation through the motional resistances. Moreover, it is inversely proportional
to the resonators quality factor.

Finally, the FBW is related to the electromechanical coupling of the resonators:

FBW = fa1 − fres2
fC

≈ 8
π2k

2
t (1.44)

1.5 Fundamentals of ferroelectricity

1.5.1 Introduction to ferroelectrics
It was very recently demonstrated that Sc-doped AlN (ScAlN), the material focus
of the present work, is ferroelectric [15]. A detailed discussion on its properties will
be given in a later chapter, while in this section, the fundamentals of ferroelectricity
are given.

As mentioned in Section 1.2, there are 21 non-centrosymmetric crystal point
groups, 20 of them are piezoelectric. Among them, 10 point groups are characterized
by a unique polar axis, which allows them to possess a spontaneous polarization
Ps in the absence of an externally applied electric field. These material are
called ferroelectrics. Since the polarization is a vector, and therefore possesses an
orientation, ferroelectric materials have at least two equilibrium orientations for
the spontaneous polarization. The material can then switch between them by the
application of an electric field. These polarization states are stable and the name
ferroelectricity was given in analogy to the ferromagnetism.

The presence of a ferroelectric behaviour is, in general, dependent on the
temperature. In particular, this materials undergo a phase transition from a low-
temperature, low-symmetric phase to a high-temperature, higher symmetric phase.
The transition temperature is called Curie Temperature (Tc), and separates the
ferroelectric from the non-ferroelectric (or paraelectric) phase. Above the Curie
Temperature, the dielectric constant of such materials decreases according to the
Curie-Weiss law [16]:

ε = ε0 + C

T − T0
(1.45)
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where C is the Curie constant and T0 the Curie-Weiss temperature. Some
ferroelectrics undergo more than one phase transitions. An example is barium
titanate.

In ferroelectric materials, especially the polycrystalline ones, the spontaneous
polarization is not aligned in an uniform way along the whole crystal. In fact, there
exist regions in which the net polarization vector points to a specific direction,
which is not necessarily the same of the neighbouring regions. Between two domains,
there is the domain wall. Inside the ferroelectric, the spontaneous polarization
leads to the generation of a surface charge, and thus an imbalance inside the
material. This imbalance produces an electric field, called the depolarizing field
Ed, which is oriented in the opposite direction of Ps. The reason for the creation
of the domains relies in the minimization of the electrostatic energy of depolarizing
fields. In fact, when Ed is strong (i.e. of the order of MV/cm2), the single domain
state is energetically unfavourable. In this case the energy is minimized when the
polarization of the neighbouring domains is oppositely oriented. The splitting into
ferroelectric domains may also be caused by a mechanical stress.

In real materials, since there exist a complex set of mechanical and electric
boundary conditions at each grain, there is the splitting into many domains. Due
to this effect, the net polarization across the material may be null, leading to the
loss of piezoelectric and ferroelectric properties. In order to reorient domains and
have a non-zero polarization, the material is poled. The poling process consists of
applying strong electric fields , usually at high temperatures. The effect of poling
is shown in Fig. 1.9. A single crystal that contains only one domain is said to be
in a monodomain state. This particular state can also be achieved by poling.

1.5.2 Ferroelectric hysteresis
As previously introduced, a ferroelectric material possesses two stable states of
polarization. Contrarily to piezoelectricity, which is modelized as a linear phe-
nomenon, ferroelectricity is highly non-linear, and shows hysteresis. The two
hysteretic behaviour regard the P vs. E and the S vs E curves, where S is the
strain. This behaviour originates from the material domain-wall switching.

Let’s start with the description of the Polarization vs. Electric field characteristic,
which is shown in Fig 1.10.

Starting from a non-poled ferroelectric, for small AC electric fields, the polariza-
tion increases linearly with E following the piezoelectric equations, as it can be seen
in the figure from point A to B. In this case the field is not strong enough to switch
the ferroelectric domains. With increasing field, the domains start switching and
rapidly increasing the polarization. As it can be observed, the behavior is not linear
anymore, and the piezoelectric equations are no longer valid. This corresponds
to the curve from B to C. When all the domains have switched, the polarization

17



Introduction

saturates and the curve becomes linear again (segment CD). The intercept between
the linear extrapolation of CD and the y-axis is called saturation polarization PS.
When the field starts decreasing, some domains switch again, but now, at zero field,
the polarization is different from zero. Its value is called remnant polarization Pr.
In order to bring the polarization to zero the field has to be furtherly decreased
up to the coercive field −Ec (EF on the curve). Then, the same thing as before
happens for the opposite switching state. In an ideal curve, the positive and
negative coercive fields and polarizations are the same, i.e. |Ec| = | − Ec| and
|Pr| = | − Pr|, respectively. This is not the case for real materials, for which those
values are affected by several factors such as the thickness, the aging, the presence
of mechanical stresses.

Concerning the Stress vs. Electric field curve, a simplified version is shown
in Fig. 1.11a. As it can be observed, at zero electric field the strain (or the
displacement) is zero. Then, the field is applied in the direction of the spontaneous
polarization, and the material deforms linearly according to the piezoelectric
equations (AB and BC) up to the maximum point of deformation (C). Then, the
field starts decreasing but still being parallel to the spontaneous polarization. The
response keeeps being linear going from C to A, where the strain becomes null.
Then the field is reversed, and has direction opposed to the polarization. For small
values of E the response is a linear contraction of the material. Nevertheless, when
the field is high enough, it starts switching the ferroelectric domains (D). When

Figure 1.9: Showcase of the effect of the poling process. As it can be observed,
before poling the ferroelectric domain are all oriented in random ways, leading to a
net zero polarization. On the other hand, after the process, the domains have the
polarization oriented in a specific direction, restoring the ferroelectric properties of
the material. The figure is taken from [16]
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the polarization reversal is completed, the latter returns parallel to the field and
the strain abruptly changes polarity (E) and goes up to the point of maximum
deformation (F). Then the field starts increasing and the same behavior of C-F is
repeated in F-C. As can be observed, contrarily to the Polarization characteristics,
there is no spontaneous strain in an ideal case. Nonetheless, in a real case such as
the one of Fig. 1.11b, small deviation of the point A from zero strain origin due to
fields inside the ferroelectric.

Figure 1.10: Example of a P vs. E hysteresis curve in ferroelectric materials.
The coercive fields, saturation and remnant polarization are shown. The insets
show the switching state inside the ferroelectric. The figure is taken from [16]
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Figure 1.11: a) Simplified version of a S vs. E curve (butterfly curve) for a
ferroelectric material. The figure is taken from [16] and b) real experimental curve
of a 500 nm thick ScAlN ferroelectric capacitor.
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Chapter 2

ScAlN Cross-sectional
Lame’ Mode resonators

2.1 Introduction
Nowadays, the MEMS resonator market is dominated by AlN FBARs (Fig. 2.1).
The advantage of this kind of resonators relies in their high quality factor Q and
electromechanical coupling coefficient k2

t . As shown in Fig. 2.1a, an FBAR consists
of a sputtered piezoelectric layer sandwiched between a top and a bottom electrode
[17]. The mode of vibration is the Lamb Wave S1 mode, characterized by vibration
along the vertical dimension which takes advantage from the e33 piezoelectric
coefficient, whose value for AlN is 1.55 C/m2. The mode shape in Fig. 2.2a shows a
minimum of the displacement at the center of the thickness and two maxima at the

Figure 2.1: a) Simple view of an FBAR. As it can be observed, it is characterized
by the presence of a piezoelectric thin film sandwiched between two metal electrodes,
which act as terminals, b) commercial filter made up of seven FBARs, made by
Broadcom, the biggest player in the MEMS resonator industry.
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extreme points. Fig. 2.2b shows the stress distribution. It can be noticed that the
points of maximum displacement correspond to the ones of minimum stress and
vice versa. Although FBARs show great performances, they lack in easy tuning
of the resonant frequency on the wafer. In fact, the resonant frequency of such
resonators is:

fres = 1
2h ·

ó
C33

ρ
(2.1)

where h is the piezoelectric thickness, C33 is the involved stiffness coefficient, ρ
is the density of the film. So, once the film thickness has been chosen, the resonant
frequency is set. But, as shown in Sect. 1.4, since the filters made with microacoustic

Figure 2.2: COMSOL® simulation of an FBAR device, showing a) the displace-
ment and b) the stress distribution.
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resonators need their building blocks to have different resonances, a way to tune
them must be found. For FBARs it is not that trivial, and the fabrication process
has to be complicated by introducing mass loading or trimming. The first is
accomplished by depositing more metal, the latter by removing some. Fig. 2.3
shows how the resonance of an FBAR is modified by those effects. In particular,
an FBAR with 500 nm thick electrodes is simulated using a 2D COMSOL® model.
Then, 300 nm are removed or added in order to reproduce the trimming and
mass loading conditions, respectively. The electrode material is Al, which is a
’light’ metal. In the case of a heavy metal, the frequency shift would be much
higher. Concerning the fabrication process of commercial FBARs, it has reached a
complexity level such that it consists of more than twenty lithographic masks, with
mass loading and trimming with a resolution of Å.
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Figure 2.3: COMSOL® simulation of FBARs. They consist of a 10 µm thick AlN
film and they have 500 nm of Al on top and on bottom (blue curve). In order to
show the frequency tunability allowed by mass loading and trimming, keeping the
thickness of the bottom electrode constant, 300 nm have been selectively (red curve)
removed, increasing the resonant frequency and (yellow curve) added, decreasing it.
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The difficulty in tuning the resonant frequency has been overcome by another
resonator topology: the Contour Mode Resonator (CMR). CMRs rely on the
S0 Lamb-Wave mode, which exploits the vertical field (as FBARs) but have the
displacement in the lateral direction. Their simplest geometry is the same as the
one of the FBAR, and is shown in Fig. 2.4a-b. The resonant frequency is given by:

fres = 1
2W ·

ó
C11

ρ
(2.2)

where W is the width of the piezoelectric plate and C11 is the stiffness coefficient
involved. As mentioned in [18], in order to scale the device to higher frequency,
there is just the need to reduce the width. The problem here is the lowering of
the static capacitance C0, which tends to become too small and does not allow
the 50Ω-matching required to transfer the maximum power of the generator to
the device and minimize the signal reflection from the load. The solution to this
was found in the mechanical coupling of a number N of CMRs whose width has
been reduced enough to make them work at the desired frequency (Fig. 2.4c).
Doing so, an higher-order mode is excited at the same frequency, and the C0 is

Figure 2.4: COMSOL® simulation of CMRs. In a) and b) the geometry is the
same of FBARs, but the mode shape is different, having displacement in the lateral
direction. a) shows the displacement, while b) the stress distribution. On the
contrary, c) shows the structure presented in [18], in which a number N of CMRs
is mechanically coupled in order to set the desired static capacitance C0.
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the sum of all the C0 of the resonators. Despite the very convenient tunability of
the resonant frequency, which can be lithographically set (Eq. 2.2), CMRs lack
in k2

t . In particular, they rely on the e31 piezoelectric coefficient, whose value
for AlN is -0.58 C/m2, with a modulus that is about one third of the one of e33.
This lower coefficient sets a physical limit to CMRs, which cannot attain the same
electromechanical (EM) coupling of FBARs.

In order to combine the two strength points of the aforementioned resonators,
a new class was introduced in 2016, the Cross-Sectional Lame’-mode Resonator
(CLMR) [12].

2.2 Cross-sectional Lame’ Mode Resonator
The Cross-sectional Lame’ Mode Resonator takes advantage of both the e31 and
e33 coefficients to transduce resonant vibration. In particular, under certain as-
sumptions, the S0 and S1 modes couple, generating a two-dimensional mode of
vibration, along both the thickness and the width. The mode shape and the stress
distribution of a CLMR at resonance can be seen in Fig. 2.5a-b. It can be observed
that, as in the case of an FBAR, along the thickness there are two maxima and
a minimum of displacement while, as in a CMR, there is no displacement under
the electrode while the maximum is in the uncovered region. As a CMR, a higher

Figure 2.5: COMSOL® simulation CLMRs showing a) the displacement and b)
the stress field.
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order CLMR utilizes Interdigitated transducers (IDT) to excite the mode and set
the desired C0.

Let’s now define the physics behind a Cross-Sectional Lame’ Mode (CLM) of
the first order. In [12], the fundamental equations are derived starting from the
ones of the motion in a solid, using the theory of Lamb Waves in an AlN plate. The
particularity of this mode is that it is two-dimensional and therefore shows same
peak-to-peak displacements along the thickness (æµz) and the width (æµx) direction.
Given βz and βx the wave-vectors relative to the motion along the z and x direction:

Cæµxæµz
D

=
C
cos(βxx)sin(βzz)
−sin(βxx)cos(βzz)

D
(2.3)

The two equations of motion describing the displacement distribution in an AlN
plate are:

C11
d2µx
dx2 + C55

d2µx
dz2 + 2C15

d2µx
dxdz

+ (C55 + C13) d
2µz
dxdz

= (2πfres)2ρ µx (2.4)

C15
d2µx
dx2 + C55

d2µz
dz2 + C33

d2µz
dz2 + (C55 + C13) d

2µx
dxdz

= (2πfres)2ρ µz (2.5)

where the Cij are the stiffness coefficients, and ρ the mass density. If one
substitutes to µx and µz the æµx and æµz of Eq. (2.3), Eqs. (2.4-2.5) are simplified
to:

C11β
2
x − (C55 + C13)βxβz + C55β

2
z = (2πfres)2ρ (2.6)

C33β
2
z − (C55 + C13)βxβz + C55β

2
x = (2πfres)2ρ (2.7)

This system of equations gives four possible sets of βx and βz, but only one has
physical sense, i.e. the one having both the wave-vectors with positive values. In
particular, their expression is:

æβx =

öõõô Bρ(2πfres)2

C11C33 − C2
55 +
√
AB

(2.8)

æβz = æβx
ó
C11 − C55

C33 − C55
(2.9)

26



ScAlN Cross-sectional Lame’ Mode resonators

where A = (C11 − C55)(C13 + C55)2 and B = (C33 − C55). Concerning the
boundary conditions, all the sides of the CLMR can be considered as stress-free.
This means that the wave-vectors have to satisfy the following equations:

æβx = n× π
W

(2.10)

æβz = m× π
h

(2.11)

In the equations above, n and m set the mode number regarding the x and
z directions, respectively. The resonant frequency can be found by substituting
Eq. (2.10) into Eq. (2.8):

fres = 1
λx

öõõõôC11C33 − C2
55 − (C31 + C55)

ñ
(C11 − C55)(C33 − C55)

(C33 − C55)ρ (2.12)

where λx = 2π/βx. This equation states that the resonant frequency can
be tuned by changing the horizontal acoustic wavelength. Finally, by replacing
Eqs. (2.10-2.11) into Eq. (2.9), the ratio of λx and h that allows a CLM to generate
into the piezoelectric plate is obtained:

λx
h

= 2
ó
C11 − C55

C33 − C55
(2.13)

This condition assures that the phase velocity of the longitudinal and transverse
waves are the same. This equation must be strictly satisfied if one wants to obtain
a non-degenerate CLM. What distinguishes a degenerate from a non-degenerate
CLM is the value of electromechanical coupling (k2

t ) which can be attained. In the
second case it will be higher. The k2

t is defined as:

k2
t = π2

8
f 2
p − f 2

s

f 2
s

= π2

8
Cm
C0

(2.14)

where fs and fp are the series and parallel resonant frequencies, respectively, and
Cm and C0 are the motional and static capacitance of the resonator, respectively.
Thus, the k2

t is a measure of how much energy is transduced from the electrical to
the mechanical domain, or vice versa. Doing a theoretical analysis, it makes sense to
introduce the piezoelectric coupling constant K2, whose value gives the maximum
k2
t attainable for a specific vibration mode. Since a CLMR is characterized by the

coupling of modes along two different directions, the overall K2 will depend on the
coupling of both of them, i.e. it will have two components originated by the motion
along the thickness (K2

z ) and the width (K2
x), respectively. Those components can
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be calculated with the aid of the Christoffel’s equations [12], which lead to the
coefficients K2

Chr[x] and K2
Chr[z]. In particular, the resulting coupling constant will

have the form:

K2
CLM = 2

π
(K2

Chr[x] +K2
Chr[z]) = 7.1% (2.15)

where:

K2
Chr[x] = e2

31
ε Clat

(2.16)

K2
Chr[z] = e2

33
ε Cthic

(2.17)

where Clat and Cthic are the equivalent stiffness constants of the two vibrational
modes constituting a CLM, and have the expression:

Clat =
C11C33 − C2

55 − (C13 + C55)
ñ

(C11 − C55)(C33 − C55)
C33 − C55

= 320GPa (2.18)

Cthic = Clat
C33 − C55

C11 − C55
= 300GPa (2.19)

The values shown are intended for AlN. As previously mentioned, in order to
obtain the desired value of static capacitance, higher order modes are exploited
through the use of IDTs. In [12], two CLMR configurations are described: the
double-IDT or Thickness Field Excited (TFE) and the single-IDT or Lateral Field
Excited (LFE) CLMR (Fig. 2.6a-b). The first is the one that allows to attain the
highest EM coupling coefficient values, since it can count on an electric field both
in the lateral and thickness direction. The drawback is the fabrication complexity:
this device requires at least four lithographic masks. The second one trades-off k2

t

in favour of a simpler fabrication, which consists of two masks. The reason for the
smaller coupling lies in the presence of only the lateral component of the electric
field. In [19], other common Lamb-Wave resonator topologies are shown. From it, I
included in the topologies under study one more, which I called Bottom Electrode
(BE) CLMR (Fig. 2.6c). This structure has been used for CMRs [20] but not for
CLMRs. It consists of a LFE CLMR with a floating BE, and shows higher k2

t

values compared to the LFE one. The reason is found in the BE, which provides a
double-way path for the electric field in the thickness direction. The fabrication
complexity is higher compared to the LFE, but lower than the one of the TFE,
consisting of three lithographic masks. Nevertheless, avoiding a mask would not
justify the degradation of EM coupling that can be observed. The advantage of this
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topology relies on the fact that, being the BE continuous under the resonator plate,
the piezoelectric thin film will grow on top of it with a better quality, meaning that
there will be no degradation of the piezoelectric coefficients. The same thing does
not happen for the patterned bottom electrode of the TFE CLMR.

2.3 Transducer design
In [19], great focus is given to the metallic IDTs, i.e. the transducer. Their design
has a great impact on the final performances of the resonator. There are multiple
degrees of freedom in the design of an IDT: the material choice, the thickness,
the pitch and the metallization ratio. The choice of the material impacts the
resonant frequency, the EM coupling and the quality factor (Q). In the present
work, Aluminum (Al), Platinum (Pt), Molybdenum (Mo) and Tungsten (W) have
been taken into consideration and studied. Different metals have different densities,
therefore a different impact on the resonator performances. In particular, high
density metals (e.g. Pt, W) shift the resonant frequency due to an enhanced mass
loading. What physically happens is that, being the metal heavy, it strains the
piezoelectric film generating charges inside it, which shift the resonant frequency to
lower values. Concerning the impact on the k2

t , it was shown in [19] that metallic

Figure 2.6: Investigated CLMR topologies: a) TFE b) LFE and c) BE CLMR.
For each configuration, the terminal scheme is shown, together with the geometrical
dimensions.
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electrodes strengthen the resonant mode, i.e. they increase the EM coupling. In
particular, the increase is proportional to the difference in acoustic impedance
between the piezoelectric film and the metal, where the acoustic impedance is
defined as the opposition of a certain material to the acoustic flow passing through
it, and is quantified by the expression:

Z =
ñ
ρ× E (2.20)

Al Pt Mo W
Density, ρ [kg/m3] 2700 21450 10200 19350
Young’s Modulus, E [GPa] 70 168 312 411
Acoustic impedance, Z [MPa·s/m3] 13.7 60 56.4 89.2
Resistivity, ρr [nΩ ·m] 28.2 112 53.4 56

Table 2.1: Density, Young’s Modulus, Acoustic Impedance and Resistivity of the
studied metals.

where E is the Young’s modulus of the metal or the equivalent stiffness coefficient
of the piezoelectric film in the motion direction. The densities (ρ), Young’s modulii
(E) and acoustic impedances (Z) of the metals taken into consideration are listed in
Table 2.1. From it, the higher k2

t values are expected with W as electrode material.
Nevertheless, the electrode metal has an impact also on the Q through the electrical
loading. This is a loss mechanism due to the finite resistivity of the material, for
which part of the energy is dissipated in the electrode through Joule effect. Also
the values of resistivity are shown in Table 2.1 for the considered materials.

Concerning the thickness, it impacts the resonant frequency through mass
loading, i.e. a thicker metal will weight more on the piezoelectric film, and the
EM coupling. In [19] it is shown how a thicker metal will increase the k2

t due to a
stiffening effect of the piezo-layer. On the other hand, it can be shown that thicker
metals tend to shift the stress field from the resonator body into the electrodes
which, being piezoelectric-dead cannot transduce it [21]. This effect is shown in
Fig. 2.7, in which the Von Mises Stress can be seen to progressively shift the
distribution inside the electrodes of a TFE CLMR as their thickness increases.
Therefore, there exist an optimal thickness which provides a trade-off between the
aforementioned effects and maximizes the k2

t .
The pitch has a strong impact on the resonant frequency, the static capacitance

and the EM coupling. In a CLMR, the pitch (p) is defined as half the horizontal
acoustic wavelength, therefore changing it changes the λx and shifts the resonant
frequency according to Eq. (2.12). Moreover, the smaller the pitch, the higher
the static capacitance per unit cell of the CLMR. During my work, I developed a
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simple model to have an estimation of the static capacitance of different topologies
of CLMR, and it is shown in Appendix A. Anyway, it can be intuitively observed
that, since the metal electrodes behave like the plates of a capacitor, the closer they
are to each other, the higher is the resulting value of the capacitance between them.
Concerning the impact on the EM coupling, it has been previously shown that the
relation between the piezoelectric thickness h and the acoustic wavelength λx in
order to have a non-degenerate CLM must strictly obey Eq. (2.13). Nevertheless,
that equation is defined for simple piezoelectric layer, and does not take into
account the presence and the mass loading of the metallic electrodes. In particular,
they tend to shift the optimal ratio to lower values of h/λx, and the effect is more
marked in the TFE CLMR case due to the presence of two IDTs.

Finally, the metallization ratio (α) is defined as the ratio between the metallized
region of a pitch and the pitch itself. It impacts the resonant frequency, the
static capacitance, the quality factor and the EM coupling. The first is shifted to
slightly lower or higher values due to a change in the effective acoustic velocity
of the propagating wave made by the metal. The variation of the second is due
to an increase or decrease of the distance between the electrodes if α decreases or

Figure 2.7: Von Mises Stress distribution inside a TFE CLMR with W electrodes
as its thickness increases. It is clearly visible that the points with higher values
tend to shift inside the metal, thus reducing the overall EM coupling. The figure
has been obtained using Finite Element Analysis with COMSOL®.
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increases, respectively. The Q is impacted by electrical loading in the sense that
narrower electrodes will provide a higher resistance than wider ones.
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Figure 2.8: Scaling of mechanical (C), piezoelectric (d, e) and dielectric (εr)
properties of ScAlN with dopant concentration ranging from 0 to 0.4. The plots
are based on the ab-initio equations derived in [22].
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2.4 Scandium doping of CLMRs
One of the main goals of this section on CLMRs, is the study of the impact of
Sc-doping of the AlN film. Sc-doping has proven to be effective in increasing the
k2
t of FBARs and CMRs [20]. Even if CLMRs made of ScAlN have already been

reported in literature [20][21], a systematic study of the change in performances for
different topologies and different electrode materials with the Sc-doping level is
not present. As previously shown, the doping of AlN has impact on its mechanical,
dielectric and piezoelectric behaviour. In [22], ab-initio equations for the stiffness
and piezoelectric coefficient and for the dielectric permittivity are derived from
the density functional theory and Berry-phase theory. Fig. 2.8a-d shows how the
aforementioned quantities vary with Sc percentage going from 0 to 40%, while
Table 2.2 lists the differences between the material constants of AlN and of ScAlN
at 0%. As it can be observed, they are really close. Higher doping values are not
taken into account since when doping is too high, ScAlN ceases to be piezoelectric
and becomes a non-polar rock salt.

C11 [GPa] C12 [GPa] C13 [GPa] C33 [GPa] C44 [GPa]
AlN 410 149 99 389 125
0% ScAlN 410.2 142.4 110.1 385 122.9

C66 [GPa] e31 [C/m2] e33 [C/m2] e15 [C/m2] εr

AlN 130.5 -0.58 1.55 -0.48 9
0% ScAlN 133.9 -0.63 1.46 -0.39 9.37

Table 2.2: Comparison between the material constants of AlN and of ScAlN at
0% doping.

The graphs of Fig. 2.8 show the softening effect due to doping (a), the increase
of the modulus of the piezoelectric coefficients (b-c) and the increase in dielectric
constant (d). The combination of these effects results in an increased EM coupling.
The change in the stiffness C coefficients reflects in a change in the equivalent
stiffness constants of the CLM, described in Eqs. (2.18-2.19). Their behaviour with
respect to Sc-doping is shown in Fig. 2.9a. As it can be observed, both undergo an
effective softening. These constants, together with the piezoelectric coefficients e31
and e33, appear in the equation of the K2, thus modifying it. Its variation is shown
in Fig. 2.9b. As it can be observed, it reaches the astonishing value of 40%. To
make CLMRs even more interesting to study, in [23] it was demonstrated how those
resonators are able to attain higher values of EM coupling with respect to FBARs
at 40% Sc. The reason can be found not in the presence of the e31 piezoelectric
coefficient, but on the higher softening of the vertical equivalent stiffness constant
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Cthic, which gets impacted more than the C33 of FBARs.
Concerning the resonant frequency of devices in ScAlN in general, it is shifted to

lower values due to the softening effect. Fig. 2.10a depicts the percentile reduction
of fres with the Sc-doping concentration with respect to the frequency of a CLMR
in pure AlN, obtained by varying the Sc percentage in Eq. (2.12). The same
procedure has been used on Eq. (2.13), obtaining the optimal h/λx for the different
doping levels. As it can be observed in Fig. 2.10b, this optimum shifts from about
0.5 of pure AlN to 0.33 of 40% doped ScAlN. As it will be observed in the next
paragraph, this effect is almost negligible compared to the one induced by the
mass-loading of the metal electrodes.

2.5 Simulation of CLMRs
2.5.1 2D simulations
A study of the impact of different metal electrode materials, dimensions and Sc
concentration has been carried out during the present work for the three topologies
of TFE, LFE and BE CLMR. The study has been carried on through Finite Element
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Cthic) with the Sc concentration, b) variation of the piezoelectric coupling constant
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CLM) with Sc-doping.
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Analysis (FEA) by the use of COMSOL® 2D models. The employed physics was
Piezoelectricity, and the study was a Frequency Domain one. The structures
under study are shown in Fig. 2.6a-c. An infinite number of IDT fingers has been
simulated by applying Periodic Boundary Conditions (PBC) at the resonators edges
both in the Electrostatics and Solid Mechanics modules. In this way, edge effects
are not taken into account. Fig. 2.6a-c also show the electrical boundary conditions
applied to generate the Terminal (+) and Ground (-). To take into account the
changes in the material properties of AlN due to the adding of Sc atoms, a new
custom material (ScAlN) has been introduced. The values of the elements of the
stiffness, piezoelectric and dielectric matrices are based on the ab-initio equation
found in [22]. In this way, by simply changing a single variable, namely the doping
level x, values from 0 to 0.4 of Sc percentage were simulated.

Concerning the geometry of the resonators, in order to make them scalable in
frequency, every parameter has been written as function of the horizontal acoustic
wavelength λx. This includes the thicknesses piezoelectric layer (hScAlN), of the
IDTs (tIDT , ttop, tbot) and of the bottom electrode (tBE). As a demonstration of the
scalability, Fig. 2.11a-b shows the admittance (Y11) as function of the frequency
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f for a TFE CLMR with (a) λx = 8µm and (b) with λx = 2µm. As it can be
observed, in the second case, being the wavelength one quarter of the first case,
the resonant frequency is four times higher, according to Eq. 2.12. The k2

t is the
same for the two devices.

The first study consisted in finding the hScAlN/λx ratio that allows to obtain the
highest k2

t for the different electrode material and the different topologies of CLMRs
at 0% Sc. Recalling that, on pure AlN without the IDTs, the optimal ratio should
be almost 0.5, when the electrodes are introduced, their mass loading shifts the
optimum to lower levels. A similar analysis was found for Lamb-Wave resonators
in [19]. A λx of 8µm was considered, and the thickness of the piezoelectric layer
swept from 0.08λx to 0.5λx in the case of the TFE CLMR, and from 0.2λx to 0.6λx
in the other cases. The EM coupling was then extracted from the obtained Y11 vs.
f curves using the formula of Eq. (2.14). Fig. 2.12a-c show the curves of k2

t vs.
hScAlN/λx for TFE, LFE and BE CLMRs, respectively, for W, Pt, Al and Mo as
electrode materials. A thickness tIDT = 0.04λx and tBE = 0.02λx was considered
as benchmark. As it can be observed, the optimal values are far from the 0.5 of the
film without electrodes. Moreover, there exist a correlation between the density of
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Figure 2.11: Comparison of the admittance Y11 vs. frequency f for two ScAlN
TFE CLMR with W electrodes and 20% Sc concentration. The resonator horizontal
acoustic wavelength λx is a) 8µm and b) 2µm, which inserts the resonant frequencies
in the Ultra High Frequency (UHF) and Super High Frequency (SHF) ranges,
respectively. As it can be observed from the fres in the insets, its value in b) is
exactly four times the one in a). The k2

t is precisely the same.
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the metal and the shift of the optimal ratio. In particular, the denser the metal,
the greater the shift. Additionally, also the specific topology has an impact, e.g.
the ratio that maximizes the EM coupling is lower in the case of the TFE CLMR
with respect to the LFE one. The reason is the presence of the double IDT that
introduces more mass loading than a single one. The best metal proves to be W,
and it was the expected result since among them is the one which has a higher
mismatch in acoustic impedance with ScAlN. Finally, the curves in Fig. 2.12a-c
also show the capability of CLMRs of tuning the resonant frequency: different
hScAlN/λx ratios mean different fres, and from the graphs it is clear that there
exist a window of values which allows to attain high EM coupling. Therefore, on a
wafer, simply by changing the wavelength, the frequency is shifted without major
degradation of k2

t .
Up to now, a random thickness of the electrodes has been considered. In order to

optimize the devices performances, the best thicknesses must be found. Therefore,
using the same method of the previous study, the k2

t vs. hScAlN/λx curves have
been extracted for the aforementioned materials for tIDT/λx ranging from 0.02
to 0.12. For the case of the BE CLMR, once the best tIDT was found, tBE was
swept from 0.01λx to 0.06λx. The results are shown in Fig. 2.13a-b for the TFE
and LFE CLMR, respectively, and in Fig.2.13c-d for the BE one. The electrode
material is W and has been chosen as a benchmark. The curves for the other
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Figure 2.12: k2
t vs. hScAlN/λx curves for the structures of TFE (a), LFE (b) and

BE CLMR (c). The wavelength is 8µm, the IDT thickness tIDT is set to be 0.04λx
and the one of the BE is 0.02λx. The doping level is 0%. The presence of a single
maximum means that only a specific ratio creates a non-degenerate CLM. In b)
the Pt case has two peaks, but it is just the effect of a spurious mode close to the
resonance induced by the electrodes that reduces the EM coupling for some ratios.
As it can be observed, the value of the optimal ratio is different from 0.5.
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materials are similar. What can be observed is that, according to what stated in
Section 2.3, increasing the metal thickness stiffens the piezoelectric increasing the
EM coupling up to a maximum, from which it decreases due to the shifting of the
stress field from the plate into the metal. In Fig. 2.14-c the curves of EM coupling
vs. hScAlN/λx taken for the devices with the optimized geometry are shown for the
TFE, LFE and BE CLMR topology, respectively. The values of tIDT and tBE for
the best case of each material and topology are listed in Table 2.3.

TFE CLMR LFE CLMR BE CLMR
tIDT [λx] tIDT [λx] tIDT [λx] tBE [λx]

Al 0.08 0.1 0.1 0.02
Pt 0.04 0.04 0.04 0.01
Mo 0.06 0.1 0.1 0.02
W 0.04 0.08 0.06 0.02

Table 2.3: Values of IDT and BE thickness for the various electrode materials
that allow to obtain the k2

t vs. hScAlN/λx curves with the highest EM coupling
coefficients. For the LFE and BE case, when using Pt as electrode material, the
metallization ratio α has been changed to 0.35 and 0.3, respectively, in order to shift
a spurious mode due to the electrodes out of the frequency range of interest. This
is the reason why the curves for the LFE CLMR with Pt electrodes of Figs. 2.12
and 2.14 are different.

The metallization ratio α has an effect on the wave propagation. In particular,
it changes the waves phase velocity due to a different alternation of metallized
and non-metallized regions. Moreover, an effect similar to the one of the IDT
thickness can be observed: increasing the metallization ratio increases the k2

t due to
a better reflection of the waves by the electrodes which more efficiently confine the
displacement field inside the piezoelectric plate [19]. Nevertheless, higher α values
tend to shift the stress field from the plate in the electrode, thus reducing the EM
coupling. In order to find the best metallization ratio, α has been swept from 0.2
to 0.8 for the various materials, and the results are shown in Fig. 2.15. The TFE
CLMR structure has been chosen as a showcase. The IDT and piezoelectric film
thickness for each material is the optimal one obtained from the previous analysis.
As it can be observed, there exist a single optimal value, i.e. α = 0.5. This result
is different from the one of [19], in which the authors found 0.55 as optimum. The
reason for the mismatch may be found in the slightly different material constants
(Cij, dij and εr) used in the analysis.

Using the optimized geometries, ScAlN CLMRs were simulated at different
concentrations up to 40% in order to study the impact of doping. Fig. 2.16a-c
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shows the k2
t vs. hScAlN/λx curves for TFE, LFE and BE CLMRs with W electrodes

for different Sc percentages, namely 0, 20 and 40%. The k2
t is notably increased

with increasing doping level showing a non-linear trend. The optimal hScAlN/λx
ratio at high Sc percentage is shifted to slightly lower values with respect to lower
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Figure 2.13: k2
t vs. hScAlN/λx curves for the structures of TFE (a), LFE (b) and

BE CLMR (c-d) for different IDT and BE thicknesses with W electrodes. The
curves show the optimization step followed in the study of the best IDT and BE
thickness for the various topologies. Figures a)-c) show the optimization of the
IDTs, while in d), once found the best thickness of the electrodes for the BE CLMR,
the BE has been swept to find the optimal value.
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doping. This agrees to what stated in Section 2.4. Nevertheless, it has to be
pointed out that the reduction is very small compared to the effect of the metal.
In the case of Al, which is lighter, the effect is more marked. To complete the
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Figure 2.14: k2
t vs. hScAlN/λx curves for the structures of TFE (a), LFE (b) and

BE CLMR (c) obtained using the optimized geometries. The values of tIDT and of
tBE as function of λx are listed in Table 2.3.
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analysis, the curves of k2
t vs. hScAlN/λx for a Sc concentration of 40% are shown in

Fig. 2.17a-c for the various electrode materials and topologies. The geometrical
parameters are the optimal ones obtained in the analysis for 0% Sc concentration.
In order to be able to better compare the results, in Table 2.4 the maximum k2

t for
the best cases of 0% and 40% are listed. Recalling that commercial FBAR can rely
on a k2

t of 7-8%, the obtained results have the potentiality of opening a lot of new
application in the field of RF MEMS.

TFE CLMR LFE CLMR BE CLMR
max k2

t [%] 0% Sc 40% Sc 0% Sc 40% Sc 0% Sc 40% Sc
Al 5.8 30.2 2.8 12.2 3.6 20.8
Pt 7.2 35.4 3.6 14.8 4.6 23.5
Mo 7.6 36.1 3.7 15 5.1 25.8
W 8.1 36.2 3.8 14.5 5.4 26.2

Table 2.4: Comparison of the best EM coupling coefficients for the TFE, LFE
and BE CLMRs for 0% and 40% Sc doping.

From the graphs in Fig. 2.14 and 2.17, it is clear that W is the electrode material
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Figure 2.16: k2
t vs. hScAlN/λx curves for the structures of TFE (a), LFE (b) and

BE CLMR (c) for different Sc concentrations, namely 0, 20 and 40%. The electrode
material is W. The curves clearly show the k2

t boost introduced by the Sc-doping.
The increase in EM coupling is non-linear with the dopant concentration. The
maximum of each curve is highlighted.
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which allows to attain the highest EM coupling coefficients. Nevertheless, the
lattice of the sputtered W and its poor surface roughness prevent the growth of
high quality, highly oriented (Sc)AlN crystallites. This results in a piezoelectric
film with lower net d31 and d33 coefficients. For these reasons, AlN films are grown
preferentially on Mo, Pt and Gold (Au) [24]. Moreover, W high resistivity creates
higher degradation of the quality factor with respect to other metal choices due to
electrical loading. Therefore, it is not the most desired choice for the top electrode,
either. In order to impact as less as possible the quality factor, Al can be used.
In cases like this, the best choice may be a combination of different metals for
the top and bottom IDTs (or top IDT and BE). In the following, a method to
optimize the thicknesses of the electrodes in the case of the usage of a multi-metal
is established. Using the 2D COMSOL® model, a showcase for the TFE CLMR
is given, but can be easily extended to the BE CLMR case. The top metal is Al,
and the bottom one is Mo. In order to find the best thicknesses, three hScAlN/λx
ratio are chosen, namely 0.2, 0.3 and 0.4. For each of them, the bottom electrode
has been swept from 0.02λx to 0.14λx, with 0.02λx step. For each tbot, the top IDT
thickness ttop has been swept from 0.02λx to 0.2λx. Fig. 2.18a-c show the contour
plots resulting from the aforementioned simulations, where the color shows the
k2
t levels, for ScAlN at 0% doping. As it can be observed, there is the presence

of one absolute maximum of EM coupling for each hScAlN/λx ratio. In order to
make sure that the maxima are the same for highly doped AlN, the same plots
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Figure 2.17: k2
t vs. hScAlN/λx curves for the structures of TFE (a), LFE (b) and

BE CLMR (c) obtained using the optimized geometries. The doping level is 40%.
The values of tIDT and of tBE as function of λx are the same as of the 0% case and
arelisted in Table 2.3.
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have been prepared for 40% Sc concentration, and are shown in Fig. 2.18d-f. It
is straightforward to notice that the maxima of k2

t have a broader window of ttop
and tbot, and the optima of the 0% case are included in the ones of 40%. After
choosing as optimal points the ones with higher EM coupling for the case with
0% doping, two functions, for ttop and tbot, respectively, have been quadratically
fitted for hScAlN/λx ratios ranging from 0.08 to 0.5. The fittings are shown in
Fig 2.19a-b. Fig. 2.20 shows the comparison of two curves of k2

t vs. hScAlN/λx
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Figure 2.18: Contour plots of k2
t vs. ttop and tbot for hScAlN/λx equal to 0.2,

0.3 and 0.4, for a)-c) 0% Sc and d)-f) 40% Sc, showing the optimal geometrical
dimensions.
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for ttop = tbot = 0.02λx and for the thicknesses following the fitting functions of
Fig. 2.19a-b. The improvement in EM coupling is clearly visible. In particular, it
increases from 4.5 to 6.5 in the best case scenario.

2.5.2 3D simulations
With the 2-dimensional approach, the most important geometrical parameters have
been optimized, and their impact on the EM coupling and the resonant frequency
studied. Nevertheless, a 2D model cannot capture the real nature of things, which
are 3-dimensional. An example is the value of the static capacitance C0, which is
dependent on the aperture length, and so on the third dimension. Moreover, there
are a lot of geometrical parameters involved in the design of a resonator which need
to be optimized. Therefore, a more complete 3D model has been developed for
the three topologies, and is shown in Fig. 2.21 for the LFE case, taken as example.
Anyway, the other models are analogous, and the optimization procedure to be
followed is the same. As it can be observed, the model does not only include the
resonator, but also part of the substrate on which it is fabricated. In particular, as
can be observed in Fig. 2.21, it is divided in two regions. The inner region is simply
the substrate surrounding the investigated device, while the outer one consists of a
Perfectly Matched Layer (PML). The PML is an artificial domain such that any
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Figure 2.19: Optimal ttop (a) and tbot (b) values to maximize the k2
t . The black

dots are the points taken from Fig. 2.18a-c, while the dashed line represents the
quadratically fitted function.
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wave impinging on it from a non-PML domain is absorbed and not reflected. In
this way, all the energy that leaks from the resonator through the anchors is lost in
the PML and no reflection is expected. A CLMR consists a suspended piezoelectric
plate able to vibrate and its clamping points are the anchors. The PML represents
an improvement of a model made by simply applying a fixed constrain on the
extremes of the anchors. As in the 2D case, in order to suppress edge effects, PBC
have been applied to both the Electrostatics and Solid Mechanics modules.

The 3D model has been used in order to find the best values and the impact of
the following quantities:

1. Anchor length Lanc.

2. Anchor width Wanc.

3. Bus length Lbus, i.e. the length of the bus of the IDTs, which routes the
electrical signal to the various electrodes.

4. Gap length Lgap, which is the distance between the bus and the active region.
The active region is where the electrodes are interdigitated.

5. IDT length LIDT . The sum of Lgap and LIDT corresponds to the electrode
length Le.
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Figure 2.20: Comparison of two k2
t vs. hScAlN/λx curves for two TFE CLMR

with Al on top and Mo on bottom. The non-optimized case has ttop = tbot = 0.02λx,
while the optimized one has them following the fitting functions of Fig. 2.19a-b.
The EM coupling increase is clearly visible.

45



ScAlN Cross-sectional Lame’ Mode resonators

In order to study the relationship between k2
t , Q, fres and the geometrical

parameters, first of all the latter have been written as function of λx. Secondly,
they have been varied to see the impact on the aforementioned quantities. A λx
of 8 µm has been chosen. Since the 3D analysis is done in order to optimize the
resonators of the experimental plan, its doping conditions and electrode material, i.e.
ScAlN at 30% and Al, respectively, have been used. They refer to the experimental
plan on a 0.5 µm thick ScAlN wafer described in Sect. 2.7. This does not impact
the generality of the study, and the same dimensions obtained for this case can be
(and have also been) applied to other CLMR topologies, other electrode materials
and Sc-doping levels.

The first thing to make sure was the agreement of the 2D and 3D models.
Fig. 2.23 shows the comparison between the resonance curve for two simulated
CLMRs, one in two and the other in three dimensions.

Concerning the IDT length, it has been swept from 2 to 12 λx and its relation
to k2

t and Q have been studied. The quality factor is inversely proportional to
the motional resistance Rm. That quantity has been extracted from the resonance
curves as the reciprocal of the real part of Y11 at the resonant frequency, i.e. the
frequency at which the motional capacitance and inductance cancel out each other’s

Figure 2.21: 3D COMSOL® model of a LFE CLMR, including the substrate and
the PML.
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effect on the admittance. Fig. 2.24a shows the k2
t and the Rm as function of the IDT

length. As can be observed, longer the IDT, lower the resistance. The EM coupling
coefficient has an oscillatory behaviour, probably due to the shifting of spurious

Figure 2.22: Closer look at the 3D model of the LFE CLMR. The relevant
dimensions are shown.
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model. In order to better compare the responses, the C0 of the first has been
reduced to match the latter, and the frequency has been slightly increased. As it
can be observed, the k2

t is the same.
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modes inside the resonance, but shows an increasing trend with the IDT length.
Nevertheless, the simulation does not take into account the electrical loading, which
increases with the IDT longitudinal dimension.

In opposition to the active interdigitated part of the resonator, the gap and
the bus together constitute the inactive region, i.e. the region not directly put in
motion by the applied electric field. In [25], it is shown that the quality factor can
be maximized by having the inactive region length equal to an odd multiple of
λx/4. In this way, that portion of the resonator behaves like a λ/4 transformer,
and changes the stress-free boundaries at the edges of the plate to fixed boundaries
at the limits of the active region. The result is a minimization of the energy lost
through the anchors, and therefore, a maximization of the Q. Nevertheless, there
is still the need to understand the impact of a wider or narrower odd multiple of
λx/4 inactive region. What has been observed is that, smaller the region, smaller
is the impact of spurious resonances between the fs and fp of the CLM. This fact
can be observed in Fig. 2.24b. In the case of Linactive = Lgap + Lbus = λx/4, the k2

t ,
i.e. the distance in frequency between fs and fp seems lower. That is an apparent
effect. In fact, in the other cases, the anti-resonance of the CLM is pushed to
higher values due to the presence of the spurious modes, but the real EM coupling
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Figure 2.24: a) Behaviour of the motional resistance Rm (left) and of the k2
t

(right) vs. the IDT length and b) showcase of the suppression of the spurious modes
between fs and fp of the CLM due to the reduction of the inactive region length.
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coefficient is not higher.
Concerning the anchors, in [26] an equation relating the quality factor to their

geometrical dimensions is derived:

Qanc = 2π(1− ν2)2L

ν2[Wanc + λx

2πsin(2πWanc

λx
)]

(2.21)

where ν is the Poisson’s ratio of (Sc)AlN in the plane of the film and L is the
resonator length. The first thing to notice is that the anchor length does not
appear in the equation, therefore it does not impact the Q. Secondly, it can be
straightforwardly noticed that the wider the anchors, the lower the Q. Therefore,
the fully-anchored resonator configuration, i.e. when Wanc = Wres, proves to be
worse than the one with one or multiple thinner anchors. Moreover, a reduction of
the k2

t was observed in the first case. Concerning the anchor length, it has impact
on the resonant frequency, making the suspended plate more or less compliant
according to the actual value.

In the next sections, two experimental plans are described in details, one for
AlN as piezoelectric material (Sect. 2.6), and one using ScAlN (Sect. 2.7).

2.6 AlN experimental plan
As previously introduced, the first experimental design has been done on AlN.
Unlike the design of the ScAlN plan, which was made on a wafer onto which the
piezoelectric film had already been deposited, in this case the deposition has been
done in-house, taking advantage of the EVATEC-clusterline tool for sputtering.
Therefore, there has been the possibility of including a bottom electrode. The
goal of this tape-out is to experimentally verify the curves of h/λx for the three
structures of CLMR described in the previous sections. There is particular interest
in the BE CLMR, which has never been experimentally demonstrated. Considering
the quality of the electrode materials that could be sputtered in-house, Pt has been
chosen as the one for both top and bottom electrodes. Their thicknesses have been
set to 150 nm, while the one of the piezoelectric film has been designed to be 1 µm.

Due to the constrains on the film height and on the minimum feature size of the
stepper used for the lithography (i.e. 500 nm), not the whole k2

t vs. h/λx curves of
the simulations can be reproduced, but only a portion of them. Nevertheless, that
is enough to experimentally validate the simulations. In particular, the verifications
are aimed to observe:

1. TFE CLMRs, with the h/λx curve varying from 0.1 to 0.38

2. LFE CLMRs, with h going from 0.2λx to 0.38λx
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3. BE CLMRs, with the same variations of the LFE ones.

The targeted curves of k2
t vs. h/λx are shown in Fig. 2.25 for the three cases.
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Figure 2.25: Expected curves of k2
t vs. h/λx for the CLMRs in AlN. In particular,

in a) the TFE, in b) the LFE and in c) the BE CLMRs are shown.

Contrarily to the ScAlN tape-out, in which Al is employed as top electrode and
allows for more freedom in the design due to its very low resistivity, in this case
the high values of Pt considerably constrain it. In particular, to have good values
of quality factors, the electrical loading effect has to be mitigated by the design.
A detailed analysis of the calculation of the electrical loading in CLMRs is given
in Appendix B. This is the reason for the high thickness of the electrodes: the
higher the electrodes, the lower the resistance of the fingers per unit length. In
order to have high Qs, the motional resistance has to be much higher compared
to the parasitic one introduced by the electrodes resistivity. This is why the 50-Ω
matching of the other tape-out cannot be performed: the motional resistance is
directly proportional to the impedance matching, therefore it has to be increased.
This also means that the static capacitance will be considerably reduced compared
to the case of ScAlN. Given the parasitic capacitance induced by the VNA in the
measurement phase (i.e. around 30 fF), the C0 has to be as low as possible but
still at least three times greater than that. This has led to the choice of 750-Ω
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matching for the TFE and LFE CLMRs and 1 kΩ for the BE ones. The matching
has been done exploiting the model described in Appendix A.

In addition, some ladder filters have been designed. In particular, five TFE
CLMR filters and three BE ones. Those filters are of the first order, and were
done in order to have preliminary results on filters done with this technology, to
be refined and improved in future iterations. The S21 scattering parameter of the
filters as function of the frequency is shown in Fig. 2.26a for the TFE topology,
and in Fig. 2.26b for the BE one.
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Figure 2.26: S21 scattering parameter vs. frequency for the filters made of a)
TFE CLMRs and b) BE CLMRs.

In order to produce the lithographic masks for this tape-out, the library gdspy
of Python has been used. With it, codes defining the specific geometries have been
created. After that, the layout has been saved as a GDSII file, i.e. the Geometric
Design System file. The layout editor used to finalize the masks was Klayout. In
a GDSII file, there are several layers identifying the different masks used for the
fabrication. In this specific case, five masks have been introduced:
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1. BOTTOM, i.e. the mask for the Pt bottom electrode, which is patterned in
the case of TFE CLMRs and not patterned in the case of BE ones.

2. TOP, i.e. the mask used to make the top electrodes in Pt, together with the
pads.

3. ETCH, which is the mask used to define the release pit of the suspended
resonators.

4. VIAs, that is the mask used to make the vias to electrically connect the
bottom electrode to the top in order to apply an electrical signal to it.

5. GOLD, i.e. the mask devoted to the deposition of gold on the pads, in order
to reduce the electrical resistance of the platinum.

The five layers employed to fabricate a TFE CLMR are shown in Fig. 2.27,
while the final resonator is depicted in Fig. 2.28. The cases of LFE and BE CLMR
are similar. As it can be observed, there is the presence of three pads per port:
the two external pads are the grounds, while the middle one is the signal. This
configuration is called ground-signal-ground (GSG).

Finally, also the geometry of a first order TFE CLMR ladder filter is shown in
Fig. 2.29.

2.7 ScAlN experimental plan
2.7.1 Resonator design
In order to experimentally verify some of the curves obtained in the previous
sections and to show the potentialities of Sc-doping and CLMRs, also a tape-out
plan in ScAlN has been prepared. The available wafer consisted in a 500 nm thick
30% Sc-doped AlN on high resistivity Silicon (Si). Therefore, only LFE structures
could be fabricated. Being the film thickness very small, Super High Frequency
(SHF) resonators are expected to be fabricated. All the resonators have been
simulated through 2D FEM, and geometrical parameters such as the bus or anchor
length, have been optimized using the 3D models. The chosen electrode material is
Al. The device variations are done in order to verify:

1. The k2
t vs. hScAlN/λx curve, with the ratio ranging from 0.2 to 0.6, and so

a λx ranging from 0.833µm to 2.5µm. As it can be observed, a procedure
opposed to the one of the simulation step was followed: instead of fixing the
acoustic wavelength and varying the piezoelectric thickness, the first was fixed
by the wafer and the latter used as a degree of freedom. Doing so, the resonant
frequency is expected to change a lot throughout the whole range of variation.

52



ScAlN Cross-sectional Lame’ Mode resonators

Figure 2.27: Showcase of the layers of which a TFE CLMR is composed. Each
layer leads to the fabrication of a different lithographic mask.

In Fig. 2.30a, the expected k2
t vs. hScAlN/λx and fres vs. hScAlN/λx curves

are shown.

2. The k2
t vs. α curve, with the metallization ratio ranging from 0.35 to 0.65.

The reason for the smaller variation with respect to the one in the theoretical
analysis (going from 0.2 to 0.8) relies in the minimum feature size that can be
fabricated through the available e-beam lithography tool, which is 200 nm.
Being in this specific case 0.42 the hScAlN/λx ratio that theoretically allows to
obtain the highest EM coupling, it gives a wavelength of 1.2 µm. Therefore,
the pitch p will be equal to 0.6 µm. With an α of 0.35, the electrode width
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Figure 2.28: Example of a TFE CLMR as it appears on Klayout.

Figure 2.29: Example of a first order TFE CLMR filter as it appears on Klayout.

will be 210 nm, and that is the physical limit that can be reached. Vice versa,
when α is equal to 0.65, it is the unmetallized region to be 210 nm wide. The
curve that is aimed to be reproduced is shown in Fig. 2.30b.

3. The best Np/Le ratio, where Np is the number of electrode pairs and Le is the
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electrode length. All the resonators in the tape-out have to be 50-Ω matched
in order to minimize the power reflection of the signal coming to the devices.
This means that the static capacitance C0 must be such that C0 = 1/(fres50Ω).
A more detailed analysis on the steps made to efficiently match the resonators
can be found in Appendix A. Anyway, given a certain C0 to be matched,
the number of pairs and the electrodes length can be engineered to obtain
the correct values. Nevertheless, different couples of Np and Le satisfy the
constrain. In Fig. 2.24a it is shown the relationship between the motional
resistance and the electrodes length. From it, higher Q are expected for longer
electrodes. Nonetheless, longer electrodes provide higher electrical loading,
and so a Q degradation. The variation has the goal to find the best trade-off
between these two opposite effects, and so to answer to the question if it better
to have longer but thinner or shorter but wider resonators.

Concerning the metal thickness, it is one for the whole set of resonators, therefore
an optimal value has to be found, i.e. a value for which the k2

t is maximized (or is
as high as possible) for a broad range of λx. The choice of Al lies in the fact that
it has low resistivity, it is easily sputtered and the resulting thin films have good
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Figure 2.30: a) curves of fres and k2
t vs. hScAlN/λx expected to reproduce with the

resonators included in the tape-out, b) curve of metallization ratio α vs. hScAlN/λx
expected from the tape-out.
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quality. Using a procedure analogous to the one employed in the metal optimization
step, different thicknesses are simulated for several hScAlN/λx ratios. The final
value that gives the best results is tIDT = 0.3 · hScAlN = 150 nm.

2.7.2 Filter design

1-s 1-p 2-s 2-p 3-s 3-p
k2
t [%] 7.5 7.2 8.1 7.5 8.2 8.1
λx [µm] 1.42 1.5 1.31 1.42 1.2 1.32
fs [GHz] 5.12 4.99 5.28 5.12 5.44 5.27

4-s 4-p 5-s 5-p 6-s 6-p
k2
t [%] 8 8.2 7.5 8 6.9 7.5
λx [µm] 1.09 1.21 1 1.1 0.93 1
fs [GHz] 5.61 5.43 5.78 5.59 5.94 5.77

Table 2.5: List of k2
t , λx and fs of each of the resonators of the bank of filters. S

stands for series and p for parallel, i.e. the series and parallel resonator of the filter
in Fig. 2.31.

The tape-out is also including a bank of ladder filters of the first order (Fig. 2.31).
The main goal is, in this case, to fabricate a set of filters on the same substrate able
to cover a wide band. As already mentioned, commercial state-of-the-art resonators
(FBARs) lack in easy frequency tunability, therefore banks of filters must contain
devices coming from different wafers. By combining the lithographic tunability of
CLMRs and the outstanding k2

t boost given by Sc-doping, a band of 1 GHz from

Figure 2.31: Schematic of a first order ladder filter made with resonators.
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5 to 6 GHz can be covered by six first order ladder filters, each of them made by
two LFE CLMR, all made on the same substrate. The resonators were simulated
through 2D FEM with COMSOL®, while the filter performances were assessed
both with ADS and MatLab. Fig. 2.32 shows the S21 scattering parameters of
the above mentioned devices as function of the frequency. As it can be observed,
an overall band of 1 GHz is covered. The resonators k2

t , fres and λx are listed in
Table 2.5. Concerning the out-of-band rejection (S21out−band), as shown in the first
chapter, it is function of the ratio of the static capacitances of the parallel (C02)
and series branch (C01), respectively, and of the number of stages N . In this case,
N = 1 since the device yield is low, and therefore adding more resonators increases
the chance of malfunctioning of the filter. In order to have a decent rejection, C02
was designed to be four times C01. This gives a theoretical S21out−band of -14 dB.
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Figure 2.32: a) curves of fres and k2
t vs. hScAlN/λx expected to reproduce with the

resonators included in the tape-out, b) curve of metallization ratio α vs. hScAlN/λx
expected from the tape-out.
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From ADS, the obtained value is around -10 dB. The equivalent capacitance of
the filter, i.e. Ceq =

√
C01 · C02 is 50-Ω matched. During the design step, a quality

factor of 500 has been assumed for all the resonators. Although this assumption
is sensible, it is not necessarily true. Nevertheless, the quality factor impacts the
IL (which for Q = 500 is around -0.5 dB), not the FBW, so in the worst case in
which the quality factor is lower than expected, the 1 GHz bandwidth will not be
degraded.

Filters made with AlN CLMRs are already present in literature [27]. In particular,
they show problems concerning ripples in the passband, reducing the fractional
bandwidth. In [28], third order ladder filters are fabricated with AlN CLMRs,
employing thick Pt electrodes and taking advantage of IDT apodization in order
to suppress the spurious modes in the pass band. My goal is not to optimize the
design of the filters, nor to replicate the already obtained results. In the present
tape-out, CLMR ladder filters are made for the first time in ScAlN. Moreover, what
is finally aimed is to show that extremely wide band bank of filters can be made on
the same chip, with a really reduced fabrication complexity (two-masks process).
The overall performances in terms of absence of spurious responses or losses are
not a key-point in the analysis, which poses itself as a proof of concept.

As in the case of the previous tape-out, the design has been done using gdspy
and Klayout. In this case, three lithographic masks will be used:

1. TOP, i.e. the mask used to make the pads.

2. EBEAM, i.e. the mask to make the fingers of the resonators, which require a
resolution which is higher with respect to the one achievable with the stepper
of the previous tapeout.

3. ETCH, which is the mask employed to define the release pit of the resonators.
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Chapter 3

ScAlN ferroelectricity and
FEM model of ferroelectrics

3.1 Ferroelectric ScAlN
It has been seen in Chapter 2 that Sc-doping of AlN thin films leads to a great
improvement of piezoelectric MEMS resonator characteristics, greatly enhancing
their electromechanical coupling. This chapter, on the other hand, will focus on
another ScAlN interesting feature: its ferroelectricity. This peculiarity has been
very recently demonstrated [15].

AlN and other III-V nitrides, such as InN and GaN, possess a wurzite-type
structure with spontaneous polarization along their c-axis. This fact is responsible
for their piezoelectricity and means that, inside the material, there exist two
anti-parallel polarization directions, i.e. the N-polar and the metal-polar. Thus,
the III-V nitrides also exhibit pyroelectricity, but not ferroelectricity, since their
polarization direction cannot be switched with electric fields that are lower than
their dielectric breakdown limit, i.e. the point at which they cease being insulators
and conduct electricity. Nevertheless, the doping with Sc of pure AlN films lowers
the electric field necessary to the polarization switching, leading the material to
exhibiting ferroelectric properties. The reason can be found in the continuous
distortion of the wurzite-type crystal structure of AlN towards a layered-hexagonal
structure (the one of ScN) with increasing Sc-doping level [15]. Moreover, this
particular feature is expected to be possibly extended to other III-V materials.
Fitchner et al. were the first to experimentally demonstrate ScAlN ferroelectric
hysteresis curves. They are reported in Fig. 3.1 for different Sc concentrations,
together with the P vs. E curve for lead-zirconate-titanate (PZT 52/48), a very
commonly employed ferroelectric material. What can be firstly observed, is the
almost ideal square-like hysteresis, which results in a great piezoelectric linearity
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for fields lower than the coercive ones. Additionally, in Fig. 3.1 it can be seen that
the hysteresis curves are shown for ScAlN with Sc contents greater or equal than
27%. The reason, as already mentioned, is the progressive reduction of the coercive
fields of the material films with increasing Sc-doping level, which leads the nitride
to exhibit ferroelectric properties only for a Sc percentage greater than 22%. Before
that, the coercive fields (Ec) are still higher than the dielectric breakdown limit.
When the material becomes ferroelectric, it keeps having high Ec and remnant
polarization (Pr) compared to other commonly utilized ferroelectric materials, such
as PZT. What can also be observed, is that both Ec and Pr values decrease with
increasing Sc-percentile content, the former in a linear manner, the latter in a
non-linear one. In addition, it was demonstrated in [15] that by adjusting the
mechanical stress of the film, the coercive field can be linearly tuned, giving a
further degree of freedom in controlling its material properties.

Figure 3.1: ScxAl1−xN hysteresis curves for Sc contents of 0.27, 0.3, 0.32, 0.36,
0.4 and 0.43. The curve of PZT 52/48 is also shown for comparison. On the right,
the atomic structure of the nitride is shown for the unpolarized and polarized
material. The figure is from [15].
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3.2 Ferroelectric reconfigurable resonators
As introduced in Section 1.1, MEMS resonators constitute the building blocks
of the commercial RF filters used in the RF front-end of everyday life products,
such as smartphones, tablets and personal computers. Inside these devices, a great
number of band-pass filters are required to cover the whole dedicated frequency
band, and switches are used to select the filter of interest. In particular, in today’s
cell phones, their number is around the 40 units, with the expectation that this
number will exceed 100 soon [29]. This fact poses great challenges concerning the
area occupied, the cost and the power consumption associated to these growing
RF front-ends.

An interesting strategy to overcome this problem may be the employment of
filters which mix the switching capability to their filtering functions. In this way,
the combination of a filter and a switchplexer would be replaced by a more compact
unit. In Fig. 3.2a, a simplified block diagram of a current commercial RF front-end
is shown. In Fig. 3.2b, on the other hannd, an example of a front-end which exploits
reconfigurable filters is shown. It is clearly visible that in the second case, the
amount of electronics is considerably reduced.

The basic building blocks of the aforementioned switchable filters are switchable
MEMS resonators, with the capability of being turned on and off by an externally
applied DC bias. In particular, there are two ways of fabricating switchable
resonators [29]:

1. Using the capacitive transduction mechanism

2. Exploiting ferroelectricity and its intrinsic two-state switchable nature

The formers allow to obtain high values of quality factor but come with very
large motional resistances. This fact poses problems when it comes to integrate
them in 50-Ω-matched RF font-ends. Ferroelectric resonators, on the other hand,
exhibit high k2

t and quality factors and are the preferred choice in such RF filters.
In [29], intrinsically switchable filters are demonstrated for the case of Barium

Strontium Titanate (BST). In Fig. 3.3a, an example of the frequency response of a
resonator in the on and off states is given, whereas in Fig. 3.3b, the S21 parameter
of a switchable filter in the same cases is shown. For what can be observed, the
switching process provides the desired reconfigurability of the devices.

Although the incredibly promising feature of the above mentioned resonators
and filters, the performance of BST are very poor compared to the ones of AlN,
and especially to the ones of ScAlN. Moreover, its fabrication technology is far less
mature than the one of (Sc)AlN. Therefore, building reconfigurable ScAlN MEMS
resonators could revolutionize the RF front-ends of commercial products.
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Figure 3.2: Simplified building block schematic of the RF front-end of a com-
mercial wireless device (a) and of an ideal device in which all the filters have been
replaced by reconfigurable ones (b). The picture is from [29]

3.3 Experimental demonstration of ScAlN thin
film ferroelectricity

ScAlN ferroelectricity has been demonstrated experimentally in [15]. Nevertheless,
in order to study its mechanical, dielectric, piezoelectric and ferroelectric char-
acteristics, measurements on several samples at different Sc concentrations and
different film thicknesses have to be performed. All the films have been deposited
using the tool from the swiss company Evatec named EVATEC-clusterline. This
sputtering tool, whose structure is depicted in Fig. 3.4, is heavily employed in
MEMS resonator companies (e.g. Broadcom) and allows to automatically deposit
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Figure 3.3: a) Impedance curve of a ferrolectric resonator in the on stage (in red)
and in the off stage (in black). The modified BVD (m-BVD) fitting is also present,
b) S21 parameter of a switchable filter in the on (in blue) and off (in red) state.
The figures are from [29].

Figure 3.4: Picture of the Evatec-Clusterline industrial sputtering tool. A
schematic of the tool is depicted in the inset.
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on multiple wafers: it has two deposition chambers, the former with 24 8” wafer
holders and the latter with 13 8” holders, onto which some carriers have been
placed in order to deposit also on 4” wafers. This tool allows to sputter both
metals and ceramic materials, even in a sequence and without breaking the vacuum.
Concerning the alloy deposition, i.e. the one of ScAlN, there is the possibility
of sputtering from a ScAl alloy target or to exploit reactive sputtering using two
targets, one of Sc and the other one of of Al. In the in-house cleanroom, a recipe to
deposit high quality ScAlN thin films has been developed, allowing for extremely
high control of the films characteristics such as the Sc-doping level, crystallinity,
stress, thickness and surface roughness. All these specs can be tuned according
to deposition parameters such as the deposition time and temperature, the sput-
tering power, the frequency or the composition of the carrier gas. In particular,
commonly employed carriers are nitrogen (N2) and argon (Ar), and it has been
seen that increasing the N/Ar ratio reduces the deposition rate and improves the
films crystallinity. This last parameter can be assessed using the Full Width Half
Maximum (FWHM) curve, also named rocking curve. A film is considered high
quality when its rocking curve is below 2◦, and when the carrier gas is constituted
only of nitrogen, its value is minimized. Moreover, it has been observed that, the
more the nitrogen is present with respect to argon, the more the anomalous grain
formation on the films surface is suppressed. This phenomenon can be clearly
observed in Fig. 3.5, depicting Atomic Force Microscope (AFM) images of the films
surface for different nitrogen/argon ratios. Another way to reduce the rocking
curve of the films is to deposit ScAlN onto a metallic seed layer. In particular,
it has been seen that the rocking curve of the sputtered piezoelectric film follows
the one of the below-deposited metal. Good results have been obtained with Pt,
especially for thick (>300nm) films of the metal. In Fig. 3.6, Transmission Electron
Microscope (TEM) images of the materials stack onto the silicon wafer are shown,
with also a zoom-in into the interfaces between the bottom Pt and ScAlN and the
one with the top. It is interesting to notice (and it is very clear from the TEM
image) that at the top interface there is a thin oxide layer of about 5-6 nm. This
oxide has been identified as one of the possible causes of the asymmetry in the
leakage current of the capacitor described in the following. This oxide is a native
one, and is made of Al, Sc and oxygen. The reason for its appearance on the top is
that the top electrodes were patterned using the lift-off process, and therefore the
top surface of the ferroelectric film has been exposed to air. In order to suppress
the native oxide formation, the alternative could be to deposit the top electrode
inside the Evatec-clusterline tool without breaking the vacuum, and pattern it via
wet or dry etch.

In order to characterize the material, test structures have been developed in the
form of vertical and lateral field (TFE and LFE, respectively) capacitors. As in
Chapter 2, the lithographic masks employed for the structures patterning have been
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Figure 3.5: Atomic Force Microscope (AFM) images of the surface of ScAlN thin
films for different nitrogen/argon ratio, both at the center and at the edge of the
wafer. It can be observed that increasing the ratio, the presence of anomalous grains
is considerably reduced. The best case is shown on the left, when the carrier gas is
constituted only by nitrogen. This picture was taken from an IFCS presentation.

developed using the Python library GDSpy and finalized exploiting the software
Klayout. To make the structures, only two masks were required, namely the TOP,
to make the top electrode of the capacitors and the VIAs, used to make the
electrical connections to the Pt bottom electrode, which has been left covering
the whole wafer. The GDSII file of the designed chip is shown in Fig. 3.7, while
in Fig. 3.8 there is a picture of the final chips patterned on the film. As it can
be observed, different copies of the same geometry have been placed onto the
wafer. The top metal has been chosen to be Pt or Al, and the structures have been
made using the lift-off process. The vias have been opened with chemical etching
by employing hot phosphoric acid. In the images, test structures for the metal
resistivity and the etching resolution can also be seen.

The tests have been performed using the Aixacct AixDBLI, a tool designed for
piezoelectric and ferroelectric characterization of thin films, and which is described
in the following Section.
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Figure 3.6: Transmission Electron Microscope (TEM) image of the material stack
onto the silicon wafer showing, from bottom to top, the titanium adhesion layer,
the Pt bottom electrode, the ScAlN film and then a protective layer used in the
TEM imaging process. The insets show the ferroelectric film at the top and bottom
interfaces. On the top one, a 5-6 nm thick native oxide is clearly visible.

3.3.1 AixDBLI tool description
The AixDBLI tool is meant for electric, piezoelectric and ferroelectric characteriza-
tion of thin films. The acronym DBLI stands for Double-Beam Laser Interferometer,
which is what is employed to make the piezoelectric characterization and the piezo-
electric coefficients extraction. The tool is shown in Fig. 3.9, into which two
modules can be seen. The one on the right consists in the computer onto which
the AixPlorer and AixDBLI softwares are intalled and which provides the Graphic
User Interface (GUI) to do the measurements. Moreover, there are a high-voltage
amplifier, capable of delivering up to 400 V of input voltage and 100 mA of current,
and the system to suppress vibration. On the left, there is the DBLI module,
including optical setup and the chuck onto which wafers or single chips can be
placed and characterized. The pads on the chip are probed with tungsten sharp
tips. The optical component scheme is shown in Fig. 3.10.

Let’s now describe how it works. The beam is firstly generated employing a
He-Ne laser and passes through a diaphragm and a shutter before being reflected
into the main optical path by the mirrors M1 and M2. Then, it is polarized
by the λ/2 plate P1 and approaches the first polarizing beam splitter (PBS1),
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which divides it into the measurement and the reference beam. A PBS reflects
the incoming light with Y-polarization and transmits the one with X-polarization,
where X and Y are the directions of the cartesian axis. The measurement beam is
the one that is transmitted, and has the longest path compared to the reference
one, therefore is subjected to more losses. This beam passes through the λ/4 plate
P2, is reflected by the mirror M3 and focused on the top surface of the wafer by
the lens L1. Then is reflected and comes back, passing again through the P2 plate
and having therefore the polarization changed from the X-direction to the Y one.
In this way, it is reflected by PBS1 and by PBS2, reaching the λ/4 plate P3, the
mirror M4 and the lens L2, which focuses it on the bottom surface of the wafer. In

Figure 3.7: Picture of the lithographic mask to define the ferroelectric capacitors
on the ScAlN film, as it appears on the GDSII file. On the mask, the different pads
are highlighted with the parameters that can be extracted by measuring them.
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Figure 3.8: Picture of a the wafer with 250 nm of 30% ScAlN onto which four
chips have been patterned.

order to be able to employ the DBLI, the wafer has thus to be double-polished.
After the reflection on the bottom surface, the beam is polarized again passing
through P3 and now is transmitted through PBS2, reaching the beam splitter (BS)
BS3. There, half of the light is transmitted and half reflected and sent to the
photodetector. Concerning the reference beam, it is reflected upward by PBS1,
passes through the λ/4 plate P4, is reflected by the piezo mirror M7 and passes
again through P4, changing the polarization from the Y to the X direction. In this
way, the beam is transmitted through PBS1 and PBS2, is reflected by the mirrors
M5 and M6 and goes to BS3, which splits it. The transmitted part is sent upward
to the photodetector, where it interferes with the measurement beam. The strain
of the measured sample is directly quantified by the variations in the center of the
interference pattern.

Concerning the kinds of possible measurements that can be performed by the
tool, there are all the types to fully characterize a ferroelectric thin film. In the
following, the ones that have mainly been used in the current thesis work are briefly
described.

1. DHM: the Dynamic Hysteresis Measurement allows to obtain the Polarization
vs. Voltage curve, also named hysteresis curve in ferroelectric materials. The
curve, together with the input signal sent to the pads is shown in Fig. 3.11.
Concerning the input signal, it consists of different triangular wave pulses,
even though different input signal can be configured to be applied. The first
pulse (in blue) is the pre-polarizing one, with the aim of giving a specific
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Figure 3.9: Picture of the AixDBLI tool. On the right, the case, amplifier and
system to suppress vibrations. The DBLI is on the left, together with the chuck,
onto which wafers or single chips are placed to be tested.

polarization to the ferroelectric capacitor. No output is recorded at this point.
Then, the first measurement pulse is generated. As it can be observed, after
the pre-polarizing pulse, the polarization state is the negative one, therefore it
is switched by the measurement signal, which gives the green curve on the
right as output. Then, a second pre-polarizing pulse is generated, in order
to counter-switch the capacitor. The second measurement wave consists of
the opposite of the first one, switching the capacitor firstly in the negative
polarization. The output is the light blue curve. As it can be observed, both
the red and the light blue curves are not continuous, having a gap between
the beginning and the end. The red curve combines the two, giving a closed
loop as final output. The important values like the maximum polarization,
the remnant ones and the coercive voltages are shown in the figure.

2. PZM: the PieZo Measurement takes advantage of the DBLI system to record
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Figure 3.10: Schematic of the optical setup of the AixDBLI characterization tool.

the Strain vs. Voltage curve, also named butterfly curve. As introduced in the
previous Section, the displacement of the film is detected by the variations in
the interference fringes on the photodetector. The resolution of the system is
very high, allowing to measure displacements of the order of 10−2 − 10−3 Å
At the same time, it provides the electrical P vs. V curve as in the case of the
DHM. In order to measure the butterfly curve, the laser spot has to be placed
into the middle of the pad, and the probe has to be put on its side, in order
not to scatter the beams light. An example of the probing and laser placing
on a small circle capacitor with 200 µm diameter is shown in Fig. 3.12.

3. PM: the Pulse Measurement is used to record the samples current in response
to a certain number and pattern of excitation pulses. In this framework, the
most famous and commonly used configuration is called PUND (Polarization
Up-Polarization Down). This measurement type is mainly used for ferroelectric
memories characterization. The PUND input signal and output curves are
shown in Fig. 3.13. As it can be observed, in the input signal there is firstly
a write pulse which polarizes the capacitor in the negative state, and which
is not recorded. Then, after a relaxation time which is typically 1 second,
the first rectangular (or triangular) pulse flips the polarization, bringing it
from the relaxed negative remnant polarization to the maximum positive
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one up to the remnant positive polarization. The second read pulse is sent
after the relaxation time, which brings the remnant polarization to a lower
value (relaxed remnant polarization). Being the polarization still positive, no
switching occurs, and the only current that is measured is the leakage one of
the capacitor. This method, in fact, is useful to characterize the losses of the
ferroelectric capacitor. After another relaxation time, the same two pulses
are applied but in the negative direction, in order to obtain the values for the
negative side of the loop.

Figure 3.11: Showcase of a DHM measurement with, on the left, the input signal,
and on the right the hysteresis curve. The picture is from the AixPlorer manual.

3.3.2 Measured samples and results
The AixDBLI tool has been used to perform measurements on a huge amount of
samples, constituted by the chip shown in Fig. 3.7. Even though the pad layout
was the same, different thicknesses have been taken into consideration, namely 500,
250, 100, 50 and 20 nm, and for each thickness, samples with different Sc contents
have been measured, namely 28, 31 and 36%. In Fig. 3.14, different parameters, i.e.
surface roughness, real thickness, rocking curve and stress are shown for the wafers
for the nominal thicknesses taken into consideration, in order to have an idea on the
impact of Sc-doping on them. What can be observed, is that the surface roughness
is higher for thicker films, and the rocking curve is higher for thinner ones.

Before entering in the details of the results, it is interesting to point out that the
field of thin film ferroelectric capacitors, especially the thinnest ones (t < 50nm)
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Figure 3.12: Showcase of the laser placing and probing of a small circle 100 µm
ferroelectric capacitor.

is very new and unexplored. Concerning the applications of such thin films, the
main one is for memories, the so-called Fe-Ram. There is a lot of interest in this
sense since, with respect to other ferroelectric materials, ScAlN is post-CMOS
compatible and possesses high values of remnant polarization and coercive fields
[15].

As a showcase, a PZM measurement of a square capacitor with 800 µm side
and 500 µm thickness is depicted in Fig. 3.15, showing both the butterfly and the
hysteresis curve.

The 500 nm film is the one giving the best results for three main reasons: firstly,
a thicker film has a higher rocking curve. This happens because, when depositing
the piezoelectric material, the first 10 up to 50 nm grow with crystallites which are
not perfectly and vertically oriented, but show random orientation, which affects
the final crystallinity of the film. For thicker ones, anyway, the fraction of the first
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Figure 3.13: Showcase of a PM measurement with, on the left, the input signal,
and on the right the output response. The picture is from the AixPlorer manual.

not-oriented atomic layers is reduced compared to the thinnest films. The second
reason regards the aspect ratio of the thin-film capacitor. It has been seen and
demonstrated that low aspect ratios (i.e. surface of the capacitor vs. its height)
have a smoother surface, providing results closer to the ideal ones. Finally, the
third reason regards the physics of thin film ferroelectric capacitors, for which
thinner films see an increase of the leakage currents, which can even mask the
switching one that is used to build the hysteresis curve. The concept of leakage
is treated in Sect. 3.3.3. Therefore the results obtained for the 500 nm capacitors
have been taken as reference for the ones gotten from the thinner capacitors.

Concerning the 250 nm capacitors, PUND measurements have been performed
in order to obtain the values of remnant and relaxed remnant polarization. This has
allowed to isolate the contribution to the hysteresis curve given from the switching
of the capacitor from the one obtained due to leakage. The result of the PUND is
shown in Fig. 3.16.

Concerning the other thicknesses, the results are similar, even though with more
leakage. Nevertheless, for the 20 nm capacitors, a non-physical peculiarity has been
observed: even if the capacitor is switched in the negative polarization, the negative
relaxed remnant polarization is positive. This fact, which coincides with what has
been obtained also from other research groups in the framework of the TUFEN
research program, is still to be understood and explained. A possible explanation
can be given considering the high asymmetry in the currents obtained from the
measurements for the positive and negative side of the loop due to leakage, which
can in-turn be caused by the presence of the native oxide on top of the film, as
shown in Fig. 3.6. In the case of the negative voltages, the leakage is so high to
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Figure 3.14: Evolution of different parameters with the Sc concentration for the
thicknesses taken into account in the present work. The studied parameters are
surface Roughness, film thickness, rocking curve and stress.

mask the switching peak. This does not happen in the positive part. Fig. 3.17 is the
result of a PUND measurement on a 20 nm capacitor, and depicts the phenomenon.

Finally, using the PZM measurement mode, butterfly curves for different piezo-
electric thicknesses have been taken. The results are shown for the 500, 250, 100
nm in Fig. 3.18. As it can be observed, the thinner the capacitor, the higher the
noise in the measurement due to the increased surface roughness of the capacitor,
due to its higher aspect-ratio. Moreover, due to the great asymmetry in the current,
a great asymmetry in the butterfly curve can be observed as well.

From the displacement (and so the strain) vs. voltage characteristics, the d33
piezoelectric coefficient can be extracted. In order to do it, the applied voltage
should be lower than the coercive one, in order to have a linear response of the
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Figure 3.15: Showcase of the data collected with the Aixacct tool. In particular,
the blue curve shows the hysteresis with respect to the applied voltage, while the
red one shows the butterfly curve.

material and do not create offsets due to the non-linear regions of the butterfly
curve. The d33 values have been then extracted for different thicknesses and Sc
concentrations by using the linear regression method, and the values can be seen
in Fig. 3.19. In that figure, the ab-initio values predicted by Caro et al. in [22]
are also shown. What is interesting to notice is that, with higher thicknesses, and
therefore better rocking curves, the piezoelectric coefficients value gets closer to
the ab-initio value. This fact is not surprising, since it is known that the piezo
coefficients depend on the crystallinity of the films.

3.3.3 Leakage current compensation
Thin film ferroelectric capacitors suffer from high leakage currents, which can
mask the switching one, and create artifacts in the hysteresis curve. The leakage
phenomenon becomes more severe when shrinking the film thickness, leading
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Figure 3.16: On the left, there is the result of the PUND measurement on the
250 nm thick capacitors. In the insets on the right, the curves have been post
processed with MatLab to isolate the switching from the non-switching part of the
hysteresis curve.

Figure 3.17: On the left, the result of a PUND measurement on a 20 nm thick
ferroelectric capacitor. In the figure, it can be observed that there is a probably
unphysical phenomenon for which the negative relaxed remnant polarization is
positive. On the right, the high asymmetry in the current for the positive and
negative voltages is shown.
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Figure 3.18: Butterfly curves for the 500, 250 and 100 nm-thick capacitors.For
each thickness, three different Sc concentrations are taken into account, namely 28,
31 and 36%.

to situations in which the switching peak is not visible anymore. In order to
compensate for the leakage, the Dynamic Leakage Current Compensation (DLCC)
method has been developed [30]. The DLCC approach is based on the assumption
that the leakage current (iR) inside a ferroelectric capacitor is ohmic and does not
depend on the frequency. On the contrary, the switching current (iSW ) and the
current of the capacitor (ic) have a frequency dependence. Therefore, the total
current that is effectively measured is the sum of these three contributions:

itot = iR + iSW + ic (3.1)

where iSW = ωi0SW and ic = ωi0c .
The standard DLCC method requires two measurements at two different fre-

quencies to eliminate the ohmic current:

icomp = ω

ω1 − ω2
[i(ω1)− i(ω2)] (3.2)

Then, by integrating the current with respect to time, the polarization can
be computed. Nevertheless, the assumption of the DLCC method, i.e. that the
switching and the capacitor currents are linearly dependent on the frequency, means
that the coercive fields should be independent on it, as explained in the addendum
of [15]. It’s not the case of ScAlN, for which not only the polarization values, but
also the coercive voltages are dependent on the frequency of the excitation signal.
To overcome this problem, in that addendum, an alternative DLCC method is
explained. The key assumption, in this case, is to consider the switching current
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Figure 3.19: Evolution of the d33 piezoelectric coefficient with the Sc content for
different thicknesses, compared to the ab-initio values from [22].

as null during repeated unipolar voltage sweeps. In this case, the effect of the
frequency dependent coercive fields is excluded. The leakage current can then be
calculated from the following formula:

iR = i2ω1 − i1ω2

ω1 − ω2
(3.3)

Finally, that calculated iR is subtracted to the measured current to find the
compensated one. This calculation requires five different measurements: a bipolar
sweep that computes the current to be compensated and then two unipolar voltage
sweeps, one with positive and one with negative voltages for two different frequencies,
for a total of four unipolar sweeps.

The measurements are then post-processed using Matlab, with which the unipolar
measurements at the same frequency are concatenated to obtain the currents i1
and i2 of Eq. (3.3).
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3.4 FEA of ferroelectric materials
There exist a lot of literature on ferroelectric materials. In particular, there are a
lot of books and papers describing their applications, fabrication steps and their
characterization. Nevertheless, all the papers are experimental, and there isn’t
almost anything regarding the possibility of simulating them. Moreover, COMSOL,
the most famous and exploited commercial Finite Element Analysis (FEA) tool,
does not have a ferroelectricity module. The goal of this section is therefore to
set the basis for the development of a COMSOL model of ferroelectric materials,
starting from the simplest ferroelectric capacitor up to the embedding into the
simulation of a reconfigurable resonator.

The first and only tentative in the integration in COMSOL of a ferroelectric
model is reported in [31]. In this paper, an empiric model [32] is employed and
described in the following.

In the model, a ferroelectric which can switch between only two states (p+ and
p−) is considered. Both the states are equilibrium configurations. If one considers
a ferroelectric capacitor polarized e.g. in the negative state p−, the application of
a voltage to one of its terminals imposes a change in its polarization, which results
in an increment of the positive polarization state ∆p+:

∆p+ = (1− p−) · f+ ·∆V (3.4)

This equation states that the increment in positive polarization is proportional
to the volume fraction of the material which has not switched yet (1− p−) times
a switching probability, given by the product of the applied voltage ∆V and a
function f+, with the form:

f+ = 1
V0
· 1

1 + e
−(V −Vc)

V0

(3.5)

where Vc is the coercive voltage and V0 the thermal one, with the expression:

V0 = k · T
q

(3.6)

where k is the Boltzmann constant, T the temperature and q the electron charge.
Combining together the previous equations, one has:

p+ = 1− (1− p+
i ) · 1 + e

Vi−Vc
V0

1 + e
V −Vc

V0

(3.7)
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where Vi and p+
i are the initial voltage and positive polarization, respectively.

The dielectric displacement vector D+ can be written as:

D+ = Ps(2p+ − 1) (3.8)
where Ps is the spontaneous polarization. The values of polarization and dielectric
displacement for the case of negative voltages, namely p− and D− can be computed
in a similar manner.

The paper proceeds by saying that they made a 3D model of a cylindrical
ferroelectric capacitor using the physics electric currents and piezoelectric device
to obtain the hysteresis and butterfly curve, respectively. Unfortunately, does not
give many details more and remains obscure. Images of the curves are shown, and
the authors say that they match the experiment. Unluckily, with the available
information it is not possible to build a model, also because the COMSOL version
has varied from 2010, the year of the publishing of the paper.

A further step in advance in the understanding of the model, together with an
improvement of the math describing the curves comes from [33], in which a function
employing hyperbolic tangents instead of exponential functions is described in order
to model the hysteresis curve:

P+(V ) = Pstanh(V − Vc2δ+ ) (3.9)

where δ+ has the form:

δ+ = V +
c [log(1 + P−

r /Ps
1− P−

r /Ps
)]−1 (3.10)

where Pr is the remnant polarization. This function can be more easily imple-
mented in COMSOL.

Concerning the actual implementation, it has been carried out using the version
5.5. In particular, following the guidelines of [31], a simple 3D model of a cylindrical
ferroelectric capacitor has been developed. To it, terminal and ground boundary
conditions have been applied to the top and bottom faces, respectively. The physics
is Piezoelectricity, and the study is a time dependent one. A fixed constrain
boundary condition has been added in Solid mechanics to the bottom face of the
cylinder. The geometry can be seen in Fig. 3.20a. In Fig. 3.20b, the signal applied
to the terminal is plotted. As it can be observed, it is a sinusoidal signal, going
from t = 0 to t = T , i.e. its period. As in Chapter 2, the custom ScAlN material
has been developed using the ab-initio equations described in [22]. The Sc-doping
value and the geometry have been chosen to match the ones of the experimental
curve of Fig. 3.15, described in Sect. 3.3. Therefore, the Sc percentage has been set
to 30%, the height of the cylinder to 500 nm and its diameter to 800 µm. Also the
same voltage has been applied, i.e. a wave with amplitude 180 V.
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In order to fit equation (3.9) into the model, a little trick was played: the time
was added into the equation to weight the positive and negative polarization. In
particular, ad hoc step-like functions have been introduced into the model:

Step(t, tc) = 1
1 + e

t−tc
t0

(3.11)

where tc is the time at which the maximum or minimum voltage is reached in
the input signal (i.e. tc1 = 1/4T and tc2 = 3/4T ) and t0 is a time very close to
t = 0, i.e. when the voltage is almost null. In this way, the analytical equation
given to COMSOL has the form:

P = Ps · tanh(E − E
−
c

δ
) · (Step(t, tc1) + Step(−t,−tc2))+

+ Ps · tanh(E − E
+
c

δ
) · (1− Step(t, tc1)− Step(−t,−tc2)) (3.12)

In order to make COMSOL recognize that this function represents the polar-
ization, it has to be inserted in Solid Mechanics −→ Piezoelectric material
−→ Remanent electric displacement. Doing this, when plotting the remnant
dielectric displacement as function of the voltage, the result is shown in Fig. 3.21a.
Fig. 3.21b shows the same curve but as function of the time.

This curve takes as assumption that the ferroelectric capacitor has been already
polarized. In order to simulate a curve of P vs. V where the polarization starts
from zero, a more complex function is required:

Figure 3.20: a) COMSOL 3D simulated geometry. The terminal and ground are
shown. b) Input signal given to the terminal, with maximum and minimum value
highlighted.
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P = Ps · tanh(E
δ

) ·Step(t, tc1) +Ps · tanh(E − E
−
c

δ
) ·Step(−t,−tc2) ·Step(t, T )+

+Ps·tanh(E − E
−
c

δ
)·Step(t, T+tc1)+Ps·tanh(E − E

−
c

δ
)·Step(−t,−T−tc2)(1−Step(t, T ))+

+Ps·tanh(E − E
+
c

δ
)·(1−Step(t, tc1)−Step(−t,−tc2)+(1−Step(t, T+tc1)−Step(−t,−T−tc2))

(3.13)

It’s plot is shown in Fig. 3.22.
In order to simulate also the butterfly curve, the employed formula is:

S = d33E (3.14)
where S is the strain.
The piezoelectric coefficient d33 can be then expressed by the formula [34]:

d33 = 2ε33Q33P (3.15)
where Q33 is the electrostrictive coefficient. Unluckily, that coefficient for ScAlN

is not present in literature. Nevertheless, [34] provides an alternative path, for
which:

2ε33Q33 = d33sat

PS
(3.16)
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Figure 3.21: Hysteresis curve of P vs. V (a) and curve of P vs t (b) for the
simulated structure of Fig. 3.20.
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where d33sat is the value of the piezoelectric coefficient d33 when the saturation
polarization PS is reached. This formula should be valid only for ferroelectric
materials with a centrosymmetric paraelectric phase, like BST. Those materials do
not show piezoelectricity unless a bias voltage is applied, distorting the symmetry of
the phase. ScAlN, since exhibits piezoelectricity and has a wurtzite-type structure,
is included in the non-centrosymmetric group. Nevertheless, as first approximation,
the formula can be used to build the butterfly curve, until the electrostrictive
coefficient is experimentally found. In this way, the strain can be expressed as:

S = d33sat

PS
P (E) E (3.17)

That function has to be inserted into Solid Mechanics −→ Piezoelectric
Material −→ Initial stress and strain −→ Initial strain, in the 33 component.
In order to be able to compare the results of COMSOL with the experimental ones,
the strain has been divided by the height of the cylinder to obtain the displacement

-200 -100 0 100 200

Voltage, V [V]

-1.5

-1

-0.5

0

0.5

1

1.5

P
o
la

ri
z
a
ti
o
n
, 

P
 [

C
/c

m
2
]

P vs. V

Figure 3.22: Hysteresis curve of P vs. V when the function described in Eq. (3.13)
is employed, enabling the description of the polarization of an unpolarized sample.
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u. The u vs. V and u vs. t curves obtained from COMSOL are shown in Fig. 3.23.
In order to see the matching of those results with the experimental ones of

ScAlN, the curves are compared in Fig. 3.24a-b. As it can be observed, the results
are, at least at a first approximation, matching. Nevertheless, the COMSOL
hysteresis curve fails to match the wide range linearity of the experimental one.
An improvement is needed.

Actually, an analytical model of the hysteresis curve capable of matching the
experimental results is not trivial at all, since the ferroelectric capacitor charac-
teristic depends not only on the current state, but also on the state’s history. In
[35], there is the explanation of several models used to reproduce the hysteresis
curve, but none of them is able to fully capture the real, experimental curve of
a ferroelectric capacitor. The reason is the failure in replicating the saturation
and critical slope conditions of the curve. The new analytical model presented in
[35], on the contrary, bases itself on the experimental curve, combining analytical
expressions and fitting, using a certain number of points (in its most complete form,
four), and it is able to recreate the hysteresis with a desirable level of agreement.
Before entering in the details of the model, let’s point out that, in order to obtain
the mathematical expression with the correct values of the coefficients, as said
before there is the need of the experimental curve. It seems paradoxical at this point
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Figure 3.23: Butterfly curve of u v. V (a) and curve of u vs. t (b) for the
simulated structure of Fig. 3.20.
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that, in order to simulate a ferroelectric capacitor, it has firstly to be fabricated
and measured. Actually, since the hysteresis curve is intrinsic of the material, with
this descriptions also other structures can be simulated. Moreover, the fact of
having mathematical expressions gives an higher degree of versatility and precision,
since the experimental measurements are always affected by uncertainties and noise.
Therefore, in the case of ScAlN, the curves for the dopant concentrations of interest
can be gathered once, and from them the models can be buit. The starting point
of the model of [35], is another one developed by Wang et al. [36], and briefly
described in the following.

This model treats a ferroelectric material as consisting of multiple grains. The
reason is that a single-domain ferroelectric converts into a multi-domain one when
the switching process takes place. Therefore, a simple single-domain model would
fail to describe this class of materials, especially the polycrystalline ones. Also
in this model, two possible states of polarization are considered (P+ and P−),
and they are linked by the expression P+ = −P−. The total free energy of the
ferroelectric material is given by the summation of the various contributions coming
from the two polarization states, the paraelectric one and the domain walls:

F = F0 + F+ + F− + Fwall (3.18)
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Figure 3.24: Comparison of the experimental curves of P vs. V (a) and u vs. V
with the ones extracted with COMSOL.
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This free energy, can be also expressed as function of the polarization P+:

F = F0 −
α

2P
+2 + β

4P
+4 + (1− α+)E P+ (3.19)

where α and β are Landau coefficients and F0 is the free energy in the paraelectric
state. The coefficient α+ is the volume fraction of upward polarization, related to
the one of downward polarization α− from the expression α+ = 1− α−. Since the
completely switched state is an equilibrium state, the value of P+ can be found
deriving Eq. (3.19) and posing it equal to zero. In order then to find the average
polarization P , the upward and downward polarization can be weighted by the α
coefficients:

P = α+P+ + α−P− = (2α+ − 1)P+ (3.20)
The expression of α+ is found by fitting the formula with experimental hysteresis,

obtaining:

α+ = arctan(β1(E − Ec) + β2(E − Ec)3 + π/2)
π

(3.21)

where β1 and β2 are constants. This model shows a certain degree of accuracy
in reproducing the hysteresis curve, but lacks in a good approximation of the curve
close to Ec. The reason is the abrupt change of α+ close to the coercive fields, for
which it goes from 0 to 1 in a very sharp way. Moreover, the values of β1, β2 and
β cannot be computed analytically, and they must be found by a trial and error
process.

The new model of [35] develops a way to obtain the β coefficients. Moreover, by
using some points of the hysteresis curve, a fitting is performed in order to obtain
a closer agreement with experimental results. As it will be shown in the following,
there are three major steps in the development of the final model: 2, 3 and 4-points
fitting. Let’s start with the 2-points.

As shown in Eq. (3.20), the polarization is given by:

P = (2α+ − 1)P+ (3.22)
Let’s then consider two points on the experimental hysteresis curve, namely the

ones with E = 0 and E = −Ec. The values of the polarization at those points can
be simply read on the curve. Anyway, their expression will be:

Pj = (2α+
j − 1)P+ (3.23)

where j = 1,2. From it, the normalized polarization can be found:

rj = Pj
P+ = 2α+

j − 1 (3.24)
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By inverting this formula, also the values of α+
j can be found:

α+
j = rj + 1

2 (3.25)

The equation for α+ of the model of Wang, can be generalized as:

Xj = tan(πα+
j −

π

2 ) (3.26)

where:

Xj = β1(Ej − Ec) + β2(Ej − Ec)3 (3.27)

Considering the two points taken on the curves, the values of X1 and X2 are:

X1 = β1(−Ec) + β2(−Ec)3 (3.28)

X2 = β1(−2Ec) + β2(−2Ec)3 (3.29)

From Eqs. (3.28) and (3.29), the values of the coefficients β1 and β2 can be
found by employing the inverse matrix method:

.

C
β1
β2

D
= M−1

C
X1
X2

D
(3.30)

where the matrix M has the form:

M =
C
−Ec −E3

c

−2Ec −8E3
c

D
(3.31)

In this way, the function X(E) can be computed from:

X(E) = β1(E − Ec) + β2(E − Ec)3 (3.32)

This function can be given to:

α+(E) = arctan[X(E)] + π/2
π

(3.33)

and the latter equation can in turn be given to Eq. 3.22 to build the curve.
This method provides excellent agreement for the curve in the regions close to
the selected points, but has still a non-correct matching for points far from them.
The comparison of the curve obtained with the model and the experimental one is
shown in Fig. 3.25.
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In order to refine the model, a third point on the curve can be taken into
account. In particular, this point has a value of field close to Ec, being selected at
E = Ec(1± z). The specific value of z is chosen such as:

0 < Ec(1± z) < EMAX (3.34)

where EMAX is the maximum field applied. In this case, the function for Xj is
modified to:

Xj = β1(Ej − Ec) + β2(Ej − Ec)3u(Ej − Ec) + β3(Ej − Ec)5 (3.35)

where u(x) is the unit step function with the discontinuity when x = 0. By
applying the same reasoning shown for the case of two points, the hysteresis curve
can be finally obtained. The result is matching much better the experimental
results, just lacks agreement below the coercive field. That’s why the 4-points
model is introduced.
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Figure 3.25: Comparison of the experimental curves of P vs. V with the model
made by the 2-points-fit described in [35].
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In this case, the four fitting points are the ones with E = 0, E = −Ec and
E = (1± z)Ec, with z satisfying the relation of Eq. (3.34). The expression of Xj

in this final case becomes:

Xj = β1(Ej−Ec)+β2(Ej−Ec)2u(Ej−Ec)+β3(Ej−Ec)2u(Ec−Ej)+β4(Ej−Ec)3

(3.36)
Following the same procedure of the previous two cases, the β constants can be

found from:

.


β1
β2
β3
β4

 = M−1


X1
X2
X3
X4

 (3.37)

With the matrix M of the form:

M =


−Ec 0 (−Ec)2 (−Ec)3

−2Ec 0 (−2Ec)2 (−2Ec)3

zEc (zEc)2 0 (zEc)3

−zEc 0 (−zEc)2 (−zEc)3

 (3.38)

With the values of the β constants, the hysteresis curve can then be computed,
having excellent agreement with the experimental results, as seen in Fig. 3.26a.

The function can be implemented in COMSOL. In this case, as step function,
the one of COMSOL is used. The values of the M matrix are firstly obtained with
MatLab and then fed to the model. With them, the β constants are computed.
Then, X(E) is introduced as analytic function. In particular, two functions are
needed, one for positive and one for negative coercive fields. They will be denoted as
X1(E) and X2(E), respectively. In the same way, two α(E) functions are generated,
namely α1(E) and α2(E), where the first employs X1(E) and the second X2(E).
Finally, the analytic function of polarization is given to the model, and is weighted
with time by the Step(t, tc) functions:

P = Ps(2α1−1)(Step(t, tc1)+Step(−t,−tc2)+Ps(2α2−1)(1−Step(t, tc1)−Step(−t,−tc2))
(3.39)

Using the same procedure explained in the previous model, also the butterfly
curve can be reproduced, as shown in Fig. 3.26b. Although the greater agreement
of the hysteresis curve, the butterfly one shows a lower degree of accordance to the
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experimental results. Therefore, in the current stage of development of the model,
both the Polarization curves are kept, the first one to build the S vs. E curve and
the second one to build the P vs. E one.

In order to have a further validation of the model, the curve of the dielectric
constant can be extracted from the hysteresis curve. In fact, as first approximation,
εr can be obtained as:

εr = 1
ε0

dP

dE
(3.40)

The experimental hysteresis curve, as well as the ones obtained with the two
models in COMSOL, have been numerically derived with Matlab. The results are
shown in Fig. 3.27. As it can clearly be observed, the second model gives much
better agreement with the curve extracted from the experimental data. The only
mismatch is found for values of the field close to the maximum and the minimum,
for which the smoothed edges of the curve create a singularity.

As already mentioned, the study was a time dependent one, for which the
system is evaluated for times going from 0 to T . Actually, given the structure of the
model, it is easily extended to the case of a stationary study. In fact, the analytical
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Figure 3.26: Comparison of the experimental curves of P vs. V (a) and of u vs.
V with the improved model made by the 4-points-fit described in [35].
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function defining the polarization and the strain is dependent on the time. In the
same way, also the applied field is function of time. That time is swept in a time
dependent study, but can be set at any value in a stationary one. Therefore, by
freezing the time, the system is constrained in the relative polarization state. In
this way, different configurations can be simulated. Fig. 3.28 show the values of
polarization and strain of the ferroelectric capacitor frozen at t = 0, T/4,3/4T ,
validating the model.

The last and most important step is to integrate ferroelectricity into the simu-
lation of a piezoelectric MEMS resonator. The first thing to do is to extend the
model to a 2D simulation. This is done by changing the coordinate system from
Global coordinates to Material XZ-plane system. Another way is to apply
all the functions to the Y coordinate instead of the Z one. The next steps will
refer to the first method. In order to simulate a resonator response, as shown in
Chapter 2, the study is a frequency domain one. In this case, the same strategy of
the stationary study can be applied: the system is frozen at a specific time, which
defines the polarization state. Nevertheless, in this case a further step is taken: the
resonator is assumed to have been polarized in a certain state by the application
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Figure 3.27: Comparison of the extracted curve of εr vs. V from the experimental
data with (a) the extracted curve from the old model and (b) the one obtained
with the new one. The y-axis has been limited in order to be able to better capture
the plots. The singularity is due to the smoothed edges of the hysteresis curves
obtained with analytical models.
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of a DC bias. Then, the bias is removed, and the switched resonator is simulated.
This means that the sinusoidal voltage will not be applied to the terminal anymore,
only the AC signal is applied to it. This does not constitute a problem, since also
the applied voltage which appears in the polarization function is dependent on the
time. Therefore, there is no need to physically apply the DC signal, it can just
be taken into account into the field applied to the polarization, which is defined
as P = P (t, E(t)). Concerning the strain, since the DC voltage is not considered
to be applied and since it is null for null or small-valued field applied, it is not
included in the model.

To make the model accurate, also the changes in the material properties have
been taken into account, in particular the ones of the piezoelectric coefficient d33
and of the relative permittivity εr. At the current state of the model development,
the changes in the elastic properties of the material with the polarization have not
been taken into account. To superimpose the new values of the the piezoelectric
and dielectric coefficients to the ones on natural ScAlN, two custom functions have
been applied to them under Solid Mechanics −→ Piezoelectric Material −→
Coupling Matrix, Voigt notation and Relative permittivity, respectively.
The relative permittivity function is the one shown in Fig. 3.27, to which the
singularities have been removed. Concerning the d33 coefficient, it is obtained by
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Figure 3.28: Showcase of the correct functionality of the model’s extension to
the stationary study case.
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deriving the strain curve with respect to the field:

d33 = dS

dE
(3.41)

Since the agreement with the experimental data for the butterfly curve is not
yet perfect, in this case the experimental curve has been derived numerically. After
that, given its roughness, it has been smoothed before being given to COMSOL.
Fig. 3.29 shows the comparison of the original and the smoothed curves. Both
the εr and d33 functions are expressed with respect to time, and therefore can be
controlled by it as well.

Finally, the resonator response is simulated. The kind of simulated resonator is
an FBAR. The reason lies in its only dependence on d33 for the resonance, while,
as shown in Chapter 2, a CLM resonant mode also depends on the piezoelectric
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Figure 3.29: Curve of the piezoelectric coefficient d33 extracted by deriving the
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its natural form and in a smoothed form. The latter is the function that has been
given to COMSOL.
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coefficient d31, for whose variation there is no experimental data. In order to make
sure that the model is formally correct, the value of polarization for t = 0 has been
set to 0, and the dielectric and piezoelectric coefficients for t = 0 have been set as
the one of natural ScAlN. In this way, when simulating the resonator for t = 0, the
response will be the one of a non-switched, non-ferroelectric one. The comparison
of the admittance curves for a non-ferroelectric and a ferroelectric FBAR at t = 0
for 30% Sc concentration is shown in Fig. 3.30.

As a last step, the FBAR for different times is simulated, and the result is
shown in Fig. 3.31. The values of t, P , εr and d33 used in the simulation are listed
in Table 3.1. As it can be observed from the figure, the static capacitance C0 is
different for the different times, meaning that the dielectric constant has varied.
In particular, it has increased. Moreover, also the spontaneous polarization has
the effect of increasing the static capacitance. What can also be observed is that
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Figure 3.30: Comparison of the admittance curves of 30% ScAlN FBARs. In
a), a piezoelectric resonator has been simulated. In b), the same resonator but
with the ferroelectric model with t = 0 is show. As it can be observed, the curves
coincide.
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it seems that the presence of the polarization is destroying the resonant mode,
regardless of the increase in the piezoelectric coefficient.

t [s/T] P [C/m2] εr d33 [pC/N]
0 0 14.11 15.8
0.25 0.61 3101 9.1
0.5 1 21.7 16.66
0.75 -0.002 1485 -31.9
1 -1.05 24.32 6.79

Table 3.1: Values of time, polarization, dielectric constant and piezoelectric
coefficient used in the simulation of Fig. 3.31.

300 400 500 600 700 800 900

Frequency, f [MHz]

-50

0

50

100

A
d

m
it
ta

n
c
e

, 
Y

1
1
 [

d
B

]

FE model showcase

t = 0

t = 0.25T

t = 0.5T

t = 0.75T

t = T

Figure 3.31: Showcase of the admittance of the ferroelectric FBAR for different
times.
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The results of the simulations are not yet reliable, since there has been no
experimental verification. The latter would prove to be very useful to firstly better
comprehend what is actually happening inside the resonator, and secondly to fine
tune the model by a process of trial and errors. Nevertheless, this ferroelectric
model has proven to be able to show plausible results.

Future work will be done to improve it and finally to document it. Although
the early stage of development, the potentialities of the model are huge: the
possibility of simulating ferroelectric structures before fabricating them will be
a great improvement both for academia and industry in terms of cost-and time-
efficiency. Moreover, in the framework of the DARPA project TUFEN, i.e. the one
which sets the goal of extracting all the coefficients of ScAlN and then use this
material to build innovative structures exploiting its ferroelectricity, this model
will play a vital role.
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Chapter 4

Conclusions and future
work

This Section provides a brief summary of the major results and accomplishments
obtained in the present Master’s Thesis work. Furthermore, there is a listing of
the possible future tasks that can be done following the guidelines provided in the
last Chapters, posing themselves as an expansion or a refining of the Thesis work.

1. It has been shown how to numerically optimize CLMRs in order to maximize
the electromechanical coupling coefficient. The optimization regards not only
the geometry of the resonators, i.e. the best h/λx ratio, the IDT thickness and
the topology, but also the possible electrode material that can be employed,
even the case in which two different metals are combined. Moreover, for the
first time, a systematic analysis on the impact of Sc-doping of AlN thin films on
CLMR performances has been done. Experimental plans have been designed
to verify the simulative analysis, and to push the resonant frequency of the
devices to higher values compared to the main choices of today’s technology.
The aforementioned analysis has been documented in a paper presented in
the IEEE conference IUS 2020.

2. Experimental results concerning the fabrication and the characterization of
ScAlN thin films have been obtained, regarding both the piezoelectric and
ferroelectric properties. This is of particular interest, since the topic is very
new and promising, both in the field of MEMS devices and in the one of
ferroelectric memories.

3. The first prototype of a COMSOL model able to simulate ferroelectric materials
has been developed. This model is in accordance with experimental results
obtained on ScAlN. Moreover, the model has been embedded in the simulation
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of ferroelectric MEMS resonators, giving plausible results. The variations of
the piezoelectric coefficient d33 and of the dielectric permittivity have been
included.

4. Simple and handy models to estimate the static capacitance and the parasitic
resistance of CLMRs have been developed and included as Appendices.

Concerning the future work, the next steps are:

1. As regards the CLMR optimization, the designs have to be fabricated and
tested to experimentally verify the obtained results. After that, the optimiza-
tion can be extended to the quality factor, which has been put in second place
compared to the electromechanical coupling coefficient, the real focus of the
present optimization work.

2. Regarding the ScAlN characterization, further data points concerning the
evolution of the mechanical and dielectric properties with film thickness and
Sc concentration have to be gathered, with ad hoc suspended resonators test
structures. The whole study, starting from the films fabrication up to its
complete fabrication, will be documented in a journal paper.

3. Concerning the ferroelectric model, the first step to be taken is its experimental
validation concerning the simulation of ferroelectric resonators. Moreover,
after obtaining experimental results on ScAlN constants, they can be added to
refine it. In particular, a refining of the piezoelectric and dielectric constants
is expected, together with the introduction of the variation of the mechanical
properties. Finally, as regards the simulation of ScAlN, a single model able
to take into account all the doping levels is expected to be developed and
documented in a paper.
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Chapter 5

Appendix A: Modeling of
the static capacitance of
CLMRs

As stated in Section 1.3, in most of applications involving resonators or resonator
filters, some sort of matching is desired. The reason is to transfer to the load the
maximum amount of power as possible, i.e. minimize power reflections between
the source and the load. To achieve such condition, the following relation must be
satisfied:

ZLoad = Z∗
Source (5.1)

where Z represents the impedance and the superscript * indicates the complex
conjugate. The most common value for the impedance of the source is 50 Ω. There-
fore, in general, resonators and filter have to be 50 Ω-matched. For piezoelectric
resonators modeled through the BVD model, this means that:

1
2πC0 fres

= 50Ω (5.2)

where C0 is the static capacitance. Thus, its value is the one that has to be
properly engineered to match the devices. Therefore, a way to model C0 has to be
found.

As an example, let’s see how the static capacitance is modeled in the case of
an FBAR. This is probably the simplest case: as shown in Fig. 5.1, C0 is nothing
more than the capacitance of a parallel plate capacitor made by the electrodes with
the piezoelectric film between them. The formula is shown inside the figure, where
A is the area of the electrodes, d is the piezoelectric thickness, ε0 and εr are the
dielectric permittivities of vacuum and of the piezo-layer, respectively.
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The case of a CLMR is more complicated. As stated in Section 2.2, in order
to tune its resonant frequency, the horizontal acoustic wavelength λx is tuned.
This means changing the width of the resonator which, in order to reach higher
frequencies, is extremely thinned. This results in a conspicuous reduction of the
static capacitance, which cannot match the required 50 Ω. In order to match
CLMRs, several unit cells are mechanically coupled through the employment of
IDTs. The resulting capacitance is the sum of the ones of the single cells, while the
resonant frequency is not changed. Actually, also the capacitance between the cells
has to be taken into account.

As mentioned in Section 2.2, three CLMR configurations have been studied in
the present work: TFE, LFE and BE CLMR. In order to match each of them, a
model for C0 has been developed. Intuitively, among other things, the capacitance
is determined by the length of the electrodes Le and their number of pairs. By pair,
one refers to the number of couples of opposite polarity IDT fingers. In particular,
in the LFE and BE CLMR this number will coincide to the total number of fingers
minus one, while for the TFE case, the number of pairs is exactly the number of
fingers of one of the two IDTs.

Let’s start with the simplest case, i.e. the LFE CLMR. Its unit cell is shown in
Fig. 5.2. As in Fig. 5.1, a lumped capacitor has been added to visualize from where
the capacitance originates. The simplest way to model the capacitance is using
the formula of the parallel plate capacitor between the electrodes. Nevertheless,
in [37] a more complicated yet more precise model to describe the capacitance of
LFE capacitors has been developed and is reported here. It will be referred as the

Figure 5.1: Showcase of the static capacitance of an FBAR.

Figure 5.2: Showcase of the static capacitance of a LFE CLMR.
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Appendix A: Modeling of the static capacitance of CLMRs

’Elliptic integral model’ in the following. According to it, the capacitance per unit
length between two electrodes can be expressed as:

C = ε0εeff
K(kÍ

0)
K(k0) [F/m] (5.3)

where K(k) is the complete elliptic integral of the first kind and k is the elliptic
integral function. In particular, k0 and kÍ

0 can be calculated as:

k0 = g

We + g
(5.4)

kÍ
0 =

ñ
1− k2

0 (5.5)

where We is the width of the electrode and g is defined as:

g = (1− α)p
2 (5.6)

where α is the metallization ratio and p the pitch. So g is nothing more than
the part of the pitch not occupied by the electrode divided by two. The relative
permittivity εeff is calculated as:

εeff = 1− (εpiezo − 1)q1 (5.7)

where q1 has the form:

q1 = 1
2
K(kÍ

1)K(k0)
K(k1)K(kÍ

0) (5.8)

and k1 and kÍ
1 are:

k1 =
tanh(π g2h )

tanh(π(We+g)
2h )

(5.9)

kÍ
1 =

ñ
1− k2

1 (5.10)

being h the film thickness.
In order to find the total static capacitance of the resonator, the result of Eq. 5.3,

i.e. the capacitance density per unit length per pair, is then multiplied by the IDT
length and the number of pairs. The reason is that all the lumped capacitances
calculated are in parallel.

C0 = C0 ·Np · Le (5.11)

The case of the TFE CLMR is shown in Fig. 5.3. As it can be observed, the
lumped capacitors are now four: two for the lateral field (C0LAT ) and two for the
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vertical (C0V ERT ). In the TFE configuration, with electrode pair is meant the couple
made by the top IDT finger and the corresponding bottom one. Therefore, Fig. 5.3
is showing two pairs. The reason is to take into account the interactions between
the various pairs, i.e. the lateral field capacitances. Their value is computed in the
same way as the previous case, i.e. with the Elliptic integral model and they are
all in parallel. Concerning the vertical capacitors, their capacitance density value
can be computed with the formula of the parallel plate one:

C0V ERT = ε0εr
We

h
(5.12)

Also in this case, all the capacitors are in parallel, and are in parallel with the
lateral ones. For each couple two C0LAT are included. Therefore, the resulting
capacitance density is then:

C0 = 2 C0LAT + C0V ERT (5.13)
The final capacitance value, in order to take into account the correct number of

C0LAT has to be reduced by two of the latters:

C0 = C0 ·Np · Le − 2 C0LAT · Le (5.14)
Finally, the BE CLMR case is shown in Fig. 5.4. It is a bit trickier due to the

presence of the floating BE. As in the LFE case, a pair is made by two adjacent

Figure 5.3: Showcase of the static capacitance of a TFE CLMR.

Figure 5.4: Showcase of the static capacitance of a BE CLMR.
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and opposite-polarities electrodes. The lateral field capacitance is computed with
the Elliptic integral model, and for each pair the contributions are in parallel.
Concerning the vertical capacitances, they are computed with Eq. 5.12. As shown
in the figure, there are two for each pair. Being the BE floating, they are in
series. Nevertheless, before putting them in series, the C0V ERT associated to all
the electrodes of the same polarity are in parallel. To be more clear let’s consider
the case of four electrodes: there would be three C0LAT in parallel with the series
of the parallel of two C0V ERT . The schematic of this example is shown in Fig. 5.5.
Therefore, the final formula to compute the capacitance is:

C0 = C0LATNp · Le + C0V ERT · Le ·
Np

4 (5.15)

With this very simple and approximated model, one can estimate the correct
number of fingers and/or the IDT length required to have the desired impedance
matching. ]

Figure 5.5: Example of the schematic of the capacitance for a BE CLMR with
four electrodes (three pairs).
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Chapter 6

Appendix B: Modeling of
the parasitic resistance of
CLMRs

As mentioned in Section 2.6, in order to design high quality factor resonators, the
losses due to electrical loading have to be taken into account. In the experimental
plan designed on AlN, those loss mechanisms have to be carefully mitigated due to
the high resistivity of Pt, the employed electrode material. It is not the case of the
ScAlN one, in which there is the usage of Al as top electrode which, having a very
low resistivity, is not the main quality factor limiter.

The sources of electrical loading are both the IDTs and the routing. Given
Rm the BVD motional resistance of the resonator, and Rs the parasitic resistance
introduced by the finite resistivity of the metal, the equation defining the loaded
quality factor, i.e. the final Q measured by the VNA is [38]:

Ql = Qu
Rm

Rm +Rs

(6.1)

where Qu is the unloaded quality factor, i.e. the one obtained if the metal
introduced no resistance. From this equation it is straightforward to notice that, if
Rm and Rs are comparable, the Q is severely limited, and therefore the losses are
increased.

In order to have an estimation of the parasitic resistance, a simple lumped model
has been developed. In this model, all the routing and IDTs have been treated as
separate elements and their resistance put in series. In particular, let’s consider
as a showcase the structure of a TFE CLMR. Indications on how to extend it
to the other CLMR topologies are given in the following. Given the structure of
a resonator as it appears on the GDSII file, let’s identify the various sources of
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electrical loading. They are shown in Fig. 6.1 on the left. On the right, the series
of the lumped resistors modeling each routing component is shown.

Let’s now analyze each contribution singularly and compute their resistances
using the simple formula:

R = ρ
L

S
(6.2)

where ρ is the metal resistivity, S the cross-section and L the length of each
routing component.

1. PAD: the pad is a simple square of metal used to land the probe in the
measuring phase. Its resistance will be:

Rpad = ρ
Lpad/2
Wpadt

(6.3)

where Lpad, Wpad and t are the length, width and thickness of the pad,
respectively. The pad thickness is the same as all the other interconnects
taken into consideration.

Figure 6.1: Left: visualization of the routing elements that introduce electrical
loading as they appear on the GDSII file. On the right, the complete lumped model
of the resistance of a CLMR.
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2. TRACE: the traces connect the pads to the anchors of the resonator. In the
current implementation, they consist of a trapezoidal structure. The resistance
that introduce is:

Rtrace = ρ
Ltrace

Wpad+Wanc

2 t
(6.4)

where Ltrace is the trace length and Wanc is the anchor width.

3. ANCHOR: the anchor is simply a block that connects the suspended res-
onator to the substrate. In order to transfer the electrical signal to the IDTs,
also the anchors have metallic interconnections and introduce a parasitic
resistance given by:

Ranc = ρ
Lanc
Wanct

(6.5)

where Lanc is the anchor length.

4. BUS: the bus provides the routing of the electrical signal to the IDT fingers.
Its resistance is computed by shunting the two bus branches, each of which
with a resistance of Rbus/2, where Rbus is:

Rbus = ρ
Lbus
Wrest

= ρ
Lbus
Nf

λx

2 t
(6.6)

where Lbus is the bus length, Wres the resonator width and Nf the number of
fingers.

5. GAP: the gap is the portion of the IDT which is not interdigitated and,
together with the above mentioned resonator components, is part of the
inactive region. All the fingers are considered in parallel.

Rgap = ρ
Lgap
Welt

1
Nf

= ρ
Lgap
λx

2 c t

1
Nf

(6.7)

where Lgap is the gap length, Wel the electrode finger width and c the coverage.

6. VIAs: the vias are the electrical connections between the top and bottom
electrode. Their resistance is generally a few Ohms, and in the present work
has been considered as equal to 1 Ω. In the case of LFE and BE CLMRs,
there are no vias and so no Rvias contribution.

7. IDTs: the IDTs constitute the active region of the resonator, and are respon-
sible for the transduction. Their resistance is computed as:

RIDT = 2
3ρ
LIDT
Welt

1
Nf

= 2
3ρ
LIDT
λx

2 c t

1
Nf

(6.8)
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where LIDT is the IDT length, and the factor 2/3 arises from the progressive
loss of charge inside the fingers, which makes them have a resistance as if their
length were 2/3 of the real one. In this kind of resonators, RIDT constitutes
the main source of parasitic resistance.

To sum up, Fig. 6.2 shows all the lumped elements and their resistance.

Figure 6.2: All the lumped model contributions to the parasitic resistance in a
CLMR with the relative equations. The VIAs resistance is missing since it has
been considered to the fixed value of 1 Ω.

This model is very simple to be understood and implemented, and provides an
estimation of the parasitic resistance, very useful in the design phase.
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