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Summary

The aim of this Master’s thesis is to optimize the design and performances of a novel
class of piezoelectric Micro-Electromechanical Systems (MEMS) resonators for very
and ultra high frequency (V/UHF) applications called Two-Dimensional-Mode
resonators (2DMRs). The entire work has been conducted at the department
of Computer and Electrical engineering of Northeastern University in Boston
(MA,USA) under the supervision of professor Cristian Cassella and Ph.D. Luca
Colombo.
The document is divided into six chapters and includes two appendices where
details and design examples are described. The first chapter gives an introduction
to the fundamental theory needed to understand the achievements of this work. A
detailed analysis of the state-of-the-art of 2DMRs is then discussed and compared
to other classes of piezoelectric MEMS resonators, with a focus on current perfor-
mance limitations. With the aim of improving the quality factor at resonance Q
and the electromechanical coupling coefficient k2

t of 2DMRs without increasing the
fabrication complexity, four different studies have been conducted and are explained
in chapter three. The analyses have been carried on through 2D/3D FEM simula-
tions with COMSOL® Multiphysics and analytically described with mathematical
models. Firstly, the minimization of anchor losses is demonstrated through the
analysis of an equivalent electrical circuit where inactive acoustic waveguides have
been analytically modelled as transmission lines. The introduction of “virtual
fixed boundaries” at the edge of the active areas through λ/4 acoustic transformers
showed how the optimization problem can be split in the definition of two energy
transfer functions governing the design of the bus and the anchors. 3D FEM simula-
tions with different boundary conditions (Fixed Constraints and Perfectly Matched
Layers) demonstrated excellent agreement with the analytical models. Secondly,
a new class of resonators named Two-Dimensional-Mode-Multimodal-Resonators
(2DMRM) have been introduced here for the first time, demonstrating a boosting
in the classical 2DMRs k2

t thanks to a reactive coupling between the zero and
the first order symmetric Lamb modes. A physical analysis of the multimodal
resonators based on the dispersive relations of Lamb symmetric waves has been
carried out and empirical design rules have been derived based on simulations
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with different materials and layers thicknesses. The frequency lithographic tun-
ability of 2DMRM has been computed and compared to the one of other MEMS
resonators, demonstrating how this innovative configuration can overcome the
limitations related to electrical loading and power handling common to many
of other technologies. Moreover, as a way of reducing the residual stress in the
piezoelectric film due to irregularities introduced by the bottom electrodes grating,
an innovative 2DMR configuration including a continuous bottom electrode plate
is discussed comparing the performances of different electrodes materials. Finally,
several electrodes apodization shapes for spurious modes suppression have been sim-
ulated and compared obtaining unprecedent clean 2DMRM admittance responses
in 3D simulations without affecting the electromechanical coupling coefficient. To
conclude, an innovative 2-ports device exploiting a frequency selective evanescent
coupling of two 2DMRs with applications in RF power sensing has been engineered
and analysed for the first time in chapter four. Exhaustive experimental plans
including hundreds of resonators have been outlined by parametrically drawing
the lithographic masks with ad-hoc Python libraries coded with the gdspy module.
The layouts and process flows are described in chapter five and conclusions are
outlined in chapter six.

COVID 19 EMERGENCY LIMITATIONS

To give a complete idea of the thesis work, it should be mentioned that the
experimental plan has been prepared after months of simulations with the idea of
fabricating, testing and characterizing the resonators in the cleanroom facility of
Northeastern University during the last months of the internship. However, due
to restrictions applied to exchange students, the fabrication has been performed
by Ph.D. students. Although the work has been planned in advance, delays have
accumulated due to increasingly severe restrictions and therefore no experimental
data have been made available in time to be included in this thesis. However, this
opened the possibility to extend and perfect the FEM simulations that are at the
core of this work.
For the interested reader, the experimental results that are still being collected will
be available in a few publications that are going to be submitted in the following
months.
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Chapter 1

Introduction

1.1 RF MEMS resonators state of the art

The demand for more and faster data delivery in wireless mobile is encountering a
drastic increase due to a multitude of applications enabled by smartphones and
other new technologies. In response to this, new and tougher specifications for future
RF front-end modules comprising oscillators, filters and multiplexers are required.
Surface acoustic wave (SAW) filters based on piezoelectric substrates (e.g., LiNbO3
or LiTaO3) have been in use since 1990s, but they suffer limited electromechanical
performances due to the lack of acoustic energy constraint, especially in the vertical
direction. Moreover, they rely on the excitation of Rayleigh waves that travel along
the surface and are characterized by a relatively low phase velocity; because of this,
SAW applications are commonly limited to frequencies below ≈ 3 [GHz]. In the
last decade, piezoelectric micro-electro-mechanical (MEMS) resonators based on
aluminum nitride (AlN) thin films have demonstrated the capability of forming
high-performance filters owing to large piezoelectric coefficients and films quality
[1]. The simplest devices are referred as film bulk acoustic resonators (FBARs) or,
more generally, as bulk acoustic wave resonators (BAW) since they are based on
the acoustic excitation of an extensional mode through their entire volume. They
are composed of a piezoelectric layer sandwiched between a top and a bottom
electrode and, owing to a simple and well defined energy constrained resonant
cavity and to the excitation of a large piezoelectric coefficient, they stand out
for very good performances and ease of fabrication. However, there is one main
limitation of this technology that regards the monolithic integration of multi-
band solutions. The center frequency of an FBAR is indeed set by the thickness
of the film itself, which is usually uniform throughout the wafer. To solve this
problem, a new class of resonators based on the excitation of Lamb waves has been
introduced by research. Lamb waves are generally referred as plate waves and
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Introduction

describe the characteristics of acoustic waves propagating in an infinite ideal plate
with free boundaries. They can be excited in a finite piezoelectric structure by
interdigital transducers (IDTs) or, more generally, by electrode gratings disposed
in specific configurations to match the acoustic wavelength of the modes. Thanks
to the dependence of the resonance frequency on the electrodes dimensions, Lamb
wave resonators can solve the monolithic integration issue that affects FBARs by
lithographically setting the acoustic wavelength. However, common AlN Lamb
wave resonators usually show moderate efficiency in the conversion of electrical
energy into mechanical (and viceversa) if compared to BAWs. As a result, research
has been looking at several electrodes typologies and configurations to boost the
resonator performances towards the replacement of FBARs. While searching for
the most efficient architecture, several technologies have been introduced following
three main approaches:

• the excitation of lateral waves coupled with vertical waves

• the excitation of two dimensional lateral waves

• the coupling of 2D lateral waves with vertical waves

Following the first approach, cross-sectional Lamé mode resonators (CLMRs),
laterally coupled alternating thickness mode resonators (LCAT), coupled bulk
acoustic resonators (CBARs) and two dimensional resonant rods (2DRR) have
been designed together with the devices at the core of this work, the so called
two-dimensional mode resonators (2DMRs). Each design differs from the others
by the polarity of the voltage applied to the electrodes, their dimensions and
thicknesses, resulting in the direct excitation of different piezoelectric coefficients
of the Aluminum Nitride film. They all have different merits and limitations in
terms of electromechanical performances, spurious modes minimization and easy of
fabrication. Together with these main features, other important parameters such
as the power handling and form factor (i.e. size of the resonator) should be taken
into account when selecting one typology for a specific circuital application. Since
several technical aspects and details are needed for a full comparison between the
multitude of devices, their analysis is carried out in the next chapter.
With the idea of exploiting two lateral waves, Checker Mode resonators are currently
in investigation, where lateral waves along two perpendicular directions are excited
by pads with rectangular or diamond shapes instead of long IDTs. However, very
thin electrical lines are needed in this case, imposing a significant electrical loading
to the system. For this reason, and considering the more complex manufacturing
process, most of research focus is on other technologies.
The performances of all these MEMS resonators deeply rely on the properties of
the piezoelectric material adopted (i.e. AlN), which governs the ability to cyclically
convert energy from the mechanical to the electrical domain. It has been recently
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1.2 – From piezoelectricity to RF resonators

demonstrated that Scandium doping of Aluminum Nitride thin films increases the
piezoelectric coefficients [2],[3], therefore boosting the performances obtained with
pure AlN regardless of the design implemented. Moreover, the Scandium intro-
duction gives a ferroelectric property to the piezoelectric material, introducing an
additional feature for the next generation of MEMS resonators for RF applications.
In this thesis, the optimization of the design of two-dimensional mode resonators
based on pure AlN is carried out. All the work has been done in the Microsystems Ra-
dio Frequency laboratory of prof. Cristian Cassella (https://web.northeastern.
edu/cassella/research/), who recently patented both CLMRs and 2DMRs.
In the following subchapters, the fundamentals of the theory needed to understand
the physics, design and development of a MEMS resonator are explained.

1.2 From piezoelectricity to RF resonators

1.2.1 Piezoelectric materials for RF MEMS
As the word itself says, the piezo-electric effect (from the Greek piezein, to squeeze
or press) is an electro-mechanical phenomenon. It was first proven in 1880 by
the brothers Pierre and Jacques Curie. They demonstrated how the piezoelectric
crystals exhibit a dipole moment whose strength and orientation can be changed
by mechanical forces. Experimentally, it was observed how these materials are able
to generate an electric charge in response to an applied mechanical interaction. At
equilibrium, without any external stress, the negative and positive charges of each
molecule of the material share the same symmetry centres and the electric effects
are reciprocally cancelled, resulting in an electrically neutral molecule. When an
external mechanical pressure is applied, the internal atomic structure is deformed,
resulting in a separation of the positive and negative centres of the molecules, as
depicted in fig.1.1.
The consequent generation of dipoles maps the phenomenon of energy conversion
from the mechanical domain to the electrical and when the material is not short-
circuited, the charges induce a measurable voltage across the material. Moreover,
an equivalent behaviour is observed in the reverse direction, where the application
of a voltage induces a mechanical deformation. This peculiar effect is nowadays
exploited in many devices for radio-frequency applications, sensor and actuators of
many kinds [4]. Among all these applications, we will investigate the evolution and
the state-of-the-art of micro-scaled piezoelectric resonating structures.
Resonators and piezo generators for ultrasound applications were two of the first
demonstrated MEMS devices. Among the piezoelectric materials, Lithium Niobate
(LiNbO3) has historically gained interest in the late 1960s in the world of surface
acoustic wave (SAW) to provide excellent piezoelectric properties in many applica-
tions where the acoustic domain was exploited for analog signal processing purposes.
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Figure 1.1: positive and negative charges centres relative position in a molecule
of a piezoelectric material without and in the presence of an external applied stress.

Subsequently, in the 1970s and 1980s, the most investigated thin film materials
were mainly ZnO and AlN. Due to their non-centrosymmetric wurtzite structures
(i.e., without any inversion symmetry), these compounds are capable of exhibiting
better mechanical performance at high-frequency operation if compared to other
technologies. Following the fast growing of the mobile and telecommunication
industry in the mid 1990s, LiNbO3 was again considered to compete with the
AlN film bulk acoustic resonators (FBARs) technology thanks to the simultaneous
delivery of high electromechanical coupling (kt2) and mechanical quality factor
(Q). However, one fundamental aspect that goes in favor of Aluminum Nitride at
the expense of other compounds, is the integration and process compatibility with
CMOS related processes.
Today, AlN is the material of choice for most of RF devices that rely on piezoelectric-
ity for mainly three reasons. Firstly, the strong polarity of the crystalline structure
allows for a stable piezoelectric response in time. Secondly, the deposition process of
AlN films is reliable and reproducible and finally, the material itself exhibits a good
thermal conductivity for an insulator and is thus suited for filtering applications
[4]. As common with many nitrides, AlN is characterized by a high hardness and
large stiffness constants. The relevant piezoelectric coefficient (e3 = 1.55 C/m2) is
about ten times lower that in PZT thin films, but this is compensated by a very
low dielectric constant, enabling a high electromechanical coupling coefficient for
thickness extensional modes. Furthermore, a rather specific feature of AlN is its
high sound velocity [5]. This permits to deposit thick films even for relatively high
frequencies, overcoming process limitations common to other materials.
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1.3 Piezoelectricity and Elastodynamics

1.3.1 Piezoelectricity constitutive equations

When an external force is applied to a solid, it deforms. If the original state of
the structure can be restored, the deformation is said to be elastic, as opposite to
the plastic permanent deformation. There are two main kinds of deformation, the
first comprises extension and compression of a structure and the second is shear,
they are schematized in fig.1.2. In both cases, a measure of the deformation can be

Figure 1.2: deformation in solids, figure from [6].

given by

S Í
ij = δwi

δwj

= ∂ui
∂xj

(1.1)

where u is the displacement vector of a point in the structure. To overcome the
sensitivity of S Í

ij to rotational displacement, the strain can be defined as [6]

Sij = 1
2

A
∂ui
∂xj

+ ∂uj
∂xi

B
(1.2)

so that to positive and negative values corresponds, respectively, extension and
compression. Given the symmetry of eq.1.2, the matrix S composed by nine
elements shows only six independent values and a more compacted form of the
definition given above can be written:

S = ∇u, (1.3)
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where

S =



S1
S2
S3
S4
S5
S6


, ∇ =



∂
∂x1

0 0
0 ∂

∂x2
0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0


, u =

u1
u2
u3



and the following relation holds :
S1 S6 S5

S6 S2 S4
S5 S4 S3

 =

 S11 2S12 2S13
2S12 S22 2S23
2S13 2S23 S33

 . (1.4)

In order to describe the relation between the strain and the force applied to a
plane of the structure, the stress Tij is defined. It represents the force per unit
of area, where the subscripts indicate the directions of the force and the vector
perpendicular to the plane where the force is applied [6]. In a stationary framework,
the equilibrium conditions for translation and rotation give

Tij = T−i−j and Tij = Tji. (1.5)

Similarly to eq.1.2, eq.1.5 above infers only six independent element among the
nine of type Tij. When an elastic response is excited, the stress is proportionally
related to the strain by the Hooke’s law, it can be written with an abbreviated
notation as

T = cS, (1.6)

where

T =



T1
T2
T3
T4
T5
T6


, c =



c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66


, S =



S1
S2
S3
S4
S5
S6


.

cij is called the elastic constant and the number of independent elements in c
depends on the crystallographic structure of the solid under interest. When a
coordinate system that coincides with the crystal axes of a 6mm material (e.g,
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AlN), is chosen, the stiffness matrix reduces to

c =



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66


(1.7)

and the relation c11 − c12 = 2c66 holds [6].
When it comes to apply the same relations for a piezoelectric medium, the contri-
bution of the applied electric field to the stress has to be taken into account and
vice versa. The strain S is linearly coupled to the electric flux density D by the
so called piezoelectric stress constants eij and the following stress-charge relations
holds:

D1
D2
D3

 =

e11 e12 e13 e14 e15 e16
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36




S1
S2
S3
S4
S5
S6


+

ÔS11 ÔS12 ÔS13
ÔS12 ÔS22 ÔS23
ÔS13 ÔS23 ÔS33


E1

E2
E3

 (1.8a)



T1
T2
T3
T4
T5
T6


=



cE11 cE12 cE13 cE14 cE15 cE16
cE12 cE22 cE23 cE24 cE25 cE26
cE13 cE23 cE33 cE34 cE35 cE36
cE14 cE24 cE34 cE44 cE45 cE46
cE15 cE25 cE35 cE45 cE55 cE56
cE16 cE26 cE36 cE46 cE56 cE66





S1
S2
S3
S4
S5
S6


−



e11 e21 e31
e12 e22 e32
e13 e23 e33
e14 e24 e34
e15 e25 e35
e16 e26 e36


E1

E2
E3

 (1.8b)

that in matrix form reads

D = eS + ÔSE (1.9a)

T = cS − etE (1.9b)

The superscript S in eqs.1.9a and 1.8 indicates that the value of the dielectric
constants are measured under constant strain. As for the case of the elastic
constants, both the piezoelectric and dielectric constant matrices can be simplified
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for specific crystallographic orientations. In the case of the hexagonal point
symmetry 6mm of Aluminum Nitride, only five coefficients are inferred:

e =

 0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

 , ÔS =

ÔS11 0 0
0 ÔS11 0
0 0 ÔS33

 (1.10)

The values of these coefficients for a single crystal of Aluminum Nitride are listed
in table 1.1 . Alternatively to eq.1.9, the piezoelectric relations can be expressed in
a strain-charge form:

S = sE=0T + dTE (1.11a)

D = dT + ÔT=0E, (1.11b)
being sE=0 the compliance matrix (inverse of the stiffness matrix) and d the
piezoelectric coefficients matrix.

AlN coefficients
cE11 = cE22 [GPa] 345
cE12 [GPa] 125
cE13 [GPa] 120
cE33 [GPa] 395
cE44 = cE55 [GPa] 118
e15 −0.48
e31 −0.58
e33 1.55
ÔS11/Ô0 9.0
Ôs33/Ô0 10.7

Table 1.1: measured properties of single crystal AlN [4].

1.3.2 Fundamentals of elastodynamics

To understand how a solid deforms given a stress configuration, the equation of
motion defining the elastodynamics of the system has to be solved:

∇ · T + f = ρü, (1.12)

where T is the stress tensor, f represents the mechanical body forces, ρ is the
mass density of the domain and ü is the second time derivative of the mechanical
displacement. For what concerns the electrical response of a piezoelectric material,
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it is often analyzed under the quasi-static regime of electromagnetic fields. Within
this approximation, it is assumed that the electric field changes in time sufficiently
slowly in the domain volume so that no magnetic field can be taken into account and
purely electrostatic equations can be used. This assumption relies on the fact that
the size of the devices is most of the times much shorter than the electromagnetic
wavelength.
In an elastic medium, the solution of the equation of motion can lead to propagating
or stationary waves. These can be described in terms of stress, displacement or
strain and divide in two main groups:

• Longitudinal waves, where the displacement is parallel to the propagation
direction

• Shear/Transversal waves, where the displacement is perpendicular to the
direction of propagation

As it will be further discussed, these two families of waves are characterized by
different velocities, even if they propagate within the same medium. Transverse
waves usually present lower velocities than the longitudinal waves, this results also
in a lower acoustic impedance, defined as:

Z = v · ρ, (1.13)

being v the sound velocity in the medium and ρ its density. The acoustic impedance
relates variations in stress to those in the velocity of the particles and it is fundamen-
tal to describe the behaviour of a wave when it has to propagate in non-homogeneous
structures such as a MEMS resonator.
When a mechanical wave propagates in a piezoelectric material, electrical energy
created by the motion is stored by local electric fields. The piezo interaction
results in an enhancement of the effective stiffness coefficient and this is referred as
piezo-stiffening. Being the effective stiffness coefficient higher than the nominal
one, the sound velocity is increased:

v =
ñ

cD/ρ =
ñ

cE(1 + k2
t )/ρ = vu

ñ
1 + k2

t (1.14)

where the sound velocity is expressed in terms of the material stiffness cE (evaluated
with shorted boundaries), and the stiffned coefficient evaluated with floating
boundaries cD. Here, the k2

t is called the electromechanical coupling coefficient and
is derived from a combination of all the piezoelectric coefficients involved in the
mechanical and electrical energy conversion.
In the case of a MEMS resonator, the equation of motion is solved for a bounded
geometry, giving solutions in the form of standing waves. These solutions obey
to the boundary conditions applied to all the edges of the structure and form
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through multiple wave reflections between the device surfaces. Like the propagating
waves, the standing waves divide in shear and longitudinal resonances, where the
displacement field polarization in the first case is orthogonal to the latter one. A
solution to the problem of waves propagation in plates has been analytically derived
by Horace Lamb in 1916; part of the derivation is summarized below because of
the centrality of the results in the design of Lamb waves resonators.

1.3.3 Lamb wave theory
Each resonator typology distinguish itself from others by the guided wave modes that
are excited when putting the structure into resonance. A tool for the investigation of
how the ultrasonic energy is confined and travels inside a thin film of a piezoelectric
material comes from the study of the most generic free plate problem. Even though
the 2DMR geometry is far from the one of a free plate, each region of the structure
can be approximately thought as a portion of a multilayered film with boundary
conditions applied at its edges. The analysis of the modes that can be excited in the
ideal case of an infinitely extended plate can be useful to derive the characteristic
of standing waves in a finite resonator volume.
In an isotropic, homogeneous and ideal plate as the one showed in fig.1.3, acoustic
waves can be described in a cartesian tensor notation as:

µ · ui,jj + (λ + µ) · uj,ji + ρ · fi = ρ · üi (i, j = 1,2,3), (1.15)
where fi and ui are the body force and displacement along the xi direction, µ and
ρ are the shear modulus and the density of the plate and λ is the Lamé constant,
related to the Poisson’s ration (v) by λ = 2µv

1−2v [7]. Eq.1.15 contains all the partial
differential equations governing the displacement. If the domain in which they are
applied is finite, boundary conditions (BC) are needed to solve a well posed Cauchy
problem. The BCs take the form of defined tractions and/or displacements at the
boundaries of the structure and, in the case under study, the surfaces of the plate
in fig.1.3 are assumed to be traction-free.

According to Helmholtz’s theorem, any vector field u can be represented in
terms of a vector potential Ψ and a scalar potential φ:

u = ∇φ + ∇ × Ψ if ∇ × φ = 0 and ∇ · Ψ = 0, (1.16)
where a scalar potential field that is curl-free (i.e. no shearing is derived) and a
vector potential field that is divergent-free (i.e. no volume change is inferred) are
inferred.
Considering a section of the plate in fig.1.3 along the x1/x3 plane, eq.1.15 can be
uncoupled in two parts following eq.1.16. They are respectively referring to the
longitudinal wave modes and the transverse or shear wave modes:

∂2φ

∂x2
1

+ ∂2φ

∂x2
3

= 1
c2
L

∂2φ

∂t2 , for longitudinal waves (1.17)
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∂2Ψ
∂x2

1
+ ∂2Ψ

∂x2
3

= 1
c2
T

∂2Ψ
∂t2 , for shear waves (1.18)

Under the simplistic assumption of plane strain, the displacements and stresses
can be described by potentials as:

u1 = u = ∂φ

∂x1
+ ∂Ψ

∂x3
u2 = v = 0

u3 = w = ∂φ

∂x3
+ ∂Ψ

∂x1

(1.19)

T31 = µ

A
∂u3

∂x1
+ ∂u1

∂x3

B
= µ

A
2∂2Ψ

∂x1∂x3
− ∂2Ψ

∂x2
1

+ ∂2Ψ
∂x2

3

B
(1.20)

T33 = λ

A
∂u1

∂x1
+ ∂u3

∂x3

B
+2µ

∂u3

∂x3
= λ

A
∂2Ψ
∂x2

1
+ ∂2Ψ

∂x2
3

B
+2µ

A
∂2Ψ
∂x2

3
− ∂2Ψ

∂x1∂x3

B
(1.21)

where λ and µ are Lamé constants [8].
Given the equations of motion (eq.1.17 and eq.1.18), it is reasonable to assume
infinite plane harmonic wave solutions in the form:

φ = Φ(x3)exp[i(kx1 − ωt] (1.22)

Ψ = Ψ(x3)exp[i(kx1 − ωt)] (1.23)

which describe traveling waves in the x1 direction with wave vector k = 2π/λx1
and standing waves along x3. Substituting the last equations in 1.17 and 1.18, the
equations governing the unknown functions can be derived:

φ = Φ(x3) = A1sin(px3) + A2cos(px3) (1.24)

Ψ = Ψ(x3) = B1sin(qx3) + B2cos(qx3) (1.25)

where the parameters p and q are dependent on the wavelength of the wave:

p2 = ω2

c2
L

− k2, q2 = ω2

c2
T

− k2 k = 2π

λwave
(1.26)

11



Introduction

The four constants A1, A2, B1 and B2 are determined by the boundary conditions
of the system. cL and cT are the velocities of longitudinal and transverse modes,
defined by [7]:

cL =

öõõô E(1 − v)
ρ(1 + v)(1 − v) =

öõõô2µ(1 − v)
ρ(1 − 2v) , cT =

ó
E

2ρ(1 + v) =
ó

µ

ρ
, (1.27)

being E the Young’s modulus of the material. From the solution of the potentials,
the displacements and stresses can be obtained by substitution in eqs.1.19,1.20,1.21:

u1 =
A

ikφ + dΨ
dx3

B
(1.28)

u3 =
A

dΨ
dx3

+ ikΨ
B

(1.29)

T31 = µ

A
2ik

dφ

dx3
+ k2Ψ + d2Ψ

dx2
3

B
(1.30)

T33 = λ

A
−k2φ + d2φ

dx2
3

B
+ 2µ

A
d2φ

dx2
3

− ik
dΨ
dx3

B
(1.31)

where the exponential terms have been omitted to simplify the expressions. The
plate under study has free upper and lower surfaces, therefore the following boundary
conditions can be applied to the system:

u(x, t) = u0(x, t)
ti = Tjinj

T31 = T33 = 0 at x3 = ±h

(1.32)

giving
tan(qh)
tan(ph) = 4k2qpµ

(λk2 + λp2 + 2µp2)(k2 − q2) (1.33)

Eq.1.33 gives the most general description of Lamb waves propagating in an
isotropic and homogeneous suspended plate and a few considerations can be done.
Substituting eqs.1.26, 1.27 in the last expression and considering the symmetric
and anti-symmetric properties of the trigonometric functions involved, two parts
with exclusively symmetric and tanti-symmetric properties can be distinguished.
Two types of Lamb waves modes can therefore be derived and eq.1.33 splits in:

tan(qh)
tan(ph) = − 4k2qp

(k2 − q2)2 asymmetric modes (1.34)
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tan(qh)
tan(ph) = −(k2 − q2)2

4k2qp
symmetric modes (1.35)

The symmetric and anti-symmetric Lamb modes are commonly named with the
symbols Si and Ai (i = 0,1, ...) and eqs.1.34,1.35 are known as the Rayleigh-Lamb
equations. These frequency relations can be used to determine the velocity at which
a wave of a particular frequency propagates within the plate [8] and the frequency
dependence on the wave vector k of the mode. The latter relation defines the
dispersion curves that are unique for each mode and play a central role in the
design of 2DMRs.

Figure 1.3: infinite plate assumed for the derivation of the Lamb theory.

The conventional way to compute dispersion curves for homogeneous acoustic
waveguides is to implement the Semi-Analytical Finite Element (SAFE) method.
On the other hand, another powerful tool to achieve the same results relies on
the usage of Floquet boundary conditions. These boundary conditions can be used
to extract dispersion curves of periodic waveguides, that typically characterize
metamaterials and periodic architectures. For an infinite-plate waveguide, the
Floquet boundaries can be expressed as:

udst = usrce
−ikF (rdst−rsrc) (1.36)

where the wavenumber kF can be user-defined in a FEM analysis software and
is usually swept in a relatively wide range. The subscripts dst and src designate
the destination and source faces of a given material stack, u is the displacement
and r describes the coordinates of the boundaries on which the BC is applied [9].
In this work, a unit cell formed by the same materials stack of specific regions
inside the devices structure has been simulated on COMSOL® Multiphysics and
the Floquet BC have been applied to its parallel lateral faces as depicted in fig.1.4.
The eigenvalues (i.e. frequencies) associated to Lamb’s eigenfunctions are evaluated
by sweeping the wavenumber kF , and dispersion curves for the waveguides are
drawn by plotting the wavenumber versus frequency, or viceversa. These dispersion
curves typically appear periodic with respect to wavenumber with periodicity 2π/d,
being d the width of the unit cell (i.e. the distance between the parallel src and
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dst faces). The first zone of the reciprocal lattice-space (−π
d

< kF < π
d
) is usually

assumed as the focal point because the dispersion curves repeats themselves in the
other zones.
For the complete analysis of the excited modes carried out in the following chapters,
dispersion curves have been computed applying different electrical boundaries
at the interface between the metal and the piezoelectric layer. If zero-charge
boundaries are imposed, the equivalent stiffness of the piezoelectric layer is reduced
because less energy gets stored in the electrical domain, and higher frequencies are
obtained. In the opposite case of floating surfaces, the layer equivalent stiffness
in increased and lower frequencies vs kx are plotted, as visible in fig.1.4. These
two configurations corresponds to the antiresonance and resonance frequency
characterizing the electrical response of a piezoelectric resonator as will be explained
in detail in the following subsection.

Figure 1.4: 2D model of a multilayered structure used for the evaluation of the
dispersion curves for both the parallel and series resonances. The blue lines indicates
the zero charge boundaries whereas the green and yellow lines indicate, respectively,
the source and destination boundaries for the Floquet periodicity. The dispersion
curves for the first five excited modes are also shown, where the dotted lines are
related to fs curves and solid lines to fp.
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1.3.4 Resonators and BVD model
When a piezoelectric resonator is excited in one of its acoustic resonant modes by
the application of voltages in specific locations through metallic electrodes, the
resonance can be detected as a change in the input admittance of the device. This
behaviour is at the base of all the applications in which MEMS resonators are
used as impedance elements in an electronic system. Let’s take the most simple
BAW resonator (FBAR) as the case study to derive an electrical model that can
be applied to any kind of resonant system. In the structure shown in fig.1.5a),
when a sinusoidal voltage signal v is applied between top and bottom electrodes, a
mechanical force vm is generated through piezoelectric effect and a displacement u
is generated in the plate. The following relation holds:

v ∝ vm = M
d2u

dt2 + ν
du

dt
+ Ku, (1.37)

being M , ν, and K the effective mass, effective viscosity and effective spring
constant of the plate. In terms of a damped oscillating system, the three terms cor-
respond to inertia, friction and elasticity. Thanks to the piezoelectricity, electrical
charges qm proportional to the induced displacement accumulate on the electrodes;
from these mechanical/electrical relations, the electromechanical equivalent circuit
of fig.1.5b) can be derived where the current im = du/dt is a "mechanical" current
and C0 is the capacitance expressing the electrostatic coupling between two elec-
trodes [4].
If only the electrical characteristic is taken into account, the circuit can reduce to

Figure 1.5: a) simplified FBAR structure b) equivalent electrical model of a
resonator

the one in fig.1.6(a), where Cm, Lm, and Rm are called the motional capacitance,
motional inductance and motional resistance of the system. This circuital model is
called the Butterworth-Van Dyke (BVD) model. This is the most simple circuit
describing a one port acoustic resonators and will be used to characterize simulation
and experimental results in the following chapters.
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Figure 1.6: a) single resonance BVD model b) BVD model fitting of a 3D FEM
simulation, the electrical parameters are listed in the inset.

A typical response of the input admittance versus frequency obtained from a
3D FEM simulation is shown in fig.1.6(b); the curve has been fitted with the BVD
model and the electrical parameters are summarized in the inset. The frequency
at which the admittance is maximum is called the series resonance frequency
labelled as fs whereas the frequency at the minimum is called the parallel resonance
frequency fp. From the electrical model, the admittance can be expressed as [4]:

Y = 2πjfC0
1 − (f/fp)2 + j(f/fp)Q−1

a

1 − (f/fs)2 + j(f/fs)Q−1
r

(1.38)

where Qr and Qa are the resonance and anti-resonance quality factors. As will be
discussed in detail, they are related to the steepness of the admittance peaks and
are inversely proportional to the motional resistance. They can be computed as

Qr = 2πfsLm

Rm

(1.39a)

Qa = 2πfpLm

Rm

(1.39b)

and the the resonance and anti-resonance frequencies are evaluated as

fs = 1
2π

√
LmCm

(1.40a)

fp = 1
2π
ñ

Lm(C−1
m + C−1

0 )−1
. (1.40b)
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Given the electromechanical coupling coefficient (k2
t = π2/8(f 2

p − f 2
s )/f 2

s ), the
motional parameters are estimated as:

Cm = 8C0k
2
t

π2 (1.41a)

Lm = 1
ω2Cm

(1.41b)

Rm = ωresLm

Qr

. (1.41c)

and can be used to characterize the response of a device under test.
When designing a resonators, the contribution from multiple resonances should be
taken into account. A good design should ensure that different acoustic modes are
excited at different and well separated frequencies in order to distinguish the main
resonant mode to the others. However, in practical applications it is a common
thing to find spurious modes nearby the main resonance that, in some cases, strongly
affect the acoustic performances of the device. The influence of multiple resonances
can be taken into account adding one LCR branch to the BVD model for each
of them as shown in fig.1.7a. Moreover, additional electrical components can be
added to the electrical model to include dissipative contributions to the electrical
response. The circuit in fig.1.7b includes the ohmic resistance of electrodes Re, a
resistance R0 modelling dielectric losses in the piezoelectric film, and a parasitic
capacitance Cp. The addition of Cp is parallel to C0 increases the equivalent static
capacitance but the two contributions are not distinguishable when estimating
the parameters from an admittance curve. The energy that can be converted
into mechanical energy is only the one stored by C0, and therefore, Cp lowers the
measured effective electromechanical coupling since does not actively participate in
any electromechanical transduction.
The electrode resistance influences the admittance response only at f ≈ fs while
R0 gives its contribution at f ≈ fp. The additional resistances modify eq.1.39 as

Qr = 2πfsLm

Rm + Re

(1.42a)

Qa = 2πfpLm

Rm + R0
. (1.42b)

where the additional components are derived as follows:

R0 =
ó

8k2
t

π2 + 1 · ωrLm

Qa

− Rm (1.43a)

Rs = Ù{Z(ω >> ωa)} − R0. (1.43b)
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(a) (b)

Figure 1.7: a) multi-resonances BVD model b) modified BVD model

It is worth noticing that these additional components may include other resonator
non-idealities that affect the operation of the device together with the cited ones.

The BVD model is useful to characterize the performance of a device but cannot
be used to predict the device response while designing a new architecture. To
extract the parameters from a measured response, a set of steps should be followed:

• Y/Z extraction

• (Rs+R0) extraction for ω >> ωa

• kt2 extraction from fs and fp

• C0 extraction from ω >> ωa

• Lm computation from fs and Cm

• Rm extraction from sweeping Qr to match Y

• R0 extraction from sweeping Qa to match Y

The presented model has been discussed taking FBARs as a case study, but
can be applied to any resonant structure, as Lamb waves resonators. To better
understand the dependence of some parameters that have been introduced on the
physics governing the device, a deeper physical insight is given in the next section.
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1.4 Resonators FoM
The mechanical energy in the resonator body and the electrical energy applied
through the metallic electrodes are cyclically converted from potential to kinetic.
From a piezoelectric prospective, the stress and electric fields in the material
reciprocally converts to each other owing to the two-way coupling shown by
piezoelectricity. The performance of any piezoelectric device is dependent on
the efficiency of both these two conversion mechanisms. There are two important
parameters that quantifies this efficiency, they are defined as the electromechanical
coupling factor (k2

t ) and the quality factor (Q) of the resonator. In the following, a
detailed description of these parameters and the analysis of the main effects that
play a role in the optimization and degradation of the device figure of merit (FoM)
is carried on.

1.4.1 Quality factor
The quality factor Q is directly related to the energy loss in the resonator. While
the energy is cyclically converted, a portion of it turns into a form that cannot
be recovered (e.g., heat) whereas another fraction could escape from the resonant
structures and be dissolved in the surrounding environment. The simplest definition
of Q is:

Q = 2π
Energy stored at resonance

Energy dissipated per cycle
(1.44)

As there are multiple sources of dissipation and non-idealities in a real device,
the denominator of eq.1.44 can be expressed as a sum of multiple components:

Q = 2π
Estoredq

i Ei dissipated/cycle
=
AØ

i

1
Qi

B−1

(1.45)

From this initial definition of the quality factor, a mechanical analogy with
a damped mass-spring system is straightforwardly given. In analytical terms, a
resonant structure is governed by a second-order differential equation of the form
Aẍ + Bẋ + Cx = 0, and the quality factor is related to the inverse of the damping
ratio:

Q = 1
2ζ

, (1.46)

where ζ is defined as the ratio between C and the critical damping of the system

ζ = B/2
√

CA. (1.47)
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Even though these are good definition for the Q parameter, none of them is
convenient to use when analyzing the admittance plots from a measurement. When
it comes to relate the Q to plot, an handier definition is generally used:

Q = fr
BW3dB

, (1.48)

where fr is the resonance frequency and BW3dB is the frequency bandwidth
comprising values between the admittance peak and its value at −3 dB from the
maximum. According to this last definition, it is clear that Q is higher when
a sharper resonance is achieved, meaning that more energy is confined at the
resonance.

Let’s now briefly analyze which are the main terms appearing in the summation
of eq.1.45. For the sake of conciseness, all the losses contributions can be identified
in three main classes [4]:

1. Electrical losses from the non ideal conductivity of the electrodes and dielectric
losses of the piezoelectric material

2. Electro-mechanical losses derived from the non ideal energy conversion from
one domain to the other in the piezoelectric film

3. Anchors and elastic losses associated to the escape of acoustic energy from
the system

The first class listed has been well characterized by research and these effects
are now taken into account while processing the measurement results. The second
contribution can be attributed to intrinsic losses, as they depend on the material
properties and film homogeneity and ultimately depends on the reliability of the
process flow. Finally, the energy leakage is strongly affected by the engineering of
the structure and we call them extrinsic losses. They play a central role in one of
the studies presented in this work and are here discussed with more emphasis.
One of the main source of losses is related to the amount of acoustic energy that is
radiated trough the frame that holds the resonant structure of the device. This
behaviour is strongly dependent on the geometry adopted and dimensions of the
supports but, most importantly, its contribution depends also on the specific modes
excited in the active areas of the device, hence making it difficult to universally
characterize it. As the frequency is increased, the device dimension shrinks, but
the anchor dimensions (commonly maintained at their minimum) may be unable
to scale with the same rate. This make it fundamental to study an optimal anchor
configuration for each different type of MEMS resonator.
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1.4.2 Electromechanical coupling coefficient
The coupling factor describes the efficiency of the conversion from the electrical to
the mechanical domain and vice versa. One of the most important aspect to keep in
mind for its analysis is the difference between the electromechanical coupling factor
characteristic of the resonator and the coupling factor of the material itself. The
latter does not depend on the resonator design, whereas the first can be boosted or
degraded depending on the electrodes implementation. The piezoelectric coupling
factor (K2) of a lossless material can be defined as

K2 = WM

WM + WE

(1.49)

where WM is the work that is delivered to a mechanical load by a piezoelectric
actuator preloaded with a potential energy WM + WE [4]. It can be demonstrated
that the coupling factor has a second order proportionality to the piezoelectric
coefficient of the material and is inversely proportional to the stiffness and the
dielectric constant. This is because a stiff material is subjected to less displacement
(leading to smaller WM) and the higher the dielectric costant, the larger is the
potential energy that is conserved in the electrical domain. The K2 represents
the upper bound for the efficiency of energy conversion in a resonator built with
a given piezoelectric material. To quantify the conversion efficiency in a resonant
device with a specific geometry, the effective electromechanical factor is commonly
defined as:

k2
eff =

f 2
p − f 2

s

f 2
p

(1.50)

where fp and fs are, respectively, the antiresonance frequency and the resonance one.
In this work, the k2

eff will be abbreviated as k2
t and a slightly different definition

will be used, in coherence with the work presented in [10]:

k2
t = π2

8
f 2
p − f 2

s

f 2
s

= π2

8
Cm

C0
. (1.51)

Eq.1.51 describes the electromechanical coupling factor also in terms of the ratio
between the motional capacitance and the static capacitance of the resonator. Both
parameters can be estimated from the BVD model.
Finally, the FoM for a piezoelectric MEMS resonator is commonly defined as the
product between the two parameters:

FoM = k2
t · Q (1.52)

It quantifies the efficiency in the mutual conversion of electrical and mechanical
energy and the amount of energy that is not lost in undesired form of dissipation.

21



22



Chapter 2

2DMRs and Lamb waves
resonators

The electromechanical coupling at resonance of a MEMS resonator is strictly related
to the magnitude of the piezoelectric coefficient that transduces the electric signal
in an acoustic wave. FBARs are made by a piezoelectric film sandwiched between a
top and a bottom electrode so that a thickness extensional mode is excited through
the d33 coefficient. Since the monolithic integration of multiple FBARs is limited
by the uniformity of the film thickness, other resonators have been introduced
to solve this limitation and some of them with similar features are here briefly
compared. A first example is given by contour mode resonators (CMRs) that rely
on the direct excitation of the zero-order symmetric Lamb mode (S0). They enable
a frequency tunability with lithographically defined electrode dimensions but show
a limited electromechanical coupling due to the low d31 coefficient of Aluminum
Nitride (kt2 ≈ 3%) [11]. A way to overcome this kt2 constraint is to combine the
excitation of the two piezoelectric coefficients along different directions. This was
firstly proposed by Zuo et al. in [12], where a coherent combination of d33 and
d31 transduction was demonstrated to boost the electromechanical coupling up
to 10% in a basic rectangular section of a cross-sectional dilation mode resonator
(XDMR). Depending on the ratio between the thickness (t) and the width (W ) of
the resonant structure, a two dimensional mode builds up in the cross section as
depicted in fig.2.1. Electrical charges are generated from mechanical displacement
in the vertical direction through the d33 coefficient and in the lateral dimension
through the d31 coefficient and the two contributions sum to each others increasing
the electromechanical efficiency [12]. This is coherently described by the negative
polarity of d31 with respect to d33. On the other hand, while boosting the electrical
performance, a very poor lithographic control of the resonance frequency affects
the XDMR topology, just as in the case of FBARs.
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Based on these inputs, the question that research has been answering is: how is
it possible to effectively make a resonator that exploits the features of XDMRs
enabling a lithographic tunability of the resonance frequency?
The solution is provided by the two-dimensional-mode resonators (2DMRs), pre-
sented for the first time in [13] and patented in 2018 by prof. Cassella from
Northeastern University. They build from an array of thickness extensional mode
unit cells spaced by a given distance. The maximum kt2 experimentally demon-
strated up to the date of this work is 4.9%, which is a good result but not very
surprising if compared to other devices.

Figure 2.1: mode shapes of an (a) FBAR, (b) CMR and (c) XDMR (figure from
[12]).

CLMRs, for example, rely on the combined excitation of the S0 and S1 Lamb
waves through the alternation of electrodes polarities both along the vertical and
horizontal directions. They showed high kt2 up to 6.3% (in AlN)) and enabled a
good control on spurious modes; however, the electrodes width gets too small if
high frequencies (e.g. > 2 GHz) are targeted. This translates in a limitation in
terms of power handling and electrical loading imposed to the system that can
degrade the admittance response.
A recent work [14] demontrates that a kt2 close to FBARs can be achieved by
setting a very small spacing between homopolar fingers. This configuration is
referred as coupled bulk acoustic resonator (CBAR) and, even if similar to 2DMRs
with a bottom electrode plate, CBARs are characterized by a mode shape similar
to the one of FBARs and therefore a poor frequency tunability is available for
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design.
Lastly, a novel configuration exploiting unconventional acoustic behaviours has
been introduced under the name of two-dimensional-resonant-rods (2DRRs). It
is built from a forest of locally resonant rods, built in the body of an AlN layer
that is sandwiched between a bottom un-patterned metal plate and a top metallic
grating [15]. In this case, the main limitation is related to the process complexity
that includes the partial etching of AlN in the regions between the rods.
All these configurations exploit the combination of different modes and piezoelectric
coefficients and they all include thickness extensional displacements in their mode
shapes. The table in fig.2.2 includes merits and limitations for the different
resonators together with the electrodes polarity configurations; data refer to the
last experimental results that have been published up to the date of this work.
The aim of the work presented in this thesis is to boost the 2DMRs performances
overcoming their limits and the ones of the other resonant structures exploiting
thickness extensional modes. From now on, the focus is put on this particular
technology.

Figure 2.2: comparison between Lamb wave resonators exciting thickness exten-
sional modes. The kt2 refers to the maximum value experimentally demonstrated.

2.1 Device description

2.1.1 2DMR structure
2DMRs include both top and bottom electrode fingers, usually made with the same
material. This gives a considerable design flexibility to excite resonant modes with
precise periodicity along the width of the device. A schematic representation of a
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2DMR is depicted in fig.2.3. The architecture is characterized by an Aluminum
Nitride layer sandwiched between two identical metal gratings. The electrodes at
the top and the bottom of the piezoelectric layer are used to excite the resonant
modes inside the material through the application of a transverse electric field.
They are formed by a periodic array of equipotential metallic fingers with width
We and length Le, spaced by a constant distance called, for convenience, s. As it
will be deeply investigated, the dimension of the fingers and their relative spacing
play a fundamental role in the definition of the lateral wavelength λx of the excited
mode. The number of metallic strips that form the electrodes can be arbitrarily
modified to define the input impedance of the device when the finger length has
been set but this results in a trade-off when choosing long and narrow resonators
instead of short and wide structures.

Figure 2.3: 3D and 2D profiles of a 2DMR resonator. The 2D model shows the
section of the device cut by the red line.

Indeed, the number of the fingers and their length should be chosen so to ensure
a poor electrical loading to the system. Given the BVD model in fig.1.7b, if Re
is much bigger than Rm, the admittance response vs frequency can be hidden,
making the device not testable. Fig.2.4a shows the combinations of the number
of finger pairs Np and finger length Lf that satisfy matching conditions of the
resonator input impedance to a set of Rmatching for a given electrode width. In order
to choose the right configuration that limits the electrical loading of the system, an
estimation of the series resistance vs the electrode length is needed and its trend
is shown in fig.2.4b. Different contributions to the Rs come from the pads and
routings needed to test the structure and a deeper insight into these contributions
is given in Appendix A at the end of the document. It is worth noticing that the
series resistance shows an absolute minimum that gets smaller for bigger matching
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impedances. For electrode finger lengths below the optimum values, the resistance
contribution of the bus connecting the fingers gets much higher, due to the wider
routing needed in accordance to extremely high Np values (fig.2.4a). As a trade
off between Rs minimization and a good number of fingers Np, a 1 [kΩ] matching
impedance has been assumed for the studies here presented.

The connection of the equipotential gratings is done by a bus bar, made of the
same material of the electrodes, with a width busW and a length equal to the
device lateral dimension. In order to suppress any unwanted spurious mode with a
resonance frequency close to the desired one, a dummy bus bar can be placed on
the symmetric side of the electrically connected one to preserve the symmetry of
the structure along the y direction, but a parasitic capacitance is introduced and
hence it has not been considered. The entire structure is maintained suspended
through the support of two anchors with width Wa and length La. These are the
only supports of the device and should be designed so to minimize the amount of
acoustic energy escaping from the resonator to the substrate. Their dimensions
usually depend on the specific mode excited by the Lamb wave resonator, since
different wavelengths and displacements propagate differently.

Since 2DMRs distinguish from the other configurations for a localized displace-
ment concentrated under the electrodes, it is possible to anchor them along their
length as in fig.2.5. As demonstrated by Cassella et al., this design feature helps
with the suppression of spurious modes that can affect the device performance
when the AlN sidewall profile deviates from 90°. Furthermore, as both lateral sides
are anchored, heat produced by vibrations escapes more effectively, hence reducing
the self-heating impact on the device non-linearity while enabling a higher power
handling [16].

2.1.2 Materials considerations
The electromechanical coupling coefficient is not only correlated to the piezoelectric
material but also depends on the metals adopted for the electrodes. As the k2

t

is proportional to the acoustic energy localized in the resonator, a large acoustic
impedance difference between the metals and AlN can improve performances since
waves are better confined. Actually, in addition for exciting acoustical waves, the
electrode fingers work like Bragg reflectors so that a confinement of the acoustic
wave is observed. The more difference between the high and low acoustic impedance
is implemented in the periodic pattern, the better reflection of acoustic wave and
the larger electromechanical coupling coefficient can be achieved [1]. Fig.2.6 shows
the effective electromechanical coupling coefficient evaluated for different electrode
materials and thicknesses; the results are related to CLMRs, but can be extended
to the case of 2DMRs. Although Molybdenum shows a high acoustic impedance,
the use of Mo as the IDT metal does not enable a k2

eff as large as W or Pt because
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(a)

(b)

Figure 2.4: (a) number of 2DRM fingers vs length of the fingers that satisfy
different impedance matching conditions (b) Rs dependence on the finger length for
different impedance matching conditions. The plots refer to a Pt/AlN 2DMR with
electrode width fixed to 1.25 [µm] and the matching resistance values are expressed
in [Ω].
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Figure 2.5: schematic of a 2DMR with additional anchors along its length (figure
from [16])

of its smaller density [12]. Indeed, the light conductor allows more mechanical
displacements inside the metal layer, which deteriorates the electromechanical
performances. Therefore, a thick or heavy metal should be considered to obtain a
large k2

eff in one-port AlN Lamb wave resonator and its choice is strongly dependent
on the reliability of the manufacturing process [1].

Figure 2.6: effective coupling computed for CLMRs with different materials and
AlN thicknesses. The results can be generalized to the case of 2DMRs (plot from
[1]).

When choosing the metal, other considerations about resistivity, acoustic losses,
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roughness and ease of deposition should be analyzed. One fundamental feature
to mitigate acoustic losses related to the piezoelectric material is the good crys-
tallization of c-axis oriented AlN thin films. For example, W has a poor surface
roughness making it difficult to deposit AlN with acceptable crystallinity. Most
of the simulations for the studies presented here are based on Molybdenum and
Platinum. That is because the in-house fabrication capabilities at Northeastern
Un. are optimized for these two materials, being the classical materials of choice
for this class of resonators. In the main experimental layout drawn for this work,
however, Pt has been chosen because Mo can be attacked by XeF2 during the
release process, introducing another limitation that still has to be characterized
and understood.
Another important parameter for a proper excitation of the acoustic mode is the
thickness of the electrodes. A general consideration is that when AlN is relatively
thin (i.e., hAlN/λ < 0.2 [1]), the k2

eff decrease for thick metal layer because the
displacement deviates from the piezoelectric film towards the metal. However,
for higher AlN thicknesses (i.e., hAlN/λ > 0.4), thick electrodes enhance the k2

eff

giving a stronger stiffening effect. In this work, electrode thicknesses in the range
0.1 < telectrode/hAlN < 0.4 have been simulated, they have been chosen to mini-
mize the electrode resistance without affecting the mode shape at the resonance
(telectrode/hAlN ≈ 0.15).

2.1.3 2DMR performances and mode analysis
The resonance frequency fr of 2DMRs is determined by the thickness of the
piezoelectric film (hAlN ) and the pitch of the gratings (p), defined as the sum of the
electrode width We and the spacing s. As the electrode width can be arbitrarily
made wider or narrower, the Lamb wave lateral wavelength λx can be engineered.
Since the d33 coefficient is much larger than d31, the mode of vibration has a larger
stress along the z-direction than the x-direction (see fig.2.3 for axes reference) [13].
This implies that fr is much more sensitive to the thickness of the piezoelectric
substrate than to the pitch. However, a lithographic tunability of the resonant
frequency higher than 10% can be achieved varying We and the relative spacing
between fingers while mantaining high kt2 [13],[16],[17].

Fig.2.7 shows the simulated displacement along x and z directions in a 2D FEM
model of a 2DM resonator. Electric fields in the z direction are applied and each
couple of facing metallic strips excites a dispersive Lamb wave mode (i.e., with
kx >> 0). As the stress along x (Tx) is in phase with the stress along z (Tz),
the charge produced by the two motions add to each others, hence enabling a
high electromechanical coupling. Such mode has vertical displacement confined
under the metallized region (that we call active region) and is reactively coupled
to those excited by adjacent strips [18]. Although high k2

t are generally achieved,
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the coupling decreases significantly when different grating geometries are used
to monolithic synthesize resonators working at different resonance frequencies.
One solution to this limitation has been proposed in [18] where a piston-like
displacement is reconstructed using framed electrodes. Although effective, this
solution drastically complicates the manufacturing process.

Figure 2.7: 2D displacement of a 2DMR exciting the S1 mode.

A better physical insight on the 2DMR mode excitation can be given analyzing
the dispersion curves relative to the materials stack composing the active areas.
Curves for low-order Lamb modes have been obtained through Comsol simulations
for several piezoelectric film thicknesses, one example is shown in fig.2.8. Again,
the self explanatory mode shape of fig.2.7 categorizes the 2DMRs in the class
of thickness-extensional (TE) mode resonators and this displacement reflects the
first symmetric Lamb wave mode shape (S1). This mode is characterized by two
maximums and one minimum along the material thickness in the total displacement
profile. The minimum frequency excitable by the S1 mode is called the dilatational
frequency fd and the mode has a cut-off frequency below which it cannot be excited
with large wavelengths that is strongly dependent on the thickness of the Aluminum
Nitride layer.

2.1.4 2DMR examples of applications
Electrical filters

2DM resonators can be used in RF system as filters in many location of a transceiver
chain. Electrical filters are implemented as an array of resonators that can be
electrically, mechanically or acoustically coupled. The simplest filter configuration
is the so called Ladder filter, formed by one-port resonators electrically connected
as "shunt" and "series" components; an example is schematized is fig.2.9.

The number of resonators included in the chain depends on design contraints and
gives the order of the filter. The center frequency of the filter is given by the series
resonators while parallel resonators are engineered to express an anti-resonance
at the same frequency. The measured scattering parameter of a 3rd order Ladder
filter made with CLMRs is shown in fig.2.10 [19], showing the typical frequency
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Figure 2.8: dispersion curves relative to the first 5 acoustic modes excited in the
active area of the structure presented in fig.2.7. The curves have been computed
through a Comsol® 2D model

.

window for selected signals transmission. At the series resonance frequency, the
S21 parameter of the filtering stage is evaluated as:

S21(fs) ≈ 2
2 + N(Zs/R0 + R0/Zp)

=

≈ 2
2 + NrM−1(η−1 + η) ,

(2.1)

where

η = R0ω
ñ

Cs
0Cp

0

r =
ñ

Cp
0/Cs

0

M = Qr · k2
t .

Cs
0 and Cp

0 are the capacitances relative to series and shunt resonators whereas R0
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is the terminal resistance. If they are chosen so that η ≈ 1, we get:

S21(fs) ≈ 2
2 + N/2 · r

Q·k2
t

, (2.2)

being N the order of the filter. A few consideration can be done looking at eq.2.2.
The highest the resonators FoM, the lowest the insertion loss I.L. (it is the loss
of signal power due to the insertion of the device in the circuit) whereas a large
capacitance ratio r gives higher losses. These ones are directly related to the
order of the filter (the highest N , the higher the I.L.), however, a trade off is
given by the out-of-band-rejection which is enhanced by higher N values. The
frequency bandwidth is proportional to the electromechanical coupling coefficient
of the resonators:

BW3dB ≈ k2
t√

1 + r2
(2.3)

Therefore, 2DMRs are good candidates for implementing wide bandwidth Ladder
filters. This is an application that has never been implemented with 2DMRs and
the device optimization reached with this work will give a support for future filter
designs.

Figure 2.9: schematic representation of a Ladder filter.

Oscillators

MEMS resonators can be interfaced with amplifiers to build electronic oscillators
that generate an electric signal at the resonance frequency. 2DMRs are good
candidates for this application because of their high quality factor and frequency
filtering property. The general topology of an oscillator is given in fig.2.11; here
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Figure 2.10: experimental results of a Ladder filter based on CLMRs. BW3dB ≈
2.9% and I.L. ≈ 0.4 dB were demonstrated [19].

the MEMS resonator is placed in a positive feedback loop of a sustaining amplifier
with a frequency dependent gain A(s), filtering the frequency response according
to a transfer function β(s). When the power is switched up, the noise present in
the loop gets amplified while being filtered and, after multiple passes, the signal
growth stabilizes because of non linearities [20]. In order for the oscillation to start
and stabilize, the linear gain of the loop (i.e., |A(s)β(s)|) should be greater than
unity and the phase shift around the loop should allow a constructive growth of
the signal ( (A(s)β(s) = n360°, n = 0,1,2, ...). These conditions are known as
Barkhausen conditions.

The non idealities of both MEMS resonator and sustaining amplifier compromise
the purity of the spectral density of the output signal. The introduction of phase-
noise (PN) relative to the MEMS resonator mainly depends on two factors [20]:

• an higher Q of the resonator reduces the PN because of enhanced filtering
capabilities

• the PN is decreased when higher powers can be sustained because of the
increased sustainable signal amplitudes.

Both the conditions above can be fully satisfied by a proper design of a two-
dimensional mode resonator.

Radio Front-Ends

The design of a reconfigurable RF front-end includes arrays of filters and oscillators
that would be impractical if fabricated with FBARs or LC tunable filters because
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Figure 2.11: schematic of an MEMS resonator-based oscillator (fig. from [20]).
The MEMS acts as a filtering stage in the feedback loop of the sustaining amplifier
at the resonance frequency.

these components cannot be monolithically integrated on the same chip. This
imposes the need for external interconnets that introduce parasitic capacitances,
increasing the insertion losses. To solve this bottleneck, a massive array of 2DMRs
and switches could be implemented on the same silicon chip further reducing the
form factor of current technologies [21]. Moreover, the monolithic fabrication of
multiple components could drastically reduce the parasitic components. The AlN
based technology could substitute the existing single-band multi-chip solution with
a multichannel single-chip implementation enabled by switched narrow band AlN
filters and oscillators [21]. The hypothetical front-end evolution from a single-band
to a multi band architecture is schematically shown in fig.2.12, where CMRs have
been implemented instead of 2DMRs.

Power sensing and parametric circuits

Due to the localized displacement shown by 2DMRs that enables the introduction
of additional anchors at lateral sides, these devices can sustain more power than
CLMRs and CMRs. Indeed, side anchors represent another way for self generated
heat to disperse in the environment without overheating the device itself. This
feature can be exploited, for example, in the design of a novel power detector
architecture where two acoustically isolated 2DMRs interact at resonance so that
information about the input power is read from an unloaded output terminal (see
Chapter 4 for details). Moreover, 2DMRs show wider electrodes compared to other
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Figure 2.12: envisioned change in RF front-end architecture from a single band
to a multi-band system enabled by the monolithic integration of AlN based MEMS
resonators (fig.from [21]). 2DMRs could replace CMRs thanks to the optimized
performances presented in this thesis.

resonators and therefore are suited for very and ultra-high frequency applications
ensuring low electrical loading. Further applications are currently investigated by
MicronRF group, they include the monolithically integration of varactors and other
nonlinear components with high performance 2DMRs with the target of building
innovative parametric systems without the need of off-chip interconnects. An
example is given by frequency selective limiter circuits (FSL) for above-threshold
signal suppression. In this application, a 2DMR resonator adds an extra layer
of selectivity for the FSL to stop signals at the resonance frequency with power
exceeding a given threshold.
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2.2 2DMR Finite Element Modeling
In this section, the fundamental components of some of the FEM models built for
simulating the operation of 2DMRs are illustrated.
For the sake of simplicity and minimization of computational efforts, each device
has been firstly simulated with a basic 2-Dimensional model. Fig.2.13 shows a 2D
schematic composed of one thin layer of Aluminum Nitride and metallic electrodes
(made of Pt or Mo) on its top and bottom faces. The main purpose of 2D models
is to understand the acoustic response of the piezoelectric plate when electrically
excited by an infinite electrode array. This can be easily implemented by setting
periodic boundary conditions (PB) at the lateral edges of the plate, as shown in
the model schematic.

Figure 2.13: 2D COMSOL® model of the periodic structure modelling the trans-
verse section of a 2DM resonator.

By sweeping the frequency of the voltage signals applied to top and bottom elec-
trodes, acoustic modes excited in a wide frequency range can be monitored from the
admittance plots extracted directly from the finite-elements model. Different modes
of resonance can be categorized from their mode shapes and displacement profiles
expressed at the resonance frequencies. These acoustic modes can be approximately
mapped on dispersion curves computed for infinite ideal structures, where due to
the finite volume, only a set of kx in the continuous wavevectors space satisfies
the Cauchy problem governing the displacement. However, since the Lamb waves
theory is derived under the assumptions of infinite plate width and perfect layer
homogeneity, it is fundamental to notice that this approach is affected by significant
approximations because regions with very different acoustic behaviour alternates
within the same resonant structure. Moreover, Lamb waves only represent sets of
solutions in the eigenspace relative to each region and a particular mode could be
described as a linear combination of Lamb’s eigenfunctions, making it difficult to
categorize it from its displacement shape. In fact, the modeling of Lamb modes
in finite structures is truly a complex phenomenon which is simply inaccessible to
hand modeling [22] and it is convenient to use dispersion curves as an instrument
for designing new structures.
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2DMRs and Lamb waves resonators

The mesh size of the 2D structure is chosen to have at least six elements for each
electrode, being this an empirically-demonstrated good value to ensure reliability
of the simulations.
A more complex model is required for 3D simulation where several features of the
device and surrounding substrate have to be considered. Fig.2.14 shows the 3D
model of a 2DMR. There are three main building blocks in the structure: the
resonator, the released region and the Perfectly Matched Layers (PMLs). All the

Figure 2.14: 3D COMSOL® model of a 2DMR including the resonator, the
released area and the PMLs.

the parameters characterizing the resonator geometry have been swept in different
ranges, following the same ideas of 2D simulations. The complete model permits to
analyze the performances looking for the best electrodes, buses and anchors dimen-
sions in all directions. At this point, the optimization procedure may seem quick
and easy, however, it is important to remember that 2D analysis only considers
the and x and z components of the acoustic mode, but the addition of the third
dimension drastically changes the device response introducing several uncontrolled
spurious modes.
The released region models the area of AlN substrate that has been isotropi-
cally etched to detach the resonant structure from the substrate. Two different
boundary conditions have been applied at the edges of this area, one modelling
fixed constraints (FC) and the other modelling PMLs. Perfectly matched layers
play a fundamental role in the evaluation of acoustic energy transmitted from
the resonator active areas to the substrate through the anchors. In most of the
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2.2 – 2DMR Finite Element Modeling

chips, the resonating device is much smaller than the silicon substrate on which
it is built, and waves radiating from the anchors are attenuated by the time they
reflect from the chip sides. For this reason, reflected waves can be most of the
times neglected as a first extreme approximation. Under this assumption, the
volume around processed areas can be modelled without loss as a semi-infinite
half-space. Usual conditions employed to model the response of such an infinite
domain make use of on boundary dampers, infinite elements, boundary integrals
or exact Dirichlet-to-Neumann boundaries [23]. Each of these methods truncates
the domain with an artificial boundary that absorbs the incident acoustic waves.
However, there is no closed form of a Grenn’s function for an elastic half-space and
so, Dirichlet-to-Neumann boundary conditions cannot express its highly accurate
global conditions[23]. The issue can be solved by the adoption of a perfectly matched
layer designed to absorb acoustic waves that does not need a closed form for the
Green’s function to operate. With the PML implementation, COMSOL® intro-
duces a complex-valued coordinate transformation in the acoustic field equations
to compute the energy lost in the substrate [24]. To implement this transformation,
the software automatically extracts the geometrical parameters but requires an
estimation of the acoustic wavelength propagating in the layers (λPML). A part
from the wavelength, other parameters as PML scale factor and order have been
set to 1, following the example presented by Segovia-Fernandez in [24].

The optimized mesh of the 3D structure is shown in fig.2.15, where a very fine
element density is set inside the resonator. The mesh of the portions of anchors
facing the external substrate has been mapped and parametrically defined to
maintain a constant density of square elements while sweeping anchors dimensions
in simulations. Finally, in order to ensure the absorption of the acoustic waves
propagating from the released area into the PMLs, the mesh of these domains has
been drawn following the mesh elements of the released area and using cylindrical
coordinates at the corners.
As a means to reduce the computational complexity and time maintaining an high
mesh element density inside the structure, a symmetry plane has been introduced
in the 3D model for the studies where an high number of simulations was needed.
Fig.2.16 shows an example of half resonator used to simulate big parametric sweeps
in 3D simulations; though it barely approximates the real symmetries of the
structure, it has been empirically demonstrated that the results are only slightly
different from the case in which the entire structure is simulated. As will be
discussed, a complete 3D model that includes the Si substrate surrounding the
released area has been built as a final configuration to limit the FC and PMLs
approximations, details will be discussed in the next chapter.
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Figure 2.15: mesh of the 3D FEM model of a 2DMR including resonator, released
area and PMLs.

Figure 2.16: 3D COMSOL model of a 2DMR including the resonator, the released
area and the PMLs with a symmetry plane to reduce the computational efforts and
time.
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Chapter 3

2DMR design optimization

In this chapter, four studies for the optimization of the 2DMR design are presented.
First of all, anchor losses have been analyzed through 3D simulations to improve
the quality factor of 2DM resonators at the resonance frequency. Then, novel
architectures have been investigated and optimized to boost the electromechanical
coupling coefficient while minimizing unwanted spurious modes in the electrical
response of the devices.

3.1 Anchor losses optimization

The resonator quality factor Q is a key parameter for the reduction of power
consumption and noise cancellation in a MEMS resonator as it is directly correlated
to the frequency selectivity of the electrical response. Many effects contribute to
its deterioration and, in the case of 2DMRs, the scattering of elastic waves from
the resonator into the substrate through the anchors is one of the main source of
losses [24]. These are called anchor losses and can significantly reduced by properly
designing the anchoring supports and concentrating the acoustic wave displacement
far from the tethers area [25]. Different approaches have been followed to reduce
their effect in MEMS resonators starting from the optimization of the anchors
geometry to the introduction of reflectors to better confine the acoustic energy [26]
while engineering acoustic mismatches in the released areas [27]. However, even
though they are all similar, each resonator typology is based on the excitation
of different acoustic modes, and therefore, the optimization results cannot be
generalized for all MEMS resonators. Since no studies have ever been conducted
on 2DMRs, this section focuses on analyzing the quality factor dependence on the
dimensions of the inactive region comprising the inactive gap, the bus and the
anchor.
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3.1.1 Bus dimensions design
The bus is the top metallized strip included between the stress-free edge beside the
anchor and the active area. Its main function is to route the electrical signal from
the pads to the electrode fingers and its dimensions should be carefully chosen to
minimize the electrical loading of the resonator. It plays also an important role in
defining the boundary conditions of the active areas at the fingers edges.
As elucidated in [26] for the case of Contour Mode Resonators, there are mainly
two mechanisms by which the bus width can impact the quality factor. Firstly,
the bus can affect the amount of acoustical energy generated by the active region
in the anchoring direction, and secondly, it impacts the amount of energy that
is transferred from the active region to the inactive one. The same work shows
that, given an acoustic wavelength λ excited in the active area, when the bus
width is chosen to have a spacing between the active area and the resonator
edge d ≈ λ/4 (fig.3.1), each bus behaves as a λ/4 transformer, converting the
stress-free boundaries beside the anchors into virtual fixed boundaries [26]. When
this happens, the amount of acoustic energy that the resonator generates along
the anchor direction is minimized, therefore reducing acoustic leakage through
anchors. For what regards the second mechanism, it was found that for a given
anchor geometry, there exist two sizes of the bus that minimize the acoustic energy
transmitted through the inactive area. Following the same approach used for CMR,
the dependence of the energy stored in the active areas (and hence the quality
factor) on the bus dimension has been analyzed for 2DMRs for the first time in
this work. Moreover, design rules for the anchors length have been derived starting
from the optimized bus width.

Figure 3.1: (a) 3D model used for the study on the bus and (b) inactive area
dimensions that have been optimized.
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3.1 – Anchor losses optimization

Buses as λ/4 transformers

The minimization of acoustic energy generated along the anchors direction can
be intuitively reduced to the problem of how to introduce nodal lines at the edge
of the active regions so to minimize the displacement in close proximity to the
anchors. The motion due to each couple of fingers at the edge of the resonator
active region can be modeled by an equivalent spring constant K. It can be seen
as formed by the parallel combination of all the equivalent spring constants of the
fingers forming the electrode grating, each defined as [26]:

Kn = Fy/|un| (3.1)

where Fy is the force generated along the anchors direction and un is the displace-
ment induced by it. Since the gap dimension (fig.2.3,b) is usually small compared
to the bus, it is possible to approximate the same acoustic wavelength for both
the active and inactive region; however, this approximation loses credibility for
metal thicknesses higher than 200 [nm]. Under this assumption, it is possible to
write the displacement un as the sum on an incident and a reflected acoustic wave
generated by the active area of the fingers:

un = unin + unref = unin(1 − Ù{Γ · ej2kd}) · ŷ = (uin − uin · Γ · cos(2kd)) · ŷ (3.2)

where Γ is the reflection coefficient relative to the stress-free boundary (Γ ≈ −1).
In a 2DMR, the number of fingers included in the anchor width in generally greater
than one, let’s indicate this number with letter M and the total number of fingers
with N . The effective spring constant can thus be evaluated as

Keff = (N − M)Kn + MKm
anch =

(N − M) Fy
(uin + uin · cos(2kd)) + M

Fy
uin

=

Kanch

C
N + Mcos(2kd)

1 + cos(2kd)

D (3.3)

where Km
anch is the equivalent spring constant of the m finger facing the anchor and

does not include any reflection. The energy that is generated toward the inactive
area can then be computed:

Ey = 1
2

F 2
y

Keff

=
F 2
y

2Kanch

·
C

1 + cos(2kd)
N + Mcos(2kd)

D
(3.4)

Eq.3.4 qualitatively describes the amount of energy that can be potentially trans-
mitted through the inactive area. However, only a portion of if proportional to
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the anchor width (and hence to M) can cross the anchor. The amount of energy
flowing through the tether supports can therefore be written as:

Eanchor = M · Pitch

Wtot

· Ey (3.5)

Eq.3.5 shows that the energy reaching the anchors can be thought as a product of
two transfer functions, the first dependent on the ratio between the anchor width
and the total width of the resonator and the second expressed as a function of d
(fig.3.1b). By separating the two contributions and normalizing eq.3.4 with respect
to constant terms we can write the transfer function governing the acoustic energy:

H(d) = 1 + cos(2kd)
N + Mcos(2kd) (3.6)

The quality factor Q is inversely proportional to the amount of energy lost per
cycle and hence the same relation holds relatively to the transfer function in eq.3.6.
Fig.3.2 shows simulated results of the normalized expression of H(d) with respect
to the lateral acoustic wavelength together with the energy density stored in the
active areas for the ideal case of a 2DMR with N = 3 and M = 1. It shows that
for d values equal to odd multiples of λx/4, the energy transfer function reaches
its minimum and for this value the mechanical energy density in the active area
is maximized. The density of mechanical energy has been evaluated through 3D
COMSOL® simulations along the cut-line shown in fig.3.1a and similar results have
been obtained for 2DMRs exciting different wavelengths confirming the relation
derived above.

As the bus is the biggest electrical component within the 2DMR area, its
dimension should be chosen to minimize the resistance while satisfying the derived
conditions. A good trade-off is generally given for busW ≈ 5/4λ and this is the
value adopted for most of the devices studied in this work. .

k2
t considerations

As described by eq.1.51, the electromechanical coupling coefficient is directly
proportional to the resonator motional capacitance Cm, which inversely measures
the effective stiffness of the resonator. As a general rule, when the resonator is
made stiffer, the k2

t is reduced because less displacement is enabled and lower Cm is
observed. This relates the coupling coefficient to the boundary conditions imposed
to the active area edges and, ultimately, to the bus dimensions. Indeed, when the
inactive region is engineered so to behave as a λ/4 transformer, nodal lines are
introduced at the finger edges, making the device stiffer [13]. This effect leads to a
reduction in the k2

t of the resonator, which shows an inverse behaviour with respect
to the quality factor Q.
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3.1 – Anchor losses optimization

Figure 3.2: normalized transfer function governing the acoustic energy generated
towards the anchors direction and mechanical energy density stored in the 2DMR
active areas versus normalized d dimensions.

3.1.2 Anchor dimensions design

Energy flow minimization with FC

In the previous section, the λ/4 transformer behaviour was derived under the
assumption of no energy reflection from the released area towards the anchors.
However, the substrate surrounding the device acts as a fixed boundary constraint
(FC) placed at the edge of the released area due to the significant acoustic impedance
difference between the two regions. This introduces an acoustic reflection that
establish a dependence of Eanch on the length of the anchors La.
The resonator can be modelled with the equivalent circuit shown in fig.3.3 [28] in
which the anchor acts as a transmission line and a voltage generator is introduced
to model acoustic forces along the y direction (i.e., Fy). The line is ended on an
open circuit to model the fixed boundary condition imposed by the substrate. In
the circuit, Z0 is the characteristic acoustic impedance of the active area whereas
Z1 is the characteristic impedance relative to the inactive portion D = La + d + Rl
(fig.3.1) where the released area can be neglected as a first case study. The voltage
seen at node a in figure is a function of the anchor length due to the dependence
of Zin on the length of the line.

45



2DMR design optimization

The transmission line input impedance is defined as:

Figure 3.3: equivalent electrical circuit of the active and inactive region in a
2DMR. The anchor is modelled as a transmission line.

Zin = Va
Ia

= Z1

A
ejkD + ΓLe−jkD

ejkD − ΓLe−jkD

B
=

= Z1

A
ejkD + e−jkD

ejkD − e−jkD

B
=

= −jZ1

tan(kD) ,

(3.7)

where k = 2π/λ is the acoustic wavevector and ΓL is the reflection coefficient given
by the load mismatch, defined as:

ΓL = ZL − Z0

ZL + Z0

but if FC are assumed, ZL >> Z0 and so ΓL ≈ 1.
The stored acoustic energy at the input of the transmission line can be computed
as the product of the current and voltage at node a:

Eav = 1
2Ú{VaI

∗
a} =

= 1
2Ú V 2Zin

|Zin + Z0|2
=

= 1
2

V 2Z1tan(kD)
Z2

0 tan2(kD) + Z2
1

(3.8)

If little acoustic mismatch is assumed from the active to the inactive area, Z1 ≈ Z0
and eq.3.8 reduces to

Eav = V 2

4Z0
|sin(2kD)| (3.9)
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and a new energy transfer function is introduced:

F (La) = |sin(2kD)| = |sin(2kd + 2kLa + 2kRl)|. (3.10)

According to F (La), the energy available at node a nulls when D = n · λ4 , n
being an integer value. Therefore, if d is chosen to be a multiple of λ/4 to null
eq.3.6, the anchor length should be chosen to be a multiple of the same factor too.
By sweeping the bus length, the contribution due to the λ/4 transformer and the
one derived from the transmission line multiply together, giving a general transfer
function with λ/4 periodicity:

K(d) = H(d) · F (d) = 1 + cos(2kd)
N + Mcos(2kd) · |sin(2kd + 2kLa + 2kRl)| (3.11)

Since COMSOL ® Multiphysics does not precisely evaluate the Quality factor
for resonance frequencies under the assumption of fixed boundary conditions, a
new approach based on the parallelism between the acoustic fields equations and
Maxwell equations has been followed for the Q computation.
The acoustic equation of motion can be written as:

∇ · T = ∂p

∂t
− F , (3.12)

where p= ρv is the momentum density (kg/m2s) and v the velocity of the acoustic
wave. The strain-displacement relation becomes

∇sv = ∂S

∂t
. (3.13)

Eqs.3.12 and 3.13 can be manipulated as:

−v · (∇ · T ) = −v · ∂p

∂t
+ v · F (3.14a)

−T : ∇sv = −T : ∂S

∂t
(3.14b)

where the double dot product of two tensors introduced is defined as A : B = AijBij

with summation over the repeated subscripts. Adding the two equations in eq.3.14,
integrating their expression over a volume V and applying the divergence theorem
for a bounding surface S we get [29]:

j
S
(−v · T ) · n̂dS = −

Ú
V

v · ∂p

∂t
dV −

Ú
V

T : ∂S

∂t
dV +

Ú
V

v · F dV. (3.15)

Following a derivation similar the one of electromagnetism, the right-hand side
terms in eq.3.15 can be identified as the rate-of-change of the stored energy in the
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system ∂U/∂t, the total viscous power loss of the system Pd and the total power
supplied to the volume Ps [29]. With this identifications, eq.3.15 reduces to:j

S
(−v · T ) · n̂dS + ∂U

∂t
+ Pd = Ps (3.16)

where U is the total elastic energy in V and the surface integral expresses the total
power flow outward through the closed surface S. The integrand

P · n̂ = −v · T · n̂

is the power flow density in the n̂ direction of an acoustic waveguide and

P = −v · T (3.17)

is the acoustic Poynting vector [W/m2].
In the case of 2DMRs, the anchors can be treated as acoustic waveguides as they
are not directly piezoelectrically excited and the Ps and Pd terms in eq.3.16 can be
neglected as no acoustic energy is generated or dissipated inside the supports [24].
Finally, under steady state conditions, U is constant and hence eq.3.16 reduces to:j

S
(v · T ) · n̂dS = 0. (3.18)

Eq.3.18 states that the total power flow through the acoustic waveguides surface (i.e.
the anchors surfaces) is null; in other words, the power flow through the anchors
surface facing the resonator (Sres) and the anchors surface facing the released area
(Srel) are equal: Ú

Sres

(v · T )dS =
Ú
Srel

(v · T )dS. (3.19)

Thanks to eq.3.19, it is possible to compute the acoustic energy lost due to leakage
through the support tethers by evaluating the power flow through one surface.
Indeed, the energy can be computed by integrating the power over one period of
vibration:

Elost = 2 ·
Ú T

0

Ú
Srel

(v · T )dSdt, (3.20)

where the factor 2 takes into account the contribution from both the anchors.
A 3D model including fixed constraints at the edge of the released area has been
built as a first extreme case that considers a unitary reflection coefficient Γ. The
energy lost through the anchors has been evaluated integrating the displacement
and stress product (i.e., the Poynting vector) along the surface of the anchor for
different anchor lengths:

Elost =
ÚÚ

Srel

(−u · T ) · n̂dS. (3.21)
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Together with the energy lost through leakage, the energy stored in the resonator
active volume (V) has been evaluated by integrating the double dot product of the
stress and strain tensors [24]:

Estored =
ÚÚÚ

V
T : SdV. (3.22)

Finally, the quality factor Q at the 2DMR resonance frequency has been evalu-
ated, according to eq.1.44, as:

QFC = Estored

Elost

(3.23)

where the 2π factor is not present because the Poynting vector is here represented
in terms of displacement instead of velocity to be more easily computed in the
solid.Mechanics framework. A schematic representation of the COMSOL® model is
shown in fig.3.4.

Figure 3.4: FEM simulation of a 2DMR assuming FC at the edges of the released
area. Estored is computed over the resonator and anchors volumes whereas Elost is
computed over the anchors/substrate interfaces through the acoustic Poynting’s vec-
tor. T , S and u are respectively the stress and strain tensors and the displacement
vector.

Fig.3.5 shows the results obtained from simulations in which the anchor length
has been swept in a range covering one acoustic wavelength of the mode excited in
the resonator. On the same plot, the values assumed by the transfer function in
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eq.3.10 for the selected La are drawn. In coherence with the mathematical model
derived above from transmission lines theory, the resonator quality factor markedly
shows a periodicity with respect to La, reaching maximum values when F (La) is
minimum. In fact, when eq.3.10 is minimized, the available acoustic energy at the
anchors nodes is minimized too and the quality factor is thus maximized.
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Figure 3.5: function governing the dependence of the quality factor Q on anchor
dimensions for fixed d ≈ nλ/4 and normalized Q values extracted from simulations
for different anchor lengths.

To check the reliability of the acoustic Poynting vector formalism, the energy lost
computed with eq.3.21 is compared with the average mechanical energy flux directly
extracted by Comsol accross the anchors faces in fig.3.6. The two contributions
show exactly the same periodicity and order of magnitude, confirming the reliability
of the model and the λ/4 periodicity predicted by analytical computations.

PML implementation

Since the AlN substrate is typically much larger than the released resonant struc-
ture, all the elastic waves escaping from the anchors are dispersed and, as an
opposite approximation to the previous paragraph, total energy dissipation can be
assumed (i.e., a null reflection coefficient is inferred). This phenomenon of acoustic
dissipation can be precisely modeled by the adoption of properly meshed PMLs
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3.1 – Anchor losses optimization

Figure 3.6: comparison between energy lost computed with the acoustic Poynt-
ing vector formalism and the mechanical energy flux accross the anchors directly
extracted from Comsol®.

surrounding the released area.
Fifty anchor configurations have been simulated with the symmetric 3D models
described in the modeling section of 2DMRs operating at 3 [GHz]. The Aluminum
Nitride thickness was set to 1 [µm] and Molybdenum was chosen as the electrodes
material with a thickness ratio of 0.15 with respect to the piezoelectric film. The
quality factors for resonance have been extracted directly from COMSOL® for all
configurations and their dependence on anchors dimensions has been studied; the
simulation results are presented in the two dimensional plot in fig.3.7.

In order to ensure the reliability of simulations, a few features have been
introduced in the 3D model. First of all, an ideal mechanical quality factor
Qideal = 10000 has been assumed for the unloaded resonator and introduced in the
solid mechanics configurations through the imposition of a mechanical damping
factor η = 1/Qideal. Moreover, in order to take into account non-idealities in the
electrical domain, dielectric losses have been introduced in the model under the
material specifications. The introduction of these non-idealities is necessary for
COMSOL® to properly evaluate the Bode quality factor versus frequency. However,
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Figure 3.7: Q dependence on anchors dimensions. The results are from 3D
simulations of short resonators exploiting the symmetry condition along their length.
PMLs are included surrounding the released area..

since the focus was on the energy dissipated through anchors, the additional sources
of losses have been applied to the resonator domain only, maintaining an ideal
material configuration for the substrate surrounding the 2DMR.
As a means to better observe the effect of anchor losses, short resonator with
a length of ≈ 30 [µm] have been chosen, increasing the ratio between inactive
and active area in the resonant architecture. Indeed, it has been proved that
for resonator lengths bigger than 50 [µm], smaller quality factor variations are
observed within the same model. Since the geometric anchor parameters have been
swept in a wide range, the number of mesh elements in the portion of the anchors
facing the released area has been parametrically mapped so to maintain a constant
density of square elements per unit of area in all the simulations. Each of the
fifty simulations includes 300 frequency points between the series and the parallel
frequency of the admittance plots to have a good point density in the proximity of
the resonance peak where the quality factor has to be evaluated. Although it is
always preferred to simulate the entire architecture of a device, as the number of
computations increases, the simulation time polynomially increases, and therefore,
symmetry along the resonator length has been assumed. In this way, the halving of
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3.1 – Anchor losses optimization

the domains volume compensates for the high number of configurations simulated
and a denser mesh can be adopted.
According to fig.3.7, the mechanical quality factor at resonance is maximized when
the anchor length is set to 5 [µm]. The simulated resonators excite a wavelength
λx ≈ 3 [µm] and, assuming a slightly longer acoustic wavelength in the inactive
areas, the optimal anchor length corresponds to an integer multiple of the acoustic
wavelength. In fact, the following relation holds:

D = La + busW + gap ≈ 11 · λ.

The displacements shown by the best (La = 5 [µm], Wa = 4 [µm]) and the worst
(La = 4.5 [µm], Wa = 6 [µm]) anchor configurations are compared in fig.3.8. It is
evident that when the anchor is properly designed, less acoustic energy is lost into
the substrate surrounding the resonator. The v components of the total displace-
ments show that for the case with lower Q, acoustic waves propagates undisturbed
in the released region, contrary to the case of the optimized configuration. The
admittance responses versus frequency demonstrate how different anchor and bus
configurations can impact the excitation of spurious modes. This dependence is
still under investigation and experimental measurements are needed to prove the
presence of any relation.
To conclude, these simulations helped the design of all the resonators studied in this
thesis, giving an insight of what are the optimal anchor dimensions for resonators
working around 3 [GHz].

Complete model: Si substrate and PML

The last two subsections analysed the acoustic energy leaky via the support tethers
in two opposite extreme cases where the acoustic reflection coefficient Γ at the
edge of the released area was considered as unitary (FC approximation) and null
(PMLs approximation). In a real implementation, the Silicon substrate surrounding
the resonator shows a big (but not huge) acoustic impedance compared to the
one of the release region; this modifies the 2DMRs equivalent electrical circuit
as shown in fig.3.9. Here, ZL represents the acoustic impedance of the substrate
surrounding the released area, Rl is the length of the released area and Γ is the
acoustic reflection coefficient. The impedance seen at node a is now described as:

Zin = Z0
3

ZL + jZ0tan(kD)
Z0 + jZLtan(kD)

4
(3.24)

and eq.3.8 can be written, in a more general form, as:

Eav = V 2

4Z0

(Z2
0 − Z2

L)
(Z0 + ZL)2 |sin(2kd + 2kLa + 2kRl)| (3.25)
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Figure 3.8: comparison between the displacement induced at resonance with the
best anchor configuration and the worst one. Displacements along u, v and w are
compared together with the admittance responses vs frequency.

According to eq.3.25, the periodicity of the energy versus the acoustic waveguide
length is the same found for the case with fixed boundary constraints, but the
magnitude of the energy strictly depends on the acoustic mismatch between the
two regions.
The complete 3D model built to fully characterize the energy reflection occurring
at the released area edge is shown in fig.3.10 together with the optimized mesh
adopted for simulations. Perfectly matched layers have been introduced both at the
top and bottom of the Silicon substrate to partially absorb the radiated acoustic
waves. A detailed sweep on anchors length has been carried on with an high density
of frequency points to ensure the reliability of the simulations. The results for the
energy lost through the supports computed with the Poynting vector formalism
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3.1 – Anchor losses optimization

Figure 3.9: equivalent electrical circuit of the active and inactive region comprising
the Si substrate surrounding the released area.

and the quality factor extracted by Comsol are shown in fig.3.11. The simulated
points are superimposed with the analytical function governing eq.3.25 which is
characterized by a λ/4 periodicity. Also in this case, a good agreement between
the simulated and predicted results is achieved, validating the analytical model
used to characterize the anchor losses in 2DM resonators.

The time needed to obtain the data of fig.3.11 exceeds five hours of computation,
making it difficult to use this model for fast anchors designs. However, since the
model applies both the Solid.Mechanics and Electrical Comsol modules to the
entire architecture of the resonator and surrounding substrates, it reaches a level
of complexity that can be useful for building precise simplified models. In fact, a
purely acoustic model that does not include the piezoelectric relations has been built
to study the anchors as acoustic waveguides and verified by comparing the results
with the ones here presented. Since in this case the displacement is induced by
pressure conditions and only one physics is included, computational times of a few
minutes are achieved. Moreover, user defined acoustic impedances can be defined as
boundary conditions in the acoustic module and their values can be extracted from
the complete model that is here proposed, making it possible to substitute entire
blocks by equivalent acoustic boundary conditions. To conclude, the presented
study not only characterizes the behaviour of anchor losses in 2DMRs and S1 based
Lamb resonators, but also gives important reference data to build purely acoustic
models characterized by low computational efforts for fast resonators and anchors
designs.
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Figure 3.10: complete 3D model including the Si substrate and PML layers. The
introduction of the surrounding substrate enables acoustic reflection at the edges of
the released area, limiting the approximations introduced by fixed constraints and
PMLs. The thin PMLs included at the top and bottom of the Si domains ensure
partial absorption of acoustic energy by the surrounding substrates.
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Figure 3.11: (a) energy lost through anchors computed with acoustic Poynting
vector vs normalized anchor lengths (b) quality factor extracted from Comsol vs nor-
malized anchor lengths. Both the energy variation and Q show the same periodicity
as the analytical function K(La).
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3.2 2D Mode Multimodal Resonators
In previous works, 2DMRs with electromechanical coupling exceeding 4.9% at ultra
high frequencies have been demonstrated [13], [16]. It has also been discussed
how the electromechanical coupling of these resonators can be improved with
the introduction of active and inactive metallic frames that enable a multimodal
excitation and a quasi-square displacement in the active areas [30][18]. However,
this approach introduces additional steps in the fabrication as framed electrodes
are needed, increasing the complexity of the manufacturing process. The aim of
this study is to investigate how the 2DMR k2

t can be improved without further
complicating the manufacturing process.
The conventional 2DM mode is a combination of both lateral and longitudinal
vibrations, but since the d33 coefficient is larger than d31, the largest stress is
shown along the vertical direction. Lateral and longitudinal vibrations inside the
plate can be interpreted according to Lamb’s solutions as S1 and S0 modes, being
respectively the first symmetric mode and the fundamental zero order symmetric
mode. These are characterized by different mode shapes (fig.3.12) where the S1
can be thought as an array of thickness extensional unit cells and the S0 shows an
alternation of compression and expansion zones along the plate width.

Figure 3.12: first and zero order symmetric Lamb waves mode shapes.

From the point of view of the 2DMR admittance response, it is generally
possible to distinguish two resonances around the center frequency with mode
shapes referable to the S1 and S0 modes. The two modes generally appear at
different frequencies so that they can be independently described, but the most
coupling goes to the first symmetric mode thanks to the direct excitation of the
d33 as shown by the FEA results in fig.3.13. However, when specific design rules
are met, the first two resonances of fig.3.13 couple in a unique resonance enhancing
the k2

t . This feature has been investigated through COMSOL® 2D simulations by
sweeping the electrodes width and relative spacing so to excite waves with different
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3.2 – 2D Mode Multimodal Resonators

wavelengths and monitoring the k2
t variations of the main S1 resonance.

Figure 3.13: simulated admittance response from a 2D model showing the (1.)
S0, (2.) S1 and (3.) S1 overtone excitation at different frequencies. The main
contribution goes to the S1 (2.) resonance.

The results from simulations including Molybdenum and Platinum as electrode
materials are respectively collected in figs.3.14 and 3.15 as sets of two-dimensional
plots, where the colour indicates the electromechanical coupling coefficient. Local
kt2 maxima up to 6.7% are recognizable for specific electrode width and spacing
combinations in both cases, overcoming the usual 2DMR performances. This is an
interesting result because demonstrates that, by properly designing the electrodes
pattern of a "classical 2DMR", the same k2

t of CLMRs and CBARs can be reached
implementing wider electrodes.

To explain the maxima appearing in the plots of figs.3.14 and 3.15, a deeper
investigation of the dispersion relations and mode characteristics is needed. The
optimum wavelength (or lateral wave number) at which the coupling of each
Lamb mode is maximized in the material stack adopted has been derived from
the computation of the piezoelectric electromechanical coupling coefficient K2.
Fig.3.16 shows the K2 for the first two symmetric modes together with the zero
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Figure 3.14: k2
t dependence on electrodes width and electrodes spacing in 2DMRs

with Molybdenum electrodes. Results are presented for different ratio between the
electrode and Aluminum Nitride thicknesses.
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Figure 3.15: k2
t dependence on electrodes width and electrodes spacing in 2DMRs

with Platinum electrodes. Results are presented for different ratio between the
electrode and Aluminum Nitride thicknesses.

61



2DMR design optimization

order anti-symmetric mode evaluated from the dispersion curves computed with
COMSOL® at both the resonance and antiresonance frequencies for the AlN/Mo
configuration. The plot shows the maximum electromechanical coupling achievable
by the acoustic modes and demonstrates that the S1 and S0 maxima are achieved
at different kx. This suggests that in order to design a device with maximized S1
coupling, a kx below the dilatational point (i.e., kx ≈ 1.5 [µm−1]) should be excited
by the electrodes configuration. Doing this way, not only the S1 direct excitation
would be optimized, but the S0 coupling would be minimized at the same time.
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Figure 3.16: piezoelectric coupling factor for the A0, S0 and S1 modes; the red
point refers to the kx related to the dilatational frequency of the S1 mode (fd).
These results have been evaluated from the dispersion curves derived from FEM 2D
simulations.

The numerical results shown in fig.3.16 refer to the ideal case where no boundaries
are imposed to the plates. But in real finite structures, the highest electromechanical
coupling coefficient for the S1 mode cannot usually exceed 5% because of the
confined displacement. With this consideration in mind, the explanation of the
high k2

t values found in simulations should be searched by looking at possible
multiple modes interactions that change the usual physical behaviour expressed by
the first order thickness extensional mode alone.
In the following, the plot of fig.3.15 with T.R. = 0.15 is taken as a case study to
derive the 2DMR behaviour at the points of maximum k2

t as this is the configuration
adopted for the main experimental plan of this work (i.e., AlNthickness = 1 [µm]
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3.2 – 2D Mode Multimodal Resonators

and Ptthickness = 150 [nm]). For an electrode width of ≈ 1.3 [µm], the highest
k2
t value is achieved when two resonances merge into a single one and this occurs

for a spacing s ≈ 2.4 [µm]. With this arrangement, the main resonance shows
a mode shape like the one in fig.3.17, where the S1 and S0 contributions sum
in a constructive way. This only happens for specific spacings that are inversely
proportional to the electrodes width and the optimal ratio between the electrodes
width and spacing is a function of the materials and their thicknesses, as the phase
velocities of the modes are strongly dependent on these parameters [1].

Figure 3.17: 2DMR mode shape observed for the optimal electrodes width and
spacing combinations.

The admittance response from a 3D model including PML and optimized anchor-
ing supports of a 2DMR with Molybdenum electrodes and optimized parameters
extracted from fig.3.14 is plotted in fig.3.18 together with the equivalent electrical
values derived from the BVD model fitting. The admittance plot is precise and
clean if compared to the 3D models of not optimized structures, with some weakly
excited spurious modes between the resonance and antiresonance frequencies. Sim-
ilar resonances are obtained from 3D simulations of each maximum k2

t region of
figs.3.14 and 3.15.

From a geometrical point of view, when the active and inactive areas are wide
enough to respect the displacement induced by the S0 mode at the resonance
frequency (i.e., they are comparable with the S0 wavelength at fs), the two
eigenvalues from Lamb’s problem relative to the S1 and S0 eigenfunctions reactively
couple into a unique solution enhancing the electromechanical coupling of the two-
dimensional mode. Interesting considerations can be done by looking at the
dispersion curves of the first modes propagating in the uncovered and covered
areas of the optimized Pt configuration case study (i.e., IA and AA) plotted in
fig.3.19. The curves show that for E.W. = 1.3 [µm], a kx,S1 ≈ 2.3 [µm−1] is
excited at fs = 2.2 [GHz], being λx,S1 ≈ 2 · E.W. At the same resonance frequency,
the S0 mode propagating in the inactive areas shows a kx,S0 ≈ 1.3 [µm−1] and,
considering a spacing s = 2.4 [µm] the following phase relation holds for the
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Figure 3.18: module of the admittance response vs frequency and phase for an
optimized Mo/AlN 2DMR with E.W. = 1 [µm] and spacing = 2 [µm] obtained from
a 3D simulation. Electrical parameters extracted from the BVD model are listed in
the inset.

horizontal displacement:

∆φS1(AA) = kx,S1 · AA ≈ 2.4 · 1.3 ≈ π

∆φS0(IA) = kx,S0 · IA ≈ 1.3 · 2.4 ≈ π

∆φ(p) = ∆φS1(AA) + ∆φS0(IA) ≈ 2π

(3.26)

The phase relation in eq.3.26 confirms how the two solutions of the Lamb’s problem
can reactively couple into a periodic mode shape with wavelength λx ≈ We + s = p.
It is important to notice that the main contribution is still given by the d33 coef-
ficient, but for precise inactive area widths, the horizontal displacement induced
by d31 matches the S0 wavelength enhancing the energy density at the active area
boundaries.
Indeed, from a mechanical point of view, this can be seen as a change of boundary
conditions at the active areas edges induced by the lateral components of the
acoustic wave. The extensional mode does not shows an exponentially decreasing
evanescent displacement as it usually does in 2DMRs because portion of the acous-
tic energy is coupled with horizontal displacement induced by the S0 mode. By
relaxing the fingers contraints, more displacement is induced at the electrodes edges,
hence increasing the motional capacitance Cm with respect to usual 2DMRs with
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3.2 – 2D Mode Multimodal Resonators

the same C0. This enables a more efficient electromechanical transduction that
ultimately ends in boosting the k2

t of the main resonance mode. Due to this partic-
ular feature enabled by the interaction of multiple modes, we call these optimized
2DMRs as Two-Dimensional-Mode-Multimodal-Resonators (2DMRsM).

Figure 3.19: simulated dispersion curves for active (AA) and inactive (IA) areas
of a 2DMR with AlNt = 1 [µm] and Ptt = 150 [nm]. Continuous lines refer to AA
whereas dotted lines refer to IA.

Fig.3.20 compares the stored energy densities in the active and inactive regions
of 2DMRs sharing the same electrode width EW = 0.8 [µm] but with different
spacings. The graphs demonstrate that when the optimal spacing is set, the energy
gets locally stored under the electrodes only, showing how the S0 contribution is
actually effective by maximizing the S1 induced displacement instead of exciting
significant acoustic components in the inactive areas. Furthermore, when the
spacing is made larger, significant energy storing between the fingers is observed
and the S1 coupling is significantly decreased.

The frequency tunability of the optimized devices can be derived from the four
dimensional plot in fig.3.21, where the fs curve is plotted versus the geometrical
parameters of the electrodes grating. The colour of the plot indicates the electrome-
chanical coupling coefficient computed for each configuration. According to the
simulated results, a frequency tunability of 11% around the central frequency can

65



2DMR design optimization

be achieved for k2
t values above 5%:

∆f

fs, central
≈ 11% with k2

t > 5%, (3.27)

being this value comparable to the one characterizing the framed-2DMRs [18].

Figure 3.20: comparison of the stored energy density along the section of Pt/AlN
2DMRs with EW = 0.8 [µm] and different spacing values. Small and large spacings
refer to minimum and maximum values included in the plots of fig.3.15.

Finally, it should be noticed that the boosted k2
t due to the S1/S0 reactive

coupling cannot be seen for electrode widths much higher than the thickness of
the piezoelectric layer (i.e., E.W. >> hAlN) because this is the value above which
overtones of the S1 mode get excited with significant coupling within the active
areas. Indeed, when wide electrodes are implemented, multiple resonances equally
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3.2 – 2D Mode Multimodal Resonators

Figure 3.21: resonance frequency dependence on the geometrical parameters of
the electrode gratings. The colour refers to the magnitude of the electromechanical
coupling coefficients.

spaced in frequency appear; their wavelength is a fraction of the main mode
wavelength and the electromechanical performances are considerably degraded.
According to the results from hundreds of 3D and 2D, empirical design rules for
2DMRsM have been derived and checked in a wide frequency range (i.e., for a
multitude of AlN thicknesses) extending from 800 [MHz] to 5 [GHz]. The precise
ratio between the electrode width and the spacing depends on the materials adopted
for the top and bottom electrodes and on their thicknesses, as these are the main
features affecting the phase velocities of the modes under interest. As a general rule,
the phase condition expressed by eq.3.26 should be matched to get the reactive
interaction that boosts the performances. More in general, the following relation
needs to be satisfied:

kx,S1 · E.W. + kx,S0 · s = 2π (3.28)

where E.W. is the electrode width and s the spacing between electrodes. For a
given electrode configuration chosen to minimize the electrical loading, the optimal
spacing is directly derived:

s = 2π − kx,S1 · E.W.

kx,S0
(3.29)
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To numerically find the optimized arrangement, a complete analytical description
that goes beyond the purpose of this work would be needed. However, the condition
of eq.3.29 can be satisfied by studying the dispersion curves for the S1 and S0 modes
as shown above. Finally, as an empirical rule to quickly check the k2

t optimization,
the optimal configuration for different materials can be found by running a detailed
2D FEM analysis around the following approximated values:

EW ≈ hAlN

spacing ≈ 2 · EW.
(3.30)

3.3 Bottom plate resonators
When the Aluminum Nitride is grown on the metal electrodes, residual stress
is usually observed in the film because of steps at the base of the substrate.
The film defects become more and more relevant when the thickness is reduced
to values comparable with the one of the electrodes. The implementation of a
grounded bottom electrode plate (BP) instead of patterned metal fingers simplifies
the fabrication process ensuring a better Aluminum Nitride conformity and less
residual stresses. However, as previously demonstrated by Zou et al. in [1], when
a continuous metal layer is adopted as the bottom electrode, the k2

t is generally
reduced because of the strong loading effect induced. The BP provides backside
electrical boundaries that are needed for an effective excitation of the piezoelectric
layer, but the direct excitation of half wavelength of the S1 mode relies on the top
patterned electrodes geometry. Indeed, from a mechanical point of view, the bottom
plate acts as an acoustic load for waves propagation, making it more difficult to
design the S1/S0 modes combination derived in the previous study. The mode
shape of a 2DMR implementing a bottom plate is shown in fig.3.22 in terms of total
displacement and Mises stress. It reflects the original 2DMR thickness extensional
mode shape showing a well confined displacement in the active areas.
In order to limit the acoustic loading preserving high kt2 values, it is usually
preferred to have a thin and light metal as the bottom substrate rather than a
heavy one. Generally speaking, the choose of the metal thickness should be done
so to maximize the mechanical displacement inside the piezoelectric film. If a thin
bottom metal plate is employed as a base for AlN growth (e.g., te/hAlN < 0.2),
the aforementioned condition can be satisfied by selecting a top metal with large
acoustic impedance with respect to the piezoelectric layer. This feature is especially
true for sufficiently thick piezoelectric films compared to the acoustic wavelength
excited (i.e., hAlN/λ > 0.2) [1].
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Figure 3.22: 2D FEM model of a 2DMR with a bottom plate electrode instead of
patterned bottom electrodes. The mode shapes are similar to the one of classical
2DMRs.

Fig.3.23 shows the k2
t values obtained for the S1 thickness extensional mode

excited in a 2DMR with different bottom and top electrode thicknesses. In these
simulations, Platinum has been chosen for the bottom electrode because it has been
experimentally demonstrated to be a good substrate for the AlN growth whereas
Aluminum and Molybdenum are compared as top electrodes materials. In both
plots the electromechanical coupling is maximized for top electrode thicknesses
smaller than the one of the bottom plate. Local maxima are distinguishable,
however, they should not be given too much consideration as in this points the k2

t

is boosted by unwanted spurious modes in proximity to the main resonance.
Since Aluminum is less dense than Molybdenum, slightly thicker layers are needed
to get k2

t higher than 4%. Furthermore, as summarized in fig.3.24, Molybdenum
has an higher acoustic impedance than Aluminum and this explains the slightly
higher electromechanical coupling coefficients shown in fig.3.23b with respect to
the results in fig.3.23a.

Bottom plate 2DMRs relying on the S1 mode excitation have never been
demonstrated and they have been introduced for the first time in the experimental
plans of this thesis. The same materials and thicknesses chosen for the other
studies have been assumed for the electrodes to satisfy the layer specifications of
the chip (i.e., 150 [nm] of Platinum on 1[µm] thick AlN). The simulated results
corresponding to the configurations included in the main experimental layout
are shown in fig.3.25. It should be noticed that, since Platinum has a much
higher density (ρAlN/ρPt ≈ 0.15) with respect to Aluminum (ρAlN/ρAl ≈ 1.2)
and Molybdenum (ρAlN/ρMo ≈ 0.35), this is not the optimal choice for the top
electrodes and k2

t lower than the simulated ones are experimentally expected.
The dependence of the resonance frequency on the width of the electrode fingers
and their spacing is plotted in fig.3.26. Compared to the case of patterned bottom
electrodes (fig.3.21), the 3D plot shows the highest k2

t for the same combinations
of the two geometrical parameters; although similar fs dependence is shown, the
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curve is not smooth as in the previous case. This is related to the excitation of
unwanted spurious modes that made it difficult to precisely evaluate the resonance
mode under interest.

(a) Pt/AlN/Al

(b) Pt/AlN/Mo

Figure 3.23: computed k2
t from simulations including different top and bottom

electrode thicknesses. Results are showed for both Pt/AlN/Al and Pt/AlN/Mo
configurations.
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Figure 3.24: comparison of the acoustic impedance shown by different materials
for longitudinal and vertical Lamb’s waves in Aluminum Nitride thin films [1].
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Figure 3.25: k2
t dependence on top electrodes width and electrodes spacing for

bottom plate 2DMRs with Platinum as both bottom and top electrodes material. The
thickness ratio (T.R. = 0.15) expresses the ratio between the Pt films and the AlN
thicknesses.
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Figure 3.26: resonance frequency dependence on the geometrical parameters of
the top electrodes in a bottom-plate Pt/AlN/Pt 2DMR; the thickness ratio between
electrodes and piezoelectric film is T.R. = 0.15. The colour refers to the magnitude
of the electromechanical coupling coefficients.

3.4 Apodization for spurious modes suppression

Unexpected spurious modes close to the main resonance can affect the resonators
performances in terms of frequency selectivity and kt2. Because of this, the
ability and ease to control unwanted electrical responses while designing a resonant
structure is a crucial factor to prefer a technology with respect to another one.
The aim of this study is to understand how to take control of the main resonance
cleanliness in 2DMRs and 2DMRsM .
Theoretically, to reduce the effects of unwanted resonances on the electrical response
of a resonating structure, it is sufficient to reduce their electromechanical coupling
through a proper design. The most popular methods for modes suppression
that have been proposed in the past rely on new anchors designs and on the
introduction of dummy electrodes to extend the periodicity of the gratings in
inactive areas [31],[32]. Again, no studies of this type have never been conducted
on two-dimensional mode resonators and 2DMRM . As in the case of CLMRs, the
2DMRs active regions show different boundary conditions along the two in-plane
directions and transverse spurious-modes may appear due to a larger acoustic
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velocity along the length of the fingers [32]. Due to the electrodes extension along
the y direction (see fig.3.27 for axis orientation), the total displacement generally
shows a marked periodicity in the active area. Each "active cell" has the same
dimensions and boundary conditions so that the acoustic vibrations perpendicular
to the x direction (not analysable in 2D simulations) are common to each finger
and gain significant piezoelectric coupling when adding up. One way to limit this
behaviour is to introduce variations in the electrodes lengths; such a technique is
commonly referred as Apodization. The concept of apodization consists of confining
the vibration energy in specific regions of the 2DMR body by shaping its electrodes
according to a specific geometry [31]. In this study, the electrodes of an optimized
2DMRM (i.e., with k2

t ≈ 7%) with resonance frequency around 5 GHz (the highest
operating frequency ever studied for such devices) have been shaped with different
frames. Three main apodization geometries have been considered:

• Irregular polygon shape apodization

• Circular apodization

• Sine shape apodization,

let’s analyze the results for all of them.

Irregular Polygon shape apodization

In this case, the idea comes from the commercial FBAR technology. One of the main
acoustic losses that occur in FBARs is related to the presence of lateral standing
waves that generates when two electrodes edges are parallel to each other. When
this occurs, the acoustic wave travels between the electrodes and bounces back
and forth, generating the spurious modes. This effect can be seen, for example, in
rectangular FBARs. This issue was historically addressed by adopting apodization
i.e., designing FBARs with non-parallel edges [33]. Kumar et al. compared different
apodization shapes for FBARs through 3D-FEM simulation, analyzing the kt2 and
Qf variations (i.e., the FoM). As expected, the results show that the adoption of
irregular shapes with non-parallel edges enhances the device figure of merit [33].
In the case of 2DMRs, instead of modifying the whole body of the resonator, it is
possible to shape the active areas only by varying the top and bottom electrodes
lengths in a complementary way. Two options have been analyzed following this
idea. Firstly, each electrode has been cut along its length and split into two
segments separated by a small gap, one electrically connected to the bus and one
left floating. In this configuration, the symmetry of the structure along x does
not interrupt, but a significant parasitic capacitance is added to the system due to
electrodes portions that do not actively participate in the piezoelectric excitation.
In the second configuration, instead, the floating electrode segments have been
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deleted resulting in a smaller static capacitance per unit of area. Fig.3.27 shows an
example of irregular apodization applied to a 2DMR following the second approach.
The displacement is concentrated in two regions along the length of the device,
differently from the non-apodized resonator shown in fig.3.28.

Figure 3.27: 3D COMSOL® model of a 2DMR with irregular apodization applied
to the fingers and total displacement shown at resonance.

Sine shape apodization

The effectiveness of the apodization in suppressing the spurious modes is de-
pendent on the apodization depth (AD) adopted, defined as the ratio between
apodized and not-apodized areas [34]. Several non-optimized structures (whose
admittance response is significantly affected by spurious modes) with sinusoidal
shaped apodization have been simulated for different sine aperture (A) values. The
resulting admittance plots are shown in fig.3.29 and the relevant parameters are
summarized in table 3.1 for all the configurations.

Differently from CLMRs [32], the k2
t of 2DMRs is not affected by the magnitude

of AD. This is due to the different arrangement of the electrodes that locally
excite the S1 mode instead of the S0. In fact, each couple of top and bottom
fingers applies a vertical electric field for the entire length of the electrodes and,
even when they are shaped, the entire capacitance actively participates in the
electromechanical transduction. Thanks to this feature, the ratio between the
motional and the static capacitance is preserved and no k2

t variations are observed.
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Figure 3.28: total displacement shown at resonance of an optimized 2DMR taken
as a reference for the apodization study.
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Figure 3.29: sinusoidal apodization study on a non optimized 2DMR configuration.
The curves are relative to four different sine aperture values.
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A [µm] 4 6 8 10
k2

t [%] 6.25 6.49 6.35 6.48
Q/Qmax 0.6 0.4 0.5 0.3
C0 [fF] 95 88 85 80
Cm [fF] 4.85 4.49 4.34 4.08

Table 3.1: results from the study on the aperture A of the sinusoidal apodization.

In the opposite way, when the IDT of CLMRs are shaped, the d31 excitation in
the portion of the electrodes that extends beyond the neighboring fingers gives no
results, hence decreasing the Cm together with C0 and greatly degrading the k2

t .
The big spurious modes affecting the resonances in fig.3.29 come from the support
tethers and their effect is not reduced by the applied apodization. However, the
multitude of ripples appearing between the main peaks are related to the electrode
arrangement and disappear for higher apodization depths, showing a correlation
between the finger lengths variation and ripples suppression. Unfortunately, the
cost of spurious modes suppression is paid by the quality factor, that is reduced
when AD is increased. Finally, it is worth mentioning that in the case under
consideration the displacement is concentrated in the center of the resonator, as
shown in fig.3.30.

Figure 3.30: 2DMR with sinusoidal apodization applied to the fingers. "A"
indicates the dimension that has been parametrically swept in simulations.
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Circular apodization

As an extreme case of the sinusoidal curvature, a circular shape has been simulated.
Also in this case, the electromechanical coupling coefficient is unvaried and a
reduction of the spurious modes is observed. A localized displacement similar to
the one observed with irregular apodization is shown in fig.3.31.

Figure 3.31: 2DMR with circular apodization applied to the fingers.

Comparison of different apodization shapes

The simulation results of a 2DMRM with center frequency at 4.9 GHz with
different apodization shapes applied are compared in fig.3.32. The results refer to a
configuration with optimized bus and anchors. As expected from previous results,
the ripples in the admittance curve comprised between the resonance and anti-
resonance frequencies get mitigated by the adoption of apodization, while preserving
the k2

t . The main parameters evaluated for all the simulated configurations are
listed in table 3.2. The Q values have been evaluated by fitting the curves with the
BVD model and very low variations are observed due to the similar apodization
depth common to all the shapes. To properly characterize the impact of AD on the
quality factor, experimental measurements are needed and different configurations
have been included in the layouts for the experimental plans.
Finally, it should be remarked that these are good and smooth resonances for a
3D FEM simulation, very difficult to be obtained for CLMRs or CMRs without

77



2DMR design optimization

drastically reducing the kt2. This study truly demonstrates one more advantage of
2DMRs compared to other resonator typologies.

k2
t [%] Q FoM

NO APO 6.3 2000 126
POLY 5.9 2000 118
CIRCLE 6.3 1800 113
SINE 6 2500 150

Table 3.2: comparison between different apodization shapes applied to the electrode
fingers of a 2DMR.
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Figure 3.32: simulated admittances for different apodization shapes adopted. The
resonance and anti-resonance frequencies are shifted by the same amount, thus
maintaining the k2

t constant.
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Chapter 4

An innovative two-ports
device

4.1 Principle of operation and modeling
In RF engineering, it is sometime required to have circuits whose behaviour
depends on the input electromagnetic power feeding the system. Let’s think, for
example, of a circuit able to change the response of a filtering stage when the
input power of a signal with a certain frequency fc goes above a threshold. A
common implementation would take advantage of a power detector put in parallel
to a MEMS resonator that filters the signal at its resonance frequency. However,
the connection between the sensor and the filter represents an electrical load for
the MEMS resonator, thus degrading the kt2 and quality factor. In order to
sense the power of an input signal preventing the degradation of the resonant
system performances, a new device topology has been engineered based on 2DMR
resonators.
The devices that have been described so far are characterized by one port only,
where the bottom electrode is grounded and the top terminal gives an input where
the admittance response is probed. With the aim of acoustically connecting two
resonators preserving the independent operation of each component, a two ports
device comprising two 2DMRs fabricated on the same Aluminum Nitride substrate
has been simulated. The 3D geometry is shown in fig.4.1, where two terminals with
N1 and N2 electrode fingers share the same ground (i.e. the bottom electrodes) and
are physically separated by an inactive gap/area (IA) that is left uncovered by the
metal. The first terminal is powered by an input signal while the second is sensed
through a dedicated anchor and the two resonators are electrically decoupled when
the electrical signal is out of resonance with respect to the 2DMRs main acoustic
mode. Indeed, when the signal feeding the input terminal excites the resonator
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at its resonance frequency, the S1 extensional mode spreads in an evanescent way
along the inactive gap, resulting in a low power transmission to the output terminal.
The main feature of this device derives from the peculiarity of the S1 mode of
having a cut-off frequency below which it cannot be excited and propagate. By
construction, the S1 mode is directly stimulated in the active areas only whereas it
does not propagate through the spacing between the fingers and in the inactive gap
separating the two resonators. In fact, in these areas the mode is evanescent and it
is formally described by an imaginary wave-number kix; the overall displacement is
therefore well confined within the electrodes. The main goal of such architecture
is to enable the sensing of the output terminal without affecting the resonance
performances (i.e. the input admittance vs frequency) of the resonator at the
input. It should be mentioned that this is the first time an application based on
this principle of operation is presented and very few works on evanescent acoustic
couplings have been presented in the past [35],[36].

Figure 4.1: 3D model of the two-ports device based on acoustically coupled 2DMRs.
Terminal 1 is powered by an input signal whereas terminal 2 is left at a floating
potential. Both terminals are terminated on user-defined impedances for simulations.

4.2 Acoustic and electrical analyses
Fig.4.2 shows a 2-dimensional model used to characterize the behaviour of the
two-ports device where N1 is much larger than N2. The width of the electrodes
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4.2 – Acoustic and electrical analyses

together with the spacing between them have been chosen so to excite the S1 mode
alone, preventing the S0 to give a significant contribution in the displacement wave.
The K2 plot of fig.4.3 gives an approximated idea of what kx should be excited in
an infinite plate 1 [µm] thick so to gain a maximum disparity between the S1 and S0
excitation. The graph shows that an almost pure S1 induced displacement should
be observed for kx ≈ 1.5 [µm−1] which corresponds to a wavelength λx ≈ 4 [µm].
According to this result, the electrode width has been set to E.W. = 1.75 [µm] with
a fixed thickness tE = 200 [nm] and the relative spacing has been chosen to not
making the S1 mode couple with S0 (i.e. the kt2 of the 2DMR is not maximized in
this case). If the optimized combination of S1 and S0 would be adopted for the
resonator design, a displacement along the width of the device would be excited
due to the horizontal dilatations and compressions induced by the zero order Lamb
mode. In this case, a significant power transmission from terminal 1 to terminal 2
would be observed and each port would heavily affect the electrical behavior of the
other one, which is not what it is expected from this device.

Figure 4.2: 2D model of the two-ports device based on 2DMRs technology. In this
example, N1 > N2.

The width of the inactive area plays an active role in determining the amount
of acoustic energy transmitted through the terminals. If the IA width is multiple
of half wavelength of the S0 mode that would propagate in an infinitely wide
uncovered area, the displacement induced along the x direction couples in phase
with the one induced by the extensional S1 mode in the active areas. The result in
this case is an enhancement of the power transmitted from terminal 1 to terminal
2. This means that, in order to minimize the power transmission (i.e. the S21
parameter) from the input port to the output, the inactive gap separating the two
ports should not match integer multiples of the S0 mode’s half-wavelength. Fig.4.4
shows the displacements along both the y and x directions for different IA widths
in a portion of the device comprising the last cell of terminal 1, the inactive gap
and the first cell of terminal 2. It is evident that for IA = 1.6[µm] the displacement
induced in the x direction is enhanced; this is because the S0 in this region has
an estimated wavelength of λx,S0 ≈ 2 · 1.7[µm]. Increasing the IA width to 2 [µm]
and 2.6 [µm] results in a displacements reduction, hence a better acoustic isolation
between the two ports is obtained.
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Figure 4.3: K2 plot computed from the dispersive relations of the three fundamental
modes extracted by COMSOL®.

Figure 4.4: displacement along Y and X directions at the 2DMR resonant fre-
quency for an arc length including two active cells. The insets show the portion of
the resonators included in the arc.
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4.2 – Acoustic and electrical analyses

To characterize the power transmission between the two terminals with respect
to inactive area variations, the S parameters have been analyzed. The scattering
parameters describe the relationships between electrical ports in term of power
transmission and voltage gains. They describe reflection and transmission of voltages
from both sides of a network. When fully evaluated, the S matrix characterizing the
network can be used to represent it as a simple black box to be included in a bigger
electrical schematic. Since it is generally faster for a 3D COMSOL® simulation
to extract a Y matrix rather than the S elements, conversion formulas have been
used for matrices conversion. Moreover, FEM simulations seemed to be extremely
imprecise in determining the scattering parameters in presence of complex source
and load impedances as termination of the electrical network. Therefore, conversion
formulas valid both for real and complex loads have been used according to the
derivation presented in [37]:

S11 = (1 − Y11Z
∗
01)(1 + Y22Z02) + Y12Y21Z

∗
01Z02

(1 + Y11Z01)(1 + Y22Z02) − Y12Y21Z01Z02) (4.1a)

S21 = −2Y21
√

R01R02

(1 + Y11Z01)(1 + Y22Z02) − Y12Y21Z01Z02
(4.1b)

S12 = −2Y12
√

R01R02

(1 + Y11Z01)(1 + Y22Z02) − Y12Y21Z01Z02
(4.1c)

S22 = (1 + Y11Z01)(1 − Y22Z
∗
02) + Y12Y21Z01Z

∗
02

(1 + Y11Z01)(1 + Y22Z02) − Y12Y21Z01Z02) (4.1d)

where Z01, Z02, R01 and R02 are, respectively, the complex impedances at port 1
and port 2 and their real parts. The admittance matrix can be computed from the
S parameters by complementary formulas:

Y11 = (1 − S11)(Z∗
02 + S22Z02) + S12S21Z02

(Z∗
01 + S11Z01)(Z∗

02 + S22Z02) − S12S21Z01Z02
(4.2a)

Y21 = −2S21(R01R02)1/2

(Z∗
01 + S11Z01)(Z∗

02 + S22Z02) − S12S21Z01Z02
(4.2b)

Y12 = −2S12(R01R02)1/2

(Z∗
01 + S11Z01)(Z∗

02 + S22Z02) − S12S21Z01Z02
(4.2c)

Y22 = (Z∗
01 + S11Z01)(1 − S22) + S12S21Z01

(Z∗
01 + S11Z01)(Z∗

02 + S22Z02) − S12S21Z01Z02
(4.2d)

The S parameters extracted from FEM simulations versus frequency are shown in
fig.4.5. The S21 magnitude presents a well defined peak at the 2DMR resonance
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frequency, as expected. A closer look at the dependence of the S21 peak with
respect to the width of the inactive area is given in fig.4.6 for narrow and wide
gaps. When the inactive area is much smaller than λx,S0 (fig.4.6a), the decrease is
almost exponential, coherently with the evanescent displacement induced by the
S1 mode. On the other hand, when the width of the inactive gap reaches integer
multiples of λx,S0/2, the power transmission is amplified and a precise periodicity
is predicted by simulations (fig.4.6b).

Figure 4.5: scattering parameters evaluated from COMSOL® 2D simulations with
a real impedance termination (R = 50 [Ω]). The S21 parameter shows a peak at
the 2DMRs resonance frequency that is inversely proportional to the inactive area
width.

One of the most important features in a power detector based on MEMS res-
onator is the frequency selectivity in the electrical response. The RF signal that
powers the input port (terminal 1 in figs.4.1, 4.2) sees the input impedance of the
first 2DMR, which is frequency dependent. Thanks to the electrical and acoustic
isolation between the input and output terminals, the electromechanical perfor-
mances of the input resonator does not distinguish from that of a one-port 2DMR.
This property permits to choose the number of active cells of the first resonator that
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(a) (b)

Figure 4.6: S21 peak value dependence on the inactive area width shown for narrow
(a) and wide (b) gaps.

optimizes the acoustic performance regardless of the design chosen for the second
2DMR. Because of this, the number of fingers for the input 2DMR (N1) is chosen
to be higher than the number of electrodes of the output 2DMR (N2, see fig.4.2)
so that an optimized resonance can be observed in the input admittance while
keeping a minimum number of fingers. Indeed, the electrodes grating of the second
terminal does not actively excite any resonance because it is left floating with the
only purpose of collecting charges induced by the acoustic coupling at resonance
within the piezoelectric substrate. Therefore, N2 should be set to a minimum value
that preserves the 2DMR mode at the output port with the selected wavelength.

The architecture can be thought as a two-port network as the one in fig.4.7:

Figure 4.7: schematic of a two-port electrical network with load and source
terminations.

85



An innovative two-ports device

where the currents are defined as

i1 = Y11v1 + Y12v2 (4.3a)
i2 = Y21v1 + Y22v2 (4.3b)

Substituting i2 = −YLv2 into eq.4.3, the internal voltage gain is evaluated

v2

v1
= −Y21

YL + Y22
(4.4)

and the input admittance is obtained from the expression of i1:

Yin = i1

v1
= Y11 − Y12Y21

YL + Y22
(4.5)

The input admittance obtained from 2D FEM simulations for different values of
inactive area widths is given in fig.4.8. In these simulations, the IA values are
smaller than half wavelength of the S0 mode. The admittance vs frequency plots
remind the ones of a one-port 2DM resonator.

Figure 4.8: input admittance seen from terminal 1 of the two-ports device obtained
through 2D FEM simulations.

From the analysis of the input admittance plots, the kt2 and quality factors at
both the resonance and antiresonance frequency have been evaluated sweeping the
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inactive area width in a wide range; the results are graphically presented in fig.4.9
and fig.4.10. All the parameters show a periodicity with respect to multiples of
the half wavelength of the S0 mode. It is interesting to note that the k2

t shows
its maximum values for inactive area widths that minimize the S21 and a similar
behaviour is shown by the quality factor at resonance. This is due to the common
dependence of both parameters on the mechanical energy stored in the resonator
as described in detail in chapter 1. The more mechanical energy is lost by leakage,
the smaller the quality factor is and the less energy is involved in the electrome-
chanical transduction in the active areas. From the point of view of the input
terminal, when the system is designed to enhance the acoustic coupling between
the two ports through S0, a significant amount of acoustic energy is lost degrading
the 2DMR performance. Instead, when the coupling is minimized by properly
designing the inactive gap, very low leakage is observed due to the evanescent be-
haviour of the S1 mode in this area and, in this case, the k2

t and Qfs are maximized.

Figure 4.9: dependence of the electromechanical coupling coefficient on the width
of the inactive area separating the two resonators. The periodicity is given by
half-wavelength of the S0 mode.
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(a)

(b)

Figure 4.10: dependence of the quality factor at resonance (a) and quality factor
at antiresonance (b) on the width of the inactive area separating the two resonators.
Both parameters show a periodicity given by half wavelength of the S0 mode.
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Chapter 5

Layouts design

5.1 Process flow and masks design

In order to experimentally demonstrate the results predicted through simulations,
three sets of masks have been drawn for three layouts based on Aluminum Nitride
and Scandium doped AlN thin films. The first (and most complete) layout includes
389 one port 2DMRs and 59 two ports devices with different configurations to
cover the simulated parametric sweeps, all exhibiting a resonance frequency close
to 2 [GHz]. The AlN film has a thickness of 1 [µm] and Platinum has been chosen
for bottom and top electrodes. The Platinum thickness has been set to 150 [nm] as
a trade off between a small electrode resistance and a good acoustic confinement in
the piezoelectric film. The entire process flow (excluding the masks fabrication and
some high-definition lithography steps) has been run at Northeastern University
cleanroom facility by expert PhD students due to entry limitations imposed by the
emergency situation. The second batch of fabrication, instead, has been run at
Harvard University by expert technicians and includes the study on apodization
and two dimensional mode multimode resonators together with some two-ports
devices. A thin piezoelectric film of 400 [nm] has been sputtered in this case, giving
a resonance frequency around 5 [GHz], the highest ever measured for such a kind
of resonators.
Given the high number of devices, the layouts have been drawn in a systematic way
through the implementation of ad-hoc Python libraries defining all the functions
for drawing the structures. The codes take advantage of the gdspy module for the
creation of GDSII files by defining geometries and features on dedicated layers.
The resulting files have then been merged using KLayout®, a widespread software
for layouts drawings. Finally, all parameters concerning typical pads separation,
dimensions of the testing structures, distance between the devices and layers
numbering have been defined in a dedicated file updated for each project depending
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on the tools used for fabrication.
The process flow adopted for the 2DMRs fabrication is schematically shown in
fig.5.1. It comprises seven steps and five masks are needed for lithography. The
Aluminum Nitride thin film has been deposited through sputtering by the Evatec
CLUSTERLINE®, a recently installed tool that ranks Northeastern among the top
universities for RF research in terms of fabrication capability. The same substrate
has been wet etched using phosphoric acid to open the vias and all the metal
layers have been patterned with lift-off. Finally, the resonators have been released
from the Silicon substrate with a highly selective isotropic etch based on Xenon
difluoride (XeF2).

Figure 5.1: process flow for the 2DMRs fabrication.

Five layers are needed for the lithography steps in the process flow, they have
been organized in this way:

• layer 1: bottom electrodes

• layer 2: top electrodes

• layer 3: gold pads

• layer 4: etching windows

• layer 5: vias

In the following, a few structures from the first layout comprising all the studies
are taken as a reference for all the others to describe the features introduced in
each mask. Fig.5.2 includes two examples of 2DMRs extracted from the gds file.
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5.1 – Process flow and masks design

(a) Apodized 2DMR (b) laterally anchored 2DMR

Figure 5.2: layout examples of 2DMRs. Numbers refer to the layers listed in the
text.

Both figures show a ground-signal-ground (GSG) sequence for the probing pads;
however, one ground has been shared by two subsequent resonators in the complete
layout so to save precious space enabling both GSG and GS measurements at
the same time. As depicted in the process flow, a thin gold layer has been de-
posited on the Pt pads so to reduce the parasitic resistances and thus the electrical
loading of the resonators. For what concerns the vias, a minimum spacing of
4 [µm] has been ensured between them and the edge of the metallic triangular
routing, this is done to prevent irregularities in the metal layer due to the wet etch
process. The resonators are surrounded by a release window for Silicon etching,
their area has been carefully enlarged to ensure complete release of structure with
different aspect ratios. In the example of fig.5.2b, the window is limited to the por-
tion surrounding the anchors to maintain the lateral sides anchored to the substrate.

Exactly the same layers have been set for the two ports devices layout. Two
examples are given in figs.5.3 and 5.4, where a suspended and a fully anchored
configuration are respectively shown. The distance between ground and signal
pads has been set to match the one of the probes (i.e., 150 [µm]) and, in order to
maintain the same orientation of 2DMRs on the masks, the structures have been
rotated by 90°.
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Figure 5.3: layout of a 2-ports device comprising two 2DMRs with different
number of fingers. Numbers refer to the layers listed in the text.

Figure 5.4: layout of a laterally anchored 2-ports device. Numbers refer to the
layers listed in the text.
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The entire chip comprising all the layers is shown in fig.5.5. It includes several
test structures for each layer as serpentines for resistivity test, cantilevers for film
stress tests and resolution structures. The total area of the chip is 15 × 15 mm
and several replicas have been fabricated on the same 4 inch wafer using a stepper
with a minimum feature size of 700 [nm].

Figure 5.5: complete layout of the chip comprising all the resonators and testing
structures for each layer.
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5.2 Additional layouts
In addition to the main experimental plan that adopts the same layers and materials
specifications adopted in the FEM simulations, two other layouts have been drawn
to study the optimization results at different frequencies and implementing other
materials. The first additional layout includes 2DMRM and 2-ports devices with
resonance frequency centered at 5 [GHz] (the highest frequency ever adopted for
2DMRs). The process has to be run on 400 [nm] thick AlN layer with Molybde-
num and Aluminum electrodes and the devices will be fabricated at the Lincoln
Laboratory of MIT. The complete layout is shown in fig.5.7 and includes at its
bottom some multi-ports delay lines based on the S1/S0 combination characterized
for 2DMRM . These delay lines are based on a wide array of electrode pairs equally
spaced so to excite the 2DMRM mode and several ports are attached to the line
along its length. This permits to simultaneously read a signal at different terminals
with specific delays from the input port.
A slightly different process flow from the one previously presented is implemented
in this case and it is shown below. In order to better confine the released area, a
poly-Silicon layer is deposited and patterned in a SiO2 substrate. Therefore, an
additional mask is needed to geometrically define these areas.

Figure 5.6: process flow adopted by the Lincoln Laboratory for the 5[GHz] layout.

Finally, a third layout including 2DMRs and 2DMRsM with different lengths,
widths and number of fingers has been drawn. It has to be run on a 2 [µm]
thick Scandium doped AlN film. The doping concentration is 30% and enables
an astonishing boosting of the devices k2

t thanks to the change induced in the
stiffness and piezoelectric coefficients [2]. The layout including 2-ports devices
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and 2DMRs is shown in fig.5.8. In order to predict the resonators performances
with this innovative material, a 2D Comsol® model including the piezoelectric and
stiffness coefficients published by Caro et al. in [2] has been built. However, since
ScAlN technology is not the focus of this work, the simulation results have not
been included in the discussion.

Figure 5.7: layout for the study of one and two ports AlN based 2DMRs with
resonance frequency centered at 5 [GHz]. Multiports delay lines based on 2DMRM

technology have been included.
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Figure 5.8: layout for the study of one and two ports AlScN based 2DMRs with
resonance frequency centered at 900 [MHz].
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Chapter 6

Conclusions

Detailed insights into the operation and performances of two-dimensional mode
resonators for Radio Frequency applications have been discussed. With the aim of
improving the quality factor at resonance Q and the electromechanical coupling
coefficient k2

t (and therefore the FoM) of 2DMRs without introducing additional
steps in their fabrication process flow, four different studies have been presented.
These have been conducted through COMSOL® Multiphysics FEM simulations
and analytically described with mathematical models. Two- and three- dimensional
models have been built and improved by the addition of non idealities and artificial
domains to consider dissipative effects that impact the resonator performances.
Particular attention has been given to the design of the mesh geometry and the
boundary conditions imposed to the structures so to ensure the reliability of the
studies by comparison with experimental data found in literature.
First of all, anchor losses have been analyzed by splitting the problem of acoustic
leakage minimization into two subproblems, one focused on the design rules of the
electrode bus and one focused on the anchors. Both the discussions have been based
on the analogy between electromagnetic transmission lines and acoustic waveguides.
The design rules for the bus electrodes have been derived by modeling the inactive
portion of the resonators as a λ/4 transformer for the acoustic waves excited in the
active area; with this approach, nodal lines at the fingers edges are introduced so
that the stress free boundaries at the resonator edges are converted into "virtual
fixed boundaries" at the edge of the active areas. This change of boundary condi-
tions has been shown to increase the energy stored under the electrodes, reducing
the mechanical displacement in the buses and the amount of energy generated
along the anchors direction. However, the introduction of nodal lines close to the
active areas increases the effective device stiffness, therefore reducing the motional
capacitance of the 2DMRs and decreasing the electromechanical coupling coefficient.
Excellent matching between simulation results and theory has been demonstrated
and commented.
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The optimization of the anchors geometry has been investigate following two dif-
ferent approaches and boundary conditions. Based on the assumption of a huge
acoustic impedance mismatch between the released area and the external substrate,
fixed constraints (FC) have been firstly imposed at the edges of the released area
and simulations with different anchor lengths have been run. Since COMSOL®

does not precisely evaluate the quality factor in presence of FC, the latter has
been evaluated through the integration of the acoustic Poynting vector over the
anchors faces. Under the approximation of small released area, an analytical model
demonstrating a λ/4 periodicity of Q with respect to the anchor length with fixed
released and inactive areas has been derived and compared with simulation results.
The same study has been run with the implementation of Perfectly Matched Layers
(PMLs) as artificial domains introduced to dissipate the acoustic energy irradiated
from the anchor through the released area. In this case, however, an almost null
reflection coefficient is set between the released area and PMLs and therefore, the
transmission line model gets too complicated to be analytically handled. The Q
results obtained with PMLs show clear trends versus the anchor width and length,
being inversely proportional to Wa and proportional to La. In this case, a global
optimum has been found for the configuration with Molybdenum electrodes for
an anchor length of 5 [µm]; with this value, the total length of the equivalent
transmission line is ≈ 11λ. Finally, a complete model including the Si substrate
surrounding the resonator has been built and results have been fit to analytical
predictions with an excellent agreement.
The second study focused on a complete analysis of the possible electrodes config-
urations for the 2DMRs excitation. The width of the electrodes and the relative
spacing between them have been swept in a wide range monitoring the evolution
of the k2

t and resonance frequency fs for different electrode thicknesses. Global
maxima for the electromechanical coupling coefficient up to ≈ 7% both with
Molybdenum and Platinum electrodes have been found when meeting specific
design rules. This is a very important result as it shows that very high electrome-
chanical coupling coefficients as the ones achieved by non-degenerate CLMRs can
be achieved with 2DMR technology even without the introduction of additional
components that could complicate the fabrication process. The high k2

t are made
possible by a reactive coupling between the first and the zero order symmetric
Lamb modes that enables a higher motional capacitance. Because of this feature,
these resonators have been named Two-Dimensional Mode Multimodal Resonators
(2DMRM). Frequency tunability of 11% with k2

t > 5% has been demonstrated
through simulations, showing how 2DMRsM could be monolithically integrated
on the same chip varying the acoustic wavelength lithographically.
The third study, instead, focused on the study of bottom-plate resonators where the
electrical grating forming the bottom electrodes was substituted by a continuous
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thin plate to further simplify the manufacturing process. Since it was experi-
mentally demonstrated that good Aluminum Nitride crystallization is achieved
when Platinum is used as the bottom substrate, a Pt thin plate has been assumed
and the dependence of acoustic performances on its thickness studied. Different
materials combinations including Molybdenum, Aluminum and Platinum have
been simulated in two dimensions based on results found in literature. High k2

t

values up to 5% have been found also with this case with a frequency tunability
comparable to the one of 2DMRsM . However, these devices seem to be affected by
unwanted spurious modes and experimentally results are still under investigation
to understand their effect.
To solve the spurious modes issue affecting the latter devices, a fourth study on
electrodes apodization has been discussed. Different shapes have been drawn
by complementary shaping the top and bottom electrode gratings, varying the
electrode coverage up to 10% of the total surface of the device. Thanks to the
mode excited by 2DMRs, no k2

t variations have been observed when varying the
fingers length. This is a very important result since it adds an interesting degree of
freedom for the electrodes design that is not available in other resonator typologies
as CLMRs and CMRs, where electrodes shaping drastically impacts the electrome-
chanical performances.
In the last study presented in this thesis, a novel application based on the op-
timized one-port devices previously described has been introduced. It consists
in a two-ports device with acoustically coupled 2DMRs through the evanescent
acoustic displacement shown by the S1 mode in the inactive areas. Thanks to
the evanescent coupling, the input resonator is not electrically loaded by external
components attached to the output 2DMR, making it possible to sense an input
signal without degrading the optimized performances of the single-port resonator.
This device could be implemented, for example, as a frequency selective power
detector that enables a circuit reconfiguration when the input power goes above a
certain threshold.
Finally, three experimental plans including 448, 309 and 494 devices and several
test structures have been drawn. They included five/six masks each and have been
drawn in a systematic way through Python coded libraries. The codes recall a set
of gdspy functions defining the geometries for drawing the blocks of the resonators
and each layout has been drawn respecting the design rules listed in a separated
file. Different components to be included on the same chip have been merged with
KLayout®. The mask fabrication and the lithography steps are still running at
Harvard University whereas the release process and test of the structure will be
performed at Northeastern University. Due to limitations imposed by the COVID19
emergency, delays have accumulated and experimental results have not been made
available in time to be included in this work.
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Appendix A

Electrical loading
considerations

The electrical loading of a MEMS resonator is an important specification that should
be carefully taken into account when designing the structures. If the resistance of
the electrical routings is much bigger that the motional resistance of the resonator
itself, the admittance response gets hidden, making the resonator impossible to
be tested and characterized. The resistive model that has been applied to study
the best configurations satisfying the matching constraint is here presented. The
idea is very simple, the single contributions of each part of the electrical routing
have been considered and summed to get the final Rs estimation (i.e., the series
resistance of the modified-BVD model). The following contributions refer to the
dimensions labelled in fig.A.1; ρ is the electrical resistivity of the metal and tm its
thickness.
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Rpad = ρLpad/2
Wpadtm

= ρLpad

2Wpadtm
(A.1)

Rroute = ρLroute

(Wpad+Wa

2 )tm
= 2ρLroute

(Wpad + Wa)tm
(A.2)

Ranchor = ρLa

Watm
(A.3)

Rb = Rbus/2 || Rbus/2 = Rbus/4 = ρLbus

4Wbtm
(A.4)

Rg = ρg

Wetm
(A.5)

Relectrode = 4
3

ρLe

Wetm

1
Np

(A.6)

The series resistance Rs is evaluated by summing all the terms above for both
the top and bottom electrodes together with the resistance of the vias connecting
them (Rvias ≈ 1 [Ω]):

R1 = Rpad + Rroute + Ranchor + Rbus + Rfingers (A.7)
R2 = Rpad + Rroute + Ranchor + Rbus + Rvias (A.8)
Rs = R1 + R2 (A.9)

Among all the contributions that come from the metals within the resonator
area, the resistance of the bus is the most relevant, being the fingers resistances
all in parallel. The length of the bus can be most of the times approximated by
the width of the device and therefore it is directly proportional to the number
of fingers (Lbus = Np · pitch). This means that, when it comes to matching the
resonator input impedance to a fixed real value (e.g., 50/500/1000 [Ω]), a trade
off between the number of finger pairs Np and the length of the fingers should be
considered to limit the resistance while maintaining fixed the static capacitance.
The curves relative to a 1 [kΩ] matching impedance for a 2DMR respecting the
layer specifications of the main experimental plan are shown in fig.A.2. The Rs vs
Lfingers curve shows a minimum at 50 [µm], which corresponds to Np ≈ 15. The
1 [kΩ] matching gives a static capacitance higher than 60 [fF ] for a resonance
frequency fs ≈ 2.2 [GHz] (fig.A.3), which is a preferred condition for the devices
included in these experimental plans. The values of C0 have been computed
given the targeted resonance frequency, and considering a measured loaded Q of
≈ 1000 (this value comes from previous experimental measurements of 2DMRs),
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the motional resistance dependence on the matching impedance has been evaluated
through eq.A.10. The Rm values are plotted in fig.A.3.

Rm = π2

8
1

ωC0

1
Qloadk2

t

(A.10)

For Rmatch = 1000 [Ω], the motional resistance is higher than 25 [Ω], which
is almost double the Rs value shown at the minimum of the curve in fig.A.2.
All these evaluations have been based on the experimental measured values of
the Platinum resistivity listed in table A.1 and demonstrate that with a 1 [kΩ]
impedance matching, the motional resistance is much higher than the resistance of
the electrodes powering the device. Therefore, this is the configuration adopted for
the 2DMR designed in this work and the estimated parameters are summarized in
table A.2.

Material Bulk Resistivity [Ωm] Measured Resistivity [ Ωm]

Pt 1.06e − 7 1.80e − 7

Table A.1: experimental measurement of Pt thin film resistivity.

Rmatch [Ω] C0 [fF] Rs [Ω] Rm [Ω]
1000 73 17 26

Table A.2: optimal configuration chosen for the 2DMR experimental plan consid-
ering the layers specifications. The 2DMR resonance frequency is fs ≈ 2.2 [GHz]
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Figure A.1: 2DMR layout example with different resistance contributions.
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Figure A.2: Np vs Le relation in a 1 [KΩ] matched 2DMR with 150 [µm] thick
Pt electrodes and Rs estimation. The Rs dependence on the finger length shows an
absolute minimum.

Figure A.3: C0 and Rm dependence on the matching resistance in a 2DMR with
150 [µm] thick Pt electrodes.
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Appendix B

gdspy for layout drawings

To pay homage to the time spent perfecting the Python codes for the masks
drawings, the outline of how the the design of the layouts has been organized is
here included. The codes have been originally thought by Ph.D. Luca Colombo for
basic structures and have been significantly amplified for the experimental plans
discussed in the last chapter of this thesis. Three main files are here considered. The
first Python file defines the classes of the resonators where all the main parameters
as the layout layers and resonators dimensions are defined. The second file includes
dozens of functions defining the geometries of the different blocks building the
resonators. As unusual geometries have been introduced for the apodization and
2-ports devices studies, personalized functions have been coded for each case. For
the sake of conciseness, only one example is reported below. Both the files are
imported in a third code that reads a .csv list (fig.B.1) listing all the resonators
referring to a specific study and recalls the functions related to that topology.
This is a very efficient way of building complex layouts including huge numbers of
devices in a very short time.

1 ############# DEVICES CLASSES ###################
2 ############# Author : Luca Colombo #############
3 ############# Modif ied by : Fabio Bersano ########
4 ############# Date : July 2020 ############
5

6 c l a s s cons tant s :
7 de f __init__( s e l f ) :
8

9 #LAYERS
10 s e l f . l a y e r S i = 0
11 s e l f . layerBottom = 1
12 s e l f . layerTop = 2
13 s e l f . layerPad = 3
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14 s e l f . l ayerEtch = 4
15 s e l f . l aye rV ia s = 5
16 s e l f . l a y e rPa r t i a lE t ch = 6
17 s e l f . layerBackSide = 7
18 s e l f . layerGold = 9
19 #RESONATORS SPACING
20 s e l f . r e l = 20
21 s e l f . s a f eRe l = 20
22 s e l f . de l taRes = 250
23 #RELEASE
24 s e l f .Wpad = 80
25 s e l f . Lpad = 80
26 s e l f .GSG = 150
27 #OVERETCH ( proce s s v a r i a t i o n s )
28 s e l f . ove re t chPla te = 0 .7
29 s e l f . ove re t chF inge r s = 0
30 #Distance between r e l e a s e p i t and grounds
31 s e l f . edgeRel = 2
32 #VIAs
33 s e l f . v i a S i z e = 6
34 s e l f . v iaSpace = 5
35 #BOTTOM ELECTRODE ROUTING FOR 2−PORT
36 s e l f . distanceBottom = 2 #Distance between

bottom e l e c t r o d e and r e l e a s e p i t
37 #Maximum al lowed over lap between bottom e l e c . and t r a c e s
38 s e l f . overlapBottom = 10
39 #BACKSIDE ETCH AND 2DRR
40 s e l f . overetchBackSide = 10
41 #Distance between e l e c t r o d e and trench
42 s e l f . overetchTrench = 0 .5
43

44 #BASE RESONATOR
45

46 c l a s s dev i c e :
47 de f __init__( s e l f , dataList , cons tant s ) :
48

49 s e l f . numb = dataL i s t [ 0 ]
50 s e l f . type = dataL i s t [ 1 ]
51 s e l f . por t s = dataL i s t [ 2 ]
52 s e l f . bottom = dataL i s t [ 3 ]
53 s e l f . f r e q = dataL i s t [ 4 ]
54 s e l f .We = f l o a t ( dataL i s t [ 5 ] )
55 s e l f . Le = f l o a t ( dataL i s t [ 6 ] )
56 s e l f . spac = f l o a t ( dataL i s t [ 7 ] )
57 s e l f . bus = f l o a t ( dataL i s t [ 8 ] )
58 s e l f . gap = f l o a t ( dataL i s t [ 9 ] )
59 s e l f . NAnchors = i n t ( dataL i s t [ 1 0 ] )
60 s e l f .Wa = f l o a t ( dataL i s t [ 1 1 ] )
61 s e l f . La = f l o a t ( dataL i s t [ 1 2 ] )
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62 s e l f . c = f l o a t ( dataL i s t [ 1 3 ] )
63 s e l f . N f inge r s = i n t ( dataL i s t [ 1 4 ] )
64 s e l f . aper ture = i n t ( dataL i s t [ 1 5 ] )
65 s e l f . pads = dataL i s t [ 1 6 ]
66 s e l f . r e l e a s e = dataL i s t [ 1 7 ]
67 s e l f . study = dataL i s t [ 1 8 ]
68

69 s e l f . name = s e l f . numb + "_" + s e l f . type + "_" + s e l f . f r e q
70 s e l f . p = s e l f .We + s e l f . spac
71 s e l f .W = s e l f . N f inge r s ∗ s e l f . p
72 s e l f . L = s e l f . Le + 2∗ s e l f . bus + 2∗ s e l f . gap
73

74 #ADD OVERETCHS
75 s e l f . Lr = s e l f . L + 2∗ cons tant s . ove re t chPla te
76 s e l f .Wr = s e l f .W + 2∗ cons tant s . ove re t chPla te
77 s e l f .War = s e l f .Wa + 2∗ cons tant s . ove re t chPla te
78 s e l f . Lar = s e l f . La − 2∗ cons tant s . ove re t chPla te
79

80 s e l f . c r = s e l f . c + 2∗ cons tant s . ove re t chF inge r s / s e l f . p
81

82 #POSITIONING OF THE STRUCTURES
83 c l a s s o r i g i n :
84 de f __init__( s e l f , X, Y) :
85 s e l f . X0 = X
86 s e l f . Y0 = Y
87

88 de f updateOrig in ( s e l f , dx , dy ) :
89 s e l f . X0 = s e l f . X0 + dx
90 s e l f . Y0 = s e l f . Y0 + dy

1

2 ############# DEVICES LIBRARY EXAMPLE ############
3 ############# Author : Fabio Bersano ############
4 ############# Date : July 2020 ############
5

6 import gdspy
7 import math
8 from math import p i
9 import os

10 import csv
11

12 # FUNCTION DRAWING THE SINUSOIDAL SHAPED TOP ELECTRODES
13 de f draw2DMRFinTopSine (X0 , Y0 , c e l l , r e sonator , constants , t e rmina l ) :
14

15 r e s = re sonato r
16 con = constant s
17
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18 i f t e rmina l == 1 :
19 N = r e s . Nf inge r s1
20 e l s e :
21 N = r e s . Nf inge r s2
22

23 f o r j in range (0 , N) :
24

25 X i n i t i a l S t a r t=X0−r e s . totW/2.0+0.5∗ r e s . p−0.5∗ r e s . p∗ r e s . c r
26 Xf inStar t=X0−r e s . totW/2.0+0.5∗ r e s . p+j ∗ r e s . p−0.5∗ r e s . p∗ r e s . c r
27 XfinEnd=Xf inStar t+r e s . p∗ r e s . c r
28 Xf ina lS t=X0−r e s . totW/2.0+0.5∗ r e s . p+(N−1)∗ r e s . p−0.5∗ r e s . p∗ r e s .

c r
29 YfinSt=Y0−r e s . L/2.0+ r e s . bus+r e s . gap+r e s . aperture−r e s . aper ture

∗math . s i n ( ( Xf inStt−X i n i t i a l S t a r t ) ∗ pi /( Xf ina lSt −X i n i t i a l S t a r t ) )
30 YfinEnd=Y0+r e s . L/2.0− r e s . bus
31 fingerTmp=gdspy . Rectangle ( ( Xf inStart , Y f inStar t ) , ( XfinEnd ,

YfinEnd , l a y e r=con . layerTop )
32 c e l l . add ( fingerTmp )
33

34 re turn c e l l
35

36 . . .
37

38 . . .

Figure B.1: portion of the Excel file listing the devices included in one of the
experimental plans.
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1

2 ############# csv READER & GDS FILE ############################
3 ############# Authors : Luca Colombo & Fabio Bersano ############
4 ############# Date : July 2020 ############################
5

6 #IMPORT LIBRARY
7 %run . / Library2DMR . ipynb
8 %run . / Classes2DMR . ipynb
9

10 #CREATE LIBRARY AND CELL
11 l i b = gdspy . GdsLibrary ( )
12 #c e l l = l i b . new_cell ( ’RES ’ )
13 c e l l = gdspy . Ce l l ( ’RES ’ )
14 cnst = cons tant s ( )
15 k = 1
16

17 X0 = 0.0
18 Y0 = 0.0
19

20 #CSV READER
21

22 dataL i s t = [ ]
23

24 with open ( ’ 2DMR_list . csv ’ ) as f :
25 reader = csv . r eader ( f )
26 f o r row in reader :
27 dataL i s t . append ( row )
28

29 f o r i in range (1 , l en ( dataL i s t ) ) :
30 k = k+1
31

32 r e sonato r = dev i c e ( dataL i s t [ i ] [ : ] , cns t )
33

34 #RESONATOR PLATE AND ANCHORS
35 i f r e sona to r . NAnchors == 1 :
36 study = re sonato r . study
37 drawEtch (X0 , Y0 , c e l l , r e sonator , cnst , study )
38 e l s e :
39 drawEtchMultiAnchor (X0 , Y0 , c e l l , r e sonator , cns t )
40

41 #RESONATOR ELECTRODES AND VIAS
42

43 i f r e sona to r . study == "APO−SINE" :
44 draw2DMRBusTop(X0 , Y0 , c e l l , r e sonator , cns t )
45 draw2DMRFinTopSine (X0 , Y0 , c e l l , r e sonator , cnst )
46 drawGoldContacts (X0 , Y0 , c e l l , r e sonator , cnst )
47

48 i f r e sona to r . bottom == "Y" :
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49 draw2DMRFinBottomSine (X0 , Y0 , c e l l , r e sonator , cnst )
50 draw2DMRBusBottom(X0 , Y0 , c e l l , r e sonator , cnst )
51 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
52 e l s e :
53 draw2DMRBottom(X0 , Y0 , c e l l , r e sonator , cnst )
54 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
55

56 e l i f r e sonato r . study == "APO−CIRCLE" :
57 draw2DMRBusTop(X0 , Y0 , c e l l , r e sonator , cns t )
58 draw2DMRFinTopCircle (X0 , Y0 , c e l l , r e sonator , cnst )
59 drawGoldContacts (X0 , Y0 , c e l l , r e sonator , cnst )
60

61 i f r e sona to r . bottom == "Y" :
62 draw2DMRFinBottomCircle (X0 , Y0 , c e l l , r e sonator , cnst )
63 draw2DMRBusBottom(X0 , Y0 , c e l l , r e sonator , cnst )
64 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
65 e l s e :
66 draw2DMRBottom(X0 , Y0 , c e l l , r e sonator , cnst )
67 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
68

69 e l i f r e sonato r . study == "APO−POLY1" :
70 draw2DMRBusTop(X0 , Y0 , c e l l , r e sonator , cns t )
71 draw2DMRFinTopPoly (X0 , Y0 , c e l l , r e sonator , cnst , 1 )
72 drawGoldContacts (X0 , Y0 , c e l l , r e sonator , cnst )
73

74 i f r e sona to r . bottom == "Y" :
75 draw2DMRFinBottomPoly (X0 , Y0 , c e l l , r e sonator , cnst , 1 )
76 draw2DMRBusBottom(X0 , Y0 , c e l l , r e sonator , cnst )
77 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
78 e l s e :
79 draw2DMRBottom(X0 , Y0 , c e l l , r e sonator , cnst )
80 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
81

82 e l i f r e sonato r . study == "APO−POLY2" :
83 draw2DMRBusTop(X0 , Y0 , c e l l , r e sonator , cns t )
84 draw2DMRFinTopPoly (X0 , Y0 , c e l l , r e sonator , cnst , 2 )
85 drawGoldContacts (X0 , Y0 , c e l l , r e sonator , cnst )
86

87 i f r e sona to r . bottom == "Y" :
88 draw2DMRFinBottomPoly (X0 , Y0 , c e l l , r e sonator , cnst , 2 )
89 draw2DMRBusBottom(X0 , Y0 , c e l l , r e sonator , cnst )
90 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
91 e l s e :
92 draw2DMRBottom(X0 , Y0 , c e l l , r e sonator , cnst )
93 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
94

95 e l i f r e sonato r . study == "APO−POLY3" :
96 draw2DMRBusTop(X0 , Y0 , c e l l , r e sonator , cns t )
97 draw2DMRFinTopPoly (X0 , Y0 , c e l l , r e sonator , cnst , 3 )
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98 drawGoldContacts (X0 , Y0 , c e l l , r e sonator , cnst )
99

100 i f r e sona to r . bottom == "Y" :
101 draw2DMRFinBottomPoly (X0 , Y0 , c e l l , r e sonator , cnst , 3 )
102 draw2DMRBusBottom(X0 , Y0 , c e l l , r e sonator , cnst )
103 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
104 e l s e :
105 draw2DMRBottom(X0 , Y0 , c e l l , r e sonator , cnst )
106 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
107

108 e l i f r e sonato r . study == "ANCHORS" or r e sonato r . study == "MODES"
or r e sonato r . study == "SHORT−LONG" :

109 draw2DMRBusTop(X0 , Y0 , c e l l , r e sonator , cns t )
110 draw2DMRFinTop(X0 , Y0 , c e l l , r e sonator , cnst )
111 drawGoldContacts (X0 , Y0 , c e l l , r e sonator , cnst )
112

113 i f r e sona to r . bottom == "Y" :
114 draw2DMRFinBottom(X0 , Y0 , c e l l , r e sonator , cns t )
115 draw2DMRBusBottom(X0 , Y0 , c e l l , r e sonator , cnst )
116 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
117 e l s e :
118 draw2DMRBottom(X0 , Y0 , c e l l , r e sonator , cnst )
119 draw2DMRVIAs(X0 , Y0 , c e l l , r e sonator , cns t )
120

121 e l s e :
122 pr in t ( " I n v a l i d code " )
123

124 #RESONATOR PADS
125 drawPads (X0 , Y0 , c e l l , r e sonator , cnst , "Y" )
126

127 #POSITIONING
128 i f k <= 22 :
129 i f ( r e sona to r . pads == ’GSG’ ) :
130 X0 = X0 + 2∗ cnst . de l taRes
131 e l s e :
132 X0 = X0 + 2∗ cnst .GSG
133 #Y0 = 0
134 e l s e :
135 X0 = 0.0
136 Y0 = Y0−2∗cnst . de l taRes + 30
137 k = 1
138

139 l i b . write_gds ( ’ 2DMR_COMPLETE_LAYOUT. gds ’ )

113



114



Bibliography

[1] Jie Zou, Chih-Ming Lin, C. S. Lam, and Albert P. Pisano. «Transducer design
for AlN Lamb wave resonators». In: Journal of Applied Physics 121.15 (2017),
p. 154502. doi: 10.1063/1.4979914 (cit. on pp. 1, 27, 29, 30, 63, 68, 71).

[2] Miguel A Caro, Siyuan Zhang, Tommi Riekkinen, Markku Ylilammi, Michelle
A Moram, Olga Lopez-Acevedo, Jyrki Molarius, and Tomi Laurila. «Piezo-
electric coefficients and spontaneous polarization of ScAlN». In: Journal of
Physics: Condensed Matter 27.24 (2015), p. 245901 (cit. on pp. 3, 94, 95).

[3] X. Zhao and C. Cassella. «On the Coupling Coefficient of ScyAl1-yN-based
Piezoelectric Acoustic Resonators». In: 2019 Joint Conference of the IEEE
International Frequency Control Symposium and European Frequency and
Time Forum (EFTF/IFC). 2019, pp. 1–4 (cit. on p. 3).

[4] H. Bhugra and G. Piazza. Piezoelectric MEMS Resonators. Microsystems and
Nanosystems. Springer International Publishing, 2017. isbn: 9783319286884
(cit. on pp. 3, 4, 8, 15, 16, 20, 21).

[5] D Gerlich, SL Dole, and GA Slack. «Elastic properties of aluminum nitride».
In: Journal of Physics and Chemistry of Solids 47.5 (1986), pp. 437–441
(cit. on p. 4).

[6] K.Y. Hashimoto. Surface Acoustic Wave Devices in Telecommunications: Mod-
elling and Simulation. Engineering online library. Springer Berlin Heidelberg,
2000. isbn: 9783540672326 (cit. on pp. 5–7).

[7] Z. Su and L. Ye. Identification of Damage Using Lamb Waves: From Fun-
damentals to Applications. Lecture Notes in Applied and Computational
Mechanics. Springer London, 2009. isbn: 9781848827844 (cit. on pp. 10, 12).

[8] J.L. Rose. Ultrasonic Guided Waves in Solid Media. Titolo collana. Cambridge
University Press, 2014. isbn: 9781107048959 (cit. on pp. 11, 13).

[9] Christopher Hakoda, Joseph Rose, Parisa Shokouhi, and Clifford Lissenden.
«Using Floquet periodicity to easily calculate dispersion curves and wave
structures of homogeneous waveguides». In: AIP Conference Proceedings.
Vol. 1949. 1. AIP Publishing LLC. 2018, p. 020016 (cit. on p. 13).

115

https://doi.org/10.1063/1.4979914


BIBLIOGRAPHY

[10] C. Cassella, Y. Hui, Z. Qian, G. Hummel, and M. Rinaldi. «Aluminum Nitride
Cross-Sectional Lamé Mode Resonators». In: Journal of Microelectromechan-
ical Systems 25.2 (2016), pp. 275–285 (cit. on p. 21).

[11] Gianluca Piazza, Philip J Stephanou, and Albert P Pisano. «Piezoelectric
aluminum nitride vibrating contour-mode MEMS resonators». In: Journal of
Microelectromechanical systems 15.6 (2006), pp. 1406–1418 (cit. on p. 23).

[12] Chengjie Zuo et al. «Cross-sectional dilation mode resonator with very high
electromechanical coupling up to 10 % using AlN». In: 2012 IEEE Interna-
tional Frequency Control Symposium Proceedings. IEEE. 2012, pp. 1–4 (cit. on
pp. 23, 24, 29).

[13] Cristian Cassella and Gianluca Piazza. «AlN two-dimensional-mode resonators
for ultra-high frequency applications». In: IEEE Electron Device Letters 36.11
(2015), pp. 1192–1194 (cit. on pp. 24, 30, 44, 58).

[14] Yao Zhu, Nan Wang, Bangtao Chen, and Ying Zhang. «AlN BAW-like
Resonators with Patterned Top Electrodes Achieving Coupling Coefficient up
to 8% at> 2.5 GHz». In: 2019 IEEE International Ultrasonics Symposium
(IUS). IEEE. 2019, pp. 93–95 (cit. on p. 24).

[15] Xuanyi Zhao, Luca Colombo, and Cristian Cassella. «Aluminum nitride
two-dimensional-resonant-rods». In: Applied Physics Letters 116.14 (2020),
p. 143504 (cit. on p. 25).

[16] Cristian Cassella, Nicolò Oliva, Jeffrey Soon, Merugu Srinivas, Navab Singh,
and Gianluca Piazza. «Super High Frequency Aluminum Nitride Two-Dimensional-
Mode Resonators With k2

t exceeding 4.9%». In: IEEE Microwave and Wireless
Components Letters 27.2 (2017), pp. 105–107 (cit. on pp. 27, 29, 30, 58).

[17] Gianluca Piazza and Christian Cassella. Two-dimensional mode resonators.
US Patent App. 15/560,757. Mar. 2018 (cit. on p. 30).

[18] Cristian Cassella and Jeronimo Segovia-Fernandez. «High k2
t exceeding 6.4%

through metal frames in aluminum nitride 2-D mode resonators». In: IEEE
transactions on ultrasonics, ferroelectrics, and frequency control 66.5 (2019),
pp. 958–964 (cit. on pp. 30, 31, 58, 66).

[19] Cristian Cassella, Guofeng Chen, Zhenyun Qian, Gwendolyn Hummel, and
Matteo Rinaldi. «Cross-sectional Lamé mode ladder filters for UHF wideband
applications». In: IEEE Electron Device Letters 37.5 (2016), pp. 681–683
(cit. on pp. 31, 34).

[20] Reza Abdolvand, Behraad Bahreyni, Joshua E-Y Lee, and Frederic Nabki.
«Micromachined resonators: A review». In: Micromachines 7.9 (2016), p. 160
(cit. on pp. 34, 35).

116



BIBLIOGRAPHY

[21] Gianluca Piazza. «Integrated aluminum nitride piezoelectric microelectrome-
chanical system for radio front ends». In: Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films 27.4 (2009), pp. 776–784 (cit. on
pp. 35, 36).

[22] D. S. Binder, E. Quevy, T. Koyama, S. Govindjee, J. W. Demmel, and R. T.
Howe. «Anchor loss simulation in resonators». In: 18th IEEE International
Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005. 2005,
pp. 133–136 (cit. on p. 37).

[23] David S Bindel and Sanjay Govindjee. «Elastic PMLs for resonator anchor loss
simulation». In: International Journal for Numerical Methods in Engineering
64.6 (2005), pp. 789–818 (cit. on p. 39).

[24] Jeronimo Segovia-Fernandez and Gianluca Piazza. «Analytical and numerical
methods to model anchor losses in 65-MHz AlN contour mode resonators». In:
Journal of Microelectromechanical Systems 25.3 (2016), pp. 459–468 (cit. on
pp. 39, 41, 48, 49).

[25] Jie Zou. «High-performance aluminum nitride Lamb wave resonators for RF
front-end technology». PhD thesis. UC Berkeley, 2015 (cit. on p. 41).

[26] Cristian Cassella, Navab Singh, Bo Woon Soon, and Gianluca Piazza. «Quality
factor dependence on the inactive regions in AlN contour-mode resonators».
In: Journal of Microelectromechanical Systems 24.5 (2015), pp. 1575–1582
(cit. on pp. 41–43).

[27] Andrea Lozzi, Annalisa De Pastina, Ernest Ting-Ta Yen, and Luis Guillermo
Villanueva. «Engineered acoustic mismatch for anchor loss control in contour
mode resonators». In: Applied Physics Letters 114.10 (2019), p. 103502 (cit. on
p. 41).

[28] Brian Gibson, Kamala Qalandar, Cristian Cassella, Gianluca Piazza, and
Kimberly L Foster. «A study on the effects of release area on the quality
factor of contour-mode resonators by laser doppler vibrometry». In: IEEE
transactions on ultrasonics, ferroelectrics, and frequency control 64.5 (2017),
pp. 898–904 (cit. on p. 45).

[29] B.A. Auld. Acoustic fields and waves in solids. A Wiley-Interscience publica-
tion. Wiley, 1973. isbn: 9785885013437 (cit. on pp. 47, 48).

[30] J. Segovia-Fernandez and C. Cassella. «Active and Inactive Frames Improve
Figure of Merit of Two Dimensional Mode Resonators». In: 2018 IEEE
International Ultrasonics Symposium (IUS). 2018, pp. 206–212 (cit. on p. 58).

117



BIBLIOGRAPHY

[31] M. Giovannini, S. Yazici, N. Kuo, and G. Piazza. «Spurious mode suppression
via apodization for 1 GHz AlN Contour-Mode Resonators». In: 2012 IEEE
International Frequency Control Symposium Proceedings. 2012, pp. 1–5 (cit. on
pp. 72, 73).

[32] G. Chen, C. Cassella, T. Wu, and M. Rinaldi. «Single-chip multi-frequency
wideband filters based on aluminum nitride cross-sectional Lamé mode res-
onators with thick and apodized electrodes». In: 2018 IEEE Micro Electro
Mechanical Systems (MEMS). 2018, pp. 775–778 (cit. on pp. 72–74).

[33] Yoginder Kumar, Jitendra Singh, Gunjan Kumari, Ravindra Singh, and
Jamil Akhtar. «Effect of shapes and electrode material on figure of merit
(FOM) of BAW resonator». In: AIP Conference Proceedings. Vol. 1724. 1.
AIP Publishing LLC. 2016, p. 020045 (cit. on p. 73).

[34] Guofeng Chen, Cristian Cassella, Tao Wu, and Matteo Rinaldi. «Single-chip
multi-frequency wideband filters based on aluminum nitride cross-sectional
Lamé mode resonators with thick and apodized electrodes». In: 2018 IEEE
Micro Electro Mechanical Systems (MEMS) (2018), pp. 775–778 (cit. on p. 74).

[35] Wanling Pan, Vikram A Thakar, Mina Rais-Zadeh, and Farrokh Ayazi. «Acous-
tically coupled thickness-mode AIN-on-Si band-pass filters-part I: principle
and devices». In: IEEE transactions on ultrasonics, ferroelectrics, and fre-
quency control 59.10 (2012), pp. 2262–2269 (cit. on p. 80).

[36] Vikram A Thakar, Wanling Pan, Farrokh Ayazi, and Mina Rais-Zadeh. «Acous-
tically coupled thickness-mode AIN-on-Si band-pass filters-Part II: simulation
and analysis». In: IEEE transactions on ultrasonics, ferroelectrics, and fre-
quency control 59.10 (2012), pp. 2270–2277 (cit. on p. 80).

[37] D. A. Frickey. «Conversions between S, Z, Y, H, ABCD, and T parameters
which are valid for complex source and load impedances». In: IEEE Transac-
tions on Microwave Theory and Techniques 42.2 (1994), pp. 205–211 (cit. on
p. 83).

118


	List of Tables
	List of Figures
	Introduction
	RF MEMS resonators state of the art
	From piezoelectricity to RF resonators
	Piezoelectric materials for RF MEMS

	Piezoelectricity and Elastodynamics
	Piezoelectricity constitutive equations
	Fundamentals of elastodynamics
	Lamb wave theory
	Resonators and BVD model

	Resonators FoM
	Quality factor
	Electromechanical coupling coefficient


	2DMRs and Lamb waves resonators
	Device description
	2DMR structure
	Materials considerations
	2DMR performances and mode analysis
	2DMR examples of applications

	2DMR Finite Element Modeling

	2DMR design optimization
	Anchor losses optimization
	Bus dimensions design
	Anchor dimensions design

	2D Mode Multimodal Resonators
	Bottom plate resonators
	Apodization for spurious modes suppression

	An innovative two-ports device
	Principle of operation and modeling
	Acoustic and electrical analyses

	Layouts design
	Process flow and masks design
	Additional layouts

	Conclusions
	Electrical loading considerations
	gdspy for layout drawings
	Bibliography

