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Abstract 
Recent years have seen the flourishing of the so-called green wave and environment-

related topics have been discussed in many ways for various reasons. The use of Hybrid 
Electric Vehicles (HEVs) is a valid way to achieve tank-to-wheel (TTW) CO2 emissions 
reduction. 

The choice of the design parameters, such as engine displacement or power of the 
electric machine, remains of fundamental importance. To this end, various algorithms 
have been deployed to effectively calculate the TTW CO2 emissions of a specific HEV 
layout. One of this is Dynamic Programming (DP). However, it cannot always be used as 
it requires high computational power and time. 

The main goal of this study is to develop an algorithm that can be used in the context 
of optimized design of HEVs. The tool to be developed should be far lighter than other 
deterministic algorithms such as DP and ensure comparable results at the same time. 

The technology of choice is Deep Learning Neural Networks (DNNs). It is a branch of 
machine learning so a part of the vaster field of Artificial Intelligence. This particular kind 
of algorithms mimic the behaviour of a human brain: various connections between 
different layers of neurons enable the flow of information and the possibility for the net 
to adjust itself and learn. 

A pipeline of two DNNs is implemented to assess whether the vehicle will successfully 
complete the driving cycle of choice (feasibility), and in that case predict the TTW CO2 
emissions. The dataset available is composed by a set of different design parameters for 
HEVs. The pipeline is trained in Supervised Learning. 

Promising results emerge from the study as the AI algorithm is able to produce 
feasibility predictions with an accuracy higher than 95%, and TTW CO2 estimates with 
less than 1% error. The implementation is based on Keras and Tensorflow libraries. 
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Introduction 

1.1.  Motivations 
The last few years have seen increasing interests in environment-related topics in both public 

opinion and national governments. As it is well known, more stringent regulations are declared 
almost every year to preserve the existing equilibrium and hopefully reverse dangerous trend [1]; it 
is our responsibility to comply with them.  Among the aforementioned topics, vehicles pollutants 
emissions, and relative legislations, are surely a key point of the discussion. Direct consequence of 
these thematic are for sure important changes in private companies’ guidelines, both for economic 
growth and regulations compliance. These changes are in turns the leading factor in the 
technological thrive we are seeing with respect to “green technologies”. 

As already stated, vehicle emissions are one of the most discussed point of the whole green wave. 
It is no surprise that the automotive industry is also one of the most affected ones. Conventional 
Internal Combustion Engine (ICE) vehicles are characterized by some well-known problems with 
respect to the abovementioned thematic. In particular, they emit pollutants (e.g.: NOx, CO, CO2 and 
unburned hydrocarbons) in order to produce the power required by the driver. All these chemicals 
are of course harmful to the environment. Moreover, it should be reminded that petroleum and its 
derivatives are surely not renewable. 

Obviously, it is impossible to just abandon once and for all the automotive industry and all the 
advantages it assures to our society. All that being said, it is necessary to research and develop new 
and more refined technologies to comply with the environment needs, now more challenging than 
ever. The areas of research are extremely wide and include mechanical systems, control systems, 
pollutants reduction systems and many more fields such as hybrid vehicles, Hybrid Electric Vehicles 
(HEV) in particular. All those areas of development require precise and fast design analyses, fast 
prototyping, and extreme computational accuracy. In this scenario, the aid of automatic tools during 
the design phase is essential and the related advantages are very clear. 

1.2. Technological solutions 
The need to comply to more and more stringent regulations in terms of vehicles emissions really 

stretched the areas of research in which modern companies are working. One of the most 
prominent and promising field of development in this sense is surely electric traction [2]. 

When talking of electric traction, a simple distinction to well define the scenario is possible: 
Battery Electric Vehicles (BEV) and Hybrid Electric Vehicles (HEV). As the name suggests, the first 
category achieves traction by a battery pack and an electric machine; the specifications are based 
on the particular type of BEV and the expected mission it is supposed to endure. These vehicles are 
mostly appreciated because of their capability of achieving zero emissions Tank-To-Wheel (TTW); 
they surely represent a viable option to drastically reduce local pollution in big urban aggregates. 
Their limitations are however as evident as their strengths: the large battery packs introduce 
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problems in terms of space and weight management; their reduced autonomy range is not always 
enough, especially for extra-urban missions; this problems is also amplified by the hours-long 
charging time; finally, batteries disposal is today a not completely solved issue that needs to be 
addressed quickly. HEVs, on the contrary, use both ICE traction and electric traction. The general 
system is obviously more complicated, and this is one of the main drawbacks of these technologies 
as it means higher costs. However, this approach solves the issues related to the autonomy range 
thanks to the contemporary use of the electric motors and the ICE. Moreover, it anyway ensures 
lower emissions, especially in urban conditions where the electric traction really shines, and of 
course lower consumption [3]. 

HEVs in particular can be classified on the basis of their specific architecture. Two main categories 
arise, namely Series and Parallel HEVs. Series-HEV represents today a niche field of application; this 
is because of the nature of the architecture: the ICE is only connected to the electric motor via an 
inverter, and its only function is to produce electric power to charge the battery or to power the 
electric motor. This means that the ICE is not directly connected to the wheels, so that the electric 
motor must comply with the entire power request. Moreover, the ICE cannot operate in charging 
and powering mode at the same time: this requires the knowledge of the mission in advance with 
fair precision, otherwise the vehicle will be forced to use the ICE only to propel himself (usually the 
ICE is small) or to stop and use it to charge the battery-pack. On the other hand, parallel-HEVs can 
obtain driving power from the ICE and the electric motor at the same time. Both “power-lines” 
converge into a coupling device that allow to sum the torques coming from the two power sources. 
This approach to HEVs is currently the most commonly used by car manufacturers as it ensures a 
wider range of application. Notice that further classifications of parallel_HEV are also possible on 
the basis of the position of the electric motor (e.g.: P2, P3 and P4) It should be mentioned that 
“complex architectures” also exist, namely series-parallel-HEVs, that combines the advantages of 
the two categories. 

1.3. Control logics overview 
With the term “Control Logic” we are referring to the strategy upon which the vehicle decides 

what to perform at a particular moment in time. It is of key importance when talking of HEVs power 
management: a good control strategy is essential to achieve the best performance possible and fully 
exploit the capabilities of this technologies. In general, a control logic takes as input some 
parameters related to the state of the vehicle (e.g.: speed, road gradient, power requested by the 
driver) and can give as output choices regarding, for example, the gear to be selected, the power 
split between ICE and electric motor, the necessity to enter in battery charging mode and so on. 
These parameters are usually chosen by the control logic to achieve better fuel consumption or 
better pollutants emissions. 

Different control logics have been developed to comply with different needs: time and 
computational limitations, the need to find a true optimal solution or the possibility to implement 
the logic on an actual vehicle. Three families of control logics can be identified: heuristic strategy, 
static optimization methods, and global optimization methods [3]. 

As it is known, a heuristic approach is based on the concept of “good-enough” decisions, based 
on the occurrence of certain events. Fuzzy logics, Neural Networks, and Rule Based strategies belong 
to this category. In general, they perform a specific action based on predefined control variables. 



Introduction: Technical choices. 
 

11 

 

Obviously, they are not capable of generating true optimal solutions, however they are extremely 
light from a computational point of view and can be easily implemented on-board.  

Static optimization refers to the concept of instantaneous optimization of the equivalent fuel 
consumption. The state variables of the vehicle are transposed into an equivalent amount of fuel 
consumption via a predefined formula and the controlled parameters are changed to minimize it. 
“Equivalent Consumption Minimization Strategy” (ECMS) is part of the category. Since this strategy 
minimize the equivalent fuel consumption formula for each time instant, so not considering the 
whole of the mission, it cannot guarantee a true optimal solution. There is however the possibility 
to implement them on-board. 

Global optimization methods are the only ones that can ensure a true optimal solution to a 
specific problem. They consist in algorithms able, given the entire mission, to find a control strategy 
that guarantee the minimum of a specific function (the function may be consumption-related only 
or based on both consumption and pollutants emissions). As already stated, they need the entire 
mission in order to compute a solution, so they are not implementable on-board; moreover, they 
are very heavy from a computational standpoint. Dynamic Programming and Genetic Algorithms 
are examples of global optimization methods. In particular, Dynamic Programming will be dealt with 
more in details in the following chapter since it represents a starting point of this project. The 
Genetic Algorithms approach consists in a strategy that, starting from an initial population (various 
combinations of controlled parameters), are able to find a single individual that represents the 
optimal solution. They simulate the natural “selection process” through the use of a scoring system 
that evaluates each individuals of the population, assessing their probability to generate other 
similar individuals in successive generations: higher the score, higher the probability. 

1.4. Technical choices 
The aim of the present project is to provide an efficient and effective tool to be used during the 

design phase of an HEV. The tool will give valuable information regarding the best design 
parameters, with respect to fuel consumption and CO2 emissions, regarding a specific mission. In 
particular, this project represents the extension and refinement of an existing tool that has been 
proved to be able to predict the emission of an HEV starting from its design parameters. The 
aforementioned tool uses Deep Learning algorithms to achieve this goal, so an algorithm of the 
same nature is used to ensure compatibility between the two projects. 

Deep Learning (DL) is a specific branch of Machine Learning which sits in the wider field of 
Artificial Intelligence [4]. A DL algorithm simulates the biological brain, its connection and 
information flows. It can be visualized by a series of interconnected “Layers”, each one consisting in 
a series of “Nodes”. Each node can be thought as an element in which an information enters, is 
modified, and finally leaves, heading towards the next element. The term “Learning” comes from 
the fact that these algorithms are able to adjust themselves through a process of training called 
“Back Propagation”. They are extremely well suited for highly nonlinear problems. It is possible to 
define two big families of algorithms: Supervised and Unsupervised Learning Algorithms. In the first 
category, the algorithm receives both the data and the solutions, and it should train itself on those 
solutions. In the Unsupervised algorithms instead, no solution is given to the software that is free to 
elaborate the data as it thinks its best. Deep Learning algorithms are a particular type of Supervised 
Learning algorithms. 
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Figure 1. Structure of A.I. theories. 

 

The main difference between Deep Learning and “standard” Machine Learning lies on the fact 
that the first one is characterized by a more complex structure. This type of architectures is proved 
to be able to better learn from big amount of data. It is no surprise that modern companies try to 
exploit, as best as they can, the concept of “Big Data”.  

 

 
Figure 2. Deep Learning performance behaviour]. 

 

The learning process for the present project is based on the results of an optimized algorithm of 
the Dynamic Programming (DP) type The reasons that have led the choice upon a Deep Learning 
algorithm revolve around one concept: even though it is extremely precise and reliable, DP is highly 
time consuming and require very good hardware capabilities to perform sufficiently well. On the 
other end, if well trained, an algorithm based on Deep Learning can produce god enough results in 
an extremely shorter time window. Moreover, as it will be demonstrated and already mentioned in 
Figure 2, Deep Learning algorithms can positively exploit an increase in the training dataset. This will 
actually be an important point of the present dissertation. 
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Should be mentioned that, based on their core intention, a further classification in possible for 
this kind of algorithms. As a matter of fact, Supervised Learning algorithms have usually two main 
goals: classification or regression, we define them predictive. Unsupervised Learning methods are 
instead used for clustering or anomalies detection and are usually described as descriptive. 

 
Figure 3. Supervised and Unsupervised Learning common use. 
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1.5. Project contribution and dissertation outline 
As already stated, the present project lies in a wider research that has the aim to produce an 

efficient tool able to assist the operator in realistic application during the design phase of an HEV. 
The pre-existing tool, form which this project starts, effectively predicts tailpipe emissions of an HEV 
starting from its design parameters, regarding a specific driving cycle. Deep Learning is the 
technology of choice for the aforementioned reasons and the starting datasets are originated from 
a Dynamic Programming tool. 

From a very general point of view, the DP algorithm achieves two goals at the same time: it 
computes the emissions for the optimal sets of design parameters and, in doing so, it distinguish 
between configurations that are able to complete the predefined cycle (referred to as feasible 
examples/configurations) and configurations that are not (referred to as unfeasible 
examples/configurations). The pre-existing tool rely its training phase on feasible examples only 
since its aim is a predictive regression. From this situation arises the need for a classification 
algorithm that is able to predict in advance which examples are feasible and which are not. It is clear 
at this point that such an implementation is a sort of filter to be applied one step before the 
regression process. Obviously, since the two algorithms should communicate smoothly, the working 
environment is the exact same: the code is written in Python, using Anaconda Spyder as working 
environment and Tensorflow as backend. Keras is instead the main library used to develop the net. 

In the present project, not only is presented the classification part of the code, it is also analysed 
the pipeline composed by the two algorithms developed and the relative compound results. Notice 
that different architecture of HEV will be dealt with but, due to reasons that will later be clear, only 
one architecture, namely P4-HEV, will be further investigated. The dissertation will start from an 
overview on the Neural Network theory and its core features; it will then proceed to explain the 
structure of the datasets and their management; finally the logic of the actual algorithm will be 
explained and the results showed and discussed. 

Future developments should include the possibility to train the nets here presented on a dataset 
that also contains information relative to various driving cycle, this will ensure a wider range of 
application and a more powerful tool. Moreover, different type of architectures (only fully 
connected nets are here analysed) should be also tested in order to assess the most reliable and 
accurate one. 
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Neural network theory overview 

2.1. History and modern scenario 
Even though Artificial Intelligent seems to be a very modern concept, with respect to public 

opinion, the idea to design a machine that can mimic the human behaviour is older. The first concept 
comparable to the aforementioned idea is probably the Touring Machine and the relative studies of 
its inventor Alan Touring. Anyway, the first real effective effort in designing an actual Neural Net is 
without a doubt “Perceptron”, presented by Frank Rosenblatt in 1958. It was characterized by only 
two layers, input and output, but it relies on the concept of Error Back Propagation, that is the solid 
foundation for all the modern application of this fascinating technology. However, it is only in 1986 
when a “Multi-layer Perceptron” was presented, featuring and intermediate layer, that this field 
really started to thrive. 

Unfortunately, even though it was showing promising results, it failed the test of the field 
application. This was not because of lack of potential or flaws in the theory behind it, but it was due 
to technological limitations related to the hardware available at that time. The new millennium 
solved the problem presenting to the public more and more advanced microprocessors. 

From this point on, new achievements and results never stopped arriving. In 1998 the first 
Convolution Neural Network makes its appearance. This particular type of net is the foundation of 
all the image recognition software based on A.I. nowadays. Actually in 2012 AlexNet performs with 
excellent results this task, winning ImageNet [5]. Notice that form approximately 2015, the average 
performance of the best performing softwares is better than the human performance in that specific 
competition. Image recognition is not the only field in which machines have outperformed humans, 
just consider the game of chess for example. 

The fields of application can be however very different from what the imagination propose: from 
faces recognition to generation of fictitious visage, from intelligent digital assistants to public 
interests guessing and monitoring. A completely new field of research started from the “simple” 
ideas of Touring and many companies related to those arguments are today thriving. Some of the 
most resonant names are of course Google, Facebook, IBM, and Amazon. However, many others 
smaller companies or even start-ups are creating this innovative substrate over which next 
generations will be born [4].  

The private sector is surely not the only one interested in this revolution of thinking. Academic 
researches regarding Artificial Intelligence applications are flooding the scientific journals and 
completely new academic courses are forming. 

It really seems a field where the only limitations are “self-imposed”. For sure soon after the 
technological progress follows the ethical and public debate. 
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Figure 4. Deep learning related publications per year. 

 
Figure 5. Meetings and material per nations. 

 

Notice that, regarding the private sector, not only new companies are being born having their 
core business in Artificial Intelligence, but also companies of different extraction are implementing 
AI in their business model. They understand the potential of such a technology and aim to exploit 
it. 

 

 
Figure 6. Every industry wants intelligence. 
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2.2. Neural Network main features 
Deep Neural Network structures can be very different from each other on the basis of their aim 

and the resources/data at disposal [6]. However, they always show some common features. For the 
purpose of this project, it is sufficient to describe predictive models basic working flow. To provide 
a sufficient overview, it is convenient to follow the aforementioned working flow. 

As already stated, predictive models need a training dataset that is equipped with the exact 
solutions for the examples proposed. Such solutions will be referred to as labels. Starting point of 
the whole training-predictive process is actually data management and manipulation. This aspect 
will be discussed separately in the following chapter. 

Once the datasets are ready, the training phase can start. It always consists of two distinct 
process, a forward-pass, which will produce an output, and a backward-pass, that is responsible for 
the “adjusting” part of the training phase. During the forward-pass, the information coming from 
the dataset, namely the entries of the dataset, enters the layer of neurons. These are two key 
parameters of every type of neural network. Generally speaking, a neuron can be thought as an 
element in which the input value is transformed by a predefined function, the activation function, 
and then heads towards the next layer. Different activation functions have been developed to try 
and solve various issues; they will be analysed in detail. When this process reaches the last layer, an 
output is produced. The output layer varies in structure based on the purpose of the aim: regression 
neural networks will have only one neuron since they produce a single value as output; classification 
nets usually possess a number of output neurons equal to the number of classes they have to 
distinguish. Obviously also the type of data being outputted is different. 

At this point the results, right or wrong, are available, we refer to them as predictions. Using 
labels as mean of comparison it is possible to compute a value which gives indication on the 
predictions’ accuracy. Such value is computed with the use of what is known as Loss Function. Notice 
that the term “accuracy” is now indicating a general performance index; more precise terminology 
will be introduced, referring to specific performance indices. The Loss Function is the foundation of 
the learning algorithm since on its minimization is based the learning process. Since the Loss 
Function is based on the predictions of the net, it is clear that different types of output need different 
Loss Functions. Moreover, regularizers are used to “force” the loss function to behave in certain 
ways, avoiding overfitting for example. 

Key feature of the learning algorithm is also what is known as learning rate. In general, it 
regulates how “large” the changes are during the adjusting phase of the learning process. This is 
probably the parameter that has the greatest impact on net’s performance. 

The features abovementioned are usually referred to as hyperparameters. This term is used to 
distinguish them from the parameters that the net automatically adjusts during the learning 
process, namely the weights. The hyperparameters also need to be adjusted, however they are not 
automatically set by the learning algorithm itself. Different kinds of hyperparameters tuning 
procedures exist (e.g.: grid search, random search, Bayesian Optimization). Hyperparameter tuning 
is probably the most important part of a Deep Learning application since it can greatly influence 
predictive performance. 
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2.2.1. Activation functions 
A single neuron with Single Input Single Output (SISO) structure can be represented as in Figure 7.  

 
Figure 7. Representation of a single neuron. SISO system. 

Notice that usually the structure of a node is of Multi Input Multi Output (MIMO) type, creating 
the so called “fully connected” layout that will be deepened later. 

As already mentioned, different kinds of Activation Functions have been studied and tested [7]. 
The first applications saw the use of Sigmoid function and Hyperbolic tangent function. These 
functions have a limited “image”, mathematically speaking (Figure 8, Figure 9). This can be a benefit 
or a limitation: if the function is thought for the output layer of a classification net, their results can 
be easily interpreted as one class or the other (two border of the function’s image). However, if used 
for the inner layers of a deep neural network they can cause troubles: for very high (or very low) 
input values, the output is very similar even for very different values. Modern theory saw the 
increasing use of “ramp” function. They can effectively boost the learning process by always 
ensuring different output values for different inputs; most commonly used ramp functions are 
Exponential Linear Unit (ELU), Rectified Linear Unit (ReLU) and Leaky-ReLU (Figure 10, Figure 11, 
Figure 12). 

 

 

 

Sigmoid Function  

 
Figure 8. Sigmoid activation function. 

 

 

𝜎(𝑥) =
1

1 + 𝑒𝑥
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Hyperbolic Tangent Function  

 
Figure 9. Hyperbolic Tangent activation function. 

 

 

𝜎(𝑥) =
2

1 + 𝑒−2𝑥
− 1 

 

 

ELU Function  

 
Figure 10. ELU activation function. 

 

 

𝜎(𝑥) = {
𝛼(𝑒𝑥 − 1) 𝑓𝑜𝑟 𝑥 < 0
𝑥          𝑓𝑜𝑟 𝑥 > 0

 

 

 

ReLU Function  

 
Figure 11. ReLU activation function. 

 

 

𝜎(𝑥) = {
0   𝑓𝑜𝑟 𝑥 < 0
𝑥   𝑓𝑜𝑟 𝑥 > 0

 

 

 

Leaky-ReLU Function  

 
Figure 12. Leaky-ReLU activation function. 

 

 

𝜎(𝑥) = {
0.1𝑥   𝑓𝑜𝑟 𝑥 < 0
𝑥       𝑓𝑜𝑟 𝑥 > 0
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2.2.2. Fully connected architecture 
For the present project an architecture of the type "Fully connected" is selected. As already 

introduced, it is a particular type of MIMO system in which each node (neuron) is connected with 
all the nodes of the previous and the following layer. This approach, as visualized in Figure 13, gives 
an intuition on the name of choice for this kind of algorithms: Neural Networks. 

 

 
Figure 13. Neural network visualized. 

Notice how each neuron relates to the previous and the following ones. From the figure are also 
noticeable the Input Layer and the Output Layer. Their structure, namely the number of nodes in 
these layers, is dictated respectively by the number of "features" by which each example of the 
dataset is composed and the number of outputs we ask the net to produce. Referring to Section 1.5, 
this project deals with two fully connected deep neural networks: a Classification Neural Network 
(cDNN) and a Regression Neural Network (rDNN). Even though the dataset is basically the same, the 
outputs are different in type and purpose: the cDNN has two output neurons (since it choose 
between two classes), the rDNN has instead a single neuron output layer (since it predict a single 
value). The nature of the Input Layer will be deepened later when explaining the dataset. 

When referring to "connections" in neural networks we are referring to sum operations: each 
node takes as input the sum of the contribution of all the neurons in the previous layer, each 
multiplied by a weight, sums it up with a bias term and the compute the output through some sort 
of activation function. Those weights and biases are the parameters on which the learning algorithm 
operates, increasing or decreasing them, to learn from its errors. 

Increasing the net dimensions, number of hidden layers and neurons for each layer, the learning 
potential of the net increases. This concept, even though it looks fairly straightforward, not always 
translates into real performance improvements, it could actually be a source of issues as we will see 
later. Notice that, for the purpose of this project, an automated search for the correct number of 
layers and nodes has been developed. 
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2.3. Training algorithm 
It has already been introduced that the learning phase is in two steps: a forward and a backward 

pass. These two steps take the name of Forward Propagation and Back Propagation. In this chapter 
will be explained the mathematical model that composed this type of procedure. Notice that during 
the Forward Propagation no parameters adjusting is performed. This step serves the only goal to 
produce an output, it is the predictive side of the algorithm. Since the Back Propagation needs a 
prediction to start, the forward pass should come first. It is clear that some sort of initialization for 
the weights is needed. Different types of initialization have been tested in the literature and some 
of them will be introduced in this project. 

Without entering in too many details, notice that the dataset available for the training procedure 
is only a fraction of the whole dataset. Some of the examples of the complete database are 
preserved to perform the evaluation of the neural networks. Two evaluation steps are of key 
importance: the validation and the testing. They will be explained in detail in the following chapters. 
Anyway, each fraction of the dataset is composed by two main part: the one containing the example 
features (X) and the one containing the labels (Y). 

2.3.1. Forward propagation 
The process by which a neuron's output, relatively to a specific layer "i", is generated can be 

effectively described by the following mathematical expression: 

 

{
𝑥𝑘 =∑(𝑤𝑘,𝑗 ∗ 𝑧𝑗) + 𝑏𝑘

𝑚

𝑗=1

𝑧𝑘 = 𝜎(𝑥𝑘)

 

Where: 

• 𝑥𝑘: input of the kth node of layer i 

• 𝑚: number of neurons of layer i-1 

• 𝑤𝑘,𝑗: weights related to the connection between node k (of layer i) and node j (of layer i-1) 

• 𝑧𝑗: output of the jth node of layer i-1 

• 𝑏𝑘: bias value for node k 

• 𝜎(): activation function 

• 𝑧𝑘: output of node k of layer i 

 

For a whole layer "i" we obtain a system that is the following: 

 

{
 

 
𝑧1,𝑖 = 𝜎(𝑥1,𝑖)

𝑧2,𝑖 = 𝜎(𝑥2,𝑖)
⋮

𝑧𝑛,𝑖 = 𝜎(𝑥𝑛,𝑖)
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{
 

 
𝑥1,𝑖 = 𝑏1,𝑖 + 𝑧1,𝑖−1 ∗ 𝑤1,1 + 𝑧2,𝑖−1 ∗ 𝑤1,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤1,𝑚
𝑥2,𝑖 = 𝑏2,𝑖 + 𝑧2,𝑖−1 ∗ 𝑤2,1 + 𝑧2,𝑖−1 ∗ 𝑤2,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤2,𝑚

⋮
𝑥𝑛,𝑖 = 𝑏𝑛,𝑖 + 𝑧𝑛,𝑖−1 ∗ 𝑤𝑛,1 + 𝑧𝑛,𝑖−1 ∗ 𝑤𝑛,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤𝑛,𝑚

 

 

So now is clear that: 

 

{
 

 
𝑧1,𝑖 = 𝜎(𝑏1,𝑖 + 𝑧1,𝑖−1 ∗ 𝑤1,1 + 𝑧2,𝑖−1 ∗ 𝑤1,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤1,𝑚)

𝑧2,𝑖 = 𝜎(𝑏2,𝑖 + 𝑧2,𝑖−1 ∗ 𝑤2,1 + 𝑧2,𝑖−1 ∗ 𝑤2,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤2,𝑚)
⋮

𝑧𝑛,𝑖 = 𝜎(𝑏𝑛,𝑖 + 𝑧𝑛,𝑖−1 ∗ 𝑤𝑛,1 + 𝑧𝑛,𝑖−1 ∗ 𝑤𝑛,2 +⋯+ 𝑧𝑚,𝑖−1 ∗ 𝑤𝑛,𝑚)

 

 

It is best practice to write the system in matrix form, the system is then: 

 

[

𝑥1,𝑖
𝑥2,𝑖
⋮
𝑥𝑛,𝑖

] = [

𝑤1,1 𝑤1,2 … 𝑤1,𝑚
𝑤2,1 𝑤2,2 … 𝑤2,𝑚
⋮ ⋮ ⋱ ⋮

𝑤𝑛,1 𝑤𝑛,2 … 𝑤𝑛,𝑚

] ∗ [

𝑧1,𝑖−1
𝑧2,𝑖−1
⋮

𝑧𝑚,𝑖−1

] +

[
 
 
 
𝑏1,𝑖
𝑏2,𝑖
⋮
𝑏𝑛,𝑖]

 
 
 
 

 

It reduces to: 

�̅�𝑖 = 𝒘 ∗ 𝑧�̅�−1 + �̅� 

And finally: 

𝑧�̅� = 𝜎(𝒘 ∗ 𝑧�̅�−1 + �̅�) 

 

Notice that 𝑧�̅� and consequently 𝑏 are vectors with dimension "nx1", with n being the number of 
neuron of the ith layer; 𝑧�̅�−1 is a vector "mx1", with m being the number of neurons of the layer i-1; 
finally 𝒘 is a matrix with dimension "nxm". 

 

 
Figure 14. Forward propagation. 
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2.3.2. Backward propagation 
This is the beating heart of the learning process. As a reminder, notice that here the algorithm is 

using the training set only. Should be clear by now that each example in the dataset produces an 
output which dimensions are dictated by the specific application. The Loss Function (L) however 
calculates a "loss-value" for each entries; all these values need to be combined in a single quantity, 
assessing the performance of the net on the whole set (or a portion of it). To combine all the losses 
another function is used: the Cost Function (J). 

If we indicate the predictions as "�̂�" and the labels as "𝑦" we can summarize the concept above 
as follows: 

 

𝐿𝑜𝑠𝑠 = 𝐿(�̂�, 𝑦) 

𝐶𝑜𝑠𝑡 =
1

𝑙
∑𝐿(�̂�𝑖, 𝑦𝑖)

𝑙

𝑖=1

 

 

The quantity "l" refers to the number of examples analysed in a single pass. Different approaches 
are present in the theory. The most general one and the first one to be implemented, and probably 
the best choice for very small dataset, is the procedure to consider the entire dataset. A more 
modern approach is to consider a portion of the dataset for each pass or even only one example. 
More detailed information are given below. 

Since Cost and Loss Functions depend on predictions, so weights and biases, and labels, and since 
labels are constant throughout the learning process, we can conclude that both functions finally 
depend on weights and biases. 

 

𝐶𝑜𝑠𝑡 = 𝐽(𝑤, 𝑏) 

 

The key point of the back propagation is to minimize the function "J". 

All the algorithms here analysed are based on the concept of "Gradient Descent" [8]. As the name 
suggests, the procedure relies on the computation of the Gradient of the Cost Function; notice that 
function J has usually a high number of variables. The Gradient gives information regarding the 
"direction" of the steepness of the function. Using an iterative approach, the algorithm searches for 
the minimum of the cost function, moving in the direction indicated by the gradient. 

The general formulation of the algorithm can be written as: 

 

𝑤𝑛+1 = 𝑤𝑛 − 𝛼∇𝑤𝐽(𝑤𝑛) 

 

The formulation is usually more complicated than this, based on the choice of the chosen 
Optimizer. Parameter "α" is of great importance, it represents the so-called Learning Rate. It can be 
thought as the "distance" covered by each iterative step. The choice of the Learning Rate is without 
a doubt one of the most important step in the optimization phase; however, since it is very difficult 
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to assess a single value for the whole process, modern optimizer modify it in order to adapt it to the 
specific situation. 

 

 

 
Figure 15. Forward and Backward Propagation visualized. 

 

Notice how, during backward propagation, it is available the gradient of the loss function with 

respect to the output:  
𝜕𝐿

𝜕𝑧
. However, what is needed is the derivative of the loss function with respect 

to the parameters to be adjusted, the weights and biases. This is achieved by product of derivatives, 
as depicted in Figure 15. The loss function is differentiated several times during this process. 

Once the partial derivatives with respect to each weight are available, the adjusting process takes 
place with a formulation that in general is: 

 

{
𝑤𝑖+1 = 𝑤𝑖 − 𝛼 ∗

∂L(w, b)

∂w

𝑏𝑖+1 = 𝑏𝑖 − 𝛼 ∗
∂L(w, b)

∂b
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The partial derivatives with respect to each weight will represent the quantity 
𝜕𝐿

𝜕𝑧
 for the 

subsequent step of the backward propagation. The iterative procedure goes on as explained, 
adjusting the weights to "descent" along the cost function in the direction of maximum steepness. 

 

 

 
Figure 16. Gradient Descent visualized. 

 

As already stated, the number of examples processed in one pass is not standard and it actually 
depends on the type of optimizer chosen. For completeness, notice that each time an algorithm 
goes through the whole training dataset, this is called an epoch. 

2.3.3. Validation 
It is common use to evaluate the net after each epoch to monitor the performance on a set of 

examples that the net is not trained on [10]. This practice enables the operator to see if the learning 
procedure is going smoothly. The procedure is called validation and the dataset used takes the name 
of Validation Set. As the training set, also this one is composed by two parts: examples and labels. 
Notice however that the validation set, or better, its predictions are never back-propagated. The 
sole role of the validation process is to monitor the performance throughout the learning procedure, 
not to adjust the weights and biases. 

As we will see later, on the basis of validation results, different architectures are compared, and 
the best-performing is selected. Since we are choosing a particular architecture on the basis of its 
results, validation performance cannot be taken as a reference for future field applications. 
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2.4. Loss functions 
It has already been introduced that different goals for a neural network means different Loss 

Functions [11]. This project manages a pipeline of two deep neural networks, the first one operates 
a binary classification action and the second one performs a regression. It is then no surprise that 
the two DNNs have separate loss function. 

The rDNN, already developed and available at the beginning of this project, uses the well-known 
Root Mean Square Error (RMSE) function. It is described by the following expression: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2
𝑛

𝑖=1

 

 

The RMSE gives valuable information regarding the fitness of predictions with respect to the true 
labels. Moreover, it has one important features: since its value depends on the square of the error, 
it is sensible to outliers. In the context of this project it was important to avoid strong outliers: a 
slightly wider point cloud is to be preferred to a narrower one that shows a strong outlier. 

The cDNN, which development is a contribution of the present project, implements instead what 
is known as Binary Cross Entropy function. It is a particular case of the more general Cross Entropy. 
The formulation is as follows: 

 

𝐽(𝜃) =
1

𝑛
∑𝑦𝑖 ∗ log(�̂�𝑖) + (1 −

𝑛

𝑖=1

𝑦𝑖) ∗ log (1 − �̂�𝑖) 

 

Looking at the possible values of 𝑦𝑖 and �̂�𝑖 it is clear the behaviour of the function: 

• 𝑦𝑖: true labels of the n examples. There are only two possible values: 0 or 1. 

• �̂�𝑖: predictions. The possible values vary from 0 to 1 continuously. 

In the summation term, there are two part, only one at a time will be "activated": the first one if 
the label is 1, the second one vice versa. The logarithmic term, ideally, should be 0: this would means 
a perfect prediction. Obviously this will not be the case; it is however reasonable to think that in 
most cases �̂�𝑖 values will be similar to the labels so the logarithmic function is used to produce a 
value near to zero if the prediction is similar to the labels. 

Notice finally that Cross Entropy computed with this formulation gives always negative values. 
This is dealt with in different ways, the most common and practical ones are two: ignore the issue 
and develop a code to maximize the cost function instead of minimize it; or simply add a minus to 
the formulation. 
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2.5. Hyperparameters 
The hyperparameters are the main governing features of the behaviour and the structure of the 

net itself. The term is used to distinguish them from the weights and biases, usually called 
parameters of the net. The predictive performance of the net are strictly related to the choice of 
the hyperparameters, so the process by which they are selected is of fundamental importance. 
Notice that even a slight change in one of their values could drastically change the results of the 
prediction process or the learning capabilities of the net. 

However, it should be reminded that, even though a single hyperparameter can influence the 
performance, acceptable results are achievable only by analysing the overall behaviour of the 
particular combination of hyperparameters. This concept means that, in the context of field 
applications, one-dimensional analyses should be only the starting point for the optimization of the 
net. It is far more important to test different combinations of hyperparameters than make one of 
them vary, keeping the other constant.  

When referring to these features it can be distinguished between "structural" and "optimizer-
related" hyperparameters. Type of architecture (e.g.: fully connected, convolutional o, recursive), 
number of internal layers, number of neurons per layer are examples of structural hyperparameters. 
They influence the very structure of the net, and in turn the shape of the cost function. The second 
category is instead related to the behaviour of the optimizer of choice. It includes learning rate, 
epochs, regularizer, batch size, optimizers, and initialization. Notice that any particular characteristic 
of the net the designers wish to let vary and analyse can be considered a hyperparameter. 

With reference to Figure 16, notice how the cost function is a two-dimensional function is a three-
dimensional space. This is an extreme simplification. Should be clear by now that the cost function 
depends on all the weights and biases present in the net: 

 

𝐶𝑜𝑠𝑡 = 𝐽(𝑤, 𝑏) 

 

To have a two-dimensional cost function it would mean that only two parameters are present, 
and the resultant net will be an extremely simple one since the weights stand also for the number 
of connections. 

Not only the function is not that simple, there are also more than one cost function to be analysed 
since it depends on the hyperparameters. The resulting problem of minimization is therefore 
extremely vast. 
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2.5.1. Number of layers and neurons 
As already stated, these two parameters are the driving factors for the structural shape of the 

net. Theoretically speaking a single layer neural network can approximate any continuous function. 
This statement holds true because of the Universality Theorem [12] which explanation is beyond the 
scope of this project. More recent studies however proved that an increasing number of layer 
(increasing depth of the net) should guarantee a better learning potential. This is true especially 
when dealing with big data. 

 

 
Figure 17. Shallow and deep neural networks performance curve. 

 

2.5.2. Learning rate 
Learning rate is probably the hyperparameter by definition. It is the one parameter around which 

gravitate most of the concept of neural networks as they are here presented. As above mentioned, 
it represents the amplitude of the descending step along the cost function following the gradient. 
In general, a higher learning rate produces a faster convergence due to the increased step size. 
However, a big step is not always desirable, it can in fact cause stability issues and sensitivity to 
outliers; it can even cause diverging behaviour: it is however rare, since a diverging learning curve 
is very evident and the possible causes are only a few with a too high learning rate being the most 
probable. A smaller learning rate is of course more stable and less sensitive to outliers but, due to 
the decreased size of the step it needs more iterations to converge to the minimum of the cost 
functions. In addition, a too small learning rate could get the algorithm stuck in a local minimum, 
with the gradient not being able to point in the correct direction. 
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Figure 18. Low and High Learning Rate. 

 

 
Figure 19. Local minimum issue. 

 

An interesting point of view is achieved by looking also at the Learning Curves of a specific 
algorithm. This is actually the main instrument by which developers monitor the behaviour of the 
net. They give valuable information regarding not only the performance but also the integrity of the 
learning algorithm. 

 

 
Figure 20. Learning curves for various learning rate amplitudes. 
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2.5.3. Batch size 
With the term Batch Size we refer to the number of examples processed in a single pass, both in 

forward and backward propagation. This concept, crucial during training, is also valid during strictly 
predictive phases, however it does not influence the results of the prediction in this case. 

Referring to Section 2.3.2, the cost function is actually calculated on a number of examples that 
is the batch size. The result, and the ensuing changes to the weights, are done on the basis of those 
example only. For clarity, let us resume the logical steps: 

1. Forward Propagation with examples' features 
2. Computation of the Cost Function using the true labels 
3. Back propagation and weights changes 

On the basis of the actual numerosity of the batch, we distinguish: 

• Full Batch Gradient Descent: it uses the whole training set for every single pass. This means 
that each iteration corresponds to an epoch of the learning process. This approach is the 
only one guaranteed to find the minimum point (assuming no local minima are present) 
because every step of the descending process take into accounts all the examples, so the 
gradient always points in the direction of maximum steepness. However, one strong 
limitation is the time needed to process all the examples in one pass. This issue is magnified 
when the training set is very vast. The resulting learning curve is usually very smooth. 

 

 
Figure 21. Full batch gradient descent learning curve. 

 

• Mini Batch Gradient Descent: this approach is based on the concept for which a good enough 
update of the weights can be achieved using only a limited amount of training examples. It 
is clear that, since the cost function is computed on a portion of the training set, the gradient 
in this case does not point in the direction of maximum steepness. It can happen, and it does 
happen, that the cost function increase after a pass, but the general trend is of course 
decreasing. In this case one iteration does not coincide with one epoch. This approach is 
usually more rapid, even though it cannot guarantee the optimal solution to be find. 
However, due to the possible wrong steps that could happen, it is best practice to reduce 
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the learning rate as the process advances, so as to avoid too large step in the incorrect 
direction. This is referred to as Learning Rate Decay and it can represents another 
hyperparameter. As the batch size tends to the whole training set size, the curve becomes 
smoother and smoother as the process tends to the full batch gradient descent. 

 

 
Figure 22. Mini batch gradient descent learning curve. 

 

• Stochastic gradient descent: without loss of precision it can be considered as a mini batch 
gradient descent with only 1 example for each batch. The updates are very frequent, 
although very imprecise. This leads to an extremely erratic exploration of the cost function 
that usually translates in higher computational time and worse results in term of learning 
performance. 

 

 
Figure 23. Full batch, mini batch and stochastic gradient descent. 
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2.5.4. Epochs 
Number of epochs defines how many times the learning algorithm goes through the whole 

training set. In general it should be high enough to give the net the opportunity to learn properly, 
so to avoid underfitting, but no so high to cause overfitting. These are two possible issues that can 
happen during the learning phase. It is important to notice that the number of epochs is not the only 
parameter that intervene in this behaviour. Net complexity, so depth and number of neurons, also 
plays an important role: the higher the learning potential of the net, more likely is the overfitting to 
occur. 

The analysis of the learning curve is again of fundamental importance to spot and fix fitting 
problems. The comparison between training loss and validation loss, as we will see, gives valuable 
information. 

 

 
Figure 24. Under fitting and overfitting for classification tasks. 

 
Figure 25. Under fitting and overfitting for regression tasks. 

 

Let us now analyse the two situations: 

• Overfitting: in general a net is said to be overfitting when it performs incredibly well on the 
training set, even perfect fit is achievable, but fail to generalize to never seen before 
examples. Referring to Figure 24 and 25, a classification net for example could come up with 
extremely complex boundaries to include all the training example, but those borders does 
not apply decently to the whole problem. Similarly, a one dimensional overfitting function 
could increase the degree of its polynomial shape to pass through each training point, 
however this does not mean that the trend is well approximated. Using validation learning 
curve we are able to spot this situation: the training curve always decreases as the validation 
curve initially decreases (algorithm learning) and then increases (net overfitting). 
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Figure 26. Overfitting learning curve. 

 

• Underfitting: underfitting can be described as the opposite problem of overfitting. The net 
has not got sufficient time to learn. As a consequence, the error (so the loss function) is high 
in both training and validation. Referring to Figure 24 and 25 once again, it is evident the 
issue related with underfitting. This particular situation can also be caused by a non-
sufficiently complex architecture: should be clear by now that depth and neurons dictates 
the learning potential, if they are not enough for the application underfitting can occur. 
Underfitting is more difficult to spot from the learning curve since it leads to almost identical 
behaviour of training and validation. However, if the performance are not sufficient we can 
talk of underfitting issues. 

 

 
Figure 27. Possible undefitting curve.. 
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2.6. Adam optimizer 
The pre-existing project, starting ground for the present project, analysed different optimizers to 

define the one of choice. However, the results in that case showed that it was possible to achieve 
more or less the same performances in terms of prediction accuracy. Notice that AdaGrad was 
chosen because it would find acceptable configurations more often than the others. 

In the context of this study another approach has been adopted. Since the author believes that 
sufficient literature is present to compare different optimizers, it has been chosen Adam on the 
basis of the publication relative to this particular algorithm [13]. 

Adam was presented by Diederik Kingma from OpenAI and Jimmy Ba from the University of 
Toronto in their 2015 ICLR paper. The name "Adam" it is not an acronym and it is derived from 
"Adaptive Moment Estimation". 

Adam differs from classical Mini Batch Gradient Descent since it does not maintain a single 
learning rate for each weights' update. Quoting directly from the paper: 

<<The method computes individual adaptive learning rates for different parameters from 
estimates of first and second moments of the gradients>>. 

The authors proceed to explain how Adam combines the advantages of two other very commonly 
used optimizers, namely Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square 
Propagation (RMSProp): 

• Adagrad: it maintains a per-parameter learning rate that improves performance on 
problems with sparse gradients (e.g. natural language and computer vision problems) 

• RMSProp:  it maintains per-parameter learning rates that are adapted based on the average 
of recent magnitudes of the gradients for the weight (e.g. how quickly it is changing). This 
means the algorithm does well on online and non-stationary problems (e.g. noisy) 

In fact, Adam makes use of the average of the second moments of the gradients, additionally o 
the first one. With these two averages Adam updates the parameter-specific learning rates. The just 
mentioned average is a moving average. 

Besides from the mathematical standpoint it is of great interest to look at the compared results 
given in the abovementioned study. Referring to Figure 28 and 29, it is clear that Adam, and quoting: 

<< […] compares favourably to other stochastic optimization methods>> 

Adam was applied to the logistic regression algorithm on the MNIST digit recognition and IMDB 
sentiment analysis datasets, a Multilayer Perceptron algorithm on the MNIST dataset and 
Convolutional Neural Networks on the CIFAR-10 image recognition dataset. 

http://dpkingma.com/
https://jimmylba.github.io/
http://www.iclr.cc/doku.php?id=iclr2015:main
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-cnn-from-scratch-for-cifar-10-photo-classification/
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Figure 28. Adam and other algorithms on MNIST database. 

 

 
Figure 29. Adam and other algorithms on IMDB database. 

 

For the abovementioned reasons Adam is the optimizer of choice for both the classification and 
regression deep neural networks of the pipeline. 
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2.7. Initialization 
When the net is activated the first time, during the first forward propagation, the weights of all 

connections are of course not adjusted yet. A starting point is therefore necessary to compute 
predictions for the first time and build the learning process on them. Notice that the optimization 
process is dependent on this phase. As it is already been explained, the loss function depends on 
the weights so choosing a combination of them means to choose the starting point for the 
descending process of the learning phase. A good initialization can therefore greatly contribute to a 
fast learning process. 

Different approaches have been tested and some general considerations are possible. In 
particular, we should always avoid initializing to zero (or any other constant values) all the weights. 
This, even though it seems plain and simple, can cause problems. Since the update of the weights is 
based on the computation of the gradient that in turns is related to the weights-based loss function; 
if all the weights are equal so will be the updates and the weights connected to the same neuron 
remain the same. This is known as symmetry problem and should always be avoided. 

Modern approaches starts instead from a random initialization. This means that the weights are 
set to a random value at the start of the process. The procedure breaks effectively the symmetry. 
However, some issues are still present. In particular, if some weight is set to a very small or a very 
large value. To avoid this problem, the values are often normalized/standardized between -1 and 1, 
for example. This kind of initialization can draw values from mainly two types of distribution: 
uniform or normal.  

Some of the best initialization are the so called "Xavier" and "He" initialization, respectively for 
tanh and ReLU activation functions. They ae defined as "size informed" initialization. They are in fact 
multiplied by a factor that takes into account the size of the previous layer of neurons: 

 

√
1

𝑠𝑖𝑧𝑒𝑙−1
 

 

This formulation can assume different forms and values, but the general concept remains the 
same. 

 

 
Figure 30. Random initialization compared with He initialization. Classification task. 
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Two common issues are the so called vanishing and exploding gradient. Even though they are 
not solely related to weights initialization, this is proved to be one of the main causes. 

With Vanishing Gradient is described the phenomenon by which the gradient calculated during 
back propagation, and the relative updates, is too small; this cause the weights to be insufficiently 
adjusted and in turns a not acceptable learning process. 

Exploding Gradient is the exact opposite: the gradient becomes bigger and bigger, causing the 
algorithm to diverge completely. 

2.8. Hyperparameters' tuning 
Should be clear by now that the hyperparameters, or better their combination, are the main 

influencing factors in terms of net performance. Should also be reminded that acting on a single 
parameter at a time is extremely counterproductive since the principle of superposition of effects 
does not apply to these kind of problems. Moreover, for different training sets or different training 
set's sizes, the combination that grants the best performance is not assured to remain the same. 
These considerations lead to the need to implement an automatic searching technique that is able 
to assess which combination is more likely to perform the best. Remember that since we are training 
the algorithm on a set of examples that at best is very similar to future applications but never 
identical, we cannot have the certainty that the selected combination will be the best possible one. 

It turns out that the choice of the correct combination of parameters is also far more time 
consuming than the actual training of the net once the combination has been chosen. This is 
however obvious: the hyperparameters' tuning procedure is essentially a technique that involves 
several training and testing steps. 

Several searching technique have been proposed, from the basic concept of just manually try 
different combinations and analyse the results to more complex algorithm that are able to explore 
the so called "hyperparameters' space" more systematically. The most common searching 
techniques are for sure grid search and random search. They are of straightforward application and 
fairly simple to implement. Another promising technique is Bayesian optimization. This procedure 
scan the hyperparameters' space applying a logic that should ensure better results. 

The space in which these algorithm search needs to be defined beforehand. It is usually very 
wide, especially if there are no insights regarding the problem to be tackled. All the parameters that 
we impose to vary can be considered as the degree of freedom of this optimization problem. 
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2.8.1. Grid search 
Given a finite number of possible combinations, this is the only searching method that is assured 

to find the absolute best among them. The functioning simple: the algorithm simply tries out every 
single possible combination in the grid, saves their results and chooses the best performing 
combination. 

 

 
Figure 31. Grid search for a two dimensional problem. 

 

This technique shows two main drawbacks. The first one is related to computational time: as it 
turns out, trying every single combination is extremely time consuming, especially for very large 
hyperparameters' spaces. It is not uncommon to deal with spaces with six or seven dimensions, and 
very complex tasks require even more dimensions. The second, and probably more important 
drawback, is the impossibility to use continuous distribution to create the space to be analysed: this 
method requires the implementation of a grid. It can be forced to vary its steps in different ways 
(e.g. logarithmically), but it should remain a grid. This limits the possibility to effectively explore the 
space, unless a very fine grid is implemented prolonging the search even more. 

2.8.2. Random search 
By far the most used technique nowadays. It can be implemented with extreme ease and grants 

very good results. It draws casually from the space a certain number of combinations and tests them 
out. Once the results re ready, it chooses the best. In fact, given a certain amount of tries, it is likely 
to perform better than grid search or better, given a certain performance goal it is likely to find a 
combination that allows those performance faster than grid search. Even though it is 
counterintuitive, the concept becomes obvious when visualized. 
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Figure 32. Grid search and random search visualized. 

 

Referring to Figure 32, it can be noticed how in a hypothetical 2-dimensional problem that is 
composed of parameters of different importance, random search allows the algorithm to explore 
more the space. In particular, notice how for grid layout the algorithm is only seeing 3 different 
values for the important parameter, since the majority of them is superposed if projected along the 
corresponding axis. Moreover, random search allows to use continuous distributions so unlocks the 
possibility to spot areas of the space the grid was blind to. These considerations, combined to the 
fact that a random search algorithm is also easy to parallelize on multiple machines, leads 
developers to usually prefer random search rather than grid search. 

Also in the case of random search, the axes of the hyperspace in which the algorithm searches, 
namely the various hyperparameters, can be forced to vary in a particular way. This is of great 
importance to explore significantly different areas of the space: having a great number of tries 
drawn from a space whose boundaries are too close, is not so interesting. It would be better, for 
example, to have the same number of tries in different order of magnitude rather than almost 
equally spaced samples. 

 

 
Figure 33. Log normal and normal distribution. 
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2.8.3. Bayesian optimization 
Bayesian optimization is a particular kind of black-box optimization algorithm based on the Bayes 

Theorem. Without diving into the statistical and mathematical details, which are beyond the scope 
of this study, we can state that: 

<<Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior 
probability, the probabilities of observing various data given the hypothesis, and the observed data 
itself>> [14] 

This applies to machine learning, for example, when it comes to predict the areas of the 
hyperspace that is more likely to show good results in minimizing a certain objective function [15]. 
Notice that in this case the objective function is not simply the loss function, it is rather the algorithm 
of hyperparameters' tuning itself. 

Although showing very good results, the implementation is not so simple. Moreover, it is very 
difficult to parallelize. For these reasons it not the most common choice of modern application. 

Notice that it has been tested in the present study but due to complications the results were not 
coherent, so they have been discarded. 

 

 
Figure 34. Bayesian optimization process. 

 

The figure shows how the acquisition function (the one that dictates the area of the space to 
investigate) draws samples from the most valuable zones of the target function (red zones in the 
upper-right quadrant). 
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2.9. K-folds cross validation 
The importance of testing the net on data it never saw should be clear by now. There are several 

ways to assess the overall possible performance of a neural network during the hyperparameters' 
tuning phase. 

Something to keep in mind is the heuristic nature of this kind of predictive algorithm. Moreover, 
since it needs to learn from a set of examples, even though it is possible to make them sufficiently 
representative of the problem, there will always be the possibility that the training set is somehow 
biased. At minimum, it can be stated that it influences the learning process. Also, when validating 
the results on a set of examples, the validation set could also influence the performance of the net. 
The stability and coherence of the measure are therefore at risk if the dataset is not sufficiently 
numerous. When there is the risk of biased measurements of the net performance a helpful 
instrument is the so called k-fold cross-validation, which functioning will here be explained. 

In general, when creating the dataset to be used (training set, validation set and test set), the 
test set is usually selected first, in a casual manner and after properly shuffle the whole training set. 
The choice of the ratio, referred here as t/t ratio, by which the test set is selected is important in 
order not to have a too sparse test set or a too small training set. 

 

 

 

 

 

 

 

 

K-folds cross validation involves the choice of a certain number of folds by which the 
"training+validation" set is divided. Then, the training and validation process is repeated "K" number 
of time, varying the validation set each time from the subset selected. This procedure allows to have 
"K" differently composed training sets and "K" different validation sets, without ever seeing the test 
set yet. 

In particular, with reference to Figure 36, the operational steps are the following (notice that a 
4-fold cross validation is used): 

1. Training using subsets 1, 2 and 3. Validating using subset 4 – 1st metric available. 
2. Training using subsets 1, 2 and 4. Validating using subset 3 – 2nd metric available. 
3. Training using subsets 1, 3 and 4. Validating using subset 2 – 3rd metric available. 
4. Training using subsets 2, 3 and 4. Validating using subset 1 – 4th metric available. 

Once the four metrics have been computed and the average value is available, considerations on it 
are possible and, if necessary, the net is tested on the test set. 

  

Entire Dataset 

Training + Validation Test 

Figure 35. Train, validation and test sets. 
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 Test 

1 + 2 Test 

3 + 4 Test 

Test 

4 1 + 2 + 3 

3 4 

2 1 

1 2 + 3 + 4 

Figure 36. 4-folds cross validation steps. 
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Data management 

3.1. Data acquisition 
Main goal of the present project is to produce a tool that should be able to reproduce a Dynamic 

Programming (DP) algorithm prediction accuracy, with extremely lower computational time. This 
specific kind of numeric simulation represents probably one of the best performing algorithm in 
terms of prediction accuracy; it is however a purely deterministic approach, meaning that the entire 
mission should be known a-priori and the simulation time will surely be high. It is then no surprise 
that the data that compose the datasets are direct results of said DP algorithm; in this way the nets 
are trained to reproduce exactly those results. 

In this study different architectures will be dealt with, namely P2, P3 and P4 HEV architecture. 
Three different datasets are therefore at disposal (plus a P2 dataset that was used only few times 
to run preliminary simulations; this dataset in however older than the others and its data are 
considered less reliable), one for each architecture. 

 

 
Figure 37. Possible simple HEV architectures visualized. 

 

The DP's simulations are based on the World Harmonized Vehicle Cycle (WHVC). It is a chassis 
dynamometer test developed based on the same set of data used for the development of the World 
Harmonized Transient Cycle (WHTC). For completeness, the velocity profile of the WHVC is given 
below. 

 

 
Figure 38. WHVC velocity profile. 

https://dieselnet.com/standards/cycles/whtc.php
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3.1.1. Dynamic programming 
Since on its functioning is based the data acquisition, it is considered useful to describe in more 

details how Dynamic Programming operates. 

The working flow is based on a decision making process relying on a backward-forward logic. A 
control grid is implemented in order to describe all possible states of the system and the path 
connecting them; the system is composed by a finite number of control variables that define the 
possible inner point of the grid; a state variable is also monitored. 

 

 
Figure 39. Dynamic programming grid and connections. 

 

Referring to Figure 39, the goal is to reach point "K", starting from point "A" and using the shorter 
path possible. The values present on the arrows represent the length of the path connecting two 
states of the grid. The logic is to compute, starting from the final point, the shorter path connecting 
the previous nodes to the one considered, each node at a time. The shorter path is addressed as 
cost-to-go path/distance. So for example, the cost-to-go distances for nodes H, I and J are 
respectively 5, 3 and 7 (only one possible path in this layer). Going on to the previous layer, the cost-
to-go distances for nodes E, F and G are: 

E. 5 + 3 = 8. Passing through node I. 
F. 5 + 3 = 8. Passing through node I. 
G. 7 + 2 = 9. Passing through node J. 

The procedure continues back to the starting point, searching for the cost-to-go distances for all 
the nodes. Finally, a value for point A will be available and it will be the cost-to-go of the all path 
connecting points A and K. 

The same logic can be applied to control strategy optimization of HEVs. Each step will then be a 
different time instant of the mission and each node will be a powertrain state. In this application, 
Figure 40, the only state variable is the State Of Charge (SOC) of the battery, and only three states 
for it are possible: Low, Medium or High. 
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Figure 40. Dynamic programming for an HEV control strategy. 

 

Each node is actually the combination of the two control variables: Front Power Flow and Gear 
Number. Regenerative Breaking is applied during braking action. Control variables are also 
discretized to reduce the computational effort required by the optimization algorithm. In particular: 

• Front Power Flow: battery charge (-1, -0.5), pure thermal (0), power split (0.5) and pure 
electric (1) 

• Gear Number: 1st, 2nd, 3rd, 4th, 5th and 6th 

The dynamic model of the vehicle (for a P2 architecture) is described by the following system of 
equations that links the velocity and power of the vehicles component to the control variables: 

 

{
  
 

  
 𝜔𝑡𝑐𝑑 = 𝜏𝑔𝑏(𝐺𝑁) ∗ 𝜏𝑓𝑑𝑓 ∗

𝑉𝑣𝑒ℎ
𝑅𝑤

𝜔𝑖𝑐𝑒 = 𝜏𝑡𝑐𝑑,𝑖𝑐𝑒 ∗ 𝜔𝑡𝑐𝑑
𝜔𝑒𝑚𝑓 = 𝜏𝑡𝑐𝑑,𝑒𝑚𝑓 ∗ 𝜔𝑡𝑐𝑑

𝑃𝑒𝑚𝑓,𝑚𝑒𝑐ℎ = 𝐹𝑃𝐹 ∗ 𝑃𝑡𝑐𝑑,𝑚𝑒𝑐ℎ
𝑃𝑖𝑐𝑒,𝑚𝑒𝑐ℎ = (1 − 𝐹𝑃𝐹) ∗ 𝑃𝑡𝑐𝑑,𝑚𝑒𝑐ℎ

 

 

Similar equations ae available also for P3 and P4 architectures. 

As aforementioned, the aim of the optimization algorithm is to minimize a certain function. In 
this case the cost function has the following structure: 

 

𝐽 = 𝛼(
𝐹𝐶

𝐹𝐶𝑟𝑒𝑓
) + (1 − 𝛼)(

𝑁𝑂𝑥
𝑁𝑂𝑥,𝑟𝑒𝑓

) 

 

Where FC is the cumulative fuel consumption over the mission and NOx are the cumulative NOx 
emissions over the mission. "α" is instead a weighting factor that "shifts the attention" of the 
algorithm on fuel consumption or emissions: different strategy are therefore available, from FC-
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oriented to NOx oriented. At each step the less expensive action is performed to keep function J as 
low as possible.  

Moreover, at the start of the simulation, boundary conditions are imposed, namely SOC-start 
and SOC-final. This means that usually the state of charge at the end should be higher or equal to 
the SOC at the beginning of the simulation. In this way, complete depleting strategy for J 
minimization are avoided. 

Possible results, coming from a study that used the application here described, could be the 
following. 

 

 
 

 
Figure 41. Dynamic Programming simulation possible results. 

 

The results above were obtain on an Artemis Motorway Driving Cycle (AMDC) simulation. 
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3.2. Dataset composition 
The three available datasets have the same general structure. They are composed of 1500 

examples. Here lays the major difference with the pre-existing project: in that context the dataset 
was of 5000 example, and the vast majority of them was feasible (the layouts they represented was 
able to complete the driving cycle); now the 1500 examples are for a third unfeasible. This condition 
means that the Regression Deep Neural Network will now have much less example to train on. At 
the same time, also the Classification one will train on fewer examples. We will see that the 
dimension of the training set represents a key point for the performance. 

Each example in the datasets is composed of 8 features. From the tables is evident that the 
datasets P2 and P3 presents the same feature, dataset P4 instead does not. This is because the first 
two share the implementation of a speed-coupling device that connects the electrical machine to 
the rest of the system. P4 architecture instead include the electrical machine on a separate axle, so 
we should consider the transmission ratio of that axle. 

In general, the features can be described as follows: 

• EngDispl: engine displacement, measured in litres; it is the displacement of the ICE. 

• PE ratio: it is the ratio between the Electrical Machine power and the maximum energy 
of the battery pack. 

𝑃𝐸 =
𝑃𝑒𝑚
𝐸𝑏𝑎𝑡

 

• EM1Power/EMsPower: power of the electrical motor, measured in kiloWatts. 

• EM1SpRatio: transmission ratio at the speed-coupling device. 

• FDpSpRatio: transmission ratio of the primary axle. 

• FDsSpRatio: transmission ratio of the secondary axle. 

• CrateDis: maximum Crate during discharge of the battery. Defined as: 

𝐶𝐷𝑖𝑠 =
1ℎ

𝑡𝐼=𝑚𝑎𝑥
 

where tI=max is the discharging time at max intensity current. 

• CrateCh: maximum Crate during charge of the battery. Defined as: 

𝐶𝐶ℎ =
1ℎ

𝑡𝐼=𝑚𝑎𝑥
 

where tI=max is the charging time at max intensity current. 

• CO2ttw: CO2 tank-to-wheel measured in grams; values as predicted by the DP algorithm. 

A sample of the three datasets follows.
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Table 1 
Extract of the P2 dataset. 

# Ex EngDispl 
[l] 

PE ratio 
[-] 

EM1Power 
[kW] 

EM1SpRatio 
[-] 

FDpSpRatio 
[-] 

CrateDis 
[-] 

CrateChar 
[-] 

CO2ttw 
[g] 

1 3,0573 7,797852 118,9307 4,147461 3,09473 11,8418 7,0020 331,5416 
2 2,9045 9,96582 74,8877 4,377930 3,23145 11,0215 7,35352 10000 
… … … … … … … … … 

1500 2,8156 28,32031 59,082 4,449219 4,65430 7,9336 10,5117 10000 

 

 

Table 2 
Extract of the P3 dataset. 

# Ex EngDispl 
[l] 

PE ratio 
[-] 

EM1Power 
[kW] 

EM1SpRatio 
[-] 

FDpSpRatio 
[-] 

CrateDis 
[-] 

CrateChar 
[-] 

CO2ttw 
[g] 

1 4,7029 5,200195 123,8721 4,893555 3,49707 6,802734 10,82227 341,2689 
2 2,7428 5,610352 122,3682 4,334961 3,782227 6,216797 8,876953 336,2393 
… … … … … … … … … 

1500 3,7719 28,55469 61,2305 3,519531 3,962891 10,95703 8,378906 10000 

 

 

Table 3 
Extract of the P4 dataset. 

# Ex EngDispl 
[l] 

PE ratio 
[-] 

EMsPower 
[kW] 

FDpSpRatio 
[-] 

FDsSpRatio 
[-] 

CrateDis 
[-] 

CrateChar 
[-] 

CO2ttw 
[g] 

1 2,6158 5,073242 106,0303 4,142578 14,79883 8,759766 9,287109 377,1168 
2 3,9209 5,063477 113,208 4,576172 10,47461 7,998047 8,033203 389,4292 
… … … … … … … … … 

1500 3,9406 29,25781 52,0508 4,689453 10,44141 6,339844 11,54297 10000 
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The CO2ttw feature represents the true label for the training process. As mentioned more than 
once, the present project implements a pipeline of a cDNN and an rDNN. Since the two nets have 
different goals, the labels should be different too. 

It can be noticed from the tables that in the CO2ttw column some 10000 values are present. 
Those values are fictitious ones: it is the way in which the DP software tells the operator that a 
certain example could not complete the cycle. 

3.3. Data manipulations for labels generations 
From the considerations just mentioned it is clear that some manipulations are necessary. In 

particular, to obtain an effective labels feature column the following operations where performed 
prior to any type of simulation: 

• A copy of the entire dataset is saved as it is. 

• The values different from 10000 are substituted with "1", meaning a feasible example. 

• The values equal to 10000 are substituted with "0", meaning an unfeasible example. 

These steps allows to create a dataset that can be used for the cDNN only: the information 
regarding the actual emissions is not present anymore. 

To train the rDNN, after the classification step of the pipeline, all the feasible example will point 
to the starting dataset in which the CO2 values are present. In this way we are able to train the rDNN 
effectively. 

3.4. Data split 
From Section 2.9 should be clear the logic behind the generations of the training, validation and 

test set. To summarize, the whole dataset is shuffled and divided into X-set (the features of the 
examples) and Y-set (the labels); then a t/t ratio is chosen and the test set is randomly selected. 
Supposing the procedure explained in Section 3.3 has already been performed, it is now possible to 
proceed with the Hyperparameters' tuning procedure as already described. Notice that the 
procedure include various k-fold cross validation. In this application K is equal to 8, so eight subsets 
are created for the validation process. 

After a hyperparameters' combination has been selected, the cDNN is tested on the test set. At 
this point the procedure goes on to the regression step. The training set for the rDNN is directly 
derived from the classification one: the examples that was feasible in the cDNN training set make 
up for the rDNN one. For the validation set the procedure is the same since they actually derive from 
the same bigger dataset. The test set for the regression step is more complex. Since the net should 
be tested considering also the performance of the classification step, the true positive examples of 
the classification test set are isolated; a test is performed on them. The net is also separately tested 
on the false positives (unfeasible examples marked as feasible by the cDNN). 
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3.5. Data normalization 
Normalize the data used is surely standard practice in Deep Leaning application. It is indeed 

proven that the net can greatly benefit from the normalization of the training set. This practice is 
especially needed when the distribution of the data that will be used is not clearly known. 

Moreover, unless we know for sure that all the features we are managing range in the same order 
of magnitude, it is mandatory to normalize the input data between some values or in the same order 
of magnitude. With reference to Table 1, 2 and 3, it can be observed that the feature corresponding 
to the power of the electric motor reaches values of a hundred and more. This is for sure a valid 
reason to normalize the data. 

Notice that the normalization technique is applied only to the X-set, namely the examples' 
features, and not to the Y-set. Moreover, since the net will be learning from a normalized dataset, 
also the validation and test sets should be normalized, otherwise the results will not be consistent. 

Different technique have been used in different application to achieve an effective normalization 
of the data. In the context of this project it is implemented the standardization technique. The 
function is the following: 

�̃� =  
𝑥 − �̅�

𝑠𝑡𝑑(𝑥)
 

Where: 

• �̃�: new entry of the dataset after normalization. 

• �̅�: mean of all the example for the specific feature considered (column of the dataset). 

• 𝑥: entry of the dataset before normalization. 

• 𝑠𝑡𝑑(𝑥): standard deviation of the specific feature considered (column of the dataset). 

This type of normalization is preferred to the one used in the pre-existing project because it is 
believed to better deal with outlier values. In particular, it was used the min-max scaling technique, 
which implements the following formula: 

�̃� =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Where: 

• �̃�: new entry of the dataset after normalization. 

• 𝑥𝑚𝑖𝑛: minimum value of the specific feature. 

• 𝑥𝑚𝑎𝑥: maximum value of the specific feature. 

This procedure, although effectively limiting the range of all the features between 0 and 1, suffers 
from the fact that a single outlier could cause the dataset not be evenly distributed. Imagine for 
example the case in which all EM-Power features are between 0kW and 50kW except for one value 
that is 100kW. The min-max scaling would restrict the vast majority of the dataset between 0 and 
0.5. This cannot happen with a standardization because every example is considered to make up for 
the scaling factors, namely the average and the standard deviation. 

Should be mentioned that however the standardization cannot accomplish the squeeze of the 
dataset between two a-priori known values, and those values will not be the same for all the 
features. However, the key point is to force the dataset to be in the same order of magnitude. 
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Figure 42. Effect of normalization on gradient descent. 

 

From Figure 42 it is evident that, in case of non-normalized features, the gradient descent algorithm 
could get into complications. This phenomenon in related to the fact that he cost function could 
assume an "uneven" shape, like the one depicted in the figure. This cause the algorithm to bounces 
back and forth along the cost function. Normalizing the data effectively reduce this possibility and 
the convergence is more fast and the overall process more stable. 
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Neural networks based model 

4.1. Working environment and libraries 
The development of the present project has been carried out using Python 3 programming 

language. The reasons of this choice are evident: Python is based on a very simple syntax offering at 
the same time numerous tools and libraries for different applications. Moreover, they are usually 
well performing but very user-friendly. 

In this context, some of the main libraries used are listed below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

• Tensorflow: created by the Google Brain 
team, it is an open source library for 
numerical computation and large-scale 
machine learning. Tensorflow offers a vast 
choice of machine learning and deep learning 
models and algorithms. It uses Python to 
provide a convenient front-end API for 
building applications with the framework, 
while executing those applications in high-
performance C++. It is used in this project as 
back-end library. 

• Keras: Keras is an open-source neural 
network library written in Python. It is capable 
of running on top of Tensorflow, Microsoft 
Cognitive Toolkit, R, Theano, or PlaidML. 
Designed to enable fast experimentation 
with deep neural networks, it focuses on 
being user-friendly, modular, and extensible. 
It was developed as part of the research effort 
of project ONEIROS (Open-ended Neuro-
Electronic Intelligent Robot Operating 
System), and its primary author and 
maintainer is François Chollet, 
a Google engineer. 

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/PlaidML
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Google
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• Scikit-learn: it is a free software machine 
learning library for the Python programming 
language. It features 
various classification, regression and clustering 
algorithms including support vector 
machines, random forests, gradient boosting 
and k-means, and is designed to interoperate 
with the Python numerical and scientific 
libraries NumPy and SciPy. 

• NumPy: it is a library for the Python 
programming language, adding support for 
large, multi-dimensional arrays and matrices, 
along with a large collection of high-
level mathematical functions to operate on 
these arrays. 

• Pandas: it is a software library written for 
the Python programming language for data 
manipulation and analysis. In particular, it 
offers data structures and operations for 
manipulating numerical tables and time series. 

• Matplotlib: it is a plotting library for 
the Python programming language and its 
numerical mathematics extension NumPy. It 
provides an object-oriented API for embedding 
plots into applications using general-
purpose GUI toolkits. 

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Software_library
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Plotter
https://en.wikipedia.org/wiki/Library_(computer_science)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/GUI_toolkit


Neural networks based model: cDNN metric. 
 

54 

 

4.2. Metrics 
Before entering into model's details, it should be explained how the performance of the nets ae 

being evaluated. Once again, keep in mind that the model is based on two different deep neural 
networks: one for classification and one for regression. It is therefore obvious that at least two 
different metrics should be used. 

In general a "metric" is a function that, given predictions and true labels, is able to summarize the 
performance of the net on a specific simulation. For clarity, are considered "metrics" only single-
value quantity, so for example a confusion matrix (often used in the context of this project) is not 
one, even though being a crucial tool to analyse classification performance. 

4.2.1. cDNN metric 
The results of a classification task are generally structured in predicted labels and true labels. In 

the context of this process, a binary classification task is present: the cDNN should predict only two 
classes, feasible (1) or unfeasible (0). All the considerations present in this paragraph are therefore 
related to binary classification; however, should be stated that the concepts here present are all 
extensible to multi-class classification. 

In a binary classification problem only four different outcomes are possible, referring to the 
above mentioned predicted and true labels. They are: 

• True Positives (TP): feasible examples correctly marked as feasible. 

• False Positives (FP): unfeasible examples incorrectly marked as feasible. 

• True Negatives (TN): unfeasible examples correctly marked as unfeasible. 

• False Negative (FN): feasible examples incorrectly marked as unfeasible. 

The prediction for all the examples present in a dataset can be summarized in a particular table 
called confusion matrix. Using this tool, a complete overview of the performance is given; however, 
is up to the operator to judge the results. This means that an algorithm cannot take decisions based 
on this tool, or better, some kind of data should be harvest from it. 

 

 
Figure 43. Example of confusion matrix. 
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Different single-values metrics are computable starting from the above mentioned table. Three 
of the most used ones are surely Accuracy (Acc), F1 score (F1) and Matthews Correlation Coefficient 
(MCC). 

They are computed using the following relations: 

• Accuracy: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑁) + (𝑇𝑁 + 𝐹𝑃)
=
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

 
This quantity represents the fraction of correct predictions that net was able to produce. 
This is surely the most intuitive way of describing the performance of the net during 
classification phase. It ranges from 0 to 1. 
 

• F1 score: 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑖𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
= 2 ∗

𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
 

Where: 
➢ Precision, or Positive Predicted Value (PPV): 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
➢ Sensitivity, or True Positive Rate (TPR): 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
F1 score is a compound measure that takes into account both precision (fraction of the 
predicted positives that are indeed positives) and sensitivity (fraction of true positives 
correctly predicted as such). It values the most the positive class in its computation. Even 
though it is not as intuitive as Accuracy, it is a more stable evaluation of predictive 
performance: in case of strongly uneven dataset, with only few positive examples, is able 
to correctly judge is the net is performing well. It ranges from 0 to 1. 
 

• Matthews Correlation Coefficient: 
 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 
MCC takes into account all four classes of binary classification. It is indeed believed to be 
the best “one-number” performance indicator [17], since it is considered the most 
informative one. Notice that, differently from the F1 score it correctly judges the 
predictive performance regardless of the choice for the positive class. In fact, in the 
previous example, if the class are inverted, the F1 score could now be misleading. The 
MCC instead will continue to give consistent measurements. 
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For the abovementioned reasons the MCC is chosen to be the driving factor in the 
hyperparameters' selection process and during performance assessment for the classification phase. 
It ranges from -1 to 1. 

4.2.2. rDNN metric 
The regression task needs a metric that is able to measure how much the model's predictions 

deviate from the true values of the dataset. The chosen tool to accomplish this result is R squared, 
also known as R2 or Coefficient of Determination. 

It can be computed using the following formula: 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

 

Where: 

• 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − ȳ)
2

𝑖  

• 𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖  

• ȳ: mean value of the true labels 

• 𝑦𝑖: true value 

• 𝑓𝑖: predicted value 

 

It is of common use in statistics and in general for linear regression performance assessment. It 
should be noted that its possible values range from -inf to 1. 

The R squared coefficient is a way of comparing the "simple average" approximation to the model 
predictions. In particular: 

• R2=1: perfect fit by the model on the true labels. 

• R2=0: the model is performing like the "average approximation" would perform. 

• R2<-inf: the model prediction are in contrast with the true labels trend. 

 
Figure 44. Coefficient of determination visualized. 
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Unfeasible 

Feasible 

4.3. Model general logic 
As stated various time, the model is actually a pipeline of two deep neural networks. Let us now 

recap the overall logic behind it. 

The model is in two stage: 

1. Assess feasibility: a classification-DNN (cDNN) is used to predict whether a specific layout is 

capable of completing the cycle or not (feasible or unfeasible) 

2. Predict CO2 emissions: a regression-DNN (rDNN) is used to predict the CO2 emitted by the 

feasible layout. 

The formulation of the model can therefore be written as: 

 

{
𝐹𝑒𝑎𝑠 = 𝑓(𝐷𝑒𝑠𝑃𝑎𝑟𝑠, 𝜃𝑐)

𝐶𝑂2 = 𝑓(𝐷𝑒𝑠𝑃𝑎𝑟𝑠(𝐹𝑒𝑎𝑠), 𝜃𝑟)
 

 

Where Feas are the feasible layouts as spotted by the cDNN; DesPars are the design parameters, 
namely the entry of the dataset before normalization; DesPars(Feas) are the design parameters of 
the layout classified as feasible; finally 𝜃𝑐  and 𝜃𝑟 are the features of the cDNN and the rDNN like 
hyperparameters, weights and activation functions. The two functions that appear in the 
formulation will be learnt by the NNs and the weights will be automatically adjusted. 

Before each of the two abovementioned stage, a pre-processing of the data is needed to 
eliminate any dimension differences. 

Moreover, an automatic hyperparameter selection, based on random search, is performed to 
avoid the need to manually search for optimal features configuration. 

The whole logic behind the model can therefore be summarized as follows. 
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4.4. Multi-stage Deep Neural Network model 
As already stated, the aim of this project is to design a tool able to extract patterns that lead to 

a CO2 prediction. The DP algorithm intrinsically works in two ways: it is capable to assess which 
layout will complete the cycle and for those who can, asses its CO2 emissions. Even though its 
performances are excellent, they come at a high time cost. To match these capabilities and 
overcome time related problems, two DNNs are implemented in the model. 

A schematic of the DNNs pipeline is presented below. 

Both DNNs are composed of an input layer, several hidden layers, and an output layer. To avoid 
gradient vanishing problems and to enhance convergence efficiency ReLU activation function is used 
in the hidden layers [18]. Different studies have also demonstrated that a batch-normalization layer 
can speed-up the convergence especially for DNNs [19], therefore it is applied in this project in both 
nets. Finally, a dropout-layer is used in the rDNN to reduce overfitting. Adam (adaptive moment 
estimation) algorithm is implemented in both nets since it ensures a fast convergence and stable 
update of the weights and biases, together with an effective learning rate automatic control. 

The cDNN will produce a binary output indicating whether the example is feasible or not. If it is, 
it will reach the rDNN and a value of CO2 will be predicted. 

The following figure visually represents the pipeline, highlighting its core features. 

Notice how modules like “batch-norm layer” or “dropout layer” are included sequentially after 
the actual hidden layer of the net. This visualization in used because it reflects the actual 
implementation in Keras environment. In fact, Keras provides for a sequential framework that 
allows the operator to stack layer on top of the other using simple sequential lines of code. This 
approach, although being restrictive for more advanced developers, allows beginners to effectively 
construct very complex architecture with few lines of code. This is also one of the reasons why Keras 
environment was chosen in the first place. 
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Figure 45. cDNN and rDNN functioning logic. 
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4.5. Learning curves 
After the definition of the needed datasets, the model architecture and some basic parameters 

(e.g.: first learning rate, regularizer coefficient, number of layers and neurons), first trials are 
possible in order to implement correctly what has been addressed to as Learning Curves. 

Those are functions describes the learning process. They are obtained by extracting the value of 
the Loss Functions (remember there are two separate loss functions to analyse) after each epoch of 
the Training Process both on the Training Set and on the Validation Set. With this procedure we are 
able to monitor if the learning process is consistent or if it is showing strange behaviour. An example 
of the learning curves obtained from actual simulations are presented below. 

 

    
Figure 46. Loss function (left) and MCC (right) at different epochs – classification step. 

 

 
Figure 47. Loss function and R squared at different epochs - regression. 
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It has already been mentioned how, from the interpretation of these curves, it is possible to spot 
incorrect learning process. In this particular example, referring to Figure 46 and looking at the loss 
function, it is possible to spot a slight overfitting. The zoomed section of the graph shows indeed 
that the validation and training curves are actually diverging slightly. This phenomenon is more 
evident looking at the MCC behaviour, in particular for the best split curve (blue). 

Other possible misbehaviour could be the plateauing of the validation curve at too high values, 
meaning an underfitting or at least an incorrect value for α, namely the learning rate. 

Those curves helped greatly in preventing selection of evidently wrong epoch number. This we 
know can cause different problems, including the two abovementioned. 

4.6. Optimization methods 
The theory offers various tools to intervene on the behaviour of the nets, and in turns on their 

performance. Some of them were studied in the context of this project and implemented if 
considered a valid option to enhance the overall results. The vast majority of them has been 
implemented in order not to incur in overfitting, even if it does not show clearly. 

4.6.1. Dropout layer 
Dropouts are a very interesting approach to the overfitting problem. The core functioning is 

surprisingly simple: during each pass of the earning process (meaning each forward-backward 
cycle), a fraction of the neurons of each hidden layer are shut down. This means that they do not 
take part neither in the prediction or the weights update process. The selection of the neurons that 
will be shut down is completely random. The probability of a single neuron shutting down is passed 
to the software that automatically carries on the random selection. Should be highlighted that 
during the prediction phase, when the net is actually used or during validation/testing, all the nodes 
are at net’s disposal. This could generate some inconsistencies between training and validation 
performance (e.g.: validation performance higher than training). However, this phenomenon shows 
up usually during the first few epochs of the training and then disappears. 

It has been proved [20] that this way of proceeding effectively helps the net to avoid overfitting. 
This could be explained by the fact that, since the net can no longer rely on each single neuron (all 
of them could potentially be deactivated), it is forced to learn the general pattern of the trend rather 
than creating precise internal path that lead to a perfect training fit. 
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Figure 48. Dropout strategy visualized. 

 

Referring to Figure 45, notice that Dropout Layers are only present in the rDNN. Even though it is 
considered an effective method to overcome overfitting, another method was already implemented 
in the Classification Deep Neural Network. Some preliminary trials verified that it was enough to 
avoid overfitting. Moreover, it is added sequentially using Keras environment. 

4.6.2. Early stopping 
As the name suggests, early stopping stops the training process in advance with respect to when 

it was design to. This method is usually adopted to avoid overfitting when it is happening; so, it does 
not prevent it, rather it stops it. Even though being simple and usually effective, it is not used in the 
present project. The reasons for this choice will be clearer later, however in general the authors 
where interested in analysing the whole training process and, if the procedure was stopped, this 
would not be possible. 

 

 
Figure 49. Early stopping on loss function. 
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Referring to Figure 49 the benefits of such a technique are evident. It should be stated that the 
loss function is not the only quantity that can be monitored in order to apply early stopping. One of 
the selected metrics could be monitored, namely R2, the MCC or Accuracy. However, it should be 
kept in mind that the two approaches not always coincide, this is true especially for classification 
tasks. In fact, a lower loss function (Cross Entropy) does not always imply higher Accuracy. This is 
because classification tasks are based on a Decision Thresholds. Once again, this theme will be 
deepened later. 

 

 
Figure 50. Early stopping montoring Accuracy. 

 

Moreover, referring to Figure 46 and 47, notice how the MCC is more noisy than R2. Early 
stopping is actually very sensible to noisy signal, especially if patience coefficient is not used. 
Patience is a parameter that controls how many epochs the algorithm waits before stopping the 
training procedure in hopes of future improvements. This is another reason for which early stopping 
is not here implemented. 

 

 

 
Figure 51. Early stopping with patience. 
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4.6.3. Regularizer 
Regularization is another common technique used to tackle the overfitting issue. The logic is 

simple: since the weights’ update depends directly on the Cost Function, we can add a penalty term 
to the Cost Function that takes into account the size of each term. So, being the goal of the algorithm 
to minimize the Cost Function, a side effect of the whole process will also be to keep the weights’ 
size. In practice: 

𝐽𝑡𝑜𝑡 = 𝐽𝑙𝑜𝑠𝑠 + 𝐽𝑟𝑒𝑔 

We have already described how low values for weights help to have better prediction and in 
particular more stable model. This effect can be thought using the concept for which the net 
becomes more sparing in assigning weights values and, instead of relying on particular nodes 
excessively increasing their size, relies on the whole set of neurons. 

The most common used regularizer terms are for sure L2 (or Ridge) regularizer and L1 (or Lasso) 
regularizer. The difference is in the penalty term used. 

L2 regularizer term is the following: 

𝐽𝑟𝑒𝑔 =
1

2
∗ 𝜆 ∗∑|𝑤2|

𝑖

 

The term used in the Ridge regularizer as we can see depends on the sum of the squared weights. 
So, thinking at back propagation, the derivative term with respect to al the weights will have a direct 
dependence on the size of the weights that will tend to decrease it. 

L1 regularizer term is instead: 

𝐽𝑟𝑒𝑔 =
1

2
∗ 𝜆 ∗∑|𝑤|

𝑖

 

It is evident that the only difference is the lack of a square in the summation term. This will lead 
to a constant derivative term. If the weights are reduced more and more toward zero, with Lasso 
regularizer we can achieve the “zeroing” of the weight. This is good for model compression since it 
reduces the computational effort of the algorithm (you do not need to calculate path with zero 
weights). However, this can also lead to a loss of predictive power for the same reason. L1 is usually 
preferred for very sparse signals. 

The coefficient λ indicates the “aggressiveness” of the penalty applied to the Cost Function and 
in turns to weights’ updates. It is straightforward to understand why: the larger λ, the greater the 
penalty and the reduction of the weights. 

In this application is preferred the L2 regularization after few preliminary trials. It will be applied 
to every hidden layer. 
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4.7. Batch normalization 
Batch normalization is an incredibly powerful tool to implement in any neural network 

application, and especially in Deep Neural Network applications. 

As explained in [19], during the training of a neural network the distribution of the weights can 
change drastically, this phenomenon is defined by authors as Internal Covariate Shifts and is 
considered a cause of possible slowdowns during the learning process. 

The functioning of this technique is fairly straightforward: after the computation of the outputs 
of each neuron for a specific layer, the mean and standard deviation of all the features across the 
batch are computed; they are then used to normalize the all the outputs. Moreover, some scaling 
factors are introduced in order to be able to intervene on the resulting distribution. The general 
procedure can be summarized with the following expressions: 

 

𝜇𝐵 =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

 

 

𝜎𝐵
2 =

1

𝑚
∑(𝑥𝑖 − 𝜇𝐵)

2

𝑚

𝑖=1

 

 

�̅�𝑖 =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

 

 

𝑦𝑖 = 𝛾 ∗ �̅�𝑖 + 𝛽 

 

Where: 

• 𝑚: number of examples in the minibatch. 

• 𝑥𝑖: output of the neuron. 

• 𝜇𝐵: mean value of the batch’s single feature outputs. 

• 𝜎𝐵
2: variance of the minibatch. 

• �̅�𝑖: output after normalization. 

• 𝑦𝑖: final output after shift and scaling. 

• 𝛾, 𝛽: learnable parameters. 

 

This technique has been proven to generates faster convergences and in general higher 
performance. 

it is however affected by some criticality: 

• Variable batch size: If batch size is of 1, then variance would be 0 which does not allow 
batch norm to work. Furthermore, if we have small mini-batch size then it becomes too 
noisy and training might affect. There would also be a problem in distributed training. As, 
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if you are computing in different machines then you must take same batch size because 
otherwise γ and β will be different for different systems. 

• Recurrent Neural Networks (RNNs): In an RNN, the recurrent activations of each time-step 
will have a different story to tell (i.e. statistics). This means that we must fit a separate 
batch norm layer for each time-step. This makes the model more complicated and space 
consuming because it forces us to store the statistics for each time-step during training. 

 

Batch normalization is actually not the only norm technique that has been developed. Some of 
the others are Weights Normalization, Layer Normalization, Instance Normalization and Group 
Normalization. 

 

 
Figure 52. Visual comparison of different normalization techniques. N is the batch dimension; C is the channel/feature 

dimension. 

 

These techniques differ from each other on the basis of the “dimension” across which the 
normalization is performed:  

• Batch-norm: it normalizes single features across the batch. 

• Layer-norm: it normalizes single examples across all features. 

• Instance-norm: it normalizes single instances. 

• Group-norm: in-between technique. 

 

Moreover, a switchable normalization technique has been proposed which is able to switch from a 
method to another depending on which technique performs the best. 
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4.7.1. Keras batch-norm issue in cDNN 
Referring to Figure 45, it is evident that a batch-norm layer is implemented after each hidden 

layer. This produced huge benefits to the predictive performance of the net from the very early 
stages of the project. However, some criticalities have emerged too. 

In particular, a very strange behaviour of the cDNN was spotted from the learning curves. This is 
a practical proof of the extreme importance of such an analysis. The trend abovementioned was 
evident only in the validation learning curves; the learning algorithm was therefore not believed to 
be the cause. 

 

 
Figure 53. Cross-entropy (upper part is also zoomed-in) to varying of the epochs. 

 
Figure 54. Accuracy to varying of the epochs. 
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Figure 53 and especially Figure 54 show the abovementioned behaviour. As it is evident, there is 
a critical decrease of the Accuracy starting from about epoch 20 to epoch 50; then the Accuracy 
goes up again to stabilize around epoch 120. Notice how the performance at the final epoch are 
however acceptable and seem to not be influenced by this behaviour. Anyway, it was considered 
important to understand the causes of this trend. 

The Loss Function curve have not showed any particularly strange behaviour, or better, the 
author was not able to spot one; this is due to both the scale used and the formulation of the Loss 
Function for the classification task, namely the Cross-Entropy. Notice that, even though the 
Matthews Correlation Coefficient was considered the main metric in evaluating the performance, 
Accuracy is here selected to present the results because of its straightforward meaning and 
interpretation. 

For clarity, the author proposes again the formulation for the monitored quantity: 

 

• Cross-Entropy:  𝐽(𝜃) =
1

𝑛
∑ 𝑦𝑖 ∗ log(�̂�𝑖) + (1 −
𝑛
𝑖=1 𝑦𝑖) ∗ log (1 − �̂�𝑖)  

 

• Accuracy:   𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
 

 

Should be clear by now that Cross-Entropy is a “value-related” quantity; by this expression, the 
author means that the value it assumes depends on the difference of the true labels and the 
predictions. Now the predictions are a continuous distribution from 0 to 1; the Cross-Entropy is 
sensible to all the possible values, regardless from the predicted class. At the same time, Accuracy 
is instead a “class-related” quantity; this means that it is only sensible to change in class, driven by 
a decision threshold that usually, and also in the present application, is set to 0.5. 

Let us analyse a practical example: suppose monitoring a prediction for a specific example which 
true label is feasible (1). The prediction to varying of the epochs goes at first from 0.3 to 0.49: being 
all the predicted values under 0.5, the predicted class will be 0, so the Accuracy will also be 0 since 
no correct prediction was made however, the Cross Entropy is decreasing; the learning goes on and 
the prediction goes from 0.49 to 0.51: now that the threshold is crossed the Accuracy jumps to 1 but 
the Cross-Entropy does not change much since the values are only 0.02 apart; in the last segment of 
the training the prediction finally converges to 0.96 from 0.51: the Accuracy stays the same but the 
Cross-Entropy is drastically decreased. The example just presented explains the possible 
discrepancies between the two metrics here used. The same concept applies to MCC and it indeed 
showed the strange trend. 

To correctly analyse the problem, it has been implemented a module that is able to monitor the 
progression of a prediction throughout the learning process. The example is chosen randomly, and 
the procedure was iterated several times observing the same behaviour for numerous examples.  
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Figure 55. Randomly selected example fluctuating prediction. 

 

Figure 55 describes exactly what is happening for several examples. They pass from being 
predicted correctly to being misclassified, then they come back to correct classification. 

Several possible causes were explored and in particular: 

• Overfitting: the classical diverging behaviour of the Loss Function is however not present 
and after 100 epochs the trend seems to disappear. This is not the standard indication of 
overfitting and classical remedy seemed indeed not to work. This possibility was then 
discarded. 

• Stochastic nature of the algorithm: as we already know, Adam optimizer is a particular 
kind of mini-batch gradient descent algorithm. So, the algorithm has a stochastic core 
functioning, based on the random selection of the mini-batch to process at each pass. 
This was the most promising reason however, after researches in the literature, no similar 
cases were found. For this reason, this possibility was also discarded. 

• Batch-norm layer: after methodical tries on different sections of the program, the author 
observed that deactivating the batch-norm layer the behaviour seemed to disappear. 

 

At this point further researches proved that indeed the Batch Normalization Layer was the cause 
of the trend. In particular, the issue depends on how the normalization is actually performed in 
Keras environment. 
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4.7.2. Keras computation logic 
At its core, Keras environment include two different computational stages of phases. In particular, 

as the website of Keras itself explains, it uses “training mode” during training phases and “inference 
mode” for all the phases that somehow involves predictions without backpropagation. This means 
that during Validation, Keras works in inference mode. 

The main difference between the two modes, for what concerns the issue here addressed, lays 
in the computational procedure of the means and variances needed for the normalization. More in 
details: 

 

• Training mode: mean and variance are calculated for the single batch. So, for each batch 
the following operations are performed: 

➢ Computation of mean and variance for each neurons output across the whole 
batch (so if the layer has 3 nodes and the batch has 10 examples, it will produce 3 
means and 3 averages computed across 10 values each) 

➢ Standardization of all the output using the mean and variance just computed. 
 

• Inference mode: mean and variance are mobile averages computed as the training 
advances. So, the procedure is the same, however the mean and variance used for the 
normalization is computed as follows: 
 

𝑚𝑛𝑒𝑤 = 𝛽 ∗ 𝑚𝑜𝑙𝑑 + (1 − 𝛽) ∗ 𝑚𝑛𝑒𝑤 𝑏𝑎𝑡𝑐ℎ  
 
Where: 

o 𝑚𝑛𝑒𝑤 𝑏𝑎𝑡𝑐ℎ : is the statistics coming from the latest training batch. 
o 𝑚𝑜𝑙𝑑: is the statistics coming from the penultimate training batch. 
o 𝑚𝑛𝑒𝑤: is the statistics used for current batch in validation. 
o 𝛽: is the momentum term. 

 

Momentum term 𝛽 is the key concept regarding this issue. It dictates how fast the moving 
average adapts to changes in the considered statistics. Observing the formula, it can be noticed that 
a new value will give a contribution of “(1 − 𝛽)”. Consider that the standard value chosen by Keras 
for β is 0.99. This means that a new value will contribute for only 1% of the average. The problem 
with this approach is then that the average statistics are very slow to adapt to the changes. This in 
turns cause the Batch-Norm Layer to use completely inconsistent statistics. 

Indeed, after the first back propagation the weights will be adjusted causing the neurons’ output 
to change accordingly. The newly adjusted weights however generate outputs that are completely 
out of range with respect to the one used before: their distribution is shifting. This finally leads to 
certain neurons’ paths being extremely fallacious, hence the first branch of the trend in Figure 55. 

After some epochs, the moving averages finally catch-up with the actual outputs of the single 
neurons. Validation predictions then slowly converge to more reasonable ones. This explains the 
descending branch of Figure 55. 

To overcome the problem a β value of 0.85 has been introduced. 
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Figure 56. Accuracy trend to varying of the epochs after decreasing momentum term to 0.85. 

 

As it is evident from the graph in Figure 56, the trend that was present before is now completely 
gone. 
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4.8. Hyperparameters’ space and random search logic 
At this point, the general architecture of the two nets is available. Moreover, all the tools that 

the pipeline is going to use are implemented correctly. Last step is therefore to define the 
Hyperparameters’ space (hyperspace) and the logic behind the selection process. 

It has already been discussed how a well-selected hyperparameters can undoubtably increase 
performance. The general idea behind an automated algorithm for their selection is to make the 
pipeline able to adapt to different scenarios and datasets. Moreover, it is not granted that the same 
net will be selected every time: each time the starting dataset is shuffled in a different manner, so 
the whole process becomes extremely stochastic. 

In the following section will be described the hyperspaces of the two nets and reasons behind 
their choices. 

4.8.1. Hyperspace definition 
Should be kept in mind that even if some preliminary analyses are needed to spot some general 

trends, focusing too much on one-dimensional analyses is a mistake. The performance of a Deep 
Neural Network strongly depends on the combination of its hyperparameters rather than on their 
specific value. 

For this reason, the strategy adopted in the context of this project is different from the one 
adopted in the pre-existing one. Rather than executing a big set of one-dimensional analyses, a quite 
large hyperspace is defined, and long simulations are deployed. 

For the cDNN the hyperspace is 5-dimensional, and it is the following: 

 

Table 4 

cDNN hyperspace 

Learning rate 0.00001 – 0.1 

Hidden Layers 1 – 15 

Neurons first hidden layer 20 – 300 

L2 regulrizer 0.0001 – 0.09 

Batch size 16 – 516 

 

The hyperspace for the rDNN is kept the same as in the pre-existing project; it is 6-dimensional. 
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Table 5 

rDNN hyperspace 

Learning rate 0.005 – 0.5 

Hidden Layers 1 – 6 

Neurons first hidden layer 30 – 80 

Batch size 8 – 64 

Weights initialization 

Xavier, 
Random, 
truncated 

normal 

Dropout 0 – 0.7 

 

Notice that the activation functions are ReLUs for the hidden layers of both nets; cDNN has a 
sigmoid activation function as output and rDNN has again a ReLU. Adam is the optimizer of choice 
of both nets. 

It can be noticed from the two tables that is present an hyperparameter called “Neurons first 
hidden layer”; with this expression the author is referring to a design choice operated in the pre-
existing project. Since it was too expensive to search for a specific number of neurons for each layer, 
it was decided that each hidden layer should contain half the neurons of the previous one. The 
relation is therefore the following: 

 

𝑁𝑖 =
𝑁𝑖−1
2

 

 

Where 𝑁𝑖 is the number of neurons for the current layer; 𝑁𝑖−1 is of course the number of neurons 
of the previous one.  

For completeness, the dropout coefficient is indicating the probability to deactivate the neuron. 
Moreover a L2 regularizer of 0.01 is chosen for the rDNN. 

  



Neural networks based model: Hyperparameters’ selection logics. 
 

74 

 

4.8.2. Hyperparameters’ selection logics 
The algorithm behind the hyperparameters’ choice is based on random-search. The reasons for 

this choice have already been explained; anyway they can be summarized by stating: for a given 
amount of time, considered not enough to explore the entire hyperspace, random search is likely 
to perform better or at least as good as grid search. Bayesian optimization was proven to be 
effective, however due to difficulties in implementing it, it was discarded. 

Also in this case there are two separate algorithms, one for the cDNN and one for the rDNN. Since 
the algorithm developed in the context of the pre-existing project was thought to be valid, it is 
leaved as it is, only slightly modified to overcome an issue that was spotted in the code. The 
abovementioned issue could have led to the discard of some configurations that was actually better 
than the ones retained. 

Just to resume, a Random Search is based on the concept that, after a hyperspace is defined, a 
number of random configurations are selected and validated; the validation procedure that is 
chosen is a k-fold cross validation able to ensure reliable estimate of a configuration performance 
in a possible future application. 

The algorithm dictating the choice of the cDNN’s hyperparameters is the following: 

 

1. The whole hyperspace is divided into smaller “hypercubes” (they are just sub-spaces). To 
accomplish this result is sufficient to set a value for the number of sectors each axis should 
be split into; the algorithm automatically considers the resulting hypercubes in the following 
steps. For this application, a standard value of 3 is chosen for each axis. 

2. A set of combinations is selected from the whole hyperspace. In the first stages of the study 
this set was quite large and included 60 tries to cope with the vastity of the hyperspace. The 
goal of this preliminary search is to select promising sub-sectors in which perform a finer 
search. To accomplish this, a threshold MCC value is set as a control. Each sub-sector that 
shows at least one combination performing better or equal to that threshold is selected for 
next step. 

3. A new set of combinations is choses for each promising sub-sector. The best performing one 
is selected as the one representing the whole sub-sector. 

4. After point 3 is complete, all the combinations selected for each sub-sector are compared 
and the best performing one is selected to be tested. 

5. Final training is performed. 
6. The resulting cDNN is tested on the Test Set and the results are analysed. 

 

Notice lastly that each evaluation is the result of a k-fold cross validation with K=8. Moreover, it 
should be kept in mind that the best configuration is considered such on the basis of its average 
MCC score during cross validation; the procedure, as explained in Section 2.9, includes the random 
selection of portions of the train/validation set to be assembled in a training set and a validation 
set. This means that there will be a “best performing split”. The final training at point 5 is performed 
choosing as training set the just mentioned split. Finally, if less than three sub-spaces performed 
well enough, the three best performing are selected and further analysed. 
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Figure 57. Sub-sectors generation. (a) whole hyperspace; (b) 2 sectors per axis; (c) 4 sectors per axis. 
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Main feature of this algorithm is that is always able to produce at least one configuration, 
regardless of the specific MCC score. This choice was made to avoid the possibility of never-ending 
loops showing up in case of wrong threshold being set. 

The algorithm behind the rDNN hyperparameters’ selection logic is the following: 

 

1. A random search is started. 
2. If the configuration shows a high enough R score, then a 5-fold cross validation is performed. 
3. Now the procedure splits in two branches: 

a. If no configuration has been selected yet, the mean value of the loss function of the 
5 folds should be at maximum 10% higher than the one showed in the preliminary 
analysis. This is to ensure a stable-performing configuration. 

b. If a configuration has already been selected, sufficient condition is to show a mean 
loss function across the 5 folds that is lower than the already selected one. 

4. When all the pre-defined tries have been extinguished, the procedure saves he best 
performing configuration and trains it on the best split of the cross-validation procedure. 

5. The resulting net is tested, and the results analysed 

 

Notice that if at the end of the random search no configuration is selected, even though 
experience shows that this is a very remote case, a new random search is started. It is evident that 
the procedure can actually get stuck in a loop. However, this have never happened in any of the 
simulation performed in the context of this project. 

This procedure is the one implemented by the author of this project based on the pre-existing 
one. As already stated, the previous one showed a criticality: the control that now is step 3.a was 
too restrictive. It also provided for a comparison between mean loss function value and preliminary 
value, but it would discard the configuration if the mean were higher than the preliminary one. This 
could have led to the discard of configurations that showed better performance of the already 
selected one. For his reasons, point 3 was split in two cases as already explained. 
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The procedure can therefore be schematized as follows. 
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Results and discussion 

5.1. Preliminary analyses for the cDNN 
Before exposing the final simulations and results some preliminary analyses need to be 

accounted for. It is reminded that the main goal of the project is to produce a tool that is able to be 
used in substitution of (or in combination with) Dynamic Programming. The chosen technology for 
the achievement of this goal is Deep Learning and in particular a Pipeline of two Deep neural 
Network. Given the abovementioned considerations, the final results of the project are considered 
the ones regarding the whole pipeline, even though the vast majority of the whole study has been 
to produce the code relative to the Classification Deep Neural Network (cDNN). 

The starting point of the whole project, besides the study of the theory and the pre-existing 
project, has been to select a dataset from the three at disposal. After this section, different analyses 
will be presented. They include: 

• Preliminary sensitivity analysis and detailed sensitivity analysis. 

• False negatives and false positives trend. 

• False negatives distribution. 

• Multiclass classification net for architecture recognition. 

 

5.1.1. Database selection 
Three starting databases were available, corresponding to P2, P3 an P4 architecture. However, 

the analysis of all three datasets would have meant too much time and resources. For this reason, 
a preliminary study has been conducted across the three databases to assess which one was the 
worst performing. 

The simulations included: 

• 60 tries for the first stage random search. 

• 60 tries for each sub-sector random search. 

 

The hyperspace was the following: 

 

Table 6 

Database selection hyperspace 

Learning rate 0.00001 – 0.1 

Hidden Layers 1 – 15 

Neurons first hidden layer 20 – 300 

L2 regulrizer 0.0001 – 0.09 

Batch size 16 – 516 
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Notice that it coincides with the one presented in Section 4.8.1. 

The graph that follows resumes the three abovementioned simulations. 

 

 
Figure 58. MCC for the three architectures. Preliminary analyses. 

 

The results were quite interesting: for no evident reasons, and in many other “manual” 
simulations, P4 database was performing at lower performances in terms of classification. Many 
observations regarding the distribution of the design parameters were made, however no decisive 
conclusions have been made. 

One possible explanation was given looking at two design parameters, that are actually the ones 
that distinguish from P4 and P2/P3, at least in for the algorithm. As we know, P2 and P3 architecture 
use a speed coupling device to connect the Electrical Motor to the transmission system in a point 
that depends on the specific architecture. Instead, P4 directly connects the Electrical Motor to the 
secondary axle. So P2 and P3 architectures includes a parameter called “EM1SpRatio” (the speed-
coupling device transmission ratio), and P4 includes a parameter called “FDsSpRatio” (transmission 
ratio at the secondary axle differential). 
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Figure 59. EM1SpRatio for P2 an P3 architectures. 

 

 

 
Figure 60. FDsSpRatio for P4 architecture. 

 

The graphs above clearly show how the “EM1SpRatio” is more “characterizing”. With this 
expression the author means that, using the abovementioned feature, the cDNN could acquire a 
trend more easily since the vast majority of the feasible example have a value for that feature that 
is under the mean value of the entire distribution. This phenomenon in not present in “FdsSpRatio”. 

For the reasons here described, P4 dataset is chosen as the one to perform the simulations on. 
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5.1.2. Sensitivity analysis 
One of the key points of this project is to monitor the classification performance at varying of the 

training set size. The assumption behind this procedure is that the performance should benefit from 
an increased training set. 

Since it is not possible to increase the examples included in the database, the performance of the 
net is monitored at varying “train+validation/test split” (t/t split). Should be clear by now that 
reducing the portion of examples used for testing, more examples will be available for training. It 
should be reminded that it is crucial to use some sort of cross-validation: the k-folds procedure in 
particular avoids misleading results caused by strong dependence on a specific training dataset; 
moreover, a series of simulations will ensure consistent results. 

The simulations showed in Section 5.1.1 served another important goal. Since 60 tries per step 
would have meant too much time to carry on the needed simulations, and since too few tries would 
have led to poor hyperparameters selection, the hyperparameters’ space is reduced around the 
optimal point selected by the algorithm in the abovementioned simulation. In particular, it 
highlighted the following hyperparameters combination. 

 

Table 7 

Database selection simulation results 

Learning rate 0.0021 

Hidden Layers 2 

Neurons first hidden layer 181 

L2 regulrizer 0.03 

Batch size 31 

 

So, the hyperspace chosen to perform the other simulations is the following. 

 

Table 8 

Sensitivity analysis hyperspace 

Learning rate 0.0002 – 0.02  

Hidden Layers 1 – 4 

Neurons first hidden layer 130 – 230 

L2 regulrizer 0.003 – 0.3 

Batch size 16 - 128 

 

At first, 8 simulations are performed to further analyse the problem. They are divided as follows: 
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• 2 simulations for 60/40 t/t split: one with 100 epochs training and the other with 250 
epochs training. 

• 2 simulations for 70/30 t/t split: one with 100 epochs training and the other with 250 
epochs training. 

• 2 simulations for 80/20 t/t split: one with 100 epochs training and the other with 250 
epochs training. 

• 2 simulations for 90/10 t/t split: one with 100 epochs training and the other with 250 
epochs training. 

 

The results are summarized by the following graph. 

 

 
Figure 61. Matthews Correlation Coefficient at varying t/t split. P4 architecture. 

 

Figure 61 clearly shows an interesting trend which seems to confirm the initial theory: the 
performance increase with increasing training set. 

However, some values are considered outliers: one for all, the MCC of the 70/30 t/t split with 250 
epochs train. It shows a peak of 88.2%, clearly out of the trend. For this reason, it is considered 
necessary to further deepen the situation with more simulations. 

Notice also that in half of the simulations, 100 epochs train performed better than 250 epochs 
train and vice versa. This leads to the choice of 250 epochs for future simulations to have a complete 
picture of the training behaviour. Moreover, no clear overfitting-related issue are spotted. 

In the context of these first 8 simulations, another study is carried out: the number of False 
Negatives and False Positives is monitored to spot possible trend. The results re the following. 
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Figure 62. False negatives and false positives at varying t/t split. P4 architecture. 

 

Notice that the values on each bar are normalized: they can be thought as a percentage of 
occurrence. Unfortunately, no particular trends are evident. 

At this point, 24 simulations are performed, divided in the following manner: 

 

• 6 simulations for 60/40 t/t split: 250 epochs training. 

• 6 simulations for 70/30 t/t split: 250 epochs training. 

• 6 simulations for 80/20 t/t split: 250 epochs training. 

• 6 simulations for 90/10 t/t split: 250 epochs training. 

 

The results of these simulations are averaged, and the standard deviation is computed and 
highlighted directly on the histogram. 

 

Table 9 

Matthews Correlation Coefficient - P4 

  I II III IV V VI mean std 

90/10 85,79% 78,79% 80,36% 84,50% 88,79% 85,80% 84,01% 3,16% 

80/20 82,92% 82,22% 87,22% 85,09% 84,39% 75,01% 82,81% 3,55% 

70/30 82,08% 86,34% 81,59% 76,82% 81,63% 81,62% 81,68% 2,55% 

60/40 81,88% 82,13% 76,46% 82,21% 79,69% 76,45% 79,80% 2,33% 
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Figure 63. Matthews Correlation Coefficient at varying t/t split. P4 architecture. 

 

The results of these simulations are surely more reliable than the previous ones since they are 
the outcome of 6 independent simulations for each t/t split. 

The trend observed before is now clearer and undeniable: as the training set increase in size, the 
performance on the test set increase as well. 

Now that various simulations with the same set-up are available, it can be observed something 
interesting. In the very first simulation, the one related to the database selection, the performance 
were higher; here however, they are lower and in all 24 simulations, never reached 90% MCC. This 
is believed to be a side effect of the reduced number of tries. Even though the hyperspace is 
reduced, a finer search is always going to be beneficial in the long run. 

The number of False Negatives and False Positives is here analysed as well. In the tables, all the 
values are normalized on a 100-base, meaning that they represent percentage of occurrence once 
again. 

 

Table 10 
False Negatives - Normalized 

  I II III IV V VI mean std 
90/10 3 7 5 4 3 2 4,11 1,65 
80/20 3 3 2 3 2 4 2,89 0,66 

70/30 4 1 4 5 4 2 3,52 1,32 
60/40 4 1 6 3 3 4 3,47 1,40 



Results and discussion: Sensitivity analysis. 
 

85 

 

Table 10 
False Positives - Normalized 

  I II III IV V VI mean std 
90/10 4 3 4 3 2 5 3,56 0,77 
80/20 5 5 4 4 5 8 5,17 1,14 
70/30 4 5 4 6 4 7 5,11 0,90 
60/40 5 7 5 6 6 7 6,03 0,87 

 

 
Figure 64. False negatives (light green) and false positives (dark green) at varying t/t split. 

 

Unfortunately, also in this case no particular trend is noticeable. It is only possible to observe the 
general increase in performance that in this particular study reflects in a decrease of the overall 
incorrect classification. 
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5.1.3. False negatives distribution 
A false negative is an example that is feasible, so able to complete the cycle, but incorrectly 

marked as unfeasible by the cDNN. This misclassification exposes the algorithm to a problem of “lost 
data”. By this expression, the author means that the algorithm loses some information by assuming 
some layout will not complete the driving cycle, so in turns not performing regression on them. 

To try and understand if there is a pattern in the false negatives’ misclassification issue, they have 
been monitored over the 24 simulations abovementioned. All the false negative examples are here 
highlighted in red over the blue distribution of the complete P4 dataset. 

 

 
Figure 65. False negatives distribution for varying t/t split. 

 

Obviously, the larger the test set the more false negatives will be found. Asides from the decrease 
in performance due to the decreasing training set size, this is a pure visual effect due to the fact that 
the net is tested on more examples. Anyway, the goal is to observe if any trend occurs. 
Unfortunately, no particular trend is evident. The only possible observation is that only the higher 
part of the distribution seems to not be affected by the possibility to be misclassified as unfeasible. 
The “head” of the distribution instead, seems to be affected, and this could mean that possible good 
layouts will be excluded. 
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5.1.4. Architecture recognition 
In this section is presented a side study of the present project. It is addressed to as “side study” 

because the main goal was not to predict CO2 value or make feasibility classification. The main goal 
of this study was rather to predict the nature of the architecture a layout, given its design 
parameters. 

To achieve this objective, the net was modified to make it able to perform multiclass 
classification. The dataset is also modified: the three datasets are combined into one larger dataset 
where the column related to the CO2 emission is no more present; instead, a label feature including 
the type of architecture is included (P2, P3 or P4). 

Referring to Section 3.2, it is evident that the three datasets have not comparable features. As 
already mentioned, P4 has a different feature for the speed ratio regarding the electrical motor 
coupling. This issue is dealt with by creating both features in the dataset: if an example does not 
include that feature, it is set to zero. 

This kind of approach to the problem however introduces a very strong dependency of the label 
to a single feature. By this the author means that for the net it will be extremely simple to spot P4 
layouts, since they are the only ones characterized by a non-zero “FDsSpRatio” feature. However, 
the net will probably not be able to distinguish properly between P2 and P3 architectures since their 
datasets are very much comparable. The results clearly confirm this assumption. 

 

 
Figure 66. Multiclass classification net. Architecture recognition. 
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Perfect predictions are achieved for P4 layouts; instead a completely random classification is 
evident for the other two architectures. 

An attempt to “force” the net to recognize the architectures is performed by introducing another 
feature to the dataset indicating the position of the electrical motor. In this way we are de-facto 
telling the net which architecture is the correct one. The goal was only to verify that the net was 
able to correctly pick-up the information for future multi-architecture regression tasks. 

 

 
Figure 67. Multiclass classification net. Architecture recognition. Manifest EM position. 

 

As it was expected, the net never fails to classify all the tests examples. 

One last step of this study is to try a feasibility classification on a hybrid dataset P2/P3. Since the 
two datasets are very much comparable, it is plausible to think that the net is able to perform 
reasonably well on this task. Indeed, the net was able to perform the feasibility classification with 
excellent results. It achieved 96.2% MCC. 

In conclusion, it can be stated that, in a future multiclass feasibility classification task, where a 
dataset is created as explained in this section, the net will surely be able to perform well even 
without the auxiliary feature: it can pick-up the information regarding the P4 architecture from the 
“FDsSpRatio” feature and then perform classification normally. 

  



Results and discussion: Pipeline simulations. 
 

89 

 

5.2. Pipeline simulations 
After validating the capabilities of the cDNN it is possible to examine the behaviour of the whole 

pipeline on a complete “classification + regression” task. It is reminded that the size of the dataset 
used for this application is reduced from the one used in the pre-existing project. This in theory can 
cause a decrease in performance due to a decrease in training set size. 

It should be stated that the pre-existing code is believed to be affected by an issue related to the 
normalization method. The previous code applies normalization, namely min-max scaling, to the 
test set independently from the training set. It is indeed correct to not consider the test set when 
selecting minimum and maximum value of the distribution not to incur in data leakages. However, 
the minimum and maximum values used to normalize the test set should be the same as the one 
used for training set. Otherwise the distribution of the dataset’s examples could be inconsistent. 

The abovementioned issue was causing the net to perform strangely and to produce not 
coherent test performance. After addressing the issue, the behaviour normalized, and the 
simulations could begin. 

The test procedure included 6 simulations, performed on the P4 dataset, and carried out across 
the whole pipeline.  

The hyperspaces for the two nets are the following. 

 

Table 11 

cDNN hyperspace 

Learning rate 0.0002 – 0.02  

Hidden Layers 1 – 4 

Neurons first hidden layer 130 – 230 

L2 regulrizer 0.003 – 0.3 

Batch size 16 - 128 

 

Table 12 

rDNN hyperspace 

Learning rate 0.005 – 0.5 

Hidden Layers 1 – 6 

Neurons first hidden layer 30 – 80 

Batch size 8 – 64 

Weights initialization 

Xavier, 
Random, 
truncated 

normal 

Dropout 0 – 0.7 
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It is also highlighted that the t/t split is 90/10. So, 90% of the dataset’s examples will be used for 
training and validation while the remaining 10% is used for testing. Moreover, since the rDNN 

datasets derive directly from the cDNN ones, they will be approximately 2 3⁄  of the corresponding 

cDNN ones as they should contain only feasible examples. 

The final results are now presented. 

 

 
Figure 68. Pipeline simulations. True labels and predictions. 
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The numbers are resumed in the following table. 

 

 

Highlighted are the best (green) and worst (red) simulations. 

The performance is more than acceptable with the worst simulation showing a mean relative 
error of only 1%, which translates in only 4.12g of absolute error. It is worth mentioning that R score 
punish greatly the performance of the 4th simulation because it considers the difference between 
the true labels and the predictions rather than their absolute values. However, this can be avoided 
simply increasing the threshold of acceptance during the validation phase. This value was indeed 
set to a relatively low one (50%) to be able to analyse suboptimal results as the one highlighted in 
red. 

 

Table 13 

Pipeline performance - Regression step 

 

Error 

R_value Loss Mean Max Min 

Absolute Relative Absolute Relative Absolute Relative 

I 2,11 0,01 9,39 0,02 0,03 0 92,17% 2,5 

II 0,92 0 4,67 0,01 0,01 0 98,83% 1,25 

III 1,49 0 7,43 0,02 0,03 0 97,18% 1,77 

IV 4,12 0,01 11,48 0,03 0,15 0 67,20% 4,61 

V 1,28 0 7,88 0,02 0 0 96,29% 1,93 

VI 0,78 0 3,13 0,01 0,01 0 98,86% 1,06 

mean 1,78 0,00 7,33 0,02 0,04 0,00 91,76% 2,19 

std 1,13 0,00 2,78 0,01 0,05 0,00 11,21% 1,18 
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Figure 69. Pipeline simulations. Relative error. 
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Figure 70. Pipeline simulations. Relative error frequency distribution. 

 

The relative errors and their frequency distribution are perfectly consistent with the results 
obtained in the pre-existing project. They are indeed very convincing, and the approach here 
presented is believed to be a success. 
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5.3. False positives analysis 
A False Positive is an example that is unfeasible but is incorrectly marked as feasible by the cDNN, 

and a CO2 value will be predicted by the rDNN. The main issue with this type of misclassification is 
that a layout that will not be able to complete the driving cycle could potentially be marked as the 
best one, and lead to completely fallacious designs. 

One last step is to consider the false positive examples separately and perform regression on 
them to monitor their predictions in terms of CO2. 

Since not all the false positives are equally dangerous, rather they become riskier as they 
approach the “head” of the CO2 distribution, it has been chosen to observe only the ones that reach 
top 10% of the distribution. The selection procedure is as follows: 

 

1. We note the maximum and minimum predicted value of CO2 for the true positives. 
2. We compute the difference between the two and divide the difference by 10. 
3. We add the just computed value to the minimum. 
4. We observe only the false positives for which the prediction is under this threshold. 

 

The results of this method are resumed in the following table. 

 

Table 14 

False positives analysis 

  I II III IV V VI 

min 364,07 365,14 362,41 366,93 366,33 364,30 

top 10% 368,07 369,04 366,63 371,31 370,33 368,11 

  
  

 False 
Positives 

  
  
  

363,15 - - 367,26 368,08 - 

368,06 - - 367,37 368,20 - 

367,19 - - - 368,36 - 

- - - - 363,03 - 

- - - - 369,30 - 

- - - - 367,97 - 

 

In the table are highlighted the threshold value and the minimum value for all the simulations. 
Each value reported in the table is under the threshold and the two in red are even under the 
minimum. 

It is evident that the possibility to mark an unfeasible layout as the best one is present and should 
be addressed. 
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Conclusions 
To resume, the present project used a total of 3 datasets related to three different 
Hybrid Electric Vehicles Architecture, namely P2, P3 and P4. These datasets are the result 
of multiple simulations of a Dynamic Programming Algorithm run on the WHVC driving 
cycle. They are used to train a Pipeline of two Deep Neural Networks; the first one 
performs Classification and has the goal to produce Feasibility Predictions; the second 
one performs Regression with the aim to predict Tank-to-Wheel CO2 emissions of a 
series of layouts included in the datasets. 

The results of the simulations are more than convincing both for feasibility prediction 
and regression. There is no doubt that the net correctly picks up the trend hidden in the 
Design Parameters and effectively interprets them to produce valuable information. 
Obviously, extensive simulations should be carried out for future industrial application, 
especially for what concern the issue of the false negatives and false positives. 

Could be of interest to test different types of Deep Neural Networks architectures to 
try and increase the performances even further. Another interesting development could 
be to implement Bayesian Optimization during the hyperparameters’ selection process. 
The Architecture Recognition task should be deepened and implemented effectively. 
Lastly, the dataset should be extended to include cycle related features, and various 
examples coming from different driving cycle should be combined to form a unique 
dataset on which train the pipeline. 

In conclusion, Artificial Intelligence, and in particular Deep Learning, has been a 
reliable tool to approach the tasks related to this project. 

There is no doubt that this technology will transform the way we think and interact 
with the world.
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