
Master Thesis

Design of a document retrieval
system using Transformer-based

models and a domain specific
ontology

Emanuele Mottola

Academic Supervisors

Dr. Antonio Vetrò

Prof. Juan Carlos De Martin

Dr. Giuseppe Futia

Company Supervisors

M.Sc. Hans Ehm

M.Sc. Nour Ramzy

Final Report for the Thesis

Master in Software Engineering

Department of Automatic and Informatics (DAUIN)

Polytechnic University of Turin

Turin, Italy

23 October 2020

2

Design of a document retrieval system using

Transformer-based models and a domain specific

ontology

Author
Emanuele Mottola

Academic Supervisors
Dr. Antonio Vetrò

Prof. Juan Carlos De Martin
Dr. Giuseppe Futia

Company Supervisors
M.Sc. Hans Ehm

M.Sc. Nour Ramzy

Abstract
The scientific literature and internal research documents every institution produces
is a key source of information for the members of the institution itself. To access
this material effectively and to retrieve the information needed going beyond the
keyword-based approach, a Transformer-based language model tailored on the semi-
conductor supply chain domain is employed together with the same domain ontology
– the Digital Reference [1] – to build a document retrieval system over the pool of
documents of the Infineon Corporate Supply Chain Innovation department. The
further pre-training of the Bidirectional Encoder Representations from Transform-
ers (BERT) model [2] on a text corpus based on the semiconductor supply chain
literature is used to empower SentenceBERT [3] for sentence embeddings creation.
Measuring the similarity score between the embedding representation of the query
and the sentence embeddings related to the documents, the system is able to retrieve
relevant documents to the query posed by the user. With the same mechanism, the
classes of the Digital Reference are annotated, resulting in an ontology populated
with documents that are shown to the user according to the match between query
keywords and class names. The first results of the system are presented, where the
F-measure reaches 0.58 and the mean Average Precision 0.45.

3

Diversamente dalle Leggi
che contraddistinguono la Natura,

in Spirito, non solo nulla si distrugge,
ma tutto va creandosi...

fino alla Rinascita e alla Rivoluzione.

4

Acknowledgment

I would like to thank Infineon Technologies AG, in particular Hans Ehm and Nour
Ramzy for giving me the possibility to write my master thesis on such an interesting
topic and for the support they gave me during the work.

I thank my university supervisors Dr. Giuseppe Futia and Dr. Antonio Vetrò
for the advice and fundamental suggestions that helped me to address the path of
this thesis.

Huge thanks go to the historical friends, the ones I met during high school and
who have remained by my side for all these years. Thanks to Mattia, Marcella, Sara
and Alessandro: there have been many evenings, afternoons, holidays spent growing
together and, I hope, there will be many.

Heartfelt thanks to Roberto, for the genuineness of his friendship and the posi-
tivity he has always transmitted to me.

Special thanks go to Sabino. Thank you for our endless walks that gave the
rhythm to our talks, and for never having stopped being my friend. To the always
deep and sincere exchanges.

I want to thank my friends at UPGRADESTOC***O for the energy they have
always been able to transmit to me. Thanks, in alphabetical order, to Andrea,
Fabio, Roberto and Sofia, with whom I well understood the value of carefree.

Thanks to all those who have been part of that year out of any time which was
the Erasmus. Thanks to Michele, Salvo, Luca, Diego, Alessio, Alessandro and Mat-
teo, for making the experience in Karlsruhe unforgettable.

Thanks to Pellegrino Delfino, a fundamental friend throughout the journey made
so far. His hunger for culture and his critical thinking are an inexhaustible source
of inspiration for me. To the Knowledge.

A deep thanks to Naomi, for the invaluable support she has given me during
these months. Passion and maturity are in her the magnificent traits of Beauty and
Truth that help me to eliminate obstacles and move the limits further and further
away. To the Beauty and the Truth.

Thanks to Umberto, for giving me the love of curiosity.

5

Finally, my heartfelt thanks go to my family. In particular to my brother Ser-
gio and my sister Antonella who have always supported me, to Cristian and my
nephews Giulio, Mattia and Andrea, and my mother, Eugenia, whose trust and
understanding, combined with her sensitivity, are the best gift I could receive.

6

Ringraziamenti

Vorrei ringraziare Infineon Technologies AG, in particolare Hans Ehm e Nour Ramzy
per avermi dato la possibilità di scrivere la mia tesi di laurea su un argomento cos̀ı
interessante e il supporto che mi hanno dato durante il lavoro.

Ringrazio i miei relatori universitari Dr. Giuseppe Futia e Dr. Antonio Vetrò per
i consigli e suggerimenti fondamentali che mi hanno aiutato ad affrontare il percorso
di questa tesi.

Un enorme grazie va agli amici storici, quelli che ho conosciuto durante il liceo e
che sono rimasti al mio fianco per tutti questi anni. Grazie a Mattia, Marcella, Sara
e Alessandro: tante son state le serate, i pomeriggi, le vacanze passate a crescere
insieme e, spero, tante ne saranno.

Grazie di cuore a Roberto, per la genuinità della sua amicizia e la positività che
mi ha sempre trasmesso.

Un ringraziamento speciale va a Sabino. Grazie per le nostre infinite camminate
che davano il ritmo ai nostri discorsi, e per non aver mai smesso di essermi amico.
Agli scambi sempre profondi e sinceri.

Voglio ringraziare i miei amici di UPGRADESTOC***O per l’energia che sono
sempre stati in grado di trasmettermi. Grazie, in ordine alfabetico, ad Andrea,
Fabio, Roberto e Sofia, con cui ho capito per bene il valore della spensieratezza.

Grazie a tutti coloro che hanno fatto parte di quell’anno fuori da qualsiasi tempo
che è stato l’Erasmus. Grazie a Michele, Salvo, Luca, Diego, Alessio, Alessandro e
Matteo, per aver reso indimenticabile l’esperienza a Karlsruhe.

Grazie a Pellegrino Delfino, un amico fondamentale per tutto il percorso fatto fin
qui. La sua fame di cultura e il suo pensiero critico sono per me fonte inesauribile
di ispirazione. Alla Conoscenza.

Un profondo grazie a Naomi, per l’inestimabile supporto che mi ha dato durante
questi mesi. La passione e la maturità sono in lei i magnifici tratti di Bellezza e
Verità che mi aiutano ad annullare gli ostacoli e spostare i limiti sempre più lon-
tano. Alla Bellezza e alla Verità.

Grazie ad Umberto, per avermi trasmesso l’amore per la curiosità.

7

Infine, il grazie più sentito va alla mia famiglia. In particolare a mio fratello
Sergio e mia sorella Antonella, che mi hanno sempre sostenuto, a Cristian e ai
miei nipoti Giulio, Mattia e Andrea e a mia mamma, Eugenia, la cui fiducia e
comprensione, uniti alla sua sensibilità, sono il più bel regalo che potessi ricevere.

8

Contents

1 Introduction 16

1.1 Motivation . 16

1.2 Objective and Research Questions . 16

1.3 Structure of the Thesis . 17

2 Literature Review 19

2.1 Natural Language Processing . 19

2.1.1 Neural Language Processing 21

2.1.2 Recurrent Neural Networks 23

2.1.3 The Transformer Architecture 28

2.1.4 BERT . 31

2.2 Semantic Web . 35

2.2.1 The Semantic Web stack . 35

2.2.2 The Semantic Web at Infineon - the Digital Reference 36

2.2.3 Semantic Search . 37

3 Methodology 38

3.1 Offline model preparation . 38

3.1.1 BERT domain specific pre-training 40

3.1.2 Sentence-transformer . 43

3.1.3 Annotation of Digital Reference’s classes 44

3.2 Online architecture: the document retrieval system 47

3.2.1 Architecture design . 47

3.2.2 The presentation tier . 48

3.2.3 The application tier . 49

3.2.4 The data tier . 51

4 Evaluation 52

4.1 Evaluation . 52

4.1.1 Metrics . 52

4.1.2 Experiment . 54

4.1.3 Results . 54

4.1.4 Discussion . 56

5 Conclusions 58

5.1 Summary . 58

5.2 Outlook . 59

9

A Appendix 60
A.1 Sample of xml document . 60
A.2 Server Response example . 61

B Appendix 63
B.1 Application tier . 63

10

11

List of Figures

2.1 Tasks of NLP and NLU [12] . 20
2.2 Word2Vec. CBOW and Skip-gram implementations. Redrawn based

on [29] . 23
2.3 Basic structure of a Recurrent Neural Network. Redrawn based on [10] 24
2.4 Illustration of Back Propagation Through Time (BPTT) 25
2.5 LSTM architecture. Redrawn by [50] based on [48] 26
2.6 Gated Recurrent Unit Architecture. Redrawn based on [49] 27
2.7 Illustration of Encoder and Decoder architectures. Re-drawn based

on [10] . 28
2.8 InferSent architecture [52] . 29
2.9 The transformer architecture [55] . 30
2.10 BERT, pre-training and fine-tuning [2] 32
2.11 SBERT architecture, with classification objective function [3] 34
2.12 The Semantic Web stack [67] . 36

3.1 Pipeline for the conversion from PDF to JSON 39
3.2 Sentence tokenization of the content of the JSON files. 40
3.3 Representation of the training procedure on the specific domain. . . . 42
3.4 Sentence BERT empowered by the domain specific BERT. 44
3.5 Mapping of every sentence of the documents to the corresponding

sentence embeddings using domain specific SentenceBERT. 44
3.6 Relations of the Organizational Unit class. 45
3.7 Triple representing a labeled class. 46
3.8 Architecture of the document retrieval system. 48
3.9 Example of the document retrieval system graphical interface. 49
3.10 Entity relationship model representing the database design. 51

12

13

List of Tables

3.1 Language model evaluation results. 42
3.2 Sentence-BERT: Training on Multi-NLI dataset, STSBenchmark eval-

uation . 43
3.3 Sentence-BERT: Training on Multi-NLI dataset and STS dataset . . 43
3.4 Top-5 documents attached to the Organizational Unit class with rdfs:seeAlso 46

4.1 Queries defined together with the domain expert, according to the
topics of interest of the department. 55

4.2 Golden standard defined together with the domain expert, according
to the topics of interest of the department. 55

4.3 Results from the document retrieval system, according to the queries
outlined in Table 4.1. 55

4.4 Results from the document retrieval system, according to the queries
outlined in Table 4.1. 56

4.5 Summary of the results obtained running the queries described in
Table 4.1. 56

14

15

Chapter 1

Introduction

1.1 Motivation

The amount of data available on the Internet and produced by private users, compa-
nies and public infrastructures is immense. It is estimated that in 2018 the volume
of information produced was 33 Zettabytes and will grow to 175 Zettabytes in 2025
[4].

Besides the number of documents companies publish on the Web, most of the
resources they produce remain private, since these might contain information of
great interest for competitors or are simply regulated by privacy concerns. However,
internal employees might be interested in browsing those resources, in order to access
the information needed. In case the number of documents is high and not perfectly
organized, the amount of time required to look for a single piece of information might
increase, leading to a loss in the efficiency of usage of the available documents.

To speed up the process of retrievement of the needed information, and since
the greatest part of the data available is unstructured and in the form of text, it
is necessary to exploit a discipline – Natural Language Processing (NLP) – able to
analyze and process the huge quantity of text that would be impossible for a human
to examine in reasonable time [5]. For these reasons, we will design a document
retrieval system that uses natural language processing techniques together with a
domain specific ontology to retrieve documents relevant to a given query.

In the following section, the objectives and the research questions this thesis
aims to reach and answer will be outlined.

1.2 Objective and Research Questions

Infineon Technologies AG is a semiconductor company whose products are addressed
to be part of systems belonging to different industries, where the major challenges
undertaken are related to energy efficiency, mobility and security [6]. In particular,
the Corporate Supply Chain Innovation Department studies and researches over
topics strictly related to the highly dynamic and volatile nature of semiconductor
supply chains and supply chains containing semiconductors. In this context, a high
number of papers, PhD’s, Master’s and Bachelor’s thesis and confidential documents
are produced, whose content is tailored to the domain of interest of the department
and accessibility is a key point of interest. For these reasons, we would like to build

16

a document retrieval system that uses NLP techniques customized to the specific
domain we are dealing with. This brings us to the first research question:

• RQ1: How can we tailor NLP techniques to a specific domain and
use it to in the design of a document retrieval system?

Moreover, the Semantic web technologies [7] are taking momentum in the last
years, with a great interest from both academia and companies in the usage of this
technologies to organize and structure the data they produce and gather. A further
objective of this thesis is to include the domain specific ontology created within the
Infineon Corporate Supply Chain Innovation department – the Digital Reference [1]
– in the document retrieval system and see how the documents can be organized
and accessed according to the data structure already existing. Hence, the second
research question is:

• RQ2: How can Natural Language Processing be used to annotate
classes of a domain specific ontology with documents coming from a
domain specific literature and use it in a document retrieval system?

To sum up, in order to allow the users to retrieve the documents and the in-
formation they need as precise as possible, this thesis is focused on the design of
a document retrieval system that combines the advantages of both the state of the
art of Natural Language Processing techniques tailored to the specific domain and
Semantic Web technologies using the domain specific ontology – the Digital Refer-
ence.

1.3 Structure of the Thesis

This chapter was mainly reserved to give an introduction to the purpose of the thesis.

Chapter 2 introduces the historical background of the Natural Language Process-
ing techniques and their application. Moreover, we will introduce Neural Language
processing and the architecture at the base of those that represent the current state
of the art in many tasks – BERT [2]. In this Chapter, the Semantic Web stack [8]
and the Digital Reference [1] will be presented as well.

Chapter 3 describes the implementation techniques adopted in order to build the
document retrieval system. The architecture design is articulated into two phases:
the offline and the online. The work carried out offline is needed to prepare the data
and the system. Then, the online architecture is presented, with the description of
the working principles that allow the document retrieval system to accept a query
and return the documents that answer it.

Chapter 4 outlines the evaluation techniques and presents the results of the sys-
tem compared to the golden standard defined by an expert of the Corporate Supply

17

Chain Innovation department.

Finally, Chapter 5 shows the conclusions and the future work, according to the
most recent development in the field.

18

Chapter 2

Literature Review

2.1 Natural Language Processing

NLP is a speciality born from the intersection of Artificial Intelligence, Computer
Science, and Linguistics which gathers together a wide range of techniques and
theories to analyze and process of human language at different levels [9]. It is a broad
research field exploring both written and spoken language, concerning its generation
and understanding. Indeed, Natural Language Generation and Natural Language
Understanding are the two main sub-fields of Natural Language Processing [9].

Natural Language Generation (NLG) is the branch of NLP that deals with the
formation of human understandable content out of a concept representation [9, 10].
On the other hand, Natural Language Understanding (NLU) handles the creation
of that concept representation to be used by NLG, using a text sequence as input.
Many tasks like text summarization, question answering in chatbots and machine
translation exploit this mechanism [10].

More in detail, NLU aims at the comprehension of human texts or speeches as
a human being could do, finding for example the significance of figures of speech,
solving ambiguities and polysemy, understanding the presence of synonyms and co-
reference [11]. The core of Natural Language Understanding is semantic analysis,
which is the process of analysis of text and speech in order to extract the correct
sense and significance out of the input. To achieve it, the algorithm should be able
to work at different levels [11]:

• syntax - the ability to understand the grammar.

• semantics - the ability to understand the literal meaning.

• pragmantic - the ability to understand the final purpose.

According to [9], a system capable of Natural Language Understanding would
also be able to perform different tasks, like text paraphrase, question answering, and
knowledge inference out of the processed text. Other tasks are shown in Figure 2.1

NLP has a wide range of use cases. It empowers the personal assistants Apple
Siri, Amazon Alexa, IBM Watson and Google Assistant [13]. It is used to find
out the opinions about a product - task called sentiment analysis - in order to
derive marketing information out of them [14]. It can be also exploited to support
financial traders, with systems able to mine information and produce forecast out

19

Figure 2.1: Tasks of NLP and NLU [12]

of the news [15]. To summarize, the use-case panorama is vast. In this thesis, we
will apply NLP techniques – together with a domain specific ontology – to create a
document retrieval system, whose aim is to find out relevant documents to a user’s
query [16].

In the following paragraph we will give a brief introduction to the history of
NLP, in order to introduce the modern aspects of the discipline.

Brief history

NLP aroused in the 1950s from the intersection between Linguistics and Artificial
Intelligence [17]. The former used to analyze the language to gain an accurate rep-
resentation of its structure and formalism: the major investigation areas concerned
the grammatical and syntactical aspects. On the other hand, the latter treated the
study of the language as a communication problem between human and machine:
many efforts were addressed for the creation of knowledge representation out of nat-
ural language corpora [11].
A significant contribution came from the field of formal languages, with the publica-
tion of Syntactic Structures by Chomsky in the 1957 [18]. This symbolic approach
had generative grammars and parser at the core of its theory: given a sentence,
the parser had to understand whether the sentence matched with the rules of the
grammar. This work influenced the further creation of regular and context free
grammars, which led - together with lexical analyzers (lexers) - to the development
of the first compilers for programming languages. However, this approach could not
live the complexity of human language up and solve ambiguity issues [17]. Conse-
quently, other directions were investigated. In 1972, Winograd [19] built a system
able to simulate the movement of some blocks according to natural language com-
mands, while Wood [20] developed LUNAR, a system used to access a database
with natural language. The two systems combined and integrated all the aspects
of the language – syntax, semantics and inference [11, 21]. Even if the results were
remarkable, these systems were not general purpose and accomplished a simple task.
[21, 22].

20

At the beginning of 1980s, Linguistics and Artificial Intelligence began to converge.
In particular, the creation of the knowledge representation took also into account
the formalism described by linguistic and, at the same time, linguists taped into
knowledge representations drawn by computer scientists. It is in this period that
Computational Linguistic or Natural Language Processing actually came to life and
got boosted [11]. At this stage, systems with hand-crafted rules - like the one pro-
posed by Chomsky - were not considered prominent anymore.
Therefore, new approaches were introduced. IBM started applying statistical meth-
ods to process speech data and model the pronunciation of words [21]. The underly-
ing idea is that the structure could be understood by investigating the distributional
composition of the language elements [23]. Hence, given enough training data, the
algorithm should learn based on the statistics embedded in it. A typical example of
this approach is the determination of the etymology of names. As described in [23],
the system calculates the probability that a name belongs to a specific language
based on the pool of known names of that language. Then, the word is attached to
the language for which the probability is maximized. These new concepts revolu-
tionized the field of NLP and are still today at its core.
During the 1990s, statistical NLP gained a great popularity and got applied to Part-
of-Speech Tagging, which is a task focused on labeling the different components of
a sentence with the corresponding syntactical meaning. Here, the usage of Markov
models led to satisfactory results for Word Sense Disambiguation [24] and prepo-
sitional phrase attachment [25], too. Further applications of Statistical NLP were
machine translation, clustering and text classification [26]. Another important field
of application of statistical NLP is the Language Modeling task, which consists in
the prediction of the next word given the previous part of the sentence [26]. For this
task, Bengio et al. [27] applied for the first time a neural network in 2003. This was
the first milestone of the modern Neural Language Processing. In the next section,
we will introduce its fundamentals, with the aim to present the different techniques
used to create the a proper representation of word and sentences and how this is
used to score the similarity between the user’s query and the content of a document.

2.1.1 Neural Language Processing

The explosion of utilization of deep learning techniques began in 2010-2011 [22]. In
these and the next years speech recognition reached a maturity that allowed the
deployment of the first models in the industry, giving the propulsion for a broader
usage of deep learning algorithms in other NLP areas. In 2016, Google and Microsoft
announced the usage of neural networks for their machine translation systems. Face-
book did the same almost one year later. To conclude, neural networks led to a real
revolution in the field of NLP, with visible progress in many sub-disciplines [22].

Word and Sentence embeddings

The creation of a proper word representation is key to push machines as close as
possible to human language understanding. Therefore, the development of algo-
rithms able to map words to their vector representations – the word embeddings –
gained a central role. According to [10], the neural network community approached
the creation of word embeddings using the distributed representation conception. It
consists in the creation of vectors whose values are assigned based on the context

21

the word appears in. In agreement with this concept, the meaning, the similar-
ity and the difference between two words emerge from the comparison among the
dimensions of their vector representations [10].

In 2013, Mikolov and his colleagues [28, 29, 30] introduced a new algorithm for
the creation of word embeddings: Word2Vec. It is a neural network based algorithm,
declined in two fashions. Both cases use a shallow neural network originally trained
for the creation of a neural language model then modified for efficiency purposes.
As previously stated, language modelling was one of the first instances where neural
networks were used in NLP. Bengio et al. [27] defines language modelling as the
task of learning the distribution of words in a language in order to predict a word
given the previous ones. It is consequently calculated according to this formula:

p(wT
1) =

T∏
t=1

p(wt|wt−1
1)

where T represents the number of words.
In the first architecture of Mikolov – the Continuous Bag Of Word model (CBOW)
– the context C of a target word wt is used to predict this last one. Since pure
text cannot be analyzed by a neural network, the words are encoded with their
one-hot representation. Hence, given a vocabulary V = {w1, w2, ..., wt, ..., w|V |}
each word is represented by a vector 1 × |V | where |V | is the cardinality of the
vocabulary V and every different vector contains an element set to 1 and the oth-
ers to 0. These rudimentary word embeddings are fed into the neural network.
Here, the vector representations of the context are summed up in the hidden layer
and then used to compute the probability distribution over V . The objective is to
maximize the probability of wt – the target word – over all the words of the vo-
cabulary. Experimental results show that best performance was reached exploiting
C = {wt+j},−4 ≤ j ≤ +4, j 6= 0, namely using the four words preceding and the
four following the target word.
The second implementation – the Skip-Gram model – trains a neural network ”to
find word representations that are useful for predicting the surrounding words in
a sentence or a document” [28]. Hence, the architecture is made of a log-linear
classifier to predict words happening in a given context C. Both with the first and
the second implementation, the embeddings are given by the rows of the weight
matrix of the hidden layer, which are iteratively updated via back-propagation [31].
Both the implementations show to be scalable and resilient to unknown words, with
reasonable memory and computational requirements [10].

Although Word2Vec was widely employed in many applications, like in the rep-
resentation of biological sequences [32] and the vector representation of documents
(Doc2Vec [33]), it was not the only framework for word embeddings creation. GloVe
[34] - which stands for GlobalVectors - was developed at Standford in 2014. The
model is able to seize the global statistics out of the text corpus analyzed and re-
flects them in the word embeddings. In fact, a co-occurrence matrix X is defined -
where every element Xi,j indicates the number of times the word wj occurs into the
context of the word wi [34] - and then exploited to optimize an objective function.
The objective function aims to make the dot product between every word embedding
equal to the log probability of the words’ co-occurrence. This lead to the following
equation:

wi · wj + bi + bj = logXij

22

Figure 2.2: Word2Vec. CBOW and Skip-gram implementations. Redrawn based
on [29]

where bi and bj are bias vectors. The resulting word embeddings are particularly
suitable for tasks like semantic similarity and analogy, and used in many others, like
intent detection [35] and recommendation systems [36].

Word2Vec and GloVe word representations were also applied to the computation
of sentence embeddings: the SIF [37] model, for example, calculates the weighted
average of the word embeddings and removes from each representation the com-
ponent common to all the sentence embeddings. Another is GEM [38], which –
considered the geometrical space created by the pool of word embeddings and an-
alyzed its structure – infers novel orthogonal basis carrying the semantic meaning
of the sentence. These systems led to quite promising results in semantic similarity
for semantic search tasks, showing to be a good trade-off between performance and
computational requirements. In the following paragraph, we introduce the Recur-
rent Neural Network architecture - able to capture the sequential relations between
words composing a sentence - and the sentence representations they derive.

2.1.2 Recurrent Neural Networks

The Recurrent Neural Networks (RNNs) [39, 40] were introduced in the late 1980s
to handle sequential input. Different applications like speech recognition, text sum-
marization, text translation and document classification share a key characteristic:
the input is presented as a sequence of symbols, where each word is dependent on
the previous and conditions the following. According to [41], a sequence of vectors is
given in the form x = (x1, ..., xt, ..., xTx) where Tx ∈ N+ and represents the length of
the input sequence, and 0 ≤ t < Tx. Every element xt ∈ Rdin , namely has dimension
din. The RNN models a function that takes in input an element of the sequence x
at every time-step and returns the vector ŷt ∈ Rdout , member of the output sequence
ŷ = (ŷ1, ..., ŷt, ..., yTx) [10]. Hence, as described in [42], the RNN is defined as a feed-
forward neural network tailored to the sequential input, where the hidden state of
each time-step is forwarded to the neural network of the following time-step through

23

an edge. Therefore, at every time t, the input xt is combined with the hidden state
of the previous time step ht−1 to produce ht, which is then used to output ŷt. Then,
the current hidden state is passed to the hidden state at t+ 1 [41, 10]. To calculate
ht, the general formula is:

ht = g(Whxxt +Whhht−1 + bh)

where Whx is the weight matrix of the input, Whh is the weight matrix applied to
the hidden state of the previous time t - 1 and bh is the bias vector. To compute
the output, instead we use:

ŷ = f(Wyhht + bh)

The pseudo-code of the algorithm is shown in the following code snippet [43]:

Algorithm 1 Forward pass RNN

1: for t from 1 to T do
2: ut ← Whxxt +Whhht−1
3: ht ← g(ut)
4: ot ← Wyhht + bh
5: yt ← f(ot)
6: end for

where f(·) and g(·) are non-linear functions.
The unrolled structure of the RNN is depicted in Figure 2.3.

Figure 2.3: Basic structure of a Recurrent Neural Network. Redrawn based on
[10]

Back Propagation Through Time (BPTT)

The mechanism adopted to train a RNN is slightly different from the one used for
feed forward neural networks. Back Propagation Through Time was introduced by
Rumelhart et al. [44] and Werbos et al. [45] and further deepened by subsequent
researches [40, 39]. The objective of the training is to optimize the matricesWhx,Whh

and Wyh in order to minimize the error function E(y, ŷ), where y ∈ Rdout is the target
value and ŷ ∈ Rdout is the prediction. The error is computed as the sum of the of
the errors in the time-step. Hence, the first step for the computation of the BPTT
is the unrolling of the network and the consideration of only one time-step at the
time, like in the following algorithm [43]:

This procedure allows a tuning of the values of the matrices involved as parame-
ters of the network, leading to a reduction of the error function E(y, ŷ). In the next
paragraph, the limits of this architecture are outlined.

24

Algorithm 2 Back Propagation Through Time

1: for t from T downto 1 do
2: dot ← f ′(ot) · dE(ŷt, yt)/dyt
3: dbo ← dbo + dot
4: dWyh ← dWyh + dotht

T

5: dht ← dht +W T
yhdot

6: dyt ← g′(yt) · dht
7: dWhx ← dWhx + dytxt

T

8: dbh ← dbh + dyt
9: dWhh ← dWhh + dytht−1

T

10: dht−1 ← Whh
Tdyt

11: end for
12: return [dWhx, dWhh, dWyh, dbh, dbo, dh0]

Figure 2.4: Illustration of Back Propagation Through Time (BPTT)

Problems training the RNN

The basic architecture of the RNNs – also called vanilla RNN – affected negatively
the ability of the network to learn long distance dependencies between the elements
of the sequence, as described by Bengio et al. [46] in 1994 and further studied by
Pascanu et al. [47]. In particular, if the matrices involved in the calculation of the
gradient have small values - less then 1 - the resulting gradients of the deeper layers
will tend to 0, leading to the so called vanishing gradient problem. On the other
hand, if the value of the matrices is greater then 1, the gradient will tend to infinite,
also called exploding gradient problem.

In the following paragraph, we will introduce two architectures based on ”mem-
ory” and ”forget” cells to overcome this issue. In particular, Hochreiter et al. [48]
handled the vanishing problem through the Long Short-Term Memory (LSTM) ar-
chitecture, while Cho et al. [49] addressed the same issue with the Gated Recurrent
Unit (GRU).

LSTM

Long Short-Term Memory [48] is an architecture based on the concept of gate and
cell state. The intuition is that the cell state carries the important information down
all the network - like a memory state - allowing the network to model dependencies
between part of the input sequence which are distant, too. The forget and update
gates remove or insert information in the cell state. The general structure of the

25

LSTM is shown in Figure 2.5.

Figure 2.5: LSTM architecture. Redrawn by [50] based on [48]

The first operation is the concatenation of the hidden state ht−1 with the current
input element xt. Then the forget gate comes into play: a sigmoid (σ) function is
applied, returning a value between 0 and 1. The closer to 0, the more the network
will forget that information.

Γf = σ(Wf [ht−1, xt] + bf)

Next, the concatenation between ht−1 and xt is further given in input both to the
tanh and sigmoid function, the former used for the regularization of the network,
the latter to decide which information to use to update the cell state. The two
values are then multiplied. This is the so called update gate.

Γu = σ(Wu[ht−1, xt] + bu)

c̃u = σ(Wc[ht−1, xt] + bc)

Hence, the cell state is finally updated and the hidden state of the current time-step
computed:

ct = Γu · c̃t + Γf · ct−1

ht = σ(Wo[ht−1, xt] + bo) · tanh(ct)

GRU

As mentioned in the previous section, Gated Recurrent Unit (GRU) [49] is the
other architecture able to propagate important information through the network.
Like LSTMs, it is based on a system of gates, but it gets rid of the cell state, and
propagates the information only using the hidden state. The architecture is shown
in Figure 2.6.

The concatenation of the input and hidden state is fed into a sigmoid function,
then multiplied for the hidden state. This acts like an update gate.

rt = σ(Wu[ht−1, x
<t>] + bu)

26

Figure 2.6: Gated Recurrent Unit Architecture. Redrawn based on [49]

Next, the concatenation of hidden and input state are processed by a sigmoid func-
tion and subtracted to 1. Instead, this part of the network has the role to forget
information which is not considered important - it is called the reset gate. Hence,
the matrix of weights used for this operation is different from the one previously
presented in the definition of the update gate function.

zt = σ(Wr[ht−1, xt] + br)

At this point, the reset gate comes into play and will actually influence the infor-
mation from previous time-steps to be kept or not. Therefore the calculation of the
current memory content is:

h̃t = tanh(Wc[rt · ht−1, xt] + bc)

As last step, the final value of the hidden state at the current time-step is calculated
as:

ht = zt · h̃t + (1− zt) · ht−1

Parameterized Sentence Embeddings

The architectures presented in the previous section lead to notable improvements in
the creation of sentence embeddings. In particular, Skip-Thought [51] allowed the
creation of sentence embeddings that worked well also in practice. The approach
used an encoder-decoder architecture, which provided good results in neural ma-
chine translation. An encoder is a many-to-one neural network able to condense the
information coming from the words of a sentence in a vector representation. The
core blocks of this neural network can be either the vanilla RNN, LSTM or GRU.
Figure 2.7(a) is a visual representation of this concept. On the other hand, a decoder
(Figure2.7(b)) is a one-to-many architecture that - given in input a vector repre-
sentation - is able to output a meaningful sequence of words. Likewise the encoder,
different architectures of the core blocks can be exploited.

The encoder-decoder architecture used by Skip-Thought aimed to predict the
previous and following sentences given the current one. More precisely, it utilized
a GRU encoder to build the vector representation of the current sentence, and two
separate decoders to predict the previous and following sentences. The core blocks
of the decoders were GRU units slightly modified, with the sentence vector used to
bias the update gate, reset gate and hidden state [51].

27

(a) Encoder

(b) Decoder

Figure 2.7: Illustration of Encoder and Decoder architectures. Re-drawn based on
[10]

InferSent [52] is the other parameterized approach that employes the Bidirec-
tional Recurrent Neural Network with LSTM core blocks, where bidirectional indi-
cates that the input sequence information propagates both from left to right and
right to left. The architecture is of the type many-to-one - namely an encoder -
where given in input a sentence, the vector representation is given in output. The
model is trained for the sentence inference task, which consists in understanding
whether a given couple of sentences is an entailment, a contradiction none of them.
The architecture used is a Siamese network (Figure 2.8), where each sentence is
encoded to the corresponding vector representation. Then, a feed-forward neural
network is applied to these representations to output the relation between the sen-
tences. The resulting embeddings showed to be competitive for semantic similarity
tasks, scoring 75.8% in Pearson correlation [should put the definition of Pearson?
Maybe create an Appendix?] on the STS benchmark dataset [53].

In the next section, we will introduce the Transformer architecture, a completely
new structure that puts apart the sequential architecture of Recurrent Neural Net-
works.

2.1.3 The Transformer Architecture

The encoder-decoder architecture showed its limitations in machine translation task
when seizing long range relationships in a sequence. According to Bahdanau et al.
[54] this was mainly due to the usage of a fixed encoder vector when decoding to
a target sentence, while the authors underlined the importance that the decoder
focuses selectively on the part of the source sequence that is currently being trans-
lated.

28

Figure 2.8: InferSent architecture [52]

The attention mechanism

The approach proposed by Bahdanau et al. is called attention mechanism and is
implemented in an architecture that consists of a bidirectional encoder and a decoder
that ”jointly aligns and translates”[54]. The novelty of the architecture is composed
by the decoder, indeed.

The main idea is to have a dynamic vector representation of the source sentence
– called context vector ci – which is a weighted sum of the hidden states of the
encoder. Essentially, this reflects a selective focus over the source words in order to
output the current target word. Therefore, during every time-step i, the decoder
will use a context vector which is different from the context vector at time-step t−1
to output the target word. In other words, the decoder can search for part of the
source sentence x that it thinks are relevant to predict the target work yi. The
context vector to produce the target word yi is given by:

ci =
Tx∑
j=1

αijhj

where the weight of each encoder hidden state αij is computed as:

αij =
exp(eij)∑Tx

k=1 exp(eik)

and

eij = a(hi−1, hj)

corresponds to the alignment model. Here, the hidden state of the decoder hi−1 is
combined with every hidden state of the encoder hj , in order to understand how
much an input at position j is related to the output at position i. Consequently,
αij represents the probability the output word yj matches the input word xi.This
mechanism allowed the network to capture even long range dependencies, and to
outperform the previous state-of-the-art in machine translation [54]. Furthermore,
this approach was the founding idea of a novel architecture that represents a mile-
stone in Natural Language Processing: the Transformer.

29

The Transformer

The Transformer [55] is an architecture that heavily exploits the attention mech-
anism described in the previous section. The algorithm puts the recurrent neural
networks aside and comes to a parallelizable configuration that speeds up the train-
ing procedure, while also notably improving the quality of translations [55].

As for most of the architectures presented in the previous sections for machine
translation, also the Transformer uses an encoder-decoder structure, with the en-
coder that maps the input sentence to a vector representation, and the decoder the
reconstructs the sentence in another language, using the embedding produced by
the encoder. This design is reported in Figure 2.9, with the encoder on the left and
the decoder on the right.

Figure 2.9: The transformer architecture [55]

According to the paper Attention is all you need [55], the encoder is made of six
stacked indistinguishable layers. Each of these is made of two sub-layers:

• the multi-head self-attention layer

• a fully connected feed-forward layer

that we explain in the following paragraphs. Moreover, each sub-layer is followed by
a residual and normalization layer, which normalizes the sum of the input of the sub-
layer with the output of the sub-layer itself. On the other hand, in the six stacked
twinned layers of the decoder each of them contains three sub-layers. In particular,
in addiction to the couple of sub-layers identical to the ones in the encoder, there
is a third one: it is a masked multi-head self-attention layer, which ensures that
the predictions for a target word only depend on the previous words. Likewise the
encoder, each decoder sub-layer is followed by a residual and normalization layer.

30

Multi-Head Self-Attention The novelty of the approach consists in the way
the attention mechanism works. Every word embedding generates key K, query Q
and value V vectors of dk dimension, thanks to the multiplication of the embedding
with three different matrices WQ, WK and W V randomly initialized. The aim of the
attention is the mapping of the value vector V to the output, using a combination
of keys K and query Q to infer the amount of the weight. Hence, the attention is
computed: the query is multiplied by all the keys, divided by

√
dk and then a softmax

function is applied. In this way, the weight vector is computed. The multiplication
of it for the value vector gives in output the Scaled Dot-Product Attention matrix.
The operation is summarized as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

In order to gain the representation of the input sequence in different sub-spaces [55],
the computation of the attention is raised h = 8 times, every time with different Q,
V and K due to the random intialization of the matrices WQ, WK and W V . This
also allows the system to focus on different positions of the sequence, balancing the
importance of words in the sentence. The output of each head is then concatenated
with the others and projected once again.

MultiHead(Q,K, V) = Concat(head1, ..., headh)WO

where

headi = Attention(QWQ
i , KW

K
i , V W

V
i)

and WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dk and WO ∈ Rhdmodel×dk .

The nature of this system – with its multi-heads – implies a high degree of paralleliza-
tion, since each head can be computed independently from the others. Furthermore,
this architecture is also able to seize long-range dependencies: in fact, the ability
to perform well with this task depends on the length of the forward and backward
paths the information has to cover in the network and the Transformer limits these
lengths, also thanks to the parallelized architecture.

Among the variety of algorithms that exploit the Transformer architecture like
ElMo [56] and OpenAI-GPT [57], in the next section we present BERT [2], the
current state-of-the-art in NLU.

2.1.4 BERT

In the previous sections we have seen how the analysis of sequences with Recurrent
Neural networks did not apprehend the long range dependencies between words in
sequence, due to the long paths of the forward and backward pass of the signals [55].
The transformer is the architecture that overcame this issue, reducing the length
of the pipeline and showing a greater ability to gather the information from the
surrounding words to create a vector representation of a target word. Unfortunately,
it did not show the flexibility necessary to address a wide range of NLP tasks.
Together with a new training procedure, this is the great value added by the BERT
model [2].

31

The Architecture

As described in [2], the implementation of the BERT system is essentially based on
the encoder framework of the Transformer, with the same working principles, that
for conciseness will not be reported here again. In particular, the authors created
two main models, BERTBASE – with a number of stacked encoders L = 12, the
hidden dimension H = 768, and the number of self-attention heads A = 12 – and
BERTLARGE that has L = 24, H = 1024 and A = 16. The input sequence is initially
mapped to a vector representation using the WordPiece tokenization [58] and its
vocabulary. Every sequence is pre-poned with a [CLS] token and each sentence in a
pair is separated by the [SEP] token. In fact, BERT is both able to handle sentence
and word related tasks, as we will show in the next paragraph. The output of the
[CLS] token is C ∈ RH , and the vector of the i-th word is represented by Ti ∈ RH

[2].The system is build around two main steps: pre-training and fine-tuning, like
shown in Figure 2.10.

Figure 2.10: BERT, pre-training and fine-tuning [2]

Pre-training The pre-training procedure was already introduced by other archi-
tectures [56, 57], which scored the previously state-of-the-art in different NLP task.
This procedure consists in training the network before the architecture is actually
used in other objectives. It allows the system to learn the language model of the
data it is trained on. Then, when fine-tuning for a given purpose, this knowledge is
further exploited to initialize the system.

BERT pre-trains over two main NLP task: Masked Language Modelling and
Next Sentence Prediction tasks. The Masked Language Modelling task was carried
out exploiting a bi-directional training. In particular, this consists in randomly
masking the 15% of the text corpus with the [MASK] token. In order to avoid
inconsistencies with the fine-tuning procedure, where the mask token would not be
used, given the 15% of the tokens to be replaced, only 80% where actually masked
with [MASK], while 10% were replaced with a random token and the remaining 10%
left unchanged. A cross-entropy function was used [reference in appendix], and the
embedding Ti returned for the i-th token. The Next sentence prediction task aims
at predicting whether a sentence is the sentence coming immediately after a given
one. The dataset for this pre-training procedure can be built with any text corpus:
given a sentence pair, 50% of the time the second sentence is the actual following

32

sentence – labeled as isNext – the other 50% a random sentence from the corpus –
labeled as NotNext [2]. This procedure is very effective for Question Answering and
Natural Language Inference tasks.

Fine-tuning The fine-tuning procedure is a training procedure for one of the
downstream tasks such as Question Answering, Natural Language Inference and
Text Classification. Compared to the pre-training task, the fine-tuning is straight-
forward, since for every fine-tuning task it is only necessary to use inputs and outputs
and tune the parameters [2]. An example of fine-tuning procedure is given by the
sentence-pair completion task. The main dataset is the Situations With Adversarial
Generations (SWAG) [59], that is composed of entries were for each sentence there
are four options representing plausible continuations. The goal is to pick most
suitable. To fine-tune on this dataset, four sentence-pairs are created, each made of
the given sentence and one of the possible options. Then, they are fed into BERT,
and the dot-product of the output token C with a task specific vector returns the
likelihood that pair is the best sentence-pair. In this task, BERTLARGE outperforms
ELMo and OpenAI-GPT by 27.1% and 8.3% respectively [2].

Domain Specific models

The BERT model was pre-trained on a general purpose text corpus, composed by
the BooksCorpus [60] and the texts and paragraphs extracted from the English
Wikipedia [2], that score in total 3.3 billion words. Hence, the model was not
tuned for a specific domain. A step in that direction was taken by BioBERT [61],
a BERT model trained on the PubMed abstracts and full-text articles. In fact,
the authors state that the general model was not able to capture the complexity
and the terminology used in the biomedical texts. The results indeed show an
improvement – for example – in the question answering downstream task, scoring
12.24% better than BERT model [61]. A further study in the same direction was
taken by SciBERT [62], that trained from scratch the BERT model on a text corpus
made of 1.14 million papers picked randomly from Semantic Scholar [63], with the
same procedure described in the BERT paper. Moreover, SciBERT used its own
vocabulary, SCIVOCAB, that was built from scratch using the Sentencepiece library
[64]. SciBERT achieved state-of-the-art results in different datasets [62].

Both these implementations show the importance of pre-training on specific text
corpus when working within domain related environments.

Sentence Transformer: SBERT

The BERT architecture is suitable for a wide range of tasks like classification tasks,
question answering and semantic sentence similarity, thanks to its structure that
allows to plug any downstream network at its output. To work on semantic sentence
similarity tasks, the pair of sentences whose similarity the system wants to score are
fed in input preponed by the [CLS] and separated by the [SEP] token. On top of
the system, a feed-forward fully connected layer can be attached in order to output
the score.

According to [3], the drawbacks of this approach are mainly referred to the
quality of the sentence embeddings produced averaging the word embeddings in
output from BERT that result to be even worse than the ones coming out of GloVe.

33

Hence, the general idea presented by Reimers et al. [3] allows the creations of
sentence embeddings to be used in tasks such as semantic similarity and semantic
search. Sentence-BERT incorporates the knowledge already gained by BERT during
the pre-training phase, and uses it to empower sentence embeddings construction.
It uses a siamese network [52] – made of two identical BERT instances – that deter-
mines the fixed-length encodings: this approach derives independent outputs from
the two sentences, namely u and v in Figure 2.11.

Figure 2.11: SBERT architecture, with classification objective function [3]

More in detail, SBERT uses a pooling layer on top of each single BERT instance.
This is done in order to retrieve a fixed-length vector out of the set of word em-
beddings given in output from BERT. In particular, the pooling chooses either the
[CLS] output token, the max value of all the word embeddings, or their average. The
network is further composed of a layer that implements different objective functions,
depending on the downstream task and on the dataset used for the training. Hence,
being respectively u and v the sentence embeddings of the first and second sentence,
the possible objective functions are:

• Classification objective function: it takes in input the concatenation of u, v
and the element-wise difference |u− v|. Then, a softmax operation is applied,
resulting in o = sofmax(Wt(u, v, |u− v|))

• Regression objective function: optimizes over the cosine-similarity measures of
sentence embeddings u and v.

• Triplet objective function: given a sentence p, the network wants to maximize
the difference between p and v when v is in contradiction with p and minimizes
the difference with u when p and u are similar. Therefore, minimization of the
function o = max(||sp − sv|| − ||sp − su||+ ε, 0)

The pool of data used for the training of this framework is made of the combi-
nation of the SNLI [65] and Multi-Genre NLI [66] datasets, tailored for the Natural

34

Language Inference task. It consists of predicting whether two sentences in a pair
contradict, entail or are neutral to each other. Conneau et al. [52] showed that the
Natural Language Inference task is suitable for learning sentence embeddings, since
it forces the model to map the semantically meaningful information of the sentence
into the vectors. SNLI and Multi-Genre NLI together make a corpus of around 1
million sentence pairs that cover a wide range of topics [3]. To tune the sentence
embeddings, the classification objective function is used.

The resulting system was evaluated on two main downstream tasks: Semantic
Textual Similarity (STS) task and SentEval. The first quantifies how much two
sentences are similar in a scale from 0 to 5, using the sentence embeddings to com-
pute the cosine-similarity and the Spearman [appendix] correlation to compare the
result with the label. SBERT outperforms all the systems presented in the previous
chapter, scoring the state-of-the-art on different STS datasets [3]. Likewise, SBERT
scored the state-of-the-art in the SentEval toolkit of tasks used to evaluate the qual-
ity of sentence embeddings.

2.2 Semantic Web

The Semantic Web was introduced by Tim Berners-Lee in 2001 [7]. It is thought not
as a different web, but as an extension of the existing one, where the information
is given a well-defined meaning, linked and understandable by computers [8]. The
fields where Semantic Web gained more and more popularity are diverse. It is
exploited by organizations in knowledge management tasks, to insert, maintain and
retrieve information in different branches. It is, for example, the technology that
stays at the core of different search engines like Google and Baidu, to show to the
users the information they are looking for. Semantic Web is also used in Business
to Customer (B2C) companies, on the example of Amazon and Alibaba, which take
advantage of the of the structure of data to retrieve to the customer the best product
possible. In the following section, the semantic web stack is presented and analyzed.

2.2.1 The Semantic Web stack

The Semantic Web is based on the semantic web stack [67], where each layer relies on
the underlying ones [68]. Unicode and URI are the fundamental layers of the stack,
the first one addressing the set of characters accepted, the second – the Uniform
Resource Identifier – is a unicode based string that uniquely identifies and locates
the resource in the Web [69].

The second layer is made of the RDF/XML framework. The Resource Descrip-
tion Framework is the key component to instill structure in the data, since it allows
the insertion of metadata [70] and its processing [71]. Moreover, it is particularly
suitable to represent data to be processed by machines, since it is also understand-
able by them [68]. The idea behind the RDF is: every resource can be addressed
by a URI, and a relationship between two entities is encoded in a triple. A triple
is made of subject, predicate and object, all identified by URis. This structure can
encode any type of information, and can describe a resource via simple properties

35

Figure 2.12: The Semantic Web stack [67]

or property values [70]. On top of it, there are the RDF Schema (RDFS) and the
Web Ontology Language (OWL). The first creates a vocabulary over RDF and is
a valid tool to create hierarchies between resource type – the classes – and among
their properties [71]. OWL, instead, is a much more powerful language, since it
allows more expressiveness and flexibility in ontology design [71]. An ontology is a
description of a area of knowledge, formalized as a metadata schema that defines
the vocabulary and incorporating the semantics [72]. The Semantic Web stack also
includes a query language – SPARQL – which enables the pool of semantic data
to be queried via specific point of presence on the Web – the SPARQL endpoint –
using the HTTP protocol [8].

2.2.2 The Semantic Web at Infineon - the Digital Reference

In the context of digitization, Infineon Technologies AG joined the Electronic Com-
ponents and Systems for European Leadership Joint Undertaking (ECSEL JU) [73],
a program where the European Union funded both public and private projects to
push the industry towards digitization [1]. In this context, the Productive 4.0 [74]
project started with the aim to build a bridge between ”real and digital world by ef-
ficiently designing and integrating both the hardware and software of IoT” [1]. Here
– in WP7 – the consortium defined a semantic web version of semiconductor supply
chains and supply chains containing semiconductors [1] – the Digital Reference. It
is made of different sub-ontologies, that describe sub fields of the semiconductor
production and its supply chain as well as communication protocols and technolo-
gies, that have been merged in the past years [1]. In this thesis, this is the domain
specific ontology we are going to exploit and annotate in the document retrieval
system. Further details will be provided in the related description of Chapter 3.

36

2.2.3 Semantic Search

Semantic Search is the discipline to search and retrieve resources according to the
topic of interest of the query. Either the resource is a web page or a document,
the aim is to go beyond the pure matches of words and to exploit their meaning
[75]. In fact, it is possible that the same word could refer to different concepts,
which are not related to each other. Therefore, this is the case when polysemy
occurs, and disambiguation techniques must be adopted to solve it. According to
[76], one way to overcome this issue is the usage of ontologies to disambiguate the
words. In fact, the schema depicted by the ontology clearly allows to distinguish
different concepts, due to the structure that semantically describe each of them
in a machine understandable fashion [8]. The tools created in order to implement
semantic search are numerous, and they witness the importance of the usage of an
ontology to structure and improve the results of searches.

GoNTogle According to [76], GoNTogle [77] is a system that allows to search over
a pool of annotated documents, where the annotations are taken from the classes,
properties and entities of an existing ontology. It implements a hybrid search, which
takes into account the results given by a keyword based search and a search that
uses the semantic annotations.

KIM In [78], Popov et al. describe KIM - Semantic Annotation Platform, an open
source platform able to store, index and search over a pool of documents based on
the ontology developed specifically for the tool – KIMO – and its specific knowledge
base. The core of the system are the KIM APIs, which allow for a keyword and
ontology-aware search as well as a semantic annotation system.

In the following chapter, we will present the methodology we adopted in order
to combine ontology and semantic similarity measures over sentence embeddings in
order to enhance the quality of document retrievement.

37

Chapter 3

Methodology

In the following Paragraphs the methodology to create the document retrieval system
is outlined. It is articulated in two phases: in the first part, we show the description
of the work done offline to prepare the main components of the online architecture.
In particular, the complete pipeline describing the process to further pre-train the
language model on the specific domain and the conversion of the sentences to the
corresponding embeddings is carried out. Moreover, it also describes the procedure
followed to annotate the Digital Reference. Then, in the second, we delineate the
architecture of the online system the user will be interfaced with, other than the
way in which it exploits the language model and the Digital Reference to retrieve
relevant documents to the user.

3.1 Offline model preparation

In this Section we present the pipeline necessary in order to process the documents
and create the vector representation out of their sentences. First, we will deal with
the conversion from PDF to TXT, stored in JSON format. Then, the text contained
in the documents is split into sentences with the SpaCy library [79].

PDF to JSON conversion

Most of the documents available for scientific purposes are usually in the PDF
format. Since the PDF format does not allow to work directly with the content
of the file due to the binary encoding, in order to be able to process these files, it
is necessary to convert them to an encoding easily manageable by general purpose
programming languages, such as the utf-8 standard. There are many tools available
on the market, either free or under paywall, desktop or online applications, like the
Python library PyPDF2 [80], the desktop software Foxit PhantomPDF - PDF Editor
[81] and Kofax PDF [82], and the online platforms like PDFX [83] and Smallpdf [84].
The quality of these tools is usually measured by the ability to precisely extract the
text, reducing the noise and formatting related paragraphs together.

In the specific case of Infineon Technologies Corporate Supply Chain Innovation
department, 663 files are present. They are scientific papers, Bachelor’s, Master’s
and PhD’s thesis in PDF format, concerning the topic of Semiconductor Supply
Chain.

To extract the text out of these documents, we exploited the online tool PDFX

38

[83], a rule-based algorithm able to convert a PDF document in XML that is able to
recognize font and layout of the articles, therefore maintaining the logical structure
and assuring a good precision in the conversion. This allows us to identify the title
and the chunks of text getting rid of the tables and the captions in the documents,
that are usually source of noise in the conversion. Moreover, it is free of charge and
allows batch conversion. The output of this system is an XML file, embedding in
the XML tags the text, the tables and the figures of the document. A sample of the
structure of the document can be found in Appendix A.1.

The following step consisted in the extraction of the text out of the XML files. In
this phase, we did not consider tables and figures, as well as their captions. Analysing
the content of the XML files, we could notice that most of the text is embedded in
the region tags having the class DoCO:TextChunk. Hence, we considered those text
chunks together with the corresponding headers – other than the paper title – to
create a JSON file with two fields for each document: text and title.

Unfortunately, PDFX [83] was not able to convert all the documents, due to
restrictions in number of pages and size of the document accepted. The tool, in
fact, allows to submit PDF documents up to 5MB and until 100 pages. Moreover, it
is not able to turn images into text. For this reason, of the 663 documents available
to our department, only 499 were converted using that tool, while the others required
the usage of another software. In particular, Infineon provides Kofax Power PDF
[82], which is able to convert pdf documents of any size towards different formats,
other than providing Optical Character Recognition functionalities, that allow the
images containing text to be converted to text. The drawback of this tool is its
inability to extract the text into a structured format – for example XML – that
allows the individuation of noise, tables and pictures’ captions in the document and
the consequent removal using any general purpose programming language.

Likewise for the XML files, the TXT files are then saved to JSON file, in order
to be able to further process them.

Figure 3.1: Pipeline for the conversion from PDF to JSON

Sentence tokenization As described in paragraph 2.1.4, to tailor the language
model on a specific domain – as shown in [62, 61] – it is necessary to process the input
documents in order to create the text corpus where BERT [2] is further pre-trained
on.

SpaCy [79] is an open-source library for natural language processing in Python
and Cython. It is an out-of-the-box tool which is widely used in the NLP community,
and will be used here as well to tokenize the corpus into sentences. According to

39

the documentation of the library, the sentence segmentation task is carried out
using a dependency parser, which helps a statistical model to detect the sentence
boundaries.

The final result of this step is a data structure made of a list of dictionary objects,
each containing as fields:

• the title of the document

• the entire text corpus split into sentences

Figure 3.2: Sentence tokenization of the content of the JSON files.

In the next two Sections, the further pre-training of the BERT language model
on the text corpus is described together with the way it is exploited to retrieve
relevant documents to the user’s query.

3.1.1 BERT domain specific pre-training

To further pre-train BERT on a domain corpus, the input must have a specific data
format. According to the BERT official repository on GitHub [2], the input text has
to be in the format of a unique text file made of one sentence per line. Moreover,
each document is separated from the other by some blank lines.

Then, we proceeded with the creation of the dataset for the two training tasks
described in paragraph 2.1.4, namely Masked Language Modelling and Next Sen-
tence Prediction. For this purpose, the BERT repository provides a script called
create pretraining data.py – implemented in Tensorflow v1.11.0 [85] – that takes
in input the raw text and outputs binary files that will be later used to train the
model. Additionally, the script concatenates the sentences up to the maximum
length limit, in order to reduce the computation for padding elements. As shown in
the repository, the command to launch the script is:

python c r e a t e p r e t r a i n i n g d a t a . py
−− i n p u t f i l e=<path/ to / the / text / corpus>
−−o u t p u t f i l e=<path/ to / the / t f r e c o r d s>
−−v o c a b f i l e=<path/ to / the /vocab/ f i l e >
−−do l owe r ca s e=True
−−max seq length=128
−−max pred i c t i on s pe r s eq =20
−−masked lm prob =0.15
−−random seed=12345
−−dupe fac to r=5

where there are different parameters. The vocab file parameter indicates the
path to the vocabulary file used in the by the BERT model. As stated in paragraph

40

2.1.4, it uses the WordPiece vocabulary [58]. The masked lm prob refers to the
percentage of tokens to be masked, according to the procedure described in 2.1.4
it is the 15% of the total. The dupe factor reflects the percentage to split in train
and validation, having 5% of the corpus as validation set. According to the BERT
repository [2], the pre-training should be splitted into two phases: the first phase
– when the sequence length is 128 at maximum – helps the algorithm to seize the
characteristics of the text corpus. Instead, in the second – when the length is 512
– longer sequence relations are captured. Since we trained the model twice with
different sequence length, we created two binary files in accordance.

The number of global steps for which the model is trained in the first phase is
18000 steps, corresponding to 14 epochs. The system is further trained for 5000
steps when the maximum sequence length is 512, resulting in a training for 2 epochs
more. To do the further pre-training, we used one Graphical Processing Unit of
24GB GDDR, and ran the script run pretraining.py of the BERT repository [2]
with the following parameters:

python r u n p r e t r a i n i n g . py
−− i n p u t f i l e=<path/ to / t f r e c o r d s>
−−output d i r=<path/ to / the / output /model>
−−d o t r a i n=True
−−do eva l=True
−−b e r t c o n f i g f i l e=<path/ to / c o n f i g / f i l e >
−−i n i t c h e c k p o i n t=<path/ to /model/ checkpoint>
−−t r a i n b a t c h s i z e =56
−−max seq length=128
−−max pred i c t i on s pe r s eq =20
−−num tra in s t eps =18000
−−num warmup steps=8000
−−l e a r n i n g r a t e=4e−5

Here the input corresponds to the binary files created with the previous script,
while the second parameter refers to the output directory where the model will
be saved. Since first we wanted to train and then evaluate the model, we set the
do eval and do train flags to true. The next parameter is the bert config file,
which requires a json file describing the architecture of the system used. In our
case, we used the one described in section 2.1.4. Since we are further pre-training
the original BERT model, we need to import the initial checkpoint containing the
weights of the architecture trained by Google, and made publicly available in the
repository [2]. Additionally, the batch size (train batch size) and the maximum
sequence length (max seq length) are set. With a sequence length equal to 128, we
could use a batch size of 56, while when moving to sequence length of 512, the batch
size reduced to 8, due to high GPU memory requirements. The number of warm-up
steps identifies the number of steps necessary to increase the learning rate from 0
to 4e-5. In the second training phase, with the max seq length parameter equal to
512, we decreased the learning rate to 2e-5, as suggested in the repository by the
authors [2].

At the end of the training procedure, the language model is evaluated and the
results shown in Table 3.1. The accuracy for the language modelling task is only
64.5%, while the accuracy for the next sentence prediction task is close to 99%.

41

Figure 3.3: Representation of the training procedure on the specific domain.

There is not a clear metric to understand whether the results obtained are optimal,
except testing in a downstream task [2].

Table 3.1: Language model evaluation results.

Metric Value
global step 23000
global loss 1.8077
masked lm accuracy 0.6450
masked lm loss 1.7598
next sentence accuracy 0.9875
next sentence loss 0.0458

In the next Section, the model will be converted to the PyTorch v1.3.1 framework
in order to be compatible with Sentence-BERT [3], the system used to finally produce
sentence embeddings.

Conversion from Tensorflow to Pytorch checkpoint

In order to be able to train Sentence-BERT [3] on the language model further pre-
trained as in the previous section, it is necessary to convert it to a PyTorch v1.6.0 [86]
format checkpoint. The two frameworks, in fact, use a different representation of the
computational graph underlying the architecture, being the Pytorch one dynamic
and the Tensorflow static. Moreover, they use a different tensor representation, that
makes the two models impossible to work together, except with the use of a proper
script for the conversion.

For this task, the script convert bert original tf checkpoint to pytorch.py avail-
able in the public repository of HuggingFace [87] comes in handy. According to the
documentation, it loads the weights from the Tensorflow checkpoint and saves them

42

in the Pytorch model. The configuration file and the vocabulary are also necessary
for this task, since they will be used by the PyTorch model as well.

3.1.2 Sentence-transformer

Once the BERT model compatible with the PyTorch framework has been created,
it is possible to proceed with the encoding of the sentences. For this purpose, the
repository sentence-transformers [3] is used. As described in section 2.1.4, this archi-
tecture allows the production of sentence embeddings exploiting a siamese network,
where both of the two instances are BERT systems (Figure 3.5). For this purpose,
we will use the BERT system that was further pre-trained as shown in the previous
Section. On top of each BERT instance an average pooling layer is exploited to
output the sentence embeddings of the proper dimension (d=768).

The next step implies the training of Sentence-BERT over the combination of
SNLI and MultiNLI dataset and evaluation on the STS dataset, with the architecture
made of the two siamese instances of the BERT model further pre-trained, average
pooling enabled and soft-max function at the end to classify inference, contradiction
or neutrality.

The results computed in term of Pearson and Spearman are shown in Table 3.2.

Table 3.2: Sentence-BERT: Training on Multi-NLI dataset, STSBenchmark eval-
uation

Pearson Spearman
Cosine-Similarity 0.7331 0.7633
Manhattan-Distance 0.7682 0.7658
Euclidean-Distance 0.7665 0.7655
Dot-Product-Similarity 0.7165 0.7225

To increase the amount of data the system is trained on, the STS dataset is also
used to further train the model. The results are outlined in Table 3.3.

Table 3.3: Sentence-BERT: Training on Multi-NLI dataset and STS dataset

Pearson Spearman
Cosine-Similarity 0.8415 0.8490
Manhattan-Distance 0.8453 0.8483
Euclidean-Distance 0.8458 0.8488
Dot-Product-Similarity 0.8107 0.8117

As we can see from the Table 3.3, the results obtained are not so far from the
state-of-the-art scored by Sentence-BERT trained on the generic dataset, which was
of 0.8833 of Spearman correlation [3]. Our system scored 0.8412 on average, and we
argue the gap is essentially due to the specific domain the BERT model was further
pre-trained on.

Creation of the embeddings

Once Sentence-BERT is trained on the two main dataset, it is ready to create
the embeddings of every sentence of every document. Therefore, every sentence

43

Figure 3.4: Sentence BERT empowered by the domain specific BERT.

is processed by the model (Figure 3.5), the output embeddings saved in a database
together with the sentence itself.

Figure 3.5: Mapping of every sentence of the documents to the corresponding
sentence embeddings using domain specific SentenceBERT.

3.1.3 Annotation of Digital Reference’s classes

The usage of ontology helps the description of a domain in a structured and consis-
tent way, allowing all the players involved in its usage with different roles to ”speak”
the same language, precisely defining the relations between data and type [8]. In this
paragraph we are going to exploit this structure to add information and resources
to the domain specific ontology of interest.

When a domain ontology is used, it is likely to expect that all the classes are
labeled with the corresponding natural language name, usually in English. This
convention is fundamental to understand what the classes represent, since they are
usually named after strings that do not have a meaningful sense. For instance – as

44

shown in [88] – a class from the OBO library [89] ontology named ex:BFO 0000006
has as label ”Spatial region”, that allows us to understand it refers to the class
representing a spatial region. According to the World Wide Web Consortium [90],
the rdfs:label is an instance of the rdf:Property and is used with this purpose. Figure
3.6 shows this relation.

Figure 3.6: Relations of the Organizational Unit class.

The structure triples in the ontology have is suitable for the creation of sentences.
In fact, each triple is composed of subject (the class we are considering), predicate
and object. Taking advantage of this formalization, a set of sentences can be built up
exploiting the graph structure and the set of triples each class establishes together
with the predicates and the other classes that are directly connected to it. Therefore,
the pool of sentences created in this way corresponds to the description of the
relations the considered class has with the other classes of the ontology.

Then, these sentences are considered as queries and – for each of them – the
corresponding sentence embedding is computed. With the computation of the cosine
similarity score between each query and all the sentences of the literature text corpus,
it is possible to retrieve – for each triple – the best sentences and consequently the
best documents of the literature inherent to the class itself. The retrievement process
will be further explained in detail in the next section, where the same approach is
adopted to retrieve relevant documents to the user’s query.

Accordingly, the top-k documents can be attached to the class using another
relationship – rdfs:seeAlso – that, as defined in the W3C specification [90], allows
to list the resources that can supply further information about the class.

This approach is the one we followed to populate the Digital Reference, the ontol-
ogy for Semiconductor supply chains and supply chains containing semiconductors
[1]. As an example, we can consider the class

http://www.w3.org/ns/org#OrganizationalUnit

that in the Digital Reference is used to describe a unit of an organization. The label
of this class is ”Organizational Unit”. Figure 3.7 shows the relations between this
class and the connected classes.

Then, we extracted the sentences out of these relationships, using the owlready2
library [91]. This allowed an easy access to properties of the classes of an ontology.
Consequently, the concatenation of the labels led to the formulation of the proper
sentences. Hence, the sentences:

• Organizational unit has sub unit organizational unit.

• Organizational unit sub unit of organizational unit.

• Organizational unit sub class of business line.

• Organizational unit is responsible of function object.

45

Figure 3.7: Triple representing a labeled class.

• Organizational unit responsible for application area application area.

These sentences are given in input to Sentence-BERT, producing the mapping to
the vector representation. Through the computation of the cosine similarity between
each query and the pool of sentences, the documents are consequently ranked. The
number of documents we decided to attach to each class is equal to five. Therefore,
the documents attached to the class OrganizationalUnit with the rdfs:seeAlso can
be found in Table 3.4.

Table 3.4: Top-5 documents attached to the Organizational Unit class with
rdfs:seeAlso

Document link Cosine Similarity
Master Thesis final Julian 0.8225
Paffenholz Thesis 0.8154
winning with risk management 0.7698
MasterThesis DavidJG 0.7607
Russland diplomarbeit 0.7379

All the classes of the Digital Reference have been annotated with further re-
sources in the same way as done for the Organizational Unit class.

However, the attached documents via rdfs:seeAlso and the label described in the
rdfs:label relation are not the only meta information related to the class. Every
class is further annotated with a comment that describes precisely the usage of the
element referred to by the class. The rdfs:comment – described in [90] – is the
predicate that links ”human-readable description of a resource” [90] to the resource
itself. This definition will be retrieved together with the five documents taken from
the literature to better describe the elements of the ontology that match with the
keywords of each query.

To conclude, the Digital Reference is exploited as data structure that contains
useful resources for the classes that belong to the ontology – attached as links to
documents – and as a vocabulary where the description of every class is easily
accessible.

46

In the next Section, we will describe how the annotated Digital Reference will
be embedded in the document retrieval system.

3.2 Online architecture: the document retrieval

system

Concluded the offline design of the main elements, the online architecture can be
delineated.

Since the number of documents the user can browser is 663 but potentially could
be much more, it is convenient to design the system in order that it scales with the
increasing number of documents. Moreover, the Sentence-BERT instance is not a
lightweight model and requires a lot of computational power to be used effectively.
For these two main reasons, the system was designed as a web application, with a
client-server architecture, where both the documents and Sentence-BERT are stored
on the server side together with the Digital Reference. In particular, the server is
interfaced with a database where the sentence embeddings, the sentences and the
relative PDF documents are kept. In order to effectively design the web-application,
a design patter was considered. In the following Paragraph, a brief overview of the
specific architecture design chosen is done.

3.2.1 Architecture design

Multiple components are involved in the design of the system, since – as we stated in
the previous section – the Sentence-BERT model, the sentences and the correspond-
ing embeddings, and the Digital Reference come into play. Each of these elements
is used for different purposes. In particular:

• Sentence-BERT: used to convert the query into the corresponding vector em-
bedding.

• The sentences and sentence embeddings: stored in a relational database to-
gether with the corresponding documents consist in the content to be retrieved
to the user.

• The Digital Reference: it is used as an index to retrieve definitions and doc-
uments attached to the classes whose name appear as keywords in the user’s
query.

These elements have been prepared in an offline moment and are – in this phase
– ready to be used. The overall architecture we adopted is a multi-tier architecture,
with a logic built over the client-server one. Each tier represents a subsystem of
the system itself and provides a specific functionality where the elements previously
listed are harmonized to work together. The generic multi-tier architecture can be
based on a variable number of tiers, depending on the complexity and the needs of
the application [92].

The general framework expects three main tiers [92, 93]. The first in the presen-
tation tier, that usually runs on the client and displays the Graphical User Interface.
The second is the application layer, where the business logic is implemented and the

47

latter is the database layer, where the data are stored. The general architecture of
our document retrieval system follows this pattern, but with a small modification:
the application layer is separated into two main parts, that are activated in different
moments of the run. In the former, the application tier deals with the loading of
Sentence-BERT, the sentence embeddings and the Digital Reference, while in the
latter it uses this data to search for relevant documents to the query.

In Figure 3.8, the comprehensive architecture is depicted, showing the building
blocks and how they are related to each other.

Figure 3.8: Architecture of the document retrieval system.

In the following Paragraphs, the detailed description of the functionalities of each
of the elements is carried out.

3.2.2 The presentation tier

The presentation tier (or the client) is responsible to take in input the query of the
user in natural language and to forward it to the server. For this purpose a search
bar is created – where the query can be typed – and a search button in charge of
forwarding the string to the server with an HTTP request.

Once the server answers with the list of document titles, sentences and scores,
documents and definitions coming from the Digital Reference, the client displays
them. An example of response coming from the server can be seen in Appendix A.2.

In particular, for every document displayed to the user, the title is heading,
immediately below it the sentences matching the query are reported, and on the right
in respect of the title the score is shown. When the query contains keywords that
match with the class names of the Digital Reference, the corresponding definition
is retrieved and showed, together with the top-5 documents related to the class, on
the left in respect to the list of documents. An example is represented in Figure 3.9.

When the user wants to open a certain document, the title offers an embedded
link to the document. By clicking on it, another HTTP request to the server is
carried out, with the title of the document embedded in the URL. In the end, the
document received from the server will be opened in a new window of the browser.

48

Figure 3.9: Example of the document retrieval system graphical interface.

3.2.3 The application tier

The server is the most complex element of the building blocks, and performs different
operations.

When it is started, it is in charge of three tasks:

• Loading the Sentence-BERT model.

• Loading the sentence embeddings and the sentence id from the database.

• Loading the Digital Reference ontology.

Once the server has loaded the required elements, the system is ready to serve
the requests of the user.

When the user submits the query, it is encoded by the Sentence-BERT encoder
(SBERT in the algorithm formalization) to the corresponding sentence embedding.
Then, the norm-2 of the vector is computed, and the dot product between all the
sentence embeddings and the query embedding is used to rank all the sentences. To
speed up the computation, the normalization of the sentence embeddings takes place
when they are loaded from the database. Consequently, for every query the user
submits to the system, it is only necessary to compute the norm of that sentence
embedding and then to quantify the dot product of the query with each sentence
embedding. This is the equivalent of computing the cosine similarity, and avoids to
spend computation time while the user is waiting for a result.

Cosine similarity =
~a ·~b
||~a||||~b||

=
~a

||~a||
·
~b

||~b||

Next, the best fifteen results are taken in consideration. The sentence id (see
3.2.4) is used to retrieve the corresponding sentence in natural language, the doc-
ument id (see 3.2.4) of the document the sentence belongs to and the title of the
document. In Algorithm 3, the basic pipeline is outlined.

49

Algorithm 3 SBERT cosine similarity ranking

1: query emb← SBERT (query)
2: query emb norm← ||query emb||2
3: for (t = 0; t < NUM SENTENCES; t+ +) do
4: cosine similarity[t]← query emb norm · sentences norm[t]
5: sentence id[t]← t
6: end for
7: results← sort based on cosine similarity(cosine similarity, sentence id)
8: sentence[], doc id[], title[]← query database(top15(results))
9: return sentence[], doc id[], title[]

Furthermore, if the query contains keywords that match with the class names
of the Digital Reference, the corresponding class definition and documents are re-
trieved. In order to achieve this purpose, the SpaCy [79] library is used to identify
the noun chunks, that according to the documentation represent the small sentences
that refer and describe a noun and remove the stop words. Then, the keywords found
so far are compared to the class names of the Digital Reference, using a fuzzy search
algorithm [94]. Here, the Levenshtein distance [95] scores the distance between each
keyword and the labels of the classes. It consists in the minimum amount of mod-
ifications a string must undergo to be equal to another one [96]. Therefore, all the
class labels that score above above a certain threshold are used to access the class
and retrieve the attached documents and related definition.

Algorithm 4 Digital Reference class-keyword fuzzy match

1: matches← list[]
2: key matches← list[]
3: noun chunks← identify noun chunks(query)
4: noun chunks without stop words← remove stop words(noun chunks)
5: for keyword in noun chunks without stop word do
6: for class in Digital Reference do
7: match← dictionary{}
8: score← Levenshtein(keyword, class.label)
9: if score > 80 then

10: match[′keyword′]← class.name
11: match[′definition′]← class.comment
12: match[′related works′]← class.seeAlso
13: key matches.append(match)
14: end if
15: end for
16: matches.append(key matches)
17: end for
18: return matches

This set of information – together with the list of relevant documents found with
the cosine similarity measure – is then sent to the client, in the format shown in
Appendix A.2.

50

3.2.4 The data tier

In order to design the database properly, the entities that come into play are con-
sidered. The first pool of data concerns the sentence. It is necessary to have a
sentence id to identify the actual sentence, the related embedding and the docu-
ment id the sentence belongs to. The document id is designed to be the foreign key
of the other relevant entity, which is the document. Indeed, a document is identified
by the document id, its title and the file in PDF format, which is stored in the
database. This structure is depicted in Figure 3.10.

Figure 3.10: Entity relationship model representing the database design.

In the following Chapter, an evaluation of the system is built will be carried out,
taking advantage of the knowledge of experts in the field of Semiconductor Supply
Chain Innovation department.

51

Chapter 4

Evaluation

4.1 Evaluation

In order to state whether the system built so far is able to give an actual contribution
to the company and to the user when this poses a specific query, we proceeded with
the evaluation of the system. To the extent of our knowledge, there is no other tool
previously developed on the same domain of semiconductor supply chain, there is no
golden standard already available for the comparison. For this reason, we provided
to the creation of a new reference for document retrieval systems over this domain
exploiting the knowledge of a domain expert. In particular, given a set of queries,
the person interviewed will be in charge of defining the ground truth that will be
used to evaluate our system.

In the following Paragraphs, the identification of the metrics and their description
will be followed by the overview of the experiment. In the end, the results are
presented together with a brief discussion.

4.1.1 Metrics

The first step towards the evaluation of the system consists in the roughing out
of the metrics to be adopted. The evaluation metrics normally used to evaluate
information retrieval systems are divided into online and offline techniques [97].
While the formers are mainly oriented to the evaluation of the interaction between
the user and the system in terms of user experience, the latter aims at stating
whether the documents retrieved – and in general of the information – are relevant
to the query submitted [98]: therefore, we will focus only on the offline assessment
of the performance of the system, since the online is out of the scope of this thesis.

According to [99], the offline measures further divide into metrics for ”unranked
retrieval set” [99] and for ”ranked retrieval set” [99]. As the names already say, the
unranked metrics are used when the pool of results is treated as a pure set, where
the order in which the items are presented does not play any role in the score of the
metric.

Metrics without ranking

Among the measures that are often used to evaluate an information retrieval system
when the order of the results is not central, we can find precision, recall and F-score
[99]. In particular, precision in information retrieval is defined as the ratio between

52

the number of relevant documents retrieved and the number of documents retrieved.
Defined:

• the set of queries Q = {q0, ..., qi, ..., qV }, with V ∈ N

• the set of relevant documents to the query qi retrieved by the system, R(qi) =
{r0, ..., rj, ..., rM}, with M ∈ N

• the set of documents retrieved by the document retrieval system according to
the query qi, D(qi) = {d0, ..., dj, ..., dT}, with T ∈ N

the average precision among all the queries can be written as [99]:

Precision(Q) =

∑V
i=0

|Rqi |
|Dqi |

V

On the other hand, recall can be defined as the ratio between the number of
documents retrieved by the system that are actually relevant to the query [99].
In order to calculate this metric, it is necessary to compute for every query which
documents are relevant and which are not. Consequently, describing the set of all the
documents relevant to a certain query qi as A(qi) = {a0, ..., aj, ..., aO} with O ∈ N
and keeping the remaining notation the same as the one used to define the precision,
we can define the average recall over all the queries as:

Recall(Q) =

∑V
i=0

|Rqi |
|Aqi |

V

According to [99], the presence of two measures to evaluate a system has some
advantages. In fact, when the requirements of the systems do not imply it to return
all the documents inherent to a query, but requires the document retrieved to be
pertinent to the query, it is acceptable to have low recall and high precision. On
the other side, some systems are particularly interested in getting all the informa-
tion related to the query, trading it off for a low precision. In our case, no specific
requirement on precision and recall is imposed. Hence the F-measure will be ex-
ploited, that balances them and will work as general indicator of the performance
of the document retrieval system. It is defined as [99]:

F -measure =
2 · Precision ·Recall
(Precision+Recall)

Metrics with ranking

On the other hand, the ranked metrics are used when the order in the result is
relevant to the the presentation of the documents related to the query. Among
the metrics that can be used in order to establish whether the results returned are
presented in the proper order, we can find Mean Average Precision (mAP) and
Normalized Discounted Cumulative Gain (NDCG), that – according to Chen et al.
[98] – are the metrics that are most widely used in the offline evaluation of ranked
results.

As Sanderson et al. presented in [99], the Mean Average Precision is computed
as the mean among all the queries of the average precision of every query. This, in

53

turn, is calculated as the sum of the precision of a given set of k elements divided
by the number of elements that are relevant for the query (|A|). More precisely, it
can be seen as:

mAP =

∑V
i=0AP (qi)

V

where

AP (qi) =

∑|R|
k=0(Precision@k · rel(k))

|A|

where Precision@k calculates the ratio between the number of relevant docu-
ments in the first k positions, and rel(k) represents an integer equal to 1 in case the
kth element is relevant, 0 otherwise.

As it could be easily inferred, the mAP exploits a classification of the documents
which is binary (e.g. relevant, non-relevant) to the query, while other metrics like
NDCG require the documents to be classified according to a scale of relevancy, which
is not as easy as the previous one to be stated. Moreover, the ”good discrimination
and stability” [99] of the mAP makes of this metrics the optimal candidate for our
use-case.

The next Paragraph will describe how the experiment was conducted and will
present the pool of queries chosen for the evaluation.

4.1.2 Experiment

Once the metrics to evaluate the system were defined, we proceeded with the in-
dividuation of the queries to run against the document retrieval system. Since the
pool of documents to be handled has as specific domain the semiconductor supply
chain, we considered the Supply Chain Operation Reference (SCOR) model [100]
the semiconductor supply chain is based on and the main areas of interest of the
department to individuate valuable queries. The internal organization of the depart-
ment reflects the main topics addressed by the research, like digitization, simulation,
green supply chain, human and artificial intelligence collaboration and semantic web.
Therefore, the queries the expert decided to pose to the system – reported in Table
4.1 – inevitably inquire the system in these directions.

Consequently to the delineation of the queries, we asked the expert to identify
the set of documents relative to every query according to a binary classification
metric: for every document of the pool of documents, the expert had to label it
with relevant or non-relevant. This allowed us to create a golden standard, whose
content is outlined in Table 4.2.

Thus, all the elements for the evaluation are in place, and the results will be
showed in the next paragraph.

4.1.3 Results

The queries previously defined are run against the document retrieval system and
the results are presented in Table 4.3.

54

Table 4.1: Queries defined together with the domain expert, according to the topics
of interest of the department.

ID Query
Q1 What is the carbon footprint of Infineon Technologies?
Q2 What is an end-to-end supply chain?
Q3 What is the Semantic Web?
Q4 How is customer order behavior managed at Infineon Technologies?
Q5 Could artificial intelligence help identifying customer order behavior?
Q6 How can we optimize lot-size?
Q7 Which are the tools used in order management?
Q8 How does the order fulfillment work?
Q9 How do human and artificial intelligence collaborate together?
Q10 What is the Digital Reference?

Table 4.2: Golden standard defined together with the domain expert, according to
the topics of interest of the department.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
doc18 doc5 doc12 doc7 doc19 doc3 doc9 doc1 doc13 doc60
doc20 doc38 doc16 doc19 doc26 doc4 doc11 doc2 doc14 doc61
doc22 doc40 doc21 doc44 doc44 doc11 doc17 doc6 doc15 doc62
doc27 doc54 doc29 doc46 doc49 doc24 doc36 doc7 doc23 doc63
doc33 doc55 doc30 doc50 doc34 doc52 doc8 doc25 doc64
doc39 doc45 doc37 doc52 doc35 doc54 doc10 doc31 doc72
doc47 doc43 doc53 doc45 doc57 doc28 doc32 doc74
doc51 doc52 doc54 doc54
doc59 doc73 doc55 doc55

doc74 doc79 doc56
doc58

Table 4.3: Results from the document retrieval system, according to the queries
outlined in Table 4.1.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
doc39 doc54 doc29 doc44 doc76 doc54 doc82 doc55 doc25 doc63
doc51 doc69 doc12 doc76 doc81 doc24 doc17 doc6 doc23 doc25
doc59 doc70 doc72 doc54 doc44 doc56 doc7 doc84 doc32 doc91
doc33 doc40 doc30 doc77 doc49 doc82 doc15 doc10 doc14 doc92
doc54 doc71 doc63 doc78 doc26 doc4 doc11 doc2 doc89 doc60
doc22 doc55 doc48 doc19 doc82 doc83 doc54 doc86 doc13 doc72
doc67 doc17 doc43 doc79 doc79 doc45 doc85 doc87 doc90 doc62
doc27 doc73 doc80 doc6 doc55 doc1 doc74
doc65 doc74 doc49 doc88
doc66 doc75 doc53
doc18 doc16 doc55
doc44
doc68

55

As next step, we proceeded to calculate the precision, recall, F-measure and
mean Average precision according to Paragraph 4.1.1. The results are shown in
Table 4.4.

Table 4.4: Results from the document retrieval system, according to the queries
outlined in Table 4.1.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Precision 0.53 0.42 0.63 0.54 0.37 0.75 0.43 0.44 0.71 0.63

Recall 0.78 0.5 0.7 0.6 0.75 0.54 0.43 0.57 0.71 0.71
F-measure 0.64 0.46 0.67 0.57 0.5 0.63 0.43 0.5 0.71 0.67

AP 0.69 0.33 0.52 0.38 0.36 0.55 0.2 0.3 0.69 0.44

Consequently, we can proceed to the calculation of the mean of all the metrics
per query, which is summed up in Table 4.5.

Table 4.5: Summary of the results obtained running the queries described in Table
4.1.

Precision Recall F-measure Mean Average Precision
0.5486 0.6301 0.5777 0.4468

In the next paragraph, a short discussion of the results will be carried out.

4.1.4 Discussion

The results presented in the previous Paragraph outline different characteristics of
the document retrieval system, that we will show according to the metrics used for
the evaluation.

As a first instance, we can acknowledge that recall has – on average – values
that fluctuate between 0.43 and 0.78, with an average of 0.63 . We argue that these
results are due to the higher number of documents the system tends to consider as
relevant compared to the number that actually are. Hence, among these last ones,
it has more possibilities to individuates the correct ones, exactly like a system that
retrieves all the documents for every query: it will have a recall equal to 1.

On the other hand, the precision shows that on average half of the documents
retrieved by the engine are considered pertinent to the query posed. After a more
accurate investigation, we inferred that the fact that the value of this metric is not
excellent is due to the partial inability of the language model to precisely individuate
the meaning of some expressions and the object they refer to. For example in
Q10 – where the system was asked ”What is the Digital Reference?” – some of
the documents retrieved contained sentences with the word ”digitization”, hence
representing the system not being able to understand the query exclusively referred
to the supply chain semiconductor ontology. To overcome this issue, it is necessary
to further pre-train the language model over a higher amount of documents specific
to the semiconductor supply-chain domain, to allow the model to gain a better
insight into the specific language used.

Moreover, the mean average precision shows that a good rate of relevant docu-
ments appear in the first positions of the results of the document retrieval system,
therefore witnessing the effectiveness of the cosine similarity as score function.

56

To conclude, given the absence of another document retrieval system developed
over the semiconductor supply chain domain we cannot compare the results to state
the effectiveness of the overall engine. Anyway, we consider these first results en-
couraging for the further growth of the framework built so far. For the future work,
we will evaluate the system on a publicly available dataset, to assess a comparison
of the performance with other systems.

57

Chapter 5

Conclusions

5.1 Summary

The amount of data available on the Internet and produced by private users, compa-
nies and public infrastructures is immense. It is estimated that in 2018 the volume
of information produced was 33 Zettabytes and will grow to 175 Zettabytes in 2025
[4].

The amount of public and restricted documents produced by institutions con-
stitutes an invaluable source of knowledge for the members of the institution itself.
Therefore the necessity to make these documents browsable, accessing them not
only through the usage of a keyword based approach, but building a system able to
understand the meaning of the content of the document.

To accomplish this goal, we created a document retrieval system with the us-
age of Transformer-based model and a domain specific ontology. In particular, the
development of the system articulated in two parts: the offline and the online. In
the first one – the offline – we adopted the Transformer-based model BERT [2], a
bidirectional encoder pre-trained over a text corpus ready to be used in downstream
tasks. To tailor the model to the specific domain we are dealing with – the semi-
conductor supply chain – we further pre-trained the model over the pool of papers,
Ph.D. ’s, Master’s and Bachelor’s thesis available to the Infineon Corporate Supply
Chain Innovation Department. The result is a new language model that conserves
the structure of the original one [2], and that furthermore includes the character-
istics of the language model specific to the domain it is tailored for, consequently
embedding the specific vocabulary and terms.

The new language model is then exploited to train a siamese network for the
production of sentence embeddings, SentenceBERT [3]. SentenceBERT incorporates
the knowledge BERT has stored during the training phase and uses it to train over
the natural language inference task, that consists in understanding whether two
sentences contradict, infer or are neutral to each other. The model obtained is
consequently able to state whether two sentences are related to each other and –
more specifically – understand whether they deal with the same topic. We will use
this feature to understand to which extent each sentence of all the documents is
related to the query the user submits to the system.

The mechanism just explained was used to annotate the Digital Reference [1]
with the literature of the department, so to obtain a domain specific ontology where
for every entity, some documents related to that class and those connected to it are

58

attached as further annotation. This data structure will e exploited to show to the
user the class related to the query submitted, when the query contains a keyword
that fuzzy matches with an entity of the ontology.

The second phase of the architecture design – the online one – consisted in
the development of the web architecture to make the framework accessible to the
user. Based on the three-tier architecture, the document retrieval system contains
a presentation tier responsible for the interactions with the user and the display of
the information received by the application tier. The application tier, instead, is
in charge of retrieving the documents whose sentences best match with the query
posed by the user, other then browsing the Digital Reference to find a match between
query keywords and entities. When the application tier identifies finds some relevant
matches both within the ontology and in the set of sentences part of the literature,
the application tier accesses the data tier to retrieve the relevant documents to the
query.

The results gained comparing the documents retrieved for a set of ten queries
with the golden standard provided by an expert are encouraging and allowed us to
identify some points of action to improve the overall system.

5.2 Outlook

In this Paragraph we would like to address the future work that could lead to an
improvement the overall performance of the document retrieval system built in this
thesis.

In the first stages of the design of the offline architecture, we converted the
PDF documents to pure text using different tools. After a further inspection of the
results of the conversion, we acknowledge that some errors are present not only in
the decoding of special characters, but also in the formatting. Hence, a tool able
to improve the format conversion could involve a greater capability in the display
of the results and in the further pre-training of the language models. To increase
the performance of the language model, it is necessary to employ as much text as
possible. Therefore, a future version should take into account this element as well.

The Transformer-based model we chose to use in this thesis the the BERT base
uncased, whose characteristics are outlined in section 2.1.4. It could be interesting
to see how bigger architecture – like BERT large uncased – and newer ones – like
the Reformer [101] – would perform in this task.

Furthermore, similarity scores other then the cosine similarity can be explored
to improve the ranking of the documents of the system.

To conclude, the visualization of the entities of the Digital Reference can be
dynamically shown, in order to allow the user to gain a complete overview of the
ontology and its structure.

59

Appendix A

Appendix

A.1 Sample of xml document

Sample of a xml document, given in output from the PDFX tool [83].

<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>
<pdfx xmlns:xsi=” ht tp : //www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi:noNamespaceSchemaLocation=” ht tp : // pdfx . cs .man . ac . uk/
s t a t i c / a r t i c l e−schema . xsd”>

<meta>
<job>098786967</ job>
<base name>1 x0 i</base name>

</meta>
<art ic le>
<front c l a s s=”DoCO:FrontMatter”>
<outsider c l a s s=”DoCO:TextBox” type=” header ” id=”1”>

T i t l e</outsider>
<outsider c l a s s=”DoCO:TextBox” type=” o u t s i d e r ” id=”2”>

Some text</outsider>
<outsider c l a s s=”DoCO:TextBox” type=” o u t s i d e r ” id=”3”>

Some Text</outsider>
</ front>
<body c l a s s=”DoCO:BodyMatter”>
<region c l a s s=”DoCO:TextChunk” id=”4” page=”1” column=

”1”>Some text</region>
<region c l a s s=”DoCO:FigureBox” id=”Fx5”>
<image c l a s s=”DoCO:Figure” s r c=”1 x0 i . page 001 .

image 01 . png” thmb=”1 x0 i . page 001 . image 01−thumb .
png”/>

</region>
</body>

</ art ic le>
</pdfx>

60

A.2 Server Response example

Example of response from the server. Note: the title field is omitted, a generic
identifier is used instead.

{
” r e s u l t s ” : {

”dr” : [
{

” d e f i n i t i o n ” : [
”An Organizat ion such as a department or support

un i t which i s part o f some l a r g e r Organizat ion
and only has f u l l r e c o g n i t i o n with in the
context o f that Organizat ion . In p a r t i c u l a r the

un i t would not be regarded as a l e g a l e n t i t y
in i t s own r i g h t . ”

] ,
” e n t i t y ” : nu l l ,
”keyword” : ” Organ izat iona lUni t ” ,
” r e l a t ed work s ” : [

”Master T h e s i s f i n a l J u l i a n ” ,
” Pa f f enho l z The s i s ” ,
” winning with r i s k management” ,
” MasterThesis DavidJG ” ,
” Russ land d ip lomarbe i t ”
]

}
] ,
” sb e r t ” : [
{

” id ” : 373 ,
” s co r e ” : 0 .7661965095310774 ,
” t ext ” : ” Organ i za t i ona l I d e n t i f i e r s . ” ,
” t i t l e ” : docX

} ,
{

” id ” : 560 ,
” s co r e ” : 0 .7556348554175809 ,
” t ext ” : ” Organizat ion . ” ,
” t i t l e ” : docY

} ,
{

” id ” : 561 ,
” s co r e ” : 0 .7556348554175809 ,
” t ext ” : ” Organizat ion . ” ,
” t i t l e ” : docZ

} ,
{

” id ” : 584 ,

61

” s co r e ” : 0 .7556348554175809 ,
” t ext ” : ” Organizat ion . ” ,
” t i t l e ” : docX1

} ,
. . . ,
{

” id ” : 108 ,
” s co r e ” : 0 .5750698906490561 ,
” t ext ” : ” Production and Operat ions Ana lys i s . ” ,
” t i t l e ” : docY1

}
]

}
}

62

Appendix B

Appendix

The following sections present the code written to implement the

B.1 Application tier

Code of the application tier.

app.py

imports . . .
2

app = Flask (name)
4 l o gg ing . bas i cCon f i g (l e v e l=logg ing .DEBUG)

6

@app . route (”/”)
8 def h e l l o () :

return r ender template (” index . html”)
10

12 @app . route (”/query” , methods=[’POST ’])
def c o l l e c t q u e r y () :

14 # t e x t i s r e t r i e v e d from the form
t ex t = reques t . form [’ query ’]

16

the t e x t i s conver ted to vec t o r
18 render data SBERT = s e r v i c e . reply with sentence BERT (infineonBERT ,

text , sentences embeddings , i d v e c t)

20 render data DR = s e r v i c e . r e p l y w i t h D i g i t a l R e f e r e n c e (text ,
d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s)

22

crea t e a j son to re turn i t as a p p l i c a t i o n / json
24 r ender data = { ’ s b e r t ’ : render data SBERT , ’ dr ’ : render data DR}

26 r e s u l t = { ’ r e s u l t s ’ : r ender data }

28 return r e s u l t

30

@app . route (”/pdf/< f i l ename>”)

63

32 def ge t pd f (f i l ename) :

34 # f i l e r e t r i e v e d from the d i r e c t o r y
f i l e = send f r om d i r e c t o ry (app . c on f i g [’UPLOADFOLDER’] , f i l ename +

” . pdf ”)
36

response c r ea t i on
38 re sponse = make response (f i l e)

re sponse . headers [’ Content−Type ’] = ’ app l i c a t i o n /pdf ’
40 re sponse . headers [’ Content−Di spo s i t i on ’] = ’ i n l i n e ; f i l ename=output .

pdf ’

42 # response sen t
return re sponse

44

46

i f name == ” main ” :
48 # load Sentence−BERT

50 l o gg ing . debug (” Sentence BERT load ing . . ”)
infineonBERT = model . InfineonBERT (” In f i n eon search engine ”)

52 print (” Sentence BERT loaded . ”)

54 sentences embeddings , i d v e c t = infineonBERT .
f i l e s s e n t en c e embedd i ng s

56 # laod the on to logy
onto = searchWithDR . importOntology (searchWithDR .PATH SAVEDONTOLOGY
)

58 d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s = annotateDR .
g e t tup l e c l a s s name (onto)
l ogg ing . debug (”Ontology loaded . ”)

60

app . c on f i g [’UPLOADFOLDER’] = ’ Folder / to /upload ’
62 app . run (debug=True , port =8080 , u s e r e l o ad e r=False)

l ogg ing . debug (” Started s e r v e r ! ”)

service.py

NUMTHREADS = 4
2 NUMDOCUMENTS = int (50 / NUMTHREADS)

4 # query to embedding convers ion

6 def convert query to embedding Sentence BERT (model , query) :
return model . encode (query , show progre s s bar=False)

8

10 # master thread management func t i on to l ook in to documents

12 def mul t i p r o c e s s s e a r ch (query embeds , sentences embeddings , i d v e c t) :

14 #lo g g i n g . debug (” Mul t i p roces s search . ”)
best sent documents = []

16 r e s u l t s = {}
threads = l i s t ()

64

18 num f i l e s = math . c e i l (len (sentences embeddings) / NUMTHREADS)
lock = thread ing . Lock ()

20

for query embed in query embeds :
22

query embed = np . array (query embed)
24 query embed = query embed / np . l i n a l g . norm(query embed)

26 for index in range (NUMTHREADS) :

28 i n d e x l e f t = index ∗ num f i l e s
i nd ex r i gh t = (index+1) ∗ num f i l e s

30

i f i n d ex r i gh t > len (sentences embeddings) :
32

i n d ex r i gh t = len (sentences embeddings)
34

36 x = thread ing . Thread (t a r g e t=sea r ch in doc , args=(
query embed , sentences embeddings [i n d e x l e f t : i nd ex r i gh t] ,
best sent documents , i d v e c t [i n d e x l e f t : i nd ex r i gh t] , l o ck))

38 threads . append (x)
x . s t a r t ()

40

for thread in threads :
42 thread . j o i n ()

44

best sent documents = sorted (best sent documents , key=lambda x :
x [0] , r e v e r s e=True)

46

d o c s e n t t i t l e = database . r e t r i e v e s e n t e n c e a n d d o c t i t l e (
best sent documents)

48

s e t d o c i d = set ()
50

for ((doc id , sentence , t i t l e) , (s im i l a r i t y , embedding)) in zip
(d o c s e n t t i t l e , bes t sent documents) :

52 new entry = {
” id ” : doc id ,

54 ” t i t l e ” : t i t l e ,
” t ex t ” : sentence ,

56 ” s co r e ” : s im i l a r i t y
}

58 i f doc id in r e s u l t s . keys () :
r e s u l t s [doc id] [” t ex t ”] += ” ” + new entry [” t ext ”]

60 r e s u l t s [doc id] [” s co r e ”] += new entry [” s co r e ”]
else :

62 r e s u l t s [doc id] = new entry

64 r e s u l t s = sorted (r e s u l t s . va lue s () , key=lambda x : x [’ s c o r e ’] ,
r e v e r s e=True)

66 return l i s t (r e s u l t s)

68

thread func t i on to l ook in to documents

65

70

def s e a r ch i n do c (query embed , sentence embeddings , best doc , i d vec t ,
l o ck) :

72

make the t ranspose f o r the dot product
74 s t a r t = time . time ()

sentence embeddings = sentence embeddings . t ranspose ()
76 check = time . time () − s t a r t

78 # compute the d i s t anc e s us ing the dot product
d i s t an c e s = np . dot (query embed , sentence embeddings)

80 d i s t an c e s = np . squeeze (np . asar ray (d i s t an c e s))

82 # sor t the sen tences based on the s im i l a r i t y
d i s t an c e s = zip (d i s tance s , i d v e c t)

84 d i s t an c e s = sorted (d i s tance s , key=lambda x : x [0] , r e v e r s e=True)

86 # s to r e in the data s t r u c t u r e common to a l l the threads
l o ck . acqu i r e ()

88 print (NUMDOCUMENTS)
for i in range (50) :

90 bes t doc . append (d i s t an c e s [i])
l o ck . r e l e a s e ()

92

94 # response c r ea t i on wi th sentence BERT

96 def reply with sentence BERT (infineonBERT , text , sentences embedings ,
i d v e c t) :

98 l i s t que ry embeds = convert query to embedding Sentence BERT (
infineonBERT . encoder , [t ex t])

100 r ender data = mu l t i p r o c e s s s e a r ch (l i s t query embeds ,
sentences embedings , i d v e c t)

102 return r ender data

104

re turns a l i s t o f d i c t i o n a r i e s , where every d i c t i ona r y r ep r e s en t s the
r e s u l t s o f search keyword

106 def r e p l y w i t h D i g i t a l R e f e r e n c e (text ,
d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s) :

108 keywords = searchWithDR . extract keywords f rom query (t ext)
annotat ions = []

110

for keyword in keywords :
112 annotat ion = searchWithDR . s e a r c h c l a s s a nno t a t i o n s (keyword ,

d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s)

114 i f annotat ion [’ e n t i t y ’] != ”” :

116 annotat ions . append (annotat ion)

118

return annotat ions

66

model.py

2 class InfineonBERT :
def i n i t (s e l f , name) :

4 s e l f . name = name
s e l f .PATHTO SENTENCETRANSFORMER = ’ path/ to / sentence /

t rans fo rmer ’
6 s e l f .PATH TO PDFs = ’ path/ to /pdf ’

s e l f . f i l e s s e n t en c e embedd i ng s = s e l f . load embeddings ()
8 s e l f . encoder = s e l f . l oad Sentence Trans former ()

10 def load embeddings (s e l f) :

12 l o gg ing . debug (”Loading embeddings . ”)

14 count = database . count s en tence s ()
conn = database . connect ()

16 cur = conn . cur so r ()

18 sentences embeddings = []
i d v e c t = []

20

for index in tqdm(range (1 , count + 1)) :
22 id , vect = database . r e t r i eve embedd ing (cur , index)

vect = np . array (vect)
24 sentences embeddings . append (vect /np . l i n a l g . norm(vect))

i d v e c t . append (id)
26

sentences embeddings = np . asmatr ix (sentences embeddings)
28 return sentences embeddings , i d v e c t

30

32

def l oad Sentence Trans former (s e l f) :
34 dev i c e = ’ cuda ’ i f torch . cuda . i s a v a i l a b l e () else ’ cpu ’

model = SentenceTransformer (s e l f .PATHTO SENTENCETRANSFORMER)
36 model . to (dev i c e)

return model

database.py

2 imports . . .

4 def connect () :
conn = psycopg2 . connect (host=” l o c a l h o s t ” , database=” s ea r ch eng in e ” ,
user=” pos tg r e s ” , password=” pos tg r e s ”)

6 return conn

8 def c r e a t e t a b l e s () :
conn = connect ()

10 try :

12 cur = conn . cur so r ()

67

14 commands = (
”””

16 CREATE TABLE documents (
doc id SERIAL PRIMARY KEY,

18 t i t l e VARCHAR(65535) NOT NULL,
hook VARCHAR(65535) NOT NULL,

20 document BYTEA
)

22 ””” ,
”””

24 CREATE TABLE sentences (
s en t enc e i d SERIAL PRIMARY KEY,

26 sentence VARCHAR(65535) NOT NULL,
embedding f l o a t [] NOT NULL,

28 doc id INTEGER NOT NULL,
FOREIGN KEY (doc id)

30 REFERENCES documents (doc id)
ON UPDATE CASCADE ON DELETE CASCADE

32)
””” ,

34 ”””
CREATE TABLE p i c k l e (

36 p i c k l e i d INTEGER PRIMARY KEY,
p i c k l e f i l e BYTEA

38)
”””

40)

42 for command in commands :
cur . execute (command)

44

conn . commit ()
46

l o gg ing . debug (”Tables c r ea ted . ”)
48

cur . c l o s e ()
50

52 except (Exception , psycopg2 . DatabaseError) as e r r o r :
l ogg ing . e r r o r (e r r o r)

54

56 f ina l ly :

58 conn . c l o s e ()

60

def i n s e r t d a t a (sentence embeddings) :
62 conn = connect ()

try :
64

66 cur = conn . cur so r ()

68 sq l documents = ”””
INSERT INTO documents (t i t l e , hook , document)

70 VALUES (%s , %s , %s)
RETURNING doc id ;

68

72 ”””

74 s q l s e n t e n c e s = ”””
INSERT INTO sentences (sentence , embedding , doc id)

76 VALUES (%s , %s , %s)
RETURNING sen t enc e i d ;

78 ”””

80 s q l p i c k l e = ”””
INSERT INTO p i c k l e (p i c k l e i d , p i c k l e f i l e)

82 VALUES (%s , %s) ;
”””

84

print (” I n s e r t i n g data . . ”)
86

for b in range (0 , 10) :
88 with open(”C: / Users /Mottola /Documents/ In f ineonSearchEngine /

sentence embeddings ” + str (b) + ” . p i c k l e ” , ” rb”) as p i c k l e f i l e :
p = p i c k l e f i l e . read ()

90 cur . execute (s q l p i c k l e , (b , p))

92 for doc in sentence embeddings :
print (”\ t ”+doc [’ t i t l e ’])

94 with open(PATH TO PDF + doc [’ hook ’] + ” . pdf ” , ” rb”) as f :
pdf = f . read ()

96 cur . execute (sql documents , (doc [’ t i t l e ’] , doc [’ hook ’] , pdf)
)

doc id = cur . f e t chone () [0]
98 # lo g g i n g . debug (doc id)

100 for (sent , emb) in zip (doc [’ s en t ence s ’] , doc [’ embeddings ’])
:

cur . execute (s q l s en t en c e s , (sent , emb . t o l i s t () , doc id)
)

102 s en t en c e i d = cur . f e t chone () [0]
lo g g i n g . debug (s en t enc e i d)

104

conn . commit ()
106

l o gg ing . debug (”Data i n s e r t e d . ”)
108

110 except (Exception , psycopg2 . DatabaseError) as e r r o r :

112 l o gg ing . e r r o r (e r r o r)

114

f ina l ly :
116

conn . c l o s e ()
118

120

def r e t r i e v e embedd ing s f r om p i ck l e () :
122

try :
124

conn = connect ()

69

126

cur = conn . cur so r ()
128

query = ”””
130 SELECT p i c k l e f i l e

FROM p i c k l e
132 WHERE p i c k l e i d = %s ;

”””
134

l i s t embedd ing s = []
136 for index in range (10) :

l ogg ing . debug (”Executing query {} . . . ” . format (index))
138

cur . execute (query , str (index))
140

l o gg ing . debug (”Executed ! ”)
142 l i s t embedd ing s += p i c k l e . l oads (cur . f e t chone () [0])

144 return l i s t embedd ing s

146 except (Exception , psycopg2 . DatabaseError) as e r r o r :

148 l o gg ing . e r r o r (e r r o r)

150

f ina l ly :
152

conn . c l o s e ()
154

156 def r e t r i e v e s e n t e n c e a n d d o c t i t l e (N) :
try :

158 conn = connect ()
cur = conn . cur so r ()

160

r e s u l t = []
162

for s en t en c e i d in N:
164 query = ”””

SELECT sentences . doc id , sentence , hook
166 FROM documents , s en tences

WHERE sen t enc e i d = {} AND
168 sen tences . doc id = documents . doc id ;

”””
170 cur . execute (query . format (s en t en c e i d [1]))

r e s u l t . append (cur . f e t chone ())
172

return r e s u l t
174

except (Exception , psycopg2 . DatabaseError) as e r r o r :
176

l o gg ing . e r r o r (e r r o r)
178

180 f ina l ly :

182 conn . c l o s e ()

70

184

def r e t r i ev e embedd ing s f r om sen t ence s () :
186

try :
188 conn = connect ()

cur = conn . cur so r ()
190

r e s u l t = []
192

count query = ”””
194 SELECT COUNT(∗) FROM sentences ;

”””
196 cur . execute (count query)

count = cur . f e t chone () [0]
198

for index in tqdm(range (1 , count+1)) :
200 query = ”””

SELECT sen tence id , embedding
202 FROM sentences

WHERE sen t enc e i d = {} ;
204 ”””

cur . execute (query . format (index))
206 r e s u l t . append (cur . f e t chone ())

208 return r e s u l t

210 except (Exception , psycopg2 . DatabaseError) as e r r o r :

212 l o gg ing . e r r o r (e r r o r)

214

f ina l ly :
216

conn . c l o s e ()
218

220 def r e t r i eve embedd ing (cur , index) :

222 try :
query = ”””

224 SELECT sen tence id , embedding
FROM sentences

226 WHERE sen t enc e i d = {} ;
”””

228 cur . execute (query . format (index))

230 return cur . f e t chone ()

232 except (Exception , psycopg2 . DatabaseError) as e r r o r :

234 l o gg ing . e r r o r (e r r o r)

236

238 def count s en tence s () :

240 try :
conn = connect ()

71

242 cur = conn . cur so r ()

244 r e s u l t = []

246 count query = ”””
SELECT COUNT(∗) FROM sentences ;

248 ”””
cur . execute (count query)

250 count = cur . f e t chone () [0]

252 return count

254 except (Exception , psycopg2 . DatabaseError) as e r r o r :

256 l o gg ing . e r r o r (e r r o r)

258

f ina l ly :
260

conn . c l o s e ()
262

264 i f name == ” main ” :

266 with open(PATH TO PICKLE DATA, ’ rb ’) as f :
f i l e s s embedd i n g s = p i c k l e . load (f)

268

c r e a t e t a b l e s ()
270 i n s e r t d a t a (f i l e s s embedd i n g s)

searchWithDR.py

2 import r eque s t s
import pandas as pd

4 import re
from owlready2 import ∗

6 import spacy
import time

8 from fuzzywuzzy import f uzz
from fuzzywuzzy import proce s s

10

PATHTOONTOLOGY = ”C:\\ Users \\Mottola \\Documents\\ on t o l o g i e s \\
Dig i ta lRe f e r enceUpdatedDesc r ip t i onNoInd iv idua l s . owl”

12 PATHSAVEDONTOLOGY = ”C:\\ Users \\Mottola \\Documents\\ on t o l o g i e s \\
AnnotatedDig i ta lRe fe rence v2 . owl”

14

query the DR to r e t r i e v e a l l the t r i p l e s wi th Objec tProper ty
16 def que ryDig i t a lRe f e r ence () :

18 re sponse = reque s t s . post (’ http :// l o c a l h o s t :3030/ D ig i t a lRe f e r en c e /
spa rq l ’ ,

data = {
20 ’ query ’ : ””” p r e f i x owl : <h t t p ://www.w3 . org

/2002/07/ owl#>

72

p r e f i x r d f s : <h t t p ://www.w3 . org
/2000/01/ rdf−schema#>

22

24 SELECT DISTINCT ?domain ? d l ?dd ?
p r ed i c a t e ? range ? r l ? rd

WHERE {
26 ? p r ed i c a t e a owl : Objec tProper ty .

? p r ed i c a t e r d f s : domain ?domain .
28 ? p r ed i c a t e r d f s : range ? range .

?domain a owl : Class .
30 ? range a owl : Class .

FILTER (! i sB lank (? p r ed i c a t e))
32 FILTER (! i sB lank (?domain))

FILTER (! i sB lank (? range))
34 OPTIONAL { ?domain r d f s : l a b e l ?

domlabe l .
BIND(STR(? domlabe l) as ? d l)}

36 OPTIONAL { ?domain r d f s : comment ?
domdescr ip t ion .

BIND(STR(? domdescr ip t ion) as ?dd)}
38 OPTIONAL { ? range r d f s : l a b e l ?

r an g e l a b e l .
BIND(STR(? r an g e l a b e l) as ? r l)}

40 OPTIONAL { ? range r d f s : comment ?
rangede s c r i p t i on .

BIND(STR(? rangede s c r i p t i on) as ?rd)
}

42

}”””
44 })

return re sponse . j son ()
46

48 # r e t r i e v e the response and organ i z e s i t in a data frame
def c r ea t e da ta f r ame (r e s p o n s e l i s t) :

50 domain = [] # domain e n t i t y
dl = [] # domain l a b e l

52 dd = [] # domain d e s c r i p t i o n
pr ed i c a t e = [] # pred i c a t e e n t i t y

54 range = [] # range e n t i t y
r l = [] # range l a b e l

56 rd = [] # range d e s c r i p t i o n
for x in r e s p o n s e l i s t [’ r e s u l t s ’] [’ b ind ings ’] :

58 #try :
domain . append (x [r e s p o n s e l i s t [’ head ’] [’ vars ’] [0]] [’ va lue ’])

60 #excep t KeyError :
domain . append (””)

62 try :
d l . append (x [r e s p o n s e l i s t [’ head ’] [’ vars ’] [1]] [’ va lue ’])

64 except KeyError :
d l . append (””)

66 try :
dd . append (x [r e s p o n s e l i s t [’ head ’] [’ vars ’] [2]] [’ va lue ’])

68 except KeyError :
dd . append (””)

70 #try :
pr ed i c a t e . append (x [r e s p o n s e l i s t [’ head ’] [’ vars ’] [3]] [’ va lue ’])

73

72 #excep t :
pr ed i c a t e . append (””)

74 #try :
range . append (x [r e s p o n s e l i s t [’ head ’] [’ vars ’] [4]] [’ va lue ’])

76 #excep t KeyError :
range . append (””)

78 try :
r l . append (x [r e s p o n s e l i s t [’ head ’] [’ vars ’] [5]] [’ va lue ’])

80 except :
r l . append (””)

82 try :
rd . append (x [r e s p o n s e l i s t [’ head ’] [’ vars ’] [6]] [’ va lue ’])

84 except :
rd . append (””)

86

dict = {
88 r e s p o n s e l i s t [’ head ’] [’ vars ’] [0] : domain ,

r e s p o n s e l i s t [’ head ’] [’ vars ’] [1] : dl ,
90 r e s p o n s e l i s t [’ head ’] [’ vars ’] [2] : dd ,

r e s p o n s e l i s t [’ head ’] [’ vars ’] [3] : p red i ca te ,
92 r e s p o n s e l i s t [’ head ’] [’ vars ’] [4] : range ,

r e s p o n s e l i s t [’ head ’] [’ vars ’] [5] : r l ,
94 r e s p o n s e l i s t [’ head ’] [’ vars ’] [6] : rd

}
96 return pd . DataFrame (dict)

98 # ex t r a c t s the name o f the e n t i t i e s , t o g e t h e r wi th g e t S p l i t t e dTe x t
def getClassName (c l a s sEn t i t y) :

100 i f len (c l a s sEn t i t y . s p l i t (”#”)) == 2 :
return c l a s sEn t i t y . s p l i t (”#”) [1]

102 else :
return ”NOT A NAME”

104

106 def ge tSp l i t t edText (name) :
conver t CamelCase and syntax in to normal s t r i n g s

108 s p l i t t e d = re . sub (’ ([A−Z] [a−z]+) ’ , r ’ \1 ’ , r e . sub (’ ([A−Z]+) ’ , r ’ \1
’ , name)) . s p l i t ()
s p l i t t e d = [x . r ep l a c e (” ” , ” ”) for x in s p l i t t e d]

110 return ’ ’ . j o i n (s p l i t t e d)

112

crea t e the sen tences out o f t r i p l e s
114 def c r e a t e s t r i n g f r om t r i p l e s (df) :

qu e r i e s = []
116 for index , row in df . i t e r r ows () :

s ub j e c t = ge tSp l i t t edText (getClassName (row [0]))
118 pr ed i c a t e = ge tSp l i t t edText (getClassName (row [3]))

obj = ge tSp l i t t edText (getClassName (row [4]))
120 sentence = sub j e c t + ” ” + pred i c a t e + ” ” + obj

qu e r i e s . append ((owlready2 . IRIS [row [0]] , s entence))
122

return que r i e s
124

126

def importOntology (onto logy) :
128 onto = owlready2 . g e t on to l ogy (onto logy) . load ()

74

return onto
130

132

def i n s e r t a nno t a t i o n s (onto , ent i ty , annotat ions) :
134 #pr in t (e n t i t y)

t i t l e s = []
136 for doc in annotat ions :

t i t l e s . append (doc [’ t i t l e ’])
138 en t i t y . s eeAl so = t i t l e s

#pr in t (e n t i t y . seeAlso)
140

142

def ext ract keywords f rom query (query) :
144 nlp = spacy . load (” en core web sm”)

stop words = nlp . De fau l t s . stop words
146 stop words . add (’ ? ’)

stop words . add (’ , ’)
148 stop words . add (’ . ’)

stop words . add (’ ! ’)
150 s t a r t = time . time ()

sentence = ”which i s the r e l a t i o n between the d i g i t a l r e f e r ence
and semantic web?”

152 # sentence1 = ”how can heatmap and convo l u t i ona l neura l networks be
r e l a t e d ?”
doc = nlp (query . lower ())

154 noun phrases = [chunk . t ex t for chunk in doc . noun chunks]
print (”Noun phrases : ” , noun phrases)

156 remove stop words = [[word i f str (word) not in stop words else ’ , ’
for word in nlp (sent)] for sent in noun phrases]
remove stop words = [’ ’ . j o i n (str (x) for x in sent) . s p l i t (’ , ’) for
sent in remove stop words]

158 f i n a l l i s t = []
for a in remove stop words :

160 f i n a l l i s t += [x . s t r i p () for x in l i s t (f i l t e r (lambda x : x != ’ ’
, a))]
print (” Fina l r e s u l t ” , f i n a l l i s t)

162 print (time . time () − s t a r t)
return f i n a l l i s t

164

166 # return a d i c t i onary , were every d i c t i ona r y r ep r e s en t s the documents
f o r one keyword

every d i c t i ona r y has ’ enti tyname ’ , ’ d e f i n i t i o n ’ and a l i s t o f ’
r e l a t e d wo r k s ’ , con ta in ing the l i s t o f documents

168 def s e a r c h c l a s s a nno t a t i o n s (keyword ,
d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s) :
document = {

170 ’ keyword ’ : keyword ,
’ e n t i t y ’ : ”” ,

172 ’ d e f i n i t i o n ’ : ”” ,
’ r e l a t ed work s ’ : []

174 }
for (ent i ty , name) in d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s :

176 i f f uzz . r a t i o (keyword , name) > 80 :
#pr in t (” Fuzzy match : DR ” + name + ”− Key : ” + keyword)

75

178 #pr in t (”\ t \ tMetadata o f ” + s t r (e n t i t y) + ”:” + s t r (e n t i t y .
seeAlso))

document [’ keyword ’] = en t i t y . name
180 document [’ e n t i t y ’] = IRIS [en t i t y]

document [’ d e f i n i t i o n ’] = en t i t y . comment
182 document [’ r e l a t ed work s ’] = en t i t y . s eeAl so

return document

annotateDR.py

2 imports . . .

4 def importOntology () :
onto = owlready2 . g e t on to l ogy (PATHTOONTOLOGY) . load ()

6 return onto

8

def ge tC l a s s e s (onto logy) :
10 return l i s t (onto logy . c l a s s e s ())

12

def g e tP rope r t i e s (onto logy) :
14 return [x for x in l i s t (onto logy . p r op e r t i e s ())]

16

def getClassName (c l a s s e s) :
18 # access the u r i s o f the c l a s s e s , and s p l i t them to ge t the

classNames i f they e x i s t a f t e r the #
return [(x , x . i r i . s p l i t (”#”) [1]) for x in c l a s s e s i f len (x . i r i .
s p l i t (”#”)) == 2]

20

22 def ge tSp l i t t edText (name) :
conver t CamelCase and syntax in to normal s t r i n g s

24 s p l i t t e d = re . sub (’ ([A−Z] [a−z]+) ’ , r ’ \1 ’ , r e . sub (’ ([A−Z]+) ’ , r ’ \1
’ , name)) . s p l i t ()
s p l i t t e d = [x . r ep l a c e (” ” , ” ”) for x in s p l i t t e d]

26 return ’ ’ . j o i n (s p l i t t e d)

28 def g e t tup l e c l a s s name (onto logy) :
d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s = []

30 for index , (ent i ty , name) in enumerate(getClassName (g e tC l a s s e s (
onto logy))) :

d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s . append ((ent i ty ,
g e tSp l i t t edText (name)))

32 return d i g i t a l r e f e r e n c e c l a s s e s a nd n ame s

34

def g e t o n t o l o g y t r i p l e s (ontology , c l a s s e s) :
36 t r i p l e s = l i s t (onto logy . g e t t r i p l e s (None , None , None))

for t r i p l e in t r i p l e s :
38 for e l in t r i p l e :

print (onto logy . unabbrev ia te (e l))
40 return t r i p l e s

42

76

def attachDocumentsToClasses (infineonBERT , l i s tO fTup l e s) :
44

for index , (c lassObj , className) in enumerate(l i s tO fTup l e s) :
46 t ex t = getSp l i t t edText (className)

print (”{} − Working on c l a s s {}” . format (index , t ex t))
48 l i s t que ry embeds = s e r v i c e .

convert query to embedding Sentence BERT (infineonBERT . encoder , [
t ex t])

documents = s e r v i c e . mu l t i p r o c e s s s e a r ch (text , l i s t que ry embeds
, infineonBERT . f i l e s s e n t en c e embedd i ng s)

50 for doc in documents :
try :

52 #pr in t (”\ t \ t ” + s t r (doc [’ t i t l e ’]) + ”\ t \ t ” + s t r (doc [’
score ’])) # mettere a pos to l ’ encoding

c la s sObj . comment . append (doc [’ t i t l e ’])
54 except UnicodeEncodeError :

#pr in t (”\ t \ t ” + ”∗∗ Impos s i b l e to p r i n t the t i t l e ∗∗”)
56 pass

58

def ext ract keywords f rom query (query) :
60 nlp = spacy . load (” en core web sm”)

stop words = nlp . De fau l t s . stop words
62 stop words . add (’ ? ’)

stop words . add (’ , ’)
64 stop words . add (’ . ’)

stop words . add (’ ! ’)
66 s t a r t = time . time ()

sentence = ”which i s the r e l a t i o n between the d i g i t a l r e f e r ence
and semantic web?”

68 # sentence1 = ”how can heatmap and convo l u t i ona l neura l networks be
r e l a t e d ?”
doc = nlp (query)

70 noun phrases = [chunk . t ex t for chunk in doc . noun chunks]
print (”Noun phrases : ” , noun phrases)

72 remove stop words = [[word i f str (word) not in stop words else ’ , ’
for word in nlp (sent)] for sent in noun phrases]
remove stop words = [’ ’ . j o i n (str (x) for x in sent) . s p l i t (’ , ’) for
sent in remove stop words]

74 f i n a l l i s t = []
for a in remove stop words :

76 f i n a l l i s t += [x . s t r i p () for x in l i s t (f i l t e r (lambda x : x != ’ ’
, a))]
print (” Fina l r e s u l t ” , f i n a l l i s t)

78 print (time . time () − s t a r t)
return f i n a l l i s t

80

82 # import the D i g i t a l Reference
d ig i t a lRe f e r enceOnto l ogy = importOntology ()

84 print (d i g i t a lRe f e r enceOnto l ogy . graph .dump())

86 # r e t r i e v e the c l a s s e s o f the d i g i t a l r e f e r ence
t r i p l e s = d ig i t a lRe f e r enceOnto l ogy . g e t t r i p l e s (None , None , None)

88 for t r i p l e in t r i p l e s :
for e l in t r i p l e :

90 d ig i t a lRe f e r enceOnto l ogy . unabbrev ia te (e l)

77

92 # ge t a l i s t o f t u p l e s : (the c l a s s ob j e c t , the names from the ur i)
c l a s sTup l e = getClassName (t r i p l e s)

94

ins tance o f infineonBERT
96 infineonBERT = model . InfineonBERT (” In f i n eon search engine ”)

98 s t a r t = time . time ()
at tach documents to c l a s s e s

100 attachDocumentsToClasses (infineonBERT , c la s sTup l e)

102

pr in t (lambda x : p r i n t (x . comment) f o r x in g e tC l a s s e s (
d i g i t a lRe f e r enceOn to l o gy))

104 print (”Time needed to annotate a l l the c l a s s e s : {}” . format (time . time ()
− s t a r t))

106 # save the on to logy to f i l e wi th RDF/XML format
with open(PATH SAVEDONTOLOGY, ”wb”) as fp :

108 d ig i t a lRe f e r enceOnto l ogy . save (f i l e=fp)

78

Bibliography

[1] Hans Ehm et al. “Digital Reference–A Semantic Web for Semiconductor Man-
ufacturing and Supply Chains Containing Semiconductors”. In: 2019 Winter
Simulation Conference (WSC). IEEE. 2019, pp. 2409–2418.

[2] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[3] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embeddings us-
ing siamese bert-networks”. In: arXiv preprint arXiv:1908.10084 (2019).

[4] J. Rydning D. Reinsel J. Gantz. White paper: The Digitization of the World
- from Edge to Core. An IDC White Paper. Tech. rep. IDC Corporate USA,
2018. url: https://www.seagate.com/files/www-content/our-
story/trends/files/idc-seagate-dataage-whitepaper.pdf.

[5] KV Kanimozhi and M Venkatesan. “Unstructured data analysis-a survey”.
In: International Journal of Advanced Research in Computer and Communi-
cation Engineering 4.3 (2015), pp. 223–225.

[6] Infineon Technologies AG. https://www.infineon.com/cms/en/about-infineon/company/.

[7] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic web”. In:
Scientific american 284.5 (2001), pp. 34–43.

[8] Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. MIT
press, 2004.

[9] Elizabeth D Liddy. “Natural language processing”. In: (2001).

[10] Yoav Goldberg. “Neural network methods for natural language processing”.
In: Synthesis Lectures on Human Language Technologies 10.1 (2017), pp. 1–
309.

[11] Vineet Chaitanya, Rajeev Sangal, and Akshar Bharati. Natural language pro-
cessing: a Paninian perspective. Prentice-Hall of India, 1996.

[12] Difference between NLU and NLP. https://nlp.stanford.edu/

˜wcmac/papers/20140716-UNLU.pdf. Accessed: 2020-06-15.

[13] Veton Kepuska and Gamal Bohouta. “Next-generation of virtual personal
assistants (microsoft cortana, apple siri, amazon alexa and google home)”.
In: 2018 IEEE 8th Annual Computing and Communication Workshop and
Conference (CCWC). IEEE. 2018, pp. 99–103.

[14] Navdeep S Dhillon and Jisheng Liang. NLP-based sentiment analysis. US
Patent 8,838,633. 2014.

79

[15] Craig Lewis and Steven Young. “Fad or future? Automated analysis of finan-
cial text and its implications for corporate reporting”. In: Accounting and
Business Research 49.5 (2019), pp. 587–615.

[16] Peter Jackson and Isabelle Moulinier. Natural language processing for on-
line applications: Text retrieval, extraction and categorization. Vol. 5. John
Benjamins Publishing, 2007.

[17] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. “Nat-
ural language processing: an introduction”. In: Journal of the American Med-
ical Informatics Association 18.5 (2011), pp. 544–551.

[18] Noam Chomsky and David W Lightfoot. Syntactic structures. Walter de
Gruyter, 2002.

[19] Terry Winograd. “Understanding natural language”. In: Cognitive psychology
3.1 (1972), pp. 1–191.

[20] William A Woods. “Progress in natural language understanding: an appli-
cation to lunar geology”. In: Proceedings of the June 4-8, 1973, national
computer conference and exposition. 1973, pp. 441–450.

[21] Eric Brill and Raymond J Mooney. “An overview of empirical natural lan-
guage processing”. In: AI magazine 18.4 (1997), pp. 13–13.

[22] Li Deng and Yang Liu. Deep learning in natural language processing. Springer,
2018.

[23] Mitchell Marcus. “New trends in natural language processing: statistical nat-
ural language processing”. In: Proceedings of the National Academy of Sci-
ences 92.22 (1995), pp. 10052–10059.

[24] Luca Dini, Vittorio Di Tomaso, and Frédérique Segond. “Error driven word
sense disambiguation”. In: COLING 1998 Volume 1: The 17th International
Conference on Computational Linguistics. 1998.

[25] Eric Brill and Philip Resnik. “A rule-based approach to prepositional phrase
attachment disambiguation”. In: arXiv preprint cmp-lg/9410026 (1994).

[26] Christopher D Manning, Christopher D Manning, and Hinrich Schütze. Foun-
dations of statistical natural language processing. MIT press, 1999.

[27] Yoshua Bengio et al. “A neural probabilistic language model”. In: Journal of
machine learning research 3.Feb (2003), pp. 1137–1155.

[28] Tomas Mikolov et al. “Distributed representations of words and phrases and
their compositionality”. In: Advances in neural information processing sys-
tems. 2013, pp. 3111–3119.

[29] Tomas Mikolov et al. “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781 (2013).

[30] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic regularities
in continuous space word representations”. In: Proceedings of the 2013 con-
ference of the north american chapter of the association for computational
linguistics: Human language technologies. 2013, pp. 746–751.

[31] Xin Rong. “word2vec parameter learning explained”. In: arXiv preprint arXiv:1411.2738
(2014).

80

[32] Ehsaneddin Asgari and Mohammad RK Mofrad. “Continuous distributed
representation of biological sequences for deep proteomics and genomics”.
In: PloS one 10.11 (2015).

[33] Quoc Le and Tomas Mikolov. “Distributed representations of sentences and
documents”. In: International conference on machine learning. 2014, pp. 1188–
1196.

[34] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP). 2014,
pp. 1532–1543.

[35] Joo-Kyung Kim et al. “Intent detection using semantically enriched word
embeddings”. In: 2016 IEEE Spoken Language Technology Workshop (SLT).
IEEE. 2016, pp. 414–419.

[36] Asnat Greenstein-Messica, Lior Rokach, and Michael Friedman. “Session-
based recommendations using item embedding”. In: Proceedings of the 22nd
International Conference on Intelligent User Interfaces. 2017, pp. 629–633.

[37] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. “A simple but tough-to-beat
baseline for sentence embeddings”. In: (2016).

[38] Ziyi Yang, Chenguang Zhu, and Weizhu Chen. “Parameter-free sentence em-
bedding via orthogonal basis”. In: arXiv preprint arXiv:1810.00438 (2018).

[39] Michael I Jordan. “Attractor dynamics and parallelism in a connectionist
sequential machine”. In: Artificial neural networks: concept learning. 1990,
pp. 112–127.

[40] Jeffrey L Elman. “Finding structure in time”. In: Cognitive science 14.2
(1990), pp. 179–211.

[41] Zachary Chase Lipton. “A Critical Review of Recurrent Neural Networks for
Sequence Learning”. In: CoRR abs/1506.00019 (2015). arXiv: 1506.00019.
url: http://arxiv.org/abs/1506.00019.

[42] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. “An empirical ex-
ploration of recurrent network architectures”. In: International conference on
machine learning. 2015, pp. 2342–2350.

[43] Ilya Sutskever. Training recurrent neural networks. University of Toronto
Toronto, Ontario, Canada, 2013.

[44] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[45] Paul J Werbos. “Backpropagation through time: what it does and how to do
it”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[46] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term
dependencies with gradient descent is difficult”. In: IEEE transactions on
neural networks 5.2 (1994), pp. 157–166.

[47] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of
training recurrent neural networks”. In: International conference on machine
learning. 2013, pp. 1310–1318.

81

[48] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[49] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-
decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078
(2014).

[50] MingxianLin.

[51] Ryan Kiros et al. “Skip-thought vectors”. In: Advances in neural information
processing systems. 2015, pp. 3294–3302.

[52] Alexis Conneau et al. “Supervised learning of universal sentence representa-
tions from natural language inference data”. In: arXiv preprint arXiv:1705.02364
(2017).

[53] Sebastian Ruder. NLP-progress: Repository to track the progress in Natural
Language Processing (NLP), including the datasets and the current state-of-
the-art for the most common NLP tasks. url: http://nlpprogress.
com/. (accessed: 22.06.2020).

[54] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine
translation by jointly learning to align and translate”. In: arXiv preprint
arXiv:1409.0473 (2014).

[55] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems. 2017, pp. 5998–6008.

[56] ME Peters et al. “Deep contextualized word representations. arXiv 2018”.
In: arXiv preprint arXiv:1802.05365 (1802).

[57] Alec Radford et al. “Improving language understanding with unsupervised
learning”. In: Technical report, OpenAI (2018).

[58] Yonghui Wu et al. “Google’s neural machine translation system: Bridging the
gap between human and machine translation”. In: arXiv preprint arXiv:1609.08144
(2016).

[59] Rowan Zellers et al. “Swag: A large-scale adversarial dataset for grounded
commonsense inference”. In: arXiv preprint arXiv:1808.05326 (2018).

[60] Yukun Zhu et al. “Aligning books and movies: Towards story-like visual ex-
planations by watching movies and reading books”. In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 19–27.

[61] Jinhyuk Lee et al. “BioBERT: a pre-trained biomedical language represen-
tation model for biomedical text mining”. In: Bioinformatics 36.4 (2020),
pp. 1234–1240.

[62] Iz Beltagy, Kyle Lo, and Arman Cohan. “SciBERT: A pretrained language
model for scientific text”. In: arXiv preprint arXiv:1903.10676 (2019).

[63] Waleed Ammar et al. “Construction of the literature graph in semantic
scholar”. In: arXiv preprint arXiv:1805.02262 (2018).

[64] Taku Kudo and John Richardson. “Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing”.
In: arXiv preprint arXiv:1808.06226 (2018).

[65] Samuel R Bowman et al. “The SNLI Corpus”. In: (2015).

82

[66] Adina Williams, Nikita Nangia, and Samuel R Bowman. “The multi-genre
nli corpus”. In: (2018).

[67] “Chapter Three - RDF and the Semantic Web Stack”. In: RDF Database
Systems. Ed. by Olivier Curé and Guillaume Blin. Boston: Morgan Kauf-
mann, 2015, pp. 41 –80. isbn: 978-0-12-799957-9. doi: https://doi.
org/10.1016/B978-0-12-799957-9.00003-1. url: http://www.
sciencedirect.com/science/article/pii/B9780127999579000031.

[68] Archana Patel and Sarika Jain. “Present and future of semantic web tech-
nologies: a research statement”. In: International Journal of Computers and
Applications (2019), pp. 1–10.

[69] Tim Berners-Lee, Roy Fielding, Larry Masinter, et al. Uniform resource iden-
tifiers (URI): Generic syntax. 1998.

[70] Frank Manola, Eric Miller, Brian McBride, et al. “RDF primer”. In: W3C
recommendation 10.1-107 (2004), p. 6.

[71] Dan Brickley, Ramanathan V Guha, and Andrew Layman. “Resource de-
scription framework (RDF) schema specification”. In: (1999).

[72] Alexander Maedche and Steffen Staab. “Ontology learning for the semantic
web”. In: IEEE Intelligent systems 16.2 (2001), pp. 72–79.

[73] ECSEL Joint Undertaking. 2019. What We Do . . . and How. https://www.ecsel.eu/what-
we-do-and-how/.

[74] Productive4.0 Consortium. 2019. Productive4.0 is a European Co-funded In-
novation and Lighthouse Program. https://productive40.eu/about/.

[75] Diana Maynard, Kalina Bontcheva, and Isabelle Augenstein. “Natural lan-
guage processing for the semantic web”. In: Synthesis Lectures on the Se-
mantic Web: Theory and Technology 6.2 (2016), pp. 1–194.

[76] Kalina Bontcheva, Valentin Tablan, and Hamish Cunningham. “Semantic
search over documents and ontologies”. In: PROMISE Winter School. Springer.
2013, pp. 31–53.

[77] Giorgos Giannopoulos et al. “GoNTogle: a tool for semantic annotation and
search”. In: Extended Semantic Web Conference. Springer. 2010, pp. 376–
380.

[78] Borislav Popov et al. “KIM–semantic annotation platform”. In: International
Semantic Web Conference. Springer. 2003, pp. 834–849.

[79] Matthew Honnibal and Ines Montani. “spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incre-
mental parsing”. To appear. 2017.

[80] PyPDF2. http://mstamy2.github.io/PyPDF2/.

[81] Foxit Phantom PDF - PDF Editor. https://www.foxitsoftware.com/pdf-editor/.

[82] Kofax Power PDF. https://www.kofax.com/. 2020.

83

[83] Alexandru Constantin, Steve Pettifer, and Andrei Voronkov. “PDFX: Fully-
Automated PDF-to-XML Conversion of Scientific Literature”. In: Proceed-
ings of the 2013 ACM Symposium on Document Engineering. DocEng ’13.
Florence, Italy: Association for Computing Machinery, 2013, 177–180. isbn:
9781450317894. doi: 10.1145/2494266.2494271. url: https://
doi.org/10.1145/2494266.2494271.

[84] Smallpdf. https://smallpdf.com/pdf-converter.

[85] Tensorflow v 1.11.0. https://github.com/tensorflow/docs/tree/r1.11/site/en/apidocs.

[86] PyTorch v1.6.0. https://pytorch.org/docs/stable/index.html.

[87] Hugging Face. The Big-&-Extending-Repository-of-Transformers: Pretrained
PyTorch models for Google’s BERT, OpenAI GPT & GPT-2, Google/CMU
Transformer-XL.,(nd).

[88] Guadalupe Aguado-de Cea et al. “Lexicalizing Ontologies: The issues behind
the labels”. In: Procedia-Social and Behavioral Sciences 212 (2015), pp. 151–
158.

[89] Barry Smith et al. “The OBO Foundry: coordinated evolution of ontologies to
support biomedical data integration”. In: Nature biotechnology 25.11 (2007),
pp. 1251–1255.

[90] World Wide Web Consortium, RDF Schema 1.1 W3C Recommendation 25
February 2014. https://www.w3.org/TR/rdf-schema/chlabel.

[91] Owlready2. https://pythonhosted.org/Owlready2/.

[92] Channu Kambalyal. “3-tier architecture”. In: Retrieved On 2 (2010), p. 34.

[93] Sumi Helal et al. “A three-tier architecture for ubiquitous data access”. In:
Proceedings ACS/IEEE International Conference on Computer Systems and
Applications. IEEE. 2001, pp. 177–180.

[94] FuzzyWuzzy. https://github.com/seatgeek/fuzzywuzzy.

[95] Vladimir I Levenshtein. “Binary codes capable of correcting deletions, inser-
tions, and reversals”. In: Soviet physics doklady. Vol. 10. 8. 1966, pp. 707–
710.

[96] Frederic P Miller, Agnes F Vandome, and John McBrewster. “Levenshtein
distance: Information theory, computer science, string (computer science),
string metric, damerau? Levenshtein distance, spell checker, hamming dis-
tance”. In: (2009).

[97] Katja Hofmann, Lihong Li, and Filip Radlinski. “Online evaluation for infor-
mation retrieval”. In: Foundations and Trends in Information Retrieval 10.1
(2016), pp. 1–117.

[98] Ye Chen et al. “Meta-evaluation of online and offline web search evaluation
metrics”. In: Proceedings of the 40th international ACM SIGIR conference
on research and development in information retrieval. 2017, pp. 15–24.

[99] Mark Sanderson. “Christopher D. Manning, Prabhakar Raghavan, Hinrich
Schütze, Introduction to Information Retrieval, Cambridge University Press.
2008. ISBN-13 978-0-521-86571-5, xxi+ 482 pages.” In: Natural Language
Engineering 16.1 (2010), pp. 100–103.

84

[100] APICS - SCOR model. http://www.apics.org/.

[101] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. “Reformer: The efficient
transformer”. In: arXiv preprint arXiv:2001.04451 (2020).

85

