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Abstract

The subject of this thesis is the capacitive sensors used in locating people in-
doors, a field that is becoming very important especially for the health care of the
elderly. This sensors have numerous advantages: cost, power, privacy and ease
of installation while their main disadvantage is the steep loss of sensitivity by in-
creasing the distance between the sensor and the person. To reduce the cost and
installation complexity, the sensors are used in load mode, i.e. only one plate of
the capacity is needed because the other plate is the person’s body along with the
surrounding environment.

In this thesis instead of processing the data on board the sensor with a micro-
controller we used an ultralow-power FPGA like a hardware accelerator, and to
process the data we use a neural network of the Multi-layer perceptron type syn-
thesized with the high-level-synthesis (HLS) method. We will then compare the
results obtained in terms of inference time, energy, power, clock frequency, clock
cycles and area compared to the data obtained in a manual implementation [1].
The neural network (NN) used is of the multi-layer perceptron type, in which there
are two hidden layers formed by eight neurons each and an output layer formed by
a neuron. The NN takes six 16-bit inputs and generates one output of four-bit. The
C code of this NN will be synthesized using Vivado HLS, which also allows to insert
directives to optimize the generated code. Subsequently the created VHDL code
will be compiled using the FPGA tools, which are: Radiant tool for ICE40UP5K
of the Lattice family and Libero tool for AGLN250, M1AGL600 and M1AGL1000
of the Microsemi family. These FPGAs, that have all different resources, have been
chosen as they are ultra low-power. So, the code created by HLS, is implemented
on these FPGAs. The FPGA-specific synthesis tool may not be the completely
compatible with the Xilinx Vivado HLS generated code.

The method followed to collect the data to be compared with those found by
manual programming has been: start from HLS where the C code is synthesized by
also adding directives to optimize it, and they have been added in such a way as to
being able to explore multiple solutions, starting from a low level of parallelism and
then increasing it from solution to solution and seeing how the various performance
and resource metrics changed. After that, through Co-simulation, again on Vivado-
HLS, it was verified that the synthesized code still worked as expected. From here,
the two tools of the two families of FPGAs were used to implement the code on them
and collect the various data. Many solutions have been created for the different
FPGAs, and there are different implementations of the same solution as we tried
to change the speed (clock period) imposed on HLS and see what effect it would
have on the final implementation.



The trade-off is between performance and resource occupation, controlled using
synthesis directives, and the ensuing Vivado HLS overhead. In addition to the area
occupied by the optimizations, there is also the area occupied by the state machine
that Vivado HLS creates for the control of the project. The maximum parallelism
may not be achieved always, due to resource limitations. This is also due to the
imperfect compatibility of the HDL code created by HLS with the two synthesis
tools of the families of target FPGAs.

The results of the manual programming of the NN achieved by the reference
manual implementation were not achieved for all the FPGAs, in particular for the
smallest ones, AGLN250, and the M1AGL600, even if in any case the values of the
data found are not far from the target ones. Excellent results were obtained for
the Lattice FPGA, with, the lowest power and energy of both HLS and manual
programming 5.23 mW and 5.78 nJ are obtained, against 6.24 mW and 5.79 nJ find
in the manual implementation. This is because on this FGPA there are blocks that
perform dedicated operations, DSP, and in particular, multiplications, which are
the operations that require more area, have been assigned to these blocks thus not
consuming any other area and thus allowing to add directives to obtain maximum
parallelism. Also the inference time find is good, 1.10 µs, which is very close to that
find in manual programming, 0.93 µs. With the Microsemi M1AGL1000 FPGA,
the largest, it was possible to achieve excellent results, in particular the lowest
inference time, 0.86 µs among all FPGAs with HLS, while in reference programming
0.74 µs. Also a good energy was obtained, 17.27 nJ against 19 nJ of the manual
programming.
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Chapter 1

Introduction

Identifying people indoors is extremely useful in a lot of fields, especially in the
health care of the elderly. Over the years many techniques have been adopted but
they always had a counterpart that made their use counterproductive, for example
techniques based on image, video and gait recognition have very good performance,
but are very expensive and violate privacy of the user, or techniques in which the
person have to brought a device to be located, but this can be uncomfortable and
can be forgotten. It turned out that capacitive sensors could be used, which had
great benefits in terms of cost and consumption. Their big problem was that they
lost reliability with increasing distance of the person to be located. To improve the
data processing on board the sensor, it was decided to use a neural network installed
on a microcontroller or on a FPGA (Field-Programmable Gate Array), which can
be implemented through manual programming, therefore the programmer describes
the network by creating the HDL (Hardware Description Language) file himself, or
through high level synthesis (HLS), then starting from the network code written at
high level (C or C++), the tool created the HDL file by itself.

1.1 Detection techniques for people indoors
The techniques for detecting people in buildings or rooms have become extremely
important for a wide range of applications such as home or building automation,
security, video games with virtual reality and in trying to make life of elderly people
more confident and assisted.

Over the years, the scientific community has proposed many solutions for this
research, where the main objectives were to create a device easy-to-install, inex-
pensive, low-power, small and, above all, respecting the privacy of those who use
it. Another fundamental requirement is that they are not harmful to the human
body, ultrasound transceivers [2] have been created for the localization of people
or objects, but exposure for a long time to ultrasound can be harmful in fact to
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Introduction

prevent these emissions many countries have imposed a limit on the body’s expo-
sure to ultrasound, so as to prevent health problems [3]. The results provided by
these detections have to be reliable, D.Yang et al. proposed a technique based on
pyroelectric infrared (PIR) sensors and an accessibility map of the indoor environ-
ment [4], but the results provided by these sensors were not optimal as they are
prone to errors given by the environment and sources of heat, and to obtain good
results the system need more sensor, so the cost increases. Other techniques based
on Wi-Fi [5] or Bluetooth [6], on the other hand, require people to carry a device
with them, which can be both unreliable and uncomfortable, as well as the fact
that they can often forget to wear it. Techniques that use devices that instead
violate people’s privacy terms are those proposed by Y.Zheng et al. [7] and G. Lu
et al. [8], who respectively proposed a technology based on an indoor vision-based
navigation system and a system based on thermal images for localization, and these
techniques, in addition to not respecting privacy, are expensive.

The alternative to these techniques are capacitive sensors, which can meet most
of the indicated requirements.

1.2 Capacitive sensing compared to other tech-
niques

Capacitive sensors are used in many short-range applications such as the smart-
phone touchscreen, in tunnel-effect scanning microscopes, in editing systems and
also in musical instruments. Thanks to their properties, it has been thought of
being able to use them also in the recognition of people, in their identification and
localization. The type of capacitive sensors used for this purpose operates in load-
mode using a single plate while other plate is made by the environment and human
body. This sensor measures the capacity of the human body at different frequencies,
and this measurement will be influenced by the composition of it (height, gender,
weight, muscles, etc.) and environment which must be compensated. Given these
differences, the electrical and dielectric properties of the users will change, and from
them people can be identified. So being that they can be built using simply with
a plate, they are very easy to install (can be install near the light switches [9] or
in the bed [10] to monitor the sleep disorders), they are not expensive (like system
based on thermal imaging for indoor localization [11]), they do not invade the user’s
privacy like [11] and do not require any additional devices that must be worn like
technique based on Wi-Fi or Bluetooth. Thanks to their ease of installation there
are other uses of capacitive sensors, at lower ranges than localization in a room,
for example they can be installed in a computer so that they can interact during a
game [12], they can be used in beds to determine sleep patterns [10] or on a chair
to prevent the patient from falling [13]. They can also be used to detect different
types of walks [14].
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1.3 – Data processing with neural networks on the sensor

The downside of these sensors is the loss of sensitivity with increasing distance.
They become very sensitive to environmental factors such as electrostatic and mag-
netic noise, humidity or temperature. From [15] it turns out that at a distance
greater than 10 times the size of the sensor, the variation of the capacity measure-
ment is below 0.01%, therefore hardly distinguishable from noise, this latter in fact
affect the measurements of the voltage across the capacitance for example, but not
affect the capacitance itself, that depends on the electric and dielectric properties,
and geometry of the sensor and environment.

1.3 Data processing with neural networks on the
sensor

The accuracy of the capacitive sensor is an essential quality to obtain good results,
to improve it can can be used Machine Learning algorithms, especially Neural
Networks (NNs), such as 1-D Convonutional NNs (CNNs) or Long-Short Term
Memory NNs (LSTM). In [16] a study is carried out on the recognition of people
using 1D CNNs, a Recursive Neural Network (RNN) and a hybrid architecture
with various sensors, in [17] LSTM networks are used together with 1D CNN to
find and to classify rare acoustic sounds, in [18] the authors use LSTM networks
for localization in closed environments using light and magnetic sensors.

Neural networks can be implemented in software (SW) using microcontrollers
(MCUs) or in hardware (HW) using FPGA, and the goal of both implementations
is to accelerate the neural network by trying to consume as little energy as possible.
In the article by Braga et al. [19] the performance, accuracy, use of resources and
power consumption of an NN implemented both in SW (using Xilinx Microblaze
microprocessor) and in HW (using FPGA of the Xilinx family) are analyzed. The
authors of [20] propose a method to optimize accuracy by minimizing the area for
a Multi-Layer Perceptron (MLP) neural network implemented on FPGA. To try
to improve the critical path (CP), and consequently improve operating frequency,
of an MLP neural network, Bahoura et al. [21] propose an HW implementation
with the use of the pipeline. In [22], Zhai et al. propose a low latency real-time
system for gas classification using an accurate MLP neural network implemented
on Xilinx FPGA with fixed point arithmetic. In the study of Marwen et al. [1]
the performance of an MLP neural network is tested on two low power MCUs and
subsequently on four different ultralow-power FPGAs.

1.4 High level neural networks synthesis
The HLS is the link between hardware and software domain. The tools used for
HLS, starting from the high level code (written in C, C++ or SystemC) and gener-
ates the code written at low level, register transfer level (RTL), in Verilog or VHDL,
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which can then be implemented on FPGA. HLS provides benefits both from the
HW point of view, in fact it improves productivity because it allows the HW pro-
grammer to work at a higher level of abstraction and at the same time to create
HW with optimization, but also from the point of view of the software program-
mer, allowing to speed up the calculation of the algorithms on the future FPGA
used. For these reasons, various tools [23] have been created over the years for this
purpose, like Vivado HLS which synthesizes high-level code and then implements
it on the FPGA of the Xilinx family.

The experiment performed is based on the use of this tool to synthesize an neural
network of the MLP type, used in the field of capacitive sensors to increase its
accuracy, and try to compare the performances obtained in terms of power, energy,
inference time, operating frequency and latency, with the performance obtained in
[1] in which HLS is not used for the creation of the NN, but only low level language
(RTL). Both experiments were performed on 4 different ultralow-power FPGAs
that do not belong to the Xilinx family (one of them is from the Lattice iCE40
family while the other three are from the Microsemi IGLOO family), then the RTL
code generated by Vivado HLS, which should be implemented on FPGAs of the
family mentioned above, will not perfectly adapt to the design of the ultralow-power
FPGAs used for the experiment, which have been selected from those of Xilinx for
their low static power [1].
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Chapter 2

Capacitive Sensors

For locating people indoors, many techniques have been used, including the capac-
itive sensors. They have several advantages, first of all the low power consumption.
There are various front-end configurations used each with a different purpose.

2.1 Operating principles
The capacitive sensors can be used to localize and monitor persons or objects.
They are used in load-mode, where the human body is used as second plate of
capacitance, and this mode needs only a single transducer plate that form with
the human body and the environment several capacitances, in particular four: Csg,
capacitance between sensor and ground, Cbg, capacitance between the human body
and ground, Cse, capacitance between sensor and environment and Csb, capacitance
between sensor and human body, like Figure 2.1 (taken from [24]) shows.

Figure 2.1. Principal four capacitance of a load mode capacitive sensor,
taken from [24]: Csg, between sensor and ground, Cbg, between the human
body and ground, Cse, between sensor and environment and Csb, between
sensor and human body.
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Capacitive Sensors

To identify the person is taken the value of Csb at different frequencies, in partic-
ular, the person dielectric and electric properties change with different composition
of the human body, in fact the values of permittivity (ϵ) and conductivity (σ) of
the human body change with the frequencies of the electric fields, so, thanks to
this difference, is possible to recognize the members of a small group of people like
a family. In this regard, Gabriel [25] made a study on how the dielectric properties
change according to the parts of the body, they are summarized in Table 2.1, at
the frequencies used by our sensors.

Table 2.1. Variation of dielectric properties (ϵ and σ) in different body tissues
(muscle, fat, bones and breast fat) at different frequencies, taken from [25].

Frequency Muscle Fat Bones Breast fat
(kHz) εr σ (S/m) εr σ (S/m) εr σ (S/m) εr σ (S/m)

5 6.0× 104 4.0× 10−1 1.2× 103 1.8× 10−2 1.4× 103 3.0× 10−3 1.0× 103 11.0× 10−3

10 3.0× 104 5.0× 10−1 1.0× 103 1.8× 10−2 1.2× 103 3.0× 10−3 1.3× 102 11.0× 10−3

20 1.0× 104 6.0× 10−1 1.4× 102 1.8× 10−2 1.1× 103 3.0× 10−3 1.1× 102 11.0× 10−3

40 1.4× 103 6.0× 10−1 1.1× 102 1.9× 10−2 1.05× 103 3.0× 10−3 1.0× 102 11.0× 10−3

80 1.1× 103 6.0× 10−1 1.0× 102 1.9× 10−2 1.0× 103 4.0× 10−3 1.4× 101 11.0× 10−3

160 2.9× 102 7.0× 10−1 1.5× 101 1.9× 10−2 1.9× 102 4.0× 10−3 1.3× 10−1 11.0× 10−3

The capacitance measured (in Farad) between two parallel infinitely large plates
with a small distance between them is given by the formula (2.1):

C = ε0kA

d
(2.1)

where:

• k: is the relative dielectric permittivity of the material between plates, that in
the case of free space is 1.

• ϵ0: is the absolute dielectric permittivity of free space (equal to 8.854 × 10-12

F/m).

• d: is the distance between the capacitors plates.

• A: is the area of capacitors plates.

Capacitance plate strongly depends both on the area of the capacitive sensor and
on the distance at which the measurement is carried out since the sensor works in
load-mode.

So Csb depends from the distance of the human body and the sensor, and if this
distance grows up, the measurement it is no longer accurate because will be affected
by environmental factors like noise, temperature and humidity. In particular, the
noise can limit the sensor range to 10-15 times the diagonal of their plate [26].
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A possible type of circuit, used to measure the capacitance between the trans-
ducer and the human body while changing the distance, is the one shown in Figure
2.2, taken from [27], which is formed by an oscillator based on a 555 integrated cir-
cuit (IC) configured as an astable multivibrator, for which the oscillation frequency
is given by the formula (2.2):

Frequency = 1
0.7 (R1 + 2R2) C

(2.2)

Figure 2.2. Structure of a capacitive sensor, taken from [27], based on 555
integrated circuit configured as an astable multivibrator.

2.2 Localization and identification applications
In addition to capacitive sensors, other techniques are used for locating people in-
doors. For example, J. Rivera-Rubio et al. did a study on a video-based localization
method in which the person brought the camera with him and the localization car-
ried out through solutions based on simultaneous localization and mapping (SLAM)
algorithms [28].

Other techniques that require that the person to be located wear a device are
those based on radio frequency such as GPS, Bluetooth, RFID and Smart phone
[29], [30], [31], [32]. These could be problematic as not always people, especially
the elderly, remember to wear it, in addition to fact that maybe the device is not
comfortable to wear. Instead, techniques based on image, video and gait recognition
are often used. Ding et al. presents a pose-invariant facial recognition technique
[33], or in [34] a technique has been proposed for facial recognition through the
use of deep learning. While for gait recognition a system based on arbitrary view
transformation model [35] can be used. There are many techniques based on these
principles and the results that they give are very good, their problem is that they
are expensive and hardly susceptible for long-term battery-powered operations.
Furthermore, being based on images or videos, they violate the user privacy. Other
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techniques for the identification of the person are: wireless techniques, such as [36],
ultra-wideband sensors [37] and techniques that use footstep induced structural
vibrations [38].

Capacitive sensors, on the other hand, thanks to their low cost, their easy in-
stallation method and their low power consumption, have been designed for iden-
tification and tracking of the person in indoor environment. A.R. Akhmareh et al.
studied a system based on capacitive sensors for indoor tagless identification in a
room [27]. Using the capacitance of the sensors he built an RC oscillator whose
frequency is dependent on the distance of the human body, the author also had to
apply many noise reduction techniques as at a long distance the sensor loses sensi-
tivity and therefore the movements are no longer captured correctly, in particular at
distances greater than the dimensions of the transducter [39] it becomes sensitive
to environmental factors. The performance of this localization method depends
strictly on the sensor performance. A [15] study was also done to improve the sen-
sitivity of the sensor at distances greater than 10 times its diameter. As explained
in the Section 2.1, a capacitance, Csb, is formed between the human body and the
sensor, which depends on the dielectric properties of the body, and based on this,
Iqbal et al. [40] presents an identification method based on capacitive sensors, in
which the capacitance of the human body at different frequencies is measured and
it will be linked to the different structure of the body. Several improvements have
been made to this method in [41] that have improved the resolution. In [27] another
method has been proposed for the identification of a single person inside a room,
also improving the sensitivity on measurement at long distances. The method is
based on the indirect measurement of the transducer capacitance by measuring the
frequency through an oscillator, after which a baseband digital filter is used to at-
tenuate the measurement noise, finally through localization algorithms the position
of the person is found using all the data of the various sensors inserted in the room.
Based on this work, in [42], the performance of the localization system is studied
using different Machine Learning (ML) algorithms, which are very important if the
improvement of the performance of the system is the goal.

2.3 Types of reading front end
In the studies done over the years, several front-end interfaces for capacitive sensors
have been developed in this research group, all based on the principle of measuring
the capacitance that forms between the human body and the sensor at different
frequencies. In [41], an attempt was made to measure the capacity through its
reactive effects at different stimulating frequencies. The circuit used is the one in
Figure 2.3, in which the capacitive sensor Cs is connected in a first order RC low
pass filter configuration, and a sine wave is applied as input, Vin, and knowing the
amplitude and the frequency is read out of the filter using a high impedance unitary
gain buffer thus obtaining the output signal Vout.

8



2.3 – Types of reading front end

Figure 2.3. Circuit used to determine the capacitance made of a first order
RC low pass filter, a sine wave applied as input and a high impedance unitary
gain buffer, taken form [41].

In this specific experiment the author decided to use a frequency fm = 5 kHz ,
so if a signal is put at the input:

Vin (t) = A sin(2πft + θ) (2.3)

where f = fm. Then tries to calibrate the value of the LPF resistor R, in the event
that there are no people in the sensor range, to obtain:

Vout (t) = A√
2

sin
(︃

2πft + θ − π

4

)︃
(2.4)

This output is typical low-pass RC filer in which the cutoff frequency is equal to
fm. After finding the value of resistor R, it is called Rm, and on the basis of this the
resistor array is built as shown in Figure 2.4 (a). Note that both the value of fm

and of the resistor do not have to be precise, because the method used to find the
capacitance is a method based on relative measurements and therefore systematic
errors usually cancel themselves out. While it is important that the value of the
resistors remain stable and also the excitation frequency of the signal Vin(t) which
is tuned as:

f = 2nfm (2.5)

Furthermore, for each frequency generated, the correct resistance is selected by
means of an analog switch, S, which is therefore also tuned with the excitation
frequency:

R = Rm

2n
(2.6)

It is important to note that to eliminate excessive attenuation at high frequen-
cies, thus improving the SNR, the cut-off frequency of the RC low pass filter must
be kept tuned to the excitation frequency.
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Figure 2.4. Resistor network used to create the first-order LPFs tuned
for every excitation frequency (from 5 kHz to 160 kHz) and experimental
setup of the circuit, taken from [41].

The circuit just described is then part of a final circuit used in the experiments,
and is the one shown in Figure 2.4 (b), in which using a direct digital synthesys
(DDS) programmable signal generator the excitation frequency is created, it is then
programmed from a microcontroller using a serial peripheral interface (SPI). The
sine wave generated by the DDS has 600 mVpp and an offset of 300 mV DC then
eliminated by a capacitance in series. After that there is an amplifier A1 which
brings the signal entering the switch, S, to an amplitude of 3 Vpp. The switch is
controlled by both the MCU and the DDS in order to tune the cutoff frequency of
the RC filter. The output of the filter is then buffered and brought into input to
a filter bank formed by narrow-band bandpass filters, each of which is centered at
the frequency given by (2.5). The filter used will be selected via a multiplexer from
the MCU, once the output from the filter bank is obtained, it is converted to DC
using a ∆Σ RMS-to-DC converter and then measured by the MCU.

Another front-end capacitive sensor interface is shown in Figure 2.5 (a), taken
from [24]. It is used to measure the difference in amplitude between two RC low-
pass filters on the same sinusoidal input signal Vin. The first RC filter is made up of
R1Cs, which varies with Cs, while the second is R2C1 which is therefore fixed with
Cs. Two equal high impedances are used to read the filter output voltage repeaters.
Then, before entering the difference amplifier, the capacities C2 and C3 eliminate the
DC offset. As said before, both R2 and C1 are fixed so Vref has constant amplitude
and phase, while Vsense, being Cs variable, will have non-constant amplitude and
phase. The task of the difference amplifier is to subtract Vsense from Vref , and then
amplify the difference by a factor G = R4/R3, at the output there will be Vdiff

which will be modulated as Cs varies . Finally, two narrow band high Q-factor
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Figure 2.5. Capacitive sensor front end interface used to measure the difference
in amplitude between the output of two RC low-pass filters receiving the same
sinusoidal input signal and experimental setup used, taken from [24].
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band-pass filter are used to eliminate the noise narrow band high Q-factor band-
pass filters. This circuit, as shown in Figure 2.5 (b), is then inserted in the final
diagram, as was also done with the previous circuit described.

Another front-end interface is the one described in the [15] article, shown in
Figure 2.6 (a). The interface measures the phase shift variation of a low pass
filter, in which there is also the transducer capacitance. Thanks to this way of
measuring it is possible to greatly reduce the environment noise while still having
high sensitivity to variations in capacitance. It consists of two analog parts excited
by the same signal Vin(t). In the upper part the signal enters a low-pass filter
formed by R1Cs, and the characteristics of the filter depend precisely on Cs which
in turn depends on the distance from the person’s body. After that the filter output
enters a high impedence voltage repeater. In the lower part it is sent to a reading
circuit similar to the previous one.

The circuit then, as in the two previous cases, is inserted in the same way in the
final circuit used for the experiment, 2.6 (b).
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Figure 2.6. Capacitive sensor front end interface used to reduce the environmental
noise: circuit and experimental setup, taken from [15].
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2.4 Data processing on the sensor
To detect and localize a person in a room, in [27] use a lot of sensors installed in the
room, for example in walls or chairs, sofas, etc. The detection system is therefore
formed by these sensors and a base station that processes the data collected by
them, to estimate the position using various methods such as: Naïve Bayes, k-
Nearest-Neighbors, Support Vector Machine.

Figure 2.7 shows the architecture of the detection system. The movement of
the person changes the transducer capacity with the distance to the human body.
Using the oscillator, like the one in Figure 2.2, this change is converted into a
variation in frequency, in fact when the person is close to the sensor plate, the
capacitance Csb becomes larger and the oscillation frequency, according to (2.2),
becomes smaller. Then the sensor MCU measures the oscillator frequency with a
certain rate, and then via a Zigbee radio module sends it to the base station. In
the base station there is a Zigbee radio receiver which receives a continuous stream
of raw frequency measurements from all sensors installed in the room. Finally, the
data streams received are contained from the base station to a personal computer
via a USB connection, so as to perform further processing.

Figure 2.7. Architecture of localization system based on a Zigbee radio transmit-
ter and receiver, taken from [27].
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Chapter 3

Neural networks for sensor
data processing

Machine Learning (ML), builds through data analysis analytical models, and is
used in many sectors, especially in the field of artificial intelligence. Artificial neu-
ral networks (ANN), a part of ML, are mathematical models composed of neurons,
whose structure resembles that of a human brain. There are many neural network
types since they are used in many fields: Feedforward Neural Network (FNN), like
Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), etc. In this the-
sis, an MLP neural network was used for locating people indoors through capacitive
sensors, and it is well suited for classification tasks.

3.1 What is a neural network
A neural network is a mathematical model whose layered structure remember the
structure of the human brain. It is used to solve Artificial Intelligence engineering
problems related to different technological fields, for example it can learn from data,
so it can be trained to recognize speech patterns or images, like the human brain
does, an image of typical NNs is in Figure 3.1 taken from [43].

It is composed of artificial neurons arranged and connected to each other in
different layers, usually there is at least one layer for the inputs (input layer) and one
for the output (output layer), but the more complex the problems to solve, the more
layers there will be (layer between input and output are call hidden layers). Each
neuron has a set of inputs and its own weight, to indicate the different importance of
each of them, which is regulated, according to a specific rule, automatically neuron
by neuron during training until the neural network correctly performs the desired
activity (in the beginning they are set randomly). The various neurons of each
layer operate in parallel, the first layer receives external inputs, and every neurons
with their weights calculate their outputs and then through an activation function
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Figure 3.1. Typical Architecture of neural network in which there is an input
layer, a hidden layer, and an output layer, taken from [43].

and a threshold value the output value of the neuron is weighted, and then it will
enter as input into all neurons of the next layer, and this procedure is follow until
the end. An image of a neuron is Figure 3.2, taken from the article of Marwen [1],
where all inputs are multiplied with their weights, then all the results are added
together with also a bias which is used to adjust the output along with the weighted
sum of the inputs to the neuron, thus, bias is a constant which helps the model in
a way that it can fit best for the given data. Then the output is calculated through
the transfer (activation) function, that is used to determine the output of NN like
"yes" or "no", so it map the output in range that can go from 0 to 1, -1 to 1 etc.

3.1.1 Learning method
To understand how to behave and solve the specific problem for which it will be
used, the neural network will need to be trained, then modify their structure by
changing the value of the weights according to the learning method used. Three
main algorithms are used for this:

• Supervised Learning: with this method the NN is supplied with both an
input set (call training set) and the corresponding desired outputs that should
be obtained with that specific input set. Through them, the network is able to
understand the link between input and output, so that, having understood this
connection, the network is able to reuse this rule with other similar problems.
The operator will have the task of adjusting the various weights in order to
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3.1 – What is a neural network

Figure 3.2. Structure of a neuron, taken from [1]: all inputs are multiplied with
their weights, then the results are added together with also the bias and finally
pass through the activation function.

have better and better outputs, therefore there is an Error-back Propagation
mechanism in this method. If the training is successful, the network learns
the relationship between input and output and therefore from now on will be
able to predict the exit even when it is unknown. Neural networks of the MLP
type use this method.

• Unsupervised Learning: with this method, only a set of inputs is provided
to the NN, and according to them the neural network learns the scheme and
the logical structure of the inputs. The weight value will be modified during
the learning of the same nodes of the network. A neural network that uses
this method is the Hopfield network.

• Reinforcement learning: in this method the NN does not try to find an
input-output association as in the previous methods, but it learns by inter-
acting only with the environment trying to get to the desired result through
a mechanism of "rewards" (actions that allow to get closer to the result) and
"punishment" (errors to be eliminated but from which one tries to learn). Then
through a feedback mechanism, the algorithm is guided to the right learning
process.
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3.1.2 Advantages and disadvantages of a neural network
The fundamental advantages of neural networks, which have led to their use in vast
fields, are:

• They can work in parallel thus treating a large amount of data.

• Fault tolerance, this is a consequence of the first advantage, in fact the possi-
bility of an error occurs but it is unlikely that it will block the whole system,
perhaps it will only reduce performance.

• Noise tolerance, often even if the inputs provided are not precise, it still man-
ages to operate correctly.

• It is able to self-regulate in case of environmental changes.

However they also have limits:

• They are "Black box", that is the internal calculations cannot be fully analyzed,
even if the final output is correct or otherwise acceptable.

• The training phase to fix the weights of individual neurons can take a long
time if the number of available variables is very large.

• The output often are not the perfect output, but this in many cases is not
necessary.

• The creator of the network has a fundamental role, because there are no al-
gorithms that define an optimal network, everything lies in the skill of the
operator.

3.2 Types of neural networks
There are several neural network architectures, which differ from each other in the
learning method used and the specific problem for which they are used. The most
important are:

• Feedforward Neural Network: they are the simplest neural networks. The
data only propagate in input-output direction. They consist of an input layer
and an output layer, and between them they can have, or not have, one or
more hidden layers. Every layer have a set of neurons, and their output are
the input of the neuron of the next layer. This network can be used for the
recognition of shapes or calculation of simple functions.
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• Multilayer Perceptron (MLP): it is a type of network that has the input
layer, the output layer and one or more hidden layer. Each layer will have a
series of neurons, the outputs of which will be connected, as inputs, to all the
neurons of the next layer. It can calculate any function and is also widely used
in the field of facial recognition.

• Convolutional Neural Network (CNN): this network is a subset of the
MLP networks. It is made up of various layers, at least 5, and the outputs of
each layer are used as inputs in the next layer, to which the convolutional oper-
ations are applied which make the network deeper but with fewer parameters.
The fields of application of this network are vast: image or video recognition,
natural language processing but they are also applicable in the field of Signal
Processing and image classification.

• Recurrent Neural Network(RNN) – like Long Short Term Memory:
in these networks the output of the upper layers are used as inputs of the
lower layers, this to allow the system to create a memory supply so as to
better predict the output. In this way, if the output was wrong, the system
warns itself of the error so that in back-propagation it corrects it. Used for
example in text-to-speech conversion.

• Modular Neural Network: works with different networks each independent
of the other therefore they do not interact with each other during the calcu-
lation, but each one works alone to arrive at the final output. So being that
they work independently the calculation process will be complex but faster
being that they don’t have to interact with each other.

These are only the main neural networks used in the various fields of applications
but they are not all, we can still mention:

• Radial basis function Neural Network, based on the radial basis function.

• Modular Neural Network, in which there are a lot of small NN that cooperate
or compete from each other to compute the output.

• Physical Neural Network, in which there are physical electric resistance to
simulate artificial synapses.

3.3 Multi-Layer Perceptron neural networks
The NN used in [1] by Marwen is a MLP neural network, that is of the type
Feed Forward, made up of at least 3 layers, an input layer that receives external
inputs, one or more hidden layers, and an output layer that calculates the final
result. Its training is supervised learning so as to find weights and biases in order
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to minimize the error. In every layers there is a set of neurons, each of them do
the multiplications between every inputs and their weights, and then sum all these
results with the bias of the corresponding neuron, finally this output go through
Activation Function. The two typical activation functions used for this type of
network can be sigmoids:

y (xi) = tanh (xi) (3.1)
and

y (xi) =
(︂
1 + e−xi

)︂−1
(3.2)

The range of the first is between -1 and 1, while the range of the second is
between 0 and 1, but these functions often create numerical problems (Vanishing
Gradient Problem [44]) so are replaced by the Rectifier Linear Unit (ReLU) acti-
vation function, also call ramp function, and his range, like Figure 3.3, taken from
[45], shows, go from 0 to infinity, in particular the output is zero when it is less
then zero while is equal to own value when it is equal or greater than zero.

Figure 3.3. ReLU function, taken from [45]. The output will be zero, if
the input is less than zero, otherwise it will be equal to the input value if
equal or greater than zero.

3.4 Description of the neural network used
In the experiment of Marwen [1], an MLP network is used, which is suitable for
this purpose. He uses the experimental data taken from [42], in which the data
are taken from four different people at six different frequencies: 5 kHz, 10 kHz,
20 kHz, 40 kHz, 80 kHz, and 160kHz. To optimize and train this NN he used an
augmented experimental data because the data available are too few for a good
NN training. The flow used for the augmented data, using Matlab R2017a, is that
shown in Figure 3.4, taken from [1].

First of all, Gaussian noise has been added, through noise generators, to signif-
icantly increase the number of data and avoid overfitting of the specific data sets

20



3.4 – Description of the neural network used

used for training, but trying to keep the main characteristics of the original set,
they are 10000 labeled six-tuples were then generated for each of the four people
(40,000 tuples in total). The data are then normalized between 0 and 1 to im-
prove the convergence of NN training. Finally, the data is split into 3 groups: 70%
of the tuples (so 28000) are used for the training set (so they are used to fit the
model), 15% (so 6000) for the validation (to give a partial evaluation of the model
adapted to the training set during the optimization for the model parameters) and
optimization and 15% (so 6000) for the test of NN performance.

Figure 3.4. Flow of data augmentation for the training, validation and optimiza-
tion of a neural network, taken from [1].

After that the author decided how many hidden layers, how many neurons per
layer and which activation function to use. For the latter, the sigmoid functions
(LogSig) were used at the beginning, but given the excessive use of resources of
these activation functions [42], they have been replaced by ReLU, for all the layers
apart from the output layer in which it is used a linear identity activation. For the
optimal number of hidden layers a search was made by narrowing the field down to
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neural networks with the same number of neurons per layer. The architecture with
2 hidden layers each of eight neurons was chosen, because the accuracy would have
changed little if multiple hidden layers had been used (Table 3 of [42]). An image
of the NN used is Figure 3.5, taken from [1]. Note that the first hidden layer will
have only 6 multiplication for each neuron because the inputs are six, while in the
second there will be eight multiplications per neuron.

Figure 3.5. Multi-layer perceptron neural network with two hidden layer made
of eight neurons and one output layer with one neuron, taken from [1].

Below, Algorithm 1 is a pseudocode of the MLP NN, taken from [1]. The first
two for the loops constitute the first hidden layer: the first loop goes from 0 to
the number of neurons of the first hidden layer, in this case eight, the second loop
instead goes from 0 to the number of inputs, in this case six. Inside this last loop
the various results of the neuron multiply and accumulate, once the loop is released
the bias of that neuron is added to the final result and then the activation function
is applied to it. After that each time the final output of the neuron is calculated,
the accumulation variable is reset. The second hidden layer is implemented with
the same structure but the second for now goes from 0 to all the outputs of the first
hidden layer, so in this case eight. The last layer, Output layer, is implemented
only with a for loop, which goes from 0 to all the outputs of the second hidden
layer, then all the multiplications are performed and the results are accumulated,
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and finally the bias is added to it and we obtain the person’s ID.

Algorithm 1 Neural network MLP pseudocode, taken from [1]
1: First hidden layer
2: for i = All neurons on first hidden layer do
3: for j = All inputs do
4: Product← input_data[j]× weights_0[i][j]
5: Sum← Sum + Product
6: end for
7: Hidden_L0[i]Sum← b0[i]
8: if Hidden_L0 [i] < 0 then
9: Hidden_L0[i]← 0

10: end if
11: Sum← 0
12: end for
13: Second hidden layer
14: for i = All neurons on second hidden layer do
15: for j = All outputs of first hidden layer do
16: Product← Hidden_L0[j]× weights_1[i][j]
17: Sum← Sum + Product
18: end for
19: Hidden_L1[i]Sum← b1[i]
20: if Hidden_L1 [i] < 0 then
21: Hidden_L1[i]← 0
22: end if
23: Sum← 0
24: end for
25: Output layer
26: for i = All neurons on second hidden layer do
27: Product← Hidden_L1[j]× weights_2[i]
28: Sum← Sum + Product
29: end for
30: Person_ID ← sum + b2
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Chapter 4

Very low power FPGA

In this experiment neural networks are implemented on MCUs or on ultralow-power
FPGAs. The performances achieved by the latter are better than those of the
MCUs. The ways in which they can be programmed are either manually (therefore
writing the VHDL or Verilog code by hand) or through high level synthesis using
a special tool which, starting from the code written in C or C++, creates the HDL
code.

4.1 FPGAs types and performances compared
The use of neural networks, in recent years, has intensified a lot, this because they
are applicable to a large number of fields, also obtaining excellent results. Their
problem, however, is that more accuracy is desired, more complicated will be the
NN and therefore they are really difficult to integrate into an embedded system such
as a smart-phone or a robots, this is because their consumption of resources is very
heavy. So, to overcome this problem, the neural network used for locating people
indoors through the use of capacitive sensors, can be implemented via software,
using powerful CPU or GPUs, or via hardware, using FPGAs as HW accelerators,
which bring benefits both from the point of view of validity, of power [46] but also
from the point of view of accuracy and resources used [47].

The families of FPGAs used by Marwen in the experiment [1], are of the ultralow-
power type, therefore that from the point of view of power (both static and dy-
namic) they consume very little. In particular, two families of FPGAs were chosen,
Lattice iCE40 family and Microsemi IGLOO family, of which respectively were
chosen:

• ICE40UP5K for Lattice.

• IGLOO AGLN250, IGLOO M1AGL600 and IGLOO M1AGL1000 for Mi-
crosemi.
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4.1.1 Lattice FPGA features
The Lattice ICE40 UltraPlus FPGA is used in smart-homes, factories and cities.
It allows to have a low power of computing resources by also implementing compli-
cated systems such as neural networks, in fact it is manufactured using a CMOS
low power process. It has:

• 5280 Look-Up Table (LUTs), or structures data/tables used to replace a com-
plex calculation with a consultation of this table, thus speeding up the opera-
tion.

• DSP blocks, in particular it has 8 blocks, and they are blocks capable of
doing specific operations such as accumulation, multiplication, multiplication
or accumulation (MAC) without going to use LUTs. It could be used as a
16x16 multiplier and as a 32 bit accumulator, therefore as a MAC block.

• 1024 Kbits Single Port Random Access Memory (SPRAM).

• Standby current is typically less than 100 uA.

4.1.2 Microsemi FPGAs features
From the Microsemi family, 3 ultralow-power FPGA IGLOOs were chosen, created
by a 130-nm flash process. IGLOO devices use a Flash*Freeze technology that
allows to enter and exit the ultralow-power mode which consumes less than 5 uW
keeping system memory data and data registers. The three FPGAs used are:

• AGLN250: it is the smallest FPGA on which the experiment was made, in fact
it has only 6144 VersaTiles (which are the equivalent of the LUTs for Lattice).
It has no dedicated DSP blocks, it has 36 blocks of RAM 1024 Kbits. It has
the lowest static power of all FPGA used in this experiment, 0.08 mW.

• M1AGL600: it has 13824 VersaTiles, has no dedicated DSPs and static power
is 0.13 mW, also has 108 blocks RAM 1024 Kbits.

• M1AGL1000: it is the largest Microsemi FPGA has 24576 VersaTiles, has no
dedicated DSPs and static power is 0.21 mW, also has 144 blocks RAM 1024
Kbits.

The Table 4.1 summarizes the characteristics just mentioned. Note that the
static power information is taken from [1].

4.1.3 Other low power FPGAs
The choice to use the ultralow-power FPGAs of the Lattice and Microsemi family
falls on the fact that they have a much lower static power than other FPGAs.
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Table 4.1. Description of features (LUTs, DSPs, Pstatic and Ram) of the FPGAs
used in the reference programming, taken from [1].

FPGA’s Family Device LUTs DSPs Pstatic Ram
Lattice ICE Ultraplus ICE40UP5K 5280 8 0.28 mW 4 Kbits

Microsemi IGLOO AGLN250 6144 N/A 0.08 mW 36 Kbits
Microsemi IGLOO M1AGL600 13824 N/A 0.13 mW 108 Kbits
Microsemi IGLOO M1AGL1000 24579 N/A 0.21 mW 144 Kbits

In fact, FPGAs from the Xilinx or Altera family could also have been used, in
particular the first would have been excellent since the code generated by Vivado
HLS is suitable for the FPGAs of this family. The problem is that comparing the
power consumption of the latter devices, it is not comparable to that of the Lattice
and Microsemi FPGAs, being they only low-power and not ultra-low-power. In
particular, the FPGAs of the Xilinx and Altera family that could be used are those
shown in the Table 4.2, in fact, it can be noticed that even if there are many LUTs
and also DSPs are many and therefore they could be used for specific operations,
the static power at least an order of magnitude greater than the ultralow-power
FPGA.

Table 4.2. Description of the features (LUTs, DSPs and Pstatic) of other low
power FPGAs not ultralow-power, taken from [1].

FPGA’s Family Device LUTs DSPs Pstatic
Xilinx Spartan 3 XC3S200 4320 12 41 mW
Xilinx Spartan 3 XC3S200A 4032 16 43 mW

Xilinx Artix 7 XC7A100T 162240 240 41 mW
Altera Cyclone II EP2C8 8256 18 40 mW

4.1.4 Microcontrollers

In addition to FPGAs, to implement the neural network, is possible use the software
approach, i.e. implementation on a CPU or GPU. Unlike FPGAs, CPUs are suitable
for running code sequentially and not with parallel implementation. The hardware
architecture of a CPU is defined by the programmer, therefore it is not modifiable.
In addition, the neural network or the system to be implemented will be in C/C++
while in the FPGA in Verilog or VHDL.

The neural network, show in Figure 3.5 was done on two ARM Cortex M3 MCUs
[1] :
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• STM32L152RE: that is optimize for ultralow-power, the field of the applica-
tions is various: medical, gaming, PC pheripheral, GPS and sport equipment
etc, alarm systems, wired and wireless sensor.

• STM32F103RB: that is optimize to reach good performance, typical applica-
tions are motor drives and application control, medical, industrial application,
printers and scanners, alarm systems, video intercom.

These MCUs include HW multipliers, and thanks to the way in which they were
created there is the possibility to measure the current consumption during the
execution of the program. The results find in [1], are show in Table 4.3

Table 4.3. Comparison between the results obtained by manual program-
ming implementing the neural network on the two MCUs under different
operating conditions, taken from [1].

MCU Parameter MCU device
STM32L152RE/STM32F103RB

Clock frequency
(MHz) 8/8 16/16 32/64

FLASH latency
(wait states) 0/0 0/0 1/2

Clock cycles for
NN inference 1474/1474 1474/1474 1740/1831

NN inference
time (µs) 184/184 92.1/92.1 54.4/28.6

Current(mA) 1.85/4.00 3.60/6.80 8.60/23.9
Voltage (V) 3.0/3.3 3.0/3.3 3.3/3.3
Power (mW) 5.55/13.2 10.8/22.4 28.4/78.9
Energy (µJ) 1.02/2.43 0.99/2.06 1.54/2.26

For STM32L152RE the best results from the point of view of energy are at 16
MHz, for the power instead it is at 8 MHz (5.55 mW), with a low energy however.
Instead from the point of view of time, the best result is found with a clock of
32 MHZ, and the result found is about half the time that it is at 16 MHz, this is
because the frequency in the second case is higher and therefore the time taken is
less but the energy and power increase. The clock cycles for 8 MHz and 16 MHz are
the same, while for 32 MHz they increase (from 1474 to 1740) due to the latency
of the FLASH which is higher.

For STM32F103RB the best results from the point of view of energy are found at
64 MHz, however there is an increase in power due to the high operating frequency,
while for 8 MHz there is still a low energy (only 0.17 uJ more than the previous
case), but the power, being the lowest frequency, is much lower (13.2 mW).
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4.2 FPGA programming mode
In order to implement a circuit on an FPGA, it must be programmed. There are
two main programming modes:

• By schematic: that is, the user manually inserts every single block that forms
the project.

• Through hardware description language (HDL): that is, the programmer de-
scribes the behavior of the project in Verilog or VHDL.

The first method prefers the speed and simplicity of development as well as facili-
tating the visualization of the design of the project, on the other hand, however, it
can only be used for simple schemes. Describing the hardware to be implemented
with the second method leads to flexibility and maintainability of the project, also
large and complex designs can also be managed. The most used HDL languages
are VHDL and Verilog.

Regarding the latter programming method, the VHDL or Verilog files, which
describe the project, can be created starting from the high level description in C
or C++ language, after which, using a tool, Vivado HLS, the high level code is
synthesized to create the HDL file to be implemented on FPGA, in doing so the
designer describes the design at a higher level of abstraction, leaving the synthesis
tool to create the HDL files.

4.2.1 Manual programming
With manual programming, the programmer must describe the project hardware
by using the block diagram, or by writing the VHDL or Verilog code. In both cases,
the programmer has absolute freedom on the HW choices that can be made, and
has complete control over the components that will then be used in the project.
As for programming through the use of blocks, it can be done on relatively sim-
ple projects, because if the project becomes too complex, the various connections
between the blocks would not be simple, so the creation of the project would be-
come slow. If, on the other hand, HDL languages are used to describe the project,
the programmer can better describe the HW, without wasting too much time in
creating and connecting the various blocks because the synthesizer will take care
of these operations. The disadvantage of the latter method is that it is not a pro-
gramming language but a HW description language, so if there is a program to
synthesize in which there are IF, FOR, WHILE, etc. constructs it can be done but
the programming is more complicated, so it would take time to create the project.

In both cases, however, any design can be described to be implemented on
FPGA, the time it takes to write the program depends on the complexity, and the
optimization of the code, must be done always by hand. However, the programmer
have full control over the creation of the project, so if there is a need to look
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for an error during the simulation phase, it would be easily traceable because the
programmer in theory knows all the signals, which is not the case using the HLS
technique, in which the components of the synthesized HDL code will have different
names and there is no control over the hardware it will insert.

4.2.2 High level synthesis
High level synthesis interprets the high level description of a given algorithm, and
transforms it into the equivalent algorithm but described in a hardware description
language. This is an automated process, and the goal of the HLS is to allow the
hardware designer to create a project efficiently, making available optimizations to
improve it, give the possibility to verify the actual operation and accelerate the
generation of the HDL.

The advantages of adopting this type of programming are:

• Increase in performance.

• Reduction of power consumption.

• Improve the level of abstraction of the algorithm by being written in C/C++.

• Reduces the time, compared to HDL, to write complex algorithms (such as
digital signal processing (DSP)).

But there are also disadvantages:

• The generated HDL code is poorly readable.

• Loose control of the described hardware architecture.

Then, starting from the C/C++ code written by the programmer, HLS extracts
a Finite State Machine (FSM), after which it identifies the operations and they will
be mapped in each state, then the operations are scheduled by mapping them in
the various clock cycles and finally assign operations to available functional units.

4.2.3 Optimizations
The tool used for high level synthesis is Vivado HLS, and it is a tool used to create
HLD code suitable for the FPGAs of the Xilinx family. Directives can be applied
to the code written in C, that is optimizations to make the code more efficient so
that it can add the set objectives. There are two ways in which these directives can
be applied:

• Directive file: Vivado HLS inserts all the directives adopted in a .tcl called
diretive.tcl, this way is useful when the goal is to to see different optimizations
on the same code so as to explore the design.
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• Source File: in this case the directives are applied directly to the source code
as a pragma.

The main optimizations that can be made are those to improve:

• Throughput: directives such as PIPELINE or UNROLL can be applied both
to loops and to functions of the C code, so as to increase parallelism, while
paying attention to problems related to data dependency. Together with the
aforementioned directives, the ARRAY_PARTITION directive is also usually
used to partition a given array, since it is implemented as a RAM block with
a maximum of two data ports, so as to access it with a greater parallelism.
Another useful directive is DATAFLOW, used to parallelize operations when
there are a set of sequential tasks in the code.

• Latency: the LATENCY directive can be used to limit a certain loop to a
certain number of clock cycles.

• Area: directives such as INLINE improve the occupied area because when a
function is inlining the components inside it are better shared or optimized
with the logic of the calling function, also the ARRAY_MAP directive is used
to improve the area, with it in fact joining small arrays mapping them into a
single larger array to reduce the number of RAM blocks. Directives such as
ALLOCATION or RESOURCE instead allow to better control the hardware
used.

An example of how the use of directives can improve the performance of an algo-
rithm is shown in [48], where Vivado HLS is used to synthesize and optimize differ-
ent algorithms such as: Mergesort, Depth-First Search and Breadth-First Search .
In fact, it has been discovered that the use of directives such as unroll and pipeline
which increase parallelism, bring benefits in terms of time taken to execute the
algorithm and also in terms of speedup. In particular, it has been noted that these
two directives work very well together, especially when using unroll with a low
factor. Also in [49] it is shown how using HLS and the directives on a Non-binary
low-density parity-check (LDPC) Decoders, it is possible to reach over 50% of the
throughput reached with the RTL design.
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Chapter 5

High level synthesis for
FPGA

In this thesis, the technique of using high level synthesis to create the HDL file
to be implemented on FPGAs is adopted. With HLS there are numerous advan-
tages (better performance, speed in creating the project, the possibility of inserting
optimizations) but there are also disadvantages such as that one does not have
control of the hardware included in the project or some construct of C that are not
synthesizable. The software used is Vivado HLS by Xilinx, and various directives
(optimizations) have been inserted in the original code to improve performance,
after which the generated HDL code is inserted in the Lattice and Microsemi tools,
so it will not adapt perfectly to the design of these FPGAs since the code is suitable
for FPGAs of the Xilinx family.

5.1 High level synthesis flow
The creation of HDL files starting from the code written at high level follows a very
precise flow, in particular, the flow of the Vivado HLS tool follows the following
steps:

• Start by writing the project in C or C++ code Figure 5.1 (a), and this code
will then be compiled, executed and debugged.

• Synthesize the C code in the RTL implementation, Figure 5.1 (c), possibly
adding directives to optimize, Figure 5.1 (b).

• Generate synthesis reports to get information on the resources used and timing
and analyze the design to see how operations are scheduled in the various clock
cycles.
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• Through Co-Simulation, Figure 5.1 (d), it is verified that the RTL implemen-
tation created still works correctly, and this is done through a test bench.

• Package the RTL implementation into a selection of IP blocks that will be
integrate into the HW system, Figure 5.1 (e).

The Figure 5.1, taken from [50], summarizes the design flow of Vivado HLS and
shows inputs that can be receive and which outputs creates a design synthesized
by Vivado HLS. In particular, as input it can receive: functions written in C, C++
or SystemC, constraint, directive and the test bench in C. While the outputs are:
the RTL files created in HDL (or in VHDL (IEEE 1076-2000) or in Verilog (IEEE
1364-2001)) and report files.

Figure 5.1. Vivado HLS flow design to test the operation. Test bench,
directives and C-function are taken like input. The output are HDL files
and report files, taken from [50].

After verifying with the Co-simulation that the VHDL or Verilog created con-
tinues to behave correctly, these files are taken and implemented on the Lattice
and Microsemi FPGA, therefore Vivado is not continued to be used as it should be
given that the HDL created is suitable for the design of the FPGAs of the Xilinx
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family. The tools used for ultralow power FPGAs are: Radiant for Lattice FPGA,
Libero for Microsemi FPGAs.

After inserting the .vhd source files created by Vivado HLS, the steps are equiv-
alent for both tools:

• Set the correct FPGA to implement the program.

• Synthesize the VHDL code.

• Design is mapped.

• Place and Route.

• Finally the power analysis is done.

In addition there is also the possibility of simulating the program before and after
the synthesis and also after the place and route. Once these steps are done the .bin
programming file can be created, which will be placed in the FPGA. The way HLS
synthesizes the C code is as follows:

• Top-level function arguments are synthesize as RTL I/O ports.

• The functions in C code are synthesized in blocks in the RTL hierarchy.

• Loops are kept rolled by default.

• The arrays are synthesized in RAM blocks.

5.2 Limits of Vivado HLS
There are many types of C language that Vivado HLS supports, but there are
some constructs of these languages that cannot be synthesized. System calls, for
example, are not supported because the functions that they perform are related to
the C program and therefore this tool ignores the functions that have no impact
on the algorithm (for example printf() and scanf()). Then all system calls that
have to do dynamic memory usage (for example malloc(), alloc(), free()), and these
functions will have to be removed from the code. Even the use of pointers is
limited, in fact general pointer casting are supported only between native C types,
pointers arrays but not that are refer to other pointers, instead function pointers
are not supported. Finally, even the recursive functions cannot be synthesizable.
In addition to these problems, it must be noted that the HDL code produced by
HLS is hardly readable by the programmer, because all the signals or variables
that were initialized in the C code will have different names and also the various
HW blocks (adder, multiplier) will be difficult to be traced. Overall, all the code
will be difficult to modify if there is an error during the Co-simulation, because
determining the cause also through the use of a wave simulation is a difficult task.
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5.3 Code used for neural network and optimiza-
tions

The neural network code used in this experiment is A.1. It receive an array com-
posed by six data, that are the six input, and it provides an array of 1 dimension
that is the output. The code is composed of three large loops, formed in turn by
an internal loop.

The first loop FirstHiddenLayer, and also the internal loop NeuralInputLayer,
is the loop that implements the first layer of the neural network 2. The six multi-
plications between weights and inputs are performed for the generic neuron (in the
inner loop), and this is done then for all the eight neurons of the first layer (upper
loop), making a total of 48 multiplications. It should be noted that of these 48
multiplications (6 multiplications for each of the eight neurons), there are eight in
which the input is multiplied by a value of weights which is equal to zero, so this
operation, since the result is necessarily zero, is discarded by Vivado HLS, so in
each neuron there will be only five multiplications, so 40 in all. When the multipli-
cations of the neuron are performed they are added up from time to time and finally
the bias is also added and then the activation function is applied. The outputs of
this first loop are array of two dimensions call outputs_middle, in particular the
first dimension of these array identify the outputs of the first loop.

Algorithm 2 First Loop of Neural Network
1: FirstHiddenLayer:
2: for short j = 0; j < NEURAL_HIDDEN_LAYER; j++ do
3: sum = 0;
4: NeuralInputLayer:
5: for short i = 0; i < NEURAL_INPUT_LAYER; i++ do
6: t = weights[0][i][j] ∗ inputs[i];
7: sum = sum + t;
8: end for
9: sum = sum + biases[0][j];

10: outputs_middle[0][j] = Relu(sum);
11: end for
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The second loop NeuralNextLayer, and also the internal loop NeuralThisLayer,
implement the second layer 3. Each neuron will do the 8 multiplications between
weights and inputs for all 8 neurons, therefore in all 64 multiplications. The out-
puts of the second loop are always outputs_middle, but this time on the second
dimension of the array. Finally the last loop OutputLayer and also the internal loop

Algorithm 3 Second Loop of Neural Network
1: NeuralNextLayer:
2: for short j = 0; j < NEURAL_HIDDEN_LAYER; j++ do
3: sum = 0;
4: NeuralThisLayer:
5: for short i = 0; i < NEURAL_INPUT_LAYER; i++ do
6: t = weights[1][i][j] ∗ outputs_middle[0][i];
7: sum = sum + t;
8: end for
9: sum = sum + biases[1][j];

10: outputs_middle[1][j] = Relu(sum);
11: end for

LastHiddenLayer implement the output layer and the final eight multiplications 4.
Note that in this loop the activation function ReLU is no longer used but Linear.

Algorithm 4 Last Loop of Neural Network
1: OutputLayer:
2: for short j = 0; j < NEURAL_OUTPUT_LAYER; j++ do
3: sum = 0;
4: LastHiddenLayer:
5: for short i = 0; i < NEURAL_HIDDEN_LAYER; i++ do
6: t = weights[2][j][i] ∗ outputs_middle[1][i];
7: sum = sum + t;
8: end for
9: sum = sum + biases[LAY ER− 1][j];

10: outputs_middle[2][j] = Linear(sum);
11: end for
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There is also an initial loop 5 that is used to serialize the inputs of the NN,
because if, for example, the parallelism of NN rise up, like in the case of directive
PIPELINE, more inputs are processed, and this is a problem for the FPGA pin
number being exceeded, to avoid this loop has been added so only one input at
the time is taken, and then are processed all in parallel to respect the number of
the pin. In addition to the file on which there is the code of NN, there is another

Algorithm 5 Initialization of Neural Network
1: Initialization_input:
2: for int i = 0; i < NEURAL_INPUT_LAYER; i ++ do
3: inputs[i] = input[i]
4: end for

file (the header A.2) in which there are the general settings of the neural network
such as: number of layers, number of neurons in the input layer and hidden layer
etc. There is the possibility in Vivado HLS to define the size of the data that is
managed, so the programmer has the possibility to choose the size of the data, so,
for example, instead of having the generic int of 32 bit, it can be set to a smaller
number of bits, thus saving area because all internal logic will work with a lower
number of bits. In the case of this neural network, the inputs should have 17 bits
and the output 4 bits, but to save on the area it was decided to opt for a number of
bits for the inputs equal to 16 because even with a bit less the final result varies but
only slightly. The data with which it works (inputs, weights, biases, outputs and all
the various internal results) are not integers but are fixed point, in particular the
inputs and all internal results are of the type data_t, that have 16 bits of which 4
represent the integer part, in order to be able to represent the values of the weights,
inputs and biases correctly, and 12 bits for the fractional part, while the output is
of type output_t that has 4 bits, of which 2 for the integer part and two for the
fractional part.

There is also a need to handle the interface, because in a C code all the operations
are done in zero time, but when it is transformed into HDL code the various signals
will pass through ports and must be synchronized through an appropriate interface.
In my case the interface protocol ap_ctrl_hs was used which is a type of Block-
Level Interface protocol.

5.3.1 Synthesis diretives
Before Synthesize the code, Vivado HLS gives the possibility to insert (in the code
via #PRAGMA or in a .tcl file) directives in order to improve the performance
according to our goal (area, latency, etc.). As explained in the Chapter 4 in the
Section 4.2.3, the directives can be used to improve throughput, latency and area.

In my case, to explore as much as possible the space of solutions, the directives
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have been inserted through directive file (directive.tcl), that is, the different solu-
tions that have been created each have their own directives. The directives used
are:

• Pipeline: directive used to allow operations to be performed concurrently, just
like on an assembly line. It improves both throughput and initiation interval
and can be applied to both loops and functions with the difference that if
applied to loops the pipeline will be executed until the end of the loop, while
in the functions it will be performed forever. In the case of the neural network
it will be applied on the three main loops, and via parameter II can be choose
after how many clock cycles a new value can be applied, so as to ensure that
the pipe chain is always full and thus avoid the insertion of bubbles that would
degrade performance.

• Partition Array: usually is used together with the PIPELINE directive, be-
cause if the pipe is applied the parallelism is increase, therefore multiple ac-
cesses are given to the same array at the same time, and it, being synthesized
as a RAM block has a maximum number of two data ports, is a limit for the
throughput of an algorithm that must read multiple values of that array at
the same time. So the solution is to split the array into smaller arrays thus
increasing the number of ports. The partition of the array can be done in the
following way:

– Block: the original array is split into blocks, of the same size, of consecu-
tive elements

– Cyclic: the original array is split into blocks, of the same size, of inter-
leaving elements

– Complete: the original array is split into individual elements.

Also the dimension of the array it’s a parameter that can be partitioned,
for example, in one of the solutions, for the weights array which has three
dimensions, I partitioned it on the third dimension which is equal to 8, thus
having 8 arrays instead of only one.

• Unroll: allows to unroll the loop thus increasing throughput and decreasing
the clock cycles to do and operate a loop, but as a counterpart there is a large
increase in area because there are more operations to do together. Unroll can
be applied to both loops and functions, also deciding the degree so how long
to roll the loop, if for example the loop takes 4 clock cycles to execute, with a
degree two unroll it will only take two, with degree four it will only take one.

• Allocation: directive used to keep under control the number of resources used,
in my case it is used to modify the number of multipliers to be used in the
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various solutions of the FPGAs, since the one I choose from Vivado HLS is
not of the same family and therefore will not have the same DSP available.

• Function Inlining: this directive allows to save some area inlining the function
and thus allowing to share the components within it and be optimized in the
logic of the calling function. This directive in my case is used indirectly, in
the sense that Vivado HLS uses it automatically for the ReLU and Linear
function.

The Table 5.1 summarizes the advantages and disadvantages of the directives used.

Table 5.1. Summary of the advantages and disadvantages of the directives used.

Directive Advantages Disadvantages
Pipeline Grow up Parallelism,

Throughput and Latency
Increase Area

Partition Array It allows to make multi-
ple accesses to the same
array

More access, therefore more
signals and therefore more
energy is consumed

Unroll Grow up Parallelism,
Throughput and Latency

Increase Area

Allocation It limits resources there-
fore less area used

With less resources the
speed is slower

5.3.2 Design space exploration
To find among all the possible solutions the one that comes closest to the perfor-
mance obtained by the manual programming, I have adopted the following scheme,
Figure 5.2, that I have used for all FPGAs:

• I start allocating the number of multipliers with the ALLOCATION directive,
but I don’t allocate them all immediately, but first start with a lower number
and then increase them. When the limit of performance are at the limit (per-
haps checking latency or seeing that as I added directives the area increased
but the performances remained the same). So for example in the case of the
Lattice FPGA in which up to eight multipliers could be inserted, I started by
putting only two, then four and finally eight.

• Then I start piplining the inner loop of all three loops, thus seeing how latency
improves.

• I use low grade unroll together with the pipe always in the inner loops, and
usually this is the limit of performance using pipes and unroll in the inner
loops.
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• Since using the directives in the internal loops does not achieve the prede-
termined performance, the use of the pipe applies at the external loops and
together with this also partition, in complete mode, the arrays inputs on di-
mension 1, and ouputs_middle on dimension 2, since now the parallelism is
increased and so more access are made on these array.

• After which the unroll directive is also used together with the pipe, first using
a low degree and then increasing it from solution to solution. Together with
them I will also have to partition the weights array, on dimension 3, and the
biases array, on dimension 2, in order to make more access correctly. With
these (when all the multipliers available through the allocation directive are
available) the performance is achieved best.
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Figure 5.2. Flow of directives used to find the best performance. Start with
allocation of multipliers, then pipeline and then unroll of inner loops, then can
pass to pipeline, unroll and partition arrays of the upper loops. If the performance
are not reached, this flow is repeat.
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Chapter 6

Experimental results

The analysis of the tools, used to carry out the experiments, are made and the
values of the data obtained for the various FPGAs, finally comparing them with
those obtained with Marwen’s manual programming [1].

6.1 Target devices
The main objective of this thesis is to reach or surpass the experimental results
obtained by Marwen in [1] using HLS. As already written before, the software used
to generate the HDL code at the HLS level is Vivado HLS, while the two software
used for the two FPGA families under test are: Radiant and Libero, for Lattice
iCE40 family and Microsemi IGLOO family respectively. The target devices are
the FPGAs of these two families described in Chapter 4 in the Section 4.1, so
ICE40UP5K, AGLN250, M1AGL600 and M1AGL1000. The first obstacle that can
be encountered is the non-adaptability of the code generated by Vivado HLS for
the two FPGAs examined, since the generated code should be implemented on FP-
GAs of the Xilinx family, therefore some code constructs may not be understood
by the two tools and therefore implemented incorrectly using resources that may
not actually be used. The two target parameters that have to reach are inference
time and energy, after which area, clock frequency, power and clock cycles were
also compared. After having achieved the performances reached by reference pro-
gramming, there is a need to extract the .bin programming file to be inserted into
the FPGAs.

6.2 Tools
The HDL code generated by Vivado HLS will then be implemented on the tools of
the two families, namely: Radiant Software 2.0, for the Lattice iCE40 FPGA, and
Libero SoC v11.9 for Microsemi IGLOO FPGAs. In order to use these tools I had
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to download the license for both of them from their corresponding website and in
both I checked that in the version of the tool downloaded there were the FPGAs
that I should have tested.

6.2.1 Radiant Software 2.0
The tool used for Lattice’s FGPA is Radiant in the version 2.0. The workflow
that should be followed to obtain the .bin programming file to be inserted into the
FPGA is the one shown in Figure 6.1, taken from [51].

It should be noted that the tool is equipped with numerous features:

• ALDEC Active-HDL, Figure 6.1 (a): which is a simulator provided by the tool,
therefore through the use of a test bench and adding the waves to understand
the behavior, a verification is made, before synthesis, that the inserted HDL
code works correctly.

• Inspect Strategy Settings, Figure 6.1 (b): the tool gives the possibility to set
the best strategy to be adopted for the project. In fact it is a set of settings
that will then be used in the various stages of the implementation of the
project (synthesis, map, place & route, etc.). With the strategy is possible
also choose whether to prioritize the speed or the area of the project. Radiant
tool also provides a default strategy, with the possibility, however, to modify
it according to the objectives to be achieved.

• Set Timing and Location Assignments, Figure 6.1 (c): by setting the con-
straints for timing and location the achievement of the requirements of the
design is possible, because they allow the optimization algorithms to work in
the most efficient way possible.

• Synthesizers, Figure 6.1 (d): the synthesis translates the HDL file, therefore
RTL, into a process-specific gate-level netlist which in this case will be op-
timized for Lattice Semiconductor FPGAs. The synthesizers used by this
tool are two: Synopsys Synplify Pro for Lattice and Lattice Synthesis Engine
(LSE), and they are fully integrated, meaning that all options are directly set
from the Radiant tool.

• Power Calculator, Figure 6.1 (e): it estimates the power dissipated by the
project and is integrated into the Radiant tool. The power estimate can be
made either in Estimation Mode, i.e. based on the resources of the device or
template that the designer will have to provide, or in Calculation Mode, i.e.
the power estimate will be made on the device resources taken from a .udb
file of the design or from an external .vcd file, and these are files that contain
the real delays of the signals of the project, and therefore with them a more
precise estimate can be done. In this thesis the second modality was adopted.
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Figure 6.1. Workflow of Radiant Software, taken from [51]. Several tools are
integrated into this software: ALDEC Active-HDL (a), to simulate, Synplify
Pro for Lattice and Lattice Synthesis Engine (LSE) (d), to synthesis, Power
Calculator (e), to calculate power.
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6.2.2 Libero SoC v11.9
For the FPGAs of the Microsemi family, the Libero tool is used. The workflow of
this tool is shown in Figure 6.2, taken from [52].

Figure 6.2. Workflow of Microsemi Software, taken from [52]. Start with cre-
ation of design, simulate it with Modelsim, synthesize the design with Synplify
Pro, do the place and route then do the timing and power analysis and finally
create the .bin file for programming.

The features of this tool are:

• Modelsim Simulation: using this tool already within Libero, the simulation
of the design can be made, using a testbench. The simulation can be done
pre-synthesis, post-synthesis and post-place & route.

• Synthesizing the Design using Synplify Pro: this synthesizer compiles and
synthesizes the design.

• Timing analysis: using Smart time a static timing analysis can be done thus
seeing if there is any path that has negative slack, and if there is change the
clock frequency so that from this analysis the slack is small and positive.

• Power analysis: there is also the possibility to analyze how much power our
design dissipates. This analysis can be done vectorless, so the tool makes an
estimate of the possible delays of the signals, or through the file .vcd created
after the simulation, where there are the real delays of the signals.
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6.3 Workflow
In order to use the neural network used in the capacitive sensor project, the .bin
programming file have to be created to be loaded on the FPGA in question. The
workflow followed by me in this thesis to create the final file is the one shown in
Figure 6.3. At the top, when Vivado HLS is used, the steps to follow are equal
for both projects, whether it will then be implemented on Lattice’s FPGA or on
Microsemi’s. After the Co-simulation different paths are followed even if the steps
are similar but placed in different order in the two software, after checking the
timing they return to be the same.

The steps therefore are:

• Choose FPGA and Import C files: import the project at a high level and after
that choose which FPGA to work on, being that on Vivado HLS there are no
FPGAs of the Lattice and Microsemi family but only those Xilinx, I choose
the FPGA of the latter family that was closest in number of LUTs and DSPs
to the FPGA that I had to test.

• Insert Directives: directives are then inserted in order to achieve the perfor-
mance established according to the diagram in Figure 5.2.

• Sythetize project: the project is now synthesized with directives inserted on
Vivado HLS in order to create the .vhd (in VHDL) or .v (in Verilog) files. The
clock period can be set before the synthesis, this is used to go faster or slower
thus affecting the created files. After the synthesis in the Analysis panel can
be seen how the various operations are scheduled.

• Co-simulation: to verify that the created HDL code still behaves correctly,
Vivado HLS gives the possibility to do a Co-Simulation. So I created a test
bench, giving as inputs the real values that are used in manual programming,
after which there is the possibility to debug and check that each result provided
is correct by comparing them with those found by the reference programming
provided to me via an Excel sheet. It should be noted that using only four
output bits, due to the few pins available on Lattice FPGA, the results will
not be as precise as those of the reference model but approximated being on
a lower number of bits, I have tried anyway, just for verification, to increase
the number of bits and in fact the same results, hence the code continues to
behave correctly.

Now the flow takes different (but similar) paths depending on which FPGA you
are testing, whether that of Lattice or those of Microsemi.
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Figure 6.3. Workflow follow to obtain .bin file for programming. At the top,
violet square, there are the steps followed on Vivado HLS. At the left, yellow
square, there are the steps followed in the Lattice tool. At the right, grey
square, there are the steps followed in the Microsemi tool. At the end, power
analysis and then export files.
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For Lattice:

• Import HDL file and choose FPGA: import the created HDL files and choose
the FPGA to test, which in this case is only one.

• Insert clock frequency: now insert the reference frequency, that is found in the
manual programming, for this FPGA to see if my project can also run at the
same frequency.

• Synthetize: synthesize the HDL code into gate-level netlist.

• Mapping and Place and Route.

• Check the slack: I now check that the slack, based on the previously set clock
frequency. If is small and positive, is a sign that the design is efficient that
goes perfectly against the assigned frequency. In what was not so there are
two other possibilities: the first is that the slack is positive but big, this means
that my design can go faster than the set frequency, so I will have to increase
the frequency to decrease this slack, the second instead it is that the slack
is negative, this means that the project does not meet all the critical paths
of the clock and therefore has to go slower, so the design will have lower the
operating frequency.

• Power Analysis: After verifying that the slack is not violated, the power anal-
ysis can be done. The final operating frequency of the project is set, and now
the dynamic and static power can be seen. It should be noted that in this
power analysis the power relative to the inputs is also calculated, Figure 6.4
in red, being that my purpose of the thesis is to test the operations inside the
neural network, the dynamic power of the inputs will be subtracted from the
total dynamic power since it is beyond the scope of my thesis.

• Export: finally the .bin programming file can be exported to be inserted in
the FPGA.

For Microsemi:

• Import HDL file and choose FPGA: like in Lattice but this time different
Microsemi FPGAs, depending on which one I want to test, can be chosen.

• Synthesis and Compile.

• Insert clock frequency.

• Place and route.
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Figure 6.4. Part of the Power Analysis to see the power of the inputs (in
red). In my analysis this contribute is not important, so I have to subctract
it from the total dynamic power.

• Timing Analysis: through this analysis it is possible to see if the slack is
violated as in the case of Lattice FPGA. The difference is that now there is no
need to do the synthesis, mapping and place and route again like in the case
of Lattice iCE40 family, but just change the clock frequency until the slack is
small and positive.

• Power Analysis: the power analysis is similar to that of Lattice FPGA except
for the fact that the dynamic power of the inputs must not be subtracted from
the total dynamic power. In this case, a vectorless analysis can be done or by
loading the .vcd file created after the simulation. A typical screen of the power
analysis in Libero is the one shown in Figure 6.5, where is possible to see the
various power contributions of the project and understand which is the most
dominant.

• Export: export the back annotation files.
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Figure 6.5. Part of the Power Analysis of Libero. On the top the main contribu-
tion of dynamic and static power. The diagram shows all the contributions of the
power. The table shows if the analysis is made vectorless or with .vcd file.
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As for the possibility of simulating the project on the software of the two families
of FPGAs, it has not been included in the project flow because in reality after having
done the Co-Simulation on Vivado HLS there is the certainty that the project works.
The post-synthesis simulation will be done for the Microsemi FPGAs to have the
.vcd file so real delays to have a precise power estimate. For Lattice, on the other
hand, a .udb file is used for the power analysis in which there is an estimate of the
possible signal delays, and this is already a very good estimate as even inserting
the .vcd file created by the simulation, I have verified that the power estimate does
not change.

6.4 FPGA manual programming results

Manual programming by [1] is based on using ultralow-power FPGAs on which to
implement the hand-programmed MLP neural network, and compare the perfor-
mance between the various devices. The main objective is to analyze the perfor-
mance, in terms of inference time to process the data and energy spent to do it, of
an MLP neural network on board capacitive sensors. It is therefore implemented
via HW on ultralow-power FPGAs, so as to consume as little energy as possible.

6.4.1 Manual implementation on Lattice ICE40UP5K

Since this FPGA provides the use of DSPs, the multiplications of the neuron will
be implemented with them, and since there are eight DSPs, they can be used in
parallel to implement the multiplications between inputs and weights while for the
additions and the activation function the LUTs can be used. So, since the NN has
two hidden layers each of 8 neurons, there are 16 neurons to be processed, and
using the DSP-LUTs scheme for multiplications and additions, after 17 clock cycles
the output is obtained, the last clock cycle is used to apply the linear activation
function (Figure 6.6 (a), taken form [1]). All eight DSPs and 2047 out of 5280
(38.77%) LUTs of the FPGA were used with this implementation.

6.4.2 Manual implementation on Microsemi AGLN250

Since the FPGA is smaller, with few VersaTiles available, only 2 multipliers can
be implemented on it, those occupy 1071 VersaTiles each, and all other elements
occupy another 2747. Since there can only be 2 multipliers, they can be scheduled
in parallel only 2 multiplications each clock cycle, so it takes a total of 4 clock
cycles to process a neuron, plus an additional clock cycle to add up all the results
and apply the activation function (Figure 6.6 (b), taken form [1]).
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6.4.3 Manual implementation on Microsemi M1AGL600
Eight multipliers can be implemented on this FPGA, being larger than the previous
one, each of them will occupy 1071 VersaTiles, while all the other elements will
occupy another 1463 VersaTiles, which are less than in the previous case thanks to
the more level of parallelism that simplifies the design. Since 8 multipliers can be
implemented in this FPGA, the scheduling is identical to that of the Lattice FPGA,
so the eight multipliers perform the multiplications of the neuron in parallel, and
a final adder will sum the results (Figure 6.6 (a), taken form [1]).

6.4.4 Manual implementation on Microsemi M1AGL1000
This is the largest FPGA, in fact 16 multipliers are implemented on it, from 1071
VersaTiles each, and the other elements occupy another 706, less and less than be-
fore for the highest level of parallelism that can be obtained. With the 16 multipliers
and two adder, two neurons can be processed together, and then the scheduling of
the neural network can be finished after nine clock cycles, the last one being used
to calculate the final output (Figure 6.6 (c), taken form [1]).

Figure 6.6. In order scheduling, taken form [1], of the operations of: ICE40UP5K
and M1AGL600 which takes 17 clock cycles to get the output, AGLN250 which
takes 5 clock cycles to get the first multiplication of the first neuron, M1AGL1000
which takes 9 clock cycles to get the output.
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6.4.5 Achieved manual results
The results of the experiment on the four FPGA was made for two cases, this is
because, with the smaller FGPA (AGLN250), only two multiplications can be done
in parallel, therefore it is necessary to have registers that save the multiplications
of the whole neuron and then added up at the end, if this were not done, the two
multiplications would be overwritten from time to time. Then inserting registers
to keep the multiplication result splits the longer critical path, and increases both
the clock cycles and the operating frequency. To make comparable the results of
the four FPGAs, the registers are added to all the FPGAs ("short critical path"
(SCP)), even if the others in theory would not need it since they manage to do all
eight parallel multiplication, but it was also done without registering to keep the
multiplication results ("long critical path" (LCP)), so these two types of data were
collected.

The resources employed for both solutions (SCP and LCP) are shown in the Ta-
ble 6.1 taken from [1]. As described, two, eight and sixteen multipliers implemented
with VersaTiles are used for the three FPGAs of Microsemi (from the smallest to
the largest), and for all three implementations, the occupation of resources ex-
ceeds 70%. While for the Lattice FPGA, since the specific eight DSPs are used for
multiplication, the LUTs used are around 38%.

The Table 6.1 taken from [1], shows also the performances achieved. Lattice
FPGA for SCP reaches the highest clock frequency (45.82 MHz), while maintaining
lower energy than all SCP results (10.4 nJ). In the LCP case, the lowest energy (5.79
nJ) and also the lowest active power (6.24 mW) are reached. Thanks to the high
parallelism that can be achieved with Microsemi’s larger FPGA (M1AGL1000), the
lowest clock cycles in LCP mode (12) and also the lowest inference time (0.74 µs)
for LCP but also for SCP (0.80 µs). For the latter, even if it has lower clock cycles
than that of Lattice, a lower frequency is obtained, both for SCP and for LCP,
compared to LAT, probably because it has the dedicated DSP and the creation
process at 40-nm CMOS. Microsemi FPGAs are those that consume less from the
point of view of static power. In particular the AGLN250 is the lowest one (0.079
mW). The latter also has the lowest active power (7.50 mW). If are made the
comparison only between Microsemi FPGAs, which are all produced with the same
manufacturing process at 130-nm, it can be seen that the most energy efficient for
both implementations (SCP and LCP) is the MS-S (17.8 nJ for LCP and 24.0 for
SCP), from the point of view instead of inference time the worst is the AGLN250
(3.59 µs), this because it has only two multiplier compared to the M1AGL1000
which has 16.

54



6.5 – Results and discussion

Table 6.1. Performance and resource, taken form [1], on FPGAs in the man-
ual programming experiment in the "short critical path" and "long critical
path" implementation.

Perfomance Resource
Active

power (mW)
Neural network

inference
FPGA/arch Clock

(MHz) Dynamic
(mW)

Static
(mW)

Clock
cycles

Times
(µs)

Energy
(nJ)

Total logic
blocks

6.24LCP 21.58 5.97 0.277 20 0.93 5.79 2047 of 5280
(38.77%)

12.8LAT
SCP 45.82 12.6 0.277 37 0.81 10.4 2093 of 5280

(39.64%)
7.58MS-S SCP 24.26 7.50 0.079 87 3.59 27.2 4889 of 6144

(79.57%)
15.0LCP 16.83 14.9 0.131 20 1.19 17.8 10031 of 13824

(72.57%)
17.5MS-M

SCP 26.97 17.4 0.131 37 1.37 24.0 10212 of 13824
(73.87%)

25.7LCP 16.26 25.5 0.213 12 0.74 19.0 17842 of 24576
(72.60%)

34.7MS-L
SCP 26.15 34.5 0.213 21 0.80 27.9 18674 of 24576

(75.89%)

6.5 Results and discussion

This section describes the results obtained from my experiments. For each of the
four FPGAs under observation I created different solutions, always starting from a
low level of parallelism, then increasing it from solution to solution as long as the
FPGA area allowed it. The directives inserted in the various solutions are based
on the description in Figure 5.2. It is also fair to say that Vivado HLS is very
efficient from the point of view of optimizations, because, for example, if there is a
multiplication for 0, the tool ignore that, because the result is always 0, so is useless
do this operation. Another concrete example in all my solutions is the automatic
insertion of the INLINE directive for the neuron activation function. For each single
solution with the same directives, three or two different VHDL files were created by
setting in each of them a different clock period on HLS so as to make the solution
go more or less fast, and see what effect it had on the analysis of inference time and
energy, a clock period around 20 ns is usually chosen for the slower, one around 5
ns for the faster and one that is in the middle between these two clock periods to
have a clear analysis on the behavior of the neural network.
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An in-depth analysis was also done to be sure that a change in the clock period
in HLS corresponds to a decreasing minimum clock period also in the software of
the two FPGAs. The analysis was done by changing the period in HLS from 15
ns to 3 ns for the Lattice FPGA and for the smaller Microsemi FPGA (AGLN250)
and was done in case no directives were inserted and in case they are inserted. The
expected trend is that from 15 ns there should be a descending line that reaches
down to 3 ns. Figure 6.7 shows the graphs with no directives and Figure 6.8 shows
the graphs with directives insert. The graphs show the clock period in ns on the Y
axis and on the X axis the period set on Vivado HLS, while the blue line indicates
the period estimated by HLS in ns, the orange one the period estimated by the
FPGA software.

In order:

• the graph (a) of Figure 6.7 represents the values obtained without directives
for the Microsemi FPGA, the target period to be reached is 41.22 ns and it
is possible to reach it around 10 ns and 11 ns of period in HLS. As can be
observed, the trend of the period in Microsemi is quite linear, in fact there is
an unusual increase to 8 ns of the HLS period, but otherwise the data obtained
follow an almost linear trend.

• the graph (b) of Figure 6.7 represents the values obtained without directives
for the Lattice FPGA. The target period to be reached is 46.33 ns which I
can’t get even at 15 ns, in which there is a lower period, a sign that the design
can go faster than the target period. Also in this case the trend is rather
linear. graph (a) of Figure 6.8 represents the values obtained with directives
for the Microsemi FPGA. the target period to reach is 41.22 ns. The trend is
also linear here, apart from 7 ns there is a 0 as this design exceeded the LUTs
available on the FPGA, and therefore was not implementable. The target
period however I manage to reach it at 5 ns of HLS in which I get 38.88 ns in
the tools.

• graph (b) of Figure 6.8 represents the values obtained with directives for the
Lattice FPGA. The target period to reach is 46.33 ns, which I get between a
period between 4 ns and 3 ns in HLS. The trend is mostly monotonical in this
case too.
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Figure 6.7. Trend of the clock period on the tools of the FPGAs based on the
modification at the HLS level from 15 ns to 3 ns with no diectives.

Therefore from this analysis it is possible to establish a certain dependence
between the period set on HLS and the one obtained by the tools of the two
FPGAs, and apart from certain values that have an upward peak, the trend is still
monotonical. Once this analysis has been made, the data can be collected to be
compared with those [1].
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Figure 6.8. Trend of the clock period on the tools of the FPGAs based on the
modification at the HLS level from 15 ns to 3 ns with diectives.

6.5.1 DSP mapping on Lattice FPGA

Before to start to take all the data I do an analysis on the DSP of the Lattice
FPGA. Among the four FPGAs that are under examination, is the only one that
has DSPs on board (it have 8 DSPs), that are dedicated blocks that can be used as
a single 16x16 multiplier, or as two independent 8x8 multipliers, or as a 32 MAC
bit etc. without going to use so other area. Being that in the neural network code
each neuron multiplies the inputs with the weights and then adds these results
together, it would be ideal to use DSPs as MAC, the problem is that it can be a
maximum of 32 bits, and being that the inputs of the neural network are 16 bits,
entering the multiplier and subsequently the adder, these 32 bits of the DSP block
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used as MAC are exceeded. So also in the reference programming the DSP is used
as a single multiplier of 16x16 while used the LUTs to implement the adders and
the activation function. A verification was therefore made to demonstrate that the
code that implements multiplication and accumulation written at HLS and then
synthesized and put on Radiant tool, behaved in the same way as a code written
manually, in particular in both the cases I have to obtain the same result of [1], ie
the DSP used as a multiplier while the LUTs as adder.

The handwritten VHDL code tries to best mimic the operations done by the
neuron, then the multiplication between two values of 16 bits, after which add them,
accumulate the sum and once finished take the output. The latter was taken only
on one bit because otherwise the maximum number of pins on this FPGA would
have been exceeded. In the Figure 6.9 taken from the Netlist Analyzer of Radiant
tool, it can be seen how the multiplier (the red circle) is implemented as DSP while
the adder (the green circle) is implemented by a series of Full-Adders (FAs) and
therefore with LUTs, where for the dimension of the image I have reported only
one FA. Then in Figure 6.10 there is a report of the area used, where one DSP is
used.

I then switch to HLS to see if even writing the code at a high level the behavior
remained the same. The code was then written which exactly replicates the behav-
ior of the MAC described in VHDL, and the HDL code generated by HLS is then
implemented on Radiant tool. In Figure 6.11, the circuit is slightly different from
the previous one (I have omitted from the image the part of the datapath related to
the state machine that Vivado HLS creates by default), first of all it can be noted
that there is another adder (blue circle) used to sum the temporary data, while the
final adder (green circle) is used only for the sum of the final result. Apart from
this difference which increase the area, and other increase is for the logic of the
state machine, the circuit is similar to the previous one and also in this case the
multiplier (red circle) is implemented with the DSP while the adder with the FA.

After that, the same experiment was done with the same code A.3, deselecting
the interested parties, increasing the number of DSPs first to two and then to three.
The behavior remains consistent with that of the single DSP, first two and then
three DSPs are used as multipliers and FAs as adders. I have not included the
images of the datapaths of the latter for size reasons but in Table 6.2 there are
the data of the reports of the four tests made, where is possible to see that for the
handwritten DSP the resources used are very few because it was the designer who
controlled them, when instead in the DSP written in HLS, the resources increase,
and this is due to both the adder that is added to add up the temporary results,
but also to the logic that Vivado HLS inserts for the state machine. However, it
can be noted that increasing the number of DSPs also increases the resources quite
proportionally.
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Figure 6.9. Netlist Analyzer: there is the multiplier (red circle) and the adder
(green circle) and the register that is the accumulator. Technology View: the
multiplier is the DSP and the adder is mapped in a series of full-adders.

Figure 6.10. Report of Radiant on area used of DSP written manually. List one
column DSP used like as multiplier.

After doing this analysis it is shown that the code generated by HLS, even if
it has not been adapted for the Lattice family, continues to utilize an amount of
resources consistent with the number of DSPs..
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Figure 6.11. Datapath of circuit with one DSP written in HLS. There is the
multiplier (red circle) of the two inputs, the adder (blue circle) to sum the
temporary data, the accumulation register (brown circle) and the final adder
(green circle) that give the output.

Table 6.2. Resource occupation in terms of LUTs, registers and DSPs of the
various tests done on DSPs (DSP written by hand, one DSP written in HLS, two
DSP written in HLS and three DSP written in HLS).

DSP under test LUT4 Registers DSP
DSP wrote by hand 4 2 1
One DSP wrote in HLS 31 29 1
Two DSP wrote in HLS 63 74 2
Three DSP wrote in HLS 88 101 3

6.5.2 Lattice ICE40UP5K FPGA

The first FPGA whose performance is analyzed is that of Lattice iCE40 family.
The insertion of directives to improve performance is based on the Figure 5.2, in
particular I started by limiting the number of multipliers with the ALLOCATION
directive to two, then increasing it to four and finally to eight. Switching from
one number of multipliers to the other is due to achieving maximum performance
with that number of multipliers. The solutions explored are therefore 14 in all
and the FPGA choose in HLS to have a behavior similar to that of Lattice is the:
Spartan 7 package FTGB196. The graphs of Figure 6.12 summarize the inference
time (a) and the energy (b) found in Radiant tool in the analysis for all 14 different
solutions. The three lines indicate the different periods set by HLS. The peaks
that are seen are due to the change in the number of multipliers, and changing it
the performance returns low and the directives are reinserted. It can therefore be
noted that the data closest to those of [1], in terms of inference time and energy,
are those of solutions 12, 13 and 14, because they are the ones that are closest to
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the target inference time (0.93 µs) and target energy (5.79 nJ).

Figure 6.12. Inference time (a) and Energy (b) find on Radiant for different 14
Solution for Lattice FPGA ICE40UP5K, for three different clock periods set on
HLS (faster, the grey line, medium, the orange line and slower the blue line).
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Starting from solution 12, the directives used are shown in Table 6.3. I set the
limit on multiplications to eight, set a pipeline with depth two for the first two loops
while a pipe with depth one for the last loop, for problems of data-dependency, after
which I partitioned all the arrays in such a way as to parallelize the accesses as
much as possible and finally I used an unroll of two on all loops.

Table 6.3. Directives used in solution 12, 13 and 14 for Lattice FPGA. The
directives are divided in Allocation, Pipeline, Unroll and Array Partition.

Solution Allocation Pipeline Unroll Array partition

Sol 12 Limit 8 Mult.
II 2 FirstHiddenLayer
II 2 NeuralNextLayer
LastHiddenLayer

factor 2 FirstHiddenLayer
factor 2 NeuralNextLayer
factor 2 LastHiddenLayer

complete dim 1 inputs
complete dim 2 output_middle
complete dim 3 weights
complete dim 2 biases

Sol 13 Limit 8 Mult.
II 3 FirstHiddenLayer
II 4 NeuralNextLayer
LastHiddenLayer

factor 4 FirstHiddenLayer
factor 4 NeuralNextLayer
factor 4 LastHiddenLayer

complete dim 1 inputs
complete dim 2 output_middle
complete dim 3 weights
complete dim 2 biases

Sol 14 Limit 8 Mult.
FirstHiddenLayer
NeuralNextLayer
LastHiddenLayer

factor 8 FirstHiddenLayer
factor 8 NeuralNextLayer
factor 8 LastHiddenLayer

complete dim 1 inputs
complete dim 2 output_middle
complete dim 3 weights
complete dim 2 biases

With these optimizations, for the three different periods set by HLS, the follow-
ing results are obtained Table 6.4:

Table 6.4. Performance of the solution 12 of the Lattice FPGA ICE40UP5K for
three different clock periods set on HLS (25 ns, 20 ns and 5 ns).

Parameter Sol12 HLS Period
25 ns 20 ns 5 ns

Pdynamic (mW) 2.82 3.04 9.06
PStatic (mW) 0.34 0.34 0.41
Pactive (mw) 3.16 3.4 9.47
Clock (MHz) 15.15 14.92 22.99
Clock Cycle 27 27 38
Inference Time (µs) 1.78 1.81 1.65
Energy (nJ) 5.64 6.13 15.66
LUTs (max 5280) 1928 (36%) 1992 (37%) 2916 (55%)
DSP 8/8 8/8 8/8

From the point of view of the parameters that most affect the analysis, energy
and inference time, the best solution regarding the first parameter is when the HLS
clock period is 25 ns, in fact an energy of 5.64 nJ is obtained, and in this case the
solution have also an active power very low (3.16 mW). Also the inference time
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(1.78 µs) is quite low, but for this latter, the best solution is when the clock period
is 5 ns, in fact by setting a smaller period, the inference time decrease and the
operating frequency increases (41.84 MHz), at the expense of energy and power
which increase three times compared to the two other cases (15.66 nJ and 9.47
mW). As for the occupied LUTs, it should be noted that in all three cases there
is still area available, this is because the multipliers, which are the most expensive
from the point of view of the area, do not use the LUTs but the dedicated DSPs of
this FPGA. Note also that when the speed of the solution increases, the area also
increases accordingly.

For solution 13 directives are shown in Table 6.3. The degree of unroll of all
loops from 2 to 4 has been increased, this increase also leads to a change in the
degree of the pipe.

Regarding this solution, the data is collected only for two clock periods of HLS
as in addition to 15 ns it no longer satisfied the minimum period in Vivado HLS
and consequently also on Radiant tool. In Table 6.5 there are the results:

Table 6.5. Performance of the solution 13 of the Lattice FPGA ICE40UP5K for
two different clock periods set on HLS (25 ns, 15 ns).

HLS PeriodParameter Sol13 25 ns 15 ns
Pdynamic (mW) 4.02 4.27
PStatic (mW) 0.43 0.45
Pactive (mW) 4.45 4.72
Clock (MHz) 14.53 16.3
Clock Cycle 23 23
Inference Time (µs) 1.58 1.41
Energy (nJ) 7.05 6.67
LUTs (max 5280) 2952 (58%) 3010 (59%)
DSP 8/8 8/8

Since in this solution the unroll level and consequently the depth of the pipe
has been increased, in order to avoid data-dependecy problems, inevitably the area
increases and also the power and energy consumed for both the two speeds of the
clock periods by HLS. On the other hand, the parameter that improves compared to
the previous solution is the inference time, in fact by parallelizing more it is possible
to gain something from the temporal point of view, thus reaching an inference time
of 1.58 µs for the 25 ns of HLS and 1.41 µs for 15 ns, and also decrease the clock
cycles compared to the previous solution (23 for both HLS periods). The clock
frequency for 25 ns of HLS period, being that the directives increase the area and
intensify the complexity of the project, is less than in solution 12 (14.53 MHz
respect 15.15 MHz).
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Solution 14, on the other hand, has only a speed set by HLS as if it had been
increased further, the maximum available area of the FPGA would have been ex-
ceeded. The directives used are shown in Table 6.3. I have entered the unroll of
the loops equal to eight, which is also the limit of the loop, along with the pipeline,
thus maximizing the parallelism. Thus it is possible to make eight multiplications
of the neuron in parallel. Furthermore, since the loops are totally unrolled, there
is no need to insert higher pipeline degrees as in the previous cases.

The collected data are in Table 6.6:

Table 6.6. Performance of the solution 14 of the Lattice FPGA ICE40UP5K for
one clock period set on HLS (25 ns).

HLS PeriodParameter Sol14 25 ns
Pdynamic (mW) 4.64
PStatic (mW) 0.58
Pactive (mW) 5.23
Clock (MHz) 12.67
Clock Cycle 14
Inference Time (µs) 1.10
Energy (nJ) 5.78
LUTs (max 5280) 4266 (80%)
DSP 8/8

For this solution I obtain the best inference time of all (1.10 µs), a sign that
the parallelization has increased the speed again. The energy is also very low (5.78
nJ), this is because having used an unroll of the loop equal to 8, the complexity
has increased again and consequently the operating frequency of the clock and so
the energy. This solution is also excellent from an active power point of view (5.23
mW) and has the lowest clock cycles of all solutions. As for the area, on the other
hand, resource utilization is 80%, so the limit has been almost reached, again for
the directives used.

Summing up in Table 6.7 the values of the data found for the solutions for the
Lattice FGPA are compared. Data values are reported only for the clock periods
for which optimal results have been found. Solution 14 is the best found from the
point of view of inference time and energy (only 0.14 mW more than solution 12
with 20 ns period), the loss is only a little in the clock frequency compared to the
other solutions, but also for clock cycles turns out to be the best. So this will be
used for comparison to the performance found by manual programming.
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Table 6.7. Report data of Lattice FPGA for solution 12, 13 and 14 for
different clock periods set on HLS.

Sol 12 Sol 13 Sol14Parameter 25 ns 5 ns 25 ns 15 ns 25 ns
Pdynamic (mW) 2.82 9.06 4.02 4.27 4.64
PStatic (mW) 0.34 0.41 0.43 0.45 0.58
Pactive (mW) 3.16 9.47 4.45 4.72 5.26
Clock (MHz) 15.15 22.99 14.53 16.3 12.67
Clock Cycle 27 38 23 23 14
Inference Time (µs) 1.78 1.65 1.58 1.41 1.10
Energy (nJ) 5.64 15.66 7.05 6.67 5.78
LUTs (max 5280) 1928 (26%) 2916 (55%) 2852 (58%) 3010 (59%) 4266 (80%)
DSP 8/8 8/8 8/8 8/8 8/8

For this FPGA, the analysis with the real delays of the signals of the .vcd file
was not carried out as doing it the power values previously found with the .udb file
did not change.

Finally, a comparison was made between the area occupied by the project if it is
implemented on the Lattice FPGA, and between the area occupied by the project
if it were instead implemented, through Vivado, on a Xilinx FPGA (Spartan 7
package FTGB196), to see how much compatibility difference there is between the
implementation between these two different families. The Table 6.8 summarizes
the collected data. As expected, a device suitable for the code created is used, as
in the case of Xilinx, the LUTs occupied are much less than implementing it on
an FPGA in a different family. This is because the created code has constructs
that are better suited to the family for which they are created, if instead these
constructs are changed, may not be perfectly compatible and therefore takes up
more area than necessary. It should be noted that this analysis makes sense to do
it only with the Lattice FPGA as it is the only one that has the DSPs inside, so
the remaining occupied area is comparable with that found in Vivado since also it
uses DSPs. While for Microsemi, not having these dedicated units, if one compares
the area with that found on Vivado it would certainly be less than that found on
the latter as all the multipliers would be mapped on the DSPs and the remaining
area on the LUTs, while on Libero, the area is all mapped to LUTs, so making this
comparison would not make sense.
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Table 6.8. Comparison between area occupation of the design implemented on
the Radiant software using ICE40UP5K and implemented on Vivado using Xilinx
FPGA Spartan 7 package FTGB196.

Sol HLS T LUTs on Viv. DSP on Viv. LUTs on Lat. DSP on Lat.
(max 14600) ( max 80) ( max 5280 ) (max 8)

Sol12 25 ns 906 (6.21%) 8 1928 (36%) 8
20 ns 912 (6.25%) 8 1992 (37%) 8
5 ns 1093 (7,49%) 8 2916 (36%) 8

Sol13 25 ns 1562 (10.70%) 8 2952 (58%) 8
15 ns 1682 (11.52%) 8 3010 (57%) 8

Sol14 25 ns 3114 (21.33%) 8 4266 (80%) 8

6.5.3 Microsemi AGLN250 FPGA
The FPGA of Microsemi AGLN250 is the smallest in terms of area, in fact only
2 multipliers could be implemented in parallel at a time, because putting more
would go beyond the usable area. Seven different solutions have been created on
this FPGA, less than the other FPGAs because, having little area available, the
explorability is lower. Each solution, like for Lattice FPGA, has been implemented
on different HLS clock periods and I put first only one multiplier and then two.
The FPGA closest to the one under test chosen on HLS is the Spartan 7 package
CPGA196. The graphs showing the evolution of the solutions according to the
inference time and energy parameters are those in Figure 6.13, (a) and (b) respec-
tively. The best solutions are number six and seven because they are the ones that
are closest to the target inference time and energy (3.59 µs and 27.2 nJ).

Starting from solution 6 the directives used are shown in Table 6.9. As in the
reference model I limited the number of multipliers to two, after which I used the
pipe directive with different degree depending on the loop due to the few multipliers
available and finally partitioned the output_middle and inputs arrays. Unlike the
solution for Lattice FPGA, I partitioned only these two arrays for the reason that
here I have a lower level of parallelism so partitioning the others too would have
been useless.
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Figure 6.13. Inference time (a) and Energy (b) find on Libero for different 7
solution for Microsemi FPGA AGLN250, for three different periods set on HLS
(faster, the grey line, medium,the orange line and slower the blue line).

The collected data is shown in the Table 6.10. The periods set in HLS are
only two (20 ns and 17 ns) and also very similar to each other, this is because if
the period had been further reduced there would have been an excess of area and
therefore the solution would not have been implementable (in fact for 17 ns there
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Table 6.9. Directives used in solution 6 and 7 for Microsemi AGLN250 FPGA.
The directives are divided in Allocation, Pipeline, Unroll and Array Partition.

Solution Allocation Pipeline Unroll Array partition

Sol 6 Limit 2 Mult.
II 4 FirstHiddenLayer
II 3 NeuralNextLayer
LastHiddenLayer

/ complete dim1 inputs
complete dim 2 output_middle

Sol 7 Limit 2 Mult.
II 5 FirstHiddenLayer
II 8 NeuralNextLayer
LastHiddenLayer

/ complete dim1 inputs
complete dim 2 output_middle

is an occupancy of 99%). As for the inference time it is almost the same for the
two HLS clock periods (4.19 µs and 4.18 µs), same thing for the clock cycles (71
for both) and clock frequency (16.96 MHz and 16.98 MHz). While the energy and
power are less for the solution with 20 ns period (8.63 mW and 36.12 nJ). This is
because the design go slightly slower. As can be seen from the clock cycles, the
output is calculated after 71 cycles, this delay is due to the few multipliers available
and therefore to the low degree of parallelization.

Table 6.10. Performance of the solution 6 of the Microsemi FPGA AGLN250 for
two different clock periods set on HLS (20 ns and 17 ns).

Parameter Sol6 HLS Period
20 ns 17 ns

Pdynamic (mW) 8.55 8.70
PStatic (mW) 0.077 0.077
Pactive (mW) 8.63 8.80
Clock (MHz) 16.96 16.98
Clock Cycle 71 71
Inference Time (µs) 4.19 4.18
Energy (nJ) 36.12 36.71
LUTs (max 6144) 6051 (98.5%) 6110 (99%)
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Instead, for solution 7 the directives used are shown in Table 6.9 in which I tried
to relax a little the pipe directive by increasing the degree.

Having relaxed this directive, the clock frequency decreased slightly for both
periods (16.53 MHz and 16.91 MHz). But this was not enough to improve the other
performances, Table 6.11, in fact, apart from the power, all the other parameters
have increased compared to solution 6. Even the area has remained almost the
same.

Table 6.11. Performance of the solution 7 of the Microsemi FPGA AGLN250 for
two different clock periods set on HLS (20 ns and 17 ns).

Parameter Sol7 HLS Period
20 ns 17 ns

Pdynamic (mW) 8.32 8.33
PStatic (mW) 0.077 0.077
Pactive (mW) 8.40 8.40
Clock (MHz) 16.53 16.91
Clock Cycle 87 87
Inference Time (µs) 5.26 5.14
Energy (nJ) 44.19 43.25
LUTs (max 6144) 5937 (96%) 6061 (98%)

For the Microsemi FPGAs, a further analysis of the power was also made as it
was made vectoreless in the first instance and therefore with estimates on the signal
delays set by Libero. However, these estimates may not always be very precise, so
a power analysis was made based on a .vcd file, created after the post-synthesis
simulation, which contains the real delays of the signals, thus having value on the
more realistic power and energy. The data of the vectorless and VCD analysis are
shown in the Table 6.12, where it can be seen that for both parameters there is an
increase with the VCD analysis having the real delays of the signals.
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Table 6.12. Power and energy comparison for solution 6 and 7 of Microsemi
FPGA AGLN250 between VCD and vectorless analysis for two different clock
periods set on HLS (20 ns and 17 ns).

Sol Parameters
HLS Period

Vectorless .vcd
20 ns 17 ns 20 ns 17 ns

Sol6 Pactive (mW) 8.63 8.80 10.11 11.75
Energy (nJ) 36.12 36.71 43.98 49.14

Sol7 Pactive (mW) 8.40 8.40 11.92 10.88
Energy (nJ) 44.19 43.25 62.73 55.97

For the comparison with the performances found by reference programming, in
Table 6.13 there are the the values of the data find for solution 6 and 7. The
solution that has reached the best values is the solution 6 for the 20 ns of HLS
period, as it consumes less energy and power than that at 17 ns of period and the
inference time and frequency of clock they are practically similar. Solution 7, on
the other hand, has worse performance than solution 6, so it has not been taken
into consideration.

Table 6.13. Report data of Microsemi AGLN250 FPGA for solution 6 and 7 for
different clock periods set on HLS.

Sol 6 Sol 7Parameter 20 ns 17 ns 20 ns 17 ns
Pdynamic (mW) 8.55 8.70 8.32 8.33
PStatic (mW) 0.077 0.077 0.077 0.077
Pactive (mW) 8.63 8.80 8.40 8.40
Clock (MHz) 16.96 16.98 16.53 16.91
Clock Cycle 71 71 87 87
Inference Time (µs) 4.19 4.18 5.26 5.14
Energy (nJ) 36.12 36.71 44.19 43.25
LUTs (max 5280) 60.51(98.5%) 6110(99%) 59337(96%) 6061(98%)

71



Experimental results

6.5.4 Microsemi M1AGL600 FPGA
The second Microsemi FPGA is the M1AGL600, for it I experimented 13 different
solutions, starting from a low level of exploration by inserting only two multipliers,
then increasing to four and finally eight (for the available area 8 was the maximum).
The FPGA chosen on the Vivado HLS closest to the one under review is the Artix 7
package CPG238. In Figure 6.14, the trend along the different solutions of inference
time (a) and energy (b) is shown. The ones that come closest to target performance
(1.19 µs and 17.8 nJ) are solutions 11, 12 and 13.

The directives used for solution 11 are shown in Table 6.14, using the pipeline on
each loop, and partitioning the arrays to increase parallelism and avoid over-reading
errors.

Table 6.14. Directives used in solution 11, 12 and 13 for Microsemi
M1AGL600 FPGA. The directives are divided in Allocation, Pipeline,
Unroll and Array Partition.

Solution Allocation Pipeline Unroll Array partition

Sol 11 Limit 8 Mult.
FirstHiddenLayer
NeuralNextLayer
LastHiddenLayer

/ complete dim 1 inputs
complete dim 2 output_middle

Sol 12 Limit 8 Mult.
II 2 FirstHiddenLayer
II 2 NeuralNextLayer
LastHiddenLayer

factor 2 FirstHiddenLayer
factor 2 NeuralNextLayer
factor 2 LastHiddenLayer

complete dim 1 inputs
complete dim 2 output_middle
complete dim 3 weights
complete dim 2 biases

Sol 13 Limit 8 Mult.
II 3 FirstHiddenLayer
II 4 NeuralNextLayer
LastHiddenLayer

factor 4 FirstHiddenLayer
factor 4 NeuralNextLayer
factor 2 LastHiddenLayer

complete dim 1 inputs
complete dim 2 output_middle
complete dim 3 weights
complete dim 2 biases

For this solution the following data was collected, Table 6.15. It is noted that as
regards the energy consumed, the best found is equal to 17.98 nJ for 25 ns of HLS
period, and always for this period there is still a low inference time if compared to
the others (1.95 µs), while the dissipated power (9.23 mW) is the lowest compared
to the others. For the solution with the higher HLS period, the clock frequency is
the lowest (16.43 MHz). The lowest inference time is found instead for the 20 ns
period of HLS (1.62 µs), but the corresponding energy and active power are quite
higher than in the previous case (25.31 nJ and 15.62 mW). The faster solution
instead (3 ns of period of HLS) is not to be taken into consideration as there is an
energy consumed far higher than the previous ones (55.71 nJ), this indicates that
if the speed is increased, in fact the clock frequency is the higher (33.27 MHz),
consumption will increase accordingly. As far as the occupation of the area is
concerned, it can be seen that there is still some space available to insert other
optimizations.
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Figure 6.14. Inference time (a) and Energy (b) find on Libero for different 13
Solution for Microsemi FPGA M1AGL600, for three different periods set on HLS
(faster, the grey line, medium, the orange line and slower the blue line.)

In solution 12, the directives inserted are shown in Table 6.14. Here the degree 2
unroll has been inserted into all loops and consequently the pipeline degree has been
modified in order to avoid data-dependecy problems and partitioned all arrays.

The values of the parameters for this solution are in Table 6.16. Having increased
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Table 6.15. Performance of the solution 11 of the Microsemi FPGA M1AGL600
for three different clock periods set on HLS (25 ns, 20 ns and 3 ns).

Parameter Sol11 HLS Period
25 ns 20 ns 3 ns

Pdynamic (mW) 9.09 15.49 32.96
PStatic (mW) 0.13 0.13 0.13
Pactive (mw) 9.23 15.62 33.1
Clock (MHz) 16.43 22.23 33.27
Clock Cycle 32 36 56
Inference Time (µs) 1.95 1.62 1.68
Energy (nJ) 17.98 25.31 55.71
LUTs (max 13824) 9810 (71%) 10599 (76%) 11773 (85%)

the parallelism with the introduction of the new directives, the area has increased
compared to the previous one in all three cases of the HLS clock period. The best
energy (17.64 nJ), is the one found with the slowest period, and it is also the best
with respect to those found for solution 11. The best inference time, on the other
hand, is obtained with 10 ns of period of HLS (1.40 µs), however, having increased
the speed both the power and the energy increase compared to the others. The
clock frequency increases together with the HLS clock period increase, finding the
maximum with the fastest period (20.27 MHz). While the number of clock cycles
is very similar for all three cases (27, 27 and 29).

Table 6.16. Performance of the solution 12 of the Microsemi FPGA M1AGL600
for three different clock periods set on HLS (25 ns, 20 ns and 10 ns).

Parameter Sol12 HLS Period
25 ns 20 ns 10 ns

Pdynamic (mW) 9.34 10.84 17.25
PStatic (mW) 0.13 0.13 0.13
Pactive (mw) 9.47 10.96 17.39
Clock (MHz) 14.50 15.31 20.72
Clock Cycle 27 27 29
Inference Time (µs) 1.86 1.76 1.40
Energy (nJ) 17.64 19.34 24.33
LUTs (max 13824) 11476 (83%) 12274 (88.79%) 12972 (93.84%)
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Finally, with solution 13, directives in Table 6.14, I tried to increase the paral-
lelism again, as far as the occupation of the area allowed me, so the degree of unroll
was increased to 4 for the first two loops, with consequent adaptation of the degree
of pipe.

With the increase in parallelism it was thought of a possible performance im-
provement, however, as shown in Table 6.17, the only data that has suffered an
improvement compared to the previous solutions are the clock cycles (25). All the
remaining data have suffered a worsening and this is a sign that even having in-
creased the parallelism, the congestion and the complexity (in fact, here it occupies
99.93% of the area) that is created between the signals, instead of improving per-
formance, deteriorate them. Furthermore, only one solution for a period of HLS (25
ns) has been explored as decreasing it would increase the area too much, exceeding
the limit.

Table 6.17. Performance of the solution 13 of the Microsemi FPGA M1AGL600
for one different clock period set on HLS (25 ns).

Parameter Sol13 HLS Period
25 ns

Pdynamic (mW) 9.98
PStatic (mW) 0.13
Pactive (mW) 10.12
Clock (MHz) 12.8
Clock Cycle 25
Inference Time (µs) 1.95
Energy (nJ) 19.76
LUTs (max 13824) 13815 (99.93%)

As for the AGLN250 FPGA, the power analysis was also made starting from the
.vcd file, and also in this case, as in the FPGA above, an increase in both power
and energy appears. If the energy and power are taken, Table 6.18, for the case
VCD, of solution 11 for a HLS period of 20 ns, it can be seen that they are the
lowest compared to all the others, and are almost comparable to those found with
the vectorless analysis (9.87 mW and 19.24 nJ). The same parameters for the other
solutions instead, compared to the vectorless case, are almost always double if not
triple.
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Table 6.18. Power and energy comparison for solution 11, 12 and 13 of Mi-
crosemi M1AGL600 between VCD and vectorless analysis for three different
clock periods set on HLS.

Sol Parameters
HLS Period

Vectorless .vcd
Slower Medium Faster Slower Medium Faster

Sol11 Pactive (mW) 9.23 15.62 33.1 9.87 19.42 35.94
Energy (nJ) 17.98 25.31 55.71 19.24 31.46 60.5

Sol12 Pactive (mW) 9.47 10.96 17.39 17.29 19.79 47.62
Energy (nJ) 17.64 19.34 24.33 32.18 34.9 66.62

Sol13 Pactive (mW) 10.12 / / 28.32 / /
Energy (nJ) 19.76 / / 55.31 / /

Summing up in Table 6.19 the values of the data found for the solutions for the
Microsemi M1AGL600 FGPA are compared. Data values are reported only for the
clock periods for which optimal results have been found. The best solution found
is solution 12 for the 20 ns period of HLS. In fact, there is a very low inference time
(1.76 µs) with a correspondingly low energy and power consumption if compared
to that of the other solutions. The clock frequency is also quite high and only two
clock cycles are lost compared to the solution 13 which has 27, but there is a gain
in all the other parameters.

Table 6.19. Report data of Microsemi M1AGL600 FPGA for solution 11, 12 and
13 for different clock periods set on HLS.

Sol 11 Sol 12 Sol13Parameter 25 ns 20 ns 20 ns 10 ns 25 ns
Pdynamic (mW) 9.09 15.49 10.84 17.25 9.98
PStatic (mW) 0.13 0.13 0.13 0.13 0.13
Pactive (mW) 9.23 15.62 10.96 17.39 10.12
Clock (MHz) 16.43 22.23 15.31 20.72 12.8
Clock Cycle 32 33 27 29 25
Inference Time (µs) 1.95 1.62 1.76 1.40 1.95
Energy (nJ) 17.98 25.31 19.34 24.33 19.76
LUTs (max 5280) 9810 (71%) 10599 (76%) 12274 (88.79%) 12972 (93.84%) 13815 (99.93%)
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6.5.5 Microsemi M1AGL1000 FPGA
The last FPGA to look at is the M1AGL1000 of Microsemi FPGA, which is the
largest in size. In fact, there are 17 solutions explored on it, starting from having
only four multipliers, then eight and then even 16 given that the area allows it.
The FPGA chosen on Vivado HLS that comes closest to the characteristics is the
Spartan 7 package FTGB196. For these 17 solutions, the inference time (a) and
energy (b) trends are shown in Figure 6.15, where it can be seen that the best
performances are achieved by solutions 16 and 17.

The directives used in solution 16 are shown in Table 6.20. I limit the number
of multipliers to 16, use grade 2 pipeline and grade 4 unroll on the first two loops,
while pipeline and grade 8 unroll for the last loop. After that the arrays will be
partitioned in order to parallelize access and avoid over reading.

Table 6.20. Directives used in solution 16 and 17 for M1AGL1000 of Mi-
crosemi FPGA. The directives are divided in Allocation, Pipeline, Unroll
and Array Partition.

Solution Allocation Pipeline Unroll Array partition

Sol 16 Limit 16 Mult.
II 2 FirstHiddenLayer
II 2 NeuralNextLayer
LastHiddenLayer

factor 4 FirstHiddenLayer
factor 4 NeuralNextLayer
factor 8 LastHiddenLayer

complete dim1 inputs
complete dim 2 output_middle
complete dim 3 weights
complete dim 2 biases

Sol 17 Limit 16 Mult.
FirstHiddenLayer
NeuralNextLayer
LastHiddenLayer

factor 8 FirstHiddenLayer
factor 8 NeuralNextLayer
factor 8 LastHiddenLayer

complete dim1 inputs
complete dim 2 output_middle
complete dim 3 weights
complete dim 2 biases
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Figure 6.15. Inference time (a) and Energy (b) find on Libero for different 17
Solutions for Microsemi FPGA M1AGL1000, for three different periods set on
HLS (faster, the grey line, medium, the orange line and slower the blue line).
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The values of the collected data are in Table 6.21. Regarding the inference time,
solution 16, for 15 ns of period of HLS, has the lowest one (0.86 µs), while both
power and energy are a little larger (20.02 mW and 17.27 nJ) compared to values
of the same solution but with a period of 25 ns (12.98 mW and 12.11 nJ). This
because the latter one goes slower, therefore it consumes less. The number of clock
cycles on the other hand are almost equal (13 and 14).

Table 6.21. Performance of the solution 16 of the Microsemi FPGA M1AGL1000
for two different clock periods set on HLS (25 ns and 15 ns).

Parameter Sol16 HLS Period
25 ns 15 ns

Pdynamic (mW) 12.76 19.80
PStatic (mW) 0.21 0.21
Pactive (mW) 12.98 20.02
Clock (MHz) 13.93 16.23
Clock Cycle 13 14
Inference Time (µs) 0.93 0.86
Energy (nJ) 12.11 17.27
LUTs (max 24576) 20876(84.74%) 23890(94%)

For solution 17, since for solution 16 with 25 ns of period there was still about
15% of usable area, I tried to parallelize it to the maximum, thus unrolling the
loops with a degree of 8 together with the pipe. The directives are shown in Table
6.20

The data collected for this solution, Table 6.22 were collected only for a period
of HLS (25 ns) being that, if it had been further increased, the available area would
have exceeded. At first glance it seems that the data found for this solution are
the best of all: in fact the inference time is lower than the previous solution (0.59
µs), even the clock cycles (8), even the clock frequency has not changed much (now
13.45 MHz vs 13.93 MHz). Having found these data, and since the area has also
increased by 10% compared to before, one would have expected an increase in the
energy consumed and power, perhaps with values similar to those found for solution
16 but for 20 ns of period, instead both the power and the energy have increased in
an "anomalous" way. In fact, for the energy there is a value that is double compared
to the previous case (24.30 nJ), but the biggest problem is the power which has a
value that is almost quadruple (40.87 mW).

Given the anomaly of the power and energy values found, it was particularly
useful in this case to perform the power analysis starting from the .vcd file, so that
it is made to start from the real delays of the signals. As the Table 6.23 shows,
for solution 16, in which consistent results were found, there is an increase in both
energy and power, while for solution 17 there is a much lower power than in the
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Table 6.22. Performance of the solution 17 of the Microsemi FPGA M1AGL1000
for one different clock period set on HLS (25 ns).

Parameter Sol17 HLS Period
25 ns

Pdynamic (mW) 40.65
PStatic (mW) 0.216
Pactive (mW) 40.87
Clock (MHz) 13.45
Clock Cycle 8
Inference Time (µs) 0.59
Energy (nJ) 24.30
LUTs (max 24576) 23287(94.74%)

case vectorless (12.7 mW), and the same thing happens for energy (7.62 nJ). So in
this particular case, doing the power analysis with real delays was more useful than
the vectorless analysis.

Table 6.23. Power and energy comparison for solution 16 and 17 of Mi-
crosemi FPGA M1AGL1000 between VCD and vectorless analysis for two
different clock periods set on HLS.

Sol Parameters
HLS Period

Vectorless .vcd
25 ns 20 ns 25 ns 20 ns

Sol16 Pactive (mW) 12.76 19.80 28.85 30.89
Energy (nJ) 12.11 17.27 27.21 26.84

Sol17 Pactive (mW) 40.65 / 12.48 /
Energy (nJ) 24.30 / 7.62 /
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Finally, for the latest FPGA under review in Table 6.24 the values of the data
found for the solutions for the Microsemi M1AGL1000 FGPA are compared. The
best solution found is solution 16 for the 15 ns period of HLS. Solution 17 has
excellent parameters, but due to the strange results on power and energy it cannot
be taken into consideration, besides the fact that the comparison with manual
programming results is done on the basis of a vectorless simulation.

Table 6.24. Report data of Microsemi M1AGL1000 FPGA for solution 16 and 17
for different clock period set on HLS.

Sol 16 Sol 17Parameter 25 ns 15 ns 25 ns
Pdynamic (mW) 12.76 19.80 40.65
PStatic (mW) 0.21 0.21 0.216
Pactive (mW) 12.98 20.02 40.87
Clock(MHz) 13.93 16.23 13.45
Clock Cycle 13 14 8
Inference Time (µs) 0.93 0.89 0.59
Energy (nJ) 12.11 17.27 24.30
LUTs (max 5280) 20876(84.74%) 23890(94%) 23287(94.74%)

6.5.6 Comparison with objectives and manual flow
After collecting the parameter values of all four FPGAs under review, a comparison
is made with those found manual programming. As mentioned, only one of the
proposed solutions is examined, the best, so as to have the best possible comparison.
The solutions taken are:

• solution 14 for 25 ns of period of HLS for ICE40UP5K of Lattice (LAT).

• solution 6 for 20 ns of period of HLS for AGLN250 of Microsemi (MS-S).

• solution 12 for 20 ns of period of HLS for M1AGL600 of Microsemi (MS-M)

• solution 16 for 15 ns of period of HLS for M1AGL1000 of Microsemi(MS-L).

Below, Table 6.25, the data values for the various FPGAs of the chosen solutions
compared with those of manual programming, and in Table 6.26, the comparison
for the resources occupation.

The results are now shown by comparing manual programming solution found
for a given FPGA with mine.
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Table 6.25. Performance find in the experiment of manual programming and
perfomance for the best solutions find in my experiment for ICE40UP5K FPGA
of Lattice and for AGLN250, M1AGL600, M1AGL1000 FPGAs of Microsemi.

Parameters HLS Results Manual programming Results
LAT MS-S MS-M MS-L LAT MS-S MS-M MS-L

Pdynamic (mW) 4.64 8.55 10.83 19.80 5.97 7.50 14.9 25.5
PStatic (mW) 0.582 0.077 0.134 0.214 0.277 0.079 0.131 0.195
Pactive (mW) 5.23 8.63 10.96 20.02 6.24 7.58 15 25.7
Clock (MHz) 12.67 16.53 15.30 16.23 21.58 24.26 16.83 16.26
Clock Cycle 14 71 27 14 20 87 20 12

Inference Time (µs) 1.10 4.19 1.76 0.86 0.93 3.59 1.19 0.74
Energy(nJ) 5.78 36.12 19.34 17.27 5.79 27.2 17.8 19

Table 6.26. Resource occupation find in the experiment of manual program-
ming and resource occupation for the best solutions find in my experiment for
ICE40UP5K FPGA of Lattice and for AGLN250, M1AGL600, M1AGL1000
FPGAs of Microsemi.

Param. HLS Results Manual programming Results
LAT MS-S MS-M MS-L LAT MS-S MS-M MS-L

Neuron 1 1 1 2 1 1 1 2
Mult. 8 2 8 16 8 2 8 16
LUTs 4266 6051 12274 23890 2047 4889 10031 17842

(80%) (98.5%) (88.8%) (94%) (38.77%) (79.57%) (73.6%) (75.98%)
DSP 8/8 / / / 8/8 / / /

• LAT: For the Lattice FPGA not all parameters found by the HLS solution were
able to match those found with manual programming. For the HLS solution
the parameters that have suffered an improvement are active power (5.23 mW
against 6.24 mW) and clock cycles (14 against 20). The fact that the active
power is lower is mainly due to the fact that in my solution the clock frequency
is lower (12.67 MHz) than that manual programming (21.58 MHz), but despite
this, the inference time found is 1.10 us which does not differ so much from
0.93 us of manual programming. As for the energy found, it is practically the
same (5.78 nJ and 5.79 nJ). The occupied area, on the other hand, is much
more than that found with HLS (80% compared to 38.77%), this is because, as
explained above, there is no control over the blocks and therefore the area that
HLS will use for the design, so it is very likely that it puts many more blocks,
which for the own internal logic are correct, compared to those a designer
who does elaborate the project by hand would put. Compare it to all the
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others, this FPGA is the one that consumes less active power (5.23 mW) and
energy (5.78 nJ) than the other results found by HLS but also those found
with manual programming.
Another parameter to consider for comparison is the way operations are sched-
uled by HLS and with manual scheduling. Figure 6.16 reports the scheduling
of operations from Vivado HLS. The latency to obtain the output is 14 clock
cycle as shown also by the Table 6.25, against the 20 find on manual program-
ming. Since both pipeline and a degree 8 unroll have been used, all loops are
completely unrolled, and therefore at every clock cycle are performed 8 mul-
tiplications. In the first loop, as explained in the Chapter 5 Section 5.3, there
are a total of 40 multiplications, so since eight multiplications are performed
every clock cycle, they will be used five to perform all the multiplications of
the neurons of the first loop. While for the second loop there are 64 multipli-
cations in all, so they will be distributed over eight clock cycles. Finally the
last loop only uses one clock cycle as it has only eight multiplications.

Figure 6.16. Scheduling find on Vivado HLS in the Analysis view for the solution
of Lattice FPGA. The green clock cycles belong to the first loop, the red belong
to the second loop and the blue belong at the last loop.

• MS-S: For this FPGA, since being the smallest there was less possibility of
exploration at the HLS level, manual programming results were not achieved
but acceptable results were nevertheless obtained. The target values have
not been reached because with the addition of the directives the area is also
increased, and it is not much so the occupation immediately reached the limit,
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moreover, as already explained, from HLS there is no control on the area that
will be occupied, therefore in addition to the area for the added directives
there is also the occupation due to all the logic that HLS adds. In fact, the
occupied area is 99.5% against 79.57% of the target. As for the performance,
the only improved parameter are the clock cycle (71 of HLS against 87 of
manual programming), the remaining parameters are good because they are
very close to those found in manual programming but are not better than
them. For example, the inference time that I found is 4.19 µs, while that of
the target is 3.59 µs, so it’s not so different, about 16% more. Also for the
energy of the same reasoning can be made, in fact in the case of HLS there is an
increase of about 32% compared to reference programming (36.12 nJ compared
to 27.2 nJ), which therefore remains quite low. Note that this FPGA is the
one that consumes the least from the point of view of static power and have
also the bigger clock frequency (16.53 MHz) respect to the other values find
for the other FPGAs on HLS.
The scheduling for this FPGA have too many clock cycles, so I report only
the scheduling of how the single neuron is obtained for each loop. Figure 6.17,
shows the scheduling for ALGN250. The orange line where first loop is written
indicates that that is a loop, specifically a loop with a trip count (i.e. how
many times it is iterated) of eight since it has not been used to unroll on this
FPGA. In the previous Lattice scheduling this is not present as all the loops
have been unrolled. The first loop (a) lasts three clock cycles, and a total of
five multiplications are done to get the output of the neuron of the first layer,
and this loop is executed eight times. The second loop (b) lasts four clock
cycles in which 2 multiplications are performed in each of them, and will also
be performed eight times. The last loop (c), on the other hand, lasts only one
clock cycle, multiplied by eight iterations to obtain the final output. If the
total clock cycles are counted they are: 8×3 = 24 for the first loop, 8×4 = 32
for the second and 8×1 = 8 for the third for a total of 64 clock cycles, those
that are missing to get to 71 are operations that Vivado HLS adds but does
not schedule.
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Figure 6.17. Scheduling of the multiplications to obtain one output of the
neuron in the various clock cycles for all three loops (green for the first loop,
red for the second and blue for the last) of the neural network for the solution
for Microsemi FPGA AGLN250.

• MS-M: Also for this FPGA good results are obtained but not all parameters
are able to reach the target ones. The inference time value found by HLS is
1.76 µs which is 50% more than the value found from manual programming.
While the comparison between the found energy is very similar (19.34 nJ vs
17.8 nJ) and also the found clock frequency and clock cycles (15.31 MHz and
27) are similar to those found with manual programming (16.83 MHz and
20). The discussion of the area is also valid in this case, in fact from HLS
the design have an occupation of the area of 88.79% compared to 73.87%, the
difference between the two decreases as being larger than the previous FPGA,
the directives and the logic added by HSL fit better because they find a larger
area.

The scheduling of this FPGA is shown in Figure 6.18. In the columns I have
reported the multiplications that are performed each clock cycle and the order
of execution in the various iterations of the neurons. In the first loop, four
iterations are performed for two clock cycles in which 10 multiplications are
performed in all, so at the end of the fourth iteration all the neurons and 40
multiplications are performed. In the second loop the scheme is the same but at
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the first clock cycle 8 multiplications are performed and in the second another
8, so there are 64 in all. In the last loop 2 multiplications are performed by
four iterations so as to have the eight multiplications of the final neuron. In
all, therefore, there are: 4×2 = 8 clock cycles for the second loop, 4×2 = 8
clock cycles for the first loop and 4×1 = 8 clock cycles for the last loop, so
in all there are 20 clock cycles. The seven that are listed for 27 are added by
Vivado HLS with the internal operations.

Figure 6.18. Scheduling find on Vivado HLS in the Analysis view for the solution
of Microsemi FPGA M1AGL600. The multiplication in every clock cycles are
written in blue. In green there are every neurons calculated in the various clock
cycles of the first loop, in red there are every neurons calculated in the various
clock cycles of the second loop and in blue there is the neuron calculated in the
various clock cycles of the last loop.

• MS-L: For the latest FPGA the results found are excellent, in fact the results of
manual programming have been reached or exceeded. Starting from inference
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time, a value of 0.86 µs was found which is only 17% compared to the 0.74 µs
found in manual programming. The energy consumed by the HLS solution,
on the other hand, is lower (17.27 nJ against 19 nJ) and also the active power
(20.02 mW against 25 mW). The clock frequency and clock cycles, on the
other hand, are very close to those of reference (16.23 MHz and 14 clock cycles
against 16.26 MHz and 12 clock cycles). The occupation of the area in the
HLS has almost reached the maximum (94.74% compared to 75.98% of the
manual programming). Compared to the results found by HLS, this FPGA
has the shortest inference time (0.86 µs), and only the correspondent in manual
programming has the shortest inference time (0.74 µs).
The scheduling is shown in Figure 6.19. In the first loop two iterations are
performed, each of two clock cycles, in which a total of 20 multiplications are
performed, for two iterations, then 40. In the second loop the scheme is the
same but in the two clock cycles a total of 32 multiplications are performed,
for 2 times, therefore 64 in all. The last loop is completely unrolled, Vivado
HLS chooses to execute six multiplications in the first clock cycle and in the
last two to complete the eight multiplications of the final neuron. In all the
clock cycles are: 2×2 = 4 of the first loop, 2×2 = 4 and two of the last, in all
there are 10 and the 4 that are missing are due to the internal operations of
Vivado HLS.
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Figure 6.19. Scheduling find on Vivado HLS in the Analysis view for the solu-
tion of Microsemi FPGA M1AGL1000. The multiplication in every clock cycles
are written in blue. In green there are every neurons calculated in the vari-
ous clock cycles of the first loop, in red there are every neurons calculated in
the various clock cycles of the second loop and in blue there is the last neuron
calculated in the various clock cycles.
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Chapter 7

Conclusion

In the experiment I dealt with in the course of this thesis I tried to understand
if was possible synthesize a neural network, used in the field of capacitive sensors,
through the use of an HLS tool, Vivado HLS, and then implement the code created
not on the FPGA of the same family of the tool, but on families of ultralow-power
FPGAs, therefore problems of adaptability between code and FPGA could arise
since it was not created specifically for that device. Different solutions have been
created for the four FPGAs under test, and for each of these the period from HLS
has also been changed, thus making it faster or slower, and we have seen the effect
on the final result.

The best results were obtained for the Lattice FPGAs (ICE40UP5K) and the
Microsemi M1AGL1000. For the first, since on this there are dedicated blocks that
perform multiplications (DSPs), it was possible to explore the parallelism to the
maximum, in fact it is the only one in which it was possible to insert the degree
of unroll equal to 8 together with the pipe and at the same time obtain excellent
results, the obtained active power (5.23 mW) and the energy (5.78 nJ) are the
lowest among all the FPGAs both for programming via HLS and manual (6.24 mW
and 5.79 nJ for the manual programming reference). For the second one, thanks to
the large area available, it was possible to explore a lot, also obtaining better results
than those of manual programming, in fact the energy found with HLS is 17.27 nJ
against 19 nJ of the manual programming, and also the inference time is slightly
greater than that found with manual programming (0.86 µs against 0.74 µs). For
the remaining two Microsemi FPGAs, AGLN250 and M1AGL600, not having the
dedicated blocks and not having a lot of area available, especially for the first one,
it was not possible to explore at best so results of reference programming are not
reach, but however, good results have been obtained. This is a sign that the code
created by HLS, being that we do not have control over the blocks that it will insert
and that will be inserted on a FGPA other than the pre-established family, it is
better to implement it on FPGAs on which there is a lot of usable area or dedicated
blocks for certain operations, so as to be able to achieve excellent performance.
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Appendix A

Appendix

Appendix A reports all the codes used for the research done in this thesis.

A.1 Code of the MLP neural network (.c++)

1#inc lude <s t d i o . h>
2#inc lude <iostream>
3#inc lude " nn . h "
4#inc lude " hls_stream . h "
5 us ing namespace h l s ;
6

7 data_t Relu ( data_t x )
8 {
9 re turn ( x > 0) ? x : ( data_t ) 0 ;

10 }
11

12 data_t Linear ( data_t x )
13 {
14 re turn x ;
15 }
16

17 data_t weights [LAYER] [MAX_NEURAL] [MAX_NEURAL]={{
18

{−3.3811 ,−3.1615 ,0.8051 ,0.6828 ,−2.3433 ,−0.8871 ,−0.7088 ,−0.9692} ,
19

{1.8252 ,1 .5395 ,−1.2511 ,−1.0526 ,−1.03 ,−1.1274 ,0 .0056 ,−0.2283} ,
20

{0 .538 ,0 .474 ,1 .0117 ,1 .1828 , −0 .0423 , −0 .1053 ,1 .8809 ,1 .396} ,
21

{ −0 .283 , −0 .2058 ,0 .1461 ,1 .0411 ,0 .6863 ,0 .5107 ,0 .6447 ,1 .114} ,
22

{−0.9766 ,−0.8149 ,1 .8329 ,−0.5494 ,0 .7075 ,1 .1299 ,0 .217 ,−0.567} ,
23 {0 ,0 ,0 ,0 ,0 ,0}
24 } ,
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25 {
26

{0.6879 ,−1.1197 ,−1.2057 ,−0.1915 ,1 .5561 ,−1.0803 ,1 .6456 ,0 .1638} ,
27

{−0.0596 ,1.3794 ,1.3375 ,−1.1603 ,−0.938 ,−0.951 ,−1.4609 ,−1.6858} ,
28

{0.1732 ,0 .4295 ,−0.0323 ,0 .8043 ,−0.1587 ,−0.1178 ,0 .9939 ,−0.2684} ,
29

{0 .5053 ,0 .6979 , −0 .5013 ,0 .4808 , −0 .8809 ,0 .8578 , −0 .8309 ,0 .1895} ,
30

{0 .8711 , −0 .4226 ,0 .0139 ,0 .2811 ,1 .0532 ,0 .0501 , −0 .3013 ,1 .8653} ,
31

{−1.1001 ,0 .7179 ,−0.7721 ,0 .1211 ,−0.2538 ,0 .3285 ,−0.0419 ,0 .3673} ,
32

{0.7311 ,−0.9601 ,−0.9548 ,1 .0453 ,0 .3698 ,−0.7131 ,−0.2295 ,−0.8121} ,
33

{−0.5441 ,−0.4836 ,−0.3862 ,−0.7657 ,−0.3714 ,−1.0038 ,0.9135 ,−0.8717}
34

35 } ,
36 {
37

{1.4592 ,−0.3405 ,−1.1434 ,−0.6427 ,−1.2936 ,−2.0807 ,0.4467 ,0 .8777}
38 }} ;
39

40 data_t b i a s e s [LAYER] [MAX_NEURAL]={
41

42

{−1.5116 ,1 .2868 ,0 .4261 ,−0.4145 ,1 .2128 ,−1.1247 ,−1.5157 ,−2.122} ,
43

44

{ −2 .2332 , 0 . 7328 , 0 . 0082 , 0 . 0122 , 0 . 1503 , 2 . 1233 , 1 . 3671 , 0 . 2673} ,
45

46 {5.0282}
47 } ;
48

49

50

51 void ForwardTransfer ( data_output outputs [NEURAL_OUTPUT_LAYER] ,
data_t input [NEURAL_INPUT_LAYER] )

52 {
53 data_t inputs [NEURAL_INPUT_LAYER] ;
54

55 I n i t i a l i z a t i o n _ i n p u t : f o r ( i n t i = 0 ; i < NEURAL_INPUT_LAYER; i
++)

56 {
57 i nputs [ i ]= input [ i ] ;
58

59 }
60

61 data_t outputs_middle [LAYER − 1 ] [MAX_NEURAL] ;
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62 data_t t ;
63 data_t sum ;
64

65

66 t = 0 ;
67

68 //compute outputs o f the f i r s t hidden l a y e r
69 FirstHiddenLayer :
70 f o r ( shor t j = 0 ; j < NEURAL_HIDDEN_LAYER; j++)
71 {
72 sum = 0 ;
73 NeuralInputLayer :
74 f o r ( shor t i = 0 ; i < NEURAL_INPUT_LAYER; i++)
75 {
76 t = weights [ 0 ] [ i ] [ j ] ∗ i nputs [ i ] ;
77 sum = sum + t ;
78 }
79 sum = sum + b i a s e s [ 0 ] [ j ] ;
80 outputs_middle [ 0 ] [ j ] = Relu (sum) ; // outputs o f f i r s t

hidden l a y e r
81 }
82

83

84 NeuralNextLayer :
85 f o r ( shor t j = 0 ; j < NEURAL_HIDDEN_LAYER; j++)
86 {
87 sum = 0 ;
88 NeuralThisLayer :
89 f o r ( shor t i = 0 ; i < NEURAL_HIDDEN_LAYER; i++)
90 {
91 t = weights [ 1 ] [ i ] [ j ] ∗ outputs_middle [ 0 ] [ i ] ;
92 sum = sum + t ;
93 }
94 sum += b i a s e s [ 1 ] [ j ] ;
95 outputs_middle [ 1 ] [ j ] = Relu (sum) ;
96 }
97

98

99 //compute outputs o f output l a y e r
100 OutputLayer :
101 f o r ( shor t j = 0 ; j < NEURAL_OUTPUT_LAYER; j++)
102 {
103 sum = 0 ;
104 LastHiddenLayer :
105 f o r ( shor t i = 0 ; i < NEURAL_HIDDEN_LAYER; i++)
106 {
107 t = weights [ 2 ] [ j ] [ i ] ∗ outputs_middle [ 1 ] [ i ] ;
108 sum = sum + t ;
109 }
110 sum = sum + b i a s e s [LAYER − 1 ] [ j ] ;
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111 outputs [ j ] = Linear (sum) ;
112 }
113 }

A.2 Code of the MLP neural network (.h)

1#pragma once
2#inc lude <ap_fixed . h>
3#d e f i n e LAYER 3 //number o f l a y e r s
4#d e f i n e MAX_NEURAL 8 //MAX number o f neu ra l s in l a y e r s
5#d e f i n e NEURAL_HIDDEN_LAYER 8 //number o f neu ra l s in each hidden

l a y e r
6#d e f i n e NEURAL_INPUT_LAYER 6
7#d e f i n e NEURAL_OUTPUT_LAYER 1
8#d e f i n e DATA_WIDTH 16
9#d e f i n e INT_WIDTH 4

10

11 typede f ap_fixed<DATA_WIDTH,INT_WIDTH> data_t ;
12

13#d e f i n e DATA_WIDTH_output 4
14#d e f i n e INT_WIDTH_out 2
15 typede f ap_fixed<DATA_WIDTH_output, INT_WIDTH_out> data_output ;
16

17 void ForwardTransfer ( data_output outputs [NEURAL_OUTPUT_LAYER] ,
data_t input [NEURAL_INPUT_LAYER] ) ;

18

19 data_t Relu ( data_t ) ;
20 data_t Linear ( data_t ) ;

A.3 Code of DSP (.c++)

1#inc lude "mac . h " // Provides d e f a u l t WINDOW_LEN i f not user de f ined
2

3 // Function d e f i n i t i o n s :
4 void MAC( out_t outdata [ 1 ] , in_t indata [ 3 ] )
5 {
6 s t a t i c prod_t sum , sum1 , sum2 ;
7

8 sum += indata [ 0 ] ∗ indata [ 1 ] ; // F i r s t DSP
9 //sum1 += indata [ 2 ] ∗ indata [ 1 ] ; // Second DSP

10 //sum2 += indata [ 0 ] ∗ indata [ 2 ] ; // Third DSP
11

12 outdata [0 ]=sum ;
13 // outdata [0 ]=sum+sum1 ; // f o r 2 DSP
14 // outdata [0 ]=sum+sum1+sum2 ; // f o r 3 DSP
15

16

17 }
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A.4 Code of DSP (.h)

1#inc lude <s t d i n t . h>
2#inc lude <math . h>
3#inc lude <ap_int . h>
4 // Def ine widths o f f i x e d po int f i e l d s
5#d e f i n e W_IN 16
6#d e f i n e IW_IN 3
7#d e f i n e W_OUT 1
8#d e f i n e IW_OUT 1
9

10#d e f i n e prod 32
11#d e f i n e prod_v 3
12 // Def ine f i x e d po int types f o r input , output and c o e f f i c i e n t s
13 typede f ap_fixed<W_IN, IW_IN> in_t ;
14 typede f ap_fixed<W_OUT,IW_OUT> out_t ;
15 typede f ap_fixed<prod , prod_v> prod_t ;
16

17 void MAC( out_t outdata [ 1 ] , in_t indata [ 3 ] ) ;
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