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Summary

In the last twenty years, the impressive development of molecular electronics and its related
technology made possible the establishment of molecular electronic sensors (MES). In
particular, the advancements in molecular synthesis engineering and the evolution towards
sub-photolithographic processes allowed to fabricate molecular sensors whose working
principle is different from conventional molecular chemo-sensors. Indeed, in MES, the
detection involves the electric current flow instead of other chemical-physical phenomena,
thus making possible a direct integration with conventional electronic circuitry. Pollution,
chemical compounds, humidity, temperature and light sensors are realizable by modulating
the molecular channel conductivity, exploiting quantum phenomena such as intermolecular
or photon interactions. The potential applications are many and varied: gas sensors for
industrial processes or environment monitoring, e-noses for non-invasive disease diagnostics,
wearable/implantable bio-sensors and single-molecule detection in biochemical processes.
MES are promising for several reasons, among which: potentially high sensitivity, selectivity
and detectability, huge integrability, fast response time, low cost, label-free detection.

The first part of this work is a literature review of the theoretical physical-chemical
modeling of MES. Molecular channel electronic structure, intermolecular interactions
and transport state-of-the-art modeling techniques are introduced from the applicative
standpoint of the electronic engineer, without requiring any extra notion w.r.t. the standard
electrical/electronic engineering MSc background. To this purpose, the rigorous and purely
quantum mechanical Non-Equilibrium Green’s function (NEGF) theory is introduced,
without the requirement of the second quantization formalism. The information provided
in this part should be enough to perform an aware and correct setting up of atomistic
simulations and to judiciously interpret the results.

The second part is instead focused on developing a general and complete methodology
for the design of a MES. This crucial point is still lacking in the literature, even if it should
be the first step toward the engineering and industrialization of the design process. To
this purpose, the C60 fullerene molecule is used as molecular channel, and the device-level
design is performed suggesting a possible general methodology for the choice of the device
optimal geometry and other device parameters. Then a complete characterization of
the designed gas sensor is performed, analyzing the performances in terms of sensibility,
selectivity and sensor response. This allows the potential development of a “black-box”-like
model of the MES, to be used in designing the conditioning circuit, being also the starting
point toward a design by levels of abstraction, analogously to what is well established in
semiconductor companies.
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D.21 Device current as a function of the applied voltage and the contacts distance.
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two methods: DFT (blue curve) and EHT (red/orange curve) are compared.
The ellipsoid is around the considered range of bias windows, i.e. up to 2V.
The integrals were performed with trapezoidal numerical method in MatLab,
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E.4 Geometry labeled as “PbSO4” simply. The figure was generated by ATK
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E.9 Maximum absolute deviation between the cubic spline interpolation and the
linear interpolation of the current values in function of the target-fullerene
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at VD = 0.8 V; it is a good compromise among the possible choices. For VD
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E.10 Maximum absolute deviation between the cubic spline interpolation and
the linear interpolation of the current values in function of the PbSO4
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point at VD = 0.8 V; it is a good compromise among the possible choices. . E7

E.11 Current values for different PbSO4 concentrations and for VD = 0.8 V. Black
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E.15 Transmission spectrum with a PbSO4 molecule for a bias VD = 0.8 V.
Abscissa axis: transmission; ordinate axis: energy (eV); εL,R are the two
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Chapter 1

Introduction and motivations

The purpose of this first introductory chapter is to provide a brief overview of both the
background and the motivations behind this work, and also to introduce the basic lexicon
and few preparatory concepts that will be useful in the rest of this thesis. In section 1.1 it
is briefly introduced what “molecular electronics” is, and why during last decades it got
great attention at research level. In section 1.2 it is explained what the term “molecular
electronic sensor” refers to and in which sense it is generally different from “molecular
sensor”. Moreover the basic working principle of molecular electronic sensors is qualitatively
introduced. Then, in section 1.3, the reasons that motivated this work and the background
in which it finds place are clarified; and, finally, the structure of the rest of this work is
illustrated.

1.1 Conventional electronics and beyond CMOS:
toward molecular electronics

Since the invention of the Integrated Circuit (IC) technology and the fabrication of the
MOSFET more than fifty years ago, a tremendous and incessant progress, in terms of
electronic devices design and fabrication processes, allowed to continuously reduce the
physical dimensions of transistors, reaching nowadays the so-called Ultra Large Scale of
Integration (ULSI), in which the number of transistors integrated in a single chip can be
far beyond one billion [1]. This was possible thanks to the introduction of the CMOS logic
(the negligible standby power of complementary MOS logic allowed to overcome the 104

devices per chip opening the way for the VLSI era), and to the steady improvement of
lithography technologies [2]. The main advantage of the transistor scaling lies in the larger
amount of devices, and thus functional blocks, that can be integrated in a single chip,
making use of almost the same number of photolitographic masks, thus reducing the cost
per unit while increasing the functionalities. Together with the higher packing density,
other advantages in shrinking the transistor dimensions are the higher circuit speed and
performances and the lower power dissipation per device (nevertheless since also the device
sizes are scaled, the resulting power density may be dramatically high, depending on the
specific type of adopted scaling policy) [2].
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The scaling process empirically followed the well known Moore’s law, firstly introduced by
Gordon Moore in 1965, that stated that the number of transistors that could be put on a
single chip was doubling every year [3]. Surprisingly, this trend continued for many years
(and decades!) with only a small slowing down: the number of transistors integrated in
a single IC doubled every 18 months or even every 2 years or so [4]. The reason for this
slowing down of the scaling pace is double: from the system standpoint a great challenge
in scaling is currently given by the power dissipation (one refers to “dark silicon era”
meaning that only a portion of the chip can be switched on at the same time due to
power constraints) and interconnection bandwidth [5]; while from the other side there are
also technological drawbacks, beside the above mentioned advantages, in reducing the
transistor sizes, that required several smart device improvements [2]. In particular, even
if the basic operating principles of large and scaled MOSFETs are the same, the small
ones are affected by non-idealities such as Short Channel Effect (SCE), threshold voltage
roll-off, Drain Induced Barrier Lowering (DIBL), velocity saturation, high field effects (e.g.
gate oxide breakdown) and so on... As mentioned above, these non-ideal effects required
for careful device design strategies, along with technology improvements, in order to be
counteracted and overcome [2]. These device ameliorations gave rise to the current device
structure: the so-called FinFET [2], [5].
In addition to these effects, and due to the nanometric scale dimensions of current devices,
another class of important non-idealities must have been considered, i.e. the quantum
mechanical effects, such as the increasing tunneling through the gate dielectric or the carrier
density shape modifications due to the quantum confinement [2]. Even more important is
a fundamental limit that is going to be reached soon from the semiconductor industries:
with the approaching of the channel physical length to the typical thermal wavelength of
electrons (that is around 8 nm at room temperature) there will be no way of controlling
the electron flow from the source to the drain, and thus to make a functioning transistor.
Indeed if the source to drain energy barrier thickness is less than the electron de Broglie
wavelength, the electron direct tunneling probability from source to drain would be so
high (it is an exponential phenomenon with the barrier thickness - see e.g. chapter 2) to
make impossible to switch-off the transistor [2].
Currently, the last technological node that seems will go into production soon, appears
to be the 5 nm one, as expected from the last International Roadmap for Devices and
Systems (IRDS) reports [5], [6], [7], and as announced from some companies (e.g. TSMC
[8] that proclaimed volume production in 2020 and Samsung Electronics [9] that plans
to put it in full operation in the second half of 2021). In the IRDS 2020 report it is
expected the 5 nm node to have a gate physical length (i.e. source to drain spacing) of
18 nm for High-Performance (HP) process and 20 nm for High-Density/low-power (HD)
process [5]. Again in this report it seems the next technological node (expected in 2022)
will be the 3 nm one with a gate length of 16 nm for HP and 18 nm for HD. Notice that
the physical spacing between source and drain in these technological nodes is greater than
the previously mentioned limit of 8 nm, due to the electron room temperature de Broglie
wavelength. Finally, again in the IRDS 2020 report, previsions for future trends up to
2034 are made, in which the source to drain spacing is stuck at 12 nm [5].
In light of the above mentioned fundamental and intrinsic limit, it is legitimated the
question: “what will be next?”. Indeed it appears that sooner or later an alternative to
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conventional silicon devices will be necessary. Nobody can answer today to this question,
and what the future technology will be depends on many factors, among which the cost
will very likely play a central role. Nevertheless the last International Technology Roadmap
for Semiconductor (ITRS) report in 2015 [4] and the successive IRDS ones [7], [6] and
[5] (in 2017, 2018 and 2020 respectively) try to summarize the possible answers to that
question in their sections named “Beyond CMOS”. The driving interest of the research in
these innovative beyond CMOS technologies is to maintain the circuit scaling cadence and
to sustain the performance gain started with CMOS scaling process [4]. This is referred as
“more Moore” in the ITRS and IRDS reports. Next to this attempt, also another reason is
behind this front of research, that is the “more than Moore”, i.e. the trend of accomplishing
an heterogeneous integration of multiple functions (not only information processing and
storing but even its transmission/reception or sensing and measuring, etc...) as a new
paradigm for system architectures [4], [5]. Consequently the beyond CMOS research is not
only carried on at device level, but all abstraction levels are simultaneously involved. Novel
computing paradigms for beyond CMOS technologies were investigated in the last years [7],
[6], [5], and some of them (such as big data, internet of things, artificial intelligence, neural
networks, etc...) require high performance and efficiency which is increasingly difficult to
fulfill with the saturating “more Moore” CMOS technologies [5].
During the last decades, the explored and proposed beyond CMOS solutions are many
and various, and the current landscape is extremely ample [5]. In figure 1.1 is summarized
a possible taxonomy of emerging beyond CMOS memory devices (top) and there is also
a comparison among few of them (bottom-left); while figure 1.2 summarizes a possible
taxonomy of emerging beyond CMOS logic devices. As evident several solutions exist
in both the fields, even if many of them are just “emerging” proposal, in the sense that
they were proved at research level but advantages w.r.t. CMOS may be at moment only
potential, i.e. at the present there may be important technological limits that are still
unsolved. Nevertheless they are somehow promising or interesting enough to be still
considered as a valid research topics for the next years [5]. An introduction to all of them
falls outside the purposes of this work (interested readers can refer directly to the IRDS
2020 report [5] and references therein). However they constitute the current background
in which “molecular electronic sensors”, main subject of this work, find place.
ITRS and IRDS reports clearly state that the technologies they consider are somehow
promising substitute of conventional CMOS at short-term, as bridging technologies between
current CMOS and future beyond CMOS, but nothing is said about the long-term beyond
CMOS technologies [5]. Indeed it is reasonable supposing that the transition between
conventional electronics and the future one will be gradual, with, at the beginning, a
coexistence between CMOS and beyond CMOS technologies, until (for some reasons) one
technology will “win” above the others and will become the dominant one. Thus at the
beginning, i.e. during the next years, an important or even discriminant factor for the
success of new technologies will likely be the compatibility with standard CMOS technology
and with standard CMOS architectures, since a coexistence even within the same IC, will
be very probable [5], [10]. Nevertheless this is not the only feature to be considered in
comparing the beyond CMOS technologies. Several factors should be accounted for, see
e.g. fig. 1.1 (bottom-left), such as the already mentioned process cost, the performances in
terms of speed and dissipated power (or energy efficiency), the scalability (that should be
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-at least potentially- superior to current CMOS one), etc... At least some of these features
are required to a new technology to be further considered as a potential substitute of
CMOS, and this holds true for all the technologies reported in figures 1.1 and 1.2.

Figure 1.1: Possible taxonomy of emerging memory devices and a comparison among few of
them (bottom-left) in terms of relevant features for a future commercialization.
Black line: FeFET memory; grey line: FTJ memory; red line: ReRAM memory;
green line: Mott memory; purple line: macromolecular memory; orange line:
molecular memory; blue line: carbon-based memory. The classification is coherent
with the one reported in [5].

In light of this, promising new technologies for the next future, i.e. at short-term, seem
to be e.g. the Tunnel FET (TFET), the Nano-Wire FET (NW FET) and the Carbon
NanoTube FET (CNT FET), etc... The TFET appears able to overcome the CMOS
thermal intrinsic limit of 60mV/dec for the subthreshold slope (SS). While there is no
difficulty in switch it off (contrary to conventional CMOS) there are at the moment still
difficulties in achieving an enough large ON current (due to the ON state barrier through
which tunneling happens, that is too wide thus leading to a small tunneling probability
- see also chapter 2). It presents also optimal compatibility with CMOS processes and
architectures. For memories, the landscape is more extended and ample and here I would
just like to cite the macromolecular memories, in which the basic cell is essentially a
capacitor whose dielectric is a polymer (i.e. a molecular chain), eventually embedding
small molecules or nanoparticles (e.g. the C60 fullerene that will be cited again in next
chapters of this work). The logic state (“0” or “1”) can be stable at room temperature and
present a resistive, ferroelectric or capacitive nature depending on the specific nature of the
sandwich [5]. The programming power (tens of nW) seems to be enough low for extremely
low-power applications [5]. An evolution toward miniaturization of these memories are
the macromolecular ReRAM or even the molecular memories. The latter are memory
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applications of the so-called molecular Single Electron Transistor (SET), that will be cited
again in next chapters of this work.

Figure 1.2: Possible options for emerging logic devices. The devices are differentiated according
to whether the structure or the material are conventional or innovative (abscissa
axis) and whether the information representation is based on electron charge or
on some non-charge entity (ordinate axis). Only three groups are possible since
a conventional FET material and structure is intrinsically a charge-based device.
The classification is in accordance with the one from [5].

As mentioned, the ample set of all these possible devices essentially constitutes the wide
landscape in which nowadays molecular electronics and molecular electronic sensors find
place. Before going on in clarifying better what molecular electronics is, where it is precisely
placed in terms of its technology features and why it is intimately linked with molecular
electronic sensors, a deeper look to the capabilities that are required to novel beyond
CMOS technologies is given.
For many years the technology advancements were driven by memories (DRAMs especially),
in which the demand for increased capability drove to a huge research effort in scalability
of the basic cells and thus transistors. Instead during the last years the driving force
gradually became the processing unit, requiring for extremely low power functioning and
increased cache memories capability and performances [5]. In these terms, the novel logic
switches, in order to be considered potential replacements for current CMOS ones, should
possess one or more of the following fundamental capabilities [5]:

• scalability: increase in the device density (and thus decrease the cost) beyond that
achievable by ultimately scaled CMOS

• speed: increase beyond CMOS in speed performances (switching speed)
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• power: reduction of the switching energy and thus of the overall power consumption

• novel computing schemes: enabling of innovative computing paradigms or information
processing functions that cannot be performed as efficiently with conventional CMOS

Molecular electronics gained particular attention during last three decades from scien-
tific community because of its intrinsic interesting capabilities [11], [12]. In December 2005,
the ITRS officially noted that molecular electronic components will need to be integrated
into silicon manufacturing in order for Moore’s law to continue to hold true [13], [11].
With the term “molecular electronics”, sometimes also called “moletronics” [11], [14], it
is conventionally intended that field of electronics in which the fundamental units for
computing are devices based on single molecules or, alternatively, small packets of molecules
[15]. It is an interdisciplinary field that includes physics, chemistry, materials science and
engineering [14]. In particular all the electronic components can be realized by means of
single (or small packets of parallel) molecules, thus transistors, diodes, resistors, capacitors,
etc... can be all implemented as molecular devices [14].
As a title of example in figure 1.3 is reported a scheme of a molecular transistor. Notice
that source, drain and gate contacts are quite conventional, a gate dielectric is still present
(in general a front and a back gates can be present) and the main distinctive feature is
that the channel is constituted by a single molecule, chemically bonded with the source
and drain contacts and “suspended” above the gate dielectric. Thus the active portion of
the device is a single molecule.

Figure 1.3: Example of a molecular FET structure. In this case the PDT (phenyl dithiol)
molecule is used. The yellow atoms are the gold source and drain contacts; the
two dark yellow atoms are the sulfur anchoring groups; grey atoms are carbon
and white hydrogen. The light purple region is the gate insulator (continuum
approximation) while the white/light grey region is the metal gate contact. The
figure was generated in Quantum-Wise ATK software.

Sometimes with the term “molecular electronics” is indicated a much wider class of devices,
including some macromolecular-based (or polymer-based) devices and transistors, and
also optoelectronic devices such as organic light-emitting displays (or even liquid crystal
displays), organic photovoltaic devices, chemical sensors and so on... that are built starting
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from (organic) molecular processes, but present a much larger active region than the one of
small molecule devices, like the transistor mentioned so far [14], [16]. These devices were
the first practical results of research on the field of molecular electronics mainly pioneered
by Forrest Garret [11] during the 1980s.
The use of single molecules as basic building blocks for realizing electronic devices po-
tentially represents the next (or even the ultimate) limit of miniaturization of electronic
devices, beyond the CMOS intrinsic limit, and up to the basic “bricks” of matter [17], [18].
Indeed molecules are the fundamental entities of matter, or better of compound materials
(atoms should be more correctly the fundamental basic entities of matter but they are so
only for single elements). And this is more correct the more the employed molecules are
small, e.g. the benzene ring with a dimension of the order of 1 nm (while it may be not
true at all, as already mentioned, for the so-called macromolecules that can be hundreds or
thousands of times bigger than the benzene ring - think e.g. to proteins, enzymes, DNA,
or bio-macro-molecules in general).
Since the beginning of the century several molecular device prototypes were demonstrated
in literature [12], [18], even if, actually, the idea of making electronic devices by means of
single molecules is not so young. The term “molecular electronics” was coined in 1958 (even
if the meaning was slightly different: it was referred to a bottom-up material engineering
from molecules to devices), when the US Air Force and Westinghouse Electric Company
adopted it to describe their radical joint research program, that unfortunately was a failure
[11]. In the mid 1970s the term “molecular electronics” went back to vogue (with the
conventional meaning explained above) and in 1974 the first molecular rectifier (actually
the first single molecule electronic device) was proposed [19]. This was a purely theoretical
device, in which an isolated molecule was supposed to present rectifying properties. The
first prototypes were instead successfully realized only after more than twenty years,
because of technological limits [11]. The current technology allows for the fabrication of
single molecule devices or even for the simultaneous creation of thousands of them, with
a reasonable reliability and yield, even if currently the technological process variability
is still the main issue in molecular electronics [15], [17], [12], [16], [18]. For example, the
manipulation of single molecules is possible by means of Scanning Tunneling Microscopy
(STM) methods, that make possible even to act on a single molecule, e.g. by breaking
or modifying it to perform the synthesis of specific structures [12], [16], [20]. Moreover
the synthesis and anchoring (even with the desired orientation) of millions or billions of
molecules is made possible by means of Self-Assembled Monolayer (SAM) techniques, in
which a sequence of chemical reactions, under given conditions, is able to self-assembly
molecules in between break-junctions or above a substrate [15], [18]. From the standpoint
of contacting the molecule the difficulty is mainly due to the creation of reliable and clean
(typically metal or graphene) contact gaps, of the order of the nm. For example this
is achievable by means of Mechanically Controlled Break-Junctions (MCBJ) or through
controlled electromigration, electroburning or etching processes [12], [18], [21], [22], [23].
Hence at moment, after more than twenty years of ameliorations in the techniques for the
construction of molecular devices, it is possible to fabricate single molecule devices with a
yield of the order of 25%÷ 40% (better performances are often obtained with graphene
contacts) [21], [22], [23]. As mentioned, the low yield and the high process variations are
at the moment the main unsolved issues in molecular electronics from the technological
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standpoint, leading to low reliability of fabricated devices. The high process variations,
moreover, lead to a wide variance on measured current-voltage characteristics. Other
problems concern the large parasitics, especially for the interconnection, that are actually
the main Achilles’ heel of this technology (precisely like in the ultra-scaled CMOS case).
Another very remarkable drawback is the usually poor ION/IOFF ratio (for conventional
molecules it is of the order of few tens [12] even if improvements up to few hundreds seem
possible [24], [25]) and the too low ION value. Instead, the main potential advantage w.r.t.
to CMOS is the huge scalability: molecules as fundamental entities of matter push the
scalability to the ultimate intrinsic limit of miniaturization, potentially beyond the 8 nm
thermal limit of silicon devices [11], [15]. The SAM processes are compatible with the
conventional CMOS process. Even if they require few extra steps to be performed w.r.t.
to standard CMOS process, these extra steps are generally few and can be performed such
that the remaining steps of standard processes are not affected at all [18]. Moreover the
parallel and simultaneous fabrications of billions of molecular devices, accessible with the
SAM processes, allows to potentially further decrease the cost per unit below the CMOS
one. Due to the small dimensions and currents, molecular devices have other potential
advantages w.r.t. CMOS: they seem to be intrinsically low power, even if compared with
conventional CMOS [14], [24], [12]; and moreover due to the small amount of electrons
(thus mass) that are moved through a so tiny device, molecular electronic components
are potentially faster that CMOS ones (potentially smaller intrinsic relaxation times),
even if parasitics constitute currently a big conflicting effect to this benefit. In the words
of Mark A. Reed and James Tour: “molecular electronics is the ultimate step in small,
cheap and fast” [11]; nevertheless, mainly due to the previously cited technological still
unsolved problems, these are currently only potential advantages. Table 1.1 summarizes
the molecular electronics pros and cons illustrated up to now.

Table 1.1: Advantages and drawbacks of moletronics (i.e. molecular electronic technology) w.r.t.
conventional CMOS technology.

Advantages of moletronics w.r.t. CMOS Drawbacks of moletronics w.r.t. CMOS
huge scalability process variations

low cost (thanks to SAM) low yield and reliability
CMOS process compatible large parasitics

low power poor Ion/Ioff ratio

In summary, in terms of the previously discussed novel technology capabilities, molecular
electronics presents:

• scalability: far beyond the conventional CMOS

• speed: potentially faster than CMOS, still very limited

• power: potentially lesser than CMOS, still limited
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• novel computing paradigms: molecular electronics open the way to several interesting
new processing principles, e.g. in neuromorphic system [11], [26]. The main strong
point in this direction seems to be the possibility of synthesizing ad hoc organic
molecules, able to perform innovative basic operations, intended as the basis for the
new computing paradigm [11], [26].

Currently molecular electronics seems to catch the attention as potential beyond CMOS
technology at long-term, in the words of Mark A. Reed (2009) [11]:

“Even though in many ways I was responsible for the generation of this new incarnation
of molecular electronics, I’m a critic. Because I don’t see it going into electronic devices
in the future. Yet. If I’m going to take my money today, I’m going to put it on silicon.
But that doesn’t mean that I don’t think that there’s potential. [...] My job description
(unlike someone at Intel) is to explore the physics, explore the potential over a lifetime. So
my time horizon is 20, 30, 40 years. [...] On top of that, there’s an additional part of my
job description, which is [...] is there any important physics to be learned from it?”

Indeed even if the initial goal of molecular electronics was to effectively substitutes the
conventional CMOS devices, due to the above discussed drawbacks, it resulted clear that,
at least at short-term, it would have been not possible to successfully accomplish this task
[15]. This is the main reason why molecular electronics does not assume a central role in
the last ITRS and IRDS reports (that are focused on short-term promising technologies)
[4], [5]. Nevertheless nobody can today know what will happen at long-term, and if the
molecular electronics technological limits and disadvantages will be overcome, leading to a
much better promising technology w.r.t. CMOS one, or not.
Moreover, the research in this field led to important irrefutable achievements: it opened
the way to a set of technologies aimed in the development of novel molecular devices that
find place in several potential field of applications [15]. Molecular electronic sensors are
examples of this. The developed technological processes and techniques for molecular
electronics are exploitable for building a new class of sensing devices that became subject
of research in the last few years: the “molecular electronic sensors” [22], [23], [27], [28],
[29], [30], [31]. They are also the subject of this entire work. A molecular electronic sensor
is essentially a molecular wire (i.e. a molecule or a packet of molecules in between two
contacts) or a molecular transistor, in which the conductance of the molecular channel, the
device capacitance, etc.. are changed depending on the presence or not of a target substance
or chemical species (e.g. gas sensor). In general they can also sense the temperature, the
light (even in the far InfraRed -IR- gap) and other chemical-physical quantities [22], [27],
[29], [31], [32].
Molecular electronic sensors will be presented more in detail in the next section, and then
they will be widely considered in the rest of this work. Moreover they are a possible
short-term answer to the “more than Moore” trend, allowing for hybrid integration of
molecular sensors along with conventional CMOS electronics within the same IC, to the end
of performing the sensing and the post-processing of several chemical-physical quantities
in a unique low-cost ultra-scaled system [10].
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In conclusion, the constant and incessant scaling pace during the last sixty years
promoted the research not only in the silicon industry field but even in the beyond CMOS
field. In a very rich, prosperous and ample landscape, molecular electronics represents
only a possibility among the others for the long-term future of ultra-scaled electronics. At
the same time the theoretical and experimental research in this field opened the way to
the fabrication of sensors, that can be accessed at short-term end, for the advancements
in the “more than Moore” trend. They are also a first potential market arrival point for
molecular electronics, able to potentially become a driving force for the research in this
fascinating field.

1.2 Molecular electronic sensors
The purpose of this section is to provide an overview about molecular electronic sensors
and the context in which they find place today, in terms of currently used sensing
devices. As mentioned at the end of the previous section, the recently developed both
theoretical and experimental techniques and technologies for molecular electronics (beyond
the photolithography limit) allowed for the fabrication of single molecule devices (or even
small packets of molecules), to be used like conventional electronic devices (both digital and
analog) or like sensing devices. The latter application is briefly introduced in this section
and it is the subject of the rest of this work, widely investigated in the next chapters.

A molecular electronic sensor (sometimes shortened MES) is a molecular wire, i.e.
a single molecule or a packet of molecules in between two contacts, or alternatively a
molecular transistor, i.e. a molecular wire with one or more electrostatically coupled gate
contacts, in which the channel conductance (or sometimes capacitance or other physical
properties) is suitably and uniquely changed by the detection of chemical or physical
events, such as the presence of a given chemical compound in proximity of the channel (gas
sensor) or alternatively chemically bonded with the channel (chemical compound sensor
for interacting gases, liquids etc...), or the absorption of a photon at a given wavelength by
the device, or again the change in the relative ambient humidity, temperature, and so on...
Even single electron charge detection or more in general the proximity electrical charge
detection is possible. Examples of MES, from which the above reported definition was
derived, are reported in literature during recent years, e.g. [21], [22], [23], [32], [33], [34],
[35], [36], [37], [38], [27], [28].
It is important that regardless of the specific chemical/physical phenomenon that produce
the MES channel conductance variation, the sensor or device physical model for transport
is always the same, and it coincides with the physical model for transport in mesoscopic
systems (i.e. in that systems small enough to make classical physical out of its regime of
validity but big enough to make a standard quantum mechanical approach unmanageable
[39]). The physical model for transport in mesoscopic systems will be investigated more in
details in the chapters of part I of this work. Thus once the final details of the molecular
conducting channel are known, the transport calculations will be performed always in the
same manner. The differences from an application to another are mainly two: the specific
molecule used as conducting channel for a specific MES, and the physical or chemical
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event that causes the variation in the channel conductance (or device capacitance, etc...).
Concerning the employed molecule for the MES, depending on its specific electronic and
transport features different conductive behaviors may exist [12], [17], [15], [14], [40], [41],
[24], [25], [42]. The specific molecule is not the only variable that influences the transport.
Also the contact material (e.g. metal, graphene, etc...), its quality or orientation and the
way through which the molecule is anchored (the anchoring group) to the contacts (and
if the anchoring is of good quality or strong/weak) influence the transport features [12],
[43], [44], [45], [33], [46]. Instead, concerning the physical or chemical phenomenon at
the basis of the conductance variation, each specific case is different depending on the
particular event that should be detected. In the case in which some physical parameters
such as temperature or humidity are to be detected, the possible range of values should be
considered during calculations (e.g. the temperature will affect the Fermi-Dirac statistics
and thus the occupation of the electronic states within the channel) and the corresponding
conductance sensitivity is easily found. In other cases the presence of an electrical charge
in proximity of the channel can affect the conduction due to Coulomb interaction with the
electrons within the channel, or the absorption of a photon at a specific wavelength can
vary the number of carriers that take part to the conduction thus changing the resulting
electrical current (exactly like in conventional optoelectronic devices). Again, the creation
of a chemical bond between a target molecule and the channel molecule will obviously
change the channel transport properties thus resulting in a current variation. From the
standpoint of the physical/chemical event to be detected, the simplest case (along with the
temperature or humidity variation) is the one in which the presence of a target chemical
compound in proximity of the molecular channel of the sensor makes varying its conduc-
tance in an appreciable way, due to weak chemical/physical interactions such as the van
der Waals ones. The latter is essentially the only case considered in this work. Notice
that this could be the case in which a barely chemically interacting molecule is used as
conducting channel, and it interacts through van der Waals forces with a target chemical
substance, thus leading to a gas sensor [23], [32], [33], [34].
The MES functioning principle is quite similar to the conventional FETs-based sensor that
constitute the current state of art in electronic sensors or bio-sensors [30]. For example in a
GNR FET based gas sensor the detection of the target substance is possible because of the
conductance modulation due to direct interaction between the graphene nano-ribbon (i.e.
the FET channel) and the target molecule (through van der Waals interaction or through
“chemisorbed” interaction - i.e. with the creation of a chemical bond between the surface
and the adsorbate [47], that is the target molecule) [48], [49], [50]. Otherwise the detection
of whatever chemical compound or substance in gas or liquid solution is possible by means
of conventional CMOS/MOS FETs, floating gate FETs and other FETs structures, again
thanks to a modulation of the channel conductance, that can be enhanced by means of
chemical interactions between the target molecules and specific receptors anchored to the
gate [30].
Notice that, especially in biological applications, the biosensor target substance is often
called “analyte”, where the analyte is a substance or chemical constituent that is of interest
in an analytical procedure [51], in this case the sensing or measuring process.
Currently the FETs used for sensing applications are mainly two-dimensional (2D) devices
such as thin-film FETs or Organic FETs (OFETs), in which a sheet of organic material, e.g.
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graphene or other organic polymers, is placed between the source and drain contacts and
its conductance is modulated by the event that should be detected [52]. Other possible
devices are very miniaturized conventional FETs, CNT FETs, NW FETs (both silicon NW
or other materials NW), etc... [29], [28], [27], [31], [53]. In all these devices the working
principle is always the same: the conductance of the channel is varied depending if the
target substance is present (and in what concentration) in proximity of the sensor or not;
or alternatively depending if the target substance is chemically bonded (i.e. chemisorbed
[47]) with the channel or not. Actually, the most general functioning principle should
be expressed as follows: the sensor conductance is varied accordingly to the chemical or
physical event to be detected [54], [30], [29]. Indeed, not only gas sensors are possible, but,
exactly like in the case of MES, many other chemical or physical events and quantities
can be detected. For example, a 2D FET can be mechanically strained thus leading to a
Nano-Electro-Mechanical System (NEMS) or sensor, able to detect strain and mechanical
deformations [55], [56].
Anyway, the point now is that the functioning principle of molecular electronic sensors and
FET-based sensor is essentially the same [30], [27]. This should not be surprising since both
are essentially FETs (or wires), even if in MES the channel is a single molecule (or a packets
of molecules). Nevertheless, in general, 2D devices are at the present favoured in literature
for two main reasons. Firstly, they can be fabricated with current technology without
the molecular electronic fabrication issues mentioned in the previous section (such as the
low yield, etc...) and thus many recent papers report the prototyping and demonstration
of sensors [29], [52], [31], [57], [58], [59], [60], [61], [62], [63], [64]. Then, in a 2D device
the interacting portion of the device is the 2D surface or sheet of organic material, thus
the interaction region is bigger, leading to a greater sensor sensitivity e.g. to the target
substance/gas or chemical-physical event in general [30], [53], [52], [29]. In this regard, for
example in [58], the authors state:

“2D-layered materials (2DLM) have an exceptionally large surface-area-to-bulk ratio,
and thus adsorbed gases can greatly modify their properties, making them promising
candidates for gas detection”.

The potentially lower sensitivity of MES w.r.t. current 2D devices is a significant drawback,
at least for gas sensors. The problem can intuitively viewed as follows: a gas sensor should
detect the presence of specific substances (pollutants, toxic particles, certain chemical
compounds, etc...) that are present in the monitored environment at least in a given
concentration, often expressed in parts per million (ppm) or parts per billion (ppb), e.g.
accordingly to the legislative regulations [65]. The target is thus a minor portion of the total
air in the environment, and in order to be detected it should be in proximity of the MES,
i.e. nearby a tiny molecular device. This can constitute a limit in terms of sensitivity if a
single device based on single is used instead of a 2D device for the reasons expressed above.
Nevertheless a trivial solution could be to put several MES in parallel, thus increasing
the interaction surface and maintaining the advantage of great miniaturization of the
device [22], [54]. Notice that depending on the specific application and thus on the specific
chemical/physical event that should be detected and measured by means of the MES, the
sensitivity issue can be not present or completely solved [27], [28], [54]. Other issues, as
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already pointed out, are concerning the current fabrication processes of molecular devices
(see the discussion in the previous section 1.1), and the small currents involved in the
sensing process (see again section 1.1). The latter could be a limiting factor for detection
due to the noise that unavoidably afflicts the system. Nevertheless also these issues can be
often overcome (even if not always easily), for example by increasing the complexity of the
front end electronics such as the signal conditioning circuit of the sensor [21], [66], [67],
[68], [69], [70], [71], [72].
Besides these drawbacks the main advantages in exploiting molecular electronic sensors
are generally their high selectivity, i.e. it is possible to choose ad hoc molecules to be
used as conducting channel such that the device responds to the target event only (with-
out the usage of intermediate recognition elements), high sensitivity, generally linked
again to the possibility of choosing ad hoc molecules for the device channel (even if as
mentioned this sometimes is not true at all for gas sensors if compared to 2D devices),
real-time detection, indeed the current modulation occurs within the transit or relaxation
time of the device, that is of the order of conventional electronic response times, and
label-free detection. These advantages together with the above discussed drawbacks are
summarized in table 1.2. The last mentioned advantage needs a bit of discussion, indeed
the conventionally used lexicon must be introduced. When biosensors are taken into
consideration (see below for a summary of possible application fields of molecular electronic
sensors) one usually distinguishes between labeled detection processes (or sensing with label)
and label-free detection processes. The distinction between the two is well explained in [54]:

“In the most general case a biosensor consists of at least two functional components:
a molecular recognition element (receptor - it can be a natural, synthetic, bio-inspired
molecule) that selectively interacts with its target analyte (e.g. ions, DNA, antibodies,
cells, microorganisms, etc...) and a physicochemical transducer (e.g. the molecular wire/-
transistor). The latter converts the bio-recognition information into a measurable quantity,
being in general an electrochemical, electrical, optical, magnetic, mass-sensitive, or thermal
signal. Due to the fact that biological analytes are often hard to detect purely on basis
of their intrinsic physical properties, biosensors often require labels such as enzymes and
fluorescent or radioactive molecules attached to the targeted analyte. As a result, the final
sensor signal corresponds to the amount of labels, representing the number of bound target
molecules. As a drawback, label-based technologies are often labor- and cost-intensive as
well as time-consuming. In addition, labeling of biomolecules can block active binding sites
and alter the binding properties. Altogether, this may adversely affect the affinity-based
interaction between the recognition elements and the target molecules. In contrast, label-
free biosensing technologies, by definition, do not require the use of labels to facilitate
measurements. Instead, they utilize intrinsic physical properties of the analytes, such as
molecular weight, size, charge, electrical impedance, dielectric permittivity, or refractive
index, to detect their presence in a sample.”
(adapted from [54]).

From this definition it should be clear that molecular electronic sensors are always label-
free sensors, in which the target analyte makes the molecular channel conductance (or
capacitance, etc...) varying, making possible the detection. Notice that in general all
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Table 1.2: Main features of molecular electronic sensors (MES).

Sensor feature MES performance
selectivity:

sensor response only high
in presence of the target

sensitivity: potentially high
ample variation of conductance/capacity (not always true

in response to target especially for gas sensors)
concentration variations

accuracy potentially high
signal-to-noise ratio (SNR) can be critical

due to the low currents
in molecular devices

response time fast
real-time detection: good/fast
sensor response speed (comparable with current electronics)

linearity good (depending on device structure)
repeatability good

(may deteriorate in long-scale times
due to molecular stress

e.g. variations of temperature/humidity
or applied field)

reliability good
(can be worsened by process
variations and device stress)

labeled / label-free label-free
reversibility good (may be in contrast

with selectivity)
stability/drift over device life-time good

(depending on process variations
and device stress)

cost (potentially) low - see sec. 1.1
size small (potentially suitable for

wearable/implantable bio-systems)

FET-based biosensors are label-free. Indeed even in the case in which a biological entity is
detected by means of a bio-macro-molecule (a protein, antibody, enzyme, etc...) chemically
bond to the FET channel on one side and to the target analyte on the other side, from
the above definition, it is a label-free sensor. For example a virus detection in a clinical
solution (or even in air), that is made possible thanks to the FET conductance modulation
due to the presence or not of the bond between the virus specific antibody that is anchored
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at the FET channel (e.g. a 2D graphene sheet) and the virus itself, is a label-free detection
process [73], [74]. Label-free biosensing methods have made enormous progress in recent
years due to their ability for rapid and inexpensive bio-detection even in small reaction
volumes. Moreover, they lend themselves for integration into lab-on-chip platforms and
allow monitoring the concentration of target analytes in real time [54]. In this regard
molecular electronic sensors may be the next generation toward higher miniaturization,
selectivity and sensitivity of label-free real-time sensors for biological applications and
single molecule event detection [27].
The FET-based (standard FETs, 2D FETs, OFETs, CNT FETs, NW FETs, GNR FETs,
molecular FETs or whatever kind of FET) sensors are not the only possible of biosensors.
Another broad class of biosensors or chemosensors (i.e. chemical-sensors) are the so
called “electrochemical sensors”, that have similar important features in terms of sensors
characterization (such as sensitivity, selectivity, real-time, labeled/label-free, etc...) to the
FET-based ones [53]. An electrochemical sensor is usually a label-free sensors often suitable
for real-time detection of biological or chemical substances (often in solutions). In few words
it is constituted by an electrode (usually an inert metal -e.g. gold- or graphene/polymeric
electrode) immersed in the biological or clinical solution that contains the target molecule or
chemical compound, above which suitable receptors (such as antibodies, enzymes, proteins,
organic molecules/polymers, etc...) are anchored to it and suspended in the solution. The
target analytes (molecules, bio-macro-molecules, ionic species, etc...) are then chemically
bonded to the receptors producing a change in the resistance of the portion of solution in
between the electrode and the top-side of bio-solution (or alternatively in between two
contacts). This is then detected by means of amperometric methods or voltammetric
methods (sometimes dynamic techniques are used: conductometric methods). Notice that
if the electrical resistance is varied due to the presence of the target analyte the sensor
material is often referred as chemoresistor [31], [53], [28], [29]. A comparison between
FET-based sensors and chemoresistors (electrochemical sensors) is reported in table 1.3
(SSES -solid state electrochemical sensors- and QCM -quartz crystal microbalance- are
not considered here - see [29] and references herein for details). In this optics, MES have
the advantage of having high selectivity and low cost (for the rest they are analogous to
FETs).

Table 1.3: Comparison of different gas sensing technologies. SSES (solid state electrochemical
sensors) and QCM (quartz crystal microbalance) are not considered in this work
(see [29] and references herein for details). A comparison is provided in detail in [29].

Sensor technology Sensitivity Selectivity Speed Cost Size
Chemoresistor high medium high low small

FET high medium high medium small
SSES high good high low large
QCM high poor medium high medium
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The other ample class of above mentioned biosensors are the labeled ones, in which a
label is exploited in order to make detectable a given event or bio-(macro)-molecule or
substance in general. Labels have the role of converting the bio-recognition information into
a measurable quantity, e.g. electrochemical, electrical, optical, magnetic, mass-sensitive,
or thermal signal [54]. For example a widely spread labeled sensors are the one exploiting
fluorescence (i.e. photon re-emission) depending if the target is present or not (with an
intensity dependent on concentration). More in general, in optical molecular sensors a
chemical reaction occurs between the target analytes and the labels such that photons at
a given wavelength (typically in the ultra-violet or visible range) are emitted (or absorbed)
and detected with conventional optical or optoelectronic sensors [54], [75]. These classes
of sensors are beyond the purposes of this work and they will be no more considered.
Nevertheless notice that they are called “molecular sensors” as well. In particular, in
this regard, a “molecular sensor” or “chemosensor” is a molecular structure (organic
or inorganic complexes) that is used for sensing of an analyte to produce a detectable
change in a signal (often electromagnetic radiation but it is not said - see before). The
chemosensor working principle is based on interactions occurring at the molecular level,
usually involving the continuous monitoring of the activity of a chemical species in a given
matrix such as solution, air, blood, tissue, waste effluents, drinking water, etc... and it is a
labeled detection process [75]. As already said, since chemosensors are based on molecular
recognition at molecular level, they are often referred as “molecular sensors” [75], even if
they are completely different from the “molecular electronic sensors” that are the subject
of this work. For this reason and in order to avoid confusion, so far I have always specified
“electronic” together with “molecular sensors”. In the next chapters if no misunderstanding
is possible I will sometimes shorten the name in “molecular sensors”, even if I will always
refer to “molecular electronic sensors” (MES).
At this point it should be clear what molecular electronic sensors are, their basic working
principles, and the ample background in which they find place. Moreover the basic lexicon
was briefly introduced.

In conclusion to this introductory section, I would like to briefly summarize the possible
fields of application of MES, on the basis of what is the current state-of-art in sensing
science. The following list details some of the possible applications of molecular electronic
sensors, and even if it is very likely incomplete, it gives the idea of the plenty fascinating
applications of this emerging field of electronics and sensing:

• gas sensor: this application was already discussed above, the recent years demand
is for on-line/in situ detection of gases for both outside and inside environment
monitoring [29]. Possible markets are related to pollution and pollutants detection of
particles, molecules, heavy metals, to chemical industrial processes monitoring (toxic
gases can be a collateral product in case of fault in some industrial processes), or
fault in public or private buildings (e.g. carbon monoxide or methane emission in
dangerous concentrations) [29], [65], [53]. The main substances to be detected in these
applications are usually formaldehyde (HCHO), benzene (C6H6), acetone (C3H6O),
carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), ammonia (NH3),
hydrogen sulfide (H2S), ozone (O3), nitric oxide (NO), nitrous oxide (NO2), methane
(CH4), butane (C4H10), ethane (C2H6), and so on... [29], [65].
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• environment monitoring: for air-quality tests and gas concentrations monitoring in
outside and inside environments see above (gas sensor); for soil or water pollution
monitoring the application is similar but the sensor is designed to be used in solutions
in which the target analyte is present. Usually in this last application field the
detection of the following chemical compounds is of importance: ammonia (NH3),
methane (CH4), nitric oxide (NO), sulfur dioxide (SO2) and heavy metals [29], [53].
It is possible to include in the environment monitoring set of applications the
outdoor/indoor air quality tests, factory emission detection, vehicle exhaust control
of carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrous oxide
(NO2) and all the related applications [29].

• public security: the public security, especially anti-terrorism, is becoming extremely
urgent [29]. The applications, in this field, mainly focus on the detection of the
explosives and/or the nerve agents. Normally, the vapor pressure of explosives, e.g.
2-methyl-1,3,5-trinitrobenzene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX),
octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are 9 ppb, 4.9 ppt, and 0.25
ppt, respectively. Therefore, the detection of explosives needs ultra-sensitive sensors,
exactly like MES potentially are [29].

• diagnostics/bio-medical: diagnosis of health conditions via detection and classification
of volatile organic compounds (VOCs) or biomarkers into one or combination of
body fluids released as a result of a disease evolvement in the human body [29].
The monitoring of biomarkes is in general performed by means of the analysis of
exhaled breath, skin/sweat, feces, urine, saliva, breast milk, blood, interstitial fluid,
cerebrospinal fluid, tears, seminal fluid and intestinal gas [31]. Even virus detection
in clinical solution is currently performed by means of FET-based sensors [73], [74];
thus leaving the door opened for a possible replacement with molecular electronics
sensors (to be still verified if and in what cases it would be possible).

• food industry: sensors are used for the detection of toxic/polluting substances in
food items, or to monitor the presence of pesticides. Moreover they are also exploited
to monitor the shelf life or fungi contamination in vegetables and fruits or meat/fish
spoilage [29]. Again, the brand and/or the place of origin of tobacco can be recognize
by means of e-nose (electronic nose) based sensing systems [29].

• agricultural production: sensors are used for monitoring production processes, disease
detection, identify insect infestations in their infant stage, and soil/water pollution
(environment or pesticides etc...) [29].

• e-nose or e-tongue: all the fields of application mentioned up to now can be also
the applications of e-noses (electronic noses) or e-tongues (electronic tongues) [29].
An e-nose (e-tongue) is mainly constituted by three parts: a sensor, a conditioning
circuit or front-end circuit, and a post-processing usually real-time on-line unit [29].
The latter very often employs algorithms (implemented both in hardware and in
software) based on Artificial Neural Network (ANN) computing paradigms [29]. The
sensor can be in general a molecular electronic sensor.
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• wearable/implantable sensors: wearable and implantable electronics is gaining popu-
larity and interest in recent years [76], [77], [78], [79]. It may be a relevant next-future
market for biosensors and for implementing generic tasks with biological data collec-
tion and transmission to smartphones for more complex post-processing [78], [79], [80].
In terms of sensed quantities, mainly human bio-signals are monitored (especially
in sport applications), such as heart beat. Moreover real-time wearable physiology
monitoring, e.g. temperature, pH, sweat and metabolytes measuring or multi-ion
monitoring (potassium, sodium, etc...), is becoming relevant and important in various
applications even already on market [80], [81]. In this field molecular electronic sensors
may become valid substitutes to conventional FET-based sensors due to their high
selectivity and sensitivity. Furthermore, due to their huge scalability they can play a
central role for implantable systems, especially considering the recent advancements
in biodegradable and biocompatible materials and molecules [82], that can potentially
open the way to implantable biosensors that are nontoxic or spontaneously ejected or
disintegrated/decomposed from the human body.

• single-molecule detection: this is an emerging field in sensing science, in which the
presence of a single molecule is detected [27]. Usually the detection happens in
real-time allowing for the detection also in the case in which the target molecule
has a limited life-time of few milli- or micro-seconds (or even less), for example
because it is an unstable product of a more complex chemical reaction [27], [83]. The
process can be labeled or label-free [83], if a molecular electronic sensor is used to
this end, it is label-free [27], [28]. The purposes of single-molecule detection can be
e.g. the experimental proof of predicted chemical reactions (or chains of reactions)
through the measurement of the type and life-time of intermediate compounds, the
better understanding of biological and bio-chemical dynamic processes, useful both in
biology and medical researches, the early detection of analytes for disease diagnostics,
etc... [27], [28], [83]. Other interesting applications are in real-time DNA sequencing.
Often single electron transistors (SETs) that are used to this end are comprehensive
of a nanogap (that can be natural, such as specific enzymes, or artificial like graphene
nanogaps) to which an applied electric field allows for the scrolling of the DNA
nucleotides through it at a constant velocity. The conduction through source and
drain contacts changes depending on what nucleotide is present in that moment
within the nanogap, allowing for DNA real-time sequencing [84], [35], [36], [85], [86].
In this field the single-molecule recognition is fundamental, and MES may become
and alternative to conventional techniques or integrate and ameliorate them [27].
The single-molecule detection is sometimes referred as the ultimate limit in analyti-
cal chemistry, allowing for visualizing the dynamic processes of chemical/biological
interactions with single molecules at single-event sensitivity [27], enabling the study
of stochastic fluctuations under equilibrium conditions and the observation of time
trajectories and reaction pathways of individual species in non-equilibrated systems,
and the direct observation of novel microscopic quantum effects and fundamental
discoveries of underlying molecular mechanisms in organic reactions and biological
processes that are not accessible in ensemble experiments [27]. All this is becoming
reality thanks to molecular electronic sensors.
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1.3 Context, motivations and organization of this
work

In the wide landscape presented in the previous section, the MES are still at an embryonic
level. At the moment it is still untimely talking about production or commercialization
of molecular electronic sensors, exactly like it is untimely thinking of substituting con-
ventional electronics with molecular electronics. Nevertheless, I personally agree with the
aforementioned critical standpoint, about this subject, of Mark Reed [11], and in this optics
much work has still to be done in this field to gain much knowledge on the physics, the
chemistry and above all the electronics and information processing paradigms to manage
such innovative systems. Then, as I already mentioned, it may also be (but no one knows)
the research in the MES field become an important milestone toward the development
of molecular electronic systems. Without getting lost in daydreams, the facts are that
the present work is actually a pioneering work in this fascinating field of science. The
context in which it finds light, is an increasing demand in small, low cost, real time and
label-free chemo- and bio- sensors, also in light of the applications mentioned at the end of
the previous section, like the emerging field of single molecule detection, that can only
be performed by means of innovative electronic devices, like MES are. The motivations
behind this work are, above all, the ones reported previously, concerning what can be
learnt in approaching the study of this novel class of devices. Moreover, at the present,
the literature is still lacking of a unique and complete work that collect in a critical way
all what is needed to perform analyses, simulations and finally the design of this class of
devices. In particular the main purpose of this work is the attempt of providing a general
investigation methodology to be used as reference (within its limits) for next works and
toward an engineering of the design and the analysis of MES. To this purpose this work is
organized as follows.

The first part of this work is essentially a literature review of the MES theoretical
physical-chemical modeling techniques. The treated topics are quite well established in
literature, and the main point of this part is to collect all the needed theoretical aspects,
also belonging to very different fields, within the same document. In addition, since the only
topics assumed for granted are the basic mathematical and physical knowledges, common
to all engineering and scientific backgrounds, this document should be accessible without
any extra requirement to electronic engineers. This part is conceived to be a reference
for understanding the meaning of the many input parameters of atomistic simulations
that are usually required to be set up. Since very often the calculations are performed
by means of commercial tools (like Quantum-Wise ATK used in this work), the task of
setting up simulations may appear to be easy. Nevertheless a great amount of knowledge
is actually required to avoid wrong settings and consequently unreliable results. This is
the reason why this part is so long.

The second part is instead focused on developing a general and complete methodology
for the design and the analysis of a MES, by means of three cases of study, namely a
C60 gas sensor for ammonia detection, a C60 gas sensor for lead sulfate detection, and a
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C60 gas sensor for nitric oxide detection. In literature there is still very few about the
topics covered in this part, and the great majority of the papers are still focusing on
theoretical simulation studies rather than on prototypes. For this reason this part of the
work is a pioneering attempt to “put order” in the large landscape of possible analyses and
simulations one can perform on MES, in order to identify the analyses that are effective
and useful to extract information and eventually figures of merit of such a kind of novel
devices. The advantage of treating these topics by means of real cases of study is obviously
the direct feedback about critical issues of such novel devices.
A brief presentation of the topics covered in the various chapters is now presented.

Part I:

Chapter 2 is aimed in reviewing quantum mechanics, i.e. the theory in which the MES
models have their roots. Since this work assumes the reader to have an electronic engineer
background, the treated topics may or may not be already known, depending on the
specific course of study, and for this reason also the very basics were recalled. All the
needed topics to get a complete comprehension of the next chapters, that in turn are
important to correctly set up simulations and deal with MES, are introduced and discussed
there. Basic quantum mechanics results (like confinement, electron wave-functions and
orbitals, etc...) are indeed the starting point of chapters 3 and 4, and it was chosen to
recall them in order to have an homogeneous notation and lexicon. The matrix notation
for quantum mechanical operators, widely used in chapter 5, is also introduced.

Chapter 3 is aimed in modeling the molecular channel electronic structure, i.e. the starting
point for all the equilibrium and non-equilibrium modeling techniques of MES and transport
through them. Moreover, intermolecular interactions and relative modeling techniques
are discussed. They are of extreme importance for correctly modeling gas sensors, like
those considered in the practical part (II) of this work. The useful information for setting
up molecular electronic structure calculations, geometry optimizations, and molecular
device simulations is reported and discussed. In particular, the focus is on concepts and
approximations behind the specific methods. Then, a more in-depth insight is provided
concerning the DFT (Density Functional Theory) and the EHT (Extended Hückel Theory)
methods, since they are the ones used in the part II of this work. Finally, the advanced
modeling techniques for weak interactions (like van der Waals ones) are briefly addressed
with a focus on the recent supermolecular approach, suitable to correct DFT calculations.
Such topics are the fundamentals for a correct setting up of atomistic simulation relatively
to MES, especially for gas sensors or single molecule event detection, in which the working
principle directly involves such kind of weak interactions.

Chapter 4 is focused on the transport through molecular devices. Such a complicated
matter is introduced in this chapter by means of an oversimplified model, that allows to
gain the physical intuition of what actually happen in such a kind of devices. All the main
transport features of MES (and molecular devices in general) are introduced, along with a
powerful and simple electrostatic treatment of the system. Moreover an introduction to
transmission formalism is also provided.
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In chapter 5 the transport through molecular devices is addressed by means the formal
and general Non-Equilibrium Green’s Function (NEGF) formalism, that allows not only
to model transport in such devices in all their possible regimes of transport, but also to
understand the meaning of the many parameters to be set up in atomistic simulations
and the way to correctly set them up. Moreover, a practical and complete example is
provided, being the occasion to introduce an interesting free tool for EHT + NEGF
transport calculations through molecular systems: Huckel-IV tool, that will be also used
in the practical part of this work for the sensor response time estimation.

In chapter 6 additional transport-related topics are addressed. A brief review of the
transport mechanisms through molecules is provided, and the way of accounting for them
in the NEGF framework is presented. Moreover, the Coulomb blockade phenomenon is also
addressed, and the possible modeling approaches in Coulomb blockade transport regime
are explained, with reference to the methods that are increasingly becoming popular in
literature in recent years (e.g. DFT corrections).

Part II:

In chapter 7 the working principles of different molecular electronic sensor are introduced,
with the gain of the part I of this work. A focus is provided on the concepts of chemisorption
and physisorption, that are very useful whenever gas sensors are considered, and also in
the moment in which metal electrodes are used to contact the molecular channel. Moreover
the general methodology, followed in the next chapters of this work, will be introduced.

In chapter 8, the C60 fullerene molecule is used as molecular channel for an ammonia MES.
This practical application is the occasion to develop a method for the device geometry choice
and optimization, to develop a simple approach for validating the EHT non-equilibrium
simulations starting from DFT equilibrium ones and to quantitatively estimate the sensor
sensitivity and selectivity.

In chapter 9, after a brief repetition of the methodology steps already introduced in
the previous chapter, the main non-equilibrium properties of a lead sulfate MES are
analyzed. In particular the sensor selectivity, sensitivity to different target orientations,
concentrations and distances are analyzed and verified. These properties, all together,
allow to gain a complete understanding of the sensor detection capabilities. Then a detailed
analysis on transmission eigenstates of the MES under study is performed. Finally, an
equivalent static and an equivalent dynamic circuit models of the sensor are proposed,
aimed in evaluating the functionality of circuits including the MES (LUT-based model)
and the sensor response time (dynamic model). A gated device is also considered to verify
the different performances in such a case.

Chapter 10 is dedicated to a brief study of the nitric oxide detection by the same device
structure already analyzed in the previous two chapters. Both the molecular wire and the
molecular transistor device structures are considered and the already introduced steps and
methods, are exploited to provide a brief characterization of the nitric oxide detection by
the C60-base MES.
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Molecular devices modeling
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Chapter 2

Brief review of quantum
mechanics

The purpose of this chapter is to review the fundamental topics of quantum mechanics
that are necessary to understand the next chapters related to molecular device modeling.
These topics are nowadays often covered in the electronic engineer background, and for
example they are subject of bachelor’s level courses at Politecnico di Torino. For this
reason this chapter is intended to be a review of the main results to be kept in mind in
the following of this work, rather than a complete introduction to quantum mechanics.
Very good textbooks about quantum mechanics fundamentals, in my opinion, are the
following: [87] (in Italian) that formally introduces all the topics without losing track
of the physical insights, [88] that provides an excellent understandable introduction to
these topics, even if sometimes the mathematical formalism is omitted, [89] that provides
a complete, simple and understandable introduction to the fundamental topics without
requiring particular prerequisite, [90] that provides an extreme simple and application-
oriented introduction to quantum mechanics, [91] that provides a very rigorous and formal
introduction to basic quantum mechanics, and [92] that provides a formal introduction
to some advanced topics sometimes required in rigorous modeling of molecular devices.
Many other valid and excellent textbooks are anyway present in literature (just to mention
one: the milestone “Principles of Quantum Mechanics” by Paul A. M. Dirac). Throughout
all this chapter I will always refer to the previously cited books, even if not always explicitly.

2.1 Wave-particle duality
The first question I will address in this introductory section is: “why quantum mechanics?”.
This entire work deals with molecular devices used as sensors. Molecules are the basic
entities of matter and they can be composed of very few atoms (think for example to
hydrogen molecule H2 that is composed of only two hydrogen atoms), as well as a very
large number of atoms. In both cases the characteristic dimensions are very small when
compared to classical entities (like a rugby ball or even a small marble). For example
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the benzene ring has a characteristic dimension of less than 1 nm (it is around 5Å),
and again the fullerene C60 (a molecule with sixty carbon atoms) has a diameter of
approximately 7Å. In such microscopic systems novel physical effects arise. These novel
effects and phenomena are not present in classical mechanics, that deals with the motion
of macroscopic bodies, and in fact classical mechanics fails in accurately describing the
motion and the interaction of such microscopic systems. The physical theory that, instead,
correctly explains in a satisfactory manner the behavior of microscopic systems, like atoms
and molecules, is quantum mechanics. Thus it must be considered the starting point in
modeling molecular-based devices.

Quantum mechanics born at the beginning of the twentieth century, precisely to explain
physical phenomena, especially at the microscopic scale, that were not explainable at all
with classical physics. Actually, important unsolved problems by the end of nineteenth
century were for example related to the interaction between electromagnetic radiation
and matter, that did not result in accordance with the classical laws of electromagnetism
(i.e. Maxwell’s equations). Among them I only cite the blackbody radiation spectrum,
the photoelectric effect, the Compton effect, the discrete spectral lines in atomic or
molecular absorption or emission of radiation and natural radioactivity. The explanation
of all these, classically inexplicable, phenomena was possible only after that in 1900 Max
Planck assumed that energy exchange between electromagnetic radiation and matter is
not continuous, but it can happen only by discrete amounts, called energy “quanta”. In
Planck’s model an energy quantum has an energy E proportional to the electromagnetic
radiation frequency f by means of the Planck’s constant h (h = 6.62607015 · 10−34 J·s):

E = hf (2.1)

The Planck’s assumption was in agree with the concept of photon (name coined by Lewis
in 1926) introduced by Einstein in 1905, intended as an energy quantum of electromagnetic
radiation. The interaction between electromagnetic fields and matter was thus rethought
in terms of photons, meaning that only single photons interact with matter. This allowed
to explain the photoelectric effect, the Compton effect and the blackbody radiation. The
important conceptual consequence in this reasoning is that the electromagnetic radiation
behaves like waves in some experiments and like a particle-based entity in others. This
led scientists at the beginning of the twentieth century to accept the “dualistic” nature
of the electromagnetic radiation. The wave nature of electromagnetic field is associated
to physical quantities such as frequency or wavelength, while the particle-based nature
is associated to a well defined energy and momentum. The connection among the two
pictures is provided in equation (2.1). Moreover the modulus of the momentum associated
to a photon, that is a particle with null mass since it is a quantum of electromagnetic
energy, is provided by the following relativistic relation (introduced by Einstein in his work
on special relativity):

p = E

c
(2.2)

where c is the light speed.
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By putting together eq. (2.1) and eq. (2.2) it is possible to get (remember that c = λ · f):

p = h

λ
= ~k (2.3)

where ~ is the reduced Planck’s constant (i.e. h
2π ) and k is the wavenumber (i.e. the

modulus of the wave vector ~k). The last relation can be then rewritten in vector form
like (the wave vector is conventionally defined with the same direction of the propagation
direction of the wave):

~p = ~~k (2.4)
The just introduced quantities are the key points for the comprehension of many classically
inexplicable phenomena, like the already mentioned photoelectric effect, Compton effect
and blackbody radiation spectrum.
Instead the nature of atomic and molecular spectra was explained in a satisfactory way
only after many other progresses were achieved, with a complete theory of microscopic
world: the quantum mechanics. Nevertheless the intermediate achievements, even if
sometimes they were ad hoc theories, are nowadays important in understanding the basic
assumptions of quantum mechanics and its change of perspective w.r.t. classical physics.
An important achievement I would like to briefly mention is the Niels Bohr’s pioneering
work on absorption and emission spectra of atoms, dated 1913. He assumed true the atomic
structure demonstrated by Rutherford, with a central nucleus around which electrons
rotate. Classically such a system cannot exist since it would be unstable, indeed electrons
are charge particles and in a circular orbit around the nucleus (i.e. accelerated motion)
they should emit electromagnetic radiation loosing their own energy until they should
collapse toward the nucleus. Bohr started from the obvious prove that atoms are essentially
stable (since they exist), and assumed that well determined orbits were possible such that
electrons (for some unknown reasons) can rotate around the nucleus without radiate. Even
if this assumption was in conflict with classical laws he quantified it. Indeed he supposed
that such orbits were circular and that the only “permitted” orbits were the ones whose
the modulus l of the electron angular momentum w.r.t. nucleus (that was considered
point-like) was an integer multiple of the reduced Planck’s constant:

l = n~ , n = 1, 2, 3, ... (2.5)

The orbits for which this angular momentum quantization law holds were supposed to
give rise to “stationary” states, thus leading to stable structures. Then Bohr used the
concept of photon and extended the Planck’s assumption supposing that an electron in a
steady state E by means of the absorption of a photon of suitable energy, i.e. frequency f ,
in a unique process, could be excited in a steady state E′ (with E′ > E). Consequently,
involving the conservation of energy, he stated that the energy difference should be equal
the energy provided by the photon (Bohr’s formula):

∆E = E′ − E = hf (2.6)
The reasoning was analogous for the emission of photons by atoms and molecules (with a
transition toward ground state from excited states). This model admits only transitions
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between stationary states, that have a quantized angular momentum l. Consequently the
“permitted” energy levels of an atom are discrete, or at least a subset of the possible atomic
energy levels are discrete, and they correspond to stationary states. This last concept
constitutes the current conceptual importance of Bohr’s model. The admission of having
quantized quantities (see eq. 2.5) such as the energy levels or the angular momentum in
microscopic systems is a revolutionary concept, that is naturally demonstrated by means
of quantum mechanics. The difference between this model (or the Wilson-Sommerfeld
model for quantized action integrals) and an authentic quantum theory, is in the fact that
this first attempt introduces quantization ad hoc in a classical theory, while in quantum
mechanics it arises naturally by solving the equations and enforcing boundary conditions.

The difficulties related to a complete and satisfactory explanation of the microscopic
phenomena were emphasized by the fact that in some experiments the same physical
quantities that showed a discrete nature, showed also a continuous nature, like the energy
emitted by electrons in some well-defined conditions (e.g. the braking radiation of electrons).
The first attempt in explaining why a fundamental property of a physical system, such as
its energy, can sometimes appear discrete and sometimes instead continuous, was proposed
by Louis de Broglie in 1924. He proposed an intrinsically “dualistic” nature, up to that
time accepted for the electromagnetic radiation as mentioned above, also for “material”
systems, i.e. microscopic systems of material particle. In particular de Broglie assumed
that microscopic systems, up to that time seen as particles, could present also undulatory
aspects. This is referred as the “wave-particle duality”, and this is one of the fundamental
conceptual achievements in quantum mechanics. More precisely de Broglie postulated that
a particle of momentum ~p (with modulus p) can be associated to a wave, characterized by
means of a wavelength λ, that analogously to what happens with electromagnetic waves
and photons, was given by:

λ = h

p
(2.7)

This relation is known as “de Broglie relation”. It can be rewritten in vector form like:

~p = ~~k (2.8)

where ~k is the wave vector with a modulus k = 2π/λ. In light of this, the different
behavior of an electron can be explained as follows. A free electron that is braked (e.g. by
Coulomb interaction) behaves like a traditional particle and thus it can posses (and emit)
a continuous range of energy. Instead if it is bonded to an atom, it shows its wave nature,
and the only allowed energy states are those corresponding to stationary waves. Indeed,
from the standpoint of de Broglie, the Bohr’s assumption corresponds to state that the only
permitted orbits are those that include an integer number of electron wavelengths. And
exactly like an acoustic wave in a room is said to be steady if the dimension of the room is
an integer multiple of its wavelength, if the electron orbit length (i.e. circumference in case
of circular orbits like in the Bohr’s model) is an integer multiple of the the electron de
Broglie wavelength, it is a steady state, with no loss (neither gain) of energy (as assumed
by Bohr). Now one may wonder: “what is thus an electron? a wave or a particle?”. The
answer is both or neither. Or better: in the wave-particle duality picture an electron is
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seen as a physical entity, that in some cases shows a particle-like behavior while in others
a wave-like properties. In some experiments it is is well described by the classical concept
of particle (with a given momentum and energy) and in others it is well described by the
classical concept of wave (with a given wavelength and wave vector). The connection
between the two descriptions is provided by the de Broglie relation (equations 2.7 and 2.8).
In summary, the wave-particle duality states that with each particle is associated a
wave field (sometimes called a matter field - not to be confused with waves of matter
like acoustical or mechanical waves!). This is analogous to associate a photon to its
electromagnetic field. The wave field describes the dynamical condition of a particle in
the same sense that the electromagnetic field corresponds to photons which have precise
momentum and energy. As already mentioned the connection between the wave field and
the particle (e.g. electron) is provided by the de Broglie relation (eq. 2.7 and 2.8). Well,
at this point a question may be: “what is the meaning of this wave field?”. The answer is
sometimes still controversial. According with the widely accepted and traditionally taught
Copenhagen interpretation of quantum mechanics, the wave field has to be intended as
a position probability field, as better discussed in section 2.3.1. In mathematical terms
the wave field is represented by the so called “wave-function” (see section 2.3 and 2.3.1,
2.3.2 particularly) related to the electron or the microscopic entity. The wave-function
ψ is a complex function of space and time that defines the wave field for the considered
microscopic system:

ψ(x, y, z; t) : R4 → C

Thus more precisely the quantity that is associated to the meaning of position probability
of the particle is the wave-function intensity |ψ(x, y, z; t)|2, indeed a probability must be
a real quantity (refer again to section 2.3.1). In this optics it is expected that whenever
the motion of a particle is disturbed in such a way that the wave field associated with
it cannot propagate freely, interference and diffraction phenomena should be observed,
exactly like it happens for elastic waves or electromagnetic waves. Nevertheless the physical
meaning of this wave field is associated to the probability of position of the particle, thus a
perturbation in the wave-function ψ leads to a different position probability of the particle.
That is, whenever the particle motion is somehow perturbed and the wave field modified,
there is a different probability of finding the particle in the different regions of space,
according to interference phenomena (typical of waves!) that modify the wave-function ψ.
In this, the mentioned wave field or matter field is extremely different from the classical
concept of matter waves in which e.g. the molecules of air are subjected to a well defined
undulatory motion because of the propagation of an acoustical wave in air.

The first experimental evidence of the wave-like behavior of electrons was thanks the
experiments of Davisson and Germer and of G. P. Thomson starting from the 1927. In the
Thomson experiments a well collimated electron beam (of enough low energy to neglect
electron-electron interaction) was sent through a thin crystalline film (see fig. 2.1 left) and
then made impacting on a photographic plate. If the electron had behaved as classical
particles a blurred image would have been observed focused around the center of the
photographic plate, since each electron would undergo in general a different scattering by
the atoms in the crystal. However the obtained result was analogous to the one obtained
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with X-rays diffraction by a polycrystalline substance. As evident in figure 2.1 (right),
the result clearly showed a wave like propagation and diffraction of the electron beam by
means of the crystalline film. Notice that in the moment in which an electron impacted on
the photographic plate it generated a small point, like it were a “small particle”, even if
during its propagation it underwent to a wave-like propagating behavior (indeed there were
favoured “trajectories” and forbidden ones). By doing all the calculations starting from
the spacing between crystal planes, and considering the laws for evaluating interference,
the recovered value for the electron wavelength was in agreement (with the limits of the
experimental error) with the one postulated by de Broglie (eq. 2.7).

Figure 2.1: Experimental arrangement for observing electron diffraction through crystalline
material (left); and diffraction patterns of electrons on the photographic plate
(right).

In the C. Davisson and L. Germer experiments an electron beam was sent at a given
angle toward a crystal face and the diffracted electrons were observed at a symmetrically
located detector (see fig. 2.2). It was found that the electron current registered by the
detector had a maximum every time the so-called Bragg condition (derived for X-rays)
was fulfilled, i.e. only for given angles θ such that:

2d sinθ = nλ

where d is the separation between successive atomic layers, n is an integer multiple and
λ is the de Broglie wavelength. Again this experiment allowed to highlight the wave-like
propagation behavior of electrons and their undulatory diffraction patterns as a result of
the interaction with the crystal layers.

Other famous experiments are the ones that make electron pass through a single or a
double slit in a shielding panel. In the single slit experiment a small circular micro-hole
is present on a opaque screen behind which a photographic plate is present. Again in
this case, if the electrons were classical particles, moving on rectilinear trajectories, a
strong sign should be present on the photographic plate in correspondence of the slit,
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Figure 2.2: Davisson and Germer experimental arrangement for observing Bragg scattering of
electrons.

with blurred signs around it due to interaction of the electrons with the slit edge. Thus a
sort of a Gaussian distribution of the intensity should be present. Instead, exactly like
in the previously mentioned experiments, even in this case concentric rings (similar to
the one of figure 2.1 right) are present, showing the presence of “allowed” zones in which
a large amount of electrons impact and “forbidden” zones in which no electron impacts.
The diffraction pattern is again similar to the one obtained with diffracted light rays by a
circular aperture.
The two slits experiment is analogous but two close slits are present. When only one of
the two slits is opened the same result of the previous experiment is recovered, instead
when both the slits are opened simultaneously an interference pattern is present on the
photographic plate.
Once more the only possible explanation to these phenomena is that electrons (and in
general whatever microscopic system - indeed analogous experiments with analogous results
were carried on neutrons, protons and atoms) can posses a wave nature and thus they can
interfere. Nevertheless notice that the wave nature of microscopic systems is not a collective
phenomenon due to the interactions among them. Indeed the experiments described above
lead to same results even if single electrons are sent one by one toward the photographic
plate, and remember that before it was assumed that the electron energy was low enough
to make negligible the interactions among them. Moreover also connecting a single electron
with a single wave is generally wrong. Indeed, if it were so, a single electron would produce
a diffraction figure on the photographic plate, eventually more marked if the number of
electrons is increased. Instead as already mentioned a single electron produces on the
photographic plate a single small spot, indicating that it is well localized (a posteriori) in
the moment in which it impacts on it, showing its particle nature. Only when an enough
large amount of electrons is considered the diffraction figure takes its shape. Again the
impact regions and thus the propagating nature of electrons (or microscopic systems in
general) are somehow not classical but linked with wave-like properties. And again every-
thing becomes clear if the meaning of the wave field associated to electrons is considered:
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the intensity of the wave field, i.e. |ψ(x, y, z; t)|2, must be interpreted as intimately related
to the position probability amplitude, as mentioned above and discussed later in section
2.3.1. Thus to each electron is associated a well defined probability of impacting on a
precise point of the photographic plate, and the waves are probability waves. Once again
it should be clear now that wondering if an electron is a particle or a wave has no sense: it
is a microscopic physical entity and thus it obeys to the physical laws that govern this world.

2.2 Particles, wave packets and indetermination prin-
ciple

In the previous section it was reviewed the concept of wave-particle duality. Few words
were said also on its physical interpretation and then some experiments (among the many)
were briefly described to point out the correct interpretation of this revolutionary concept.
In this section the main conceptual implications of this fact are considered.

A classical particle is a material object with a given spatial extension (that sometimes
can be approximated like a dimensionless material point) and with a given trajectory.
Instead a classical wave is a physical entity that shows opposite characteristics. A pure
monochromatic wave (i.e. with a well define wavelength and thus in the de Broglie
representation with a well defined momentum) has an infinite extension and it has no
sense speaking about localization or trajectory. A “localization” of an undulatory system
is possible only if wave packets are formed. A wave packet can be decomposed in the
superposition of monochromatic waves of different frequencies (or wavelengths), and the
greater is the number of superimposed monochromatic waves the smaller is the physical
extension of the wave packet. This is essentially a Fourier decomposition (i.e. transform)
of the wave packet. Indeed the wave packet of whatever waveform, or alternatively the
pulse, can be considered localized if it presents an amplitude that is enough large only
in a given region of space, such that it can be neglected outside of that region. In the
wave-particle dual representation the wave field amplitude (or intensity) is linked to the
probability of position of the system. Thus if the wave amplitude is non-negligible only in
a given region of space, that is if the wave-function intensity |ψ(x, y, z; t)|2 is non-negligible
only in a given region of space, it means the probability of finding the system represented
by ψ outside that region is essentially null, and thus the system is localized.
In other words a monochromatic wave is non-localized since its amplitude is constant in
all the (infinite) space, see figure 2.3 (top). Nevertheless a monochromatic wave has a well
defined wavelength λ, and thus from eq. (2.7) a well defined momentum p. Moreover a
phase velocity can be associated to a monochromatic wave. By definition the phase velocity
is the velocity that an observer should have to see a constant phase of the wave. From
classical wave theory it is well known that a monochromatic one-dimensional (x-direction)
wave can be described in mathematical terms like (harmonic wave):

wave(x, t) = A sin(kx− ωt)

where ω = 2πf is the angular frequency and A the amplitude, or alternatively by the
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complex expression:

wave(x, t) = Aei(kx−ωt)

where i is the imaginary unit.
The phase velocity (vphase = ω

k ) of this monochromatic wave is obtained by differentiating
the phase of the wave and by setting it to zero (since by definition the observer sees a
constant phase its derivative is set to zero). Exploiting the equations (2.1) and (2.7) it is
obtained (m is the particle mass or effective mass if the effective mass approximation is
considered):

vphase = ω

k
= λf = h

p

E

h
= E

p
= p

2m = 1
2vparticle (2.9)

where the kinetic energy of the particle is used. In general the total energy of the particle
is given by the sum of kinetic T and potential energy U :

E = T + U(x) = 1
2mv

2
particle + U(x) (2.10)

Here for simplicity U(x) = 0, thus:

E = 1
2mv

2
particle = p2

2m (2.11)

The phase velocity of a monochromatic wave field is equal to one-half the particle velocity,
thus they are different. Nevertheless this has no particular implications since it is not
possible to measure the phase velocity of a monochromatic wave directly (see [88] for
details). The main point here is that a monochromatic wave has an amplitude (and an
intensity) that is constant in all the space, thus it is non-localized, indeed (considering
again the 1D example of before):

|ψ(x, t)|2 = |wave(x, t)|2 =
∣∣∣Aei(kx−ωt)∣∣∣2 = |A|2 = constant in x

Now it should be evident that a monochromatic wave field ψ(x, t) = Aei(kx−ωt) does not
provide information about the localization in space of a particle.
Instead a localized particle should be related to a wave field that has a large amplitude (or
intensity) in the region of space in which the particle is localized and null or very small
outside it. As already mentioned previously, a wave field with a large intensity only in a
small region of space must be built by means of interference processes, by superposition of
many monochromatic waves. Indeed a pulse can be localized, see figure 2.3 (bottom). It can
be expanded as superposition of monochromatic waves by exploiting the Fourier transform
(or series), thus it is effectively a wave-packet, intended as a set of monochromatic waves.
In this regard think for example that the Fourier transform of a pulse (with a well define
time -or spatial- support) presents a wide bandwidth in frequency domain that includes
many different frequencies, while the spectrum of a monochromatic wave contains (ideally)
only one frequency, i.e. it is a delta Dirac. From the basic physics and from the courses
about signal processing and telecommunication theory, it is well known that the velocity
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Figure 2.3: A monochromatic continuous wave train corresponding to an unlocalized particle
(top); and an example wave packet corresponding to a localized particle within the
distance ∆x (bottom); λ is the monochromatic wavelength, vg is the group velocity
of the pulse envelope.

at which a wave-packet travels (think e.g. to amplitude modulation schemes) is not the
phase velocity but instead the so-called group velocity, that is given by vgroup = dω

dk (a
derivation can be found in [88] or in any basic classical wave physics or signal processing
book). Since the wave-packet (i.e. the pulse) is associated to the particle position, its
envelope velocity must be equal to the particle velocity, that indeed is:

vgroup = dω

dk
= dE

dp
= d

dp

[
p2

2m

]
= p

m
≡ vparticle (2.12)

Now it is evident that a localized particle is associated to wave-field that is not monochro-
matic but given by a wave packet, whose group velocity corresponds to the particle
velocity.

A crucial conceptual point is that when an electron shows its particle-like nature, e.g.
through a position measurement, nothing is known about its wave-like nature since this
corresponds to a well localized wave packet, thus containing a large range of frequencies or
wavelengths. In terms of Fourier transform a small space support (small region of space
in which the probability of finding the particle is non-negligible) corresponds to a wide
frequency bandwidth, with many frequencies (i.e. wavelengths) within it. With the de
Broglie relation (eq. 2.7) this corresponds to a wide range of momenta p. Consequently an
electron with well defined position has a non-defined momentum p. Vice versa whenever
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an electron shows its wave-like nature, e.g. through a momentum measurement, nothing is
known about its particle-like nature since this corresponds to an unlocalized monochromatic
wave, with a given value of p and thus a well-defined wavelength λ. This is the basic
intuition behind the indetermination principle formulated in 1927 by Werner Heisenberg. It
states that in a microsystem is not possible perform simultaneous measurements of position
and momentum with arbitrary high accuracy. This limit is not related to measurement
setup issues, but to the intrinsic nature of microscopic systems. This is a peculiar situation
that is not preset in classical physics. Indeed in classical mechanics it is always possible to
know with the desired accuracy both the position and the momentum of classical particles
(within the measurement error and accuracy). Thus in classical physics it is possible to
speak about trajectories, intended as the curve followed by classical particles for which the
position and the velocity (or momentum) are simultaneously known. Instead in quantum
mechanics, because of the wave-particle duality, in order to have a space localized wave
packet it is necessary to superpose several monochromatic fields with different wavelengths
λ, or with different wavenumbers k. Once again notice that if the Fourier transform
of the wave packet (i.e. the pulse) is considered, the waveform result decomposed as a
superposition of monochromatic waves, each with suitable amplitude (i.e. Fourier transform
coefficient). Then recall also that the Fourier transform of a space coordinate x corresponds
to a wavenumber kx, and in 1D case the subscript can be omitted without confusion:

x
F←→ k

At this point if the wave packet extends over a region ∆x, the values of the wavenumbers
of the interfering waves that compose the wave packet and have appreciable amplitude fall
within a range ∆k such that:

∆k ∼ 2π
∆x ⇒ ∆x ∆k ∼ 2π

Notice that the last expression follows directly from the theory of Fourier analysis. Ac-
cording with eq. (2.7) with λ = 2π

k , different wavelengths λ or wavenumbers k mean that
there are several values of p such that ∆p = ~∆k, and therefore the previous expression
becomes:

∆x ∆p ∼ h (2.13)

The last expression constitutes a possible mathematical relation of the above introduced
Heisenberg’s indetermination principle (see section 2.5 for a more precise expression).
Notice that it is a direct consequence of the Fourier transform analysis, as already pointed
out. The physical meaning of eq. (2.13) is the following: ∆x and ∆p should be interpreted
as the variance (or eventually standard deviation) of the position and the momentum of the
considered microscopic system. Since their product is essentially constant and proportional
to the Planck’s constant h if one of the two physical quantities is known with whatever
precision (i.e. with null variance and standard deviation) then the other one is completely
unknown. In other words if a particle is within the spatial region x− 1

2∆x and x+ 1
2∆x

(that is ∆x is the uncertainty on its position), its associated wave field is represented by
superposing monochromatic waves of momenta between p− 1

2∆p and p+ 1
2∆p, where ∆p
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is related to ∆x by means of eq. (2.13). The information about the localization in space
is obtained at the expense of the information about its momentum, or velocity, thus as
already said in quantum mechanics there is no more the concept of trajectory. It is not
possible to accurately determine both the position and the momentum simultaneously
(∆x = 0 would imply ∆p→∞ and vice versa). The Heisenberg’s uncertainty principle
holds true in general for each pair of canonically conjugated variables (i.e. for all that
variables that are connected by means of a time derivative operation), and not only for
position and momentum. This again is a consequence of the Fourier transform properties:

d

dt
F←→ iω (2.14)

where ω = 2πf and i is the imaginary unit (sometimes depending on the sign convention
in the exponent in the Fourier transform definition the previous relation is written with a
minus sign: −iω). Considering that f = E/h it is easily recovered the previous result.
In addition to the position and momentum uncertainty relation and to all the canonically
conjugated variables uncertainty relation, an interesting uncertainty relation needs a brief
comment: the time-energy uncertainty relation. Indeed starting from eq. (2.14) it is
possible to write:

∆t ∆ω ∼ 2π (2.15)

Again the physical meaning is suddenly clear when the Fourier theory is considered. As
well known, if the time duration of a wave packet, i.e. the time support of a pulse, is very
short in time, then to represent that pulse in terms of Fourier transform (or series) as
superposition of monochromatic waves, a wide frequency bandwidth is necessary. Thus to
define the exact time at which a particle passes through a given point, the pulse should in
fact have a short duration ∆t. But to build up such a pulse different harmonic waves with
different frequencies are to be used. Then these harmonic waves will have an appreciable
amplitude in the frequency range ∆ω centered around the frequency ω. Multiplying both
members of eq. (2.15) by ~, recalling that E = hf = ~ω and 2π~ = h the energy-time
uncertainty relation is found:

∆t ∆E ∼ h (2.16)

The uncertainty relation (2.16) needs a remark on its physical interpretation and another
relative to its formal correctness. The physical meaning of equation (2.16) should be
interpreted as related to unstable or excited systems. Equation (2.16) states essentially
that in order to determine the energy E of a system with an uncertainty ∼ ∆E a time of
the order of ∆t is necessary. This means that in order to measure the energy of a stable
system with a perfectly defined energy it should be necessary an infinite time. Thus a
correct interpretation of eq. (2.16) is in terms of lifetime of excited states. For example
if an electron in an atom for some reason is excited and goes in an excited state, then
after some time it will suffer a radiative transition by means of which it looses its excess
energy and goes into a stationary state, namely the ground state. Unfortunately it can
be shown that there is no mean of predicting exactly how long the electron will remain
in the excited state before it makes the transition. At most it is possible to speak about
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transition probability per unit time that the electron jumps back to the ground state.
Therefore the average time interval the electron stays in the excited state is named lifetime
of that state (it is inversely proportional to the transition probability), and it can be known
with an uncertainty of the order of ∆t. Hence the energy of the excited state cannot be
known exactly, but only within an uncertainty range of the order of ∆E. The shorter is
the lifetime (and thus ∆t) the larger is the uncertainty on the excited state energy ∆E.
For the ground state, whose lifetime is infinite (since the system is stable and cannot suffer
of a transition toward a state of lower energy) the lifetime and thus ∆t is infinite, while its
energy can be known with the desired accuracy (∆E → 0).
Coming to the formal correctness of eq. (2.16), a good discussion is provided in [87]. In
extreme summary the fact is that despite the name “principle” the Heisenberg’s indeter-
mination principle can be demonstrated and indeed it a theorem. As already mentioned
the demonstration holds for all the canonically conjugated variables. Nevertheless the
total energy of a system E and the time t are not canonically conjugated variables (the
total energy of a system cannot be determined as the time derivative of the time - it has
no meaning). Formally this trouble comes out because the time in quantum mechanics
is not considered a “physical observable” but instead like a free parameter. In quantum
mechanics, as will be clarified in section 2.3.4, to each physical observable a specific operator
is associated, but since the time is a parameter it is not an operator. Thus if one uses the
same procedure used for the demonstration of the Heisenberg’s indetermination principle a
conceptually wrong relation is recovered. Nevertheless it is possible to formally demonstrate
the time-energy uncertainty relation proceeding with slightly different arguments. Thus a
similar expression to eq. (2.16) can be formally showed using non-relativistic (let’s say
“standard”) quantum mechanics, and its physical interpretation is conventionally the one I
have reported above.

2.3 The Schrödinger’s equation
Classical mechanics was developed for describing the detailed motion of macroscopic bodies
under the assumptions that these bodies are localized in space and can be observed without
appreciably disturbing their motion. These assumptions are in general made implicitly
rather than stated in a precise way, but they are at the basis of the classical formalism.
As briefly summarized in the previous sections 2.1 and 2.2, it is no more possible talking
about localization in a classical way when microscopic entities are considered. Moreover
measurements on some physical observable related to microscopic systems show the evidence
that such quantities (like the energy levels of atoms and molecules) are quantized, and
this is again unexpected with classical mechanics. Quantum mechanics is instead capable
of catch all these physical insights. The first issue to address in a novel physical theory
of mechanics is how to represent the state of the system under study and then how to
determine the dynamics of the system state, i.e. its time evolution. The state of the system
is represented by means of the so called “wave-function” ψ(x, y, z; t):

ψ(x, y, z; t) : R4 → C
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this complex function represents the wave field associated to each microscopic particle or
system. It is a function of space (in the three variables x, y, z) and time t. Its meaning
and its properties will be described more in details in sections 2.3.1 and 2.3.2 respectively.
The time evolution of the system described by ψ can be determined by means of the
Schrödinger’s equation, firstly introduced by Erwin Schrödinger in 1926:

i~
∂

∂t
ψ(~r; t) = Ĥψ(~r; t) (2.17)

where:

• i is the imaginary unit

• ~ is the reduced Planck’s constant (already introduced)

• ~r = (x, y, z) is the position vector in the 3D space

• ∂
∂t indicates the derivation operation w.r.t. the time t

• ψ(~r; t) is the wave-function that represents the system state at the time instant t

• Ĥ is the so called Hamiltonian (quantum mechanical) operator

Before going on few words concerning the Hamiltonian operator are needed. In quantum
mechanics to each physical observable (such as the energy, the position, the momentum,
the angular momentum and so on...) a mathematical operator is associated. By making
use of such mathematical operator (that can be e.g. a differential operator) it is possible to
make previsions and calculations about that specific physical quantity and then predict the
set of its possible values. A more detailed introduction to quantum mechanical operator
(and their origins) is reported in section 2.3.4. In classical rational mechanics the system
total energy E, given by the sum of the kinetic energy T and the potential energy U , is
equal to the so called Hamiltonian H of the system (this holds if the body constraints
are time-independent, otherwise the Hamiltonian H is a scalar function of the system
total energy). Thus H = T + U = E corresponds to the total energy of the system. Since
as already mentioned in quantum mechanics to each physical observable a mathematical
operator is associated, to the total energy of the system an operator, i.e. the Hamiltonian
operator, is associated. Generally to distinguish the operator from the observable the
symbol ̂ is positioned on top. Thus Ĥ is the quantum mechanical operator associated to
the total energy of the system, i.e. the system Hamiltonian, and it can be used to find the
possible set of energy values (from here on indicated with E) for that specific system. In
section 2.3.4 this concept will be further discussed.

The Schrödinger’s equation is the most important equation in (non-relativistic) quantum
mechanics. As already pointed-out it provides the dynamics of the system, i.e. its time
evolution. Starting from the knowledge and the hypothesis about the system under study
it is possible to derive an explicit expression for the Hamiltonian operator Ĥ, that is
known. Then by solving the Schrödinger’s equation the wave-function is obtained, that is:
the system state (represented by ψ) is found by solving the Schrödinger’s equation. More
precisely equation (2.17) is referred as the time-dependent Schrödinger’s equation, and
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indeed it provides the time evolution of the system (ψ in eq. (2.17) is function of time).
Starting from the knowledge of the system state at initial time instant t0, i.e. starting
from ψ(~r; t0), the state ψ(~r; t) at whatever time instant t can be found by solving the
Schrödinger’s equation (2.17). The general solution of eq. (2.17) will be addressed in
section 2.3.5.
The Schrödinger’s equation was the fundamental starting point for the development of a
complete quantum theory. Indeed the quantization of some physical properties (such as
the energy) arises naturally as a consequence of the enforced boundary conditions used in
the solution of the Schrödinger’s equation for a specific system (and the same quantity -e.g.
the energy- results quantized or continuous depending exactly on the specific boundary
conditions), contrarily to the initial attempts briefly discussed in section 2.1, in which the
quantization was introduced ad hoc.

The Schrödinger’s equation is often compared for importance and meaning to the well
known Newton’s second law of dynamics, i.e. ~F = m~a (where ~F is the total force acting
on the body of inertial mass m and ~a is its acceleration); and analogously to it there
exist no demonstration of the Schrödinger’s equation. This equation was the result of
the exceptional intuition of Erwin Schrödinger and at most it is possible to provide some
“arguments of plausibility” that are aimed in intuitively justify it. In this regard a good
treatment is provided in [87] (in Italian) or in [93] (in English). Here I only point out
that the purpose of the Schrödinger’s equation is to provide the wave field ψ(~r; t) that
is associated to a microscopic system, and thus some similarities with a conventional
wave equations are expected. In particular embedded within the Hamiltonian operator Ĥ
there is a space second order derivative (see section 2.3.4 for details), and in eq. (2.17)
a first order derivative in time appears. In a classical, let’s say standard, wave equation
it is expected to have also a second order derivative in time, nevertheless this is what
distinguish the Schrödinger’s equation from a standard wave equation. The reason behind
the first order time derivative is linked to the validity of superposition principle for the
wave-function. Indeed as clarified in section 2.3.2 a fundamental physical requirement for
the wave-function ψ is that the superposition principle holds, i.e. if ψA and ψB are possible
states for a microscopic system, then a linear combination of them must be again a state
for that system. This requires firstly the Schrödinger’s equation to be linear (as it is, since
derivative operators are linear), and then to have non-dynamic coefficients (if dynamic
coefficients were present different wave-functions corresponding to different coefficient
values would be solutions of different equations thus making the superposition principle
no more valid). The latter requirement implies a first order time derivative instead of a
second order one in eq. (2.17).

2.3.1 Wave-function physical meaning
The first implication of the wave-particle duality (section 2.1) is that it is not possible
to talk about trajectories for microscopic system because of the Heisenberg’s uncertainty
principle (section 2.2) that states the impossibility of knowing at the same the position
and the momentum of a microscopic particle. Moreover the revolutionary fundamental
concept of the wave-particle duality is that to each particle is associated a wave field, that
is somehow represented by means of the complex field ψ(~r; t). The purpose of this section
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is to definitively clarify the physical meaning of the wave-function, i.e. of ψ(~r; t), that is
associated to a microscopic particle.

The wave-function ψ(~r; t) precisely represents the amplitude of the wave field (sometimes
called matter field [88]) that is associated to a particle. From the mathematical standpoint
a “field” is a function of more variables whose domain and codomain are the same, e.g.
in physics very often four variables are used (three for the space coordinate and one for
the time coordinate) thus for example f : R4 → R4. A scalar field is instead a scalar
function of more variables. For example the temperature, that links a scalar value to each
point in space at each time, is a scalar field: temperature : R4 → R. In the case of the
wave-function:

ψ(x, y, z; t) : R4 → C

It means that a complex scalar value ψ is associated to each point of space at each time
instant; thus ψ is a (complex) scalar field. The complex value ψ has to be intended as
the amplitude of the wave field that is associated to a given microscopic system. From
classical theory of waves it is well known that the intensity of a wave (linked to its energy
or power) is proportional to the square of its amplitude. By analogy in quantum mechanics
the intensity of the wave field is |ψ(~r; t)|2 = ψ(~r; t)ψ∗(~r; t), since the wave-function already
corresponds to the wave field amplitude. In this case the wave-function is in general a
complex function of space and time, and its modulus squared must be considered, since
the intensity of a wave field is by definition a real scalar quantity.
The physical meaning of the wave-function and of its modulus squared, i.e. the physical
meaning of the intensity of the wave field associated to microscopic entities, becomes
then clear if the experiments on electrons described in section 2.1 are considered. In the
moment in which it is accepted that the electrons impacting on the photographic plate are
described by a wave field, it is possible to associate the intensity of the electrons tracks
on the photographic plate to the wave field intensity, i.e. |ψ(~r; t)|2. Where the wave field
is more intense, |ψ(~r; t)|2 is larger, and thus |ψ(~r; t)|2 must be somehow proportional to
the distribution of the electrons on the photographic plate. Notice at this point that
|ψ(~r; t)|2 does not describe a collective property of the electrons, indeed as mentioned in
section 2.1 the same interference patterns are obtained also sending one electron at a time.
Moreover each electron hits the photographic plate in one specific point (leaving a well
define point-like sign), thus the wave field cannot be interpreted as a matter wave, in which
there is a collective motion of the particles involved (think for example to a mechanic wave
in a string, the particles of the string oscillate in a well defined way but the phenomenon
is obviously extremely different from the one noticed for electrons). Consequently this
wave field should be considered like a wave field of probability. The probability should
then be interpreted as probability of position, i.e. of finding the microscopic system in
that specific point at that specific time. Consequently the intensity of the wave field, that
is its amplitude squared, i.e. |ψ(~r; t)|2, should be somehow proportional to the probability
of finding the microscopic system (e.g. the electron) in that place at that time. More
precisely the wave-function modulus squared is conventionally interpreted as the position
probability density (i.e. probability per unit volume) of the system that it describes. For
this reason the wave-function is also called “amplitude of position probability”.
To be more quantitative: the probability of finding the microscopic system described by the
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wave-function ψ(~r; t) in the (3D) neighbourhood d~r around the point ~r at the time instant
t is given by: |ψ(~r; t)|2d~r. Where in this notation (similar to one of [87]) d~r = dxdydz.
In summary, |ψ(~r; t)|2d~r is interpreted as the probability of finding the system between
~r = (x, y, z) and ~r + d~r = (x+ dx, y + dy, z + z) at the time instant t. The total position
probability can be recovered integrating over the entire volume V the probability density:

P =
∫
V
|ψ(~r; t)|2 d~r (2.18)

where P corresponds to the probability of finding the system described by ψ within the
volume V , and as already mentioned |ψ(~r; t)|2 is the probability per unit volume.

This interpretation of the wave-function squared modulus like a probability density is
universally accepted and it is the conventional interpretation provided in all basic courses
of quantum mechanics [87]. It is usually referred as the “Copenaghen” interpretation
of quantum mechanics, mainly due to the works, done in Copenaghen, by Bohr and
Heisenberg during the 1927 and after the second world war by Wolfgang Pauli, even if
the first idea of associating to the intensity of the wave field the meaning of probability
density is due to Max Born. Other interpretations of quantum mechanics are possible, and
even if their treatment is outside the scope of this work, I would like to briefly mention
the so called “statistic” interpretation of quantum mechanics. In this interpretation the
probability associated to the wave field has to be interpreted like applied to a set of systems
or particles but not to a single system or particle. In this interpretation the amplitude of
the wave field has a more abstract physical meaning related to the statistics of obtaining
a given configuration (e.g. a given diffraction pattern on the photographic plate) that is
represented by the wave-function. The difference w.r.t. the Copenaghen interpretation
can appear subtle at a first read, but the main diversity is exactly that in the Copenaghen
interpretation the wave field meaning of probability is associated also to a single particle.
In the statistic interpretation the probability arises from the fact that there is an intrinsic
limit in the knowledge of microscopic system, that nevertheless behave in a deterministic
way. Notice that the limit is intrinsic and not related to instrumentation limits (see
section 2.2). If there were not this intrinsic limit then a deterministic description would be
possible. Instead in the Copenaghen interpretation the probabilistic meaning of the wave
field is intrinsic. To better clarify this point consider the two slits experiment presented
at the end of section 2.1. In this experiment when a single slit is open the diffraction
pattern of figure 2.1 is recovered, instead when both are open a different shape is obtained,
that evidently presents interference patterns. The electrons in such an environment are
described by two wave-functions ψA and ψB depending if the electron passes through one
slit (A) or the other (B). The two wave-functions ψA and ψB alone corresponds exactly to
the diffraction patterns of figure 2.1, correctly aligned to the slit A or B. When both slits
are opened then the electrons, that can pass through one or the other slit, are described in
general by a wave-function ψC that is the superposition of the wave-functions of before:
ψC = ψA + ψB. This effectively corresponds to the interference pattern that appears on
the photographic plate when both the slits are opened. Thus if ψA and ψB are solution of
the Schrödinger’s equation (2.17) for that system, also ψC must be solution of the same
equation, i.e. the superposition principle must hold. This is exactly the reason why the
Schrödinger’s equation is linear and with non-dynamic coefficients, as discussed previously.
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And since the Schrödinger’s equation is linear and with non-dynamic coefficients ψC is
actually solution for the Schrödinger’s equation. The electron state before it impacts on
the photographic plate, in the case in which both the slits are open, is represented by
ψC = ψA + ψB, i.e. it is the sum of two states. In the Copenaghen interpretation the
electron, before impacting onto the plate, is actually in two different states simultaneously,
i.e. in both states ψA + ψB. In the moment in which a detector is used to understand
toward which slit the electron is passing, then there happens the so called “collapse” of
wave-function, that means that electrons are no more in the state ψC but they collapse in
one of the two states ψA or ψB that constitute ψC . The collapse of the wave-function in
the Copenaghen interpretation is actually intended as a change of state of the electrons,
that from the state ψC collapse to the state ψA (or ψB) because of the measurement
process. The measurement procedure in microscopic system always interact strongly with
the system and force this transition of state. Instead in the statistic interpretation of
quantum mechanics, writing ψC = ψA + ψB is a way to quantify that some electrons pass
through A, and thus are represented by ψA and others trough B (represented by ψB), but
since it is not possible to know toward which aperture they pass the description is given
by ψC = ψA + ψB. The state ψC is then a sort of collective state, that is the result of the
experiment only when an enough large number of electrons are considered, while the single
electron will not be in two states (ψA and ψB) at the same time but only in one of them
(ψA or ψB). In this picture the electron wave-function collapse is not intended as a state
transition from ψC to ψA or ψB but is intended as the revelation of the actual state of
that specific electron, that can be either ψA or ψB.
As mentioned many other interpretations are possible and they are not discussed here.
The difference between these two should have been useful in highlight the widely accepted
Copenaghen interpretation. The point is that all such interpretations are a boundary
matter between physics and metaphysics (or philosophy), and indeed they are the subject
of many science philosophy debates.
Independently of what is the correct interpretation of quantum mechanics, and thus of
what are the features of the world we are living in, the practical importance of this theory
is that it provides the means to predict the behavior of microscopic systems and to design
novel devices based on them. In the following of this work the Copenaghen interpretation
will be considered.

So far only the modulus of the wave-function was considered. Since it is a complex
function it has also a phase. The wave-function phase is useful in interference phenomena,
for example when more states are superimposed, to correctly find the total state (like done
previously with the two slit experiment). The interference patterns between wave-functions
are indeed the results of the phase mismatch between different wave-functions.

Notice again that the wave-function (in the Copenaghen interpretation) describes a
single microscopic system and not a statistic set of systems. Nevertheless also in the
Copenaghen interpretation it is possible to consider the wave-function as representative
of statistic properties of a set of identical systems, at least if the number of considered
identical systems is enough large. For example if a set of NA ∼ 6 ·1023 (Avogadro’s number)
of identical systems is considered, and the wave-function has a probability of 10% to find
the single system in a given volume, then it is possible to say that volume contains the
10% of the considered systems.
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A final remark is now provided by means of an example. An atom is a quantum system,
and it is known form basic chemistry that it is constituted by a nucleus of protons and
neutrons around which the electrons are present, like they were in “orbit” around the
nucleus. Since it is not possible to talk about trajectories (and thus orbits), and keeping in
mind the wave-function meaning explained above, the wave-functions that are solutions of
the Schrödinger’s equation for an atom, are to be intended as the amplitude of the position
probability wave field. Thus their moduli squared, when integrated over the space, provides
a surface in the 3D space that corresponds to the high probability region. The higher is
|ψ|2 the higher is the probability of finding the electron in that space region. In general
the wave-function modulus squared are the so called atomic orbitals (usually indicated
with 1s, 2s, 2px, 2py, 2pz, etc...), usually presented in the basic chemistry courses. It is
well known that the 1s orbital has the shape of a sphere around the atomic nucleus. Well,
that sphere is the region in which it is most probable to find the electron that is in that
specific state (with that specific energy, angular momentum modulus and orientation and
spin). In this optics atomic and molecular orbitals correspond simply to high probability
regions, in which it is highly probable to find that electrons.

Finally notice that the wave-function describes the microscopic system and it contains
all the information that is possible to get about the system.

2.3.2 Wave-function properties
Once understood the physical meaning (Copenaghen interpretation) of the wave-function
as the amplitude of the position probability wave field associated to the microscopic system
(see section 2.3.1), a set of properties that the wave-function must satisfy is immediately
derived. In particular the probability of finding a given particle in all the space must be
100% (if the particle exists it must be inside the universe). Then it follows immediately
that:

P =
∫
All space

|ψ(~r; t)|2 d~r = 1 (2.19)

This condition is called the “normalization condition” [88]. Indeed it imposes a limitation
on the possible forms of the wave-function ψ since it is not always possible to satisfy
eq. (2.19). In particular ψ must decrease rapidly when the coordinates x, y, z are large
in order to ensure the integral to exist. More precisely the wave-function must be a
square-integrable function (or quadratically integrable function), that means:∫ +∞

−∞
|ψ(~r; t)|2 d~r <∞ (2.20)

The usual notation for indicating a square-integrable wave-function over the space region
V is: ψ ∈ L2(V ). If it is supposed to have an electron under test, it can be considered like
certainly confined in the laboratory in which the experiments takes place, thus said V the
volume of the laboratory, the normalization condition becomes:

P =
∫
V
|ψ(~r; t)|2 d~r = 1 (2.21)

and the wave-function must be square-integrable in the domain V : ψ ∈ L2(V ).
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Example 2.1: Let’s consider for example a 1D wave-function (where K is a real constant,
K ∈ R):

ψ(x; t) =
{
K , if 0 < x < x0
0 , otherwise

The normalization condition implies that:∫ +∞

−∞
|ψ(x; t)|2 dx = 1 ⇒

∫ x0

0
|K|2 dx = 1 ⇔ |K|2 x0 = 1 ⇔ K = 1

±√x0

Thus assuming for example the positive sign solution the normalized wave-function, to
which it is possible to associate the meaning of position probability density is:

ψN (x; t) =
{ 1√

x0
, if 0 < x < x0

0 , otherwise

such that: ∫ +∞

−∞
|ψN (x; t)|2 dx =

∫ x0

0

∣∣∣∣∣ 1
√
x0

∣∣∣∣∣
2

dx = 1
x0
x0 = 1

where the subscript N is used to point out that ψN is the normalized wave-function. �

Other direct consequences of the (normalized) wave-function physical interpretation as
probability density are that it must be a monodromic function (i.e. it provides a single
complex scalar value and not a complex vector) since it has no sense talking about more
than one probability values of finding the particle in a given point. It must be everywhere
limited (the probability cannot be infinite in a point or region of space) and that it must be
continuous (if a 1D wave-function in space is considered, it has no meaning talking about
a left-side probability or right-side probability around a point x0 in which a discontinuity
is present, thus the left and the right limits should be equal and the wave-function is
continuous). Another property that is possible to demonstrate is that the wave-function
must also have continuous first derivatives. The latter property follows from a continuity
equation (analogous to the well known continuity equation for the electrical current),
that is intimately linked with the concept of continuity of the total probability. In few
words the fact the total probability must be conserved (i.e. if at a given time instant
t0 there is a particle in a given region of space, at another time instant t1 the particle
does not disappear if no particular interactions occur, thus the integral over all the space
of the wave-function even at t1 must be unitary, that corresponds to a total probability
conservation) implies that the total probability must satisfy a continuity equation, and
thus must have a continuous first derivative.
The last two properties, i.e. the wave-function must be continuous with continuous first
derivative, imply that the wave-function must be of class C1: ψ ∈ C1(V ), where V is the
volume of definition of the wave-function. From the mathematical standpoint this is also a
direct implication of the fact that ψ ∈ L2(V ). Indeed it is possible to show that:

ψ ∈ L2(V ) ⇒ ψ ∈ H2(V ) ⇒ ψ ∈ C1(V )
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where H2 is the so called Sobolev space. This last relation is often seen in the numerical
methods courses.

The last important property to be satisfied by wave-function is the superposition
principle. This is a direct consequence of the de Broglie assumption of wave-particle
duality. Indeed in order to localize a particle in space it is necessary to consider a wave-
packet, as described in section 2.2. A wave-packet is obtained thanks to the interference of
monochromatic waves, i.e. it is constituted by a superposition of wave-functions, thus the
superposition principle must hold. This point was also clarified in the previous section
2.3.1 when the two slits experiment was considered as an explicative example for the
wave-function physical meaning. Two are the equivalent statements that summarize
the validity of the superposition principle. First, wave-functions that differ only for the
normalization constant (i.e. they are different only because of a different multiplicative
constant) represent the same state. So the two wave-functions ψ and ψN considered in
example 2.1 are representing the same physical state.
Second, if a system can be in a state described by the wave-function ψA and also in another
state described by the wave-function ψB (see e.g. the two slits experiment), it can also be
in whatever state that is a linear combination of the two:

ψ = αψA + βψB , α , β ∈ C (2.22)

The last statement can be rephrased as: the set of all wave-functions that describe all
possible physical states of a given quantum system constitute a vector space.
In this regard notice that if a system is in the state ψ = αψA + βψB, the result of
measurement on it can be either ψA or ψB, and it is said (as already pointed out) that the
wave-function ψ collapse into either ψA or ψB.

As already pointed out in the previous sections the Schrödinger’s equation is totally
linear and with non-dynamic coefficients. This ensures the validity of the superposition
principle (and indeed the Schrödinger’s equation was “built” up to satisfy it).

In summary the properties of a wave-function are the following:

• it must be square-integrable: ψ ∈ L2(space).

• it must be normalized such that it can be interpreted as position probability density,
the normalization condition is given by eq. (2.19).

• it must be a monodromic function (i.e. it provides a single -complex- scalar value
and not a vector, the codomain is C).

• it must be everywhere limited.

• it must be continuous.

• it must have continuous first derivatives.

• the superposition principle holds.
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2.3.3 Expected values and momentum space
At the end of section 2.3.1 was pointed out that the wave-function contains all the
information that is possible to get about the system. The purpose of this section is to
further discuss this statement, by giving an introduction to the calculation of average
values in quantum mechanics. More precisely the question addressed in this section is
“what is the information that can be extracted from the wave-function?”. First of all a fast
review of average value and standard deviation is provided.

Expectation values review

From an experimental standpoint, from basic bachelor’s level courses on physics and
statistics, the expected value 〈F 〉 of a quantity F can be defined by doing a series of N
measurements performed on identical systems in the same conditions (and thus described
by the same wave-function). The arithmetic mean of the obtained measurement results is
the average value:

〈F 〉 = 1
N

∑
i

nifi =
∑
i

νifi (2.23)

where it is intended that during the N measurements of F , the value fi was obtained
ni times, and where

∑
i ni = N . The frequency at which the result fi appears is then

νi = ni
N . If the number of total measurements N is very large then the frequency νi can

be interpreted as a probability (see for example [94]): νi → Pi when N → ∞. Thus
equation 2.23 can be rewritten as:

〈F 〉 = 1
N

∑
i

fiPi (2.24)

The last relation holds for system in which quantization appears and thus discrete values
of the quantity F are possible. It corresponds to the case of a discrete random variable
[94]. If the quantity F can assume a set of continuous values then the previous equation is
modified as follows (F is considered in the same way as a continuum random variable):

〈F 〉 =
∫
fP (f)df (2.25)

where P (f) is the conventionally called probability density function, and P (f)df has the
meaning of differential probability, i.e. of probability of finding a result between f and
f+df when a measurement on F is performed. Finally recall that the definition of standard
deviation (intended as the dispersion of the obtained results f when measurements on F
are performed) is the following:

∆F =
√
〈F 2〉 − 〈F 〉2 (2.26)

where the term under square root is called variance. The bigger is ∆F the more the
measured values are different among them. Notice that it corresponds to the notation
used in section 2.2 for indicating the standard deviation of position, momentum, energy
and time.
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Expectation values in quantum mechanics

Coming now to the information that can be extracted from the wave-function, and
considering the probabilistic meaning of wave-function itself, it is intuitive that a statistical
information can be extracted from it. Indeed in quantum mechanics it is possible to
evaluate the expected value 〈F 〉 of each physical observable F starting from the knowledge
on the wave-function that represents the state of the system. In fact the wave-function
squared modulus |ψ|2 corresponds exactly to the probability density function P (f) since it
is interpreted as the position probability density, and |ψ|2d~r corresponds to the differential
probability P (f)df (see section 2.3.1).
Thus the expected value for the position vector ~r can be expressed as:

〈~r〉 =
∫
~r |ψ(~r; t)|2 d~r (2.27)

in which the integral corresponds to a continuum sum over all the possible values of
~r (usually they coincide with all the possible points in space), each multiplied by its
probability: |ψ(~r; t)|2. Then |ψ(~r; t)|2 d~r is exactly the differential probability of before, i.e.
the probability of finding ~r in the infinitesimal volume in between ~r and ~r+d~r. Notice that
eq. (2.27) is a vector equation that embeds three scalar equations in the three variables
x, y, z. In general it is possible to show that whatever function F (~r) of ~r has an expected
value that is:

〈F (~r)〉 =
∫
F (~r) |ψ(~r; t)|2 d~r (2.28)

indeed |ψ(~r; t)|2 d~r corresponds to the probability density function of position, and a
function F (~r) involves only the probability of position. In other words the probability
density function of a function of the position vector corresponds to the position probability
density. This point is clarified in the following example.

Example 2.2: The average value of the function F (x, y, z) = xy is given by:

〈xy〉 =
∫
xy |ψ(~r; t)|2 d~r (2.29)

indeed |ψ(~r; t)|2 d~r is the probability of finding x at the time instant t between x and
x+ dx but also the probability of finding y between y and y + dy. �

Equation (2.28) can be rewritten as:

〈F (~r)〉 =
∫
ψ∗(~r; t)F (~r)ψ(~r; t)d~r (2.30)

Usually indicated symbolically as:

〈F (~r)〉 = (ψ, Fψ) (2.31)

where (f, g) indicates the functional scalar product between the two functions f and g,
that in the simple 1D case (i.e. f(x) and g(x)) is defined by:

(f, g) =
∫
f∗(x)g(x)dx (2.32)
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The wave-function physical meaning is the one of position probability density. For this
reason it is suitable for the definition of expected values of all those quantities F (~r) that
are function of the position ~r. Nevertheless it is not suitable for the definition of expected
values that are function of the momentum ~p, or alternatively of the wave vector ~k (linked
to ~p by means of the de Broglie relation: ~p = ~~k). In order to estimate the expected
values of a whatever function F (~k) of the wave vector (or momentum) it is necessary to
consider as probability density function P (f) in equation (2.25) a suitable probability
density. In particular in analogy to what done for a general function of the position, the
momentum probability density must be considered, i.e. the probability of finding the
particle momentum between ~p and ~p+ d~p. The last statement correspond to finding the
wave vector between ~k and ~k + d~k.
Fortunately the momentum probability density can be recovered by means of the Fourier
transform as it will clear in a while.

Position space and momentum space

It is well known that the Fourier transform generate a correspondence between time t and
frequency ω: the Fourier transform of a signal that is a function of time s(t) is a function of
frequency S(ω) = F {s(t)}, where F indicates the Fourier transform. This correspondence
is often indicated as:

t
F←→ ω or alternatively : s(t) F←→ S(ω)

Moreover recall the derivative property of the Fourier transform that associates to a
derivative in time domain a multiplication by ω in frequency domain:

d

dt
F←→ iω (2.33)

where sometimes, depending on the sign convention in the exponent in the Fourier transform
integral, the previous relation is written with a minus sign: d

dt

F←→ −iω.
The Fourier transform can be generally performed w.r.t. to any variable and not only the
time. In particular it should be known that the Fourier transform of a function of the
position (e.g. the wave-function ψ(~r; t) ) is a function of the wave vector. In other words
the (3D) space variable ~r is linked by means of the Fourier transform to the wave vector ~k:

~r
F←→ ~k or alternatively : (x, y, z) F←→ (kx, ky, kz)

that in the 1D case becomes simplifies in (if only x-coordinate is considered):

x
F←→ kx

Again the meaning is that the Fourier transform of a function of position is a function of
the wave vector:

ψ(~r; t) F←→ A(~k; t) or alternatively :

A(~k; t) = F {ψ(~r; t)} and ψ(~r; t) = F−1
{
A(~k; t)

}
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where F indicates the Fourier transform and F−1 the Fourier inverse transform (or anti-
transform).
More quantitatively it is possible to define a 3D Fourier transform w.r.t. to space of the
wave function as [87] (the integrals are to be intended as triple integrals in the three space
variables, i.e. d~r = dxdydz and d~k = dkxdkydkz ):

A(~k; t) = F {ψ(~r; t)} = 1√
(2π)3

∫
ψ(~r; t)e−i~k·~rd~r (2.34)

and consequently:

ψ(~r; t) = F−1
{
A(~k; t)

}
= 1√

(2π)3

∫
A(~k; t)e+i~k·~rd~k (2.35)

notice that the previous expressions in the 1D case simplify in:

A(kx; t) = F {ψ(x; t)} = 1√
2π

∫
ψ(x; t)e−ikxxdx

ψ(x; t) = F−1 {A(kx; t)} = 1√
2π

∫
A(kx; t)e+ikxxdkx

In summary, the Fourier transform links the so called “position space”, in which the state
of the system is represented by means of the wave-function ψ(~r; t), that is function of the
position vector ~r, to the so called “momentum space”, in which the state of the system
is represented by means of the Fourier transform of the wave-function A(~k; t), that is
function of the wave vector ~k. Sometimes the momentum space is called: “k-space”.
An important theorem about the Fourier transform is the so called Plancherel’s theorem (for
the Fourier series the analogous of the Plancherel’s theorem is the so called Fischer-Riesz,
that has an analogous meaning). It states that if a function (of position, in this case) ψ(~r; t)
is Fourier transformed in a function (of the wave vector in this case) A(~k; t), and then the
inverse Fourier transform is performed, it is obtained a function (of position) ψ′(~r; t) that
is different from the initial function at most in a numerable set of isolated points. It means
that an integral equality holds. Moreover a corollary states that if the starting function
ψ(~r; t) is continuous (as it is for a wave-function - see section 2.3.2) then the obtained
function ψ′(~r; t) is pointwise equal to the original one: ψ(~r; t). The Plancherel’s theorem has
an extremely important conceptual consequence. In fact it states that the correspondence
between a wave-function in the position space ψ(~r; t) and its Fourier transform in the
momentum space A(~k; t) is an exactly biunivocal correspondence. In other words it means
that the same information that is included in the wave-function ψ(~r; t) in position space, is
also included in its Fourier transform A(~k; t) in the momentum space. Thus working with
one representation or the other makes no difference. In mathematical terms the position
space and the momentum space are “isomorphous”. Given a wave-function in position
space ψ(~r; t), its Fourier transform A(~k; t) in momentum space is uniquely determined and
vice versa.
A direct consequence is on the physical meaning of A(~k; t). Indeed if the wave-function
ψ(~r; t) is normalized to 1, and thus it is an amplitude of position probability, then its
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Fourier transform A(~k; t) is also normalized to 1, and it has the meaning of amplitude of
momentum probability. This is a consequence of the so called Parseval’s theorem that
states that [90] (it holds true between any couple of functions linked by means of the
Fourier transform):

(ψ, ψ) = (A,A)
where the notation (·, ·) is used to indicate the functional scalar product, as pointed
previously in eq. (2.32), and thus:

(ψ, ψ) =
∫
ψ∗(~r; t)ψ(~r; t)d~r =

∫
|ψ(~r; t)|2 d~r

(A,A) =
∫
A∗(~k; t)A(~k; t)d~k =

∫ ∣∣∣A(~k; t)
∣∣∣2 d~k

from which the Parseval’s relation corresponds to:

(ψ, ψ) = (A,A) ⇔
∫
|ψ(~r; t)|2 d~r =

∫ ∣∣∣A(~k; t)
∣∣∣2 d~k

Consequently a correctly normalized wave-function in position space, such that:∫
|ψ(~r; t)|2 d~r = 1

corresponds to a correctly normalized wave-function in k-space:∫ ∣∣∣A(~k; t)
∣∣∣2 d~k = 1

Thus A(~k; t) has in general the meaning of amplitude of momentum probability, and its
modulus squared has the meaning of momentum probability density, since its integral over
all the possible values of the wave vector is normalized to 1 (from Parseval’s relation):

(A,A) =
∫
A∗(~k; t)A(~k; t)d~k =

∫ ∣∣∣A(~k; t)
∣∣∣2 d~k = 1

In conclusion, in position space ψ(~r; t)d~r is the differential probability of finding the
system described by ψ in the infinitesimal volume between ~r and ~r+d~r; while in momentum
space A(~k; t)d~k is the differential probability of finding the system described by A with a
momentum (or wave vector, remember always: ~p = ~~k) between ~k and ~k + d~k. This is
exactly the momentum probability density we were looking for at the beginning of this
digression about the Fourier transform.

Before going on notice that up to now the time dependence of the wave-function was
not considered. It is generally possible to Fourier transform also w.r.t. time, and from time
domain it is possible to go in frequency domain: t F←→ ω. By exploiting the Planck’s
relation: E = hf = ~ω it is possible to rewrite the correspondence as:

t
F←→ E

~
in this case one talks about the energy domain. Thus in the most general case the Fourier
transform can be a 4D Fourier transform that corresponds to three Fourier transforms
w.r.t. space (as explained above), that connect the position vector ~r to the wave vector ~k,
and one w.r.t. time that connect the time domain t with the energy domain E/~.
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Expectation values in momentum space

At this point it is known how to evaluate the expectation values of position and of a
whatever function of position from equations (2.27) and (2.28), and moreover it should be
clear how it is possible to proceed in the case of expected values of momentum or functions
of momentum. Indeed proceeding along the lines of what was done before for writing
equations (2.27) and (2.28), it is possible to say that the expected value of the wave vector
~k, expressed in the momentum space, is:

〈~k〉 =
∫
~k
∣∣∣A(~k; t)

∣∣∣2 d~k =
∫
A∗(~k; t)~kA(~k; t)d~k (2.36)

that is:
〈~k〉 =

(
A,~kA

)
(2.37)

and for a whatever function of the wave vector F (~k):

〈F (~k)〉 =
∫
F (~k)

∣∣∣A(~k; t)
∣∣∣2 d~k =

∫
A∗(~k; t)F (~k)A(~k; t)d~k (2.38)

that is:
〈F (~k)〉 =

(
A,F (~k)A

)
(2.39)

Nevertheless sometimes may be useful to recover an expression for these expected values
in the position (real) space, instead that in momentum space. This can be done by Fourier
anti-transforming the previous relations, thus eq. (2.36) can be Fourier anti-transformed
to position space and the following expression is recovered (the demonstration for the 1D
case is provided in example 2.3 below):

〈~k〉 =
∫
ψ∗(~r; t) [−i∇ψ(~r; t)] d~k (2.40)

that can be rewritten in symbol form like:

〈~k〉 =
(
ψ, ~̂kψ

)
(2.41)

in which the symbol ~̂k must be intended as the differential operator: ~̂k = −i∇ (that comes
out by considering the Fourier anti-transform).
Proceeding analogously for a whatever function F of the wave vector ~k, it is possible to
write:

〈F 〉 =
(
ψ, F̂ψ

)
(2.42)

in which the symbol F̂ must be intended as the differential operator that is built by
substituting ~k with −i∇ in the expression of F : F̂ = F (−i∇).
Notice that these operators are a direct consequence of the Fourier transform.
At this point it is possible to recover the average values in position space of a whatever
physical observable of interest that is function of position (such as the potential energy
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U(~r)), by means of equation (2.28), and of whatever function of momentum (such as the
kinetic energy T = p2

2m) by means of equation (2.42) by properly substituting the function
F (~k) with its differential operator F̂ = F (−i∇) obtained by performing the following
substitutions:

~k ↔ −i∇ and ~p ↔ −i~∇ (2.43)

that arise from the derivation property of the Fourier transform (and noticing the de
Broglie relation ~p = ~~k).

Example 2.3: Here a proof for the previous relation is reported for the 1D case (for the 3D
case see e.g. [87]):

x
F←→ kx

the expected value of kx in momentum space is:

〈kx〉 =
∫
kx |A(kx; t)|2 dkx =

∫
A∗(kx; t)kxA(kx; t)dkx

by substituting the explicit expression of the Fourier transform for A(kx; t) and its complex
conjugate:

A(kx; t) = 1√
2π

∫
ψ(x′; t)e−ikxx′dx′

A∗(kx; t) = 1√
2π

∫
ψ∗(x; t)e+ikxxdx

it follows:
〈kx〉 = 1

2π

∫ ∫ ∫
e+ikxxψ∗(x; t)kxe−ikxx

′
ψ(x′; t)dkxdxdx′

noticing that:
∂

∂x′
e−ikxx

′ = −ikxe−ikxx
′

it follows (an integration by parts is required):

〈kx〉 = 1
2π

∫ ∫ ∫
e+ikx(x−x′)ψ∗(x; t)

[
−i ∂
∂x′

ψ(x′; t)
]
dkxdxdx

′

and considering that the only term dependent on kx is the exponential and that its integral
corresponds to the definition of the delta Dirac function:

1
2π

∫ +∞

−∞
e+ikx(x−x′)dkx = δ(x− x′)

it follows:
〈kx〉 =

∫
ψ∗(x; t)

[
−i ∂
∂x
ψ(x; t)

]
dx =

(
ψ,−i ∂

∂x
ψ

)
The extension to the general 3D case requires the usage of a 3D delta Dirac function and
the substitution of the partial derivative w.r.t. x with the nabla operator. �
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2.3.4 Quantum mechanical operators and Hamiltonian operator
A fundamental assumption in quantum mechanics is that to each physical observable F a
quantum mechanical operator F̂ is associated. It can be a differential operator, for example
of the kind of the ones associated to the wave vector for the evaluation of its expected
value in real space (see the discussion presented in the previous section 2.3.3). Actually,
the origin of such operators has to be found exactly in the evaluation of the expected
values. In particular they arise from the Fourier transform applied to the evaluation of
expected values, like it was shown in the previous section. If each physical observable must
be associated to an operator, then if position space expected values are considered, from
equations (2.27), (2.31), (2.40) and (2.42) it is possible to derive the following associations,
true in the (real) position space (where ~p = ~~k):

~r → ~r

F (~r) → F (~r)
~k → −i∇
~p → −i~∇

F (~k) → F (−i∇)
Thus the general rules for building the quantum mechanical operators in position space
are:

• the operator associated to the position vector is equal to itself: ~̂r = ~r

• a general function F (~r) of the position vector ~r is thus unchanged and its quantum
mechanical operator is equal to itself: F̂ = F (~r)

• the operator associated to the wave vector is equal to −i∇: ~̂k = −i∇

• a general function F (~k) of the wave vector ~k is thus associated to a quantum
mechanical operator obtained substituting in the expression of F the wave vector ~k
with −i∇: F̂ = F ( ~−i∇)

Of particular interest are the following quantities:
• the potential energy U(~r) is a function of the position, thus its quantum mechanical

operator in position space is equal to itself: Û = U(~r)

• the momentum ~p = ~~k is a function of the wave vector thus its quantum mechanical
operator is recovered by substituting ~k with −i∇ in its expression: p̂ = −i~∇

• the kinetic energy T = 1
2mv

2 = p2

2m is a function of the momentum, i.e. of the wave
vector, thus its quantum mechanical operator is recovered with the same procedure:

T̂ = (−i~∇)2

2m = −~
2

2m ∆

where ∆ = ∇2 = ∇ · ∇ =
(
∂2

∂x2 ,
∂2

∂y2 ,
∂2

∂z2

)
is the so called Laplacian operator (or

Laplace operator).
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Notice that the quantum mechanical operators are to be intended as mathematical entities
that act on a specific function, i.e. the wave-function, that represent the physical states.
It has no meaning of talking about an operator if it is not “applied” to a state function (in
quantum mechanics the wave-functions represent the state of the system and sometimes
they are simply called “states”). Notice that from the above discussion the quantum
mechanical operators are differential operators in the space variables but not w.r.t. time.
The time in quantum mechanics is a parameter to which no quantum mechanical operator
is associated. As time goes by, the wave-functions in general change, i.e. the system state
is modified. In the Schrödinger’s wave mechanics the system states, i.e. the wave-functions,
evolve in time. It is possible to point out a set of properties and operations concerning the
quantum mechanical operators, for a reference see e.g. [87]. The only properties that I
mention here and that will be useful later on, are the linearity (since they are differential
operators they are linear) and that to each physical observable is associated an operator
that is Hermitian, i.e. for which the following relation holds:

F † = F

where the symbol † indicates the operation of complex conjugation (and transpose if F
is in matrix form - see later). The important fact is that to an Hermitian operator is
associated a physical observable that can assume real values, that is: if a measure is
performed on the physical observable that is represented by an operator that is Hermitian,
a real value is obtained. Since physical observables can always assume only real values,
then the operators associated to them are always Hermitian.

At this point it is trivial to write down an explicit expression for the Hamiltonian
operator Ĥ that appears in the Schrödinger’s equation (2.17). As already mentioned
the classical Hamiltonian corresponds to the sum of the kinetic and potential energy:
H = T + U , thus the quantum mechanical operator can be recovered with the rules just
stated as follows (position space):

Ĥ = T̂ + Û = −~
2

2m ∆ + U(~r) (2.44)

in which the linearity is exploited such that the Hamiltonian is recovered as the sum of the
kinetic energy operator T̂ and the potential energy one Û . The last expression is exactly
the one to be used in the Schrödinger’s equation. The Hamiltonian operator is thus the
quantum mechanical operator associated to the total energy of the system, and indeed it
will be linked to the energy levels of the quantum system in sections 2.3.5 and 2.3.6.
In general in quantum mechanics to each physical observable a suitable operator (that is
found by applying the previously mentioned rules) is associated, so one talks about the
angular momentum operator, the squared angular momentum operator, and so on... In
section 2.3.6 few more words will be said on their link to the physical observables they
represent.
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Quantum mechanical operators in momentum space

In section 2.3.3 it was already pointed out that is possible to express the expected value of
a physical quantity also in the momentum space or k-space. In this case by proceeding in
an analogous way to what done previously for obtaining the operators in position space, it
is possible to get the following fundamental relations for the representation of operators in
the momentum space:

~r → +i∇k = +i~∇p
F (~r) → F (+i∇k)

~k → ~k

~p → ~p

F (~k) → F (~k)

where ∇k = ( ∂
∂kx

, ∂
∂ky

, ∂
∂kz

) and ∇p = ( ∂
∂px

, ∂
∂py

, ∂
∂pz

). Everything is then analogous: a
function of the momentum is associated to an operator that is equal to itself, while a
function of the position is associated to an operator built up in an analogous way of what
presented previously. In table 2.1 the fundamental relations are summarized.

Table 2.1: Quantum mechanical operators that are associated to physical observables in both
position space and momentum space.

position space representation momentum space representation

~r → ~̂r = ~r ~r → ~̂r = +i∇k = +i~∇p

F (~r) → F̂ = F (~r) F (~r) → F̂ = F (+i∇k)

~k → ~̂k = −i∇ ~k → ~̂k = ~k

~p → ~̂p = −i~∇ ~p → ~̂p = ~p

F (~k) → F̂ = F (−i∇) F (~k) → F̂ = F (~k)
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2.3.5 General solution of Schrödinger’s equation
The purpose of this section is to provide a general methodology for solving the Schrödinger’s
equation (2.17). Considering the expression for the Hamiltonian operator of eq. (2.44),
the Schrödinger’s equation can be rewritten as:

i~
∂

∂t
ψ(~r; t) = Ĥψ(~r; t) =

[
−~2

2m ∆ + U(~r)
]
ψ(~r; t) (2.45)

It is partial differential equation of the second order in space and of the first order in time.
Since Ĥ is time-independent, the Schrödinger’s equation is completely separable in the
time and the space variables. Indeed the left-hand member: i~ ∂

∂tψ(~r; t) depends only on
time derivative while the right-hand one:

[
−~2

2m ∆ + U(~r)
]
ψ(~r; t) depends only on space

derivatives. It is possible to show that this kind of separable equations present always
factorized solutions of the kind (see e.g. [87]):

ψ(~r; t) = Ψ(~r)φ(t)

where Ψ(~r) is a function of space coordinates only and φ(t) is a function of time only.
Substituting this solution in the Schrödinger’s equation:

i~Ψ(~r) ∂
∂t
φ(t) = φ(t)ĤΨ(~r)

dividing both members by Ψ(~r)φ(t):

i~
1
φ(t)

∂

∂t
φ(t) = 1

Ψ(~r)ĤΨ(~r)

where the left-hand member is function of time only and the right hand one of space only.
Since the two members depend on different variables (time and space respectively) the
equation is true if and only if the two members are equal to a certain constant, and said E
this constant the equation can be rewritten as a system of two equations:

i~ 1
φ(t)

d
dtφ(t) = E

1
Ψ(~r)ĤΨ(~r) = E

⇒


i~ d

dtφ(t) = Eφ(t)

ĤΨ(~r) = EΨ(~r)

The two equations can be solved separately. The first equation is a first order differential
equation in time:

d

dt
φ(t) = − i

~
Eφ(t) → dφ

dt
= − i

~
Eφ →

∫ 1
φ
dφ = − iE

~

∫
dt → lnφ = − iE

~
t
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Thus the solution of the first equation, that is the term that provides the time evolution
of the state ψ(~r; t), is the following:

φ(t) = e−
i
~Et (2.46)

unless an inessential integration constant, that is now omitted. The second equation is
called time-independent Schrödinger’s equation, or steady state Schrödinger’s equation:

ĤΨ(~r) = EΨ(~r) (2.47)

indeed its solutions Ψ(~r) are corresponding to stationary states that are time-independent.
The solution for the steady state Schrödinger’s equation is addressed in the next section.
Here the point is that the factorized solutions for the time-dependent Schrödinger’s equation
(2.45) have the following form:

ψ(~r; t) = Ψ(~r)e− i
~Et (2.48)

in this kind of solutions the time dependence is factorized and known, once the constant E
is fixed. As it will be addressed in the section, the constant E corresponds exactly to the
total energy of the system, this is indeed the meaning of the steady state Schrödinger’s
equation (see section 2.3.6). The solution of the steady state Schrödinger’s equation
provides indeed the energy values E characteristics of the system described by Ĥ, and also
the steady states ΨE(~r), i.e. the states that are stable, and thus with an infinite life-time
as introduced in section 2.2. Notice that in the following the wave-functions ΨE(~r) that are
solutions of the steady state Schrödinger’s equation will be indicated with a subscript E:
ΨE(~r). Notice also that the steady state Schrödinger’s equation represents an eigenvalue
problem, in which the energy E is called “system eigenvalue” and the wave-function
is called “eigenfunction” (or sometimes eigenvector). The correspondence with a usual
eigenvalue problem should be clear if the Hamiltonian operator is expressed in matrix form
(see section 2.4).
Moreover recall that each quantum mechanical operator that is associated to a physical
observable, like e.g. the Hamiltonian operator Ĥ, associated to the total energy of the
system E, is said to be Hermitian.
It is possible to show that the eigenfunctions of an Hermitian operator are always orthogonal
(and thus once normalized othonormal) and constitute a “complete” set of functions. A
complete set of orthonormal functions is a set of functions that can be used as basis in the
Fourier transform (or series for discrete systems). In particular if E (the eigenvalues) is
a continuous variable, then it is said that the spectrum of the operator Ĥ is continuous,
and the set {ΨE(~r)}E can be used as a basis for the Fourier transform; instead if E
(the eigenvalues) is a discrete variable, then it is said that the spectrum of the operator
Ĥ is discrete, and the set {ΨE(~r)}E can be used as a basis for the Fourier series. The
completeness is intended in the sense of the Plancherel’s theorem for the Fourier transform
or in the sense of the Fischer-Riesz theorem for the Fourier series. The meaning of this
two theorems was already pointed out, and in particular it is related to the biunivocal
correspondence that the Fourier transform establishes. In particular when they hold (and
they hold when a complete set is used as basis for the Fourier transform or series), it is
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possible to show that the Fourier transform (series) exist and converge to the original
function.
From a practical standpoint, the important point of this treatment is that it is always
possible to express the most general solution for the Schrödinger’s equation as superposition
of the factorized solutions that were presented above. In mathematical terms the way
to superimpose an eventually infinite set of functions is indeed by means of the Fourier
transform (or series), exactly like explained for the build up of the wave packet in section
2.2. Thus the most general solution ψ(~r; t) of the Schrödinger’s equation can be expressed
as superposition of the factorized solutions found above:

ψ(~r; t) =
∫∑

dE C(E) ΨE(~r) e− i
~Et (2.49)

where ΨE(~r) are the solutions of the steady state Schrödinger’s equation, E are the so
called energy eigenvalues (i.e. the possible or “permitted” energy values for the system
described by Ĥ), the symbol

∫∑
dE indicates a summation (i.e. a Fourier series expansion)

if the Hamiltonian operator spectrum is discrete (E is discrete), or an integral (i.e. a Fourier
transform) if it is continuous, and C(E) are the Fourier series coefficients if the Hamiltonian
operator spectrum is discrete while it is the Fourier transform if the Hamiltonian operator
spectrum is continuous. Notice that in the most general case the Hamiltonian operator
spectrum can be partially continuous over a range of E and partially discrete for other
values of E (see later - section 2.3.7).
In both cases the coefficient can be evaluated accordingly to the notation:

C(E) =
(
ΨE(~r)e− i

~Et, ψ(~r; t)
)

=
∫

Ψ∗E(~r)e+ i
~Etψ(~r; t)d~r

i.e. they are the projection on the factorized solutions ΨE(~r)e− i
~Et of the general wave-

function ψ(~r; t). This corresponds exactly to the meaning of Fourier series coefficients, or
Fourier transform (please refer to a signal processing book if not clear - e.g. [95] [96]).

In conclusion, the general solution of the time-dependent Schrödinger’s equation was
provided, and it was noticed that it can be expressed as a superposition (by means of the
Fourier series/transform) of the factorized solutions of the Schrödinger’s equation, that
represent the states at a well defined energy. These factorized solutions have always a
factor dependent on time multiplied by the solutions (the eigenfunctions) of the steady
state Schrödinger’s equation. The latter represent a well defined energy state, while the
exponential term has an imaginary exponent (indeed the energy E, time t and ~ are all
real), thus leading to an oscillatory behavior in time with angular frequency: ω = E/~.
These factorized solutions are solutions at a well defined energy E, solution of the steady
state Schrödinger’s equation. Thus the important insight of this section is that a whatever
solution of the time-dependent Schrödinger’s equation, can be expressed as a superposition
of the factorized solutions that are the solutions at a well defined energy. In other words,
they are the steady state solutions, and thus the solution of the steady state Schrödinger’s
equation lets to known everything is needed about that system, since the other solutions
are simply a superposition of the steady state ones.
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This is not, in principle, much different from the free response study of a Linear Time
Invariant (LTI) system. Indeed in that case the system poles (think to an RC circuit for
example), play the role of the steady states in quantum mechanics, and the general LTI
system response can be always be recovered from the knowledge of the system poles (that
e.g. determine the denominator of all the possible transfer functions).

2.3.6 Eigenvalue problems and steady state Schrödinger’s equa-
tion

In the previous section it was pointed out that the general solution of the time-dependent
Schrödinger’s equation can be written as a superposition of the factorized solutions of the
kind:

ψ(~r; t) = ΨE(~r)e− i
~Et

These factorized solutions are called steady states of the the system. Indeed they are
completely determined if the wave-functions ΨE(~r) (function of space only) are known, and
the ΨE(~r) correspond to the solutions of the so called steady state Schrödinger’s equation:

ĤΨE(~r) = EΨE(~r) (2.50)
that is a time-independent version of the Schrödinger’s equation. Once the stationary
(time-independent) states of the system are known then the generic state of the system
can be recovered with eq. (2.49), but the fundamental point that I am stressing is that
the knowledge about a given system is complete in the moment in which its steady states
ΨE(~r) are known.
This is similar to what is generally done in an electrical circuit with reactive elements.
From circuit theory and LTI system theory should be well known that once the network
poles (i.e. its proper modes, its steady states) are known, then everything about that
system is known, since the general behavior of the network in presence of an external
stimulus can be evaluated, also in transient behavior.
Here the name steady states comes from the fact the great majority of the interesting
physical properties for these states is constant in time. This is a consequence of the
fact that the time appears only in the complex exponent (thus defining an oscillating
behavior with angular frequency ω = E/~). As highlighted in section 2.3.3, in quantum
mechanics we are often interested only in average quantities, and great importance is given
to expected values of physical observables, that are easily recovered starting from the
wave-function as explained in section 2.3.3. If a physical observable F that is not explicitly
dependent on time is considered, then its expected value, if the system is in a steady state
ψ(~r; t) = ΨE(~r)e− i

~Et, is given by:

〈F 〉 =
(
ψ, F̂ψ

)
=
∫

Ψ∗E(~r)e+ i
~EtF̂ΨE(~r)e− i

~Etd~r

and the time dependence is removed:

〈F 〉 =
∫

Ψ∗E(~r)F̂ΨE(~r)d~r =
(
ΨE , F̂ΨE

)
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Thus the expected value is time-independent, reason for which these are called steady
states.

The fact that whatever solution of the Schrödinger’s equation can be expressed as
superposition of steady states limits the system study to the research of its steady states,
solution of the time-independent Schrödinger’s equation. Starting from them, a complete
understanding of the physical system behavior is obtained, as it will be clarified in section
2.3.7, where the steady state Schrödinger’s equation will be effectively solved in few
fundamental examples.

Moreover it is now clear that the time in quantum mechanics plays a minor role,
and indeed no quantum mechanical operator is directly associated to it. Instead the
system energy is likely the most important quantity for a system. It provides information
concerning the actual state of a system and even about its history. This is usually well
known to electrical engineers, since usually the state variables of an electrical network
containing reactive elements (such as capacitors and inductors) are the voltages across the
capacitors and the current that flows through inductors. These two quantities are indeed
linked with the stored energy (that tells the “story” of the element) in those reactive
elements:

WC = 1
2CV

2 and WL = 1
2LI

2

An additional point is now discussed concerning the steady state Schrödinger’s equation
(2.50), here reported for convenience:

ĤΨE(~r) = EΨE(~r)
This is the so called “eigenvalue” equation for the Hamiltonian operator. The similarity
with a conventional eigenvalue problem of linear algebra is evident by noting that the
Hamiltonian operator can be expressed in a matrix form and the state wave-function
in vector form (while E is a scalar real number), see section 2.4. In this equation the
energy levels E (that represents the total energy of the system) are called “eigenvalues”,
and the wave-functions ΨE(~r) are called “eigenfunctions”. The physical meaning of this
equation has to be intended as follows. The eigenvalue equation for the operator Ĥ that
is associated to the physical observable E, when solved, provides the eigenvalues E and
the eigenfunctions ΨE . The system eigenfunctions ΨE are describing the possible system
states in which the physical observable represented by Ĥ assumes exactly the value E
(without uncertainty), in each measurement of that physical observable when the system
is in that specific state. Thus the set of eigenvalues E constitutes the set of all possible
measurement results that are performed on the physical observable represented by Ĥ on
that system, and the set of eigenfunctions {ΨE}E corresponds to the set of all possible
steady states for that system, i.e. the proper modes of such a system.
In terms of Schrödinger’s steady state equation this means that starting from the knowledge
of Ĥ, by solving the energy eigenvalue problem (i.e. eq. (2.50)), all the possible energy
values E for that system are known, and all the related stationary states ΨE are known.

As mentioned it is possible to write an eigenvalue equation for each possible quantum
mechanical operator. In general it is possible to show that, given an operator F̂ that
represents a physical observable F , its eigenvalue equation is:

F̂ψi = fiψi (2.51)
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where fi are its eigenvalues and ψi its eigenfunctions. The physical meaning explained
above still holds: each time a measurement is performed on the physical observable F ,
the possible result can be one among the fi, that means that the system was in the state
ψi. This physical meaning is very evident when the general eigenvalue equation (2.51) is
demonstrated. Indeed it is demonstrated by defining a quantum mechanical operator that
represents the standard deviation (or variance) introduced in section 2.3.3 and by forcing
it to zero, such that fi in eq. (2.51) actually represents a possible result of a measurement
(without uncertainty).
A complete demonstration of this relation is outside the purposes of this work. A detailed
treatment is present in [87].

As already pointed out in the previous section, the operator F̂ has a discrete spectrum
if the set of its eigenvalues {fi}i constitutes a discrete set (i.e. is a numerable set); while
it is said that the operator F̂ has a continuous spectrum if the set of its eigenvalues {fi}i
constitutes a continuous interval in R. Moreover it is said that the operator F̂ has a mixed
spectrum if the set of its eigenvalues {fi}i is both continuous and discrete depending on
the specific system state ψi that is considered.
It was already said that an operator associated to a real physical observable (such as the
Hamiltonian operator associated to the total energy of the system) has the property of
being Hermitian. It is possible to show that the eigenvalues of an Hermitian operator are
always real (indeed they correspond to possible values of a measurement performed on the
system), and moreover that its eigenfunctions are orthogonal (and after a normalization
orthonormal) and constitute a complete set. If the set {ψi}i is a complete then it is possible
to use it as a basis for the Fourier series (if it is a discrete spectrum operator) or Fourier
transform (if it is a continuous spectrum operator). This implies the validity of the already
discussed Fischer-Riesz theorem (for the Fourier series) and Plancherel’s theorem (for the
Fourier transform). This allows to write whatever wave-function ψ as superposition of the
operator eigenfunctions {ψi}i, exactly like expressed in equation (2.49). With the notation
of this section it becomes:

ψ =
∫∑

dE C(E) ψi

with the same meaning of eq. (2.49). This last concept, that is generally true, will be
important again when the matrix representation of quantum mechanical operators will be
considered in section 2.4.

2.3.7 Solution of steady state Schrödinger’s equation in few easy
cases

In this section the solution of the steady state Schrödinger’s equation in some important
cases is addressed. The goal is to find the stationary states solution for the Schrödinger’s
equation that are the proper modes, i.e. the eigenfunctions, for a specific system, and
also its eigenvalues (i.e. the system energy levels). The knowledge of these proper modes
correspond to the complete knowledge about such a system, as widely discussed in sections
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2.3.5 and 2.3.6. The equation to be solved is:

Ĥψ = Eψ (2.52)

where the steady states (eigenfunctions) are simply indicated with ψ in this section, E are
the eigenvalues, and Ĥ is the Hamiltonian operator:

Ĥ = −~
2

2m ∆ + U(~r)

where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , and U(~r) = U(x, y, z).
Very often it is possible to simply a lot the problem, that is a 3D problem, by separating it
into three 1D problems. This is possible whenever the Hamiltonian is completely separable,
that corresponds to the possibility of separating the potential energy term U(x, y, z) into
the sum of three independent contributions:

U(x, y, z) = Ux(x) + Uy(y) + Uz(z)

Indeed under this assumption the Hamiltonian is:

Ĥ = −~
2

2m

[
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

]
+ Ux(x) + Uy(y) + Uz(z)

and it can be expressed as the sum of three independent contributions in the three variables:

Ĥ = Ĥx + Ĥy + Ĥz

where:
Ĥx = −~

2

2m
∂2

∂x2 + Ux(x)

Ĥy = −~
2

2m
∂2

∂y2 + Uy(y)

Ĥx = −~
2

2m
∂2

∂z2 + Uz(z)

In order to complete the separation of variable suitable expressions for the total eigenvalues
and eigenfunctions must be recovered. In particular the total energy is given by the sum
of the eigenvalues in the three directions:

E = Ex + Ey + Ez

while the wave-function is factorized in the product of the three wave-functions in the
three directions:

ψ(x, y, z) = ψx(x)ψy(y)ψz(z)

In this way the 3D problem becomes:[
Ĥx + Ĥy + Ĥz

]
ψx(x)ψy(y)ψz(z) = [Ex + Ey + Ez]ψx(x)ψy(y)ψz(z)
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and by dividing both members by ψx(x)ψy(y)ψz(z) (that are always non-null since the
interesting solutions are the non-trivial ones) and considering that Ĥx applies only to
ψx(x) (analogously for Ĥy and Ĥz):

Ĥxψx(x)ψy(y)ψz(z) + Ĥyψx(x)ψy(y)ψz(z) + Ĥzψx(x)ψy(y)ψz(z) =
= Exψx(x)ψy(y)ψz(z) + Eyψx(x)ψy(y)ψz(z) + Ezψx(x)ψy(y)ψz(z)

→ 1
ψx(x)Ĥxψx(x) + 1

ψy(y)Ĥyψy(y) + 1
ψz(z)Ĥzψz(z) = Ex + Ey + Ez

the problem is divided into a system of three 1D problems (indeed the above equation
is true if the three members at left-hand side are one-by-one equal to three members at
right-hand side): 

Ĥxψx = Exψx
Ĥyψy = Eyψy
Ĥzψz = Ezψz

This separation of variables is possible because of the linearity of the Hamiltonian operator,
and under the assumption of being able to separate the potential energy in the sum of
three independent contributions as already pointed out. This is very often possible in
many problems of practical importance and relevance. Once the variables are separated
the 3D problem is divided into three 1D problems that can be solved independently the
one from the others. The complete 3D solution is then recovered as already pointed out
above: the total energy eigenvalues are obtained by summing the unidimensional ones
while the total wave-function is the product of the unidimensional ones. For this reason in
the following unidimensional problems will be considered.

One dimensional problems

According with the separation of variables it is very often possible to separate a 3D problem
into three 1D problems. The 1D steady state Schrödinger’s equation is (the subscripts “x”
are omitted since in 1D no confusion is possible):

Ĥψ(x) = −~
2

2m
d2

dx2ψ(x) + U(x)ψ(x) = Eψ(x) (2.53)

where the potential energy U(x) is linked with the (conservative) forces that are acting on
the quantum system by means of the classical relation:

~F = −∇U that in 1D is : ~Fx = − d

dx
U(x) (2.54)

An important remark is needed. The important forces in the 1D problems to be addressed
are the electrostatic forces. It is well known that the electrostatic field is conservative,
and thus it can be expressed as the gradient of a scalar function, that is the electrostatic
potential. Consequently eq. (2.54) holds between the electrostatic force (Coulomb force)
and the potential energy. In this picture is evident that in “standard” (i.e. non-relativistic)
quantum mechanics the forces, and thus the potentials and potential energies, are still
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considered and evaluated as classical. The particle is the entity that behaves as non-
classical, due to the wave-particle duality. In some fields of application this is no more
accurate and also the interactions must be quantized (no more classical); this procedure is
called “second quantization”, but it will not addressed in this work.
In the next examples the entity and the kind of the force acting on the particle will be
supposed known. Consequently the potential energy U(x) is always supposed known. If
the electrostatic interaction is repulsive the potential energy is conventionally positive.
Nevertheless the potential energy is defined up to an additive constant, that can shift it.
Thus the same concept can be reformulated as follows: if the electrostatic interaction is
repulsive, the potential energy is of “barrier” type, i.e. in the region in which the repulsive
force is acting a more positive potential is present w.r.t. the rest of the space. And the
particle should overcome a potential barrier to prevail on the repulsive force. Otherwise
if the force is attractive the potential is of “well” type, i.e. in the region in which the
attractive force is acting a more negative potential is present w.r.t. the rest of the space;
and the particle should overcome a potential barrier to leave that region of space and
prevail on the attractive force.

Before proceeding with the examples, it is useful to highlight the general procedure
and point out some useful remarks. The 1D Schrödinger’s equation (2.53) can always be
rewritten like:

− ~2

2m
d2

dx2ψ(x) + U(x)ψ(x) = Eψ(x)

→ d2

dx2ψ(x) + 2m
~2 [E − U(x)]ψ(x) = 0

and said:
k =

√
2m
~2 (E − U(x)) (2.55)

it becomes:
d2

dx2ψ(x) + k2ψ(x) = 0 (2.56)

Notice that k has exactly the meaning of wavenumber. Indeed if the particle is free (no
force is acting on it) then U(x) = 0 and thus the total energy E of the particle is equal to
its kinetic energy:

E = T = p2

2m = ~2k2

2m → k = +
√

2m
~2 E = +

√
2m
~2 T

(where the positive solution of the square root is considered since the wavenumber k = 2π/λ
is defined positive). In the case in which a force (attractive or repulsive) is acting on the
particle, then it has both kinetic and potential energy, and the wavenumber is again given
by the previous expression, in which the kinetic energy T is given by T = E − U(x):

k =
√

2m
~2 (E − U(x))
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The potential shapes that will be addressed in this section will be always piece-wise
constant, thus it will be (for some x) U(x) = U0, constant in space. It follows that equation
(2.56) becomes a second order ordinary differential equation with constant coefficients,
indeed k2 depends on energy but not on space when U(x) = U0 is constant since it becomes:
k =

√
2m
~2 (E − U0). Its solution can be found exploiting the characteristic polynomial (to

this purpose please refer also to appendix A.1):

λ2 + k2 = 0 → λ1,2 = ±
√
−k2 = ±ik

where k was defined above. The solution of the equation is then:
ψ(x) = Ae+λ1x +Be+λ2x = Ae+ikx +Be−ikx (2.57)

Notice that this holds in general if k ∈ R, i.e. if E > U0 ,∀x ∈ R. In the case in which
E < U0 for some value of x then k is purely imaginary. Anyway possible to define the
function βk such that it is positive real and get (see again also appendix A.1):

βk =
√

2m
~2 (U(x)− E) → k = iβk , βk ∈ R , k ∈ C

ψ(x) = Ae+ikx +Be−ikx = Ae−βkx +Be+βkx (2.58)
The constants A and B will be determined by enforcing the boundary conditions. Moreover
notice that in the last case in which E < U0 the exponential terms in the solution (eq.
(2.58)) have real exponents, thus they are non-propagating terms, and they correspond
to exponentially attenuated wave-functions. Instead the solutions in the case of E > U0
correspond to propagating waves. Indeed in equation (2.57) the two exponential terms
correspond to two harmonic waves propagating respectively toward positive x values
(forward wave) and toward negative x values (backward wave). In order to better visualize
it let’s consider the solution of the time-dependent Schrödinger’s equation. From the
previous treatment of the general solution of the Schrödinger’s equation in section 2.3.5,
it is known that the steady states, i.e. the factorized solutions of the time dependent
Schrödinger’s equation, are those given by equation (2.48). Thus the total wave-function
in the 1D problem must be still multiplied by an exponential term that contains the time
dependence as follows:

ψ(x; t) = ψ(x)e−iE~ t = ψ(x)e−iωt (2.59)
where the Planck’s relation E = ~ω is used. Thus the total wave-function (in the case of
E > U0) is:

ψ(x; t) = Ae+ikxe−iωt +Be−ikxe−iωt

The first term (the forward wave) can be rewritten as:
ψ(x; t) = Ae+i(kx−ωt)

that corresponds to a monochromatic plane wave in 1D. Its phase velocity can be estimated
by differentiating the phase and set it to zero:

φ(x, t) = kx− ωt → dφ = ∂φ(x, t)
∂x

dx+ ∂φ(x, t)
∂t

dt = kdx− ωdt = 0

→ vphase = dx

dt
= ω

k
(positive)
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Since vphase is positive it is an harmonic forward wave. Analogous procedure for the second
term leads to a phase velocity vphase = −ω/k, thus negative. It means that it is a backward
propagating monochromatic wave.
It must finally said that it has no much sense talking about a 1D plane wave. Indeed a
plane wave is a wave in which the wavefronts (i.e. the constant phase surfaces in the 3D
space) are planes. The general 3D expression for a plane wave is the following:

ψ(~r; t) = Cei(
~k·~r−ωt) (2.60)

The phase is:
φ = ~k · ~r − ωt

Now the constant phase surfaces can be found by fixing the time instant at a given t0 and
set the phase φ constant, the result is:

φ = constant ⇔ ~k · ~r = kxx+ kyy + kzz = constant

The last expression correspond to a parametric equation of a plane, thus the wavefronts
are planes. In 1D the harmonic plane wave of eq. (2.60) actually becomes :

ψ(x; t) = Cei(kxx−ωt) (2.61)

from which the name used before. It is useful to notice that a plane wave has a purely
parabolic energy dispersion relation. The energy dispersion relation is the relation that
links the total energy E to the wavenumber k. For a plane wave of the kind of eq. (2.61) it
was already pointed out that k = kx is linked to the total energy of the particle by means
of the de Broglie relation:

E(k) = ~2k2

2m
Thus the energy dispersion relation E(k) is quadratic.

1D Free particle

A free particle, with no forces acting on it, is now considered as first practical example.
The particle can be e.g. an electron. It was pointed out in the previous section that no
forces acting on the particle means that the potential energy is constant in each point
(indeed if ~Fx = 0 in eq. (2.54) then U(x) is constant). Since the potential energy is defined
up to an additive constant then this constant can always be set such that the particle
“feels” no potential energy but its energy E is only kinetic: U(x) = 0 , ∀x ∈ R. Thus the
1D steady state Schrödinger’s equation (2.53) becomes:

− ~2

2m
d2

dx2ψ(x) + U(x)ψ(x) = Eψ(x) , U(x) = 0 ∀x ∈ R

→ d2

dx2ψ(x) + k2ψ(x) = 0 , k =
√

2m
~2 E ∈ R
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The wavenumber is real since the total energy E, that equals in this case the kinetic energy,
cannot be negative (indeed a negative energy E would lead to unacceptable solutions).
By writing the characteristic polynomial as pointed out in the previous subsection, the
solution of this equation turns out to be:

ψ(x) = Ae+ikx +Be−ikx (2.62)

i.e. the superposition of a forward and a backward wave. Even if the wavenumber k is
positive (by definition) there are two possible wave vectors (or propagation constants),
that in this 1D case corresponds exactly to ±k, and they appear in the two exponents.
Indeed as already mentioned the first term Ae+ikx is a forward wave, thus with positive
propagation constant +k and momentum p = ~k; while the second term Be−ikx is a
backward wave, with negative propagation constant −k and momentum p = −~k. To
both the terms, i.e. to both the wave-functions, the same energy value E is associated,
indeed as already pointed out this is the case of an harmonic plane wave, with energy:

E(k) = ~2k2

2m
Consequently to each energy value E (or eigenvalue in the notation of eigenvalue problems),
two wave-functions are associated, with the two different propagation constant - see
eq.(2.62). This is obvious if the dispersion relation E(k) is considered. Indeed it is
parabolic and two symmetric values of the wavenumber, namely ±k, lead to the same
energy value E. It is said that the energy level E is degenerate with degeneracy equal to
two, indeed two states, or wave-functions (namely Ae+ikx and Be−ikx), are associated to
the same energy eigenvalue E. Notice that there are no constraints on the possible range
of values of E (apart that it must be non-negative), thus E ∈ R+ and the Hamiltonian
spectrum is thus continuous.

In general if no interaction occurs between the particle and external forces or entities it
will persevere in its state of motion, thus if it assumed to be an incoming particle from
negative to positive x values then its state will be simply the forward wave (B = 0 since it
cannot be reflected since nothing is present apart it):

ψ(x) = Ae+ikx (2.63)

In the case in which the kinetic energy is null, that is E = 0, then the steady state
Schrödinger’s equation simplifies in:

d2

dx2ψ(x) = 0

thus the solution is very simple, and it is recovered by integrating two times in dx:

ψ(x) = A+Bx

Nevertheless in section 2.3.2 it was discussed that the wave-function must be limited, while
here Bx→∞ when x→∞, thus in order to ensure a limited wave-function everywhere
B must be chosen equal to zero: B = 0.
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An important remark is that a free particle is unlocalized. This is evident considering
eq. (2.63). The magnitude squared of ψ(x) is constant (recall that |e±ikx|2 = 1), and
the same holds for the case of E = 0. Obviously the same again holds true for a single
backward propagating wave. In general it is possible to rewrite the 1D wave-function of
eq. (2.62) like:

ψ(x) = Ceikx → |ψ(x)|2 = |C|2 (2.64)
where depending on the sign of k (if it is accepted to embed the sign in k that becomes no
more the wavenumber but the 1D propagation constant instead) the wave-function is a
forward or backward wave. The point is that a free particle has the same probability of
being in each point x of the space and it is unlocalized (indeed its squared magnitude is
constant). This is even more clear considering that a wave-function ψ(x) = e±ikx describes
a particle whose momentum p = ~k is precisely known: that is ∆p = 0. Indeed it is a
monochromatic wave with a well defined k, and from the Heisenberg’s uncertainty principle
this requires ∆x→∞ corresponding to unlocalization in space. Notice that unlocalization
corresponds to a continue range of energy E, i.e. a continuous spectrum of the Hamiltonian
operator Ĥ.

A final remark on the wave-function normalization is provided. In order to appreciate
it let’s consider again the last expression for the 1D plane wave of eq. (2.64). The modulus
squared of the wave-function is constant everywhere. The problem is that the particle is
supposed to be free in all the space, that corresponds to the fact that the potential energy
is everywhere null. If in a region of space a force field is acting then this assumption
is no more true, since a potential energy variation should appear in that region. In
order to normalize the wave-function the following integral must be considered (see the
normalization condition eq. (2.19)):∫

all space
|ψ(x)|2 dx =

∫ +∞

−∞
|C|2 dx = 1 (impossible!)

Nevertheless the problem is that that integral does not converge since it is unlimited
(infinite). In other words the wave-function is not square-integrable: ψ(x) /∈ L2(all space).
The problem is conceptual, because if the wave-function is not square-integrable it cannot
be normalized, and thus it cannot be associated to the physical meaning of position
probability density. This issue can be overcome in three possible ways.
First, the solution is to say that the universe, thus all the space is limited and not infinite.
In this way, said V the volume of the entire universe, the integral is finite thus the wave-
function can be normalized similarly to what done in example 2.1 (section 2.3.2). For
example assuming V = [0, x0] ⊂ R the solution in 1D becomes:∫

V
|ψ(x)|2 dx =

∫ x0

0
|C|2 dx = |C|2 x0 = 1 ⇔ C = 1

√
x0

This solution has very important and unsolved physical, metaphysical and even philosophic
implications. Nevertheless the way of thinking is that the quantum mechanical systems
are always confined at least in the laboratory in which the experiments are carried out.
In this last optics it has sense. Thus a particle can be modeled as “free” even if it is not
(since it is confined by external forces / materials). The continuous energy E would be
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no more continue at all (see later - discretization arises from confinement), but since the
laboratory is macroscopic (thus extremely larger that the particle itself) the energy levels
are so close that it would be impossible to distinguish between two successive levels and
they are at all practical effects considered continuous, thus making true the model and its
interpretation as practical tool.
The second solution starts from the consideration that an infinite physical entity cannot
be directly measured (since it is infinite) and thus believing that it may have an intrinsic
physical reality is a matter of personal philosophy. Consequently the solution is very
practical: independently on the existence or not of an infinite space, the solution consists
in saying that even if ψ(x) /∈ L2(all space), it keeps anyway the meaning of a relative
probability: ∫

V1
|ψ(x)|2dx∫

V2
|ψ(x)|2dx

In the moment in which V1 and V2 tend to infinity their ratio is finite, leading to a relative
probability that is finite and can be suitably normalized. Nevertheless monochromatic plane
waves are mathematically very simple and useful. Indeed the set of all the monochromatic
plane waves (in 1D)

{
1√
Ωe

ikx
}
k
can be shown to be orthonormal and complete, and thus

it can be used as basis for the Fourier Transform (if k is continuous) or series (if k is
discrete); and the usefulness of the Fourier analysis is of extreme both conceptual and
practical importance in quantum mechanics, as it should be clear from the treatment of
previous sections 2.2, 2.3.3, 2.3.5, 2.3.6. In this solution it is implicitly admitted their
physical inconsistency.
The third solution is widely accepted. It is referred as “wide sense normalization”. The
mathematical procedure is quite similar to the one conventionally adopted for introducing
(non formally) the concept of Fourier transform in signal processing courses [95], [96]. In
few words it consists in limiting the domain to a finite domain (similarly to what done in
first solution), but then to enforce periodic boundary conditions, such that the system is left
open. This means the the wave-function does not tend to zero at the domain boundaries
(that would mean confinement, indeed a null wave-function means no probability of finding
the particle there), but instead it has the same phase condition at all the boundaries (i.e.
the frontier) of the domain. Thus since the domain is limited a discretization occurs (see
next examples to better understand this point). Nevertheless, then, the boundaries of the
domain are made tend to infinity, and from a discrete system (Fourier series) a continuous
system is obtained (Fourier transform). So the continuous case is recovered but the gain is
that a normalization condition is found for the continuous case, i.e. for the unlocalized free
particles (monochromatic harmonic plane waves). The normalization condition involves
the functional theory, and in particular it involves the delta Dirac function. For the 1D
case it is: ∫ +∞

−∞
|ψk(x)|2dx = (ψk, ψk′) = 1

2π

∫ +∞

−∞
ei(k−k

′)dx = δ(k − k′)

Sometimes in electromagnetic fields courses similar expressions are found for the modal
functions. With this new delta Dirac normalization condition, that holds for continuous
systems, it is then possible to normalize the unlocalized wave-function in a wide sense,
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and thus to assign them the meaning of position probability density as usual.
A complete discussion with a focus on the important physical, metaphysical and philosophic
implications of all the three solutions is provided in [87].

3D free particle

In this section is recovered the expression for the wave-function of a free particle in the
3D space. Starting from the points gained in the previous section for the 1D free particle
wave-function, and considering the separation of variables presented at the beginning of the
section, it is possible to directly write the final expression for the wave-function. Indeed
from the separation of variables it is possible to solve separately three 1D problems in x, y
and z like already done in the previous subsection, and then the full 3D wave-function is
given by the product of the three 1D wave-functions. By doing so:

ψ(x, y, z) = AxAyAze
ikxxeikyyeikzz = Cei

~k·~r , C = AxAyAz (generally complex)

If time is considered (see eq. (2.49) for the total solution of the time dependent Schrödinger’s
equation):

ψ(x, y, z; t) = Cei
~k·~re−iωt = Cei(

~k·~r−ωt)

Notice that it is a plane wave in the 3D space (as pointed out previously in this section).
Since it is a monochromatic harmonic wave (ω is fixed once E is fixed: E = ~ω), it is an
unlocalized wave-function (see also section 2.2) and the same remarks done in the previous
subsection are valid here. In particular its squared magnitude is constant and thus there
is the same probability of finding the particle in each point of the 3D space.

Potential step

In this subsection the solution of the steady state Schrödinger’s equation for the case of a
potential step is addressed. It is supposed to have zero potential energy for x < 0 and a
constant positive value U0 > 0 for x > 0:

U(x) =
{0 if x < 0
U0 if x ≥ 0

For example this shape of the potential can be the mathematical simplified representation
of the potential experienced by free electron in a metal nearby the surface. Indeed electrons
in a metal can be considered as a free gas around the nuclei, but they are confined in the
material (in normal conditions the metal does not emit electrons). Thus they experience
no potential deep in the metal, but they “feel” a potential step (of height of the order of
the work function) close to the surface, such that they are confined inside the metal. Thus
the potential step can be a mathematical (abrupt) simplification of the (smoother) surface
potential experienced by electrons in a metal [88].
In order to proceed it is better to solve separately the two cases for E < U0 and E > U0.
Case of E < U0: In this case the classical mechanics predicts that the particle cannot
be found in the region with x > 0. Thus it is a classical forbidden region. Think for
example to a marble with kinetic energy E coming from left toward a potential barrier.
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The potential energy barrier can be a hillock, that can be overcome by the marble only if
it has enough kinetic energy E to overcome the gravitational potential barrier U0: i.e. if
E > U0. Otherwise the marble will go up a bit but then it will come back on the left side.
Let’s split the problem into two parts for negative (region I) and positive (region II) x
values and then merge together the solutions by enforcing the wave-function properties
presented in section 2.3.2. For x < 0 no potential is acting on the electrons thus the
solution of the Schrödinger’s equation is analogous to the one already found in the previous
subsections for a free particle:

ψI(x) = Ae+ik1x +Be−ik1x , k1 =
√

2m
~2 E ∈ R+

For x > 0 instead the Schrödinger’s equation becomes:

− ~2

2m
d2

dx2ψII(x) + U0ψII(x) = EψII(x) → d2

dx2ψII(x) + k2
2ψII(x) = 0

with : k2 = iβk , βk =
√

2m
~2 (U0 − E) ∈ R+

that has the general solution (see also previously the general procedure for 1D problems):

ψII(x) = Ce+ik2x +De−ik2x = Ce−βkx +De+βkx

Nevertheless De+βkx is unacceptable since the wave-function must be everywhere limited
and for x→ +∞ the term De+βkx → +∞; thus D is set to zero: D = 0.
The total wave-function is thus:

ψ(x) =
{
ψI(x) = Ae+ik1x +Be−ik1x

ψII(x) = Ce−βkx

A very important remark that makes quantum mechanics different from classical mechanics
is that with quantum mechanics there is a certain probability of finding the particle
(electron) in the region II even in the case it has an energy E < U0. Indeed the wave-
function in the region II with x > 0 it is non-zero, but it is ψII(x) = Ce−βkx. Since βk is
real (ad positive) the probability of finding the particle on the other side of the potential
step is exponentially decreasing with the distance x. Moreover the smaller is E w.r.t. U0,
the faster is the decay (see the expression for βk above). In other words the exponential
decay is faster if U0 is increased, and for U0 → +∞ the wave-function exactly zero at the
boundary (ψII(x) → 0, that means that if the potential step is infinitely high there is
no probability of finding the particle in the classically forbidden region, and the classical
result is recovered). In physical terms there is a given probability of finding the electrons
beyond the metal surface, even this probability rapidly decays with the distance.
The constants A, B and C can be determined by enforcing the continuity on the wave-
function and its first derivative in x = 0:

ψI(x = 0) = ψII(x = 0)

dψI(x)
dx |x=0 = dψII(x)

dx |x=0

→


Ae+ik10 +Be−ik10 = Ce−βk0

ik1Ae
+ik10 − ik1Be

−ik10 = −βkCe−βk0
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These conditions yield A+B = C and ik1(A−B) = −βkC, which in turn give:

B = (ik1 + βk)A
ik1 − βk

and C = 2ik1A

ik1 − βk

Notice that one parameter is free (indeed there are three unknowns A, B and C and only
two equations; thus from Rouché-Capelli’s theorem there are ∞1 solutions). A common
choice is to assume A as known, since it represents the incoming (from left) wave amplitude,
and normalized to 1. The incoming wave field intensity is thus |A|2, while |C|2 is the
intensity of the transmitted wave field and |B|2 the intensity of the reflected back wave
field. Notice that:

|B|2 =
∣∣∣∣ ik1 + βk
ik1 − βk

A

∣∣∣∣2 = (ik1 + βk)
(ik1 − βk)

(−ik1 + βk)
(−ik1 − βk)

|A|2 = |A|2

Therefore the incident and the reflected wave fields have the same intensity. This result
should be interpreted by saying that all incoming (from left) particles reaching the potential
step with an energy E < U0 bounce back, including also those that penetrate slightly into
the region II. Thus at the end all the particles are reflected, and this is a consequence
of the fact that the potential step extends infinitely at right side (for x > 0). If it were
of finite width, and enough thin, there may happen that a particle can cross it even if
it has an energy E < U0 (since the exponential decay may be not enough to ensure zero
probability of finding the particle at right side). This is exactly what happens for enough
thin potential barriers, see later in this section the potential barrier 1D problem.
In figures 2.4 and 2.5 few examples of interest concerning a potential step are reported.
The figures were created in MatLab environment implementing a finite difference method
for solving the Schrödinger’s equation, following what is presented in section 2.4 (the code
is reported in appendix A.4). Notice the exponential tails and the larger penetration in
region II when the energy of the incoming particle is increased.
Case of E > U0: In this case the classical prediction, if the particle is assumed coming
from left, is that it always overcome the step, although it has a smaller velocity in region
II than in region I. Nevertheless the quantum mechanical picture is different even in this
case. Indeed there is a given probability of reflection even if E > U0.
The solution of steady state Schrödinger’s equation in region I is the same of before:

ψI(x) = Ae+ik1x +Be−ik1x , k1 =
√

2m
~2 E ∈ R+

Instead for x > 0 the Schrödinger’s equation becomes:

− ~2

2m
d2

dx2ψII(x) + U0ψII(x) = EψII(x) → d2

dx2ψII(x) + k2
2ψII(x) = 0

with : k2 =
√

2m
~2 (E − U0) ∈ R+
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(a) wave-function

(b) wave-function squared modulus

Figure 2.4: Wave-function (a) and wave-function squared modulus (b) corresponding to an
electron with energy E = 0.354 eV incoming from left toward a potential step of
height U0 = 2 eV. The wave-function and its squared modulus are unnormalized.

It has the general solution:

ψII(x) = Ce+ik2x +De−ik2x

Since now k2 is real (positive) then both the forward and the backward waves are limited
and mathematically acceptable.
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(a) wave-function squared modulus for E = 1.4 eV

(b) wave-function squared modulus for E = 1.989 eV

Figure 2.5: Wave-function squared modulus corresponding to an incoming electron from left
side, with energy E = 1.4 eV (a) and E = 1.989 eV (b) toward a potential step of
height U0 = 2 eV. The wave-functions and their squared moduli are unnormalized.

Nevertheless assuming that the particle is incoming from left, once it overcomes the
potential step there is no more reason why it could be reflected back (no other variations of
the potential occurs, and if U(x) is constant the particle perseveres in its state of motion
with no reflection or scattering phenomena).
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For this reason D = 0 (no backward wave in the region II). Consequently:

ψII(x) = Ce+ik2x and ψ(x) =
{
ψI(x) = Ae+ik1x +Be−ik1x

ψII(x) = Ce+ik2x

Applying then the boundary conditions on the wave-function and its first derivative
continuity:

ψI(x = 0) = Ae+ik10 +Be−ik10 = ψII(x = 0) = Ce+ik20

dψI(x)
dx |x=0 = ik1Ae

+ik10 − ik1Be
−ik10 = dψII(x)

dx |x=0 = ik2Ce
+ik20

→
{
A+B = C
k1(A−B) = k2C

→ B = k1 − k2

k1 + k2
A and C = 2k1

k1 + k2
A

The important fact, as already pointed out, is that in this case B is not zero, thus a particle
has a non-null probability of being reflected back in x = 0 due to the potential step even
in it has an energy E greater than the step height: E > U0. This is again an effect that
arises only in quantum mechanics. Notice that this reflection is a characteristic behavior
of all the wave fields whenever a region of discontinuity of the physical properties of the
medium is present (analogously to the well known behavior of elastic or electromagnetic
waves).
A final remark is provided concerning negative energies. If the calculations are repeated
with E ≤ 0, enforcing the boundary conditions it turns out that the only possible solution
is ψ(x) = 0 (i.e. the trivial one), that means no state is possible with negative or null
energy (zero probability means no particle in that state). This holds is general, and as
already pointed out for the free particle case, this is not surprising.

Potential barrier and tunnel effect

It is now considered a potential barrier of thickness W and height U0, of the kind of the
one in figure 2.6. The corresponding expression of the potential is:

U(x) =


0 if x < 0 (region I)
U0 if 0 ≤ x ≤ W (region II)
0 if x > W (region III)

It is supposed to have an incoming particle (electron) of energy E from left side (as
indicated in the picture). Analogously to the previously considered examples the case in
which the incoming particle energy is negative or null (E ≤ 0) is not interesting since it
leads to null states of the kind ψ(x) = 0. Thus only the case E > 0 is taken into account.
Case of E < U0: In this case from classical mechanics it is expected a full reflection of the
incoming particles (as already described for the potential step). Nevertheless in quantum
mechanics it turns out that there is a finite probability of finding the incoming particles
on the right side of the barrier, thus there is a certain probability of transmission. This is
referred as “tunnel effect”.
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Figure 2.6: Rectangular potential energy barrier. The barrier height is U0, its width is W .
Incident (from left), reflected and transmitted paths are shown. The three regions
are: I for x < 0; II for 0 ≤ x ≤W ; and III for x > W .

In regions I and III the potential energy U(x) is zero, thus the steady state Schrödinger’s
equation is the one for the free particle already discussed.
The general solutions in the two regions are:

ψI(x) = Aeik1x +Be−ik1x and ψIII(x) = Ceik3x +De−ik3x

with : k1 = k3 = k =
√

2m
~2 E ∈ R+

In region I both an incident and a reflected wave fields are expected. Instead by supposing
no other potential energy variations after W in region III only a transmitted wave is
expected, thus it is chosen D = 0 (no backward wave in region III).
In region II the Schrödinger’s equation becomes:

− ~2

2m
d2

dx2ψII(x) + U0ψII(x) = EψII(x) → d2

dx2ψII(x) + k2
2ψII(x) = 0

with : k2 = iβk , βk =
√

2m
~2 (U0 − E) ∈ R+

that has the general solution:

ψII(x) = Fe+ik2x +Ge−ik2x = Fe−βkx +Ge+βkx

Since the barrier extends from x = 0 to x = W no constraints are present on ψII(x) since
it results always limited. The fact that both a positive and a negative exponentials are
presents has to be interpreted as follows. The incoming particle from left has a probability
to be transmitted at x > 0, but this probability decays exponentially with space accordingly
with Fe−βkx. Since in x = 0 there is a potential discontinuity there is a non-null probability
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of reflection that give rise to the backward term in region I. Analogously the potential
discontinuity in x = W gives rise to a non-null probability of reflection of the (exponentially
decaying) transmitted wave again region II. This is a backward propagating wave, that is
exponentially attenuated (since E > U0), and corresponds to the term Ge+βkx (since it is
propagating in −x direction it corresponds to an attenuated wave). Then if the barrier
width W is finite (and enough thin) a non-negligible probability of finding the particle in
the region III is present, described by the transmitted term: ψIII(x) = Ceik3x. Thus the
total wave-function is:

ψ(x) =


ψI(x) = Aeikx +Be−ikx if x < 0 (region I)
ψII(x) = Fe−βkx +Ge+βkx if 0 ≤ x ≤ W (region II)
ψIII(x) = Ceikx if x > W (region III)

The quantum mechanical result for which it is possible to find the particle in region III
even if it has an energy E < U0 has no classical analogous and is called “tunnel effect”. It
is at the origin of the gate current in conventional MOSFETs and in FinFETs. Notice that
(as mentioned in the introductory chapter -section 1.1-) the tunneling is an exponential
phenomenon with the barrier width W , thus a linear decrease in the barrier width leads
to an exponential increase of the tunneling probability.
The values of the five constants A, B, C, F and G can be determined as done in the
previous examples by enforcing the continuity on the wave-function and on its first space
derivative in the discontinuity points x = 0 and x = W . The incoming wave field intensity
|A|2 can be assumed to be known (indeed it is obtained a system of four equations and
five unknowns). In this case usually the explicit expression of the final wave-function is
not of interest. Instead the transmission and reflection coefficients T and R are usually
considered interesting. It is possible to define them as:

T =
∣∣∣∣CA
∣∣∣∣2 and R =

∣∣∣∣BA
∣∣∣∣2

It can be verified that T +R = 1. The details on these calculation are not reported here,
and are left to the interested reader. Good references can be [87] (in Italian) and [88].
An example of tunneling through a potential barrier is reported in figure 2.7, that is the
output of a MatLab code (reported in appendix A.4) implementing a finite difference
method based on the considerations of section 2.4.
Case of E > U0: Similarly to what happens in the case of a potential step in this case it
is classically expected that all the incoming particles reaching the barrier from left are
transmitted. Instead with quantum mechanics a finite probability of reflection is present
both at x = 0 and x = W , i.e. in the potential discontinuity points.
The same procedure already carried out for the previous case can be followed for obtaining
the following result for the total wave-function in the three regions:

ψ(x) =


ψI(x) = Aeikx +Be−ikx if x < 0 (region I)
ψII(x) = Ceik

′x +De−ik
′x if 0 ≤ x ≤ W (region II)

ψIII(x) = Feikx if x > W (region III)

where : k =
√

2m
~2 E ∈ R+ and k′ =

√
2m
~2 (E − U0) ∈ R+
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(a) wave-function

(b) wave-function squared modulus

Figure 2.7: Wave-function (a) and wave-function squared modulus (b) corresponding to an
electron with energy E = 0.82 eV incoming from left toward a potential barrier of
width 0.5 nm and height U0 = 1 eV. The wave-function and its squared modulus
are unnormalized.

Notice that k corresponds to the wavenumber of a free electron and ~k′ is the momentum
of the particle while crossing the barrier. The values of the constants B, C, D and F can
be determined as functions of A by applying the boundary conditions on wave-function
continuity and on its first derivative continuity in x = 0 and x = W , again four equations
are recovered and thus one free parameter, namely A, appears in the solution. The term
Be−ikx corresponds to a back reflected wave that has no classical analogous. It is possible
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to define a reflection coefficient analogously to what done previously in the case of E > U0.
Instead of defining the transmission coefficient, in this case, it is possible to define the so
called “transparency” T of the barrier: T = |F |2/|A|2. It is possible to show (see e.g. [88]
or [87]) that there are values of E/U0 for which there is a perfect transmission, i.e. T = 1.
These values of input energy E correspond to a particle de Broglie wavelength (inside the
barrier) λ′ = 2π

k′ that is an integer multiple of 2W :

resonance condition : λ′ = 2π
k′

=
√

2π2~2

m(E − U0) = 2Wn , n ∈ N \ {0}

This phenomenon is called “resonance effect”. In figure 2.8 a pair of examples of transparency
T as a function of particle energy E are reported for rectangular potential barriers. Notice
the resonance peaks of transmission.

Figure 2.8: Rectangular potential energy barrier transparency example. The barrier height
is of about U0 = 4.5 eV while its thickness is 20 nm. The transmission coefficient
is calculated both starting from analytical theoretical formulae (following the
approach of [97]), and with a numerical method. The numerical method is an
implementation of a Finite Element Method for the solution of the Schrödinger’s
equation, conceptually similar to what will be presented in section 2.4.1. The two
methods provide very similar results indeed the two curves are well overlapped.
Notice the resonance peaks and the non-null transmission also for E < U0.

1D potential well

The potential energy shape considered in this section has an opposite shape w.r.t. the
potential barrier considered previously. An example is reported in figure 2.9. As mentioned
at the beginning of the present section, a positive potential (e.g. of barrier type) corresponds
to a repulsive interaction, instead a negative potential (e.g. of well type) corresponds to an
attractive potential. In figure 2.9 (a) it is evident that the particle experiences a negative
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potential in the region −L
2 ≤ x ≤ +L

2 , while it experiences a null potential in x < −L
2 and

x > +L
2 . This means that there is an electrostatic attractive force acting on the particle

in the central region, within the well, while around it the particle does not feel it and
behaves like a free particle (since no potential is acting on it). In particular, also in this
case it is convenient to separate the various cases depending on what is the total energy
E of the considered particle (electron). If E < −U0 no state is possible (see previous
subsections, here it is analogous) and this case is not of interest. If −U0 ≤ E ≤ 0 it is said
that the particle is in a “bound state”. Classically it cannot overcome the potential barrier
(exactly as already seen for the potential step or the barrier) and go out of the well, thus
the particle is classically confined within the well. Thus bound states are conventionally
the ones with negative energy. Instead if E > 0 then the particle is classically free to move
everywhere in the space (analogously to the barrier case), indeed it has enough energy to
jump out of the well and move in the zero potential region. The states with positive energy
are called “free states” or “continuum states”. Indeed the solution of the Schrödinger’s
equation in this case is analogous to the one for the free particle, and the energy E is
continuous: E ∈ R+. The sign convention on energy E is thus:

• bound states: with negative energy −U0 ≤ E ≤ 0. They represent classically
confined states. Analogously to the cases of the potential step and barrier in quantum
mechanics there is a given probability of finding the particle outside the well (if it
has a finite height). It will be shown in a while that these states have a discrete
spectrum (of Hamiltonian operator), i.e. discrete energy levels.

• continuum states: with positive energy E > 0. They represent free particles moving
with no particular constraints. These states have continuous range of eigenvalues
(E ∈ R+), thus the Hamiltonian spectrum is said to be continuous.

This convention is widely spread and often used, especially in chemistry. In which a
negative energy level corresponds to a bound state, that means that the electron is confined
in that chemical structure (e.g. atoms, molecules, crystal, etc...). The binding energy (or
dissociation energy) is the amount of energy to make the electron free, thus it corresponds
to the energy difference between the considered energy level and the zero-energy level
(vacuum level). If that amount of energy is provided to the electron (e.g. in a molecule) it
undergoes to a state transition from a bound state (in which e.g. it is kept in the molecule)
to a free state. Thus the binding energy is exactly the amount of energy to be provided to
an electron in a bound state in order to break its chemical bond and make it free.
Even if this convention is widely spread, in the practical solution of the steady state
Schrödinger’s equation addressed in this section it will be assumed to have zero potential
inside the well, thus U(x) = 0 for −L

2 ≤ x ≤ +L
2 , and a positive potential value U0

(constant) outside the well. Since the potential energy is defined up to an additive constant
the final result does not change and exactly the same results are recovered. The only thing
that changes is the sign convention on states, that is now different from the one above. In
particular the bound states will be the ones with energy 0 ≤ E ≤ U0 and the free ones
will be those with E > U0 (see figure 2.9 (b) ).
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Figure 2.9: 1D potential energy well. The well height is U0, its width is L, the potential has
even symmetry. Left side (a) shows a potential well with the sign in accordance with
the standard sign convention for bound and free states. The binding potential is
negative −U0, the bound states are those with energy −U0 ≤ E ≤ 0, the free states
are those with energy E > 0. Right side (b) shows the potential well considered
here with positive U0, and with the following sign convention. The bound states
are those with 0 ≤ E ≤ +U0, the free states those with E > U0.

With this convention, the potential shape is:

U(x) =



U0 if x < −L
2

0 if − L
2 ≤ x ≤ +L

2

U0 if x > +L
2

Notice that this potential shape can be an oversimplification of the real the case of a free
electron gas within a metal. If the positive ions potential shape is neglected, the potential
inside the metal is flat and chosen equal to zero. Nevertheless the metal does not emit
electrons, that are confined in it, and this corresponds in having an high potential barrier
U0 at the metal interface. The height U0 of the potential barrier will be of the order of the
metal work function, that corresponds to the energy to be provided in order to extract an
electron from the metal.
As already said, the case with negative energy E < 0 is not of interest. Instead let’s start
from the free states with energy E > U0. This case is similar to the already considered
one of potential barrier with energy E greater than the potential energy barrier one. The
procedure of proceeding is exactly analogous and contrarily to classical mechanics it turns
out that there is a finite probability of reflection in the two discontinuity points x = −L

2
and x = +L

2 . It is possible to get explicit expressions for the transmission and the reflection
coefficients, and also in this case it is possible to verify an energy dependence of these
coefficients, with both transmission peaks and reflection peaks. A full treatment is provided
in [87]. Notice that no constraints on the range of energy values is recovered thus they can
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be continuous.
The attention is now focused on the most interesting case: the one of bound states, i.e.
with energy 0 ≤ E ≤ U0.
In region I the potential is U(x) = U0 > E and the steady state Schrödinger’s equation
becomes:

− ~2

2m
d2

dx2ψI(x) + U0ψI(x) = EψI(x) → d2

dx2ψI(x)− 2m
~2 (U0 − E)ψI(x) = 0

→ d2

dx2ψI(x)− β2
kψI(x) = 0 → d2

dx2ψI(x) + k2
1ψI(x) = 0

with : k1 = iβk , βk =
√

2m
~2 (U0 − E) ∈ R+

The characteristic polynomial is: λ2 − β2
k = 0 from which the two roots are: λ1,2 = ±βk =

= ±
√

2m
~2 (U0 − E). The general solution is thus:

ψI(x) = Ae+βkx +Be−βkx , with : A,B ∈ R

In order to ensure an everywhere limited wave-function B = 0, because otherwise the limit
for x→ −∞ diverges. Thus the solution becomes:

ψI(x) = Ae+βkx , A ∈ R

In region II the potential is null: U(x) = 0. Thus the solution is the one for free electrons:

− ~2

2m
d2

dx2ψII(x) = EψII(x) → d2

dx2ψII(x) + k2
2ψII(x) = 0

with : k2 = k =
√

2m
~2 E ∈ R+

Since no confusion is possible k2 is simply called k. The characteristic polynomial is:
λ2 + k2 = 0; from which the two roots are: λ1,2 = ±ik = ±i

√
2m
~2 E. The general solution

is thus:
ψII(x) = Ce+ikx +De−ikx , with : C,D ∈ C

No constraints are present on C and D since the exponentials are complex and the ψII(x)
is limited everywhere.
In region III the potential is again U(x) = U0 > E, thus the solution is formally the same
of region I, with the same βk (since U0 is supposed to be the same also βk is the same).
The solution can be written as:

ψIII(x) = Fe+βkx +Ge−βkx , with : F,G ∈ R
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In order to ensure a limited wave-function everywhere F = 0, because otherwise ψIII(x)
would diverge for x→ +∞. Thus the solution in region III becomes:

ψIII(x) = Ge−βkx , G ∈ R

In summary the total wave-function is:

ψ(x) =


ψI(x) = Ae+βkx if x < −L

2 (region I)
ψII(x) = Ce+ikx +De−ikx if − L

2 ≤ x ≤ +L
2 (region II)

ψIII(x) = Ge−βkx if x > +L
2 (region III)

By enforcing the boundary conditions on continuity of ψ(x) and its first derivative in
x = −L

2 and in x = +L
2 it is possible to find the values for the constants A, C, D and G.

In order to do that it is simpler to rewrite the wave-function as follows:

ψII(x) = Ce+ikx +De−ikx = C [cos(kx) + isin(kx)] +D [cos(kx)− isin(kx)] =
= (C +D) cos(kx) + (iC − iD) sin(kx)

and said: K1 = A, K2 = C +D, K3 = iC − iD and K4 = G the wave-function becomes:

ψ(x) =


ψI(x) = K1e

+βkx if x < −L
2 (region I)

ψII(x) = K2cos(kx) +K3sin(kx) if − L
2 ≤ x ≤ +L

2 (region II)
ψIII(x) = K4e

−βkx if x > +L
2 (region III)

The continuity conditions are:

ψI(−L
2 ) = ψII(−L

2 ) (cond. 1)

ψII(+L
2 ) = ψIII(+L

2 ) (cond. 2)

d
dxψI(x)|x=−L2

= d
dxψII(x)|x=−L2

(cond. 3)

d
dxψII(x)|x=+L

2
= d

dxψIII(x)|x=+L
2

(cond. 4)

For example from (cond. 1) one gets:

K1e
−βk L2 = K2cos(k

L

2 )−K3sin(kL2 )

→ K1e
−βk L2 −K2cos(k

L

2 ) +K3sin(kL2 ) +K4 · 0 = 0

Proceeding analogously for the other three conditions an homogeneous linear system of
four equations in four unknowns (that are K1, K2, K3 and K4) is recovered. Then it is
possible to select only non-trivial solutions by enforcing its determinant (in matrix form)
to be null (a trivial solution corresponds to all four constants K1, K2, K3 and K4 null,
that means no state or null state ψ(x) = 0). The result is a mathematical condition to be
satisfied by both k and βk that leads thus to a condition on the allowed energy values (since
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both k and βk are function of energy E). It turns out that the only possible energy values
for steady states in a quantum well are discrete. Nevertheless a full analytical solution
is not possible in the case of finite height quantum well. Notice that the quantization
here comes out naturally, by enforcing the boundary conditions on ψ(x). This is the main
difference between a quantum theory based on the Schrödinger’s solution and the first
attempts of Bohr, in which the quantization was introduced ad hoc. Thus bound states
have quantized energy levels, that is: the Hamiltonian operator (in a bound system) has a
discrete spectrum for 0 < E < U0 (bound states), while has a continuous spectrum for
E > U0 (free states).

The same result can be obtained in an another way by noting that the potential U(x)
has an even symmetry, and thus exploiting symmetry conditions of the wave-functions.
Nevertheless, also in this case a full analytical solution is not possible and at a certain point
a numerical or graphical solution of a system is required. This procedure is highlighted in
appendix A.2.

Of course whatever is the method used for the solution of this problem the final result
does not change: a finite number of discrete energy levels are present (or allowed) in the
quantum well. Thus discretization is the main feature of the bound states. It is possible
to show that the number of quantized energy levels increases with the height U0 of the
well and with the square of its length L. The quantity U0

(
L
2

)2
is sometimes called the

“binding power” of the well since it represents the strength of the bond. If the binding
power is increased then the number of discrete energy levels is increased, i.e. the number
of permitted bound states increases, thus meaning that the intensity of the attractive force
is greater.

It is possible to solve numerically the steady state Schrödinger’s equation for the case
of a quantum well of height U0. Examples of numerical results, obtained in MatLab
environment by means of an implementation of the finite difference method presented in
section 2.4 are reported in figures 2.10, 2.11 and 2.12. The MatLab code used to creates
these figures is reported in appendix A.3. Notice that when the well is increased or enlarged
the number of bound eigenstates is increased, as already pointed out.

In conclusion, the Hamiltonian operator, in the case of a finite height quantum well,
presents a mixed spectrum: the bound states have discrete energy eigenvalues, correspond-
ing to the discrete part of the spectrum, while the free states have a continuous range of
energies E, thus corresponding to the continuous part of the spectrum.
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Figure 2.10: Permitted energy eigenvalues in a 1D potential energy well with L = 10 nm and
U0 = 1 eV. Notice that they are discrete, and only 17 bound states are possible
for this specific quantum well. In black the quantum well shape (in eV).

Figure 2.11: First four wave-functions corresponding to the first four energy levels of figure 2.10.
The same quantum well is considered: 1D potential energy well with L = 10 nm
and U0 = 1 eV. Notice that the exponential tails in the classical forbidden regions.
The wave-functions are unnormalized; in black the quantum well shape (in eV).
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Figure 2.12: Squared moduli of all the 17 wave-functions corresponding to the 17 energy
eigenvalues of figure 2.10. The same quantum well is considered: 1D potential
energy well with L = 10 nm and U0 = 1 eV. The squared moduli are positioned at
a height corresponding to their relative eigenvalue for aesthetic reasons. They are
unnormalized; in black the quantum well shape (in eV).

1D infinite height potential well

In this section an infinite height quantum well is considered. The difference w.r.t. previous
section is that U0 → +∞ at the well boundaries. In this case there are no continuum states,
since there cannot exist particles with energy E greater than infinity: E > U0 → +∞.
Thus only bound states will be found. In this case it is possible to get an analytical
solution, as it will be shown in a while. The procedure is always the same of the previously
investigated 1D problems. Before summarizing the main steps notice that if in the finite
height well it is made the limit for U0 → +∞, the real decaying exponentials in the two
classically forbidden regions I and III tend to zero. Thus it is expected to find perfectly
confined wave-functions, that go to zero at the well boundaries.
The potential shape is assumed to be analogous to the one of figure 2.9 but with U0 = +∞.
The calculations are a little bit simplified with a shift in the x-coordinate axis such that
the well is in between x = 0 and L. Figure 2.13 represents the new potential shape. The
fact that the potential energy blows up to infinity at the well boundaries represents that
very strong forces are acting in the two boundary points x = 0 and x = L, resulting in
a full reflection of the particle. Indeed ψ(x = 0) = 0 = ψ(x = L) means no probability
of finding the particle in x = 0 and c = L, that means that it is completely reflected
(conservation of matter and total probability holds).
The Schrödinger’s equation in region I and III is analogous to the one already solved in
the previous section, but with U0 → +∞. It it possible to write the exponential functions

86



2.3 – The Schrödinger’s equation

Figure 2.13: Infinite height 1D potential energy well. The well height is ∞ at x = 0 and x = L;
the well width is L, the potential has even symmetry.

and then make them tend to zero. The steps are summarized in the following equations:

d2

dx2ψI(x) + k2
1ψI(x) = 0 with : k1 = k3 = iβk , βk =

√
2m
~2 (U0 − E)

The general solutions thus are:

ψI(x) = Ae+βkx +Be−βkx , ψIII(x) = Ce+βkx +De−βkx

In order to ensure an everywhere limited wave-function it must be set: B = 0 and C = 0.
And since βk =

√
2m
~2 (U0 − E) → +∞ when U0 → +∞ the two wave-functions tend to

zero (for ψI(x) remember that x is negative x < 0, thus making the exponent negative
since βk is positive):

ψI(x) = Ae+βkx → 0 , ψIII(x) = De−βkx → 0

In region II the Schrödinger’s equation is the one for the free particle:

d2

dx2ψII(x) + k2
2ψII(x) = 0 with : k2 = k =

√
2m
~2 E ∈ R+

whose solution is:
ψII(x) = ψ(x) = Fe+ikx +Ge−ikx

By enforcing the continuity in x = 0 one gets ψ(x = 0) = 0 = F +G from which G = −F ,
and so:

ψ(x) = Fe+ikx − Fe−ikx = F (e+ikx − e−ikx) = 2iFsin(kx) = Ksin(kx)

where K = 2iF is constant. The boundary condition in x = L leads ψ(x = L) = 0 =
Ksin(kx), but since the constant K cannot be null (otherwise ψ(x) = 0 for each x value,
but this means no state - trivial solution), it can be rewritten as:

sin(kL) = 0 ⇔ kL = 0 + nπ , n ∈ N \ {0}
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Notice that n = 0 would lead to zero k value that is again the trivial solution. Moreover
in general it would be mathematically acceptable an integer n ∈ Z \ {0}, but for positive
and negative symmetric n values the same wave-function would be recovered due to the
sin function anti-symmetry, thus it has sense to choose n ∈ N \ {0}. Solving for the
momentum gives:

k = nπ

L
, p = ~k = nπ~

L
, n ∈ N \ {0} (2.65)

The energy eigenvalues of the particles are then given by:

E = ~2k2

2m = n2π2~2

2mL2 , n ∈ N \ {0} (2.66)

In conclusion, the electrons (or particles) in an infinite height quantum well cannot have
arbitrary energy values but only discrete values given by eq. (2.66), i.e. the energy is
quantized. This is a general result that holds whenever quantum confinement occurs,
due to a potential shape that confines the particles in a certain region of space. Notice
again that quantization comes out naturally by enforcing the boundary conditions on the
general solutions of the steady state Schrödinger’s equation, and it is not introduced ad
hoc. An acceptable wave-function that satisfies these boundary conditions is possible only
for certain values of energy. In the case of a step or of a barrier the particles were not
confined and indeed continuum states were present, with in general a continuous energy E.
Moreover notice that the minimum energy for a particle in a quantum well is E1 = π2~2

2mL2 > 0
and not zero. This minimum energy is related to the uncertainty principle, indeed the
uncertainty on the particle position is of the order of L: ∆x ∼ L. The particle is moving
back and forth in the 1D well with a momentum p, leading to an uncertainty on the
momentum of around ∆p ∼ 2p. The uncertainty principle (eq. (2.13)) requires ∆x∆p ≥ h,
thus 2Lp ≥ h that is p ≥ π~/L, that gives: E ≥ E1. The existence of a “zero point
energy”, like E1, is typical of all the quantum confinement problems.
Finally the wave-functions ψ(x) = Ksin(kx) can be normalized. From the normalization
condition (eq. (2.19)):∫ +∞

−∞
|ψ(x)|2 dx = |K|2

∫ L

0
sin2

(
nπ

L
x

)
dx = 1

The value of the integral is L/2, thus: |K|2 L2 = 1, from which K =
√

2
L . Therefore the

normalized wave-functions are:

ψnormalized(x) =
√

2
L
sin

(
nπ

L
x

)
, n ∈ N \ {0} (2.67)
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3D potential well

In this section a 3D quantum well is considered. It means that the potential is of the kind
of the one of figure 2.13 in all the three directions x, y and z. Since quantum confinement
occurs in all directions, this structure is sometimes also called “quantum dot”, or better: it
can be an oversimplified representation of a real quantum dot. In general the lengths of the
sides of potential “box” can be different, they are assumed to be Lx, Ly and Lz. Assuming
that the potential can be expressed as the sum of the three different wells (as happens for
a potential box just described), it is possible to speed up the solution by exploiting the
separation of variables presented at the beginning of this section. In this way the total
energy of a particle (electron) inside the 3D potential box is simply the sum of the energy
eigenvalues in the three directions: E = Ex + Ey + Ez. From equations (2.65) and (2.66)
one gets:

kx = nxπ

Lx
, ky = nyπ

Ly
, kz = nzπ

Lz
, nx, ny, nz ∈ N \ {0} (2.68)

and said: k2 = k2
x + k2

y + k2
z , the energy eigenvalues are then given by:

E = Ex + Ey + Ez = ~2k2
x

2m +
~2k2

y

2m + ~2k2
z

2m = ~2k2

2m

E = π2~2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
y

L2
y

)
, nx, ny, nz ∈ N \ {0} (2.69)

Then the 3D wave-functions are given by the product of the 1D ones, thus:

ψ(x, y, z) = ψ(x)ψ(y)ψ(z) = Kxsin (kxx)Kysin (kyy)Kzsin (kzz)

→ ψ(x, y, z) = Csin

(
nxπ

Lx
x

)
sin

(
nyπ

Ly
y

)
sin

(
nzπ

Lz
z

)
(2.70)

where C = KxKyKz = (2/L)3/2 (see eq. (2.67)). An interesting case is the one of
Lx = Ly = Lz = L. In this case the above expressions become:

E = ~2k2

2m = π2~2

2mL2

(
n2
x + n2

y + n2
z

)
, nx, ny, nz ∈ N \ {0} (2.71)

ψ(x, y, z) = Csin

(
nxπ

L
x

)
sin

(
nyπ

L
y

)
sin

(
nzπ

L
z

)
(2.72)

Notice that the energy eigenvalues depend only on (n2
x + n2

y + n2
z), this means that all the

set of nx, ny and nz that provide the same value of (n2
x + n2

y + n2
z), provide also the same

energy level. Nevertheless when nx, ny and nz are changed, even without changing E, they
make changing the wave-function ψ(x, y, z), thus the same energy level may correspond to
different wave-functions or states and degeneracy occurs.
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General potential shapes

So far various cases were treated, and the main result is that the quantum confinement
gives rise to energy quantization. This holds in general and not only for energy eigenvalues.
Indeed in section 2.3.6 it was pointed out that the steady state Schrödinger’s equation is
the eigenvalue problem for the Hamiltonian operator Ĥ, but in general it is possible to
write an eigenvalue problem for each operator F̂ representing whatever physical observable
F . By doing so an equation of the kind of:

F̂ψi = fiψi (2.73)

is obtained. Its solutions corresponds to the physical observable eigenvalues {fi}i and
eigenstates (or eigenfunctions) {ψi}i. The meaning (that comes out from the way in which
eq. (2.73) is derived - see section 2.3.6 for details), is the following: by performing a
measurement on F it is possible to find as a result one of the possible {fi}i values, let’s say
fn, that means that the system was in the corresponding state ψn. It is possible to verify
that quantum confinement (of the kind of the quantum well investigated so far) does imply
quantization, not only of energy levels but also of the other physical observables such as
angular momentum and so on... This can be verified by solving the relative eigenvalue
problems of the kind of eq. (2.73).
In general an operator can have a discrete spectrum (i.e. its eigenvalues are quantized),
a continuous spectrum (i.e. its eigenvalues can assume each value in a real range of
values with continuity) or a mixed spectrum (a mix of the previous cases is possible). For
example in the general case of a potential energy of the kind of the one in figure 2.14,
the Hamiltonian operator presents a mixed spectrum. Indeed, as indicated in the figure,
for negative energies bound states are present (due to confinement) and its spectrum is
discrete (E1, E2, E3, etc... in the figure); while for E > 0 no confinement occurs and the
energy is continuous (continuum states or unbound states).
It may be thus useful to gain an intuition about the physical insights of system under
study, starting from the facts so far known. In figures 2.17, 2.18 2.15, 2.16 are reported
some examples. In order to understand the physical results that can be obtained by a
simulator it may be useful to intuitively draw the wave-functions specifying if they are
propagating waves or attenuating in each region (before solving the equations). To this
purpose a good reference may be [88].
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Figure 2.14: General potential energy shape example, typical of a central force problem. At
large x value the interaction vanishes thus U(x) → 0. Instead for x = 0 the
potential energy tends to infinity U(x)→∞ because of the repulsion. For small
x values an attractive interaction occurs and U(x) is negative. On right side
of the potential shape is reported the Hamiltonian operator spectrum (energy
eigenvalues), discrete for negative energies (bound states) and continuous for
positive energies (free states).

Figure 2.15: Wave-function corresponding to an electron tunneling through two consecutive
potential barriers. The first barrier is 0.5 nm thick and 1 eV of height, the second
is 0.25 nm thick and 2 eV of height. The electron energy is E = 0.73 eV. Notice
the exponential decay within the barriers; the wave-function is unnormalized. The
graph was generated with the MatLab code reported in appendix A.4.
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Figure 2.16: Wave-function squared modulus corresponding to an electron tunneling through
two consecutive potential barriers. The potential shape and the structure is
the same of figure 2.15. Notice the exponential decay within the barriers; the
wave-function is unnormalized. The graph was generated with the MatLab code
reported in appendix A.4.

Figure 2.17: Confinement in a quantum well. The well is 10 nm long and 1 eV tall. Inside it
a barrier of 5 nm of width and height 0.8 eV is present. The potential shape is
the curve in black. In total 13 bound states are present in this structure. Their
wave-functions are reported in this graph; they are unnormalized and they are
placed at an height corresponding to their relative energy eigenvalues. Notice the
degeneracy and the spacing between the enrgy levels. The graph was generated
with the MatLab code reported in appendix A.3.
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Figure 2.18: Confinement in a quantum well. The well is the same of picture 2.17. Here four
wave-functions are reported, they correspond to energy levels: E3 = 0.174 eV (top
left), E8 = 0.662 eV (top right), E10 = 0.815 eV (bottom left) and E11 = 0.855 eV
(bottom right). Notice the exponential decay in the central region (of height
0.8 eV) of the top ones, while the bottom ones are free in that region (oscillating).
The wave-functions are unnormalized. The graph was generated with the MatLab
code reported in appendix A.3.

2.4 Finite difference method and matrix representa-
tion

The purpose of this section is to illustrate how a differential operator, such as the Hamilto-
nian one Ĥ, can be represented in matrix form. This will be useful to understand next
theoretical topics in this thesis work, especially related to the Non-Equilibrium Green’s
Function formalism (see chapter 5). As already mentioned in the introductory sections
of this chapter, this representation is also the foundation of the Heisenberg’s formalism
of quantum mechanics, the so called “matrix mechanics”, in which operators are indeed
matrices. The task will be addressed in two steps, following the approach of [89].
Firstly, a finite difference discretization of the steady state Schrödinger’s equation is pre-
sented. It is interesting to notice that Heisenberg initially conceived his matrix mechanics,
starting from finite difference discretization of differential operators. In particular he
developed a theory that involved only physical quantities directly observable. In doing so,
he exploited the Fourier analysis to rewrite the classical dynamic (differential) equations in
finite difference equations for the state transition probabilities, from one state to another
state of the quantum system. Notice that this formulation was initially conceived by
Heisenberg, but in the form known today, it is the result of the work of many other
scientists, among which Dirac produced a great contribution.
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Then, the general method for representing an operator in matrix form and the Dirac’s
notation will be briefly addressed.

2.4.1 Finite difference method for the solution of the steady
state Schrödinger’s equation

The 1D Hamiltonian operator is:

Ĥ = − ~2

2m
d2

dx2 + U(x)

It is possible to think of solving numerically the steady state Schrödinger’s equation, and
to do that it is necessary to discretize the domain x and the Hamiltonian operator.
The space axis can be discretized in N of nodes: x = (x1, x2, x3, ..., xn, ..., xN−1, xN ), in
this way it becomes an array. Let’s suppose a uniform spacing discretization, that means
the the step between two nodes in the space array is constant and fixed to a = xn+1 − xn
(for each considered n). Since the potential energy shape U(x) is supposed known it can
be also discretized in a set of N equidistant points: U = (U1, U2, U3, ..., Un, ..., UN−1, UN ),
where the generic Un is intended as: Un = U(xn). The constant − ~2

2m is unchanged.
The second derivative operator can be instead discretized by means of a finite difference
formula, that is intuitively derived from the geometrical meaning of derivative. In numerical
methods courses the finite difference method is usually treated, nevertheless what is needed
here is just the finite difference formula for the second order derivative. Thinking that
the derivative is defined by means of a limit of the incremental ratio, it is possible to
approximate the first order derivative with one of the two formulae (forward or backward
finite difference formula):

dψ

dx
∼ ψn+1 − ψn

a
, or : dψ

dx
∼ ψn − ψn−1

a

where ψn = ψ(xn) and a = xn+1 − xn = xn − xn−1. The second order derivative can be
obtained by deriving two times w.r.t. space, thus:

d2ψ

dx2 ∼
ψn+1−ψn

a − ψn−ψn−1
a

a
= ψn+1 − 2ψn + ψn−1

a2

It follows that the Hamiltonian operator, when it is applied to the wave-function ψ(x) in
the node xn of the discretized domain, becomes:

Ĥψ(xn) = Ĥψn ∼ −
~2

2m
ψn+1 − 2ψn + ψn−1

a2 + Unψn

Notice that it depends on the potential only in that node Un = U(xn), and on the wave-
function at nodes n− 1, n and n+ 1. It is now defined the quantity t0 (accordingly with
[89]):

t0 = + ~2

2ma2
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and the product of the Hamiltonian operator applied to ψn becomes:

Ĥψn ∼ −t0 (ψn+1 − 2ψn + ψn−1) + Unψn = −t0ψn−1 + (2t0 + Un)ψn − t0ψn+1 (2.74)

At this point the steady state Schrödinger’s equation can be discretized exploiting the
finite difference method, and it can be translated in a matrix equation:

Ĥψ = Eψ →
[
H
] {
ψ
}

= E
{
ψ
}

where the symbol
[
H
]
indicates a matrix of dimension NxN and the symbol

{
ψ
}
a column

vector of dimension N . The product
[
H
] {
ψ
}
is a matrix product (rows by columns). Since

the application of Ĥ to ψn involves the nodes n− 1, n and n+ 1 the Hamiltonian matrix[
H
]
will be tridiagonal, with (2t0 + Un) on the main diagonal, and −t0 on the upper and

lower diagonal (see eq. (2.74) for a reference). The final result is thus:



2t0 + Un −t0 0 0 0 0 ...
−t0 2t0 + Un −t0 0 0 0 ...
0 −t0 2t0 + Un −t0 0 0 ...
0 0 −t0 2t0 + Un −t0 0 ...
... ... ... ... ... ...





ψ1
ψ2
...
ψn
...
ψN


= E



ψ1
ψ2
...
ψn
...
ψN


Notice that by performing the matrix product between

[
H
]
and

{
ψ
}
equation (2.74) is

recovered.

2.4.2 Matrix representation of differential operators
The purpose of this section is to address the matrix representation of differential operators.
In order to do that, the important concept of basis set will be also introduced. These
topics will be further discussed in the next section, where the Dirac’s notation will be
addressed. In this section I will follow the approach of [89], while in the next one the one
of [87].

In section 2.3.5 it was mentioned that the general solution of the time-dependent
Schrödinger’s equation can be always be expressed as superposition of the steady state
factorized solutions, that are solution of the steady state Schrödinger’s equation, i.e. of the
Hamiltonian operator eigenvalue problem. This result was summarized in eq. (2.49), in
which the general case of a mixed spectrum Hamiltonian was considered. Equation (2.49)
is reported here for convenience:

ψ(~r; t) =
∫∑

dE C(E) ΨE(~r) e− i
~Et

The important fact, that enables to write the most general wave-function ψ(~r; t) as a
superposition of the steady state (time-dependent) wave-functions ΨE(~r) e− i

~Et, by means
of the coefficients C(E), is that the steady state wave-functions are an orthogonal (or if
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normalized an orthonormal) and complete set of functions. Exactly like an orthonormal set
of N vectors can be used as a basis for a representation of each vector in the N -dimensional
vector space, the orthonormal complete set of wave-functions can be used as a basis for the
representation of whatever wave-function ψ(~r; t). Notice that “complete” means exactly
that this procedure, namely the representation of a whatever function as superposition of
the functions belonging to the orthonormal complete set, can be performed. In general,
as pointed out in section 2.3.3, this procedure is analogous at all to perform a Fourier
series expansion (for discrete systems) or transform (for continuous systems). Indeed as
known from signal theory courses, the meaning of the Fourier analysis is to change the
basis of representation of the function (signal) from time domain to frequency domain,
or better: to express the signal as a superposition of purely harmonic (monochromatic)
signals. A complete set of functions is thus a set of functions that can be used as basis for
representing whatever function. The general function ψ(~r; t) can be thus expressed as a
linear combination (i.e. a superposition) of the basis functions, each suitably weighted
by means of the coefficient C. These coefficient can be interpreted exactly like Fourier
coefficients (see e.g. [96] and [95]), since the procedure is essentially a Fourier expansion.
Moreover these (Fourier) coefficients have an analogous meaning to the coefficients of a
vector w.r.t. a new vector basis for the vector space: i.e. they are the projection of the
general function ψ(~r; t) on the representation basis ΨE(~r) e− i

~Et. For conventional vectors
this corresponds to a scalar product, for functions it is the same but the scalar functional
product must be considered. It is formally defined by equation (2.32). In the case of the
projection of the general wave-function ψ(~r; t) onto the basis set made by the steady states
it becomes:

C(E) =
(
ΨE(~r)e− i

~Et, ψ(~r; t)
)

=
∫

Ψ∗E(~r)e+ i
~Etψ(~r; t)d~r

Let’s focus for the moment only in the case of a discrete spectrum of the Hamiltonian
operator. In this case equation (2.49) becomes a summation:

ψ(~r; t) =
∑
i

C(Ei) ΨEi(~r) e−
i
~Eit

i.e. it is a Fourier series (discrete case). The general 1D Fourier series expansion of the
function f(x) in the basis of harmonic exponential functions {ei 2πn

P
x}n (where P is a

constant often assumed equal to the period of f(x) or equal to 2π) is usually written as
(see signal processing courses or [96] and [95]):

f(x) =
∑
n

cne
i 2πn
P
x , cn = 1

P

∫
f(x)e−i 2πn

P
xdx =

(
ei

2πn
P
x, f(x)

)
From which it is evident that the coefficients C(Ei) are essentially Fourier coefficient, with
the meaning discussed above, for the basis set ΨEi(~r) e−

i
~Eit. The difference w.r.t. to the

usual Fourier series is only the choice of the basis set, that usually is the set of harmonic
waves (complex exponentials). At this point it should be very clear what discussed above,
and the general theory can now be addressed.

All these concepts hold in general and not only for the steady state wave-functions.
In particular the only requirement to express whatever function (wave-function) as a

96



2.4 – Finite difference method and matrix representation

superposition (summation) of basis functions is that the set of basis functions is orthogonal
(if normalized orthonormal) and complete. This is always true for the eigenfunctions of an
Hermitian operator. Thus if the quantum mechanical operator is Hermitian, it is possible
to exploit its eigenfunctions as basis set. It is possible to show that all the quantum
mechanical operators that represent physical observables (such as the Hamiltonian one,
the momentum and the angular momentum ones, and so on...) are Hermitian.
In general it is thus possible to express whatever wave-function as a linear combination
of suitable functions, that constitute the so called basis set. If the basis functions are
indicated with {um(~r)}m then the wave-function can be written as:

ψ(~r) =
∑
m

cmum(~r) , cm = (um(~r), ψ(~r)) =
∫
u∗m(~r)ψ(~r)d~r (2.75)

where a time-independent wave-function was considered for simplicity (the general results
do not change - see previously eq (2.49) and the discussion above), and the integral is
generally a three dimensional integral in space (d~r = dxdydz).
From the geometrical meaning pointed out previously it is possible to represent the wave-
function ψ simply by means of a column vector consisting of the expansion coefficients
(exactly like is often done in linear algebra):

ψ(~r) → {c1 c2 ... cn ...}T

where T indicates the transpose. Notice that in general the Fourier series involves an
infinite number of basis functions {um(~r)}m, nevertheless also a finite number of basis
functions can be used. The latter case is always the case to be used in a numerical
implementations on computers. In the first case the dimension of the coefficients vector
will be infinite, in the latter finite. A vector space with a infinite number of dimensions
is called Hilbert space (that is indeed a generalization of the concept of vector space for
infinite dimensions), thus in the first case the basis set is a basis (thus a coordinate system)
for a representation in an Hilbert space of the wave-function. In the latter case if the
(finite) dimension of the basis set is called M then the representation becomes:

ψ(~r) =
M∑
m=1

cmum(~r) thus : ψ(~r) → {c1 c2 ... cM}T (2.76)

Notice that this last case is not so different from the presented finite difference discretization
of the steady state Schrödinger’s equation in the previous section 2.4.1. In that case indeed
it was:

ψ(~r) → {ψ(~r1) ψ(~r2) ... ψ(~rM )}T

An important point now is that the basis set {um(~r)}m can be chosen quite arbitrary, and
if a good choice is made, i.e. the basis functions {um(~r)}m are similar to the wave-functions
that appear in the considered problem, then it is possible to accurately represent the
wave-function ψ(~r) with just few terms (to the extreme if u1 = ψ then only one term is
necessary, with c1 = 1 - even if it has no sense).
By substituting the wave-function expansion into the steady state Schrödinger’s equation
one gets:

Ĥψ = Eψ , with : ψ(~r) =
∑
m

cmum(~r)

97



Brief review of quantum mechanics

→
∑
m

cmĤum(~r) = E
∑
m

cmum(~r)

since the Hamiltonian operator has to be applied to a function um cannot be taken out
on the left, instead since Ĥ is linear and cm are constant in ~r (they are the result of an
integral in d~r thus the space dependency is lost) they can be taken out on the left. Then
by multiplying both sides by u∗n(~r) and integrating over all ~r yields to:∑

m

cm

∫
Ĥum(~r)u∗n(~r)d~r = E

∑
m

cm

∫
um(~r)u∗n(~r)d~r

From which: ∑
m

Hnmcm = E
∑
m

Snmcm (2.77)

where:
Hnm =

∫
u∗n(~r)Ĥum(~r)d~r (2.78)

Snm =
∫
u∗n(~r)um(~r)d~r (2.79)

Equation (2.77) can be rewritten in matrix form as:[
H
] {
c
}

= E
[
S
] {
c
}

(2.80)

where square brackets indicate a matrix and the curly ones a column vector (E is a scalar).

Example 2.4: To definitely get the point let’s consider this example in which only two basis
functions u1 and u2 are present. The summation over m is to be considered with n fixed
(indeed eq. (2.77) was derived by multiplying the steady state Schrödinger’s equation by a
fixed function u∗n(~r)), thus the left hand side term is:

2∑
m=1

Hnmcm = Hn1c1 +Hn2c2 =
[
Hn1 Hn2

] {c1
c2

}

where the product is a matrix product (rows by columns). This must hold for each n, that
corresponds exactly to the matrix product between the matrix of elements Hnm (n is the
row index and m the column one) and the column vector of the coefficients, that is:[

H11 H12
H21 H22

]{
c1
c2

}
=
{
H11c1 +H12c2
H21c1 +H22c2

}
Indeed eq. (2.77) was written by multiplying the steady state Schrödinger’s equation
by u∗n(~r), and thus in principle a system of equations of the kind of eq. (2.77) should
be written for each n possible value. These equations are obtained by multiplying the
steady state Schrödinger’s equation by all the possible u∗n(~r), one at time. And a system
of equations of that kind can be though in matrix form, in which each row of the matrix
corresponds to an equation of the kind of eq. (2.77) with a different n value, exactly as it
happens in this simple example.
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This argument should have convinced of the validity of eq. (2.80). The final column vector
(last equation right hand side) consist of the coefficient column vector of the wave-function
that is the result of the application of the Hamiltonian operator to the state ψ. �

Evaluating the integrals of eq. (2.78) and (2.79) is the most time-consuming step in this
process. Nevertheless once they are known the conventional linear algebra can be used
(much simpler than differential equations), and an almost direct numerical implementation
is moreover possible.

Notice that
[
S
]
is called overlap matrix, and in the case of an orthonormal basis set

it coincides with the identity matrix
[
I
]
. Indeed in that case the basis functions are

supposed normalized such that the integral of eq. (2.79) is always null except when m = n,
that corresponds to diagonal elements, for which it is normalized to 1. In the case of an
orthonormal basis set the matrix form of the Schrödinger’s equation becomes:[

H
] {
c
}

= E
[
I
] {
c
}
→

[
H
] {
c
}

= E
{
c
}

(2.81)

indeed the matrix product between E
[
I
]
and

{
c
}
and the scalar product between E and{

c
}
are the same. Notice that now, with the matrix notation just introduced, the steady

state Schrödinger’s definitively resembles a standard eigenvalue problem, see especially the
orthonormal basis set case of equation (2.81).
In general it is possible to have a complete set, that thus can be used as basis set, even
if it is not orthonormal but simply a set of linear independent functions, from which the
need of defining properly the overlap matrix. This point will be further addressed in the
next section 2.4.3.

Supposing of exploiting the linear algebra instruments to solve the eigenvalue problem,
one gets the energy eigenvalues Ei and the corresponding eigenvectors, or better their
representation in the chosen basis. Thus the problem can be to turn back to real space and
get ψ(~r), starting from the knowledge on the coefficient eigenvectors

{
c
}
i
. The solution is

immediate when eq. (2.75) is considered. Indeed:

ψi(~r) = 1√
Zi

∑
m

cmium(~r) , ψ∗i (~r) = 1√
Zi

∑
n

c∗niu
∗
n(~r)

where Zi is a normalization constant for the i-th eigenfunction, that is chosen in order to
satisfy the normalization condition eq. (2.19):∫

ψ∗i (~r)ψi(~r)d~r = 1
Zi

∫ ∑
n

∑
m

c∗niu
∗
n(~r)cmium(~r)d~r = 1 → Zi =

∑
n

∑
m

c∗nicmiSnm

A set of very simple, clear and useful examples for becoming familiar with this notation
and related topics are reported in [89].
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2.4.3 The Dirac’s notation and Hilbert spaces
In this section the same topics of the previous one will be discussed, but with the gain of
the Dirac’s notation. Moreover the mathematical formalism behind the addressed topics
will be also briefly discussed. In this section I will mainly follow the approach of [87], and
also of [89].

As already mentioned in the previous section, eq. (2.75) corresponds a representation
of the wave-functions ψ(~r) in terms of the basis functions um(~r) and this is not so different
from the representation in a given basis of a vector in a given vector space. In this optics
the wave-function ψ(~r) can be seen as a state vector in the infinite dimensional function
space called the Hilbert space. If the number of basis functions is finite (see eq. (2.76))
then the wave-functions ψ(~r) corresponds to a state vector in the M -dimensional Hilbert
space. The coefficients cm in equations (2.75) and (2.76) are like components of the state
vector ψ(~r) along the basis functions um(~r), i.e. the coordinate system chosen as basis.
Choosing a different basis set is exactly like choosing a different coordinate system, and
the component cm along the different axes change while the state vector ψ(~r) is the same.
In the Dirac’s notation the state vector associated with a given wave-function ψ(~r) is
indicated with the so called “ket”: |ψ〉, while the basis functions um(~r) are indicated with
the kets: |m〉 (sometimes also with: |um〉). In this notation equation (2.75) becomes:

|ψ〉 =
∑
m

cm |m〉 (2.82)

Before going on let’s recall the definition of vector space. A linear vector space V is a set of
elements called vectors, in which a sum operation and a product by a scalar operation are
defined. The sum operation has commutative and associative properties, and associates to
each pair of vectors in V a third vector again in V (V is closed w.r.t. sum) in a unique
way. The scalar product has distributive and property w.r.t. vectors and distributive and
associative properties w.r.t. scalars, and it has for result a vector that is again element in
V (V is closed w.r.t. scalar product). Notice that the scalar can be in general a complex
number.
The concept of Hilbert space is a generalization of the concept of vector space for the case
in which the basis vectors are indeed basis functions. Its elements are often indicated
with the “ket” symbol introduced above. Analogously to conventional vector spaces, it
is possible to define the scalar product between two functions in the Hilbert space. This
concept was already introduced by means of eq. (2.32), and it is now rewritten pointing
out the Dirac’s notation:

〈f |g〉 =
∫
f∗(~r)g(~r)d~r (2.83)

where f and g are any two functions. The similarity of this integral with a scalar product
is seen very well considering that the integral has meaning of sum over a continuum d~r.
Thus it sums all the products f∗g, that is effectively what a standard scalar product does:
it sums the component by component products (if one works with complex numbers the
complex conjugates of the first vector components are used, i.e. f∗). Notice that the
complex conjugate of the function f is indicated with the so called “bra” 〈f |. The scalar
product is thus represented by the juxtaposition of 〈f | and |g〉, that is: 〈f |g〉.
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In order to represent functions in an Hilbert space W a basis set of functions is needed.
Analogously to conventional vector spaces, a basis is constituted by a linearly independent
set of generators. With the term “generators” it is intended that each function of the
Hilbert can be expressed as linear combination of the basis functions. Thus said {um}m
the basis set for the space W :

|f〉 =
∑
m

cm |m〉 , ∀f ∈ W

while with linearly independent it is meant:∑
m

cm |m〉 = 0 ⇔ cm = 0 , ∀ m

In general it is thus possible to have non-orthogonal basis set, from which the importance
of the overlap matrix

[
S
]
of elements Snm =

∫
u∗n(~r)um(~r)d~r ; as already mentioned. The

basis functions are orthogonal if their scalar products are null except for the case n = m.
If they are also normalized to 1 then they said to be orthonormal. For an orthonormal
basis set the following relation is satisfied:

〈n|m〉 =
∫
u∗n(~r)um(~r)d~r = δnm , δnm =

{0 if n /= m
1 if n = m

where δnm is the Kronecker’s delta. If the basis set is non-orthogonal (see eq. ( 2.79) for
the definition of Snm):

〈n|m〉 =
∫
u∗n(~r)um(~r)d~r = Snm (2.84)

Again notice that for orthonormal basis sets the overlap matrix becomes the identity one:[
S
]

=
[
I
]
(which is a diagonal matrix with ones on its diagonal).

Operators and matrix representation

From linear algebra it is known that a linear application (e.g. Ĥ) can be represented in
matrix form, thus it is intuitive that is possible to write a differential (i.e. linear) operator
in a matrix form. Moreover it was already shown the procedure to turn the differential
operator Ĥ into a matrix representation

[
H
]
with the discussion about the steady state

Schrödinger’s equation. To this purpose see equations (2.77) and (2.78); where the latter
is a definition for the elements Hnm of the matrix

[
H
]
. Equation (2.78) is now rewritten

exploiting the Dirac’s notation:

Hnm =
∫
u∗n(~r)

(
Ĥum(~r)

)
d~r = 〈n|Ĥ|m〉 (2.85)

where Ĥ |m〉 indicates the application of the Hamiltonian differential operator to the basis
function um (i.e. the state |m〉), and the juxtaposition of the bra 〈n| with Ĥ |m〉 indicates
the scalar product. This holds in general for any operator F̂ , that in matrix form becomes[
F
]
with elements Fnm:

Fnm =
∫
u∗n(~r)

(
F̂ um(~r)

)
d~r = 〈n|F̂ |m〉 (2.86)

101



Brief review of quantum mechanics

Example 2.5 : In order to prove the last statement let’s start from the consideration
that in general a differential operator F̂ acting on a state vector |ψ1〉 changes it into a
different state vector |ψ2〉. Usually only transformations such that |ψ1〉, |ψ2〉 ∈ W (with
W considered Hilbert space), are of interest. From the above discussion it is known that
(see eq. (2.75) where Dirac’s notation is now used):

|ψ1〉 =
∑
m

cm |m〉 , cm = 〈m|ψ1〉 =
∫
u∗m(~r)ψ1(~r)d~r

As said above, the application of F̂ on the state |ψ1〉 produces a different state vector |ψ2〉:

|ψ2〉 = F̂ |ψ1〉

The point now is how to get the matrix representation for F̂ such that the above relation
can be written in matrix form as:

|ψ2〉 =
[
F
]
|ψ1〉

In order to do that let’s start from the first relation:

|ψ2〉 = F̂ |ψ1〉 = F̂
∑
m

cm |m〉 =
∑
m

cmF̂ |m〉

then it is possible to represent the new state vector F̂ |m〉, that represents the differential
operator F̂ acting on the basis state |m〉, as a linear combination of the basis functions
like:

F̂ |m〉 =
∑
n

cn |n〉 , cn = 〈n|F̂ |m〉 =
∫
u∗n(~r)

(
F̂ um(~r)

)
d~r = Fnm

and thus, by substituting in the previous relation:

|ψ2〉 =
∑
m

cmF̂ |m〉 =
∑
m

cm
∑
n

cn |n〉 =
∑
m

∑
n

cm 〈n|F̂ |m〉 |n〉 =
∑
m

∑
n

cmFnm |n〉

from which an explicit expression for the coefficient vector that represent the state vector
ψ2 in the basis set is recovered:

|ψ2〉 =
∑
n

(∑
m

cmFnm

)
|n〉 =

∑
n

Kn |n〉 , Kn =
∑
m

Fnmcm

Indeed the last relation corresponds to a representation of the vector state ψ2 in the basis
set |n〉, given by the set of basis functions {un(~r)}n (now the index is called n but in
principle it can be called m as done previously for ψ1), by means of the coefficients Kn,
that all together constitute the coefficient vector of ψ2 in the basis {un}n. The coefficient
vector definition Kn =

∑
m Fnmcm can be interpreted in matrix form as (remember that

the matrix product is row by column):

{
K
}

=
[
F
] {
c
}
↔



K1
K2
...
Kn

...


=


F11 F12 ...
F21 F22 ...
... ... ...
... ... ...
... ... ...





c1
c2
...
cm
...
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Where
[
F
]
is exactly the matrix of elements Fnm as defined above. In conclusion it follows

that (again the summation over n is interpreted as matrix product - i.e. the scalar product
of the coefficient column vector with the basis set vector):

|ψ2〉 =
∑
n

Kn |n〉 =



K1
K2
...
Kn

...


{
u1 u2 ... un ...

}
=

=


F11 F12 ...
F21 F22 ...
... ... ...
... ... ...
... ... ...





c1
c2
...
cn
...


{
u1 u2 ... un ...

}
=
[
F
]
|ψ1〉

where indeed:

|ψ1〉 =
∑
m

cm |m〉 =



c1
c2
...
cn
...


{
u1 u2 ... un ...

}
=
{
c
} {
u
}T

In the last equation the summation over m is interpreted as a scalar product between
the coefficient column vector and the vector that has the basis functions for components
(um → |m〉); then it is interpreted as matrix product (rows by columns). �

The overlap matrix elements Snm were already written with the new notation in equation
(2.84). The steady state Schrödinger’s equation in matrix form was already written in
equation (2.80). Notice again that if the basis set is orthonormal then

[
S
]

=
[
I
]
and the

Schrödinger’s equation becomes the one of eq. (2.81). From the discussion carried on in the
example 2.5 above, it follows that is also possible to write the steady state Schrödinger’s
equation directly like: [

H
]
|ψ〉 = E |ψ〉

Indeed: [
H
]∑
m

cm |m〉 = E
∑
m

cm |m〉 →
[
H
] {
c
} {
u
}T = E

{
c
} {
u
}T

That corresponds exactly to eq. (2.81) with a multiplication (to the right) of both members
by
{
u
}T (notice that previously

{
u
}
was assumed to be a row vector).

Notice that the time-dependent Schrödinger’s equation with the Dirac’s notation
becomes:

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉

where the Hamiltonian operator can be intended in its differential or matrix form.
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Hermitian operators and some properties

Good references for all the properties of linear operators can be [87] (in Italian) and [91]
(a practical introduction is also provided in [89]). In the following of this work it will not
needed to handle operators in matrix operation (the only concepts needed are the ones
already introduced), consequently all the properties of operators in Hilbert spaces are not
introduced.
For example it is possible to perform changes of basis (in a similar manner to what is
done in the linear algebra courses), to define the inverse operator (quite similarly to
inverse matrix definition), to define operations on operators such as their product, the
commutation and anti-commutation operations and so on...
In this section I will only mention a pair of properties that will be important in the next
chapters of this work.

An operator is said unitary if its inverse F−1 equals its complex conjugate transpose F †:

F−1 = F † → F †F = 1

where “1” is the identity operator: 1|m〉 = |m〉.

A linear operator F̂ is said to be Hermitian when its matrix representation equals its
complex conjugate and transpose:[

F
]

=
[
F
]†

, i.e. Fij = F ∗ji

It is possible to show that all the operators representing real physical observables are
Hermitian and that an Hermitian operator has real eigenvalues. This has sense if one
thinks to the physical meaning of eigenvalues: they are the only possible results of a
measurement on the physical observable F represented by F̂ . Moreover it is possible to
show that a matrix that is Hermitian in a given basis remains Hermitian also in any other
representation. Another useful property of Hermitian operators is that their eigenfunctions
are orthogonal (after normalization orthonormal) and thus linear independent and they
can be used as basis set. Notice that a representation of an Hermitian operator (e.g. Ĥ)
in the basis of its eigenfunctions is diagonal (thus in energy domain

[
H
]
is diagonal), and

the diagonal elements are its eigenvalues (thus the energy eigenvalues in the case of
[
H
]
).

The continuum case

In this section extra-topics that are not strictly required for understanding the next of this
thesis about the modeling of molecular devices are reported for completeness, since they
were beforehand mentioned in some sections. They will be introduced not rigorously, but
with a focus on the meaning.

So far it was implicitly assumed that the basis set {um}m constitutes a discrete set of
functions, even if infinite. This is the case of the Fourier series theory. Nevertheless in
equation (2.49) the symbol

∫∑
was used to indicate the general case of a mixed spectrum

Hamiltonian operator, meaning that a continuum basis set can also be chosen. Now it is
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moment of definitively clarify this point by introducing the correct nomenclature.
It is well known that the maximum number of linearly independent vectors that can be
extracted by a vector space V equals its dimensionality (e.g. the 3D space with coordinate
axes x, y and z has dimensionality 3 - isomorphous to R3). The same concept holds also for
an Hilbert spaceW . In particular the Hilbert spaces can have a finite dimensionality (think
to eq. (2.76) in which only M basis functions are used to represent the general state ψ), or
an infinite one (think to eq. (2.75) or (2.82) in which an infinite number of basis functions
is used to represent the general state ψ). Moreover in the latter case the dimensionality
can be infinite and countable (discrete case) or alternatively finite and uncountable (thus
with at least a part that is continuous). To understand better, think that the cardinality
(i.e. the number of elements of a set) of the integer numbers sets such as N or Z is infinite
countable, while the one of the real numbers set R is infinite uncountable. For the Hilbert
spaces the situation is similar. Hilbert spaces with finite dimensionality or with an infinite
countable dimensionality are called “separable” Hilbert spaces. Instead Hilbert spaces
with an infinite uncountable dimensionality are called “non-separable” Hilbert spaces.
To get the point, let’s assume that the chosen basis set is the set of the eigenfunctions
of the Hamiltonian operator (that is Hermitian and thus with a complete set of linearly
independent eigenfunctions). In the case of quantum confinement (bound states) Ĥ has a
discrete spectrum, i.e. the discrete eigenvalues Ei cannot assume each real value but only
few discrete values. The corresponding eigenfunctions are thus a countable set of generators
functions. More precisely if an infinite height quantum well is considered, the number of
bound states is infinite, thus the eigenfunctions are an infinite countable set of functions.
In this case a general state ψ can be represented in the Hamiltonian operator basis {um}m
by means of eq. (2.75), or with the Dirac’s notation eq. (2.82). Otherwise if a finite height
quantum well is considered, the number of bound states is finite, thus the eigenfunctions
are finite countable set of functions. In this case a general state ψ can be represented in
the Hamiltonian operator basis {um}m by means of eq. (2.76). Nevertheless in this last
case the finite height quantum well admits also a part of the Hamiltonian spectrum that is
continuous: indeed for energies above the well height there is no constraint on the energy
values, that can be continuous (real). Thus if both the bound and the unbound states
of a finite quantum well are chose as basis for an Hilbert space representation, then its
dimensionality will be infinite and uncountable, because of the continuum states (with
energy eigenvalues that are an infinite range of real numbers).
In the continuum case of infinite uncountable dimensionality of the Hilbert space the
previously relations must be reinterpreted as follows. The representation of the general
state ψ as linear combination of the basis vector is no more a Fourier series expansion,
but it becomes a Fourier anti-transform (think to the -not formal!- introduction of the
Fourier transform as limit case of the Fourier series - see [96], [95]). Assuming that the
chosen basis is the one composed by the Hamiltonian operator eigenfunctions (such that
the notation is the one already used in section 2.3.5), and considering only the continuum
part of Ĥ spectrum:

ψ(~r; t) =
∫
dE C(E) ΨE(~r) e− i

~Et =
∫
dE C(E) uE

where the basis eigenfunctions are simply called uE = ΨE(~r) e− i
~Et. The previous equation
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corresponds to a Fourier anti-transform. The coefficients C(E) correspond instead to a
Fourier transform w.r.t. to the basis uE :

C(E) = (uE , ψ(~r; t)) =
∫
dEu∗Eψ(~r; t) =

∫
dEΨ∗E(~r) ei i~Etψ(~r; t)

Even in this case everything is analogous to what discussed in the previous sections. The
main difference is in the normalization condition, that in the continuum case must involve
the delta Dirac function instead of the Kronecker delta:

〈n|m〉 = δ(n−m)

where δ(n−m) indicates a delta Dirac. A delta Dirac is indeed a generalization of the
Kronecker delta for the case of continuum systems, and indeed it appears also in the
normalization condition of unbounded wave-functions (see section 2.3.7).

2.5 Few Other useful topics in quantum mechanics
The purpose of this section is to briefly summarize other important results of quantum
mechanics. These are “extra” topics in the sense that they are not necessary to understand
the rest of this work. Nevertheless they are important achievements and in my opinion a
brief mention is due. A full treatment is present e.g. in [87].

Correspondence principle

Bohr in 1923 stated the correspondence principle: a correct quantum theory must “contain”
also the well known classical laws, in the sense that classical laws must be recovered from
quantum predictions each time they are applied to a macroscopic (classical) system.

Ehrenfest’s theorem

Ehrenfest’s theorem states that the time evolution of expected (average) values of physical
observables, follow the same laws of the corresponding classical physics quantities.
The main consequence of this theorem is that in solid state physics, e.g. in conventional
electronic devices, the classical physics can be used, if the physical quantities are intended
to be average values. This is the main theoretical foundation for using classical physics in
modeling conventional electronic devices, in which indeed average quantities (such as the
mobility, the average velocity, etc...) are used. This allows to use the drift-diffusion set of
equations for modeling electronic devices.
Notice that there is no a theoretical foundation for the widely used quantum corrections of
such semi-classical models. Indeed there is no reason why a “bit” of quantum mechanics
should be used in a semi-classical model (intended in the sense of Ehrenfest’s theorem).
Instead a purely quantum approach has all the reasons to be used in such devices, since
indeed they are devices in which quantum mechanical effects are non-negligible and the
classical approximation of physics (see above the Bohr’s correspondence principle) does not
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hold. The non-equilibrium Green’s function formalism, introduced later in this work, is a
purely quantum mechanical approach for modeling transport in nano-electronic devices,
thus it should be used.

Coefficient vector physical meaning

Notice that for normalized wave-functions expressed in an orthonormal basis, the following
relation holds (it is called the Parseval’s relation):

〈ψ|ψ〉 =
∫
ψ∗ψd~r =

∫
|ψ|2d~r = 1 =

∫ (∑
m

cm |m〉
)∗∑

m

cm |m〉 d~r =

=
∫ (∑

m

c∗m 〈m|
)∑

m

cm |m〉 d~r =
∑
m

c∗mcm

∫
〈m|m〉 d~r =

=
∑
m

|cm|2 = 1 (if normalized).

The coefficients cm are the projections of the wave-function ψ on the basis functions um:

cm = 〈m|ψ1〉 =
∫
u∗m(~r)ψ1(~r)d~r

if they are normalized such that the above summation of their squared moduli is 1, then
their moduli squared represent exactly the percentage of the basis function um that is
present in ψ.

This concept is important in the eigenvalues problems, because it provides a direct
physical interpretation of the eigenvalues. Let’s consider the generic eigenvalue equation:

F̂ψn = fnψn

where ψn are the eigenfunctions and fn the eigenvalues. It was already mentioned (see
section 2.3.6) that because of the way this general equation is derived, the physical meaning
is that the eigenvalues fn are the only possible results of a measurement on the physical
observable F represented by the operator F̂ . If the system is in the state ψn then the
result of the measurement will be fn. Moreover since F is supposed to be a real physical
observable for the system, then F̂ will be Hermitian, and thus the eigenfunctions ψn are
linearly independent and orthogonal and can be used as basis set (see section 2.4.3). In
this case, supposing also to have suitably normalized the ψn, one gets:

ψ =
∑
n

cnψn , cn = 〈ψn|ψ〉 =
∫
ψ∗nψd~r = (ψn, ψ)

At this point if the system is in the state ψ, that is a linear combination of the eigenstates
ψn, then a measurement process will make the wave-function collapse into one of the
eigenstates ψn and the corresponding obtained value will be the corresponding eigenvalue
fn. Let’s now consider the average value of the observable F , that accordingly with eq.
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(2.31) is (the Dirac’s notation is also pointed out here, together with the previously adopted
one):

〈F 〉 = 〈ψ|F̂ |ψ〉 =
∫
ψ∗F̂ψd~r =

(
ψ, F̂ψ

)
=
(
ψ, F̂

∑
n

cnψn

)
=
(
ψ,
∑
n

cnF̂ψn

)
=

=
(
ψ,
∑
n

cnfnψn

)
=
∫
ψ∗
∑
n

cnfnψnd~r =
∑
n

cnfn

∫
ψ∗ψnd~r =

=
∑
n

fncn (ψ, ψn) =
∑
n

fncnc
∗
n =

∑
n

fn|cn|2

where the following relations are used:

F̂ψn = fnψn and c∗n =
(∫

ψ∗nψd~r

)∗
=
∫
ψ∗nψd~r = (ψ, ψn)

In conclusion:
〈F 〉 =

∑
n

fn|cn|2

from which it is clear that the quantity |cn|2 assumes exactly the meaning of probability
of finding the eigenvalue fn when a measurement is performed on F (if the coefficient are
normalized to 1 as indicated by the Parseval’s relation reported above).
In the case of a continuum spectrum it is possible to show an analogous relation, that has
an analogous meaning (where c(f) is the Fourier transform):

〈F 〉 =
∫
f |c(f)|2df

Simultaneous measurements of physical observables

It was highlighted many times that in the moment in which a measurement is performed on
a system, because of the measurement process, the system state changes from the generic
state ψ to one of its possible eigenstates ψn (collapse of the wave-function) such that the
result of the measurement is one of the possible eigenvalues fn. The only case in which
the system does not change state, when a measurement is performed on it, is when it is
already (before the measurement) in one of its eigenstates ψn such that the result of the
measurement is fn. This is an intrinsic property of quantum systems.
Now a question may be when it is possible to perform simultaneous measurements on two
different physical quantities F and G. The answer is that a simultaneous measurement of
two distinct physical quantities F and G is possible if and only if the two operators F̂ and
Ĝ admit common eigenstates. Indeed if the measurement process cause the wave-function
collapse, the state of the system must collapse in an eigenstate of both F̂ and Ĝ such that
it is possible to get a result for the measurement (that will be fn and gn). It is possible
to provide a rigorous demonstration for this statement, and to represent it by means of
mathematical relations. Notice that this is also the origin of the Heisenberg’s uncertainty
principle. Indeed as mention in section 2.2 it is possible to provide a demonstration of the
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uncertainty principle (in spite of its name). The formal demonstration of the Heisenberg’s
indetermination principle leads to the following inequality:

∆ri∆pi ≥
~
2

where ri and pi are the i-th component of the position vector ~r and of the momentum
vector ~p respectively (with i = x, y, z). In the 1D case:

∆x∆p ≥ ~
2

Notice that ∆f indicates the standard deviation of the quantity f , as defined in eq. (2.26).
The uncertainty principle holds for each pair of canonically conjugate variables (linked by
a time derivative) f and g:

∆f∆g ≥ ~
2

And moreover it is possible to demonstrate the following energy-time uncertainty relation
(that holds formally with the physical meaning introduced in section 2.2):

∆E∆t ≥ ~
2

Bohr’s complementary principle

In classical physics, for a full description of a physical system with n degrees of freedom
(e.g. in 3D, n = 3) it is necessary the simultaneous knowledge of n pairs of canonically
conjugated quantities (like the position ~r = (rx, ry, rz) and the momentum ~p = (px, py, pz)
such that the concept of trajectory is defined). Nevertheless because of the Heisenberg’s
uncertainty principle this is not possible in quantum mechanics. It follows that the full
characterization of a physical system is determined by a complete set of simultaneously
measurable quantities. The maximum number of simultaneously measurable quantities
in a system with n degrees of freedom is n (think again to the Heisenberg’s uncertainty
principle). This is essentially the statement of the Bohr’s complementary principle, that
holds true for all the physical quantities that have a classical analogous. It can be stated as:
the complete characterization of a quantum system with n degrees of freedom is possible
by means of the choice of a complete set of at most n compatible physical quantities (i.e.
for which the simultaneous measurement is possible). This characterization is not unique,
but more than one complete set can be chosen, and the different choices correspond to
equivalent descriptions of the same system, that are thus complementary.
Notice that when quantization occurs a given physical quantity can be expressed in function
of an integer number (think for example to the energy in a quantum well), thus choosing
n quantities corresponds in choosing n “quantum numbers” (i.e. integers) by means of
which the state of the system can be characterized. Indeed the wave-function solution of
the Schrödinger’s equation will depend on n integer numbers, that are related to different
physical quantities (e.g. the energy, the angular momentum, and so on...). This is the
origin of the quantum numbers introduced in the basic courses of chemistry.
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Finally notice that in a quantum system, beside to classical degrees of freedom for which
hold the previous discussion, there can be also purely quantum quantities (such as the spin)
that have no classical analogous. The n quantities and the Bohr’s complementary principle
are referred to physical quantities that have classical analogous only. The knowledge on
such purely quantum quantities can be considered separately and joined to the others.
For example in the 3D space there are n = 3 degrees of freedom. From the Bohr’s
complementary principle only n = 3 physical quantities, that have classical analogous,
can be used in quantum mechanics to provide its characterization. The quantum systems
description in the 3D space is usually provided in terms of the quantum numbers n, l,m and
s. The (principal) quantum number n is associated to the energy. As discussed in section
2.3.6 this is the most important physical quantity that provides information also about
the history of the system. The angular momentum quantum number l is associated to the
magnitude of the angular momentum (that is quantized and thus characterized by means
of the integer l). The magnetic quantum number m is associated to the third component of
the angular momentum (i.e. to angular momentum orientation, that is quantized and thus
characterized by m). These three quantities have classical analogous and thus they provide
a complete set (their simultaneous measurement is possible accordingly with Heisenberg’s
uncertainty principle). In addition the quantum number of spin s that provide information
concerning the spin can be also used in the system description. Indeed it is associated to a
quantity (the spin) that has no classical analogous. Other choices are in principle possible,
in that case a complementary and equivalent descriptions of the system would be provided.

Systems of identical particles

In quantum mechanics holds the so called “principle of indistinguishability”. In classical
mechanics it is always possible to distinguish between two particles that are identical.
Indeed it is possible to distinguish them thanks to different space localization or thanks
to the concept of trajectory. Then, by means of the knowledge on their trajectories it is
possible to understand always which of the two particles is. Instead in quantum mechanics
this is no more true, because of the Heisenberg’s uncertainty principle that makes no
more possible talking of trajectories. For example, if two hydrogen atoms are considered,
it is possible to distinguish between the two electrons in the two atoms only when they
are at large distance, because of the spatial localization of such electrons. If instead the
two hydrogen atoms are close (think e.g. to the hydrogen molecule H2) then the two
wave-functions are overlapped and there is no way of understand which of the two electrons
was initially belonging to what atom.
In a system of N identical particles (it can be also a molecule with N electrons) if two
particles are exchanged a new wave-function is in principle obtained. For example in a
molecule with N electrons the steady state Schrödinger’s equation can be solved for a
given configuration, and the eigenstate ψα is obtained. Then, for example, two identical
particles are exchanged, that could be: an electron 1 that is in a given quantum state
described by a given set of quantum numbers {n1, l1,m1, s1} is exchanged with an electron
2 described by {n2, l2,m2, s2}; and thus after the exchange the electron 1 is in the state
described by {n2, l2,m2, s2} and the electron 2 is in the state described by {n1, l1,m1, s1}.
Then, the steady state Schrödinger’s equation can be solved again, and the wave-function
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ψβ is obtained. Both ψα and ψβ are solution of the steady state Schrödinger’s equation
for that system, and it turns out that the eigenvalues Eα and Eβ associated to the two
wave-functions are equal: Eα = Eβ , that means that ψα and ψβ are degenerate (exchange
degeneration). Thus in principle in a system of N identical particles there is a degeneracy
equal to N ! (indeed the same procedure can be iterated for each possible permutation
of the states - i.e. each possible exchange of electron states). Nevertheless, because of
the indistinguishability principle, since it is not possible to distinguish between the state
ψα and the state ψβ (since the two exchanged electrons are indistinguishable), it means
that the two states must be one the multiple of the other, such that they differ only for a
multiplicative constant K (parallel vectors in an Hilbert space) and they are essentially
the same state (see also superposition principle - section 2.3.2). Thus: ψβ = Kψα. If the
two electrons are again exchanged the same reasoning leads to: ψβ = Kψα = K2ψβ . From
which must be K2 = 1 and thus only two cases are possible: K = ±1. The first case
K = +1 leads to symmetric wave-functions, the second one K = −1 to anti-symmetric
wave-functions. This means that: ψβ = ±ψα and instead of getting an exchange degeneracy
of N ! it is obtained an exchange degeneracy equal to 2. Moreover it is an experimental
evidence that for bosons (i.e. integer spin particles - e.g. photons) the only possibility is
the symmetric one, with K = +1, while for fermions (i.e. fractionary spin particles - e.g.
electrons) the only possibility is the anti-symmetric one, with K = −1. It means that if
two (identical) bosons are exchanged of state then the same wave-function is obtained,
while if two (identical) fermions are exchanged of state the anti-symmetric wave-function
is obtained.
This is important because it is intimately linked with the Pauli exclusion principle. As
known from basic chemistry courses, it states that in a given quantum system it is not
possible to have two fermions (e.g. electrons) in the same quantum state (i.e. with all
the quantum numbers -n, l,m, s- that are equal). Indeed it is possible to show (see e.g.
[87]) that this would imply that their wave-function must be null (i.e. no state). And this
follows directly from the requirement of having an anti-symmetric wave-function when an
exchange of state is performed. Instead notice that it is possible to have two bosons in the
same quantum state.

Causality principle and time evolution operator

Also in quantum mechanics the causality principle must hold. In particular it states
that once the initial state of the system is known, the physical laws that govern its time
evolution must allow to predict the system state in each time instant. This is possible
thanks to the direct application of the Scrhödinger’s equation. Indeed it was alredy
mentioned that the (time-dependent) Schrödinger’s equation is the fundamental equation
in quantum mechanics that allows to know the dynamics of the system, i.e. its time
evolution (see sections 2.3 and 2.3.5). Such time evolution is then determined by the
Hamiltonian operator of the system, that indeed appears in the Schrödinger’s equation.
Starting from the time-dependent Schrödinger’s equation (2.17) it is possible to recover an
expression for a quantum mechanical operator that is able to provide the time evolution
of the state of the system. Such an operator is called “time evolution operator” and it is

111



Brief review of quantum mechanics

defined such that:
ψ(~r; t) = Ŝ(t, t0)ψ(~r; t0) (2.87)

The time evolution operator Ŝ(t, t0) is thus the operator that, when applied to an initial
state ψ(~r; t0) supposed known at the time instant t0, is able to provide the state of the
quantum system at the instant t (the final time instant). This operator is implicitly defined
in the Schrödinger’s equation. It is possible to show that [87]:

Ŝ(t, t0) = e−
i
~ Ĥ(t−t0) (2.88)

Its main properties are:[
Ŝ(t, t0)

]−1
=
[
Ŝ(t, t0)

]†
i.e. it is unitary.

and : Ŝ(t0, t0) = 1

Different pictures in quantum mechanics

In section 2.4 it was derived a matrix representation for quantum mechanical operators.
This representation is at the basis of the so called Heisenberg’s matrix mechanics formalism
(even if it was developed also thanks to many other scientists among which Paul Dirac).
The purpose here is to briefly highlight the differences between the Schrödinger’s and the
Heisenberg’s approaches.

In the Schrödinger’s formulation (also called wave mechanics) the focus is on the wave-
function of a quantum system, and the time evolution (the dynamic evolution) of the
system is expressed in terms of the wave-function itself. The state of a system is represented
by means of the wave-function, and it evolves in time following the law of the Schrödinger’s
equation, that as mentioned in the previous section provides the time evolution of the state
of the system. The mathematical formalism is the one of differential equations and indeed
operators are differential (linear) operators. Notice that here the states depend on time
and indeed they evolve in time, while the operators are fixed in time and they do not change.

Vice versa in the Heisenberg’s approach the fundamental role is played directly by the
observable quantities (the physical observables), that are represented by means of op-
erators in matrix form. The matrix elements of the operators are quantum mechanical
representations of the physical observables. In this approach the dynamics, i.e. the time
evolution, is related to the time evolution of operators, while the states are unchanged
in time. Thus, as time goes by, the state does not evolve in time, but the system simply
changes its state, under the action of time-dependent operators that make the system
passing through different states. The time evolution of the operators is derived from the
time evolution laws of the physical quantities they represent. The mathematical formalism
is essentially the one of linear algebra, thus algebraic (matrix) equations are considered
instead of differential ones.
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The two formalisms were derived in different ways at almost the same time. Even if slightly
different, they lead to same predictions and they have essentially the same content (as
already noticed by Schrödinger in 1926). In the following a brief deeper discussion is
provided in order clarify the link between the two approaches.

Assuming that exists a linear (Hilbert) space W , that includes all the possible states of
all the possible physical systems, then it will be always possible to represent the generic
state ψ(~r; t) as a vector |ψ〉 in this linear space. The Dirac’s notation introduced in section
2.4.3 is used to indicate that vector. The vector |ψ〉 is thus the well known wave-function
or state of a given physical system. The time evolution of a system can be evaluated in
different ways in quantum mechanics. As already pointed out the two extremes are the
Schrödinger’s picture and the Heisenberg’s one. The point now is how to switch between
these two pictures.
In the Schrödinger’s picture the states |ψ〉 are seen as elements in the space W that evolve
or change with time: |ψ〉 = |ψ(t)〉 ∈ W . The vector |ψ〉 will thus change in time: |ψ(t)〉.
Instead all the operators that do not involve an explicit time dependence (e.g. if they do
not have a time derive like it happens with Ĥ), and they can be assumed to be unchanged
as time goes by. The time evolution of the state will be given by the Schrödinger’s equation:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉

or alternatively, as mentioned in the previous subsection, by the application of the time
evolution operator:

|ψ(t)〉 = Ŝ(t, t0) |ψ(t0)〉 , Ŝ(t, t0) = e−
i
~ Ĥ(t−t0)

Instead in the the Heisenberg’s picture the states |ψ〉 are time independent and thus
unchanged in time, while operators are time dependent. The space W is seen as a static
space, whose vectors |ψ〉 do not change in time. While the operators evolve in time, under
the laws that will be presented now. The states (that do not evolve in time) and the
operators (that evolve in time) in the Heisenberg’s picture are defined as (subscript H is
used to indicate that they are in the Heisenberg’s picture):

|ψH(t)〉 = Ŝ |ψH(t0)〉 = e−
i
~ Ĥ(t−t0) |ψH(t0)〉 = |ψH(t0)〉 constant in time.

F̂H = F̂H(t) = Ŝ†F̂SŜ = e+ i
~ Ĥ(t−t0)F̂Se

− i
~ Ĥ(t−t0) changes in time.

where F̂S indicates that the operator F̂ is represented like done so far in this work (section
2.4), i.e. it is the operator in the Schrödinger’s picture.
The last two relations, and especially the one that defines the operators F̂H in the Heisen-
berg’s picture, constitute the link between the two picture.

Example 2.6: Let’s verify the correspondence between the two pictures, and thus that
the two pictures are equivalent. In the Schrödinger’s picture the operators F̂S are time
independent. Nevertheless they matrix elements Fmn (in their matrix representation) are
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time dependent: Fmn(t). This because the matrix elements are scalar products between
states, and the states depend on time: um(t). Indeed:

Fmn(t0) = 〈um(t0)|F̂S |un(t0)〉 /= Fmn(t) = 〈um(t)|F̂S |un(t)〉

In particular since the time evolution of states in the Schrödinger’s picture can be evaluated
by applying the time evolution operator:

|um(t)〉 = Ŝ |um(t0)〉 = e−
i
~ Ĥ(t−t0) |um(t0)〉

Then the matrix element at time instant t is:

Fmn(t) = 〈um(t)|F̂S |un(t)〉 =
(
um(t), F̂Sun(t)

)
=
(
Ŝum(t0), F̂SŜun(t0)

)
=
∫ (

Ŝum(t0)
)∗
F̂S
(
Ŝun(t0)

)
d~r =

∫
Ŝ†u∗m(t0)F̂SŜun(t0)d~r =

=
∫
Ŝ† (um(t0))∗ F̂SŜ (un(t0)) d~r

Since the operator F̂SŜ is acting on un(t0), that in Dirac notation is the ket |un(t0)〉, and
the operator Ŝ† = e+ i

~ Ĥ(t−t0) is acting on u∗m(t0) that in Dirac notation is the bra 〈um(t0)|,
and noticing that the application of an operator on a bra is indicated with: 〈um| F̂ , that
in this case implies Ŝ† (um(t0))∗ = 〈um(t0)| Ŝ†, the last relation can be rewritten as:

Fmn(t) = 〈um(t)|F̂S |un(t)〉 =
∫
Ŝ†u∗m(t0)F̂SŜun(t0)d~r = 〈um(t0)|Ŝ†F̂SŜ|un(t0)〉

Since in the Heisenberg’s picture the states are time independent: |umH(t)〉 = |umH(t0)〉
(where subscriptH indicates that this holds in the Heisenberg’s picture), the correspondence
between Schrödinger’s picture operators and Heisenberg’s picture operators is recovered:

Fmn(t) = 〈um(t)|F̂S |un(t)〉 = 〈um(t0)|Ŝ†F̂SŜ|un(t0)〉 = 〈umH(t)|Ŝ†F̂SŜ|unH(t)〉 =

= 〈umH(t)|F̂H |unH(t)〉 , F̂H = Ŝ†F̂SŜ

that correspond to what stated previously. Notice that the matrix elements Fmn(t)
in the two pictures are the same, indeed they are intimately linked with the expected
values of physical observables, and thus they must be unchanged (since directly linked
to measurements). Moreover notice that the states in the Schrödinger’s picture in this
example were simply indicated with um with no subscript. �

In addition to these two pictures a third one is also widely used in quantum mechanics.
It is the so called “interaction picture”. In this representation both the states and the
operators are time dependent. It is particularly useful if the Hamiltonian operator (that
appears also in the time evolution operator) can be written as the sum of an interacting
part that accounts for the interactions among particles and a non-interacting one (whose
eigenvalues and eigenfunctions can be calculated exactly). It is possible to show that
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the time evolution of operators and states in the interaction picture depends only on the
non-interacting Hamiltonian, and thus it is simple to evaluate. This picture is often used
in the second quantization formalism (see next section), that constitutes the background
in which the non-equilibrium Green’s function formalism finds place in its traditional
formal derivation. In this work I will follow the approach of [89] and [39] in which such a
formalism is introduced without the need of the second quantization formalism, and thus
is made accessible also to electronic engineers in a fast way without too much effort.

A brief mention about the second quantization

So far the presented quantum mechanical theory was the so called “first quantization”
one. As seen, in this theory the concept of wave-particle duality and wave field allow
to associated to each microscopic quantity both undulatory and particle behaviors. An
important feature is that the forces acting on systems are still considered classical forces.
Indeed the potential energy by means of which it is represented the interactions of the
quantum systems under study and the rest of the world, can be still derived in a classical
manner (e.g. it can be an electrostatic Coulomb potential, etc...). The force field is thus
said to be non-quantized. The quantized quantities are the results of the double behavior
of matter particles, to which a wave field is associated. This theory succeeded in explaining
a wide range of phenomena, and in particular all the non-relativistic quantum phenomena
(from which it is sometimes referred as non-relativistic quantum mechanics).
Nevertheless this theory cannot still definitively explain some issues, especially related
to the interaction between the electromagnetic radiation and matter. In order to get a
quantum theory able to precisely describe and predict also such phenomena the so called
“second quantization” and the so called “quantum field theory” were introduced.
As mentioned, in the first quantization the force fields are still classical, while the physical
observables are associated to operators. Instead in the second quantization the force fields,
and thus all the interactions between particles, are quantized. In order to do that the
force fields are associated to the so called “field operators”, in a similar way of what done
in the first quantization with the physical observables. These field operators are able
to create or annihilate a particle at a given time instant and in a given point, because
of the action of the force field. The field operators are defined in an Hilbert space that
is the so called the Fock’s space. It was mentioned previously (see the subsection on
systems of identical particles) that by exchanging two identical particles in a quantum
system a new state is obtained, whose wave-function must be symmetric (bosons) or
anti-symmetric (fermions) w.r.t. to the initial one. Usually these properties must be
enforced on the wave-functions to get proper results. The Fock’s idea at the basis of
his proposed linear space, is to “embed” these symmetry properties directly in the way
in which the states are represented in a given Hilbert space: namely the Fock’s space.
Therefore in Fock’s space the mathematical operations of creation and annihilation are
suitably defined, such that the Pauli exclusion principle and the correct symmetry on
wave-functions is always guaranteed automatically whenever a particle is added (created)
to the system or eliminated (annihilated) from it. This is the starting point for the so
called relativistic quantum mechanics, that is the quantum field theory. In quantum field
theory the so called canonical quantization (i.e. second quantization or quantization of
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force fields) is used to build up the field operators in the Fock’s space. Quantum field
theory (QFT) is a relativistic theory that combines classical field theory, special relativity
and quantum mechanics (but not general relativity). It is a theory that is able to definitely
explain the interaction between electromagnetic radiation and matter (this specific branch
of quantum field theory is called quantum electrodynamics), and many other phenomena.
All the interactions (all kind of interactions, e.g. electromagnetic, gravitational, nuclear
etc..) are quantized in QFT. For example the electromagnetic field is rethought in terms
of photons (i.e. quanta of electromagnetic radiation), the gravitational field in terms of
gravitons, and so on...
Notice that the existence of the spin comes out naturally in QFT by solving the relativistic
Dirac’s equation (the fundamental equation of QFT - for importance analogous to the
Schrödinger’s one in non-relativistic quantum mechanics). Instead in non-relativistic
quantum mechanics (the one considered in this chapter and in this entire work) it is
introduced from experimental considerations (usually presenting the Stern-Gerlach fa-
mous experiments) and with the phenomenological Pauli’s correction of the Schrödinger’s
equation. The second quantization formalism, and especially the Fock’s space and field
operators, are of extreme importance also in the so called “quantum many-body” systems
analysis and “quantum many-body perturbation theory”. These two branches of quantum
mechanics focus on systems constituted by many body, like it could also a molecule for
example. Indeed a molecule with tens of atoms can also contains hundreds of electrons,
thus making clear that it is a many-body system. The situation is even worse in solid state
physics in which even a nano-scale crystalline device can include hundreds or thousands of
atoms.
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Chapter 3

Molecular electronic structure

The first step in the study of the transport in whatever kind of device (also conventional
3D electronic devices) is to understand what are the possible electronic states within the
conducting channel. Indeed the electronic states that will take part to the conduction
(essential to understand the number of electrons involved in conduction and thus the
electrical current) will be a subset of the allowed electronic states within the channel. In
molecular electronic sensors, and in general in molecular electronic devices, the active part
of the device is a single molecule (or at most a small packet of parallel molecules), and the
electronic states that are permitted for a given molecular channel can be found by solving
the steady state Schrödinger’s equation Ĥψ = Eψ. They corresponds indeed to stable
states within the molecule, that are stationary states. Consequently the first step in study-
ing the conduction in a molecular device is to derive and handle the molecular Hamiltonian
operator Ĥ. Even if molecules are small, they are already enough complicated, and often
with enough atoms composing them, that this task can be very hard and challenging. This
chapter focuses on how to deal with and to solve the steady state Schrödinger’s equation
for molecules, starting from the molecular Hamiltonian operator. Various methods for
achieving the task of calculating the electronic structure of a molecular channel are briefly
presented and reviewed. The purpose is to provide the needed information to be used in
setting up atomistic simulations like the ones presented and discussed in the part II of this
work. A good reference on these topics (also for beginners) can be for example [98] - many
other references are present in literature.
In section 3.1 the Born-Oppenheimer approximation is addressed. It is the starting point
for all the methods discussed in the rest of this chapter and it will be always assumed.
Then in section 3.2 the general mean field method and its implications are discussed.
This is the fundamental approximation around which all the other presented methods
revolve. In appendix B it is further discussed with simple examples and application
formulae to give the physical insights and sensibility to understand the approximations
and hypotheses also used in the other methods. In section 3.3 the Hartree and Hartree-
Fock methods are addressed. They assume the mean field approximation introduced in
section 3.2. Next in section 3.4 the most used classes of methods for the evaluation of the
electronic structure are presented. They all can be classified and understood starting from
the Hartree-Fock method. Moreover the force field methods and the post-Hartree-Fock
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methods are briefly treated. Finally in section 3.5 and 3.6 two of the most widely spread
methods are discussed, namely the Density Functional Theory (DFT) and the Extended
Hückel Theory (EHT). They are also the only two methods employed in the practical
part (part II) of this work. The chapter ends with a discussion of the intermolecular in-
teractions and the methods for simulating them within the DFT environment in section 3.7.

3.1 Molecular Hamiltonian and the Born - Oppen-
heimer approximation

In section 2.3.4 it was reviewed that the Hamiltonian operator is the quantum mechanical
operator associated to the total energy of the system, and in general it is given by the
expression of equation (2.44), reported here for clarity:

Ĥ = T̂ + Û = − ~2

2m∆ + U(~r)

A molecule is a set of atom nuclei around which electrons are displaced, some of which
(usually the so called valence electrons) are involved in chemical bonds between the atoms
forming the molecule. Consequently the explicit expression of a molecular Hamiltonian
corresponds to a many-body problem. Indeed even the simple benzene ring (C6H6) consists
of six carbon atoms (with atomic number ZC = 6) and six hydrogen atoms (atomic number
ZH = 1) meaning that there are 42 electrons. The number of electrons within a molecule
increase rapidly with the complexity of the molecule itself, reaching e.g. the number of 360
electrons for the C60 fullerene molecule. It is intuitive thinking that some approximations
must be used to deal with the molecular Hamiltonian and the solution of the Schrödinger’s
equation for a molecular channel.
It is possible to write the general expression of a molecular Hamiltonian considering that
the kinetic energy operator can be written as the sum of the kinetic energy operators of
the Ne electrons and the Nn nuclei (∆ is linear, T̂ is a linear operator and superposition
of effects can be exploited):

T̂ = T̂e + T̂n = −
Ne∑
i=1

~2

2me
∆ri −

Nn∑
j=1

~2

2mn
∆Rj

where ∆ri =
(
∂2

∂x2
i
, ∂

2

∂y2
i
, ∂

2

∂z2
i

)
, ∆Rj =

(
∂2

∂x2
j
, ∂

2

∂y2
j
, ∂

2

∂z2
j

)
and where the coordinate vectors of

electrons and nuclei respectively ~ri = (xi, yi, zi) and ~Rj = (xj , yj , zj) .
Instead the potential energy operator (equal to the potential energy in real space) is
constituted by three terms, that represent the three principal interactions among electrons
and atomic nuclei:

• Unn: contribution due to Coulombic nuclei-nuclei repulsion

• Une: contribution due to Coulombic electrons-nuclei attraction
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• Uee: contribution due to Coulombic electron-electron repulsion

Thus the general expression for the molecular Hamiltonian operator assumes the following
form:

Ĥ = −
Ne∑
i=1

~2

2me
∆ri −

Nn∑
j=1

~2

2mN
∆Rj + Unn + Une + Uee

that becomes rapidly unmanageable as the number of atoms in the molecule increases.
The steady state Schrödinger’s equation becomes very hard to be solved also with the help
of today’s computers, if no approximations are considered.

In the so called Born-Oppenheimer approximation [99] the kinetic and potential energy
contributions of the nuclei are neglected. Indeed, since the nuclei are several tens of thou-
sands times heavier than electrons, their velocities are a much less than those of electrons,
and thus the electrons can respond quickly to variations in the nuclei configuration, main-
taining the system state essentially unaltered. Consequently the nuclei are approximated as
fixed in the reference coordinate system, that means that their kinetic energy (and kinetic
energy operator T̂n) is null. Moreover also the potential energy contribution Unn related
to nuclei-nuclei repulsion is neglected: indeed since they are fixed, they are supposed to
be unaffected by repulsive forces among them, that are neglected. Therefore within the
Born-Oppenheimer approximation, for a system with Ne electrons and Nn nuclei, the
electronic Hamiltonian operator becomes:

Ĥ = T̂e + Une
(
~ri, ~Rj

)
+ Uee (~ri, ~rk) =

= −
Ne∑
i=1

~2

2me
∆ri −

Nn∑
j=1

Ne∑
i=1

Zjq
2

4πε0

∣∣∣~ri − ~Rj
∣∣∣ +

∑
1≤ i,k ≤Ne

q2

4πε0 |~ri − ~rk|

(3.1)

where q is the elementary charge, −q is the electron charge, ε0 is the vacuum permittivity,
Zj is the j-th nucleus atomic number (equal to the number of protons of charge +q in the
j-th atom). The previous expression is often called “many-body Hamiltonian”, and it is
often expressed in atomic units as [100]:

Ĥ = −1
2

Ne∑
i=1
∇2
ri −

Nn∑
j=1

Ne∑
i=1

Zj

|~ri − ~Rj |
+

∑
1≤i,k≤Ne

1
|~ri − ~rk|

(3.2)

Within this many-body framework the steady state many-body Schrödinger’s equation
assumes the following expression:

Ĥψ(~r1, ~r2, ..., ~rNe) = Eψ(~r1, ~r2, ..., ~rNe) (3.3)

where ψ(r1, r2, ..., rNe) is the wave-function of the many-body system of Ne electrons
composing the molecule, i.e. it is a steady state for the entire molecule (in other words
a molecular orbital). As mentioned at the beginning of this section its exact solution
is an impossible task for systems having more than a few electrons, even within the
Born-Oppenheimer approximation. Indeed as Ne increases, the number of degrees of
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freedom in the many-body Schrödinger’s equation, after it is discretized (e.g. with a
finite difference method or another numerical method), increases exponentially making
the problem computationally infeasible even on the most powerful computers available
nowadays. Just to give an idea of the order of magnitude of the problem, if ri is discretized
with an k × k × k grid (in the Fourier domain, remembering that ~r ↔ ~k), the dimension
NH of H is k3Ne , that means that for example with k = 32 and Ne = 5, NH is greater
than 3.5× 1022 [101].
Consequently several methods have been devised to find accurate approximated solutions.
The choice of the approximated method to use, is a matter of suitability with the system
under analysis and of numerical accuracy, and it will further discussed in this and successive
chapters of the present work.
A final remark on the term “electronic structure” used in the introduction of this chapter:
accordingly with [102] the electronic structure is the state of motion of electrons in an elec-
trostatic field created by stationary nuclei. This corresponds in finding the eigenfunctions
{ψ}i and the eigenvalues {E}i for a given structure. Notice that the eigenfunction moduli
squared correspond to surfaces in the 3D space, that are high position probability surfaces,
i.e. molecular orbitals in our case (in the coordinate space). Instead the eigenvalues {E}i
are the molecular energy levels corresponding to each orbital. Therefore the electronic
structure is obtained by solving the steady state Schrödinger’s equation, usually under
the aforementioned Born-Oppenheimer approximation, i.e. in the clamped-nuclei case.
Notice finally that the electron states that will participate to conduction, will be part of
the permitted (steady) states of the molecule, from which the importance of knowing the
electronic structure of molecular channels.

3.2 The SCF procedure
The electron-electron interaction, i.e. the term Uee in eq. (3.1), is likely the main issue in
solving the many-body Schrödinger’s equation. In this section the Self Consistent Field
(SCF) procedure for approximating the electron-electron interaction is addressed. I will
follow the introduction of [89]. The treatment here has no pretension of being a formal
detailed introduction to these topics, but more a conceptual introduction to understand the
basic reasoning behind these topics, even to electrical and electronic engineers who have
never seen these topics before. The purpose is indeed to provide the means to correctly
set up practical and useful simulations, in commercial or free available softwares without
getting lost. In order to do that not all the theoretical details are necessary, but at least
the fundamental concepts.
The basic idea is to transform the many-body problem of equation (3.3) into a Ne single-
particle (one-body) problems, that are decoupled. Thus equation (3.1) is transformed in
a system of Ne decoupled equations. In order to do that, the electron-electron potential
Uee is substituted with a suitable SCF potential USCF (~r) that arises from all but one
electrons. A single electron is thus considered at a time, and the USCF (~r) potential to
which it undergoes, arises from the remaining Ne − 1 electrons. This because an electron
does not “feel” any potential due to itself [89]. In order to calculate the potential USCF (~r)
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a self consistent iterative procedure must be implemented. This because the considered
(single) electron undergoes the sum of the attractive potentials of atomic nuclei, that
are fixed under the Born-Oppenheimer approximation, and the aforementioned USCF (~r)
(representing the repulsive interactions with all the other electrons), that is unfortunately
a function of the final (many-body) wave-function. In practice USCF (~r) is derived from the
electronic charge (think to a conventional electrostatic potential derived from a continuous
charge density). The electronic charge in the 3D space depends on the wave-function (since
this gives the high probability regions), and in turns the wave-function is a solution for the
steady state Schrödinger’ equation that contains USCF (~r). The self-consistent procedure
can be summarized as follows [89]:

1. initial guess for the SCF potential USCF (~r)

2. solve steady state Schrödinger’s equation and get the eigenvalues {E}i and the
eigenfunctions {ψ}i

3. calculate the electron density n(~r)

4. calculate the USCF (~r) from n(~r)

5. if the new USCF (~r) is significantly different (i.e. more than the chosen maximum
tolerance) from the last guess (or initial guess at first iteration) then: suitably update
USCF (~r) and go back to step 2; if the new USCF (~r) is enough close to the last guess
(i.e. less than the chosen maximum tolerance) the result is considered converged and
the calculation is complete

The electron density n(~r) in step 3 can be calculated by summing up the probability
distributions for all the occupied eigenstates:

n(~r) =
∑

occupied i

|ψi(~r)|2 (3.4)

The charge density is then given by the electron density multiplied the electron charge:
−q · n(~r). The SCF potential energy in step 4 is recovered from classical electrostatics by
integrating the charge density −q · n(~r) over the entire volume V of interest:

USCF (~r) = (Ne − 1)
Ne

q2

4πε0

∫
V

n(~r′)
|~r − ~r′|

d~r′ (3.5)

where the multiplicative factor (Ne − 1)/Ne finds the following explanation: the appro-
priate charge density for each eigenstate should exclude the electron eigenstate under
consideration, since as mentioned no electron feels any repulsion due to itself. However
it is more convenient to simply take the total charge density and scale it by the factor
(Ne − 1)/Ne that “weights” it on all but one electrons. Notice that the total electronic
charge in all the volume V is always equal to −qNe. Further details on this procedure,
and application examples can be found in [89].
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Notice that the SCF approach allows to split the many-body problem into a system of Ne

single-electron (one-body) problems:

Ĥψ = Eψ −→ Ĥi (n(~r)) ψi = Ei ψi , i = 1, 2, ..., Ne (3.6)

where the Hamiltonian operator Ĥi of the single particle picture can be written from
eq. (3.1) as follows (for the i-th electron of the system whose position vector is indicated
simply with ~r - no confusion is possible since it is the only electron in the single-electron
Schrödinger’s equation):

Ĥi (n(~r)) = T̂e + Une
(
~r, ~Rj

)
+ USCF (~r) =

= − ~2

2me
∆−

Nn∑
j=1

Zjq
2

4πε0

∣∣∣~r − ~Rj
∣∣∣ + (Ne − 1)

Ne

q2

4πε0

∫
V

n(~r′)
|~r − ~r′|

d~r′

(3.7)

notice that it is function of the electron density n(~r), given by equation (3.4).
The SCF approximation (also called the Hartree approximation or the mean field ap-
proximation) is further discussed in appendix B.1, where a more quantitative, even if
oversimplified, treatment is provided.

The main problem of this approximation is related to the so called “electron correlation”.
Indeed if the many-body picture is considered, it is possible to show that the electron-
electron interaction is less than the one predicted by the single-electron picture with the
mean field just introduced. In particular it is possible to show that the real SCF potential
that accurately accounts for all the other electrons in the single-electron picture is given
by the difference between two contributions. The first one is an SCF potential of the kind
of the one of eq. (3.5), that is called the Hartree potential (name that comes from the
original Hartree method that was the first SCF-based method). The second contribution
is a contribution that represent the aforementioned electron correlation. Indeed the actual
interaction energy is less than the one of eq. (3.5) because electrons can correlate their
motion so as to avoid each other. From the wave-function standpoint this corresponds
to the fact that the probability of finding two electrons simultaneously in two points ~r1
and ~r2 of the space is not simply proportional to the electron density n in the two points:
n(~r1) and n(~r2); but it is somehow reduced because electrons “try to avoid each other”.
In other words the presence of an electron in a region of space, makes decreasing the
probability of finding another electron in that region w.r.t. the case in which the first
electron is not present. This electron correlation comes out by doing all the calculations
on the multi-electron picture. The simple semi-classical expression of equation (3.5) does
not account for this correlation, and thus the actual SCF potential should be given by:

USCF = UHartree + UXC , with : UHartree = (Ne − 1)
Ne

q2

4πε0

∫
V

n(~r′)
|~r − ~r′|

d~r′

where UXC is a negative term accounting for the correlation, and it is called “exchange-
correlation” potential. The accurate estimation of UXC required great effort in research
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and it is still an unsolved problem for some specific branches of application in which high
accuracy is required. Notice that the SCF approach is at the basis of many methods for
the calculation of the electronic structure of molecules such as the DFT one that will
presented in section 3.5. This topic is more quantitatively discussed in appendix B.1.

In conclusion to this section I would like to point out that, as also mentioned in [89], it
is quite surprising that a single-electron picture with a suitable SCF can be often used as
a reasonable accurate description of a multi-electron system. The fact that it works well
has no convincing mathematical proof, but it is instead proved by many experiments in
different conditions. Almost all the electronic structures of atoms, molecules and solids
are somehow derived from this method, as will be discussed in section 3.4.

3.3 A brief mention on the Hartree-Fock method
The purpose of this section is to provide an insight in the Hartree and Hartree-Fock methods
for the calculation of the electronic structure of molecules (or in general conductive channels
or devices). These methods are important for understanding the taxonomy of the currently
used classes of methods aimed in electronic structure calculations, that is indeed presented
in the next section 3.4.

The Hartree method

Like in any SCF-based method the starting point for the Hartree method is the Born-
Oppenheimer approximation. Moreover it is assumed that the electrons are non-interacting,
and thus it is possible to show that the many-body steady state Schrödinger’s equation
admits factorized solutions of the kind:

ψ(~r1, ~r2, ..., ~rNe) = φ1(~r1)φ2(~r2)...φNe(~rNe)

Thus in the original Hartree method the total many-body wave-function ψ(~r) is initially
approximated as the product (called Hartree product) of the single-electron wave-functions
for the individual electrons of the system. Again notice that it holds only if each wave-
function of each electron is independent from the others (non-interacting electrons). Under
these hypotheses the many-body problem becomes a set Ne single electron problems, as
already mentioned. If the j-th single electron problem is considered, i.e. the j-th electron is
considered, then the SCF potential in which it is immersed, that accounts for the repulsive
interactions of all the electrons but the j-th one can be recovered starting from the electron
density given by all the other electrons (be careful to the notation):

nj(~r) =
∑
i /=j
|φi|2

and by solving the following Poisson’s equation:

∇2VHj(~r) = −qnj(~r)
ε0
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where the charge density ρj(~r) = −qnj(~r) is now the charge density due to all the electrons
except the considered one; it is supposed of having free space (thus ε0) around the nuclei
and the electrons (if not so ε of the medium should be considered), and VHj(~r) is the
electrostatic potential (not potential energy) in the Hartree approximation (subscript “H”)
related to the j-th electron. The resulting SCF potential energy, that will appear in the
j-th single-electron Schrödinger’s equation, is thus:

UHj(~r) = −qVHj(~r) = − q

4πε0

∫
ρj(~r)
|~r − ~r′|

d~r′ = + q2

4πε0

∑
i /=j

∫ |φi|2

|~r − ~r′|
d~r′ (3.8)

This is the starting guess to be included in the Schrödinger’s equation, that as mentioned
previously must be solved self-consistently by means of an iterative procedure. The assump-
tion that each electron feels the average potential UHj(~r) is the mean field approximation,
also called Hartree approximation.
Notice that this expression is essentially analogous to the one of eq. (3.5), and to the
aforementioned Hartree approximation of eq. (B.5). Indeed if the summation is extended
to all the electron states, nj(~r) becomes the total electron density n(~r) and the corrective
weight (Ne − 1)/Ne should be introduces, such that eq. (3.5) is recovered. This way
of rewriting is possible thanks to the fact that the electrons are identical particles (see
also section 2.5 - subsection about the systems of identical particles), and even if they
exchanged the j-th electron is always subjected to the same SCF potential, that is:

USCFj(~rj) = USCF (~r) = (Ne − 1)
Ne

q2

4πε0

∫
V

n(~r′)
|~r − ~r′|

d~r′

In this way the many-body problem is divided into a system of Ne single electron problems,
like done in eq. (3.6). These equations are in general non-linear and must be solved
self-consistently.

The Hartree-Fock method

The original Hartree method briefly summarized above was conceived by Hartree in 1927,
and was called self-consistent field method [98]. Nevertheless it did not account for the
Pauli’s exclusion principle, and for the symmetry constraints on the total system wave-
function ψ due to the exchange of two identical particles (i.e. electrons on this case) of the
system. As briefly discussed in section 2.5 (subsection on systems of identical particles),
if two electrons are exchanged then the obtained wave-function for the total many-body
system must be anti-symmetric. With the Hartree method this is not guaranteed and must
be enforced a posteriori. Instead a way of directly embed this condition in the Hartree
method is to consider the so called Hartree-Fock method [98].
In general it is possible to show that if the wave-function can be written as the product of
the single-electron ones:

ψ(~r1, ~r2, ..., ~rNe) = φ1(~r1)φ2(~r2)...φNe(~rNe)

then if two electrons i and j are exchanged (i.e. the electron i that was in state φi is now
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in the state φj and vice versa) an anti-symmetric wave-function is obtained [87]:

ψ(~r1, ~r2, ..., ~ri..., ~rj ..., ~rNe) = φ1(~r1)φ2(~r2)...φi(~ri)...φj(~rj)...φNe(~rNe) =
= −ψ(~r1, ~r2, ..., ~rj ..., ~ri..., ~rNe) = −φ1(~r1)φ2(~r2)...φj(~rj)...φi(~ri)...φNe(~rNe)

Considering all the Ne! possible permutations of the Ne single electron wave-functions φ,
the previous relation can be written as [87]:

ψ(~r1, ~r2, ..., ~ri..., ~rj ..., ~rNe) = 1√
Ne!

∑
P

(−1)P P̂ [φ1(~r1)φ2(~r2)...φNe(~rNe)]

where P indicates the P -th permutation and P̂ is the operator that performs that per-
mutation. The last expression can be interpreted as a determinant, the so called “Slater
determinant”, defined as follows [87]:

ψ(~r1, ~r2, ..., ~ri..., ~rj ..., ~rNe) = 1√
Ne!

∣∣∣∣∣∣∣∣
φ1(~r1) φ1(~r2) ... φ1(~rNe)
φ2(~r1) φ2(~r2) ... φ2(~rNe)
... ... ... ...

φNe(~r1) φNe(~r2) ... φNe(~rNe)

∣∣∣∣∣∣∣∣
The exchange of two electrons correspond to the exchange of the two corresponding columns
in the Slater determinant.

In the Hartree-Fock method the initial wave-function, given by the product of the
single-electron ones, is built starting from the Slater determinant, such that it automatically
embeds the anti-symmetrization on the total wave-function. This is the main conceptual
difference w.r.t. the Hartree method. Many variants are possible and many ameliorations
were proposed during years. Notice that also the Hartree-Fock method includes a self-
consistent solution [98].

Finally notice that in modern Hartree-Fock methods the initial single-electron wave-
functions φi are already a linear combination of atomic orbitals, and generally these atomic
orbitals can be Gaussian type wave-functions or of other types (e.g. Slater-type orbitals,
more sharp around the nucleus than a Gaussian function). In practice many basis sets
(exactly in the sense of the concept of basis set introduced in section 2.4) can be used [98].

3.4 Taxonomy of methods for electronic structure cal-
culations

In this section the attempt is to classify the various methods for the calculation of the
electronic structure of molecules in such a way that the correct terminology is associated
to each method and, more important, the main features of a method can be immediately
understood by the knowledge on where it find place in the methods taxonomy. More
than one classification are possible, depending on what specific feature is desired to be
highlighted.

First of all a fundamental distinction is the one between ab initio methods and semi-
empirical ones. In ab initio methods the solution of the (many-body) steady state
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Schrödinger’s equation is generated without reference to experimental data, and starting
only from the first principles and physical constants. In contrast in semi-empirical models
the solution is found by exploiting information from measurements or from ab initio
methods. Moreover in semi-empirical methods, suitable fitting parameters are present,
whose value is usually derived from a combination of theory (or ab initio calculations) and
experimental observations.

Another possible classification is related to the kind of variables considered as the
unknown of the Schrödinger’s equation during the solution. So far these variables were
assumed to be the wave-functions. Nevertheless in the mean field approximation the
wave-functions are somehow derived from the electron density n(~r) or analogously from
the electron charge density ρ(~r) = −qn(~r). Indeed this variable appears both in the SCF
potential and in the Schrödinger’s equation that, once solved, provides the eigenfunctions
{ψi}i. Thus since the wave-functions are intimately connected with the electron density,
it is possible to re-formulate the eigenvalue problem such that the unknown to be found
is precisely the electron density (or the charge density). In light of this, it is possible to
classify the methods between wave-function-based methods and density-based methods.
Nevertheless things are more elaborated than this and each of these classes is further
subdivided into different approaches [103], [104]:

1. Wave-function-based methods: an explicit form for the wave-function is written down
and physical observables are calculated using that.

[a.] Perturbational: Møller-Plesset, diagrammatic methods, etc...
[b.] Variational: Hartree-Fock, configuration interaction, etc...

2. Density-based methods: the focus is shifted from the wave-function to the electronic
density. The wave-function is not written explicitly. Examples are Thomas-Fermi
approximation and density-functional theory (DFT).

In order to further appreciate the aforementioned terminology some considerations must
be pointed out, and they start from the already discussed Hartree-Fock (HF) method.

First of all notice that the Born-Oppenheimer approximation is always assumed to be
true. Under this approximation the coupling between the nuclei and electronic motion is
neglected, and this allows the electronic part to be solved with the nuclear positions as
parameters. In general the Born-Oppenheimer approximation is good, and it does not afflict
significantly the accuracy of the final solution [98], [104]. The dynamics of a many-electron
system is very complex, and consequently requires elaborate computational methods. A
significant simplification, both conceptually and computationally, can be obtained by
introducing independent-particle models, where the motion of one electron is considered
to be independent of the dynamics of all other electrons [98]. This coincides in what was
done in the self-consistent mean field approximation and the Hartree-Fock method, that
were already discussed in sections 3.2 and 3.3. Notice that an independent-particle model
means that the interactions between the particles is approximated, either by neglecting
all but the most important one, or by taking all interactions into account in an average
fashion. Within electronic structure theory, only the latter has an acceptable accuracy,
and it is again exactly what was done with the SCF Hartree-Fock (HF) method. The
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key conceptual point in the understanding of the electronic structure methods is the HF
theory. For this reason before going on in the treatment, its main features are summarized
below (in the words of [98]):

a. In the HF model, each electron is described by an orbital, and the total wave-function
is given as a product of orbitals.

b. Since electrons are indistinguishable fermions (particles with a spin of 1/2), the
overall wave-function must be anti-symmetric (change sign upon interchanging any
two electrons), which is conveniently achieved by arranging the orbitals in a Slater
determinant.

c. The best set of orbitals is determined by the variational principle, i.e. the HF orbitals
give the lowest energy within the restriction of the wave function being a single Slater
determinant.

d. The shape of a given molecular orbital describes the probability of finding an electron,
where the attraction to all the nuclei and the average repulsion to all the other
electrons are included.

e. Since the other electrons are described by their respective orbitals, the HF equations
depend on their own solutions, and must therefore be solved iteratively.

f. When the molecular orbitals are expanded in a basis set, the resulting equations can
be written as a matrix eigenvalue problem.

The HF model is a kind of branching point, where either additional approximations can
be invoked, leading to semi-empirical methods, or it can be improved by adding additional
determinants, thereby generating models that can be made to converge towards the exact
solution of the electronic Schrödinger’s equation [98], [104].
Semi-empirical methods are derived from the HF model by further neglecting some integrals
related to electron-electron interaction. Since the HF model by itself is only capable of lim-
ited accuracy, such approximations will by themselves lead to a poor model. Nevertheless
a semi-empirical method can also provide very accurate results, depending on the specific
case. Indeed the success of semi-empirical methods relies on turning the remaining integrals
into parameters, and fitting these to experimental data, especially molecular energies and
geometries. Such methods are computationally much more efficient than the ab initio
methods, but they are limited to systems for which parameters exist. As mentioned, in
such systems they can also reach significant good accuracy becoming competitors of ab
initio methods, nevertheless the final result is strongly dependent on the specific considered
case. A semi-empirical method is e.g. the Extended Hückel Theory (EHT), that will be
addressed in section 3.6.
The HF theory only accounts for the average electron–electron interactions, and conse-
quently neglects the correlation between electrons (see sections 3.2, 3.3 and appendix
B.1). Methods that include electron correlation are typically computationally much more
involved than the HF model, but can generate results that systematically approach the
exact solution of the Schrödinger’s equation. These methods are often called “electron
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correlation methods” or “post-Hartree-Fock methods”. They will be mentioned again at
the end of this section.
A different approach is instead the one of the Density Functional Theory (DFT), that in
the original in the Kohn–Sham version can be considered as an improvement on HF theory,
where the many-body effect of electron correlation is modelled by a function of the electron
density. DFT is, analogously to HF, an independent-particle model, and is comparable to
HF computationally, but provides significantly better results. The main disadvantage of
DFT is that there is no systematic approach to improving the results towards the exact
solution, like in the aforementioned electron correlation methods. The DFT method will
be addressed in section 3.5.
Finally there exists a class of methods which is completely unrelated to all the others
presented so far, and starts from a complete different approach. This includes the so called
“Force Field” methods, also referred as “Molecular Mechanics” methods. They are very
computationally effective methods, but also very rough. A brief discussion is reported at
the end of this section, while a complete presentation can be found e.g. in [98].

Electron correlation methods (the post-Hartree-Fock methods)

The main limit of the Hartree-Fock method (see section 3.3) is that the electron-electron
interactions are completely neglected (this is indeed the hypothesis that allows for writing
the many-body wave-function as the product of the single-electron ones). In general this
is a limit of the SCF approach in which the electron-electron interaction is represented
by means of a mean field. This is evident when the initial guess on the total many-body
wave-function is considered. It is given by the product of single-electron ones in which
the Uee term is substituted my the mean field one USCF . The Hartree-Fock methods are
for this reason called “independent-particle” models, indeed the motion of an electron is
considered independent on the dynamics of all the others.

Successive generations of methods were derived from the original HF one, all aimed in
better estimating the electron-electron interaction by means of the so called correlation
potential (this holds true also for the DFT method - see section 3.5), to account for the
electron-electron repulsion [104]. As mentioned in section 3.2 (and further discussed in
appendix B.1) the point is that electrons can correlated their motion such that they avoid
each other, and this correlation depends also on spin. As pointed out again in section 3.2
(and appendix B.1) the electron correlation results in an additional (negative) contribution
of energy UXC that must be added to the SCF potential within the Schrödinger’s equation.
In general the resulting HF many-body wave-function is able to account for the great
majority of the total energy (let’s say the 99%), but the small remaining part, that is
due to the electron correlation, can be very important in describing chemical phenomena.
Since the HF solution usually provides the ∼ 99% of the actual correct answer, the
electron correlation methods normally use the HF wave-function as a starting point for
improvements. For this reason they are also called “post-Hartree-Fock” methods. The
basic concept is to superimpose to the HF wave-function ψHF a set of other wave-functions
ψi such that the total wave-function becomes [98], [104]:

ψTOT = ψHF +
∑
i

ciψi
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where ci are suitable coefficients. Notice that this approach can be interpreted as a
“multi-determinant” approach. Indeed in section 3.3 it was mentioned that the HF wave-
function ψHF can be interpreted as the Slater determinant of a matrix whose elements
are atomic wave-functions (or in general they can be a suitable basis set of functions).
If the same is applied to each additional ψi then the ψTOT can be found by calculating
several determinants. The electron correlation methods are essentially different in how they
calculate the coefficients ci. Indeed once the basis functions are selected they are always
the same in each considered Slater determinant for building the ψi, while by changing ci
it is possible to get different total wave-functions. There are mainly three methods to
calculate the electron correlation and thus the coefficients ci: the configuration interaction
method, the many-body perturbation theory and the coupled cluster.
Notice that the functions ψi are already total many-body functions, i.e. they can in turn be
represented as superposition of the chosen basis functions (that in section 3.3 were indicated
with φi). To this purpose see also section 2.4. Analogously it is possible to think to the
total wave-function ψTOT , called multi-determinant wave-function, as a superposition of
the ψi, that defines a sort of “coordinate system” for the Slater determinants. In this optics
the basis set determines the size of the one-electron basis (and thus limits the description
of the single ψi), while the number of included considered Slater determinants defines the
size of the many-electron basis (and thus limits the description of electron correlation and
of the final ψTOT ).
At this point, in analogy with the Fourier series, notice that if the number of basis functions
is increased then the accuracy generally increases, and for an infinite number of considered
basis functions the reconstruction of the original function is obtained. This is the result of
the already mentioned Fischer-Riesz theorem that states that (for a complete basis set)
the original function can be exactly recovered as Fourier series expansion (unless a set
of isolated points, that is empty if the initial function is continuous - like electron wave-
functions must be, see section 2.3.2). Consequently if the number of basis set functions
is increased, the representation (in that basis set) of the single-electron wave-function ψi
is ameliorated. And again if the number of considered Slater determinants is increased,
the representation of the total multi-electron wave-function ψTOT is ameliorated. This is
more than an intuitive reasoning, indeed it is possible to show that the electron correlation
methods can systematically converge to the actual solution of the Schrödinger’s equation.
This happens if both the basis set and the number of determinants is increased. In
particular the exact Schrödinger’s equation is recovered if a complete basis set and a
complete set of Slater determinants are used. In real applications this is not possible since
it would imply the usage of an infinite number of functions or determinants, nevertheless if
the number is correctly increased then the solution is closer to the real one. This concept
is summarized in figure 3.1. On abscissa axis the basis sets are considered (see also section
3.5 -subsection on basis set- for the basis set names and their meanings), increasing the
accuracy means moving toward greater abscissa coordinates. On ordinate axis the different
electron correlation methods are considered (increasing the accuracy means moving toward
greater ordinate coordinates).

I will not use in the rest of this work any electron correlation method and thus I will
not further discuss them. A good presentation is in my opinion provided in [98]. I conclude
this section with a mention of some of these methods, just to give the idea of how ample is
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Figure 3.1: Schematic representation of the converge toward the exact solution of the electron
correlation methods. On abscissa axis the basis sets are considered while on ordinate
axis the different electron correlation methods are considered.

the current landscape (remember that three main approaches are possible for calculating
the electron correlation):

• configuration interaction based correlation methods: the configuration interaction (CI)
method, the multi-configuration self-consistent field, the multi-reference configuration
interaction, etc...

• many-body perturbation theory based correlation methods: the Møller–Plesset (MP)
perturbation theory, unrestricted Møller–Plesset and projected Møller–Plesset, etc...

• coupled cluster based methods: truncated coupled cluster (CC) methods, etc...

Notice that also other methods and approaches are possible such as the so called Quantum
Monte Carlo (QMC) method (that provides a statistical estimation of energy - intended as
integral of the wave-function), etc... [98], [104].

Force field methods

This subsection has not the aim of being a complete introduction. It is essentially taken
from [98], that instead provide a good introduction to the force field methods.
The “building blocks” in force field methods are atoms, i.e. electrons are not considered as
individual particles. This means that bonding information must be provided explicitly,
rather than being the result of solving the electronic Schrödinger’s equation. In addition
to bypassing the solution of the electronic Schrödinger’s equation, the quantum aspects
of the nuclear motion are also neglected. This means that the dynamics of the atoms is
treated by classical mechanics, i.e. Newton’s second law. For time-independent phenomena,
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the problem reduces to calculating the energy at a given geometry. Often the interest
is in finding geometries of stable molecules or different conformations. The problem is
then reduced to finding energy minima (in the principle that in nature a stable molecule
is always in a configuration that minimizes its potential energy - ground state) on the
potential energy surface. The electronic energy is thus written as a parametric function
of the nuclear coordinates, and fitting the parameters to experimental or higher level
computational data.
Moreover in force field methods the molecules are described by a sort of “ball and spring”
model, with atoms having different sizes and “softness” and bonds having different lengths
and “stiffness”. The foundation of force field methods is the observation that molecules
tend to be composed of units that are structurally similar in different molecules. For
example carbons are essentially planar, or all C-H bond lengths are roughly constant in
all molecules, being between 1.06Å and 1.1Å. If then the C-H bonds are further divided
into groups, for example those attached to single-, double- or triple-bonded carbon, the
variation within each of these groups becomes even smaller. This picture is not so different
from the one widely used in organic chemistry, in which the organic molecules are seen
as composed by the so called “functional groups”. Force field methods are in a sense a
generalization of these models, with the added feature that the atoms and bonds are
not fixed at one size and length. As mentioned the main task in force field methods is
almost always the one of minimizing the potential energy of the system, thus providing
the stable configuration. In a force field model the energy can be written as a sum of
different contributions: the energy function for stretching a bond between two atoms, the
energy required for bending an angle, the torsional energy for rotation around a bond,
the non-bonded atom–atom interactions energy and the coupling energy between the
first three terms. Given such an energy function of the nuclear coordinates, geometries
and relative energies can be calculated by optimization, i.e. by minimizing it. Stable
molecules correspond indeed to minima on the potential energy surface, and they can
be located by minimizing the total potential energy as a function of the nuclear coordinates.

3.5 The DFT method
In the Density Functional Theory (DFT) the focus is shifted from the wave-function to
the electronic density. The DFT method treats again the electron-electron interactions in
a mean field manner (see section 3.2): each electron is considered moving inside a mean
field created by all other electrons of the system under analysis. Hence, instead of solving
an interacting Ne-particles problem, it solves Ne non-interacting one-particle problems
self-consistently, that is pretty much more manageable. With this approach it is possible
to obtain the electronic structure of a system of a few tens to a few hundreds of atoms with
reasonable accuracy and computational effort/time, if compared to traditional methods,
such as Hartree-Fock theory and its descendants that include electron correlation.

The properties of a many-electron system, within the DFT framework, can be determined
by using functionals, i.e. functions of another function, which in this case is the spatially
dependent electron density n(~r). Before going on a note on semantics [98]: a function is a
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prescription for producing a number from a set of variables (coordinates); a functional is a
prescription for producing a number from a function, which in turn depends on variables.
A wave-function and the electron density are thus functions, while the energy depending
on a wave-function or an electron density is a functional. Usually a function that depends
on the variable x is indicated with f(x), instead a functional F depending on a function
f(x) is conventionally indicated as F [f ] (with square brackets).

The basis for the DFT is the Hohenberg-Kohn’s theorem that states that the ground
state electronic energy is completely determined by the electron density. In other words,
there exists a one-to-one correspondence between the electron density of a system and its
energy. The importance of the Hohenberg–Kohn’s theorem is well understood if a system
with Ne electrons is considered. A steady state wave-function for such a system contains
4Ne variables (three spatial and one for spin - because of Pauli’s exclusion principle the spin
must be considered for discriminating among electron states). Instead the electron density
n(~r) for the same system only depends on three spatial coordinates, independently on
the number of electrons of the system. Therefore while the complexity of a wave-function
increases exponentially with the number of electrons, the electron density has the same
number of variables, independent of the system size. Moreover it is possible to demonstrate
that each different electron density yields a different ground state energy, thus confirming
the one-to-one correspondence. The problem is that the functional connecting the system
energy with the electron density is not known. Indeed it is not possible to find an analytical
explicit expression for it. Thus the goal of DFT methods is to design functionals that
accurately connect the electron density with the energy [104].

Density functional theory is conceptually and computationally similar to Hartree–Fock
theory [98], but provides much better results and has consequently become a very popular
method. The main problem in DFT is the inability to systematically improve the results,
like it happens instead for the electron correlation methods (see previous section 3.4).
In addition, despite the many successes of DFT, there are some areas where the current
functionals are known to perform poorly (especially concerning weak interacting systems):

• in describing certain types of weak interactions, e.g. van der Waals interactions,
where instead the correlation methods have great success

• in describing systems with loosely bound electrons (the self-interaction error in these
cases is larger than the actual binding energy, and thus lead erroneously to an
unbound electron)

• in predicting the binding energy of some kinds of chemical bonds that are predicted
to be too stable

• large errors in predicting excitation energies in some conditions

• poor result in some cases of strong electron-electron interaction (see also chapter 6)

For many of these issues some kind of correction exists and can be employed to improve
the final accuracy. Few other critical issues are present in addition to the ones presented
here, for reference see [98]. The only issue of interest in this work is the first one, namely
the poor modeling of some kind of weak interactions such as the intermolecular van der
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Waals interactions, nevertheless corrections exist to improve the DFT accuracy and they
are briefly presented in section 3.7.

3.5.1 Kohn-Sham Hamiltonian
Early attempts at designing DFT models (i.e. Thomas–Fermi and Thomas–Fermi–Dirac
methods) tried to express all the energy components (the kinetic and all the potential
contributions) as a functional of the electron density. In this optics it is possible to
write directly an expression for the total energy of the system Etot (energy eigenvalues),
corresponding to the classical Hamiltonian (not the Hamiltonian operator) of the system
(n is the electron density):

Htot = Etot = Te[n] + Une[n] + Uee[n]

Notice that this formulation embeds the exchange-correlation within the functional Uee[n]
that represents the electron-electron interaction. Thus UXC is not explicitly written.
Unfortunately these methods had poor performance [98], mainly because it is very hard
finding an enough accurate functional able to accurately express the kinetic energy term
in function of the electron density. Although there have been some recent attempts at
constructing such functionals, at the present this way is still unfeasible because of its
poor accuracy [98]. Notice that this formulation of the many-body problem is completely
orbital-free, indeed the wave-functions do not appear in this “pure” DFT approach. Notice
also that if such functionals could be derived, the full potential of DFT in having only
three variables independent of system size could be fully realized [104].
Nevertheless the current foundation for the use of DFT methods in computational chemistry
is the introduction of some orbitals, as suggested by Kohn and Sham in 1965. These
orbitals (i.e. wave-functions) are exploited to accurately represent the kinetic energy of
the system. More precisely Kohn and Sham proposed that the electron kinetic energy
should be calculated from an auxiliary set of orbitals, used for representing the electron
density. As mentioned this assumption is the starting point of all the modern DFT
methods. The gain in this approach is that it is possible to carry out very accurate
calculations. Indeed the exchange–correlation energy UXC (see section 3.2 and later in this
section), which is a rather small fraction of the total energy, in this approach is the only
unknown functional, and even relatively crude approximations for this term provide quite
accurate computational models [98]. In the Kohn-Sham (KS) Hamiltonian the kinetic
energy functional is split into two parts, one which can be calculated exactly, and a small
correction term. Unfortunately price to be paid is that orbitals (i.e. wave-functions) are
re-introduced and must be used to represent the kinetic energy term/operator which is
not enough accurately represented in terms of electron density functional only. Thereby
the complexity is increased from 3 (3 spatial variable of n(~r)) to 3Ne variables, and the
electron correlation re-emerges as a separate term, UXC that must be summed up to
the other potentials in the Hamiltonian. The KS model is closely related to the HF
method, sharing identical formulas for the kinetic energy, electron–nuclear energy and
Coulomb electron–electron energy (i.e. the Hartree potential of equations (3.5), (3.8) and
(B.5)). In particular the many-body electronic Hamiltonian is re-conceived in terms of the
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one-electron Kohn-Sham Hamiltonian like [101]:

HKS [n] =
Ne∑
i

[
− ~2

2me
∆i + Ueff (~ri)

]
=

Ne∑
i

HKSi (3.9)

where the so called effective Kohn-Sham potential Ueff (~ri) is defined as:

Ueff (~ri) = UH [n(~ri)] + UXC [n] + UEXT (~ri) (3.10)
In equation (3.9) the first term is the kinetic energy of the i-th electron, while the second
term is the potential energy of the i-th electron moving in the mean field created by the
other electrons as well as in any external potential field (e.g. the electrostatic potential of
ions or any other external field). The latter is detailed in equation (3.10). The first term in
eq. (3.10) is the Hartree potential due to the mean-field electrostatic interaction between
the electrons. It corresponds to the one of the already introduced equations (3.5), (3.8) and
(B.5). The second one is the exchange-correlation potential, which arises from the quantum
mechanical nature of the electrons and embeds all the many-particle interactions, thus it
represents the correction term used to account for energy that the non-interacting reference
system fails to capture. It corresponds exactly to the term introduced in section 3.2 (and
in appendix B.1). Notice that these two terms are due to electron-electron interactions,
which depend on the electron density n(~r), which depends on the wave-function ψi (that
must be used and calculated for representing correctly the kinetic term), which in turn
depend on Ueff . Therefore the problem of solving the Kohn-Sham equation has to be
done in a self-consistent way, analogously to the SCF and HF methods. Usually in the
KS method one starts with an initial guess for n(~r) (instead of a wave-function guess like
in the HF method), then calculates the corresponding Ueff and solves the Kohn-Sham
equations for the ψi. From these, one calculates a new electron density and starts again.
This procedure is then repeated until convergence is reached. A non-iterative approximate
formulation, called Harris functional DFT, is also possible [101] [98].
The third term in equation (3.10) represents any other electrostatic field in the system. It
can be separated into two contributions: the electrostatic potential due to electron-nuclei
interactions and an eventual external potential arising from applied electrostatic fields
(given by one or more external sources).

Example 3.1: Very often the KS Hamiltonian is presented in atomic units, instead of SI
units. In that case its various terms can assume slightly different aspects, for example the
kinetic term becomes:

T̂e = − ~2

2me
∆ → −1

2∆

A generic potential energy contribution instead can be:

Upotential = q2

4πε0r
→ 1

r

Consequently the Hartree potential of eqs. (3.5) and (3.8) becomes:

UH = q2

4πε0

∫
n(~r′)
|~r − ~r′|

d~r′ →
∫

n(~r′)
|~r − ~r′|

d~r′
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that is often written as a convolution product (indicated with the symbol *):

UH = n(~r) ∗ 1
|~r|

=
∫

n(~r′)
|~r − ~r′|

d~r′

with this notation the KS Hamiltonian becomes:

HKS [n] =
N∑
i

[− ~2

2me
∆i + Ueff (~ri)] , Ueff (~ri) = n(~ri) ∗

1
|~ri|

+ UXC [n] + UEXT (~ri)

as for example appear in some papers, like [101]. �

In summary, the many-body stationary Schrödinger’s equation can be rewritten in Ne

more manageable Kohn-Sham equations (since Ĥ =
∑Ne
i ĤKSi[n]):

Ĥψ = Eψ → ĤKSi[n] ψi = Ei ψi , i = 1,2, .., Ne (3.11)

As mentioned the main problem with the DFT method is that the exact functionals for
exchange-correlation term are not known, except for the free electron gas. Therefore other
approximations are needed. They are the subject of the next subsection.

3.5.2 Exchange-correlation functionals
The main issue in DFT is how to estimate the exchange-correlation functional UXC [n] that
represents the electron-electron interaction in a precise way. The difference between various
DFT methods is indeed the choice of the functional form for the exchange–correlation
energy. It can be proven [98] that the exchange–correlation potential is a unique functional,
valid for all systems, but an explicit functional form of this potential does not exist, except
for special cases such as a uniform electron gas. Several functionals with different level of
accuracy were developed [98], [104].

Notice that exchange–correlation functionals have a mathematical form containing
parameters. There are two main philosophies for assigning values to these parameters,
either by requiring the functional to fulfil theoretical criteria, or by fitting the parameters
to experimental data, although in practice a combination of these approaches is often used
[98]. The quality of exchange–correlation functionals will ultimately have to be settled by
comparing the performance with experiments or high-level wave mechanics calculations.
Such calibration studies, however, only evaluate the quality for the chosen selection of
systems and properties. It has indeed been found [98] that the “best” functionals depend
on the system and properties, some being good for molecular systems, others for delocalized
(periodic) systems, and others again for properties such as excitation energies, etc... Since
DFT is an active area of research, new and improved functionals are likely to emerge in
future.

I will now introduce the main classes of functionals accordingly to what presented in
[98]. For the next chapters of this work and for the purpose of setting up simulations it is
just important to acquire the sensibility of the level of approximation of these functionals,
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such that it is possible to choose the most suitable for the specific application, considering
if a more refined should be better depending on the structure to be simulated (e.g. a more
refined functional could be needed to capture the essential of the interactions that are
not well represented within a DFT framework - see previously in this section). The main
functional classes are thus briefly considered in the following, while a comparison among
them is provided in figure 3.2.

(a)

(b)

Figure 3.2: A summary of the main classes of functionals with examples (a); and a comparison
among them (b). RMS stands for Root Mean Square, MAD for Mean Absolute
Deviation. The comparison is performed with experimental data on a set of
molecules, data are taken from [98].
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LDA and LSDA:

The simplest model is the Local Density Approximation (LDA), where the electron
density is assumed to be slowly varying, such that the exchange–correlation energy can be
calculated using formulae derived for a uniform electron density. In particular, within this
approximation, UXC in a given spatial point ~r is expressed only in terms of the electron
density at that point n(~r). A simplified quantitative introduction is provided in [89], notice
that the functional is usually taken proportional to the electron density to the power of 1/3
(in the same point): UXC [n(~r)] ∝ [n(~r)]1/3. An straightforward improvement is obtained
considering explicitly the electron spin, in the LSDA (Local Spin Density Approximation)
functional.

GGA:

A significant improvement in the accuracy can be obtained by making the exchange–
correlation functional dependent not only on the electron density but also on its deriva-
tives. In the so called Generalized Gradient Approximation (GGA) methods, the first
derivative of the electron density is included as a variable within the exchange-correlation
functional. GGA methods are sometimes referred to as non-local methods, although this
is somewhat misleading since the functionals only depend on the density (and derivative)
at a given point, not on a space volume [98]. The following functionals belong to this
class: B88 (from A. D. Becke), OPTX (OPTimized eXchange), LYP (Lee, Yang and Parr),
PBE (Perdew–Burke–Ernzerhof), OLYP (combination of OPTX and LYP) and BLYP
(combination of B88 and LYP), etc...

Meta-GGA:

The logical extension of GGA methods is to allow the exchange and correlation functionals
to depend on higher order derivatives of the electron density, with the Laplacian (∇2n(~r))
being the second-order term. Alternatively, the functional can be taken to depend on the
orbital kinetic energy density τ . Inclusion of either the Laplacian or orbital kinetic energy
density as a variable leads to the so-called meta-GGA functionals. Examples are: VSXC
(Voorhis–Scuseria eXchange–Correlation), TPSS (Tao–Perdew–Staroverov–Scuseria),
PKZB (Perdew–Kurth–Zupan–Blaha) that can be considered as the next improvement
over the PBE functional, etc...

Hybrid or hyper-GGA:

In hybrid functionals a portion of exact exchange (from HF theory) is incorporated with
the rest of the exchange–correlation energy from other sources (ab initio or empirical).
The exact exchange energy functional is expressed in terms of the Kohn–Sham orbitals
rather than the density (so often is called implicit density functional). One of the most
commonly used versions is B3LYP (Becke, 3-parameter, Lee–Yang–Parr), other functionals
in this class are B3PW91, O3LYP, PBE0 (also denoted PBE1PBE), etc...
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Generalized RPA:

In Generalized Random Phase methods also virtual molecular orbitals are considered.
These are molecular orbitals that are empty in ground state, but that can be occupied
in excited states. The improvement seems to be effective especially for weak interactions
such as the van der Waals ones (that are still a problem with conventional functionals).
Examples are: Optimized Effective Potential (OEP) methods (e.g. OEP1, OEP2, ...).

3.5.3 DFT and fitting parameters
An important question is now addressed: “should DFT methods be considered ab initio or
semi-empirical?” If ab initio is taken to mean the absence of fitting parameters, LSDA
methods are ab initio but gradient corrected methods may or may not be. The LSDA
exchange energy contains no parameters and the correlation functional is known accurately
as a tabulated function of the density. Some gradient-corrected methods (e.g. the B88
exchange and the LYP correlation), however, contain parameters that are fitted to give
the best agreement with experimental atomic data, but the number of parameters is
significantly smaller than for semi-empirical methods. Functionals such as VSXC contains
a moderate number of parameters (21), while other functionals such as PBE are derived
entirely from theory and can consequently be considered ab initio. If instead ab initio is
taken to mean that the method is based on theory, which in principle is able to produce
the exact results, DFT methods are ab initio. The only issue is that current methods
cannot yield the exact results, even in the limit of a complete basis set, since the functional
form of the exact exchange–correlation energy is not known.

Although gradient-corrected DFT methods have been shown to give impressive results,
even for theoretically difficult problems, the lack of a systematic way of extending a series
of calculations to approach the exact result is a major drawback of DFT [98]. The results
converge toward a certain value as the basis set is increased, but theory does not allow an
evaluation of the errors inherent in this limit. Moreover although a progression of methods
such as LSDA, BLYP and B3LYP has provided successively lower errors for a suitable
set of reference data, there is no guarantee that the same progression will provide better
and better results for a specific property of a given system. Indeed, LSDA methods may
in some cases provide better results, even in the limit of a large basis set, than either of
the more complete gradient-corrected models. The quality of a given result can therefore
only be determined by comparing the performance for similar systems where experimental
or high-quality wave mechanics results are available. In this respect, DFT resembles
semi-empirical methods.

3.5.4 DFT and basis sets
One approximation in essentially all electronic structure calculation methods is the in-
troduction of a basis set. Expanding an unknown function, such as a molecular orbital,
in a set of known functions is not an approximation if the basis set is complete (see also
chapter 2). However, a complete basis set means that an infinite number of functions
must be used, which is impossible in actual calculations. An unknown molecular orbital
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can be thought as a function in the infinite coordinate system spanned by the complete
basis set. When a finite basis set is instead used, only the components of the molecular
orbital along those coordinate axes corresponding to the selected basis functions can be
represented. The smaller the basis set, the poorer the representation. Also the type of
used basis functions influence the accuracy. The better a single basis function is able to
reproduce the unknown function, the fewer basis functions are necessary for achieving a
given level of accuracy.

In mathematical terms each molecular orbital ψi is expanded in terms of the basis
functions {φα}α, conventionally called atomic orbitals:

ψi =
∑
α

cαφα

Thus a molecular orbital is expanded as Linear Combination of Atomic Orbitals (LCAO).
The expansion of the molecular orbitals leads to integrals of quantum mechanical operators
over basis functions (see also section 2.4), and the ease with which these integrals can be
calculated also depends on the type of basis function. And often the accuracy does not
correspond to efficiency of calculation.

In principle any type of basis functions may be used: exponential, Gaussian, polynomial,
cube functions, plane waves, etc... Nevertheless two very common functions are the Slater
Type Orbitals (STO) and Gaussian Type Orbitals (GTO). Both STOs and GTOs can
be chosen to form a complete basis. Historically, STOs were used due to their geometric
similarity to the hydrogenic orbitals. They also remain a common choice in semi-empirical
methods. However, they do have a significant drawback since there are no general and
numerically stable solutions for the many-center integrals involving Slater-type orbitals.
Consequently, Gaussian type orbitals are often the preferred choice. In figure 3.3 an
example of STOs and GTOs is reported. The GTOs are inferior to the STOs in two
respects. At the nucleus a GTO has a zero slope, in contrast to a STO which has a cusp
(discontinuous derivative), and GTOs consequently have problems representing the proper
behaviour near the nucleus. The other problem is that the GTO falls off too rapidly far
from the nucleus compared with an STO, and the tail of the wave-function is consequently
represented poorly. The increase in the number of GTO basis functions, however, is more
than compensated for by the ease of which the required integrals can be calculated. In
terms of computational efficiency, GTOs are therefore preferred.

There are mainly two guidelines for choosing the basis functions. One is that they
should have a behaviour that agrees with the physics of the problem, since this ensures
that the convergence as more basis functions are added is reasonably rapid. For bound
atomic and molecular systems, this means that the functions should go toward zero as
the distance between the nucleus and the electron becomes large. The second guideline
is a practical one: the chosen functions should make it easy to calculate all the required
integrals. To this purpose thinks again to the matrix formulation of quantum mechanics
(section 2.4) in which an integral has to be one for each matrix element. Notice also that
semi-empirical methods usually approximate (at least some of) these integrals by means
of fitting parameters (usually the so called two-electrons integrals that appears in the
electron-electron interaction terms). Exactly like in a Fourier series (indeed it can be
seen exactly like a Fourier decomposition) as the number of basis functions increases, the
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Figure 3.3: A qualitative example of comparison between STO and GTO functions. The
exponential 1s STO orbital is compared with three different GTO possible functions.

accuracy of the molecular orbitals improves. Nevertheless the computational cost increases
exponentially with the number of basis functions. Indeed it is possible to show [98] that (in
the large basis set limit) the SCF procedure involves a computational effort that increases
(at least) as the number of basis functions to the fourth power.

The first criterion suggest the use of exponential functions located on the nuclei, since
such functions are known to be exact solutions for the hydrogen atom. Unfortunately,
exponential functions turn out to be computationally difficult. Gaussian functions are
computationally much easier to handle, and although they are poorer at describing the
electronic structure on a one-to-one basis, the computational advantages more than make
up for this. For periodic systems, the infinite nature of the problem suggests the use
of plane waves as basis functions, since these are the exact solutions for a free electron
(think also that Bloch waves are intimately linked with plane waves - each Bloch wave is
constituted by a forward and a backward plane wave).

Basis set classification

The smallest number of functions possible is a minimum basis set. Only enough functions
are employed to contain all the electrons of the neutral atom(s). For hydrogen (and helium)
this means a single s-function. The next improvement of the basis sets is a doubling of
all basis functions, producing a Double Zeta (DZ) type basis. The term zeta stems from
the fact that the exponent of STO basis functions is often denoted by the Greek letter
ζ. A DZ basis thus employs two s-functions for hydrogen (called 1s and 1s′), and so on...
The importance of a DZ over a minimum basis is clear if different chemical bond types are
considered. For example a π-orbital is more delocalized than a σ-one. It will have a more
diffuse electron distribution w.r.t. a σ bond. The optimum basis function exponent for
representing a more delocalized orbital should be smaller than for representing a localized
orbital. Moreover such an optimum exponent may vary with the direction (if e.g. in
direction x a σ-bond occurs and in direction y a π-bond occurs). If only a single set of
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basis function is available (minimum basis), a trade-off will be necessary. Instead in a DZ
basis, two sets of basis functions with different exponents are present. Thus, doubling the
number of basis functions allows for a much better description of the fact that the electron
distribution is different in different directions.

The next step up in basis set size is a Triple Zeta (TZ). Such a basis contains three
times as many functions as the minimum basis; then Quadruple Zeta (QZ) and Quintuple
or Pentuple Zeta (PZ or 5Z, but not QZ) are possible, and so on.

Polarization function

In most cases, higher angular momentum functions are also important, and these are
denoted polarization functions. If methods including electron correlation are used, higher
angular momentum functions are essential. Electron correlation describes the energy
lowering by the electrons avoiding each other, beyond the average effect taken into account
by Hartree–Fock methods. Polarization functions are added to the chosen basis. Adding a
single set of polarization functions (p-functions on hydrogens and d-functions on heavy
atoms) to the DZ basis forms a Double Zeta plus Polarization (DZP) type basis. Similarly
Triple Zeta plus Double Polarization (TZ2P) can be formed.

Mixed basis sets are sometimes used, for example a DZP quality on the atoms in the
active/central portion of the device part of the molecule and a minimum basis for the
device leads. An important point (not discussed here) is to choose “balanced” basis set is
to keep the error as constant as possible. The use of (not at all balanced) mixed basis sets
should therefore only be done after careful consideration. A good treatment is provided in
[98].

Plane waves

Rather than starting with basis functions aimed at modelling the atomic orbitals (STOs or
GTOs), and forming linear combination of these to describe orbitals for the whole system,
one may use functions aimed directly at the full system. For modeling extended (infinite)
systems, for example, a unit cell with periodic boundary conditions, this suggests the use
of functions with an “infinite” range. For example the outer valence electrons in metals
behave almost like free electrons, which leads to the idea of using solutions for the free
electron as basis functions. Indeed in periodic systems like crystals the solution of the
Schrödinger’s equation leads to the arise of energy bands, and the electrons in a band can
be described by orbitals expanded in a basis set of plane waves, which in three dimensions
can be written as a complex function. To this purpose notice that a Bloch wave-function
(solution of steady state Schrödinger’s equation) is similar to a plane wave and moreover
can be expanded as a superposition of two (a forward and a backward) plane waves.

Therefore plane wave basis functions are ideal for describing delocalized slowly varying
electron densities, such as the valence bands in a metal; and indeed plane wave basis
sets have primarily been used for periodic systems. Nevertheless they can also be used
for molecular species by using a supercell approach, where the molecule is placed in
a sufficiently large unit cell such that it does not interact with its own image in the
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neighbouring cells. Placing a relatively small molecule in a large supercell to avoid self-
interaction consequently requires many plane wave functions, and such cases are handled
more efficiently by localized Gaussian functions. A three-dimensional periodic system, on
the other hand, may be better described by a plane wave basis than with nuclear-centred
basis functions. Notice that the set of the all possible plane-waves (with all possible
momentum values) can be shown to be a complete set, and for this reason they can be
used as basis set.

Pseudo-potentials or effective core potentials

Systems involving elements from the lower part of the periodic table have a large number
of core electrons. These are unimportant in a chemical sense, but it is necessary to use a
large number of basis functions to expand the corresponding orbitals, otherwise the valence
orbitals will not be properly described. This issue can be solved by modeling the core
electrons by a suitable function, and treating only the valence electrons explicitly. The
function modeling the core electrons is usually called an Effective Core Potential (ECP)
in the chemical community, while the physics community uses the term Pseudopotential
(PP). These terms results sometimes useful in understanding the principles behind some
semi-empirical methods. A good treatment is again provided in [98].

3.6 The Extended Hückel theory and semi-empirical
methods

In this section one of the most widely spread semi-empirical method, for the electronic
structure calculation, in briefly addressed, namely the Extended Hückel Theory (EHT).
Since it is a semi-empirical method the first part of this section is dedicated to an
introduction to semi-empirical methods.

3.6.1 The semi-empirical approach
As mentioned in section 3.5.4, the computational cost of performing an HF or a DFT
calculation scales formally as the fourth power of the number of employed basis functions
{φα}α. This arises from the number of integrals (especially the so called two-electrons
integrals - see below) that are required for building the matrix form of quantum mechanical
operators (see section 2.4). Semi-empirical methods reduce the computational cost by
reducing the number of these integrals.

The first step in reducing the computational problem is to consider only the valence
electrons explicitly (the ones in the outer shells that origin the chemical bonds and
determine the main chemical-physical properties). The core electrons are accounted for by
reducing the nuclear charge or introducing suitable functions for accounting them, that
are not part of the basis set. To this purpose see also previously section 3.5.4, the part
about the pseudo-potentials PP (or Effective Core Potential -ECP-), that are exactly
the functions mentioned above. Furthermore, only a minimum basis set (the minimum
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number of functions necessary for accommodating the electrons in the neutral atom) is
used for the valence electrons (to this purpose see again section 3.5.4). The large majority
of semi-empirical methods to date use only s-type and p-type basis functions, and they
are usually of Slater type orbitals (again refer to section 3.5.4), i.e. exponential functions.

The central assumption of semi-empirical methods is the Zero Differential Overlap
(ZDO) approximation, which neglects all products of basis functions that depend on the
same electron coordinates when located on different atoms. To be clearer, said ψi the i-th
molecular orbital, it is expressed in terms of the basis set {φα}α (the atomic orbitals) as
follows:

ψi =
∑
α

cαφα

Then said an atomic orbital on centre A as φA and an atomic orbital on centre B as φB,
the ZDO approximation corresponds to φAφB = 0. Note that it is the product of functions
on different atoms that is set equal to zero, not the integral over such a product. The
consequences of the ZDO approximation are [98]:

• The overlap matrix S is reduced to a unit matrix: I

• One-electron integrals involving three centres (two that come from the basis functions
and one from a quantum mechanical operator) are set to zero (these are product of
the kind 〈φA|F̂ |φB〉, where F̂ is the quantum mechanical operator)

• All three- and four-centre two-electron integrals are neglected. These integrals come
out in doing the calculations (in building the so called Fock matrix), and corresponds
to products of the kind 〈φAφB|φCφD〉

To compensate for these approximations, the remaining integrals are made into parame-
ters, and their values are assigned based on calculations or experimental data or from other
more accurate theoretical calculations [104]. Exactly how many integrals are neglected,
and how the parameterization is done, defines the various semi-empirical methods. The
following approximations are done possible:

• Neglect of Diatomic Differential Overlap (NDDO): in this approximation there are
no further approximations than those mentioned above. The overlap matrix becomes:
Smn = 〈φm|φn〉 = δmnδAB, where δ indicates the Kronecker delta. Thus Smn is null
each time different basis functions are considered m /= n but also each time different
atom centers are considered A /= B.

• Intermediate Neglect of Differential Overlap (INDO): in this approximation all two-
centre two-electron integrals that are not of the Coulomb type, in addition to those
neglected by the NDDO approximations are neglected.

• Complete Neglect of Differential Overlap (CNDO): in this approximation also the
the one-centre two-electron integrals are neglected. Instead the approximations for
the one-electron integrals in CNDO are the same as for INDO.

The important point to keep in mind is that all semi-empirical method assume the ZDO
approximation (that is the NDDO), and then that successive approximation are possible,
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and passing from NDDO, to INDO and to CNDO the approximations are worse, that
means that more fitting parameters are present in that method. Fitting parameters that
compensate for the neglected integrals and are used to represent the (few) integrals that
are performed. Again fitting parameters that are derived from experimental data. Many
different versions exist today, and they differ in the exact way in which these parameters are
derived. Some of the names are CNDO/1, CNDO/2, CNDO/S, CNDO/FK, CNDO/BW,
INDO/1, INDO/2, INDO/S and SINDO1. And moreover better performances are generally
obtained with the following methods: MINDO, Modified NNDO, MNDO, AM1, PM5,
etc...
Typical errors in semi-empirical methods are nowadays only slightly greater than the
average DFT ones. For example typical errors on bond lengths are of the order of
10−2 ÷ 10−3 Å, errors on angles of few degrees.

Semi-empirical methods performances

It is possible to show that semi-empirical methods formally scale as the cube of the number
of basis functions in the limit of large molecules [98]. For this reason the current limit of
semi-empirical methods at around 1000 atoms [98].

Semi-empirical methods share the advantages and disadvantages of force field methods:
they perform best for systems where much experimental information is already available but
they are unable to predict totally unknown compound types. Nevertheless, the dependence
on experimental data is not as severe as for force field methods. Once a given atom has
been parameterized, all possible compound types involving this element can be calculated.

Semi-empirical methods are zero-dimensional, just as force field methods are. There is
no way of assessing the reliability of a given result within the method. This is due to the
selection of a minimum basis set. The only way of judging results is by calibration, i.e. by
comparing the accuracy of other calculations on similar systems with experimental data.

Notice that semi-empirical models provide a method for calculating the electronic
wave-function, which may be used for predicting a variety of properties, e.g. the molecule
polarization. Nevertheless from ab initio calculations that good results require a large
polarized basis set including diffuse functions, and the inclusion of electron correlation,
that are not considered in semi-empirical methods. Depending on the specific application
the semi-empirical results can also be accurate. In this sense the result should be somehow
validated by comparison with experimental data or more accurate ab initio approaches, as
already mentioned above.

Generally semi-empirical methods, like force field ones, are not at all suitable for
accurate estimations of molecule energy levels or for molecular geometry optimization,
unless some modifications are considered. They instead are very computationally efficient
and find applications in many fields in which qualitative results are enough.
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3.6.2 The EHT method
The extended Hückel method (EHT) is a semi-empirical LCAO method, which exploits
all valence orbitals of the atoms as the basis functions. Contrarily to the original Hückel
method, the extended one takes into account not only π-orbitals but also σ ones. These
atomic orbitals are approximated with Slater Type Orbitals (STOs) which allows the
overlap matrix Sij to be calculated efficiently. As already mentioned (see section 3.5.4),
the STOs are orbitals characterized by having a blunt exponential decay centered in the
atom nuclei. In this way, by using this basis set, the matrix elements can be defined by
very few parameters. In particular, the matrix elements of the Hückel Hamiltonian are
described by the following equation [105]:

Hij =
{
−Ei, if i = j
c
2Sij(Hii +Hjj), if i /= j

(3.12)

where the diagonal elements (i = j) of the Hamiltonian are approximated with the valence
orbital ionization energies Ei, taken either from experimental data or calculated by means
of more advanced methods. The off-diagonal elements (i /= j) are proportional to the
overlap of the i-th and j-th orbitals weighted by a constant c that is usually taken equal to
1.75. Thus, given a molecular geometry, the overlap matrix and thereafter the Hamiltonian
can be calculated.
Several variants are possible, but often the overlap integrals are actually calculated, i.e.
the ZDO approximation is not invoked. It is possible having EHT methods with NDDO,
INDO or CNDO. If the CNDO approximation is assumed, performances may be limited
since it does not take into account electron-electron repulsive interactions.
Usually EHT methods are non-iterative. Since the diagonal elements only depend on the
nature of the atom (i.e. the nuclear charge), this means for example that all carbon atoms
have the same ability to attract electrons. But in general, it is unlikely that all carbon
atoms have the exact same charge, i.e. owing to the different environments their ability to
attract electrons is no longer equal. In order to overcome this drawback self-consistent
EHT calculations can be performed. Such methods are called self-consistent (or charge-
interaction) Hückel methods, and in these methods the matrix elements are modified by
the calculated charge.

The main advantage of extended Hückel theory is that only atomic ionization potentials
are required, and it is easily parameterized to the whole periodic table. Extended Hückel
theory can be used for large systems involving transition metals, where it often is the only
possible computational model [98]. Moreover in many cases show the correct trend for
geometry perturbations corresponding to bond bending or torsional changes, and thus
qualitative features regarding molecular shapes may often be predicted or rationalized
from EHT calculations [98].

In summary, this approach requires only a fraction of the computational effort needed by
the more elaborated ab initio methods and often provides reasonably accurate quantitative
results that give insight into the essential physics (or chemistry) [106], [105].

Finally notice that recent work in this area has used an approach to parameterize
against density functional results, thereby providing a computationally very efficient model
capable of yielding fairly accurate results [98].
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3.7 Intermolecular interactions
In the practical part (part II) of this work I will consider gas sensor applications. The
structure will be mainly the one of a molecular wire, and depending on the presence of a
target molecule in proximity to the sensor, the conductance of the molecular channel will
be changed. The physical principle of the device is thus linked with weak intermolecular
interactions, such as the van der Waals ones, that modify the channel molecular orbitals
such that the transport is significantly changed. The aim of this section is to provide a
review of the van der Waals intermolecular interactions and to briefly highlight how to
consider them in a electronic structure calculation (mainly considering the DFT approach).

3.7.1 van der Waals and intermolecular interactions
In order to review the van der Waals forces it is better to firstly review briefly the different
kinds of chemical bonds and chemical interactions between atomic elements. References
can be [107], [108].
Valence electrons in atoms (i.e. the electrons in the most external shells of an atom) are those
that generate the chemical bonds, and give rise to many chemical-physical properties of
the considered element. Accordingly with Lewis theory, these electrons are those belonging
to an incomplete octet, and the chemical bonds arise for the attempt of completing it.
Covalent bonds are created between atoms with enough high electronegativity, in these
kind of chemical bonds each atom provide one electron, such that two electrons are shared
between them and constitute the bond. Covalent bonds can be pure (between atoms of
the same element) or polar (between atoms of different elements). Moreover it can also be
dative if a single atom provides both the electrons, and a double covalent bonds if two
pairs of electrons are provided. Analogously a triple covalent bond involves three pairs
of electrons. The triple is stronger w.r.t. the second that is stronger w.r.t. to the simple
covalent one. This means that a greater amount of energy (binding energy) should be
provided to break a triple bond w.r.t. a second one, and moreover the bond length of
the triple will be lesser than the one of double (all analogous between double and simple
bond). The covalent bond length is of the order of 1÷ 2 Å. Moreover ionic bonds are also
possible, usually if the electronegativity difference between the two element is greater than
1.9. In this case an element provides one or more electrons to the other, and both becomes
ions (positive ion the first one and negative the second one). The donor atom is called
cation while the other is called anion. The ionic bond is the result of the electrostatic
interaction between the two ions. It is usually the weaker among the mentioned bonds,
but it is stronger than intermolecular interactions. Notice that usually a “clean” ionic
bond is not possible and instead there is “a bit” of electron sharing between the anion and
the cation.
In addition to these bonds it is possible to have also intermolecular interactions, i.e.
physical-chemical interactions among molecules. Different molecules can undergo to
attractive (or also repulsive) interactions. The intermolecular interactions are four in total:
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the hydrogen bond and the van der Waals forces, that are in number three since they
includes three different cases. These are at the origin of chemical bonds in hydrogen-bond
solids and molecular solids respectively. Notice that they are weaker than intramolecular
bonds described above (i.e. their binding energy is lower).

Hydrogen bond

The hydrogen bond is a particular case of electrostatic dipole-dipole interaction. It is
formed between molecules in which an hydrogen atom is covalently bond with an atom with
high electronegativity (and small dimensions), typically fluorine, nitrogen and oxygen. Due
to the high electronegativity the electron has more probability of being found nearby the
higher electronegativity atom. This means that its wave-function or orbital (the molecular
orbital or the electron cloud) is spatially deformed toward the more electronegative atom.
Consequently the molecule present a permanent electric dipole, with a small negative
charge δ− close to the high electronegative atom and a small positive charge δ+ close to the
hydrogen atom. An example can be the water molecule H2O. Because of this permanent
electric dipole different molecules can be bond together, due to the electrostatic interaction.
Thus there is the formation of weak (if compared to the above intramolecular bonds such
as the covalent bonds) chemical bonds between the hydrogen atom of one molecule and the
electronegative atom (e.g. F, N, O) of another molecule. Its binding energy is of the order
of 20÷ 50 kJ/mol, and notice that this value is comparable (or even less!) with the typical
errors of the DFT methods reported in figure 3.2 (b). This means that for these kind of
weak interactions such a methods are not suitable, and indeed corrections must be used
(as described below - subsection 3.7.3). The origin of this interaction is (in a semiclassical
picture as the one just provided) an electrostatic interaction between two electrical dipoles.
The fact that the hydrogen atom is very small, and the fact that it contains only one
electron (thus there are no electrons that can somehow screen the electric field and thus
the interaction) make the hydrogen bond particularly intense w.r.t. other intermolecular
interactions (van der Waals), thus making the binding energy particularly high. Because of
the reasons just mentioned this kind of intermolecular interaction is particularly important,
and since it is possible only with hydrogen atoms it is called hydrogen bond. Notice that
the hydrogen bond is directional (like the covalent bonds). Finally notice that it is possible
to have hydrogen bonds even within the same molecule (if the molecule is large, i.e. made
by an enough number of atoms), usually it happens between different functional groups
composing the molecule.

van der Waals forces

Intermolecular interactions (i.e. interactions among molecules) are attractive or repulsive
forces that mediate the interaction between molecules, they can occur between both polar
and non-polar molecules. They have again an electrostatic nature, and they are usually
referred as van der Waals forces. Intermolecular interaction (or binding) energy is very
low (0.1 ÷ 10 kJ/mol) if compared with covalent or ionic bonds (100 ÷ 1000 kJ/mol),
moreover the interaction distance is usually short (of the order of 4Å) and the strength
of interaction decreases rapidly with distance. The van der Waals forces are responsible
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of several interesting chemical and physical properties of materials, especially in changes
of the state of aggregation of matter (solid to liquid, liquid to gas and vice versa). The
van der Waals forces (named after the Dutch physicist Johannes Diderik van der Waals)
include actually three different types of interactions:

• Keesom’s interactions:
The Keesom interactions involve permanent dipoles. They result from the interaction
of a permanent dipole with another permanent dipole. Indeed it is possible to
have an electric permanent dipole in a polar molecule, and as already mentioned
this may happen if there is one (or more) atom with a significantly higher value
of electronegativity w.r.t. to the others composing the molecule. In this case the
electron(s) has an higher probability of being found close to the high electronegativity
atom, creating a (small) negative charge δ− around it. Consequently a (small)
positive charge δ+ is induced around low electronegativity atoms. As known from
basic physics an electrical dipole generates an electric field that allows the polar
molecules to interact. In particular in nature there always the trend of achieving
a stable configuration (if no external stimuli are applied), that coincides with the
achievement of the thermodynamic equilibrium (i.e. minimum potential energy
configuration). If many permanent dipoles are present in the same volume one close
to the other then they will align with opposites poles (i.e. δ+ and δ−) close the one
to the other. Usually Keesom’s interactions are negligible in gases due to the high
kinetic energy of particles that allows for overcome the Keesom’s interaction energies.
Notice that it is also possible that the permanent dipoles have a different origin from
the one specified above, for example they can be due to the presence of molecular
ions or molecular multipoles (nevertheless the treatment does not change).

• Debye’s interactions:
This kind of interaction occurs between a polar and a non-polar molecule. If a non-
polar molecule undergoes to an electric field then the electron clouds (or molecular
orbitals) are distorted. Indeed the electrons have the inclination to go in opposite
direction to the field. As a result the molecule is temporarily polarized. Thus an
induced dipole is created. The same effect is obtained if a polar molecule is nearby
the non-polar one. In that case opposite charges are attracted and the non-polar
molecule results polarized, until the distance between the two molecules is not so
big to make the interaction negligible. The intensity of the interaction is of course
proportional to the strength of the permanent dipole of the polar molecule.

• London’s interactions:
These interactions occur between a fluctuating dipole and an induced dipole. Indeed
non-polar molecules can instantaneously become polar, due to motion of the electrons
around the nuclear centers. Usually in a (neutral) atom the electron cloud is symmetric
w.r.t. to the nucleus, nevertheless for short time intervals the electrons can be localized
in a certain region of space giving rise to an instantaneous electrical dipole. This is
called fluctuating dipole. Again the instantaneous electric field that is generated by
this dipole can have effects on another atom/molecule nearby this one, originating an
induced dipole. In response to the induced dipole the first atom/molecule can change
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its configuration, such that the total potential energy of the system is minimized. This
means that opposite charges are attracted to the same side (as explained previously).
Nevertheless this can have again effects on the induced dipole that can change again
orientation (passing in between the neutral configuration). This mechanism is at the
basis of the London interactions. The London interaction strength increases with the
molecular molar mass.

It is possible to derive classical expressions for the Keesom, the Debye and the London
interactions (not reported since non-relevant for the quantum mechanical treatment - see
next section 3.7.2). Moreover all the intermolecular interactions are anisotropic, that
means that they depend on the relative orientations of the involved molecules. This is
obvious if their physical origin (above) is considered.

Notice that it is possible to have other intermolecular interactions, not included in
the van der Waals one. Nevertheless they all have essentially an electrostatic origin. In
particular it is possible to have ionic bonds/interactions between molecules. The principle
is analogous to the one of ionic bonds reviewed before: a molecule (or a functional group)
provides all the electrons of the bond (and becomes the cation) while the other is the
anion. In addition other kind of dipole–dipole interactions are possible between molecules
which have permanent dipoles. Also ion–dipole and ion–induced dipole interactions are
possible. Notice that generally in the latter case ions are involved, giving rise to forces
that are stronger than dipole–dipole interactions because the charge of any ion is greater
than the charge of a dipole moment.
A mention is also due to the so called steric effects [107], [108]. They are non-bonding
interactions that influence the shape (conformation) and reactivity of ions and molecules.
Notice that steric effects result from repulsive forces between overlapping electron clouds.
An example can be the real shape of benzene molecule that is non-planar, this because the
repulsive forces between electrons (that correlate their motion to avoid each other) cause it
to deform and assume the so called chair-like shape (bent instead of planar). These effects
are in great majority again a consequence of electrostatic interactions and correlation
between electrons.

Nevertheless the point that now should be clear is that all these kinds of interactions
have essentially an electrostatic origin. For this reason they all have the same quantum
mechanical treatment, that in practice is very simple: all these kind of interactions are
automatically included in the considered system Hamiltonian (to this purpose refer also
to the next section 3.7.2). Indeed once the geometry is chosen the Hamiltonian can
be built following the methods described in the previous sections of this chapter, and
the wave-functions satisfying the steady state Scrhödinger’s equation are automatically
accounting for all these effects, that indeed appear within the Hamiltonian as potential
energy contributions, either relative to electron-nuclei interactions or to electron-electron
interactions. Notice that choosing the geometry means to fix and optimize it by means of
an optimization procedure aimed in minimizing the potential energy in order to obtain the
equilibrium configuration. The problem in modeling all the intermolecular interactions is
the fact that they have small interaction energies (van der Waals forces are of the order
of 0.1 ÷ 10 kJ/mol), that are often below or of the order of the root means square or
maximum deviation errors of the DFT and the EHT methods (refer to figure 3.2 to have
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an idea). This means that some kind of corrections are needed, and they are the subject
of the next sections (refer especially to section 3.7.3).

3.7.2 Quantum modeling of intermolecular interactions
So far the classical models for intermolecular interactions were briefly reviewed. As men-
tioned, intermolecular forces between two molecules or atoms can be attractive or repulsive
and occur from either momentary interactions between molecules (e.g. London dispersion
force) or permanent electrostatic interactions between dipoles. The aim of this section is
to point out how they are modeled with the quantum mechanical approach.
It was already noticed at the end of the previous section that the origin of intermolecular
interactions is essentially the electrostatic attraction or repulsion between permanent or
momentary dipoles or charges. Moreover it was highlighted that they result from the
(both static and dynamic) geometry of the wave-functions, in the sense that the shape
of the electron cloud and the electron correlation can somehow influence the interaction.
Think for example to steric effects or to the deformation of the electron cloud due to the
proximity of a charge/dipole/molecule. As already mentioned all these interactions are
somehow already included within the molecular Hamiltonian.
The standard analytical approach for considering intermolecular interactions is by means
of the so called Rayleigh-Schrödinger perturbation theory [109]. In this model the (weak)
intermolecular forces are treated by means of a perturbational approach. In particular
the total system Hamiltonian (for example of the system of two interacting molecules)
is written as the sum of an unperturbed Hamiltonian and a perturbative term. In the
case of two interacting molecules the first term is the sum of the two equilibrium (and
unperturbed) molecular Hamiltonians, while the latter if the contribution considering the
interactions between them. Once the total system Hamiltonian is known it is possible to
proceed as usual in solving the Schrödinger’s equation. Since it is a perturbative approach
it holds true if the intermolecular interactions are weak w.r.t. to intramolecular ones (that
are e.g. covalent bonds), and from the above discussion it is known that this hypothesis is
usually true (van der Waals interactions for example involve energies in the range 0.1÷ 10
kJ/mol much lesser than covalent/ionic bonds 100÷ 1000 kJ/mol). This approach allows
for evaluating the intermolecular forces, and it can be useful in considering them in wave-
function based methods like electron-correlation (post-HF) methods presented previously
(see section 3.7), e.g. the Møller–Plesset Perturbation theory based methods [109]. A
remark on the so called dispersion forces will be useful in the next section 3.7.3. Long-range
intermolecular forces, also known as London or dispersion forces (see previous section
3.7.1), are well represented by the Taylor’s second order expansion of the perturbative
term. This procedure leads to an attractive potential with a leading term of the kind:
-C6R

−6 (where C6 is a constant and R is the distance). The classical explanation for this
term was already provided in the previous section 3.7.1, and it involves the creation of
temporary dipoles. London coined the name “dispersion effect” (from which the name
“dispersion forces” or “London forces”) for the attraction between noble gas atoms after
he noted the presence of aforementioned terms that appeared in the equations for the
intermolecular interactions, and that were analogous to oscillator strengths.
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Other methods that include a perturbative approach in modeling of intermolecular inter-
actions can be other electron-correlation methods (like the coupled cluster one) or the
Quantum Monte Carlo (QMC) one.
Nevertheless all such electron correlation methods and the QMC one, have the great
disadvantage of being unusable for large systems with more than few tens of atoms (let’s
say 50 atoms). Nevertheless a complete device, for example a molecular wire or transistor,
can widely overcome that limit, also because the contacts should be considered as atomistic
in order to make plausible predictions. For this reason DFT or semi-empirical methods are
usually preferred. In such methods it is possible to consider intermolecular interactions by
means of the so called “supermolecular approach”. It is referred to all quantum chemical
standard methods (e.g. DFT, EHT, etc...) that include some kind of correction aimed
in modeling intermolecular interactions. Notice that the electron correlation should be
considered in these approaches in order to get reliable results (especially for dispersion/Lon-
don forces) [109], [110]. An important issue in supermolecular approaches is the basis
set superposition error (BSSE). This is the effect that the atomic orbital basis of one
molecule improves the basis of the other molecule, and it can give rise to artifacts, since the
intermolecular interactions are distance dependent (see e.g. the above result on London
forces). More details are provided in the next section.

3.7.3 Supermolecular approach and DFT corrections
The way of accounting for intermolecular interactions in electron correlation methods
was briefly mentioned in the previous section. This section instead briefly introduces
the supermolecular approach. Such an approach consists in introducing suitable correc-
tions to both DFT and semi-empirical methods in order to account for intermolecular
interactions (like hydrogen bond, van der Waals and London dispersion forces). It found
recently applications in accurately predicting some large supramolecular complexes or
bio-macromolecular geometries such as the simulation of protein folding [110].
Different methods (namely HF, DFT, and semi-empirical) are now considered and it is
mentioned how to consider intermolecular interactions within them. A comparison among
them is also proposed. The material of this section is mainly adapted from [110].

Hartree–Fock method can provide an adequately accurate for hydrogen-bonding interac-
tions (with, however, significant underbinding) in some organic compounds. Nevertheless
it fails spectacularly for considering dispersion (London) in bound complexes. A disper-
sion corrected Hartree–Fock method (the HFD method) was proposed [110], but it has
important limits and thus the DFT-based methods are usually considered much better in
terms of performance with comparable computational performances.

Traditionally, it has been generally believed that semi-empirical methods are not
particularly well suited to hydrogen bonding problems [110]. Some semi-empirical methods
have been re-parameterized and additional empirical terms were added to increase the
accuracy for describing weak intermolecular interactions [110]. Others instead adopt some
of the below mentioned DFT-D corrections in the semi-empirical environment [110]. In
general is a good practice to consider unreliable a semi-empirical method for accurate
estimation of weak intermolecular interactions, unless it is not “validated” for the specific
case of interest by means of comparisons with experimental data or DFT methods (or
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more refined ab initio methods).
The situation is even worse for molecular mechanics (force fields) based methods.

They are not generally high accuracy methods, even if the presence of many accurate
experimental data can give good values for fitting parameters and thus fair results, but
only in specific particular cases.

Instead DFT-based methods allow for the usage of corrections to consider electron
correlations and weak intermolecular approaches that usually lead to very good results
sometime comparable with the ones of post-HF or perturbative methods [110]. In general
LDA accuracy can only be described as sporadic, and therefore its application in intermolec-
ular interactions is not recommended. GGA functionals typically show repulsive behavior
for dispersion bound complexes similar to Hartree–Fock method, with the corrections
mentioned below they provide good results. Meta-GGA functionals show only marginal
improvements over the GGA ones, while some hybrid-GGA functionals give reasonable
answers for particular problems of interest, but should be used with extreme caution [110].
The main available DFT corrections for intermolecular interactions are:

• DFT-D (Grimme-D2 / Grimme-D3):
These class of corrections include empirical methods to account for dispersive inter-
actions in practical calculations within the DFT framework. They were tested for
a wide variety of molecular complexes resulting in good predictions. For example
for stacked aromatic systems the DFT-D (BLYP) model seems to be even superior
to standard perturbative approaches. The good results obtained, in a variety of
diverse examples [110], suggest that the DFT-D approach is a practical tool for
describing weak intermolecular interactions [110]. The dispersive energy is described
by a damped interatomic potential of the form -C6R

−6 (see previously section 3.7.2).
This simple approach has recently been improved regarding accuracy introducing less
empiricism with the so called DFT-D2 (or Grimme-D2) model [110]. In particular in
this new version the most important parameters (like R and C6) are computed ab
initio, and general applicability to most elements of the periodic table was proved.
An important change is present in the so-called DFT-D3 (or Grimme-D3) method
[110], in which the C6 dispersion coefficients are dependent on the molecular structure
which accounts for subtle effects, e.g., the hybridization state of an atom changes.
The DFT-D methods do not only work for molecular complexes and intramolecular
dispersion effects but are rather general [110].

• Range Separated and Dispersion Functionals (vdW-DF):
In this method the non-local correlation is calculated explicitly in a non-empirical
manner[110]. It is typically used with standard GGAs like PBE. The overall quality of
vdW-DF results for typical non-covalent complexes is not better than with DFT-D but
this method has the great disadvantage of requiring substantially more computation
time (w.r.t. DFT-D ones).

• Dispersion Calibrated Effective Potentials (DCEP):
It is a novel approach whereby the missing dispersion effect in traditional DFT
methods is introduced using a suitably engineered effective core potential (ECP - see
also section 3.5.4).
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In the practical of this work (part II) the first correction, namely the DFT-D (in its
Grimme-D2 and Grimme-D3 verions) will be used for modeling molecular electronic gas
sensors.

Important considerations concern the basis set. The electron density around one nucleus
may be described by functions centred at another nucleus. This is especially troublesome
when calculating small effects, such as energies of van der Waals or intermolecular interations
or even hydrogen bonds, as explained in a while. It was said in section 3.5.4 that a complete
basis should include an infinite number of basis functions and this is of course impossible.
Moreover in order to have accurate results a great number of basis functions should be
consider, but again this is often unfeasible in practice, due to the fact that the computational
effort increases as the fourth power of the number of chosen basis functions. Thus the
truncation of the basis set leads inevitably to an error (in particular an overestimation of
the energy levels is often obtained). Usually the interest is in relative energies, e.g. ratio
between energy levels, thus these errors are not so relevant in many practical cases (even if
absolute errors are large -e.g. hundreds of kJ/mol- the relative ones are not). A balanced
basis set (as mentioned in section 3.5.4) is able to provide a (more or less) constant error,
thus leading to small relative errors (on ratio of energies). Moreover fixing the position of
the basis functions to the nuclei allows for a compact basis set [98], otherwise sets of basis
functions positioned at many points in the geometrical space would be needed, leading
to a too large number of basis functions for practical implementations. When comparing
energies at different geometries, however, the nuclear fixed basis set introduces an error,
because as mentioned previously the various basis functions overlap in the nuclei. To
better visualize the problem let’s consider two water molecules. They may give rise to
an hydrogen bond, and its energy can be estimated for example by considering the total
energy of the system of two water molecules to which it is subtracted two times the energy
of the single water molecule. Nevertheless different nuclear geometries leads to different
superposition of the basis functions, thus different overlap errors, and in particular with
more nuclei the basis set results improved because of basis functions overlap in the nuclei
that lead to a whole amelioration of the completeness of the basis set (it is thus “more
complete” than the basis set of the single water molecule). Consequently the system of two
water molecules will have a more realistic energy w.r.t. to the isolated water molecules,
that is a lower energy (the basis set truncation error results in an increase of the energy
levels, since now a “more complete” basis set is used this truncation error is lesser and
the energy is lower). And thus an overestimation of the hydrogen bond energy occurs,
but it is wrong. This effect is known as the Basis Set Superposition Error (BSSE). In the
limit of a complete basis set, the BSSE will be zero, and adding more basis functions will
not give any improvement. The conceptually simplest approach for eliminating BSSE is
therefore to add more and more basis functions, until the interaction energy no longer
changes (that is: the two molecules basis set is no “more complete” than the single molecule
one). Unfortunately, this requires very large basis sets and is unpractical. Mainly two
corrections for BSSE are possible, namely the chemical Hamiltonian approach (CHA) and
the Counterpoise (CP) correction. In the first case the basis functions mixing is prevented
a priori in the way in which the Hamiltonian is built. In the latter the BSSE is reduced
by re-performing all the calculations with the mixed basis set (in the previous example in
the case of two water molecules). The two methods tend to give similar results [98].
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In conclusion to this section, few recommendations are cited from [110]:

• Whenever possible, approximate methods (force field, semi-empirical or HF) that
are unavoidable in many practical applications should be checked or benchmarked
against large (or complete) basis set results or experimental/ab initio more accurate
methods.

• Electron correlation or post-HF methods work fine but are feasible only for small
systems (<50 atoms)

• When the issue of London dispersion interactions is carefully considered within
DFT, this yields a similar or often even better performance than electron correlation
or post-HF methods. The DFT-D method has proven as an accurate and robust
computational tool. The main advantage of DFT-based approaches is that they can
be applied also in electronically complicated situations (e.g. a complete molecular
electronic device).

• The biggest problem in DFT is the choice of the functional approximation. Computa-
tionally cheap (meta-)GGAs (e.g., BLYP, PBE, or TPSS) can be recommended. The
currently highest level of approximation in DFT is represented by double-hybrid func-
tionals (e.g. B3PLYP) that also perform very well for non-covalent interactions, even
if they should used carefully in some particular situations (see previous discussion).

• Semi-empirical methods (and this also holds for many force fields) mainly suffer from
a poor description of the electrostatic interactions which is demonstrated by their
notoriously bad performance for hydrogen-bonded systems (for which even the simplest
GGAs work very well). Because also their description of polarization (induction)
contributions to binding is deficient, these methods can only be recommended for
non-polar systems or alternatively employed after a careful benchmark validation is
provided.
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Chapter 4

An introduction to transport
in molecular devices

In the introductory section 1.1 it was briefly introduced the concept of molecular electronics,
in which single molecules (or small packets of them) are exploited to create whatever
electronic device. Then in section 1.2 the definition of molecular electronic sensors and
their working principle were briefly introduced, only qualitatively. The purpose of this
chapter is provide an overview of the transport features in such systems, while a rigorous
introduction to transport is left to the next chapter. In section 4.1 an oversimplified model
for transport through single molecule devices, or more generally through quantum dots
(i.e. zero-dimensional systems), is provided. It is useful to catch the main physical insights
of transport features in quantum dots. In section 4.2 it is introduced the concept of
mesoscopic systems, to which quantum dots (and molecular) devices usually are considered
to belong. In section 4.3 is very briefly addressed the Landauer-Büttiker transmission
formalism for transport in mesoscopic systems. It is useful in a deeper understanding of
the simple transport model presented in section 4.1, and in understanding some of the
features of the more advanced Non-Equilibrium Green’s Function (NEGF) formalism. The
purpose of section 4.5 is to provide an introductory overview of the advantages of using
the NEGF formalism for modeling transport in mesoscopic systems (while the formalism
is presented in the next chapter).

4.1 A simple model for transport through quantum
dots

The aim of this section is to provide an oversimplified model for the transport through
quantum dots, i.e. zero-dimensional (0D) systems. Such a model is the one presented in
the course “Micro & nano systems”, taught at Politecnico di Torino during the academic
year 2018/2019 by professors Mariagrazia Graziano and Gianluca Piccinini. It is analogous
to the “toy model” introduced in the first chapter of [89], and moreover it is essentially the
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same of the model presented in [90], exactly concerning the transport through quantum
dots. In this section I will adopt the notation used in the above mentioned “Micro & nano
systems” course, that can be slightly different from the ones of [89] and [90]. Even if this
model is very simplified, the main physical insights of electronic transport in quantum
dots can be easily understood, also in a quantitative way. For this reason I think it can
be a useful preparatory treatment, before entering into the details of the more complete
Non-Equilibrium Green’s Functions Formalism (subject of next chapter).

A quantum dot, or zero dimensional system, is a system in which quantum confinement
occurs in all the three spatial directions. Molecules can be thus thought as quantum dots
(indeed electrons are confined within the molecule in all directions). A feature of quantum
confinement is the arising of quantization, e.g. in energy levels. To this purpose one can
think to a 3D quantum well, like presented in section 2.3.7 (the parts about the finite and
the infinite height quantum wells). A first approximation can be the so called “bounding
box” approximation. In which the quantum dot is though to be 3D infinite height quantum
well with zero potential (i.e. flat potential) inside it. This is a strong simplification, but it
is useful to highlight the discrete nature of energy levels inside the quantum dot. Indeed by
proceeding as already done in section 2.3.7, and thus exploiting the separation of variables,
and supposing Lx = Ly = Lz = L it follows (see equations (2.71), (2.72), (2.67)):
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that holds true if U(x, y, z) can be written as the sum of three independent contributions:
U(x, y, z) = U(x)+U(y)+U(z). This is an oversimplification and it is wrong for molecules.
The correct way of obtaining the energy levels (energy eigenvalues) of a molecule is to
employ one of the methods described in the previous chapter 3. Anyway the important
point is that a quantum dot, both in the oversimplification (and absolutely inaccurate
and wrong) assumption of being a 3D infinite height quantum well, both in more accurate
approximations (like the ones discussed in chapter 3), is a system characterized by discrete
energy levels, due to quantization phenomena in all the three directions. Thus the electrons
are not free to move in no direction, and they result confined. Nevertheless, it is possible
to place a quantum dot in between two contacts and to have a current flowing between
them. But as will be discussed in while, the current-voltage characteristics of such a system
will have peculiar features, typical of 0D systems only, arising, precisely, from quantum
confinement.

For the moment let’s consider a quantum dot characterized by having a single energy
level, denoted with EL, placed in between two contacts (namely the source and the drain).
Moreover it is assumed to have a strong coupling between the two contacts and the
single-level quantum dot. This means that a strong chemical interaction is present, e.g.
a covalent bond. Consequently electrons have no difficulty in passing from contacts to
dot and vice versa. Indeed the electron wave-function at contact-dot interface (because
of the presence of the chemical bond) envelopes both atoms in the contacts and in the
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4.1 – A simple model for transport through quantum dots

dot/molecule, such that the electrons populating that orbitals have high probability of
being localized both in the dot and in the contacts, making easy the passage between
the two. If not so, it is said that the dot is weakly coupled to the contacts. The latter
case corresponds to wave-functions that are not delocalized, thus making difficult for the
electrons being exchanged between the contacts and the dot (since they are localized
either inside the dot or the contact). In this case the electrons are required to “jump”
from the contacts to the dot and vice versa in order to have an electrical current. This
is possible whenever the electrons change their state for some reason and go in another
state, that in terms of wave-functions means: the electrons “jump” from a wave-function to
another. These physical processes are referred as “sequential tunneling” (or hopping - see
also chapter 6), in the sense that two completely uncorrelated tunneling phenomena are
required to make the electrons “jump” from the source to the dot and then from the dot
to the drain. Nevertheless, as mentioned above, it is now assumed that a strong coupling
occurs between contacts and dot such that the electrons can easily be transferred between
the two systems without changing state. This corresponds to have “coherent tunneling”,
i.e. a single tunneling process that allows electron to flow from source to drain passing
through the dot. It is possible to think to this single tunneling mechanism as a single
plane wave that “carries” the electron from the source to the drain passing through the
dot (indeed within the contacts -periodic structures- Bloch waves exist, that are not much
different from plane waves in principle).
It is assumed to have an applied voltage VDS , and that the number of electrons that the
single energy level EL of the dot is hosting is equal to N (notice that N can be only 0, 1,
or 2). Notice that (since the contacts are assumed to be in equilibrium -due to their huge
dimension when compared to the dot- the Fermi levels within the contacts are constant
and differ of quantity −qVDS). The energy level EL is assumed to be within the so called
bias window, i.e. in between the drain Fermi level EFD and the source one EFS .
Because of charge conservation at steady state the two net fluxes of electrons from the
source to the dot ΦS = ΦS,dot−Φdot,S and from the drain to the dot ΦD = ΦD,dot−Φdot,D

should compensate, giving rise to (see also figure 4.1):

ΦS = −ΦD ⇔ ΦS,dot − Φdot,S = − (ΦD,dot − Φdot,D)

Notice that charge conservation is in general a consequence of the matter conservation,
indeed the previous equation corresponds in saying that all the electrons that enter the dot
from the source, exit from the dot toward the drain (no electron is created or annihilated
within the dot); that is in agreement with the assumption of having coherent tunneling
from source to drain.
In order to write explicit expressions for the four fluxes of figure 4.1 one more concept is
needed. As mentioned it is supposed to have strong coupling between the contacts and
the dot. The quality of the contact-dot interfaces is represented by means of the contact
intrinsic times. The contact intrinsic times can be defined as the average amount of time
required to an electron to move from the contact (the source or the drain) into the dot
or vice versa to move from the dot into the source/drain contact. They are indicated
with τS (referred to source) and τD (referred to drain). The smaller is the intrinsic time
the stronger is the coupling between that contact and the dot. Indeed a small intrinsic
time indicates that the electrons can be easily moved between the contact and the dot,
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Figure 4.1: Electron transport through a single level quantum dot. Four electron fluxes are
considered: ΦS,dot from source to dot, Φdot,S from dot to source, ΦD,dot from drain
to dot, Φdot,D from dot to drain. Two net fluxes are then defined: the net flux from
source to dot ΦS , and the net flux from drain to dot ΦD. The x-axis is from source
to drain, while the drain to source current is conventionally flowing from drain to
source.

indicating a strong coupling. In addition it is possible to define two energies: the so called
contact coupling factors as follows:

γS = ~
τS

, γD = ~
τD

that are the source coupling factor γS and the drain one γD. Notice that they have
dimensions of energy since they are equal the reduced Planck’s constant over a time. As
mentioned, the lower is the intrinsic time the stronger is the coupling to the contact, that
in terms of coupling factors becomes: the greater is the coupling factor the stronger is
indeed the coupling between the contact and the dot.
An important remark is due concerning these two concepts. The intrinsic time can be
seen as the average time interval needed to an electron to “jump” from a contact into
the dot. But as mentioned it can analogously be seen as the average amount of time
needed to an electron to “jump” from the dot into the contact. Considering the latter
statement the intrinsic time acquires the meaning of average lifetime of the electrons
inside the dot. Indeed if every τS (or τD) an electron escape from the dot to go into the
source (or drain) contact, then from the standpoint of the dot every τS (or τD) an electron
disappears (annihilates). In this optics the coupling factors γS and γD can be interpreted
as an uncertainty on the energy of such electrons. To this purpose see also section 2.2,
in which the time-energy uncertainty relation ∆E∆t ∼ ~ was discussed. Indeed the fact
that an electron can stay within the dot (thus in the energy level EL, or better in the
state with energy EL) only for an (average) amount of time τS (or τD) means that the
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exact value of the energy level of that state has an uncertainty (a standard deviation)
equal to γS = ~/τS (or: γD = ~/τD). If instead the uncertainty on the energy eigenvalue
were null (no uncertainty on the energy level thus it is exactly known) then the lifetime
should be infinite, that implies no exchange of electrons between the contacts and the dot
(isolated dot, with γS,D = 0 and τS,D →∞). An uncertainty on the energy level means a
broadening of the energy level, that is no more known exactly but only within a range of
values centered in EL (standard value / variance). And since the stronger is the coupling,
i.e. the stronger is the chemical bond, between the contact and the dot, the greater is the
coupling factor, a strong coupling means also more broadening of the dot quantized energy
levels. These topics will addressed again later.
At this point it is possible to write the expressions for the electron fluxes of figure 4.1.
In general a flux of charged particles (electrons in this case) is given by the number of
particles that pass through a given cross-section area (contact area) in the unit time. Here
the flux can be considered as the number of electrons that pass from the contact to the dot
(or vice versa) in the entire area (thus not per unit area, but like it was already integrated
over the cross-sections) in the unit time. Thus the flux of electrons from the source to
the dot is given by the number of electrons that pass from the source to the dot over the
source intrinsic time τS . the number of electrons that with a unique tunneling process (i.e.
coherent tunneling process) can pass from the source to the dot is given by two times (spin
degeneracy) the Fermi-Dirac function referred to the source Fermi level EFS evaluated
at energy level EL: fFD(EL, EFS). Indeed two is the maximum number of electrons that
can be hosted in EL in the dot, and thus is the maximum number of electrons that can
flow from the source toward the dot. The Fermi function evaluated for energy equal to EL
provides instead the probability of occupation of the energy level EL within the source
(since it is supposed coherent tunneling this is also the probability of having tunneling
from source to the dot). The time in which an electron on average “jumps” from the source
to the dot is τS and thus it is the unit time. Thus:

ΦS,dot = 2fFD(EL, EFS)
τS

= 2γS
~
fFD(EL, EFS)

Instead the flux of electrons from the dot toward the source is given by the number of
electrons hosted in the dot N over the average time at which electrons pass from the dot
to the source, τS :

Φdot,S = N

τS
= γS

~
N

Analogous reasoning for the drain contact lead to:

ΦD,dot = 2fFD(EL, EFD)
τD

= 2γD
~
fFD(EL, EFD) , Φdot,D = N

τD
= γD

~
N

The net fluxes are defined as incoming fluxes (figure 4.1), thus they are given by:

ΦS = ΦS,dot − Φdot,S , ΦD = ΦD,dot − Φdot,D

At steady state the sum of the two net fluxes must be zero, because of charge (or matter)
conservation, as stated previously. Thus:

ΦS + ΦD = 0 ⇔ ΦS,dot − Φdot,S + ΦD,dot − Φdot,D = 0
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From which it is possible to find the number of electrons N in the energy level EL:

ΦS,dot − Φdot,S = − (ΦD,dot − Φdot,D)

→ γS
~

[2fFD(EL, EFS)−N ] = −γD
~

[2fFD(EL, EFD)−N ]

→ N = 2
γS + γD

[γSfFD(EL, EFS) + γDfFD(EL, EFD)] (4.1)

Once that N is known it is possible to write an expression for the electrical current flowing
from drain to source. Since the net flux of electron from source to dot ΦS was already
calculated as the flux of electrons over the entire cross section (it is already the actual
number of electrons flowing from the source contact into the dot and then toward the
drain), the electrical current can be written by directly multiplying it by the electron
charge −q. At steady state the drain to source current is (the first minus sign is due to
the fact that x-axis goes from source to drain while the current from drain to source):

IDS = −(−q)ΦS = +q
[
2γS
~
fFD(EL, EFS)− γS

~
N

]
and considering the above expression for N :

IDS = q

~
γS

[
2fFD(EL, EFS)− 2γS

γS + γD
fFD(EL, EFS)− 2γD

γS + γD
fFD(EL, EFD)

]
=

= q

~
2γS

γS + γD
[γSfFD(EL, EFS) + γDfFD(EL, EFS) +

− γSfFD(EL, EFS)− γDfFD(EL, EFD)] =

= q

~
2γSγD
γS + γD

[fFD(EL, EFS)− fFD(EL, EFD)]

In conclusion the electrical current through a single energy level quantum dot is given by:

IDS = q

~
2γSγD
γS + γD

[fFD(EL, EFS)− fFD(EL, EFD)] (4.2)

This expression holds for any temperature T ≥ 0 K but it is not general at all. Indeed
it was mentioned before that the meaning of the coupling factors γS,D is to broaden the
energy levels, since they introduce an uncertainty over the energy level value. This issue
will be discussed in a while, in the next section 4.1.1. Before discussing it a last remark is
provided.

One may ask when the single level quantum dot conduct. In order to answer this
question let’s consider three cases:

1. In the first case the energy level EL within the dot is supposed to be placed well
above both the source Fermi level EFS and the drain Fermi level EFD. In this case
both the Fermi-Dirac functions fFD(EL, EFS) and fFD(EL, EFD) will be essentially
null, leading (see eq.(4.2)) to a null IDS . Indeed in this case there are no occupied
states in the source, thus no electron can flow into the dot (and proceed up to the
drain). In this case N ∼ 0 (empty) and no electrical current flows.
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2. In the second case the energy level EL within the dot is supposed to be placed well
below both the source Fermi level EFS and the drain Fermi level EFD. In this case
both the Fermi-Dirac functions fFD(EL, EFS) and fFD(EL, EFD) will be essentially
equal to 1, leading (see eq.(4.2)) to a null IDS . Indeed in this case there are only
occupied states both in the source and in the drain. Consequently there will be no
possibility for the electrons to flow in free states (since there are no free states) within
the dot or in the drain. In this case N ∼ 2 (occupied) and no electrical current flows.

3. In the last case the energy level EL within the dot is supposed to be placed in between
the source and the drain Fermi levels, like depicted in figure 4.1. In this case the
source has occupied states at energy EL, thus fFD(EL, EFS) ∼ 1, while the drain has
unoccupied states at the energy EL, thus fFD(EL, EFD) ∼ 0. From eq. (4.2) there is
a non-null electrical current IDS , and it is said that the energy level EL within the
dot is inside the bias window, where the bias window indicates exactly the energy
interval qVDS that separates the source Fermi level from the drain one. In this case
there is conduction through the energy level EL. Notice that if fFD(EL, EFS) ∼ 1
and fFD(EL, EFD) ∼ 0 the current saturates at the saturation value for the level
within the bias window, that is:

IDS = q

~
2γSγD
γS + γD

This is a general feature of transport through each 0D, but also 1D, 2D and 3D system:
the electron states that take part to the conduction mechanism are only those in between
the source and the drain Fermi levels. Otherwise, if no electron state is present in that
energy interval, no electrical current originates.

4.1.1 Levels broadening
It was already mentioned in the previous section that the strong coupling between contacts
and dot implies that the energy levels inside the dot are broaden w.r.t. the isolated dot.
The physical origin of this phenomenon is indeed in the chemical bond that is generated
between the dot and the contacts, that allows the electrons to easily move from the contacts
to the dot and vice versa. In other words the energy-time uncertainty principle holds true
and since the lifetime of an electron within the dot is limited (since it can escape from it),
then an uncertainty on its energy eigenvalue is present. Again, it is possible to see the
same physical phenomenon from another perspective. Let’s consider the general solution of
the time-dependent Schrödinger’s equation, i.e. eq. (2.49) in section 2.3.5; that is reported
here for clarity:

ψ(~r; t) =
∫∑

dE C(E) ΨE(~r) e− i
~Et

The steady state with an infinite lifetime have essentially no time dependence, since the
exponential is a complex exponential (this feature was already discussed in section 2.3.5
and 2.3.6). Nevertheless in the present case it was said that the electrons can escape from
the dot, giving rise to a finite lifetime. Thus the time dependence could be given by an
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exponential decay in time, indeed from the general solution of the Schrödinger’s equation
it is known that the time-dependent solution (factorized) should be:

φ(t) = e−
i
~Et

and if a finite lifetime is considered it is intuitive thinking that the exponential could
become real, giving rise to the exponential decay in time, meaning that the (position)
probability of finding the electron in such a level decreases with time. Indeed this is exactly
what happens, and said τ the electron lifetime within the dot, the time dependence is of
kind:

φ(t) = e−t/τ = e−
γ
~ t

A full demonstration of this equation will provided in the next chapter (see section 5.12);
nevertheless what happens in doing the calculations is exactly that an imaginary part
of the energy comes out, representing the exponential decay of the previous equation.
In particular a complex energy E = EL − iγ is considered, and when substituted into
φ(t) = e−

i
~Et the following time-dependence is found:

φ(t) = e−
i
~ELte−

γ
~ t = e−

i
~ELte−t/τ

Notice that the energy as physical observable will be always a real number. So one may
ask what is the meaning of a complex energy, is it correct to consider it? The answer is yes.
The energy will be always real when measured. The imaginary part of energy is thus only
a model, a mathematical artifact for representing the effects of the contacts. Indeed if one
consider all the entire system molecule plus contacts, there is no reason of using a complex
energy, since the electrons do not disappear from the “dot + contacts” system, but simply
move through it, flowing from the dot towards the contacts or vice versa. Nevertheless,
in analogy with conventional electronic devices modeling, it is usually preferred to make
calculations only on the isolated device, and to consider the effects on the contacts by
means of suitable boundary conditions. This approach (that will be widely investigated
in the next chapter) leads to significant simplifications in the analytical treatment and
in practical calculations (as it will be explained). The way of modeling the fact that the
electrons can escape from the device, without explicitly considering the contacts is exactly
by means of an imaginary part of the energy, that can be thus intended as a boundary
condition that represents the fact that the dot is not isolated but it is in between the two
contacts, and the electrons can escape from the dot (open system). Indeed, as already
clarified above, introducing an imaginary part of the energy allows to write the general
solution of the Schrödinger’s equation as multiplied by a real exponential in time, i.e. a
finite lifetime state, like the physics intuitively tells us. The time constant of the finite
lifetime state is called lifetime, and in the previous treatment is exactly the intrinsic time
τS for the source (or τD for drain). Thus modeling the energy as a complex entity has the
advantage of making the calculations only on the quantum dot (the active portion of the
device), but considering as it is in the real world: in between the two contacts. From the
standpoint of the device this means that the electron can “disappear” (annihilate) after a
time τ , and the probability of finding them in the dot is exponentially decaying with time.
An infinite lifetime state has a lifetime that is infinite: τ →∞, and it is possible to exactly
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know its energy, that previously was said to be EL. Thus the density of states per unit
energy of a infinite lifetime state will be a delta Dirac, in energy domain, centered in
EL. Instead in the case of a finite lifetime state, there is an uncertainty on the exact
value of the energy of the electrons in such a state. Thus the density of state per unit
energy will be broadened (it is only qualitatively illustrated in figure 4.2). In practice,
whenever an exponential decay is considered in time domain a Lorentzian distribution is
recovered in energy domain. Thus the broadened density of states per unit energy will
have a Lorentzian shape, of the kind:

DEL(E) = γ/(2π)
(E − EL)2 + (γ2 )2 (4.3)

where γ = γS + γD and EL is the energy level in the dot. Notice that it is possible to
demonstrate the previous expression. In order to do that one should make the Fourier
transform of the electron wave-function, considering the (real) decaying exponential in
time, and then normalize it to 1 [90]. Notice also that the Fourier transform w.r.t. to
time corresponds to the following correspondence of variable (between time variable t and
angular frequency ω):

t
F←→ ω = 2πf = 2πE

h
= E

~
From which it is clear that by Fourier transforming a wave-function that depends on time
corresponds in going into energy domain, that is where the density of states per unit energy
is defined (further details on this will be clarified in the next chapter). Notice that it is
said that the time and energy domain are isomorphous (see also section 2.3.3), since they
are biunivocally linked by means of linear application (the Fourier transform).

Figure 4.2: Qualitative pictorial representation of broadening of an energy level. Usually the
broadening assumes a Lorentzian shape, thus DEL(E) is a Lorentzian distribution.

A measure of the level broadening is provided by γ = γS + γD, indeed notice that if in
equation (4.3) it is made the limit for γ → 0 then the denominator goes to zero more
rapidly than the numerator (squared γ is present), such that the remaining function tends
to infinite when E → EL (it is essentially a delta Dirac centered in EL).
Notice that the integral over all the energy axis of equation (4.3) is again equal to 2 (due

163



An introduction to transport in molecular devices

to spin degeneracy); indeed the integral w.r.t. energy of a density of states per unit energy
should provide the number of states; and since DEL(E) is the effect of the broadening of a
single energy level EL then it should again host two electrons (since it is a single electron
state with spin degeneracy).

In order to consider the broadening in the previous expression for the electrical current
through the molecular/dot wire, equation (4.2) should be modified as follows:

IDS = q

~
2γSγD
γS + γD

∫ +∞

−∞
DEL(E) [fFD(E,EFS)− fFD(E,EFD)] dE (4.4)

in which the integral over all the energies is aimed in recovering the full probability of
occupation of the broadened level EL. Notice again that the stronger is the coupling
between the contacts, i.e. the greater is γ, the wider is DEL(E).
If it is defined the transmission functions as:

T (E) = 2π γSγD
γS + γD

DEL(E) (4.5)

then the las equation becomes:

IDS = 2q
h

∫ +∞

−∞
T (E) [fFD(E,EFS)− fFD(E,EFD)] dE (4.6)

4.1.2 Multi-level quantum dot
Let’s now consider the case of a two-levels quantum dot. First of all a remark concerning
the position of the Fermi level of the dot w.r.t. source and drain Fermi levels. In the
moment in which the molecular wire is created a (small) amount of charge exchanging
between the contacts and the dot occurs such that after a given time the thermodynamic
equilibrium is reached. This means that the Fermi levels in the source, the drain and the
dot are all aligned. In the moment in which there is an applied bias one may ask where
the dot Fermi level is positioned w.r.t. to Fermi levels of source and drain contacts. The
answer is not easy in general, and some ab initio calculations, regarding the entire device
(dot/molecule plus contacts), should be performed to answer it. Nevertheless if it assumed
of having similar coupling factors γS ∼= γD then it is quite probable of having the Fermi
level of the dot in the middle between the source and drain ones. This is in general an
assumption, and for the moment no further discussion is provided. This topic is again
considered under a different perspective in section 4.1.4.

Thus for the moment the considered case is the one of a molecular quantum dot with
two energy levels, namely the HOMO (Highest Occupied Molecular Orbital) and the
LUMO (Lowest Unoccupied Molecular Orbital), respectively placed below and above the
dot Fermi level, that is supposed to be in the middle between the source and drain Fermi
levels as mentioned above. The situation is summarized in figure 4.3. The relative positions
of the LUMO and the HOMO w.r.t. the dot Fermi level are supposed to be known from
electronic structure calculations (e.g. performed by means of the methods discussed in
chapter 3).
Let’s start by considering the thermodynamic equilibrium case. As mentioned above in
this case all the Fermi levels are aligned. In the moment in which a small VDS is applied
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Figure 4.3: Qualitative representation of a two level quantum dot. The distances between the
Fermi level in the dot EF dot and the two levels (HOMO and LUMO) are supposed
known from electronic structure calculations.

neither the LUMO nor the HOMO are inside the bias window, thus the electrical current
is null. Instead when the bias window reaches the value of 1 eV (i.e. VDS = 1V) then
the LUMO level starts conducting. This because the applied bias drops half between the
source and the dot and half between the dot and the drain. Indeed it was supposed to
have the dot Fermi level in the middle between the source and drain ones. Consequently a
voltage equal to two times the difference between the LUMO and the Fermi level of the dot
should be applied in order to have the LUMO within the bias window and thus an electrical
current flowing from drain to source. If the applied voltage is further increased then when
it reaches the 1.4V the HOMO level starts conducting, again this is a consequence of the
fact that it was assumed that the applied voltage drops equally from source to dot and
from dot to drain. In summary, without broadening, the current-voltage characteristics
will be similar to the one of figure 4.4 (dashed line). If broadening is considered then the
solid line of figure 4.4 will be recovered. Indeed in the picture of figure 4.3 the energy is on
ordinate axis and the effect of broadening is to make the levels entering before and exiting
later from the bias windows, thus leading to a smoother characteristics. The greater the
broadening the smoother (i.e. more linear) will be the current-voltage characteristics.
The important point is that in this oversimplified model for conduction through quantum
dots the two energy levels contribute to conduction independently when they enter in the
bias window. Thus, under these hypotheses, the extension of equation (4.4) to a generic
number of discrete energy levels within the quantum dot is trivial: indeed it is sufficient to
superimpose their effects by summing their density of states. This is exactly what is done
with the following equation, in which the multi-level transmission function is defined as
the sum over all the i-th levels in the dot:

T (E) =
∑
i

2π γSi γDi
γSi + γDi

DELi(E) (4.7)

where different coupling factors γSi, γDi are in general possible for the different energy
levels (it is not said that all the energy levels -i.e. all the dot orbitals- have the same
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Figure 4.4: Qualitative example for the two level quantum dot of figure 4.3. The LUMO level
causes the first plateau at ±1 V while the HOMO the second at ±1.4 V. Notice the
conductance gap around the zero bias condition (0 V), and notice that it is equal
to the double (for both positive and negative biases) of the energy interval that
separates the closest dot energy level to the dot Fermi level.

coupling with the contacts -i.e. wave-function hybridization or chemical bond). The
final expression for the electrical current through a multi-level quantum dot, even in the
case of broadening (and at whatever temperature, that is account with the Fermi-Dirac
distributions) is the following:

IDS = 2q
h

∫ +∞

−∞
T (E) [fFD(E,EFS)− fFD(E,EFD)] dE (4.8)

where the transmission spectrum (or function) T (E) is defined by eq. (4.7). Notice that
the last expression resembles eq. (4.6).

4.1.3 Quantum conductance
If in equation (4.8) it is assumed to have perfect transmission, i.e. T (E) = 1 for each
energy value E, the following expression is obtained:

IDS = 2q
h

∫ +∞

−∞
[fFD(E,EFS)− fFD(E,EFD)] dE

Moreover by supposing of being at zero kelvin for simplicity, the two Fermi functions are
1 below the source and drain Fermi levels respectively while they are 0 above. Thus the
integral becomes simply the difference between the contact Fermi levels:

IDS = 2q
h

(EFS − EFD) = 2q2

h
VDS

where it was exploited the bias window definition: EFS − EFD = −qVSD = +qVDS .
Notice that even if the transmission is unitary, i.e. all electrons are always transmitted by
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hypothesis through the quantum dot, the electrical current presents a finite slope, i.e. a
well defined (and finite) conductance, that is (the factor two arose from spin degeneracy):

GQ = 2q2

h

This conductance value is called “quantum conductance” or “contact conductance”. It
arises from the interface between the quantum dot and the contacts, indeed it is present
even if a full transmission is supposed. The contact conductance limits the maximum slope
of the current that cannot be infinite as predicted with classical physics for a conductor
length that tends to zero. To this purpose remember that the classical (ohmic) conductance
is: G = σW/L, thus for a small conductor (L → 0) it is expected a huge conductance,
especially if transmission is unitary: T (E) = 1. Nevertheless the actual conductance has
an upper limit, the so called quantum limit to conductance, that is indeed given by the
quantum conductance value: GQ = 2q2

h ∼ (12.49kΩ)−1. Early experiments on mesoscopic
systems (see also section 4.2 for a precise definition of mesoscopic systems), i.e. small
conductors, underlined that the actual conductance was approaching to a limiting value,
that was indeed GQ. Notice that the physical origin of the quantum conductance, despite
the name, has no an intimate relation with quantum mechanics [39]. Indeed it arises
from the interface between the contact and the quantum dot (or the small conductor).
Within the contact the current is carried by a huge number of possible electron states, or
contact proper modes. Indeed a contact is usually a metal contact, and it presents allowed
energy bands, composed by a set of continuum states, i.e. a continuum infinite number
of states/modes. Instead within the quantum dot the current can flow only through the
allowed discrete (and few!) electron states. This fact requires a redistribution of the
current among the current-carrying modes/states leading to an interface resistance (the
dot is like a sort of “bottleneck”) [39]. It is possible to get rid of this resistance by making
the contacts identical to the channel (i.e. the quantum dot). Nevertheless this has no
sense because the contacts are by definition a large reservoir of electrons, and they should
be “infinitely” more conducting than the conductor in order to justify the assumption that
the applied voltage drops entirely across the channel.

4.1.4 Electrostatic source and drain capacitances
In the moment in which there is a non null applied voltage conventional electrostatic
capacitances should be considered. Indeed the movement of charges in response to the
applied voltages would lead to capacitive effects. In total there are two effects on the
channel potential that are linked to electrostatic capacitances:

• the electrostatic effect: quite conventional, it follows from the capacitance definition,
i.e. from the fact that an applied bias would produce a variation in the channel (i.e.
in the dot) charge.

• the charging effect: it is an effect that in general occurs also in conventional electronic
devices, but is so small that it is in general negligible. Instead in nano-devices it is
comparable to the electrostatic effect and must be considered in the system modeling.
It is the subject of the next section.
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Notice that in general the electrostatic effect and the charging effect are linked, as will
be better clarified in the next section, and a self-consistent loop is necessary to ensure
convergence.
Once the source and drain electrostatic capacitances are supposed known, the simple
capacitive model of figure 4.5 can be considered. This is a linear (or better linearized)
model, and conventional circuit theory can be used to find the total channel potential within
the dot. Since it is a linearized model it holds only for small variations, or analogously
small VDS values. If not so a non-linear model should be considered, indeed the actual
values of CS and CD are dependent on the applied voltage.
The equivalent circuit (figure 4.5 - right) is a simple capacitive divider, and since CS and
CD are supposed known it is possible to easily estimate the effect of an applied VDS on
the channel potential. Notice that this model make also the additional assumption of
having a zero-dimensional quantum dot, i.e. the physical extension of the quantum dot is
completely neglected. Consequently it is also neglected the potential shape within the dot
(that instead in general varies from point to point accordingly to the Laplace equation).
And notice also that the source potential is taken as reference potential.

Figure 4.5: Capacitive (linearized) model for an ideal quantum dot with no physical extension
(zero dimensions). Left: a representation of the molecular/dot wire physical
structure; right: the equivalent linearized circuit.

The consequence of an applied VDS voltage is the one of shifting the quantum dot energy
levels. In particular the quantum dot Fermi level will be no more the one at thermodynamic
equilibrium but instead it will be shifted in energy of the amount UV ds = −qVdot, where
from the capacitive divider:

Vdot = VDS
CD

CS + CD
→ UV ds = −qVdot = −q CD

CS + CD
VDS

In conclusion, the effect of an applied VDS will be to create a bias window −qVDS as
explained previously, but also to shift the quantum dot energy levels (the quantum dot
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Fermi level) of the amount UV ds. Usually the capacitive ratio is called “voltage division
factor”, and indicated with:

η = CD
CS + CD

= CD
CES

where CES is the total electrostatic capacitance, defined as: CES = CS + CD. Notice
that if CS = CD then η = 1

2 , that is exactly what was supposed in the previous sections
by saying that the dot Fermi level was assumed to be in the middle between the source
and drain Fermi levels. Indeed η = 1

2 implies that the Fermi level of the dot is 1/2qVDS
higher than the source potential (that is the reference), and 1/2qVDS lower than the drain
potential.

4.1.5 Charging effect
The charging effect arises from the motion of charged particles, i.e. electrons, toward/from
the channel. In particular the amount of charge that is moved toward/from the channel
alters the energy levels in the channel itself. In general the charging effects occurs also in
conventional macroscopic electronic devices, where the presence of an extra electron can
alter somehow the band diagram. Nevertheless in such devices the charging effect is so
small that in general it results negligible. Instead in nano-devices it becomes comparable
to the electrostatic effects and thus it must be considered in the system modeling. Indeed
the perturbation of a quantum dot energy levels due to the presence of extra electrons can
be large, of the order of the eV, and thus comparable to the effects of the applied bias.
In response to a variation in the applied voltage, a given amount of charge Qn = −q∆N
is moved toward/from the channel, accordingly with the total electrostatic capacitance
CES (see also previous section). Notice that ∆N indicates the variation of the number of
electrons inside the dot due to the applied bias, while the corresponding total charge is
Qn. As a consequence a voltage is established across the total capacitance of the system,
indeed it is the result of the charge transferred from the contact(s) into the dot and the
result affects the entire system:

∆Vcharging = ∆Q
Ctot

= Qn

CES
= −q∆N
CS + CD

The potential energy corresponding to ∆Vcharging is called “charging energy”, and it is
equal to:

Ucharging = −q∆Vcharging = q2

CES
∆N (4.9)

This potential contribution corresponds to the potential energy within the dot that is due
to the transfer (through CS + CD) of a given number of extra electrons ∆N = N −N0,
where N indicates the current number of electrons within the dot and N0 the number
of electrons in the dot at thermodynamic equilibrium. If a single electron is transferred
toward the dot then ∆N = N −N0 = 1, that means a single extra electron is present, and
the charging energy is:

Ucharging 1 eln = q2

CES
∆N = q2

CES
= U0

169



An introduction to transport in molecular devices

Consequently it is possible to rewrite the charging energy as: Ucharging = U0∆N =
U0(N −N0). Notice that ∆N can also be negative (meaning that the electrons are moving
from the dot toward the contacts as a consequence of the applied bias).
The effect of the charge transferring toward/from the dot thus has again the effect of
shifting the total potential of the dot of the amount Ucharging; i.e. the Fermi level of the
dot is shifted of Ucharging. To this purpose it is possible to have a dynamic level shifting of
the dot levels. Indeed, if, on average, an extra electron is present within the dot due to
the external bias VDS , then the Fermi level of the dot is shifted upward of the (positive)
quantity U0, that means that both the LUMO and the HOMO are shifted upward of U0.
It may also happen that due to the charging effect one level (e.g. the LUMO) that initially
was inside the bias window (thus conducting), then is shifted so much that exits from the
bias window, thus reducing the total current. This can give rise to negative differential
resistances.
Notice that the contribution Ucharging can be superimposed (i.e. summed) to the electro-
static effect discussed in the previous section to get the total effect.

4.1.6 Self consistent algorithm and total electrostatic effect
The effect of an applied bias is to shift the dot energy levels of an amount UV ds =
−q CD

CS+CDVDS , and as a consequence of the applied bias a number of electrons N populates
the dot, with N /= N0 in general. Thus a charging energy arises and it has the effect of
shifting the dot energy levels of the amount Ucharging. The total effect of the applied bias
is thus a superposition of the two aforementioned effects (under the hypothesis of a linear,
or better linearized, system - i.e. for small variations or small VDS values):

U = UV ds + Ucharging = −q CD
CS + CD

VDS + q2

CES
∆N

In order to account of these effect the potential U can be used to shift the transmission
function T (E), that becomes T (E − U), thus leading to a total current:

IDS = 2q
h

∫ +∞

−∞
T (E − U) [fFD(E,EFS)− fFD(E,EFD)] dE (4.10)

from which, by remembering the definition of transmission spectrum in equations (4.7)
and (4.5), it follows that the density of states D(E) is shifted of the amount U :

DELi(E) → DELi(E − U)

Nevertheless the density of states appears in the evaluation of the number of electrons
within the dot N , that from eq. (4.1) is:

Ni = 2
γSi + γDi

∫ +∞

−∞
DELi(E − U) [γSifFD(E,EFS) + γDifFD(E,EFD)]

where the last expression is a straightforward generalization of the eq. (4.1) for the case
in which broadening occurs in the level i-th. This holds for each energy level i of the dot
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(the total N is the sum of the various i since the relations are all linear: N =
∑
iNi). The

point is that U depends on N , because of Ucharging dependence from N , but N depends
on U . Thus an iterative self-consistent procedure or algorithm must be used to evaluate
the final effect of an applied bias.

4.1.7 Gating the quantum dot: a three terminals model
In the first chapter it was mentioned the possibility of realizing a molecular transistor,
by adding a third electrostatically coupled gate terminal, see figure 1.3. In this section
the capacitive model presented in the previous sections is suitably modified in order to
account for the gating effect.
In figure 4.6 is represented a possible capacitive model including also the gate capacitance
that arises from the device structure (again refer to figure 1.3). If the applied voltages
VGS and VDS , and the electrostatic capacitances CG, CS and CD are known, the resulting
channel potential can be simply found from two capacitive dividers. Exploiting the
superposition of effects (i.e. linearized system hypothesis), the total average channel
potential (this is the average potential inside the quantum dot, that in this model is
considered without physical dimensions) is given by:

Utot = UV gs + UV ds + Ucharging (4.11)

where the two contributions UV gs and UV ds can be evaluated by superposition of the effects.
For estimating UV gs it is possible to set VDS = 0, thus CS and CD are in parallel (toward
ground since the source is taken as reference) and the effect of an applied VGS is thus the
one of shifting the energy levels in the dot of the amount:

UV gs = −qVdot
∣∣
VGS

= −q CG
CG + CS//CD

VGS = −q CG
CG + CS + CD

VGS = −q CG
CES

VGS

where CES = CG + CS + CD is the total electrostatic capacitance.
For estimating UV ds it is possible to set VGS = 0, thus CG and CS are in parallel and
the effect of an applied VDS is thus the one of shifting the energy levels in the dot of the
amount:

UV ds = −qVdot
∣∣
VDS

= −q CD
CD + CG//CS

VDS = −q CD
CG + CS + CD

VDS = −q CD
CES

VDS

where CES = CG + CS + CD is the total electrostatic capacitance. The charging effect is
given by same expression of previous section, i.e. eq. (4.9), that is now reported for clarity:

Ucharging = q2

CES
∆N (4.12)

where CES = CG + CS + CD is the total electrostatic capacitance. Finally notice again
that the set of equations presented so far needs to be solved self-consistently.
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Figure 4.6: Quantum dot capacitive model. In this simplified model the molecular quantum dot
-i.e. the channel- is assumed to be without physical extensions, i.e. zero-dimensional.

4.1.8 Quantum capacitance
The quantum capacitance represents the molecule states filling. The easiest way of
introducing it (in my opinion) is the approach presented in [90]. In the moment in which
the molecule-contact (source or drain contact) junction is created, a re-distribution of
charges occurs between the molecule and the contacts and the thermodynamic equilibrium
is achieved, with an alignment in the Fermi levels. A contact in order to be a “good”
contact should have an enormous amount of states around the Fermi level, if compared to
the channel ones, and thus it should be an unlimited reservoir of electron states for the
channel. Under this approximation the contact Fermi level is essentially pinned. Instead
the molecule/dot Fermi level is moved up or down in order to achieve the equilibrium. A
small amount of charge can be already enough to produce a huge molecular Fermi level
shift. Notice that even a fractional electron charge can be exchanged between the molecule
and the contacts. Indeed if an electron is involved in a chemical bond between the contact
and the dot/molecule (or the molecular anchoring group), the electron orbital (electron
cloud) is partially in the contact and partially in the molecule, thus the electron is for a
certain time localized inside the contact and for another time interval inside the molecule.
On average, therefore, a charge less than q (less than an electron elementary charge) can
be localized inside the molecule and considered as transferred charge in order to achieve
the equilibrium. The amount of shift in the Fermi level depends on the amount of states
in the dot around the Fermi level. In particular if a dot/molecule has a large density of
states (per unit energy) around the Fermi level, the amount of Fermi level shift due to a
given amount of charge transfer between the contact and the dot would be lesser than if
the density of states would be small. The total number of electrons in the molecule is in
general given by:

N =
∫ +∞

−∞
DOS(E)fFD(E,EF )dE (4.13)
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whereDOS(E) is the (total) density of states per unit energy of the molecule (corresponding
to the sum over all energy levels of the DELi(E) distributions), and fFD(E,EF ) the Fermi-
Dirac distribution. At zero kelvin the amount of occupied states (i.e. the number of
electrons) is:

N =
∫ EF

−∞
DOS(E)dE (4.14)

remember that N ∈ R+ since a fractional charge can be transferred. From fundamental
theorem of integral calculus:

dN

dE
= DOS(E) ⇒ dN

dE

∣∣∣∣
EF

= DOS(EF ) (4.15)

and by supposing only small variations of Fermi energy (indicated with δEF ):

δEF = δN

DOS(EF ) = q2

Cq
δN = q

Cq
Qn (4.16)

where it is defined the quantum capacitance as: Cq = q2DOS(EF ), and where the total
channel charge is Qn = qδN . The notation is analogous to the one of [90], where “δ”
indicates a small variation.
Equation (4.16) holds only for small variations and it is an linearized expression, useful
for determining the amount of charge transferred between the contacts and the molecule,
for reaching the thermodynamic equilibrium, once the Fermi level shift is known (or vice
versa to find δEF if Qn is known). From eq. (4.16) it is evident that the greater is the
quantum capacitance, the smaller is δEF for a given δn.
The concept of quantum capacitance can be generalized for any (small) variation of the
total channel potential due to whatever effect, such as the application of a bias. The
concept of quantum capacitance is simple (and strictly holds) for small deviations from
equilibrium, i.e. for linearized models. In particular with the notation of [89] (see chapter
7.3 for a more formal introduction of these concepts), said N0 the number of electrons
in the molecule at equilibrium, N the number of electrons in the molecule outside the
equilibrium, UN the value of the channel potential such that N = N0 and U the current
value of the channel potential, the following relation holds:

δN = N −N0 ≈ Cq
UN − U
q2 = Cq

δU

q2 ⇒ −qδN = Qn ≈ CqδVCH (4.17)

where δU = −qδVCH is the (small) electrostatic potential variation that occurs in the
channel, e.g. due to external bias (notice that in eq. (4.17) q2 can be thought as (−q)2). A
full demonstration of eq. (4.17) is provided in [89] (chapter 7.3) and also in slightly different
terms in [90]. Nevertheless it is reasonable thinking at eq. (4.17) like the generalization of
eq. (4.16) in which the dot Fermi level EF is substituted with the channel potential U .

In conclusion, the quantum capacitance is an additional contribution of capacitance
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that represents the state filling in a nanodevice. More precisely, it is in general a measure
of the amount of charge (electrons) that can be transferred into (or from) the molecule in
a given bias condition, indeed it is intimately linked to the density of states within the
molecular channel or the quantum dot.

In general the quantum capacitance should be considered in molecular devices capacitive
balance. In order to do that let’s consider once again the expression for the total channel
potential shift U , that is given by eq. (4.11) and reported here for simplicity:

U = UV gs + UV ds + Ucharging = −q CG
CES

VGS − q
CD
CES

VDS + q2 ∆N
CES

(4.18)

if a small variation of the number of electrons in the dot is considered, then ∆N → δN
and thus:

⇒ U = −q CG
CES

VGS − q
CD
CES

VDS + q2 δN

CES
(4.19)

Remembering the definition of quantum capacitance and equation (4.17), it is possible to
rewrite eq. (4.19) as follows:

U = −q Cg
CES

VGS − q
Cd

CES
VDS −

Cq
CES

U

from which:

U = −q Cg

CES + Cq
VGS − q

Cd

CES + Cq
VDS (4.20)

that finally can be rewritten in terms of small (linearized) variations as:

δU = −q Cg

CES + Cq
δVGS − q

Cd

CES + Cq
δVDS (4.21)

The important point is that the quantum capacitance Cq should be considered in the same
way as the electrostatic capacitances in the capacitive balance of the entire system, indeed
it appears in equations (4.20) and (4.21).
A final remark: in 2019 the first experimental evidence of the quantum capacitance was
possible [111], thus highlighting its increasing importance as the devices are scaled.
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4.1.9 Final considerations
The model introduced so far for the transport through molecular quantum dot is an
oversimplified model. In this model the broadening was essentially introduced ad hoc, even
if an attempt of short qualitative and intuitive discussion was provided. The broadening is
an extremely important feature of transport in nano-devices and more importantly it is
a natural consequence of the quantum mechanical physical and mathematical modeling
of nano-transport, as will be better clarified in next chapter. Moreover in the multi-level
picture it was stated that the levels participate to conduction independently the one from
the other. This is not always at all correct, as will be clarified in the next chapter. More
important is the fact that when more energy eigenvalues are considered within the quantum
dot, more coupling factors arise. This suggest to collect them within a matrix, and this
is exactly the standard approach in non-equilibrium Green’s functions theory in which
matrices are considered instead of scalars. A more formally correct and comprehensive
of all the effects (also those introduced ad hoc here or not yet introduced) treatment is
provided in the next chapter. It is a purely quantum mechanical model for transport
and it is very general, indeed it holds in all transport regimes, comprising also incoherent
transport.

Despite of its limits, this oversimplified model is capable of collecting the main physical
insights of the transport at nano-scale. Indeed the current saturation or plateau whenever
an entire level (with entire level is intended the broadened DELi(E)) is included in the
bias window, and the conductance gap around the zero bias are well explained with this
extremely simple model. Moreover, the origin of an asymmetric I-V characteristics is again
explained if a voltage division factor η different from one half is taken into account. And
again the possibility of a negative differential resistance arises naturally from the concept
of having a channel energy level exiting from the bias window. Still the capacitive model
is capable of catching many interesting insights in a straightforward manner, especially
when also the quantum capacitance is taken into account.

Since the advantages seem to be more than the above discussed drawbacks, one may ask
the reason for introducing a more refined model, that is also a little bit more involved in the
formalism, instead of continuing using this one, eventually with some ad hoc corrections.
The answer is that the physical phenomena are very rarely uncorrelated like in this “toy”
model. For example, a subtle effect of the applied bias voltage is to modify the density
of states within the quantum dot, and also its transmission function (or spectrum) T (E).
Transmission peaks due to different energy level can merge together, totally separate,
modify in height, width, shape, entering or exiting in unforeseen ways, and all these effects
can be correlated. Thus the model presented so far is of extreme importance because it
allows to keep always in mind in a straightforward manner the physical intuition of what
happens in a real case, but in order to make quantitatively correct previsions on actual
transport behaviors of nano-devices a more refined model is needed. As already mentioned,
it is the so called non-equilibrium Green’s functions formalism (NEGF), that is the subject
of the next chapter.
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4.2 Mesoscopic systems
It was already mentioned that due to the small dimensions of molecules (of the order of
the nanometer), a classical approach to transport cannot catch the essence of the transport
features in such a system. Indeed the correct way of proceed should take into account
quantum mechanics. In particular, molecular electronics modeling is based on the physical
treatment of mesoscopic systems, i.e. that systems whose dimensions are intermediate
between the microscopic and macroscopic ones [39]. Mesoscopic conductors are much
larger than microscopic objects like atoms (of the order of tens of hundreds of picometers)
but not large enough to be “ohmic” conductors [39]. Molecular devices, especially when
the considered molecules are composed by some tens of atoms (and this is the typical case),
belong to the class of mesoscopic system. The purpose of this section is to point out the
features of such systems.

A conductor usually shows ohmic features if its dimensions are much larger than each
of the following three characteristic length scales [39]:

• The de Broglie wavelength: it is related to the kinetic energy of the electrons, indeed
it is λ = h

p = h
mv .

• The mean free path: it is the distance that an electron travels before its initial
momentum is destroyed. It is the consequence of scattering phenomena, arising from
interactions among electrons and phonons, etc...

• The phase-relaxation length: it is the distance that an electron travels before its
initial phase is destroyed (think to the phase of the wave-function). Again it is due
to interactions among electrons and phonons or between an electron and another
electron. In the latter case (under the assumption that the scattering phenomenon
between two electrons is elastic - i.e. any the momentum lost by one electron is picked
up from the other) the main effect is affecting the phase-relaxation time and thus the
phase-relaxation length without affecting the mean free path (the situation is different
if a phonon is involved in the scattering process). Notice that rigid (i.e. static)
scatterers (such as an impurity atom or a well defined molecular geometry) do not
influence the phase-relaxation since the phase relation between electrons interacting or
not with these static scattereres is constant in time leading to constant transmission
coefficient and constant phase relation. Only dynamic scatterers (electron-electron
interactions etc...) lead to phase-relaxation.

These three scale lengths vary widely from one material to another and they are also
strongly affected by temperature (that means that a conductor can be ohmic or not
depending on temperature), magnetic field, etc... For this reason mesoscopic features were
observed in a wide range of dimensions of conductors (see [39] for details). Mesoscopic
conductors can present interesting features such as negative (differential) resistance, and
so on.

There are mainly two approaches in modeling transport through mesoscopic systems and
they are the transmission formalism or Landauer-Bütticker formalism (briefly introduced in
the next section 4.3) and the Non-Equilibrium Green’s Function formalism (NEGF). The
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first one has the advantage of being based on trivial concepts, but it has the disadvantage
of holding essentially only for ballistic transport (i.e. only for coherent transport). The
latter instead has the advantage of being very general and holding also for non-coherent
transport. Actually the real power of NEGF can be appreciated when incoherent transport
is considered (see later - section 5.18).

4.3 The transmission formalism
The purpose of this section is to provide a brief overview about the transmission formalism
or the so called Landauer-Bütticker formalism. It is one of the two mainly used models
for transport in mesoscopic systems. The other, namely the NEGF one, will be widely
addressed in the next chapter.

In the transmission formalism the electrical current flowing through a mesoscopic
conductor is expressed in terms of the probability that an electron can transmit through
the conductor itself. For the moment let’s assume zero temperature, so that the only energy
states involved in conduction are only those with energy strictly in between the source and
the drain Fermi levels. Moreover let’s consider a conductor in between two large contacts.
The probability of an electron of being transmitted from one contact (the source) to the
other contact (the drain) passing through the conducting channel is indicated with T . The
way in which it can be calculated depends on the nature of the considered device/channel,
and will be briefly addressed in the next subsection. For the moment let’s assume that
it is known. Moreover it is assumed that the electrons can exit from the contacts with
no reflections: “reflectionless” contacts. If a voltage VDS is applied then the source and
drain Fermi levels will be shifted of the amount qVDS . Since the contacts are assumed
reflectionless, the total incoming current of electrons from the source into the mesoscopic
conductor can be evaluated considering the quantum conductance introduced in section
4.1.3. Indeed no reflections means unitary transmission, and with an applied bias VDS the
states in the source contact that are in between EFD and EFS see free states in the drain
and try to go there such that the total energy of the system is lowered (they “try” to reach
the equilibrium). The incoming current from the source is thus (notice the similarity -for
zero kelvin- with the flow from source to dot of section 4.1):

IS,dot = 2q
h

(EFS − EFD) = 2q2

h
VDS

The amount of electrons (or current) that reach(es) the drain, i.e. the outgoing current
from the dot into the drain is thus given by the probability of transmission T through the
dot that multiplies the incoming current IS,dot:

Idot,D = TIS,dot = 2q
h
T (EFS − EFD) = 2q2

h
TVDS

The rest of the electron flux, or the incoming current, is instead reflected back to the
source contact: (1− T )IS,dot. In conclusion the net current flowing in the device is:

IDS = 2q
h
T (EFS − EFD) = 2q2

h
TVDS (4.22)
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from which the conductance is:
G = 2q2

h
T (4.23)

That can be modified in: G = 2q2

h TM , if more modes/states within the quantum dot are
considered, with M number of modes. In the previous treatment of a multi-level quantum
dot (see section 4.1.2) M was “embedded” in T (E).
Equation (4.22) is called Landauer’s equation for the electrical current, flowing in a
mesoscopic ballistic conductor, and equation (4.23) is referred again as Landauer’s equation
for conductance. Notice that in this transmission standpoint conductance is essentially
equivalent to transmission, indeed they are directly proportional. Sometimes one says
that conductance is transmission [89]. Notice that equation (4.23) includes the contact
conductance (or quantum conductance - see section 4.1.3).

So far the discussion neglected the effects of the contacts, that indeed were assumed to
be reflectionless. A remark is due concerning this assumption. Very often it is reasonable
assuming that the contacts are reflectionless for electrons coming from the dot and going
into the contact, since the contact is huge and have many electron states, both occupied
and available. Instead in general the reflection of electrons coming from the contact and
going into the dot can be quite large, and cannot be neglected. Nevertheless the above
formulae are correct since this reflection corresponds exactly to the contact conductance.
In particular contact-dot reflections are accounted for by means of the contact conductance,
that already considers them.

The extension of Landauer’s equation to the case in which the temperature is no more
zero kelvin is trivial. In particular instead of considering simply to take part to conduction
the electron states between EFD and EFS , the Fermi-Dirac function “tails” should be
considered. In particular equation (4.22) becomes:

IDS = 2q
h

∫
T (E) [fFD(E,EFS)− fFD(E,EFD)] dE (4.24)

that corresponds exactly to the previously found equations (4.6) for the single level quantum
dot and (4.8) for the multi-level case. Indeed the aforementioned equations correspond to
the Landauer’s formula for a single or a multi-level quantum dot.

4.3.1 The transmission function T

While the model presented above is general and holds for each kind of small conductor
or mesoscopic system, the particular expression for the transmission function T depends
on the particular system that is considered. In general it is possible to estimate it by
exploiting quantum mechanics, and in particular the transmission function T can be
obtained from the Schrödinger’s equation for the mesoscopic system. Indeed it is possible
to define a transmission operator, that, once applied to the eigenfunctions of the quantum
dot, provides the transmission probability for each energy level. This is not in principle
much different from evaluating the transmission coefficient through a potential barrier (see
section 2.3.7). In the transmission formalism all the complexity arising from the quantum
mechanical treatment of the states in the dot is thus hidden within the transmission
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functions T . Notice that is also possible to calculate T starting from the NEGF formalism,
indeed there exist a connection between the ballistic NEGF formalism and the transmission
formalism (to this purpose see also section 5.15; while a good reference is e.g. [39]).
Nevertheless it may have no much sense using the NEGF formalism only for evaluating T
and then using the more limiting transmission formalism (that remember holds essentially
only for ballistic transport, while the NEGF is always holding in general).

A further remark is now provided relative to the transmission operator T . In section
2.4 it was illustrated a way of representing a differential operator in matrix form. It is thus
intuitive that the above mentioned transmission operator can be expressed in matrix form.
In this case the transmission function T becomes a matrix: the transmission matrix, that
is indeed a representation of the transmission operator in a certain basis set. Moreover
it is known from the electromagnetic fields courses that it is possible to define the so
called scattering matrix S, that provides reflection and transmission coefficients for a
multi-terminal (or multi-port) circuit among the various ports. Moreover it is known that
there exist a connection between the scattering matrix S and the transmission one T , and
it is possible to switch from one to the other by means of suitable transformation formulae.
This holds true even in the case of transport through mesoscopic systems, such that the
transmission formalism corresponds to the scattering formalism in which each mesoscopic
system or sub-system is represented by means of scattering (or transmission) matrices,
and a theory quite analogous to the high frequency electronic circuits one is used. In
particular, a good choice for the basis set, can be the one of the energy eigenstates of the
Hamiltonian operator of the mesoscopic system. In that case saidM the number of allowed
energy levels, i.e. eigenvalues, it follows that the basis set will have M eigenfunctions
(if no degeneracy occur). In that case the transmission and the scattering matrices will
be MxM matrices. The transmission matrix element Ti,j will provide the probability of
transmission between the j-th and the i-th proper modes, i.e. eigenstates. This point is
further addressed in the next section.

4.3.2 Bütticker’s formula
A simple and good discussion and introduction to the Bütticker formalism is provided in
[39]. Here I will only mention that Bütticker extended the two terminal Landauer formula
to the case of more terminal devices, by summing up the linear responses at each terminal
(the responses must be linear to invoke the superposition of effects and sum them - see
next section for a brief discussion of linear responses):

Ip = 2q
h

∑
q

[Tq,pEFp − Tp,qEFq] =
∑
q

[Gq,pVp −Gp,qVq] , Gq,p = 2q2

h
Tp,q , Vp = EFp/q

where the subscripts p and q refer to two terminals p and q, and Ti,j is the transmission
function from terminal j to i. The electrical current must be zero when the applied voltages
at all the terminals are equal, this fact implies that:∑

p

Gqp =
∑
q

Gpq and
∑
p

Tqp =
∑
q

Tpq
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indeed it corresponds to charge conservation or matter conservation principle. Considering
the last expressions it is possible to rewrite the current at terminal p as follows:

Ip =
∑
p

Gpq [Vp − Vq]

From basic circuit theory it is known that is possible to represent whatever linear network
by means of an impedance matrix. If the network is resistive it corresponds to the resistance
matrix, whose inverse matrix is the conductance matrix. Thus in the multi-terminal case
the conductaces Gp,q can be seen as the elements of a conductance matrix. Moreover
it is well known that a linear multi-port or multi-terminal (both lumped or distributed
parameter) device admits also a representation in terms of scattering matrix, that is
known being related to a transmission matrix. The transmission formalism allows to work
with these matrices, and especially the scattering one is very used. Notice again that
this is possible if the system is linear, topic briefly addressed in the next section. The
usual approach is then to use quantum mechanics, and in particular the Schrödinger’s
equation, to evaluate the probability of transmission among states, i.e. the transmission
rates among the different states. They are then collected within a matrix, that can be
seen as a matrix representation for a transmission operator that provides the transmission
probability between two different states (an initial and a final one). Then by means
of algebraic transformation it is possible to get the scattering matrix, whose elements
correspond to the scattering rates between the system states. Then, if a sequence of
systems, or a complex mesoscopic system, is considered, it is possible to split it into simple
parts or subsystems, recover the transmission or the scattering matrix and then suitably
consider the total scattering/transmission matrix as a composition of the subsystem ones.
This is analogous to what is done in conventional high frequency circuit. The transmission
formalism rely on these few concepts, and “hides” the quantum mechanical complexity
within the transmission (or scattering) function.

4.3.3 Linear response
The transmission formalism shows its full power in the moment in which a linear re-
sponse is considered. This is the case of low-bias. In such conditions the transmission
formalism framework allows to write and solve trivial equations, giving, at the same time,
a quantitatively correct result in a fast way, and a physical insight in the description
of the behaviors of the mesoscopic systems. These advantages arise from the fact that
the transmission function can be written once at the beginning starting from quantum
mechanical considerations on the system under study and then it is unchanged, and one
works with the Landauer’s formalism without handling quantum mechanics. Nevertheless
in the moment in which a full current-voltage characteristics is considered things become
suddenly more complicated and in particular a self-consistent iterative solutions of the
involved equations must be considered. The aim of this section is to specify when a
response can be considered linear and when instead it cannot. In the latter case the
consequence will be that a self-consistent solution must be provided.

The response is linear whenever the transmission function is approximately constant
over the considered bias window. This statement implies two assumptions: first, the
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transmission function is approximately constant over the considered bias window, but also:
it is independent on the applied bias. The latter statement is not valid in general, since
the applied bias can modify T (E), as already mentioned in section 4.1 (see final remarks).
In the case of a constant T (E), that is: T (E) ∼ T (EF ) where EF is the Fermi level of
the channel, and with a T (E) independent on the bias, the Landauer’s formula can be
rewritten as:

IDS ∼
2q
h
T (EF )

∫
[fFD(E,EFS)− fFD(E,EFD)]dE ∼ 2q

h
T (EF )[EFS − EFD]

The last equality holds obviously for low temperature, but it is also possible to demonstrate
that it holds true also for higher temperatures [39]. A linear response thus occurs if the
conductance G(E) = 2q

h T (E) is independent on energy in the bias window: G ∼ 2q
h T (EF ).

A sufficient condition for having a linear response is that the applied bias is small if
compared to kBT , where kB is the Boltzmann’s constant and T the temperature. Indeed
in that case the Fermi levels difference is much less than kBT , i.e. EFS − EFD << kBT ,
and it is possible to show (by Taylor expanding the Landauer’s formula for the electrical
current), that the response is linear. Physically this is a consequence of the thermal
broadening that affect the device. Due to temperature the electrons have extra kinetic
energy w.r.t. to zero kelvin case, and as a result they can occupy higher energy levels
(excited states) w.r.t. Fermi levels (ground state). Thus the Fermi functions have a longer
tail and a slower exponential decay (in energy). Moreover the integral that defines the
Landauer’s electrical current can be seen as a correlation integral (a convolution integral
in dE), noticing that the Fermi functions are dependent on E but also on Fermi level.
This integral thus has the effect of “weighing” the transmission function T (E) over the
thermal broadening kBT . In other words, the greater is the temperature the smoother is
the integral of the product between T (E) and the Fermi function difference. This appears
very clear as soon as formulae are derived, see for example [39]. In summary, the response
is linear if T (E) is almost constant in energy: T (EF ), if it is bias independent and if the
applied bias is much less than kBT : EFS − EFD � kBT (i.e. large thermal broadening
w.r.t. applied bias). In such cases it is possible to formally write:

IDS ∼
2q
h
T (EF )[EFS − EFD] and Ip =

∑
p

Gpq [Vp − Vq]

It is now addressed the question: “what happens if the applied bias is large?” In order
to answer that question it must be said that in general when the bias is large (or not
so small) an electric field develops within the channel. Such an electric field modifies in
general the transmission functions thus leading to a non-linear response. It means that
the transmission function T (E) is not only functions of the energy but also of the bias:
T (E,EFS , EFD) or T (E, qVDS). In that case it is of extreme relevance including the effect
of the applied electric field in order to get reliable quantitative results. In some easy
cases it can be sufficient to consider a linear electric field inside the device, but in general
one has to take into the electron density inside the channel and find the electric field by
solving a suitable Poisson’s equation (see SCF procedure - section 3.2). This corresponds
in practice in implementing a self-consistent iterative solution, in which the electrostatic of
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the system is solved self-consistently with the evaluation of the transmission function. This
is analogous to what already seen in section 4.1. This also means that the transmission
function, that is obtained from the Schrödinger’s equation, cannot be evaluated only once
at the beginning and then assumed constant. This complicates the calculations with the
Landauer’s formalism, and each case should be addressed separately in order to understand
if it is more convenient performing calculations with the transmission formalism or with
the NEGF one. A good treatment is presented in [39].

4.3.4 Non-coherent transport
The previously introduced Landauer-Bütticker transmission formalism rigorously holds
true only for ballistic transport, i.e. for coherent transport in which a single wave-function
is supposed to “carry” the electron from the source to the drain.

For non-coherent transport a “vertical” flow of electrons occurs, where with “vertical
flow” it is intended that incoherent scattering phenomena occur such that the electrons
can dynamically change their energy state (i.e. wave-function or state) in consequence of
such scattering phenomena, and thus undergo to momentum/energy relaxation.

Nevertheless if one calls “non-coherent elastic transport” the particular transport regime
in which the electrons can undergo to phase-breaking phenomena but not to momentum
relaxation processes, thus in this transport regime the Landauer-Bütticker’s formalism still
holds. In that case no vertical flow of electrons happens, since there is no net exchange of
energy between the electrons and the surrounding channel, thus no dissipation of energy
or relaxation (but only phase-breaking). In this case if an electron “enters” at source
in a channel (e.g. a dot eigenstate) with a given energy, then it exits from the same
channel at drain side with the same energy (no change of electron state occurs). Notice
that another case is the one in which an electron with energy E1 scatters with an another
electron at energy E2. Again if no net energy is relaxed, i.e. if the scattering process
is elastic in nature, at the end of the process the first electron will have energy E2 wile
the second E1. This means that there is always an electron in the channel E1 and one
in the channel E2, even if they are exchanged: i.e. a phase-breaking process occurred. It
should be now clear the reason why in this “non-coherent elastic transport”, in which
phase-breaking occurs, the transmission formalism still holds. The picture of “no vertical
flow” is sometimes represented by the fact that the electrons can travel in separated
channels within the mesoscopic conductor, even if they can interact as mentioned above, by
means of phase-breaking phenomena. Nevertheless after each phase-breaking phenomena
one may think the electron continues flowing in the same channel (even if two electrons
may be exchanged).

An interesting case is the one in which the transmission function is constant in the bias
window. In this case the Landauer’s formalism still holds. Because even if an incoherent
scattering process occurs and a electron changes its energy during the propagation in the
channel, since T (E) is constant in energy, its final transmission probability does not change
relevantly. Thus the Landauer-Bütticker’s formalism provide reasonable quantitatively
results, and the committed error is small. Again this corresponds essentially to the linear
case. Thus if the response is linear, then the error committed in neglecting incoherent
transport is small and the transmission formalism can be used.
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If instead the transmission function T (E) has abrupt variations in the energy range
included within the bias window, the Landauer-Bütticker’s transmission formalism may
lead to completely wrong results, if incoherent transport has relevant effects on the total
transmission. An example can be the one of a potential barrier that is thick enough to
lead small transmission probability. If the temperature is enough high that many highly
energetic phonons are present, they can generate a relevant thermoionic current of electrons
that classically overcome the barrier, thus leading to a much greater current w.r.t. the
ballistic one. In this cases the transmission formalism is not reliable.

In summary it is possible to use the transmission formalism if:

• purely coherent transport is considered

• elastic non-coherent transport is considered (in which only phase-breaking phenomena
occur but not energy relaxation ones)

• inelastic non-coherent linear transport is considered, i.e. the transmission function
T (E) is approximately constant in the energy range within the bias window

Instead it must be carefully used in inelastic non-coherent and non-linear transport case,
in which the transmission function T (E) varies abruptly within the bias window (e.g.
because of localized states). In this last case the incoherent transport mechanisms can be
so relevant that neglecting them can lead to completely wrong results.

Notice also that in the case of non-coherent transport it is possible to define an “effective
transmission function” Teff (E), that embeds the scattering processes complexity, such
that the Landauer’s formula can be again be used. Nevertheless in order to derive Teff (E)
the NEGF formalism should be used, with the additional complexity of converting the
NEGF equations into the Landauer’s one with the term Teff (E). Thus usually it has no
much sense this approach. A good and detailed treatment of these topics is provided in [39].

4.4 Molecular devices linear response and coherent
transport

In section 4.1 it was introduced a simple model for transport through molecular quantum
dots. In particular in sections 4.1.4 and 4.1.7 it was introduced a linear (or linearized)
capacitive model for zero-extension quantum dots. A question that may arise is when
these models hold, at least approximately. The answer comes from the discussion in the
previous section regarding the linear response and the transmission formalism. Indeed if
the transmission spectrum T (E) is approximately constant in the energy range within
the bias window, the current-voltage characteristics will present a linear response, indeed
the integral of a constant is a straight line. Notice that also the capacitances should be
linearized w.r.t. the applied bias. This occurs if the applied bias is small, or if small
variations occur such that they can be linearized around the working point. In order to
get a linear response not only T (E) should be constant in the bias window, but also it
should be independent on the applied voltage. The latter condition is usually true if the
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bias is much lesser than kBT [39].
Nevertheless I would like to point out an important insight concerning the conditions under
which T (E) is linear for a molecular device. In particular this happens if the molecular
device is strongly coupled with the contacts. In that case indeed it was already mentioned
that broadening occurs (section 4.1.1). If it is supposed to have an extremely strongly
coupled molecular channel to the contacts, then the coupling factor γ will be very large,
thus leading to a very broadened DELi(E) and consequently to a very broadened T (E).
In this case it is easy to understand that T (E) is more constant than in the case of
weak coupling. In conclusion, if strong coupling occurs, then a great delocalization of
the wave-functions occur, leading to broadened transmission functions and thus a linear
response. Otherwise if weak coupling occurs, then the localized states are responsible
of a T (E) abruptly varying in energy, thus to a strongly non linear response. Another
way of seeing the same concepts is in the current-voltage characteristics: the greater the
broadening the more linear appears the current, the lower the broadening the steeper will
appear the current variations in the I-V characteristics.

A last remark on incoherent transport is provided. From the discussion in the previous
section it is known that a ballistic model for transport can be good if purely coherent
transport is present, if elastic non-coherent transport is present, and if inelastic non-
coherent transport is present but with a linear response. The latter case corresponds to
the case of strong coupling with the contacts (see above). Thus the only case in which
non-coherent transport can be relevant in molecular devices is when weak coupling case
is present, and the incoherent contribution provides a large thermoionic current that the
coherent picture is not capable of catching. This last case corresponds to the case in which
a potential barrier arising from a localized (thus weakly coupled state), is enough big to
make the thermoionic (classical) transmission probability comparable or greater to the
coherent tunneling one. In this case, with incoherent transport models the calculated
current can be very different from the coherently calculated one. Nevertheless one should
also consider that molecules are small. A typical dimension is less than 1 nm (benzene
ring is around 5Å long while C60 has a diameter of the order of 7Å). Thus the localized
states that can prevent the coherent transport, can at most generate potential barrier of
few Å, always less (or at most equal) to 1 nm. The coherent tunneling effect is thus not
at all negligible through a barrier of that thickness. Moreover one should also consider
the probability of interaction between electrons and molecular phonons (or molecular
vibrations). Indeed in order to be in the case of relevant incoherent case the electrons
should undergo to energy relaxation that is possible if they interact with phonons (or
photons); since it was seen previously that the electron-electron interaction give rise to
phase-breaking phenomena but not to energy relaxation, unless a third particle, like a
phonon, is involved in the interaction.
In order to have an idea of the amount of incoherent transport through molecules (due
to phonon interactions), the following reasoning is carried on. An electron at room
temperature has a thermal velocity of the order of 105m/s, and since the molecule is more
or less 1 nm long, the electron transit time within the molecular channel is of the order of
(10−9m)/(105m/s) that is around 10−14s. A molecular vibration usually has a frequency of
the order of 1013Hz, thus the vibration period will be of the order to 10−13s, ten times
greater than the electron transit time. This could be an indication of the fact that the
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incoherent transport is not in general negligible in molecular devices, but anyway the
transit time is one order of magnitude lesser than the typical time required to accomplish
a complete molecular vibration, thus making the resonance not exactly matched. In
other words, the molecule can be considered essentially as a (quasi-)rigid environment,
in which electrons travel, since, as mentioned, it requires one order of magnitude less
to cross the entire molecule than to accomplish a complete oscillation. And since, as
mentioned previously, rigid scatterers do not lead to phase-breaking processes, but only to
phase mismatches, they are are accounted in a coherent transport framework by means
of the transmission functions (that can be reduced by destructive interference of electron
wave-functions). Actually this is true as long as molecules are very short. But there exist
molecules that are even far longer than 1 nm. In such cases the transit time can be of the
order of the molecular vibration period, or even longer, and consequently the molecule
cannot be considered as rigid or static during the electron motion through it. In such
cases the electron phase perturbation due to the molecular dynamics can be relevant and
important, and it can leads to dynamic interference effects (phase-breaking). In this optics
it should be now clear that the interaction probability of an electron traveling through the
molecule and a molecular vibration or phonon depends on the time the electron spends
inside the molecule. If the molecule is very short and the vibrational frequencies for that
specific atomic/nuclear configuration are low (i.e. long vibrational periods), then the
transport is in optimal approximation only coherent. Otherwise it may not be so. In
section 4.1 it was introduced the concept of intrinsic time or escaping time τ = ~/γ. It was
said that it represents the time one electron on average spends inside the molecule before
escaping into one contact. This time thus plays a role also in determining the amount of
incoherent transport in the total transport balance [112]. Indeed, the longer is the time
spent by an electron within the molecule, the larger the molecular vibrational interaction
probability is. But since τ is inversely proportional to the broadening γ, the smaller is the
broadening (i.e. the weaker is the coupling of the molecular channel with the contacts) the
longer is τ and the higher is the probability of an electron to undergo incoherent scattering
mechanics, that can be a phase-, momentum- or energy-relaxing process. In summary, if
a short molecule is strongly coupled with contacts the transport the coherent transport
will be essentially the only relevant mechanism of transport through it; if instead a long
molecule weakly coupled with the contacts is considered, incoherent transport can be very
important [112].
In this optics, [90] provides a discussion in which it concludes that incoherent transport is
very improbable in devices shorter (smaller) than around 50 nm, like molecules are, because
the transit time is much lesser than the scattering mean interaction time. Nevertheless this
argument holds in general for crystalline semiconductor, while for molecules the previous
considerations must be kept in mind. The level broadening plays a central role also in
determining the amount of coherent transport, beside the more intuitive molecules length.
In conclusion the point is that in many cases it may be accurate to completely neglect
incoherent transport in molecular devices, especially if they are strongly coupled with
contacts and the molecules are short, but there cases in which such a transport regime
can be dominant, and by neglecting it quantitatively non-accurate results are obtained.
These cases are often linked with a weak coupling of the molecular channel with the
contacts, and with long molecules in which the orbital conjugation is broken. Indeed if
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orbital conjugation is broken the molecular orbitals are not mixed together and thus they
are localized, leading to an increase of the permanence time of electron in such part of
the molecule, and within the molecule in general. The distance above which incoherent
transport can be relevant can be also far below the limit of 50 nm mentioned above, and in
particular in [113] it is found to be 2.5 nm while in [114] around 4 nm, both for conjugated
molecules but with different properties. Thus the intrinsic geometry of the molecule
can affect also the discriminating distance for transport features. These topics are again
considered (under a slightly different perspective) in section 6.2.

4.5 The non-equilibrium Green’s function formalism
Molecules are small and thus they obey to the laws of quantum mechanics. A purely
quantum mechanical approach in modeling transport in molecular devices is the so called
Non-Equilibrium Green’s Function formalism (NEGF). For this reason it can do justice to
all the complex phenomena that occur in such quantum systems.
In the previous sections of this chapter a “toy” model was presented, that despite its
simplicity is capable of catching several physical insights of the transport through molecular
channels. Nevertheless as already pointed out in section 4.1.9, it is not a general model
and several issues are completely neglected, with the risk of getting totally unreliable
quantitative results.
Moreover a brief introduction to the transmission formalism was also provided in section 4.3.
The main advantage of the Landauer’s approach is that the transmission function can be
calculated with phenomenological (often simple) approaches, sometimes with semi-classical
approaches, and in these cases the transmission formalism results extremely powerful since
it easily provides accurate predictions on quantum mechanical systems in an easy way.
Nevertheless it is not general and its application, especially for non-coherent transport
should be carefully evaluated.
All these problems can be overcome once the NEGF model is considered. It is a rigorous way
of treating the transport in mesoscopic systems that holds in general, with no restriction.
In particular it holds also in the case of incoherent transport. Moreover by means of the
NEGF formalism it is possible to evaluate also the dissipated power within a channel in
which incoherent scattering mechanisms occur [39]. Actually the real power of the NEGF
formalism is indeed in incoherent transport treatment. In general the NEGF formalism
bridges the gap between the fully coherent picture of the Landauer’s formalism and the fully
incoherent picture of standard electronic devices modeling (that exploits average concepts
like mobility, arising from the concepts of incoherent scattering processes). Moreover
it is also a rigorous framework for the treatment of strongly non linear current-voltage
characteristics, that are instead somehow difficult in conventional mesoscopic transmission
based models. It will be addressed in the next chapter of this work.
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Chapter 5

The Non-Equilibrium Green’s
Function formalism

The Non-Equilibrium Green’s Function (NEGF) formalism is usually introduced in litera-
ture using the second quantization many-body perturbation formalism. In my opinion good
references of these topics, that exploits such a formalism, are [115], [116]. Additionally,
good introductions to second quantization and quantum field theory are provided in [92]
and [117]. Nevertheless the part I of this work, i.e. the literature review about the
theoretical models for molecular devices, is aimed to provide an introduction to these
topics that is as much as possible accessible, fast, easy and clear to readers who have an
electronic engineering background (like I am). In this optics, throughout this chapter,
in reviewing and summarizing the main points of the NEGF formalism, I will follow the
approach of [89] and [39]. This approach is an attempt of making accessible these topics
also to readers who have never seen neither the second quantization formalism nor the
many-body perturbation theory. This approach in thus suitable to be followed as reference
for an introduction to NEGF suitable to be understood also to engineers. Indeed very
often an electronic engineer working about molecular electronics has to set up atomistic
simulations and handle their results, and the only way of doing it correctly is by having
clear in mind the theory that is behind that processes, that is the NEGF theory for
transport in mesoscopic systems. Having clear in mind the milestones of this rigorous
theory concerning the transport in mesoscopic systems, one has not only the possibility
of setting up and handling correct simulations but also to have clear the qualitative and
quantitative explanation of the physics behind the obtained results. During the practical
part of this work (part II), I will make a wide use of atomistic simulations, all based on
the NEGF formalism.
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5.1 The change of perspective
In order to understand the philosophy behind the NEGF formalism one has to consider
the change of perspective w.r.t. traditional quantum mechanical problems, considered, for
example, in chapter 2 and chapter 3. The purpose of this section is to exactly clarify it, in
terms that are well established in an electronic engineer background.
In particular, standard quantum mechanical problems are aimed in finding what are the
possible states of a quantum system. Indeed in solving the steady state Schrödinger’s
equation, the aim is to find the eigenvalues and eigenfunctions (or eigenstates) of a quantum
mechanical system. These corresponds to the “allowed” or “permitted” states for that
specific system. The procedure for doing so is to solve the steady state Schrödinger’s
equation under certain conditions, i.e. by enforcing suitable boundary conditions that
represent the physical constraints arising from the specific physical nature of the system.
Moreover this procedure is carried out assuming essentially no inputs, i.e. no stimuli that
excite the considered system. An example could be a finite or infinite quantum well in
which the steady states are the proper modes (i.e. eigenstates) for that specific geometry
(width, height, etc...). Notice that, in order to point out exactly this, throughout all the
previous chapters I always used interchangeably the following terms: eigenstates, proper
modes, eigenfunctions, etc... So, standard quantum mechanical problems are problems in
which the proper modes, i.e. the permitted states of the system are found. And in order to
do that no stimulus is applied to the system, thus no input. In this optics, they all are free
oscillation problems, in which it is studied the free response of the system, i.e. the response
that arise from given initial/boundary conditions with no input. This is analogous of a free
oscillation, or free response, of an electrical circuit/system in which it is assumed to have
no input. The result in this case are the so called network poles, or oscillating frequencies,
i.e. the proper modes of the system. Notice that the free response (the transient) of an
electrical circuit is completely determined by the knowledge on the network poles, since it
should be well known from circuit theory (or LTI system theory), that the free response
(also called transient response) is a superposition of the proper modes of the network. In
the analogy between electrical circuits and quantum mechanics one should only substitute
the word “frequency”, used in circuit theory, with the word “energy”, used in quantum
mechanics. Once this is done the conceptual correspondence is complete. For example, in
the study of an LC resonator one is usually first of all interested in knowing the oscillation
frequency, that is well known to be ω0 = 1/

√
LC. At this frequency the (ideal) LC circuit

is able to sustain oscillations for an infinite time, even if no input is provided. In quantum
mechanics an infinite height quantum well has some allowed energy values, that are the
states in which a particle can exist for an infinite amount of time, even if no input and no
interactions with external world are present.
It is also well known that beside a free oscillation study of the system, it is possible to
perform a forced operation study of the system. In this case a continuous input (or in
general an input) is provided as stimulus for the system and the output is evaluated, i.e.
the system forced response is evaluated. An example can be the procedure of measuring
the transfer function of an electrical circuit, e.g. an LC circuit. The input in that case
is assumed to be a sinusoidal (harmonic) wave, and the output it is known to be again
sinusoidal with same frequency but different amplitude (and phase). The ratio between
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the output and the input provides the so called transfer function, that can be thus easily
measured as just described by applying in input a series of sine signals at different fre-
quencies. Notice that the transfer function is by definition the ration between the system
output and its input, and it is rigorously defined in a forced operation study of the system.
If this procedure is applied to the previously mentioned LC circuit it is well known that,
considering increasing frequency, at low frequency (DC) essentially no output is present
(no transmission occurs since the output is “filtered away”); then it increases until reaches
a maximum, that is obtained for finput = 1

2π
√
LC

, that is called the resonance frequency
(notice that the term “resonance” is rigorously referred only to a forced operation, but the
resonance frequency corresponds to the free oscillation frequency of the system). Then the
transfer function modulus decreases again, until the output signal becomes negligible or
null (again there is no more transmission through the filter). An important remark about
this procedure is the following: in a free oscillation study the unknown is the oscillation
frequency, thus the aim is to find a frequency value ω0. Instead in a forced operation
study the frequency is supposed known, since it is the frequency of the input (sine) signals.
In summary, a resonance peak occur when the input signal frequency is the resonance
frequency, i.e. it is equal to the free oscillation frequency of the system.
Analogous facts happen also in a quantum system. In particular let’s consider the single
energy level quantum dot discussed in section 4.1. It is known that because of the presence
of the contacts the level is broadened, e.g. with a Lorentzian distribution, and moreover it
conducts only if is inside the bias window. Let’s supposed that it is inside the bias window,
but instead of calculating the current, let’s supposed to be interested in evaluating the
transmission function T (E), that was defined to be T (E) = 2π γSγD

γS+γDDEL(E) in equation
(4.5). If the geometry of the system is fixed then γS and γD are fixed and constant and
thus T (E) ∝ DEL(E), that is: the transmission coefficient trend w.r.t. energy E resembles
the Lorentzian distribution shape. Now let’s suppose to apply an analogous procedure to
the one summarized above for the measurement of the transfer function. As said above
the word “frequency” should be substituted with the word “energy”, thus it is assumed
to inject an electron with a known energy E from the source toward the quantum dot.
Considering an electron of energy E has the only purpose of giving a physical picture
to this procedure, the important fact is that one energy value E at a time is considered
now, exactly like one frequency at a time was considered before relatively to the transfer
function. When increasing energies are considered in input to the system the following
happens. Since the shape of the transmission function resembles the shape of the Lorentzian
distribution, the transmission coefficient will be small for energy well below the center
value of the Lorentzian, that is the energy level EL of the isolated quantum dot. Then for
E approaching the value EL the Lorentzian increases and for E = EL the Lorentzian is
maximum, i.e. for E = EL a maximum in the transmission coefficient occurs. Then for
larger energies the Lorentzian and the transmission decrease again until no transmission
occur. At this point is clear that the transmitting behavior of the single level quantum
dot is exactly analogous to the filtering behavior of the LC circuit. A resonance occurs for
E = EL, for which the transmission is maximum, where in fact EL is an energy eigenvalues
(free oscillation) of the quantum system.
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Before completing the analogy let’s summarize what said so far. In a free response operation
study of the system the target is to find the system free oscillations, in terms of electrical
circuits this means finding the oscillation frequencies, i.e. the free modes of the system,
while in terms of quantum mechanical systems this means finding the permitted states,
i.e. the eigenstates (and their energy eigenvalues and eigenfunctions) or proper modes of
the system. The tasks are accomplished by setting to zero the inputs of the system, and
by enforcing suitable boundary conditions. In a forced operation study of the system the
target is to find the system response to a given stimulus. In terms of electrical circuits
this means finding the frequency response (or analogously the transfer function) of the
circuit, that indeed represents the response of the system to an input signal. In terms of
quantum mechanical systems this means again finding the response of the system to an
input stimulus, that in particular is an incoming electron (from the source contact) with a
well defined (ad known) given energy E. Usually in forced operation study it is found that
the system presents resonances at given frequencies or energies. In both electrical circuit
and quantum mechanical terms the resonance corresponds to a maximum transmission,
the difference is that in quantum mechanics the transmission corresponds indeed to the
transmission of an electron.
The NEGF approach is conceptually different from the standard quantum mechanical
one exactly in this: it corresponds to a forced operation study of the system instead of
a free oscillation study of the system (like other quantum mechanical problems). Indeed
throughout this chapter the energy will be no more the unknown to be found (the “allowed”
energy eigenvalues), but instead it will be a parameter, characterizing the input electrons.
Just to be very clear, another analogy can be the following: in standard quantum mechanics
the task was finding the eigenenergies of an isolated channel, which is analogous in finding
the resonant frequencies of a guitar string. Now with the NEGF approach the task is
finding how the channel (or the string) responds when it is excited by an electron of any
given energy from the contacts (or how the string responds when it is excited by a tuning
fork at a given frequency).

In conclusion, it should be now clear the change of perspective of the NEGF framework
w.r.t. to standard quantum mechanical problems: here the energy is considered known
and a forced operation of the system is performed. Thus throughout this chapter E will
be no more the unknown but a parameter, by means of which the results/solutions will be
expressed.

Second quantization and quantum propagators

In general, with the second quantization formalism, the Green’s function is seen as a so
called “quantum propagator” [92], [115], [116]. In few words a quantum propagator is
exactly a quantum mechanical operator that has the effect of propagating a stimulus that
is supposed to be applied at a time t in the point ~r, through the considered the system.
The result is the knowledge of the system response to that specific stimulus, in any other
point ~r′ at any other time t′. In this optics it is again clear that it corresponds in a forced
operation of the system. Moreover that input stimulus in practice can be an incoming
electron from the source, with a given energy. But more generally it can also be a photon,
a phonon or any other quantum particle. Indeed the Green’s function and NEGF (for the
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out-of-equilibrium case) is a general perturbative theory that holds for any perturbation of
the system under study. Nevertheless for the moment and in almost all practical cases,
one is interested in the electrical current flowing through a (molecular) channel, thus it
has sense of assuming the stimulus (equivalent, in the analogy of before, to a sine signal)
to be an electron at a given energy.

5.1.1 The change of perspective in formulae
The above discussion is important from a conceptual point, because it is at the basis of
the NEGF formalism. Nevertheless one may ask what are the practical implications of
this “change of perspective”. In this section I will try to give an answer to this question.
A standard quantum mechanical problem very often reduces in solving the steady state
Scrhödinger’s equation, as it was discussed in chapter 2. Such an equation takes the form:

Ĥψ = Eψ

notice that is possible to rewrite it as:[
E − Ĥ

]
ψ = 0

From the previous treatment it is now clear that the last equation (that is always the
steady state Schrödinger’s equation for the system under study) corresponds to a free
operation of the system study, in which no input is considered. The fact that is assumed to
have no input leads to the zero at right-hand side (notice the correspondence with linear
homogeneous systems of the kind [A]{x} = 0, especially if expressed in matrix form). In
the moment in which an input, or a source (e.g. an electron that flows into the channel
from a contact), is considered, the last equation is modified and an equation of the kind:[

E − Ĥ
]
ψ = source (5.1)

is obtained; in which the term “source” represents exactly the input stimulus (notice the
correspondence with linear non-homogeneous systems). A full derivation of a general
expression of the kind of eq. (5.1) is carried out in section 5.9. For the moment let’s consider
its physical meaning. The difference of eq. (5.1) w.r.t. standard quantum mechanical
system is exactly in the source term, that usually does not appear. The meaning was
already clarified previously and it is linked to the forced operation study of the system.
Moreover it is of fundamental importance understand that assuming that a system can
have an input, i.e. a source term, that can be an electron that flow from the a contact
into the system, corresponds in assuming that the system can be open. By definition an
open system is a system in which it is possible to have an exchange of matter between the
system itself and the external world. Instead a closed system is a system in which it is not
possible of having such exchange of matter. Standard quantum mechanical problems are
thus referred to close systems, i.e. to system that are isolated from the rest of the world
and do not exchange matter (particles or electrons) with the external world. Instead in a
force operation study of the system, i.e. when the NEGF framework is considered, the

191



The Non-Equilibrium Green’s Function formalism

system is assumed to be open. This means that it can interact with the external world
and in particular it can exchange electrons (i.e. matter) with the external world. This
is represented by means of the source term in eq. (5.1). This topic regarding open and
closed systems is further discussed in next sections, in particular in section 5.3.
Therefore eq. (5.1) can be derived when a non-isolated system is considered, and it is
possible to embed in the term “source” the external interaction, i.e. the input stimulus.
Equation (5.1) represents an open system, that is the case of interest in the moment in
which a forced operation study of the system is performed, i.e. when an input stimulus
is indeed considered. For the moment this is the main point or the main conceptual
implication of the “change of perspective” widely discussed above. With this in mind it
will be easier to address the topics treated in the next sections.

A last remark before going on: the general definition of Green’s function, from a
mathematical standpoint, is the following:

LG = δ (5.2)

where L indicates whatever mathematical linear operator, δ is a delta-Dirac function and
G is the Green’s function. Notice that L can be e.g. a differential operator, like the
Hamiltonian one, and it can also be a matrix representation of a linear operator (in that
case eq. (5.2) is intended as algebraic -matrix- equation). More in general L can also
be the entire Schrödinger’s equation, indeed it is a linear equation/operator. Proceeding
in this way, the δ function can be intended as the input of the system described by the
Schrödinger’s equation L, and consequently G is the output of the system when the input
is a delta-Dirac. In these terms the Green’s function is the impulse response of the system.
This is a fundamental point. The Green’s function is in general an impulse response for
a system whose input is indeed a delta-Dirac. In general it is called Green’s function
(instead of simply impulse response), if it is the output of the system when the delta-Dirac
is not in time domain but in space domain. In that case it is a 3D delta Dirac, defined
as: δ(~r − ~r0) = δ(x− x0)δ(y − y0)δ(z − z0). In the most general case it could also be 4D
delta-Dirac (in the three space coordinates and in the time one). Notice that in order to
have true eq. (5.2) it must hold:

G = L−1

where L−1 is the inverse linear operator of L, that, if expressed in matrix form, corresponds
exactly to the inverse matrix. In general it is possible to write the response R to the
stimulus S of the system represented by the linear operator L as follows [39]:

LR = S → R = L−1S = GS , G = L−1

where G is indeed the Green’s function. This further clarify the point. Since the Green’s
function is the impulse response of the system described by L, each output of the system R
can be written in function of the (known) input S by means of G. In other words, exactly
like it happens for LTI systems (e.g. electrical circuits), the output of the system can be
written in terms of the system impulse response. From which the knowledge concerning
the system is complete in the moment in which it is known its Green’s functions (impulse
response). In particular during the next sections of this chapter it will be clear that it is
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possible to derive each physical quantity of interest starting from the Green’s function,
and also the electrical current will be written in terms of Green’s function.
By putting together the last relation and eq. (5.1) it follows:[

E − Ĥ
]
ψ = source → ψ =

[
E − Ĥ

]−1
source

From which is clear that:

ψ = G source , G =
[
E − Ĥ

]−1
and

[
E − Ĥ

]
G = δ (5.3)

Thus once again, in terms of equation (5.1), the Green’s function corresponds to the
wave-function ψ that is the output of the system, in the moment in which the input term
“source” is a delta-Dirac.

5.2 1D retarded and advanced Green’s functions
In general the inverse of a differential operator is not uniquely determined until the boundary
conditions are specified [39]. It is thus possible to define two Green’s functions and not only
one, corresponding to different boundary conditions [89], [39]. These Green’s functions
are called “retarded Green’s function” and “advanced Green’s functions”, respectively. In
order to introduce them I will follow the approach of [39], and the difference between the
two Green’s function will be addressed by means of a simple example.
Assume to have a 1D system (x-coordinate only), with a constant potential U0. From the
previous treatment of section 5.1.1 it is possible to write directly the Green’s function as:

G =
[
E − U0 + ~2

2m
∂2

∂x2

]−1

with: [
E − U0 + ~2

2m
∂2

∂x2

]
G(x, x′) = δ(x− x′) (5.4)

Notice again that the last equation looks like the Schrödinger’s equation but with a source
term δ(x− x′) on right-hand side (instead of zero). Notice also that since U0 is constant
and since the potential energy is defined up to an additive constant, it is always possible
to choose such an additive constant such that it results U0. This reasoning was already
carried out in section 2.3.7, when the potential well was considered. In this optics it is
possible to easily write the solution of the Schrödinger’s equation as the solution for the
free particle case (that indeed corresponds to the case U0 = 0), that is the sum of a forward
propagating wave and a backward propagating wave. And notice that such a solution
must hold in all the points in which it is assumed U0 constant or equivalently null. This is
essentially what did in section 2.3.7 for writing the wave-function inside the quantum well,
in which indeed the particle behaves as free. Here the situation is analogous, with the only
differences that the potential is considered constant and equal to U0 in all x-axis points,
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and that instead of having zero at right-hand side there is a delta-Dirac. Nevertheless it is
possible to write the solution of eq. (5.4) like a sum of a forward wave and a backward
wave. At this point since the delta-Dirac δ(x−x′) is shifted at position x′, then the Green’s
function G(x, x′) can be interpreted as the wave-function at position x resulting from a
unit excitation applied at x′. Physically it has thus sense that such an excitation give rise
to two waves traveling outwards from the excitation point: a forward propagating wave in
direction +x, and a backward one propagating in direction −x:

G(x, x′) =
{
A+eik(x−x′) , if x > x′

A−e−ik(x−x′) , if x < x′

where k =
√

2m
~2 (E − U0). It is possible to verify that this solution satisfies eq. (5.4) at

all points other than x = x′. In order to satisfy eq. (5.4) also in x = x′ the continuity of
G(x, x′) must be enforced in x = x′, and this is pretty analogous to what was did in all
the problems of section 2.3.7. Nevertheless a difference there exist on the first derivative
boundary condition of G(x, x′). Indeed in section 2.3.7 it was always enforced that also the
first derivative of the wave-function must have been continuous. But this fact was linked to
the zero at right-hand side that is present in the Schrödinger’s equation. Here instead there
is a delta-Dirac, that corresponds to a first derivative of a step function. Consequently in
order to satisfy eq. (5.4) the Green’s function must have a discontinuous first derivative
(think to a step-like discontinuity of the first derivative of G in x = x′), such that its second
derivative can give rise to the delta-Dirac and thus eq. (5.4) is satisfied. Therefore it is
possible to find suitable values for the two constants A+ and A− by enforcing G(x, x′) to
be continuous in x = x′ and its first derivative discontinuous in x = x′. The full procedure
is illustrated in [39]. Here it is not important to carry out all the calculations, but only to
understand them and the concepts arising from them.
With this procedure it is possible to find a Green’s function G(x, x′) that is solution of
eq. (5.4). This solution includes only a forward wave for x > x′ and only a backward
wave for x < x′, as one can imagine to be if the stimulus is applied in x′. Nevertheless
there is another acceptable solution for eq. (5.4), that is the one that comprise a backward
propagating wave for x > x′ and a forward propagating wave for x < x′. Indeed in the
above discussion it was mentioned that the solution of Schrödinger’s equation with a
constant potential U0 is given by the sum of a forward and a backward wave, that are
defined in the entire region in which U0 is kept constant, that in this case is the whole
x-axis. Here the situation (and the equation) is similar, and indeed also the Green’s
function:

G(x, x′) =
{
B−e−ik(x−x′) , if x > x′

B+e+ik(x−x′) , if x < x′

is a solution of eq. (5.4). This solution includes the two waves that were excluded in the
first solution, namely a backward wave for x > x′ and a forward wave for x < x′. The two
constants B− and B− can be determined by enforcing again the continuity on G at x = x′

and the discontinuity of its first derivative in x = x′.
Beside the mathematics, the important fact is that both the solutions are acceptable. The
first one corresponds to waves that are traveling outwards from x′, i.e. from the excitation
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point. It is called “retarded Green’s function”, and it is indicated with GR(x, x′):

GR(x, x′) =
{
A+eik(x−x′) , if x > x′

A−e−ik(x−x′) , if x < x′

The second instead corresponds to incoming waves that disappear at the excitation point
x′, and it is called “advanced Green’s function”. It is indicated with GA(x, x′):

GA(x, x′) =
{
B−e−ik(x−x′) , if x > x′

B+e+ik(x−x′) , if x < x′

Both GR(x, x′) and GA(x, x′) satisfy eq. (5.4), but they correspond to different boundary
conditions: the retarded corresponds to outgoing waves, while the advanced to incoming
waves (far away from the source). What should be thus considered in a specific case is a
matter of boundary conditions. This is the topic addressed in the next section.

5.3 Boundary conditions and open systems
In the previous section it was said that there are two solutions that equally satisfy eq.
(5.4), namely the retarded and the advanced Green’s functions. This holds in general,
also for 3D systems. It was also said that the choice of the specific solution between the
two, depends on the applied boundary conditions. In general the boundary conditions
are a way of representing some physical constraints that exist in the real physical system
that is modeled by means of the equations. Enforcing them corresponds in selecting the
solution that is correct for a given specific application. A way to incorporate the boundary
conditions directly within equation (5.4), is to add an infinitesimal imaginary part to the
energy. Thus instead of eq. (5.4) one can write:[

E − U0 + ~2

2m
∂2

∂x2 + iη

]
GR(x, x′) = δ(x− x′) (5.5)

where η is assumed to be infinitesimal and strictly positive: η > 0. In this way the
propagation constant is changed, and it becomes:

k′ =
√

2m
~2 (E + iη − U0) =

√
2m
~2 (E − U0)

√
1 + iη

E − U0

Notice that in this way k′ = Re(k′) + i Im(k′) is complex, with a real part equal to k and
with a small and positive imaginary part. In the previous section it was implicitly assumed
that E > U0, indeed for E < U0 there exists no state since U0 is infinitely extended in
all the point of the domain (the solution would be null), such that E − U0 > 0 and the
imaginary part is maintained positive. The positive imaginary part makes the advanced
Green’s function going to infinite for both x→ +∞ and x→ −∞. Indeed:

GA(x, x′) =
{
B−e−ik

′(x−x′) = B−e−iRe(k′)(x−x′)e+ Im(k′)(x−x′) , if x > x′

B+e+ik′(x−x′) = B+e+iRe(k′)(x−x′)e− Im(k′)(x−x′) , if x < x′
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and both the exponentials tends to infinite for x→ ±∞ since k′ has a positive imaginary
part. Instead the retarded Green’s function is still limited for each x, and also for x→ +∞
and x→ −∞:

GR(x, x′) =
{
A+eik(x−x′) = A+e+iRe(k′)(x−x′)e− Im(k′)(x−x′) , if x > x′

A−e−ik(x−x′) = A−e−iRe(k′)(x−x′)e+ Im(k′)(x−x′) , if x < x′

Thus as indicated in eq. (5.5) if a small (infinitesimal) positive η is considered and if
the imaginary term +iη is added to the energy, as in eq. (5.5), then the only acceptable
solution is the retarded Green’s function, since the response of the system must be bounded
(otherwise it would be an unstable system, meaning that it is able to generate an infinite
amount of energy in response to a finite stimulus, but this has no sense).
Analogously if a small (infinitesimal) term −iη, with η > 0, is added to the energy, eq.
(5.4) becomes: [

E − U0 + ~2

2m
∂2

∂x2 − iη
]
GA(x, x′) = δ(x− x′) (5.6)

and the only acceptable solution becomes the advanced Green’s function.
In general with reference to eq. (5.3), it is possible to define the retarded Green’s

function as:
GR =

[
E − Ĥ + iη

]−1
, η → 0+ (5.7)

and the advanced Green’s function as:

GA =
[
E − Ĥ − iη

]−1
, η → 0+ (5.8)

Very often from hereon, if no misunderstanding is possible, I will refer to the retarded
Greens’ functions simply as Green’s function.

Notice that adding an imaginary part to the energy is also a way of considering a system
“open”. It was already discussed that with the NEGF perspective a system is considered
open, in the sense that it can exchange electrons with the external world (i.e. with the
contacts), such that an input electron can be considered as stimulus for the system and a
force operation study of the system is performed. In section 4.1.1, it was already said that
an imaginary part of the energy is a way of considering exactly the fact that the system
is not isolated, but it is open. Indeed if one wants to make calculations only considering
the active part of the device, i.e. the channel, one should model the contact suitably,
in order to consider the fact that the system is not isolated. A way for considering the
contacts is to model them, and thus to write equations that not only involve the channel
but also the contacts. Nevertheless the problem of this approach is that the contacts
should have an enormous number of electrons and electron states, in order to be good
contacts (see also section 4.1.3). This makes the previous approach unfeasible from a
practical standpoint. Thus usually one prefers to write and solve equations relatively to the
conductive channel only. In this latter approach nevertheless the contacts must be somehow
modeled. The mathematical way of model them is by means of boundary conditions. And
the correct boundary conditions for an open system are exactly the introduction of an
imaginary part of the energy. Indeed in this way the exponential functions, that with a
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real energy represent propagating waves, become real exponent (exponential) functions,
i.e. decaying exponential. This holds true both for space and time variables. Indeed
it was mentioned that the delta-Dirac pulse input can be in general both in space (3D)
and in time (1D). If one considers time, then the same discussion already done in section
4.1.1 holds. In particular the states within the channel are no more infinite life-time
states, but finite lifetime states, since an electron after a given amount escapes from the
channel into the contacts. This is represented by a real exponent in the general solution of
Schrödinger’s equation. That can be obtained by means of an imaginary part of the energy.
For space delta-Dirac the following remark can be done. If one considers an excitation in
x′ (delta-Dirac), it is reasonable thinking that this will propagate by means of outwards
waves, like represented by the retarded Green’s function. If the system is open, that is
the electrons can escape from it (from the channel), then no reflections will occur at the
channel boundaries. Consequently one will not have the advanced Green’s function (that
represents incoming waves, for example the reflected ones). This can be accounted for by
means of the infinitesimal +iη term, as explained above. In conclusion, the infinitesimal
parts of the energy are a way of representing the open system boundary conditions.

5.4 Eigenfunction expansion and matrix representa-
tion

It was shown in section 2.4 that is possible to represent a differential operator in matrix
form, in particular it was demonstrated the way of rewriting the steady state Schrödinger’s
equation in matrix form as:

E
[
S
] {
ψ
}

=
[
H
] {
ψ
}

where here the coefficient vector of the wave-function ψ is indicated with
{
ψ
}
(in section

2.4 it was instead indicated with
{
c
}
); and where

[
S
]
is the so called overlap matrix and[

H
]
is a possible matrix representation of the Hamiltonian operators. The elements of

[
S
]

and
[
H
]
are given by:

Snm =
∫
u∗n(~r)um(~r)d~r , Hnm =

∫
u∗n(~r)Ĥum(~r)d~r

where {um}m is the chosen basis set of basis functions for the particular representation.
Notice that in electronic structure calculations of molecules it can be one of the basis sets
introduced in chapter 3. Moreover it was said that if the basis set is orthonormal then the
overlap matrix becomes the identity matrix

[
I
]
, and the Schrödinger’s equation assumes

the form of a standard eigenvalues problem:

E
[
I
] {
ψ
}

=
[
H
] {
ψ
}
→ E

{
ψ
}

=
[
H
] {
ψ
}

That can be again rewritten as: [
E
[
I
]
−
[
H
]] {

ψ
}

= 0 (5.9)
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It will be useful in the next of this chapter to represent in matrix form the Green’s
function. In particular it is useful and interesting to write it in the matrix representation
of the eigenfunctions of the Hamiltonian operator. Indeed it was already discussed several
times in chapter 2 that the set of eigenfunctions of an Hermitian operator is orthogonal
(orthonormal after normalization) and complete, and thus it can be used as basis set for
the Fourier series expansion/transform. Consequently it can be the basis set used for a
representation of whatever linear (differential) operator, like the Green’s function is (see
eq. (5.7) and (5.8)). Notice that the eigenfunctions of the Hamiltonian operator (like any
Hermitian operator eigenfunctions) are orthonormal and thus the overlap matrix reduces
to the identity one as remembered above. From the general definition of Green’s function it
is clear that it is a linear operator (since it is the inverse of a linear operator L representing
the system): G = L−1, and thus it is expected to admit matrix representations (in an
Hilbert space). In particular it is indeed possible to rewrite equations (5.7) and (5.8) in
matrix form, and this is possible when eq. (5.4) is rewritten in matrix form. This is the
purpose of this section. Notice that eq. (5.4) is a simplification for a 1D case, and in
general in 3D it can be rewritten as:[

E − Ĥ + iη
]
GR(~r, ~r′) = δ(~r, ~r′) (5.10)

The attempt now is to convince the reader that eq. (5.10) can be rewritten in matrix form
as: [

(E + iη)
[
I
]
−
[
H
]] [

GR
]

=
[
I
]

(5.11)
where the matrix representation is the one in the orthonormal basis set of the eigenfunctions
of Ĥ. Notice that E and +iη are scalars, thus they must be multiplied by the identity
matrix in order to perform the matrix difference with

[
H
]
, the identity matrix arise from

the fact that the Hamiltonian eigenfunctions are orthonormal. Notice that
[
GR
]
is a matrix,

representing the retarded Green’s function, and that the delta-Dirac becomes the identity
matrix

[
I
]
. Notice the similarity between equations (5.9) and (5.11), corresponding to the

already discussed similarity between the analogous equations with differential operators.
The task of rewriting eq. (5.10) like (5.11) will be achieved in two consecutive steps.

Firstly a representation of the Green’s function in the basis set of the Hamiltonian operator
eigenfunctions will be provide. Then eq. (5.11) will be derived.

5.4.1 Eigenfunction expansion
In this section a general representation of GR(~r, ~r′) in the basis of the Hamiltonian
eigenfunctions is derived. The complete procedure is also detailed in [39]. The steady state
Schrödinger’s equation in differential form can be written as:

Ĥψα = εαψα (5.12)

where ψα are the eigenfunctions and εα the (energy) eigenvalues. Since the Hamiltonian
eigenfunctions are orthonormal it holds:∫

ψβ(~r)ψα(~r)d~r = δαβ
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where δαβ is the Kronecker delta. The retarded Green’s function can be written as Fourier
series in the eigenfunctions basis {ψα}α like:

GR(~r, ~r′) =
∑
α

Cα(~r′)ψα(~r)

where the coefficients must be determined. From the definition of Green’s function (eq.
(5.7)): [

E − Ĥ + iη
]
GR(~r, ~r′) = δ(~r, ~r′)

Making use of eq. (5.12) and considering that Ĥ acts only on ~r and not on ~r′:

[E − εα + iη]
∑
α

Cα(~r′)ψα(~r) = δ(~r, ~r′)

multiplying by ψ∗α(~r) and integrating over ~r (considering the orthonormality relation):

∑
α

∫
[E − εα + iη]Cα(~r′)ψα(~r)ψ∗α(~r)d~r =

∫
δ(~r, ~r′)ψ∗α(~r)d~r

→
∑
α

[E − εα + iη]Cα(~r′) = ψ∗α(~r′)

From which:

Cα(~r′) = ψ∗α(~r′)
E − εα + iη

In conclusion it is possible to express the retarded Green’s functions on the basis of the
eigenfunctions of the Hamiltonian operator as:

GR(~r, ~r′) =
∑
α

Cα(~r′)ψα(~r) =
∑
α

ψα(~r)ψ∗α(~r′)
E − εα + iη

(5.13)

An analogous procedure for the advanced Green’s function leads to:

GA(~r, ~r′) =
∑
α

ψα(~r)ψ∗α(~r′)
E − εα − iη

(5.14)

5.4.2 An important relation
From the last two equations (5.13) and (5.14), it is immediate to verify that:

GA(~r, ~r′) =
[
GR(~r, ~r′)

]∗
→ GA =

[
GR
]†

(5.15)

That is: the advanced Green’s function is the Hermitian conjugate of the retarded one.
If a matrix representation is used (see next section), it means that GA is the transpose
complex conjugate of GR.
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5.4.3 Matrix notation
Before rewriting eq. (5.10) in matrix form, it is necessary to write a representation for the
delta-Dirac function in the same basis, i.e. the Hamiltonian operator eigenfunctions basis
set. In order to do that, the definition of Fourier series expansion is used, indeed expanding
a given function in a given basis set corresponds to provide its Fourier expansion in such
basis set (see also chapter 2). In particular:

δ(~r − ~r′) =
∑
α

Cαψα(~r) , Cα =
(
ψα(~r), δ(~r − ~r′)

)
=
∫ +∞

−∞
ψ∗α(~r)δ(~r − ~r′)d~r = ψ∗α(~r′)

From which:
δ(~r − ~r′) =

∑
α

ψ∗α(~r′)ψα(~r)

In general also for the Green’s functions GR(~r, ~r′) and GA(~r, ~r′) it is possible to apply
directly the definition ad proceed as done for the delta-Dirac, nevertheless it was easier
and interesting to achieve the result with the procedure used before.
At this point is possible to substitute in eq. (5.10) the representations of GR(~r, ~r′), δ(~r− ~r′)
and Ĥ in the Hamiltonian eigenfunctions basis set. Notice that each Hermitian operator
in the basis set of its eigenfunctions become diagonal with its eigenvalues as diagonal
elements, this is trivially verified from eq. (5.12), once it is written in matrix form. Thus
eq. (5.10) becomes (remember the orthonormality of {ψα}α):[

E − Ĥ + iη
]
GR(~r, ~r′) = δ(~r, ~r′)

→
[
(E + i)

[
I
]
η −

[
H
]]∑

α

ψα(~r)ψ∗α(~r′)
E − εα + iη

=
∑
α

ψ∗α(~r′)ψα(~r)

→
[
(E + i)

[
I
]
η −

[
H
]]∑

α

1
E − εα + iη

=
∑
α

1 =
[
I
]

That is: [
(E + iη)

[
I
]
−
[
H
]] [

GR
]

=
[
I
]

that corresponds to eq. (5.11) with
[
GR
]
diagonal matrix, with diagonal elements: 1

E−εα+iη ,
that is: [

GR
]

=


1

E−ε1+iη 0 ...

0 1
E−ε2+iη ...

0 0 ...

 (5.16)

and where, as already mentioned:

[
H
]

=

ε1 0 ...
0 ε2 ...
0 0 ...


Notice that

[
GR
]
is exactly the inverse of the matrix

[
(E + iη)

[
I
]
−
[
H
]]
, indeed their

product gives the identity matrix
[
I
]
, that is:[

GR
]

=
[
(E + iη)

[
I
]
−
[
H
]]−1
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5.5 Green’s function poles
From the treatment in the previous section it is clear that the Green’s functions (both
the retarded one and the advanced one) have poles. Indeed when the energy eigenstate
representation is considered:

[
GR
]

=


1

E−ε1+iη 0 ...

0 1
E−ε2+iη ...

0 0 ...


it is clear the if the infinitesimal η would be exactly zero then the Green’s function would
be infinite at energy values E = εα, i.e. for energies equal to the energy eigenvalues of
the system. The infinitesimal η prevents the Green’s function to blow to infinity. No-
tice that this behavior is quite analogous again to the behavior of the impulse response
of an electrical circuit. Indeed the impulse response in frequency domain becomes the
transfer function (by means of a Laplace or Fourier transform), and its poles corresponds
exactly to the proper modes of the circuit. Here the situation is similar. The Green’s
function GR(~r, ~r′) is the impulse response of the system, and its representation in the
energy eigenstates basis set corresponds to a Fourier transform of representation of GR,
indeed it corresponds to an its representation in the energy domain (the energy domain is
isomorphous to frequency domain since E = hf , linked by a Fourier transform to time
domain). And thus GR presents poles in correspondence of the proper modes, i.e. the
energy eigenvalues, of the system. The analogy is not at all complete since here there is
the infinitesimal η that prevents GR to blow to infinity. Nevertheless in analogy to circuit
theory a maximum of transmission occurs for E = εα, i.e. when the resonance condition
occurs. This feature was already commented in the introductory section concerning the
change of perspective.

5.6 Time domain impulse response
It was already discussed that the Green’s function has the meaning of impulse response.
Moreover it was said that this holds in general for time and space impulses, i.e. for
time (3D) delta-Dirac δ(~r − ~r′) and for time (1D) delta-Dirac δ(t − t0). In this section
is pointed out that the Green’ function is indeed the impulse response in time domain
for the time-dependent Schrödinger’s equation. It is intuitive thinking that if a time
impulse response is considered the system should be described by the time-dependent
Schrödinger’s equation and not by the steady state one. It will be considered a delta-Dirac
centered in t0 = 0, i.e. δ(t). In order to show that the Green’s function is the time domain
impulse response of the time-dependent Schrödinger’s equation, let’s start from the energy
eigenfunctions representation of the Green’s function

[
GR(E)

]
derived in the previous

section, notice that it if function of energy E:

[
GR
]

=


1

E−ε1+iη 0 ...

0 1
E−ε2+iη ...

0 0 ...
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It is possible to show that its Fourier transform is (to this purpose see also appendix C.1):

[
GR(t)

]
= − i

~
θ(t)e−

η
~ t

e−
i
~ ε1t 0 ...

0 e−
i
~ ε2t ...

0 0 ...


where θ(t) is the Heaviside function. Notice that a representation of GR in the system
energy eigenstates is an its representation in energy domain, and the Fourier transform is
a biunivocal application that allows to transform between energy (remember always that
E = hf = ~ω) and time domain. Thus the last equation is the expression of GR in time
domain. Moreover it is possible to show that the diagonal elements of

[
GR(t)

]
, namely the

GR
α,α(t), are a solution for the following equation (to this purpose see appendix C.2):(

i~
∂

∂t
− εα

)
GR
α,α(t) = δ(t)

The last relation can be thus generalized in matrix form as follows:(
i~
∂

∂t
−
[
H
]) [

GR(t)
]

=
[
I
]
δ(t) (5.17)

From which is evident the interpretation of the Green’s function (in time domain) as the
(time) impulse response of the time-dependent Schrödinger’s equation (eq. (2.17)) that
indeed can be in general rewritten with all the terms at left side:(

i~
∂

∂t
−
[
H
]) {

ψ(t)
}

= 0

In light of this the (n,m) elements of
[
GR(t)

]
, namely GR

n,m(t) provides the n-th component
of the wave-function if the system is given an impulse excitation at its m-th component.
Notice that

[
GR(t)

]
is defined only for positive times t > 0 (it is multiplied by the Heaviside

function θ(t)), i.e. it is causal, and indeed it provides the impulse response for positive
times, successive to the time instant t = 0 at which the system is excited by means of the
δ(t).
Nevertheless, there is another solution that mathematically is acceptable, and it is the
advanced Green’s function: [

GA(t)
]

=
[
GR(−t)

]∗
with an analogous procedure it is possible to verify that it is solution of the same equation:(

i~
∂

∂t
−
[
H
]) [

GA(t)
]

=
[
I
]
δ(t)

The difference is that
[
GA(t)

]
is null for t > 0, and non-null for negative times. In energy

domain the advanced and the retarded Green’s function differ only for the infinitesimal
±iη term:[

GR(E)
]

=
[
(E + iη)

[
I
]
−
[
H
]]−1

,
[
GA(E)

]
=
[
(E − iη)

[
I
]
−
[
H
]]−1
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Instead in time domain they are very different, since the retarded one is causal and null
for t < 0, while the advanced one is non-causal (or anti-causal) an null for t > 0. The
retarded Green’s function has thus the physical meaning of impulse response (to a impulse
happening at t = 0), while the advanced one has no physical meaning (it is solution of the
same equation but with unphysical initial conditions).

5.7 A remark on notation
In the following of this chapter I will simply indicates the matrix representation of a
quantum mechanical operator with a capital letter, omitting the square brackets, for
example: [

S
]
→ S[

H
]
→ H[

I
]
→ I[

GR
]
→ GR

The same holds for column vectors: {
ψ
}
→ ψ

This notation will lighten and simplify a lot the reading of the formulae in matrix form.
Of course whenever a misunderstanding will be possible I will specify the nature of the
operators and the equations that I will write. If no misunderstanding is possible I will, for
example, write the Schrödinger’s equation:

E
[
S
] {
ψ
}

=
[
H
] {
ψ
}

simply as:
ESψ = Hψ

while for example the equation:[
(E + iη)

[
I
]
−
[
H
]] [

GR
]

=
[
I
]

becomes simply:

[(E + iη) I −H]GR = I with : GR = [(E + iη) I −H]−1
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5.8 “Contact-ing” the Schrödinger’s equation: an in-
tuitive introduction

The purpose of this section is to provide an easy introduction to what happens when a
contact is connected to a channel. The purpose is to focus on the physical meaning of the
general procedure that will be carried out in the next section. Even if in this section the
procedure will not be so elegant, and also the equations will not be at all formally correct,
they will be useful to get the point without getting lost in the mathematics. The same
topic will be treated in a more rigorous and elegant manner in the next section.

It is possible to write the steady state Schrödinger’s equation of the entire system that
is considered. It takes, in matrix form, the expression:

ESψ = Htotψ =
[
HR HRD

HDR HD

]
ψ (5.18)

whereHD is the isolated device Hamiltonian matrix, HR is the isolated contact (or reservoir)
Hamiltonian matrix, HDR is the device-reservoir coupling Hamiltonian matrix and HRD is
the reservoir-device coupling Hamiltonian matrix. Notice that it is possible to show that:
HRD = H†DR. It is intuitive that the contact-to-device coupling term will be the transpose
(conjugate) of the device-to-contact one, indeed a sort of “symmetry” is expected. The
total wave-function ψ of the system “contact + device” should satisfy simultaneously
the device and reservoir Hamiltonians since it represents states that exist contemporary
within the device and the contact. It can be split in the device only and the reservoir only
wave-functions: ψD and ψR (see below). It is possible to rewrite the previous equation as
a system of two matrix equations as follows (see also [105]):

E

[
SR SRD
SDR SD

]{
ψR
ψD

}
=
[
HR HRD

HDR HD

]{
ψR
ψD

}

⇒
[
ESR −HR ESRD −HRD

ESDR −HDR ESD −HD

]{
ψR
ψD

}
= 0

⇒


(ESR −HR)ψR + (ESRD −HRD)ψD = 0

(ESDR −HDR)ψR + (ESD −HD)ψD = 0

in which overlap matrices of suitable dimensions are introduced: SD, SR, SDR and SRD. If
the chosen basis is orthonormal they become simply identity matrices of suitable dimensions:
ID, IR, IDR and IRD. Then, from the first equation of the system:

ψR = −(ESR −HR)−1(ESRD −HRD)ψD
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and substituting in the second one:

(ESDR −HDR)
[
−(ESR −HR)−1(ESRD −HRD)

]
ψD + (ESD −HD)ψD = 0

⇒
[
ESD −HD − (ESDR −HDR)(ESR −HR)−1(ESRD −HRD)

]
ψD = 0 (5.19)

Notice that eq. (5.19) involves the device wave-function ψD only, that can be known from
a standard quantum mechanical study of the isolated molecule (see chapter 3), and the
effects of the contacts are all included in the third term that is the only one involving
the reservoir Hamiltonian HR, and the coupling Hamiltonians HDR and HRD. It is thus
possible to define a quantity, called “contact self-energy” Σ, that represents the effects of
the contact on the channel, as:

Σ(E) = (ESDR −HDR)(ESR −HR)−1(ESRD −HRD) = ζGRζ
† (5.20)

Remember that it was supposed to have a single contact at the beginning, but an analogous
procedure to the one presented here, allows to write a self-energy matrix for each considered
contact. More importantly they can simply be summed up to get the total self-energy matrix
that represents the effect of all (usually two) the contacts connected to the device/channel.
The important point of this procedure is that it is possible to “hide” the effects of the
contact in a term Σ that is simply superimposed to the isolated device (isolated channel)
Hamiltonian, giving rise to a modified Schrödinger’s equation:

⇒ [ESD −HD − Σ(E)]ψD = 0

that would correspond exactly to the isolated device/channel Schrödinger’s equation if Σ
would be null. Notice also that Σ depends on energy, thus it is not at all comparable to a
conventional Hamiltonian.
The various terms within the self-energy matrix assume the following meanings:

• GR = (ESR − HR)−1 is the so called “reservoir Green’s function” of the isolated
reservoir. Notice the similarity with the Green’s functions defined previously. In
this introductory treatment I have intentionally neglected to insert the term +iη,
nevertheless as it will clarified in the next section the infinitesimal should be considered
and thus it is present. Consequently GR corresponds exactly to the retarded Green’s
function of the isolated reservoir. Here the subscript R is used to indicate that it is
the (retarded) Green’s function of the reservoir. It corresponds to an impulse response
of the isolated contact, that is described by the contact (or reservoir) Hamiltonian
HR only. It can be evaluated from HR (the overlap matrix SR is fixed once the
representation is chosen and the energy value E is supposed known). Usually HR of
a real contact would be too big to be actually used in evaluating GR, thus only a
portion of the contact is considered, namely the portion the interact with the channel.
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It may correspond to Green’s function of the superficial atoms of the contacts that
are involved in the chemical bonds with the channel. In this case instead of calling
simply reservoir Green’s function, it is indicated with gR and it is called “Surface
Green’s function” (SGF) of the reservoir. This choice is motivated by the fact that
only the contact interface (the portion that interact with the molecule) strongly
influences the transport properties (e.g. originates the broadening).

• ζ = (ESDR − HDR) is related to the device-reservoir coupling matrix, it is the
non-zero part of (ESDR −HDR) coupling the device to the SGF, and it represents
the coupling factor. It represents the total Hamiltonian sub-matrix or block that
represents the interaction strength between the reservoir Hamiltonian and the device
one.

• ζ† = (ESRD −HRD) is related to the reservoir-device coupling matrix (notice that it
can be shown that it is the transpose complex conjugate of ζ). Its physical meaning
is analogous to the ζ one and similar remarks can be done.

A pair of remark will be useful in the next section in order to understand the physical
meaning of calculations and assumption:

a. In the next section the infinitesimal imaginary part of the energy +iη will be
considered, such that the reservoir Green’s function becomes exactly a retarded
Green’s function of the kind of those analyzed in the previous sections. What is the
meaning of this infinitesimal imaginary part of energy? The answer can be easily
found in the moment it is considered the open nature of the entire system “contact +
device”. It was said in section 5.3 that a way of representing the fact that the system
is open is to introduce suitable boundary conditions to represent an open system in
mathematical terms. It was also said that such a boundary condition consists in the
introduction of the infinitesimal +iη. This because if the system is open there are two
features. First, the lifetime of eigenstates is no more infinite but finite since electrons
can escape the system, and this is accounted by a real exponential dependence in
time, accordingly with the general solution of the Schrödinger’s equation. Thus an
imaginary part of energy can serve in representing the finite lifetime. Second, if
an electron can escape from the system then it will be transmitted somewhere else.
In the case of the contact, and thus in terms of the contact Green’s function GR,
this means that an electron can escape the contact to go into the channel. It was
said that this fact is again modeled by means of +iη such that no advanced Green’s
function is present (no reflections). Nevertheless now the point is why the imaginary
part of energy is infinitesimal and not finite. The answer is in the nature of a good
contact. Indeed by hypothesis (as also said in section 4.1.3), a contact in order to be
considered a “good” contact, must contain a huge number of electrons or alternatively
electron states. In this way it is possible to assume that the entire applied voltage
drops across the device and that the contacts are in equilibrium. In this way the
Fermi levels are pinned inside the contacts, and the interesting part of the physics is
“played” only inside the channel, as one desires. In this optics thus the number of
electrons that can escape from a contact is extremely small w.r.t. the total number
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of electrons it can contain. Thus it is an open system, but the perturbation due to
the fact that it is open is extremely small, because the large majority of electrons
and electron states are unperturbed within the contact, such that it can be assumed
in equilibrium. Thus the boundary condition that models the fact that the contact
is open should be very small, let’s say infinitesimal, and indeed it is exactly the
infinitesimal +iη.

b. The contacts are open systems, since electrons can escape to go into the channel.
However also the channel must be open, because electrons can escape to go into the
contacts. For a contact it is possible to represent the fact that it is open by inserting
an infinitesimal perturbation in its Schrödinger’s equation in order to account for
that fact. Nevertheless the channel has a very small number of electron states, and
the more it is small the more this statement is true. Thus it would be not reasonable
assuming that the perturbation due to the fact that it is open is small, or infinitesimal.
It is a completely wrong assumption. So the question can be how to represent the fact
that also the channel is an open system. The answer is related to self-energy term
introduced above. Indeed it was said that the introduction of Σ within the isolated
channel Schrödinger’s equation is a good way of representing the fact that the device
is not isolated but it is connected to a contact. In this optics the self-energy is a
suitable boundary condition to represent the contact. Thus if one writes the isolated
channel Schrödinger’s equation, and then wants to model the fact that the channel is
not isolated, it is sufficient to modify the isolated channel Schrödinger’s equation by
inserting a suitable self-energy term aimed in modeling the effect of the contact on
the channel. From the previous treatment it is clear that Σ represents indeed the
coupling of the device with the contact. Notice that Σ is not infinitesimal, but it can
be also large, let’s say very important.

c. When a device is connected to a contact neither the device nor the contact are no
more closed systems: indeed they become open systems, and they can exchange
electrons. This fact introduces a small perturbation in the contact, that can be
accounted with the introduction of an infinitesimal imaginary part of the energy
iη. Instead the perturbation of the channel due to the presence of the contact is
very big, and a way of representing it is by means of the introduction of a contact
self-energy. The way of calculating it is from the total system (i.e. contact + device)
Schrödinger’s equation. The procedure was briefly summarized above and is more
formally introduced in the next section.

d. Notice that the self-energy Σ is energy dependent (see above expression). Consequently
the total energy eigenvalues of the open channel, i.e. of the system described no
more by HD but by means of [HD + Σ], are difficult to estimate since they are energy
dependent, but they are energy levels. Consequently an iterative self-consistent loop
would be necessary. Nevertheless if one thinks to the energy E as indicated in section
5.1, i.e. like a free parameter, the problem results extremely simplified (indeed if E
is a parameter that is e.g. the energy of an incoming electron there is no more the
necessity of having an iterative loop).
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e. Notice also that the contact self-energy depends on the contact Green’s function GR.
As mentioned above, and as it will done in the next section, GR contains a small
imaginary part. This implies that also Σ has a real and imaginary part. Notice also
that rarely its imaginary part will be very small, independently on the value of η,
it will be finite, and eventually large. This means that Σ is non-Hermitian. It was
mentioned several times in chapter 2 that quantum mechanical operators representing
physical observables should be instead Hermitian. Nevertheless Σ does not represent
a physical observable, but instead the boundary conditions that model the channel
as open system. Thus no conceptual problem arises from this fact.

5.9 A more rigorous introduction: the contact self-
energy

The aim of this section is provide a method for representing the effect of a contact on a
conductive channel. In this section a single contact will be considered. From the treatment
of chapter 4, it is known that the way for having an electrical current is to have two
contacts, that are kept out of equilibrium at a given potential difference (two distinct
electrochemical potentials), such that the source contact keeps filling up the channel energy
levels in an attempt to achieve the equilibrium, while the drain contact keeps emptying the
channel energy levels in an attempt to achieve the equilibrium. The result is a current flow
that involves the channel energy states in between the Fermi levels of the two contacts.
Since now only a single contact is considered no current will flow. The generalization to the
case of two contacts will be trivial by exploiting the superposition of effects, thus summing
up the contribution related to the two contacts. The main result of this section was already
pointed out in the previous section: it is in the introduction of a self-energy matrix Σ that
represents the effect of the contact (i.e. the open system boundary condition) within a
modified isolated channel Schrödinger’s equation.

The isolated channel/device Schrödinger’s equation has the following form (subscript
D stands for device):

EψD = HDψD → [EID −HD]ψD = 0

Where it is supposed of using an orthonormal basis set (ID is the identity matrix of suitable
dimensions). The purpose of this section is to suitably modify it such that the effect of
the contact, supposed connected to the channel, is embedded within an additional term Σ
that is superimposed to the device Hamiltonian:

EψD = [HD + Σ]ψD + S → [EID −HD − Σ]ψD = S

where the term S = {S} is a column vector representing the source term that comes from
the contact. In particular since the channel is an open system its energy eigenvalues, its
electron states, are modified by means of Σ, and S represent the incoming electrons that
escape from the contact to go into the channel. In this sense S is the source term. Notice
that ψD are the wave-functions of the isolated device, and thus it is expected to have S
related to wave-functions of the isolated reservoir (contact) instead. The last equation can
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be intended as a Schrödinger’s equation for the open systems, i.e. for an open channel, of
course different from the usual one (that is instead the Schrödinger’s for an isolated and
closed system). In this regard think again to the change of perspective.

Assuming again of employing an orthonormal basis set, the isolated contact Schrödinger’s
equation can be written as (subscript R stands for reservoir):

EΦR = HRΦR → [EIR −HR] ΦR = 0

Nevertheless if the contact is connected to the channel it is no more a closed system, and
thus suitable boundary conditions must be used to represent the fact that it is an open
system. As described in the previous section, since a contact is huge w.r.t. the channel,
the latter introduces only a very small perturbation, that in mathematical terms can be
represented by means of an infinitesimal imaginary part of the energy +iη. Thus the open
system contact Schrödinger’s equation becomes:

[EIR + iηIR −HR] ΦR = SR

The term iηIR is a matrix representation of the infinitesimal iη, that represents the amount
of electrons that escape from the contact to go into the channel. From the point of view of
the contact they “disappear”, so they have a finite lifetime (after which they annihilate).
But since the number of electrons escaping into the channel is extremely small if compared
to the total number of electrons of the contact, an infinitesimal perturbation is enough to
represent it: η → 0+ (η > 0). Moreover it is also possible to have electrons going from the
channel into the contact. From the standpoint of the contact this is a source term, that
adds electrons, and it can be written in general as SR. Notice that at steady state, one can
think to set SR equal to iηIR, such that the number of electron leaving the contact equals
the number of electrons entering in the contact. In that case SR and iηIR would simplify
and the standard isolated contact Schrödinger’s equation is recovered. Nevertheless this
would be useless for the purpose of finding a self-energy, so for the moment it is considered
the last equation in which both SR and iηIR appear.
In the moment in which a channel is connected to the contact, some electrons will go into
the channel and vice versa. In particular the contact wave-functions ΦR will “spill over”
giving rise to the wave-function ψD inside the device, that in turn will excite scattered waves
χ in the contact. The total wave-function will satisfy the total composite Schrödinger’s
equation for the entire system “contact + channel”, that will be the following (it is the
composition of the contact and the device blocks):[

EIR −HR + iηIR −ζ†
−ζ EID −HD

]{ΦR + χ
ψD

}
=
{
SR
0

}
(5.21)

where ζ is the coupling Hamiltonian, and where no imaginary energy term is considered
in the device part since the purpose is to find a (finite and maybe large) self-energy that
represents the contact (within the device Schrödinger’s equation). Notice that the matrices
relative to the reservoir are of dimension (R,R), that is huge when compared of the matrices
relative to the device of dimension (d,d). The coupling Hamiltonian has dimensions (R,d).
Noticing that SR is unchanged w.r.t. the isolated contact Schrödinger’s equation it is
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possible to rewrite the total wave-function as:[
EIR −HR + iηIR −ζ†

−ζ EID −HD

]{ΦR + χ
ψD

}
=
{[EIR −HR + iηIR]

{
ΦR

}
0

}

→


[EIR −HR + iηIR]

{
ΦR + χ

}
− ζ†

{
ψD
}

= [EIR −HR + iηIR]
{
ΦR

}
−ζ

{
ΦR + χ

}
+ [EID −HD]

{
ψD
}

= 0

→


[EIR −HR + iηIR]

{
χ
}
− ζ†

{
ψD
}

= 0

−ζ
{
ΦR

}
− ζ

{
χ
}

+ [EID −HD]
{
ψD
}

= 0

→


[EIR −HR + iηIR]

{
χ
}
− ζ†

{
ψD
}

= 0

[EID −HD]
{
ψD
}
− ζ

{
χ
}

= ζ
{
ΦR

}
From first equation:

→
{
χ
}

= [EIR −HR + iηIR]−1 ζ†
{
ψD
}

= GRζ
† {ψD}

where:
GR = [EIR −HR + iηIR]−1 = [(E + iη) IR −HR]−1

is the contact (reservoir) Green’s function (R stands for reservoir, even if it is a retarded
Green’s function as well). By substituting

{
χ
}
in the second equation:

[EID −HD]
{
ψD
}
− ζGRζ

† {ψD} = ζ
{
ΦR

}
from which:

[EID −HD − Σ]
{
ψD
}

=
{
S
}

(5.22)

where it is defined the contact self-energy as:

Σ = ζGRζ
† (5.23)

and the source term (relative to the device) S is defined as:

S = ζ
{
ΦR

}
(5.24)

5.9.1 Evaluation of the contact self-energy Σ
From eq. (5.23) it is clear that evaluating Σ is not so trivial, especially from a computational
standpoint, since the matrix GR is of size (R,R), that is huge since theoretically a good
reservoir should be infinite. Nevertheless the coupling Hamiltonian ζ, that is expected to
be of dimension (d,R), actually (in real space) only couples the r surface atoms/elements
of the reservoir next to the channel. Indeed the chemical bond connecting the channel to
the reservoir will involve only few atoms, and the reservoir atoms/element that interact
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with the channel will be only few. Thus in practice it is possible to truncate ζ to a matrix
of size (d,r):

Σ = ζ gR ζ†

(d, d) (d, r) (r, r) (r, d)

where gR takes the name of Surface Green’s Function (SGF) and represents an (r,r) subset
of the full Green’s function GR involving just the r superficial elements. Consequently also
ΦR results truncated to φR of size (r,1).

In practice there are several methods, both analytical and numerical, to evaluate Σ and
gR and also S.

Often an analytical way of dealing with such quantities is in the eigenstate representation
of the contact. In such representation HR is diagonal and GR is of the kind of the one of
section 5.5, eq. (5.16). In such a representation unfortunately the coupling Hamiltonian
cannot be truncated to smaller size and it is possible to show that Σ and S can be calculate
by means of a (infinite) summation over the eigenstates of the reservoir. This summation
can be carried out analytically and also analytically approximated or truncated. A simple
introduction is provided in [89].

Another approach in evaluating Σ is by means of an analogous procedure of the one
described in the previous section, in which the total Hamiltonian (including only the r
surface elements of the contact) is calculated by means of one of the methods illustrated
in chapter 3. Since the contact is truncated some periodic boundary conditions can be
enforced at boundaries of simulation domain such that the infinite extension of a crystalline
contact is recovered (let’s say “emulated” by means of such periodic boundary conditions).
Then with a procedure analogous to the one reported in the previous section (that is
simply an algebraic manipulation, simple to implement on a computer) the self-energy
matrix is recovered and evaluated. This method is the one employed in [105].

As mentioned, several are the possible approaches and in literature many examples can
be found. Here I would just like to mention other three possible methods for calculating
Σ, that are the currently available methods in a widely spread commercial software called
Quantum-Wise Atomistic-Tool-Kit (ATK) by Synopsys ®. I will widely use this software in
the practical part of this work. The three methods are the following:

• Direct Method: This method allows for the computation of total leads (i.e. active
portion of contacts) Green’s functions and then for the effective Hamiltonian Htot

directly in real space, without transforming in ~k space or without performing contour
integrals in energy domain (in energy domain the Green’s function presents poles -
see eq. (5.16) section 5.5). For this reason the name “Direct Method”. Semi-infinite
crystalline leads are considered, and their Hamiltonians are evaluated by means of
tight-binding spd method (a semi-empirical method). A semi-analytical expression
for the lead Green’s function is found by starting from an infinite periodic crystalline
lead and then by recovering the semi-infinite lead expression by applying suitable
boundary conditions. The infinite lead Hamiltonian is built up by slicing the lead and
by writing the Hamiltonian of each slice (diagonal elements of total Hamiltonian) and
by coupling them by means of a “hopping” Hamiltonian. The Bloch’s wave-functions
of the infinite periodic structure are found. The total infinite lead Green’s functions
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are found analytically as superposition of Bloch’s wave-functions (the wavepacket is
represented by means of a summation of monochromatic -periodic- plane waves). The
semi-infinite lead total Green’s function is then found by enforcing suitable boundary
conditions (that practically consist in reflection coefficients evaluated considering
the reflection and transmission probability due to the end of the lead). Finally the
total Hamiltonian Htot (effective Hamiltonian) is found by means of a decimation
algorithm (a recursive algorithm is used), from which it is finally possible to extract
Σ and represent the effects of the contacts on the device. This method is presented
in detail in [118].

• Recursive Method: The basic idea of this method is to employ a decimation recursive
algorithm to speed up the computation of a crystalline lead Green’s function. The
approach in Hamiltonian and Green’s function calculations is somehow comparable
with the ones of Direct Method, but the original lattice is replaced by an effective
lattice of twice the lattice constant of the original one. In the effective lattice each
original layer plus the two neighbor layers are replaced by an effective layer. Effective
layers interactions (before they were called them “hopping” Hamiltonians) are weaker
w.r.t. the original ones. After n iterations one gets a chain of layers distant 2n times
the original ones. The interactions among them are weaker and weaker such that at
the end they are neglected and a great simplification in the Hamiltonian computation
occurs (also because the effective Hamiltonian has a reduced dimension). Starting
from the knowledge of the effective Hamiltonian Htot is then possible to extract gR,
ζ and Σ. Notice that this algorithm allows for a significant speed up, especially w.r.t.
to more conventional approaches. Notice that for a infinite contact the error would
be null, otherwise a truncation error is present; moreover it is possible to evaluate
both surface and bulk Green’s functions. This method is presented in detail in [119].

• Krylov Method: In order to understand the basic idea behind this method it is
better to clarify a possible interpretation of self-energy and broadening matrices.
As mentioned in section 4.1.1 broadened states are finite life-time states, and they
are subjected to an exponential decay in time. This point will be further clarified
in section 5.12. As mentioned the origin of such finite lifetime and thus of the real
exponent in the exponential is to be found in an imaginary part of the energy, that
with the imaginary unit of the exponent makes it real and decaying. Moreover in
section 5.3 it was also noticed that open systems have again the same exponential
decaying behavior also in space, and again this was due an imaginary part of the
energy, that causes the exponents to become reals. In particular it will be shown in
section 5.12 that the self-energy Σ has a real and an imaginary part (intuitive since GR

contains the term iη), and the latter causes an exponential decay in space. Therefore,
broadened states not only have a finite life-time, but they are also confined states. Or
better, they correspond to allowed states (or proper modes) that exist in the isolated
contact itself (and thus they are solution for the steady state Schrödinger’s equation
of the isolated contact), that are not ideally confined into it (as it would be for an
infinite potential barrier), but that “spill over” the contact boundary and go a bit
into the device. This has physical sense if we think to a finite height potential well,
considering that beyond the well boundary the wave-function exponentially decays
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in space. Thus if we are interested in transport calculations, we are interested in
propagating modes, that are propagating both in the contacts and in the channel,
but since the device is a nanodevice, we are also interested in slowly spatial decaying
states that can transmit the particle (i.e. the electron) from the source to the drain.
Indeed these states contribute to conduction as well as the propagating ones.
The Krylov method is based on the evaluation of the self-energy matrices for a
semi-infinite lead by starting from the solutions of a quadratic eigenvalue problem
that arises for infinite periodic structures. Notice that evaluating the self-energy Σ(E)
corresponds to the evaluation of bulk modes of a contact in a set of energy values
(chemical potential), or ~k values, to which the contact could be forced to operate.
As mentioned before, in practise only the propagating and the sufficiently slowly
decaying evanescent modes of the bulk electrode contribute to transmission through
the channel. These modes correspond to the solution of the quadratic eigenvalue
problem with complex eigenvalues close to the unit circle in the complex plane (i.e.
magnitude close to one). Keeping in mind what just mentioned, it is possible to
generate the self-energy matrices with a reduced computational effort (and with a
reasonable truncation error) by developing an algorithm that only computes the
desired eigenvalues, which are supposed to be on, or inside, the unit circle (since other
eigenstates would be decaying or growing too fast and can be neglected). The core is
a particular algebraic transformation (the shift-and-invert spectral transformation) to
Krylov subspace, that allows to easily find the target eigenvalues. This transformation
to Krylov subspace is performed by means of an iterative algorithm, since the number
of modes to be considered is not known a priori. Once the eigenvalues of interest
are found, the non-iterative part of the algorithm evaluates the Bloch matrices and
the self-energies from them by a direct method. This method is often employed with
Hamiltonian operators found by means of DFT method, and it is presented in detail
in [120] and [121].

5.9.2 The total system and the device Green’s functions
Considering a system made of one contact (reservoir) connected to a small channel, it
is possible to write the total Green’s function of the entire system “contact + channel”.
The procedure is analogous to the one explained at the beginning of this section, and in
particular it is straightforward starting from the definition of (retarded) Green’s function
(i.e. equation (5.7)):

GR = [(E + iη) I −H]−1

in which the Hamiltonian is considered to be a block matrix (as did at the beginning of
this section):

[
HD HDR

HRD HR

]
→

[
HD HDR

HRD HR

]
ψ = Eψ

↔
[
EID −HD −ζ
−ζ† EIR −HR

]
ψ = 0
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where −ζ = EIDR − HDR. It follows that the overall retarded Green’s function of the
entire system “reservoir + device” is thus:

GR
tot =

[
GD GDR

GRD GR

]
=
[(E + iη)ID −HD −ζ

−ζ† (E + iη)IR −HR

]−1

The power of the Green’s function method comes from the fact that it is possible to
evaluate the device Green’s function block GD exactly from the following relation:

GD = [(E + iη)ID −HD − Σ(E)]−1 (5.25)

Indeed it is possible to carry out a procedure similar to the one carried out at the beginning
of the present section in which, starting from the overall Green’s function GR it is possible
to write the device one GD. In doing this the contact self-energy Σ is again used in order
to represent the effect of the contact on the device. Consequently it is possible to evaluate
the contact self-energy Σ, e.g. with one of the methods illustrated above, and then to
write directly the retarded Green’s function GD, i.e. the impulse response, of the device
connected to a contact by using eq. (5.25). The procedure that from the total Green’s
function GR

tot leads to the device GD is summarized in the following example from [89].

Example 5.1: From [89]. It is possible to derive eq. (5.25) from GR
tot by means of matrix

algebra. In particular said: [
a b
c d

]
=
[
A B
C D

]−1

It follows (the following equation corresponds to
[
(E + iη)I −H

]
GR = I):

[
a b
c d

] [
A B
C D

]−1
=
[
I 0
0 I

]
= I

so that (rows by columns products leads to) Aa+Bc = I and Ca+Dc = 0→ c = −D−1Ca
and hence: a = [A−BD−1C]−1. With obvious replacements the last relation corresponds
to:

GD =
[
(E + iη)ID −HD − ζGRζ

†
]−1

where GR is the isolated reservoir Greens’ function GR = [(E + iη)IR −HR]−1 and where
Σ = ζGRζ

†. �

The advantage of writing the device Green’s function as:

GD = [(E + iη)ID −HD − Σ(E)]−1

is that it is possible to obtain it by using matrices of dimension (d, d), (r, r) and (r, d),
indeed the SGF gR is used for evaluating Σ instead of the full GR. This is important since
R can be huge and assumed to be infinite.
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5.9.3 The Dyson’s equation
Equation (5.25) is sometimes referred as Dyson’s equation. Notice that at the beginning
of this section it was said that it is not necessary to consider the infinitesimal +iη within
GD, but in eq. (5.25) it is present. Now I will clarify this statement. The purpose of the
infinitesimal +iη is to represent the boundary conditions, i.e. the fact that the system is
open and there is an exchange of electrons between the contact and the device. It was also
said that since the contact should be enormous w.r.t. the channel (indeed it should be a
reservoir of electrons), the effect of the channel on the contact is negligible or infinitesimal:
+iη. Instead the effect of the contact on the channel is relevant and cannot be neglected.
It is represented by Σ. In particular Σ is anything but negligible, and in general it has a
real and an imaginary part (this is intuitive since Σ = ζGRζ

† and GR has an imaginary
part -infinitesimal +iη- that becomes relevant and finite in Σ). Since the imaginary part
of Σ is finite, it is always much greater than the infinitesimal +iη, and for this reason in
equation (5.25) it is possible to neglect the infinitesimal without troubles. In conclusion
the Dyson’s equation (5.25) becomes simply:

GD = [EID −HD − Σ(E)]−1 (5.26)

5.9.4 The impulse response GD

So far it was considered a system of a channel connected with a reservoir. The features of
a good reservoir were already mentioned few times and will be further discussed in the
next section. The purpose of this section is to point out the results of what so far.

Starting from the total system “contact + device” Schrödinger’s equation it is possible
to find an equation for the device only, in which a term Σ, namely the self-energy, represents
the effect of the contact on the channel, and thus its modification due to the presence of
the contact. The following equation was demonstrated (see eq. (5.22)):

[EID −HD − Σ]
{
ψD
}

=
{
S
}

whose solution can be written in the form:{
ψD
}

=
[
GD

] {
S
}

where GD is the retarded Green’s function of the device only, modified with Σ in order to
consider the effect of the contact:

GD = [EID −HD − Σ]−1

GD is thus the impulse response of the device, and indeed the general solution
{
ψD
}
can

be written as the product of GD by the source term
{
S
}
. Notice that if in eq. (5.22) the

source term is a delta-Dirac the meaning of GD is well understood. Indeed in that case
equation (5.22) becomes:

[EID −HD − Σ]
{
ψD
}

= [I]
since it is an equation in energy domain, i.e. in the energy eigenfunction representation,
and it was shown in section 5.4 that the delta function becomes the identity matrix in
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this representation. From the last equation it is obvious the meaning of GD. Notice also
that since the last equation is an energy domain representation, then GD(E) corresponds
more precisely to a transfer function, i.e. to a Fourier transform of the impulse response.
Indeed in analogy with LTI systems it is the ratio between the output

{
ψD
}
of the system

and its input
{
S
}
:
{
ψD
} {
S
}−1 =

[
GD

]
. In conclusion GD has the meaning of impulse

response of the entire system “contact + device”, in its energy eigenstates representation
(energy domain) it corresponds to a transfer function and the system output in response
to a whatever stimulus

{
S
}
can be evaluated as described above. If its Fourier transform

is considered GD(t), a representation in time domain is recovered. In this time domain
representation GD(t) still represents the impulse response, but the output in response to a
given stimulus should be evaluated by means of a convolution operation (remembering the
Fourier transform properties so a product in energy/frequency domain corresponds to a
convolution in time domain).

5.9.5 A “good” contact
This section if aimed in definitively clarify the features of a good contact. In principle it is
possible to carry on a procedure analogous to the one described at the beginning of this
section, and treat the contact as of primary relevance and thus representing the channel
effect on it through a self-energy. Mathematically indeed HD and HR are on the same
footing. The only “asymmetry” comes from the terms +iη and S that were added “by hand”
in order to account for the extraction and re-injection of electron from/into the contact
by the channel. Usually the formal justification of iη from a mathematical standpoint is
that it ensures the convergence of a Fourier transform [89], [116]. Nevertheless it assumes
the meaning stated previously. In section 5.9.2 it was said that in general it is possible to
introduce an infinitesimal term in the device Green’s function, and it is formally correct,
even if at practice it is neglected (see section 5.9.3) because of the presence of the more
important Σ imaginary part. A good discussion of would happen if the contact and the
channel roles are exchanged is provided in [89].
The point is that a good contact should be able to provide an electron escaping rate
essentially constant. This happens only if it has a huge amount of electron states w.r.t.
the channel ones. Indeed if the contact were small, with few electron states, then the
escaping of one electron would empty the contact, that would be no more able to provide
other electrons for a given amount of time. When an electron escapes from the contact
into the channel it leaves an hole in the contact. If the contact had few electron states it
would require a large amount of time to restore the hole with a new electron. This implies
also that a large variation of the Fermi level would occur within the contact since few
electron states are present and the presence or the absence of one electron is relevant and
changes significantly the Fermi level. This is not what it is generally as a “good” contact.
A contact is indeed by hypothesis a reservoir of electrons, able to provide a constant rate of
electrons to the channel, and thus able to rapidly restoring the hole that is created by an
electron flowing from the contact toward the channel, keeping the contact the Fermi level
pinned. Again, the contact should be able to do that independently on the particular value
of the infinitesimal η. This is possible only if many closely spaced energy levels are present
in it, in the limit of an infinite number of atoms within the contact, a continuous energy
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band is present in it. The contact should have a constant density of states independently
on η. This is what typically happens in real world where the contact are huge macroscopic
entities when compared to channel devices. This is the reason why only an infinitesimal
perturbation of the contact is considered (+iη) and this is the foundation for neglecting η
in the device Green’s function, since the self-energy effect Σ is finite and relevant.

Practical remark: A last remark is due on the practical value of the infinitesimal η that
must be set up in practical simulations (e.g. Quantum-Wise ATK allows to set it up). In
numerical simulations it is important to always set up the infinitesimal η greater than
the spacing ∆ε between the energy levels on the contact. Indeed if the infinitesimal
η is in excess of ∆ε, the perturbation η is greater than the spacing ∆ε making irrele-
vant the effect of ∆ε and ensuring that the contacts behave like “good” reservoirs [89].
Moreover it must be ensured that the active part of the device has always much less
electron states than the leads (the portion of the contacts connected to it). If it is not so,
then the leads should be included in the device, and new leads (with a suitable dimen-
sion) should be considered. This has relevance in the choice of the geometry for simulations.

5.10 Density matrix, density of states and spectral
function

The purpose of this section is collect few topics that will be useful in the next sections.
For example the concepts of density of states and local density of states are introduced.
The expression presented in this section will be e.g. useful in understanding the physical
origin of broadening and the physical meaning of the contact self-energy Σ introduced
in the previous section. In particular three quantities are introduced in this section: the
density matrix, the density of states and the spectral function. In the treatment I will
follow the approach of [89], that simplifies the topics by focusing on the physical meaning.

5.10.1 Density matrix
The electron density n(~r) in a multi-electron system can be found by summing up the
probability densities of each occupied eigenstate α:

n(~r) =
∑
α

|ψα|2

Nevertheless this expression is true for closed systems (with no exchange of electron/matter
with the external world) and at low temperature, because in that case there is a fixed
number of electrons occupying the lowest available energy levels. In general states can be
partially occupied and this can be account for by means of the Fermi-Dirac distribution
function:

n(~r) =
∑
α

fFD(εα − EF ) |ψα|2 (5.27)
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where {εα}α are the energy eigenvalues, EF the Fermi level of the system and
fFD(E) =

[
1 + eE/kBT

]−1
, being kB the Boltzmann’s constant and T the temperature.

In general in statistical mechanics it used the concept of “density matrix”: [ρ]. The
density matrix [ρ] of elements ρ(α, β) “stores” the correlation CαC∗β between each pair
of coefficients of the wave-functions. Let me clarify better this crucial point. In general
a multi-electron system will have a wave-function Ψ(~r) representing the total state of
the entire system, i.e. of all the electrons composing such a system. Thus Ψ(~r) is the
multi-electron total wave-function, representing the state of the whole system. Since the
system eigenfunctions form a complete and orthonormal basis set, they can be used as basis
for a Fourier expansion such that the generic state Ψ(~r) can be expressed as superposition
of the system eigenfunctions:

Ψ(~r) =
∑
α

Cαψα(~r) → |Ψ(~r)|2 =
∑
α

∑
β

CαC
∗
βψα(~r)ψ∗β(~r)

The density matrix elements ρ(α, β) indicates the correlation between every pair of
coefficients CαC∗β. It describes the statistical state of the entire quantum mechanical
multi-electron system. If an eigenstate representation is used then (the eigenstates are
orthonormal):

ρ(α, β) = CαC
∗
β = fFD(εα − EF )δαβ =

{0 if α /= β
fFD(εα − EF ) if α = β

Notice that if diagonal elements are considered: α = β, then the coefficient squared
modulus is:

ρ(α, α) = CαC
∗
α = |Cα|2 = fFD(εα − EF ) = fα

that is: the squared modulus of the coefficients is the Fermi-Dirac function, that provides
the occupation probability of the eigenstate ψα. Notice again that this holds true only
if an eigenstates representation of the multi-electron system wave-function is used. In
that case (since the eigenstates are orthonormal) there is no correlation between different
eigenstates, i.e. out of diagonal elements are null, and the density matrix is diagonal, with
diagonal elements given by ρ(α, α) = fFD(εα − EF ). In the eigenstates representation:

[
ρ
]

=

fFD(ε1 − EF ) 0 0 ...
0 fFD(ε2 − EF ) 0 ...
0 0 fFD(ε3 − EF ) ...

 (5.28)

At this point it is possible to rewrite the electron density as:

n(~r) =
∑
α

fFD(εα − EF ) |ψα|2 =
∑
α

∑
β

ρ(α, β)ψα(~r)ψ∗β(~r)

The last expression can be generalized to define (it is a definition):

ρ̃(~r, ~r′) =
∑
α

∑
β

ρ(α, β)ψα(~r)ψ∗β(~r′) (5.29)
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that correlates the eigenstates in two different points ~r and ~r′. It follows that the electron
density n(~r) is thus given by its diagonal elements:

n(~r) =
[
ρ̃(~r, ~r′)

]
~r′=~r

=
∑
α

∑
β

ρ(α, β)ψα(~r)ψ∗β(~r) (5.30)

Notice that equation (5.29) corresponds essentially to a transformation from the eigenstates
representation to the real space representation of the density matrix of eq. (5.28). This
is noticed considering that ρ(α, β) in eq. (5.29) is the eigenstates representation of the
density matrix, that the summations corresponds to matrix products (row by column)
between the matrix ρ(α, β) and the two matrices that have by columns the eigenstates
{ψα(~r)}α and {ψβ(~r′)}β , in the new basis of real space (they are the eigenstates in function
of the position vector ~r, i.e. the eigenstates in the real space representation - recall the
change of basis in matrix algebra). A complete treatment is provided in [89], and a more
formal (but still accessible) introduction is provided in [39].

A last remark: from equation (5.28) it follows that in the eigenstates representation it
is possible to rewrite the equilibrium density matrix as:

ρ = fFD(H − EF I)

where H is the system Hamiltonian matrix and I the identity matrix. In the eigenstates
representation this relation simplifies in eq. (5.28) since H is diagonal with its eigenvalues
as elements. Nevertheless the lat expression ρ = fFD(H − EF I) holds true in any
representation and not only in the eigenstates one. This is obvious if the transformation
of eq. (5.29) is again considered.

Density matrix and total number of electrons

The density matrix can look very different depending on the specific representation. In
the eigenstates representation (eq. (5.28)), it is diagonal because H is diagonal, but in
real space it has also off-diagonal elements. Nevertheless in any basis set the diagonal
elements ρ(m,m) provides the number of electrons occupying the state m. In real state
the diagonal elements ρ(~r, ~r) provide the electron density n(~r). In general it is possible to
show that the trace (the trace is the sum of diagonal elements of a matrix) of the density
matrix is invariant in all representations and provides the total number of electrons of the
system Ne:

Ne = Tr[ρ]
where Tr indicates the trace. In general only the diagonal elements of the density are
needed to find the electron density.

Density matrix and DFT

In chapter 2 it was said that the in quantum mechanics to each physical observable F is
associated an operator F̂ . Then in section 2.3.3 it was shown that the expectation value
〈F 〉 of the physical observable can be evaluated as:

〈F 〉 =
∫
ψ∗(~r)F̂ψ(~r)d~r
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Substituting for the wave-function its Fourier expansion in terms of the chosen basis
functions {φi}i:

〈F 〉 =
∫ ∑

j

C∗j φ
∗
j (~r)F̂

∑
i

Ciφi(~r)d~r =
∑
i

∑
j

CiC
∗
j

∫
φ∗j (~r)F̂ φi(~r)d~r

and noticing that ρ(i, j) = ρij = CiC
∗
j are the elements of the density matrix in the

basis set representation, and that: Fij =
∫
φ∗j(~r)F̂ φi(~r)d~r are the element of the matrix

representation (see section 2.4) of the operator F̂ again in the chosen basis set, it follows
that:

〈F 〉 =
∑
i

∑
j

ρijFij = Tr [ρF ]

where Tr indicates the trace, ρ the density matrix and F the matrix representation of
F̂ . This is a general results and holds in any representation. Thus the expected value of
any physical observable can be found by performing the trace of the (matrix) product of
the density matrix with the matrix representation of the associated quantum mechanical
operator F in that basis.

In general it is thus possible to derive each physical observable starting from the density
matrix. This is intuitive if the physical meaning of density matrix is considered: it is the
matrix that describes the statistical state (i.e. the state) of the many-body system, thus
from the state it is intuitive thinking that is possible to derive each quantity of interest.
In particular the link with electron density was already discussed. In chapter 3 it was said
that the DFT methods express the system Hamiltonian in function of the electron density,
this is true, but more often instead of using the electron density n(~r) it is used the density
matrix ρ. In general thus it is possible to talk about functionals of the density matrix ρ,
that indeed is intimately linked with the electron density, and the density matrix is used
instead of n in evaluating such functionals.

5.10.2 Density of states and local density of states
An isolated channel with a discrete set of eigenvalues εα has a Density Of States (DOS)
per unit energy given by:

D(E) =
∑
α

δ(E − εα)

The problem of the above expression is that it does not consider the spatial distribution of
states. Instead a quantity called the Local Density Of States (LDOS) defined as:

D(~r;E) =
∑
α

|ψα(~r)|2 δ(E − εα) (5.31)

provides information about the spatial distribution of the states. In particular in eq. (5.31)
each energy level (the DOS of each level) is weighted by multiplying its DOS by the its
wave-function squared at location ~r. This provide information about the space localization
of states. In particular if d is the region of space of interest, e.g. the device region, then:

D(d;E) =
∑
α

|ψα(d)|2 δ(E − εα)
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will provide information about the amount of the eigenstate α that is inside the device,
and thus about the DOS portion of the total DOS of α that resides within the device.
The LDOS is a useful tool for understanding the physical origin of broadening - see next
section.

5.10.3 Spectral function
In general it is possible to see the LDOS, defined in equation (5.31), as the diagonal
elements divided by 2π of a more general concept called the spectral function A:

A(~r, ~r′;E) = 2π
∑
α

ψα(~r)δ(E − εα)ψ∗α(~r′) (5.32)

in analogy to what seen in the previous section, concerning the electron density (eq. (5.27)):

n(~r) =
∑
α

|ψα(~r)|2 fFD(εα − EF )

that can be seen as the diagonal element of the density matrix (eq. (5.30)):

ρ(~r, ~r′) =
∑
α

ψα(~r)fFD(εα − EF )ψ∗α(~r′)

notice the notation employed here slightly different from the one of before but with the
same meaning [89]. In the previous section 5.10.1, it was said that the density matrix of
last equation can be seen as real space representation of:

ρ = fFD(H − EF I)

that indeed corresponds to an eigenstate representation of the density matrix. Here in
complete analogy (analogous considerations and calculation) allows to say that the spectral
function A(~r, ~r′;E) of eq. (5.32), can be viewed as the real space representation of the
quantity:

[A(E)] = 2πδ (E [I]− [H]) (5.33)

that indeed corresponds to the general definition of spectral function in matrix form. Notice
that the last equation holds true in any representation. Exactly like ρ = fFD(H − EF I),
and its particular representation depends on the specific representation used, indeed the
Hamiltonian matrix changes with the representation. In particular in the eigenstate
representation the Hamiltonian matrix is diagonal and thus:

H =


ε1 0 0 ...
0 ε2 0 ...
0 0 ε3 ...
... ... ... ...

 → [A(E)] = 2π


δ(E − ε1) 0 0 ...

0 δ(E − ε2) 0 ...
0 0 δ(E − ε3) ...
... ... ... ...


from which it is evident that the DOS is equal to its diagonal elements over 2π. Notice
again that in general the expression of [A(E)] changes with the specific representation
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used, i.e. with the specific basis set. In general anyway it is true that the LDOS is given
by its diagonal elements divided 2π (to this purpose see equation (5.31)).

In conclusion, the density matrix provides the correlation among the basis set functions
and represents the quantum state of a many-body system. Its diagonal elements provide
the electron density (per unit volume) n(~r), and its trace the total number of electrons of
the system Ne. Here, analogously the spectral function A is a measure of the spectral DOS
(i.e. states per unit energy), in particular its diagonal elements provide the LDOS D(~r;E),
while its trace (divided by 2π) provides the total density of states per unit energy (DOS):

D(E) = 1
2πTr [A(E)] =

∑
α

δ(E − εα) (5.34)

5.10.4 Spectral function and density matrix
There exists a link between the density matrix and the spectral function. In particular:

[ρ] = fFD(H − EF I) =
∫ ∞
−∞

fFD(E − EF )δ ([EI −H]) dE =

=
∫ ∞
−∞

1
2πfFD(E − EF ) [A(E)] dE

in which the definition of delta-Dirac, i.e.
∫∞
−∞ f(x)δ(x− x0)dx = f(x0), is exploited (with

x = EI and x0 = H). It has good sense since A(E)/2π is the matrix version of the density
of states D(E), in the same way as the density matrix ρ is the matrix version of the total
number of electrons Ne. Notice also that:

Ne = Tr[ρ] = Tr

[∫ +∞

−∞

1
2πfFD(E − EF ) [A(E)] dE

]
=

=
∫ +∞

−∞
dEfFD(E − EF )Tr

[ [A(E)]
2π

]
=
∫ +∞

−∞
dEfFD(E − EF )D(E)

which simply states that the number of electrons is obtained by multiplying the DOS
D(E) by the probability fFD that they are occupied and adding (integrating) up the
contributions from all the energies.

5.11 Summary of one contact system equations and
some useful relations

The purpose of this section is to summarize the important set of equations introduced so
far for the system “device + single contact”. Moreover some useful relations are introduced.
The full demonstrations of the formulae presented here is reported in appendix C.3, please
refer to it for details; here only the important results are reported.
The system can be described by the following equation:[

EIR −HR + iηIR −ζ†
−ζ EID −HD

]{ΦR + χ
ψD

}
=
{
SR
0

}
(5.35)
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where: {
χ
}

= GRζ
† {ψD}

GR = [EIR −HR + iη]−1{
ψD
}

= [GD]
{
SR
}

GD = [EID −HD − Σ]−1

Σ = ζGRζ
†{

SR
}

= ζ
{
ΦR

}
(5.36)

The reservoir density matrix is:
ρR(~r, ~r′) =

∑
α

φRα(~r)fFD(εα − EF )φ∗Rα(~r′)

that in matrix form becomes:
[ρR] =

∑
α

fFD(εα − EF )
{
φRα

} {
φRα

}† (5.37)

The device density matrix is:

[ρD] =
∑
α

fFD(εα − EF )
{
ψDα

} {
ψDα

}† =
∫
dE

2π fFD(E − EF )GDζARζ
†G†D (5.38)

where
{
ψDα

}
is the device wave-function (matrix representation, i.e. column vector), that

from eq. (5.36) is:{
ψDα

}
= GD

{
SRα

}
= GDζ

{
φRα

}
,
{
SRα

}
= ζ

{
φRα

}
Moreover it is defined the broadening function Γ, whose physical meaning will be discussed
later in section 5.12:

Γ = i
[
Σ− Σ†

]
= ζARζ

†

in addition the following relations hold true:

AD = i
[
GD −G†D

]
= GDΓG†D = G†DΓGD (5.39)

[Gn] =
[
GDΓG†D

]
fFD(E − EF ) = [AD(E)] fFD(E − EF ) (5.40)

From which (see eq.(5.38)):

[ρD] =
∫
dE

2π fFD(E − EF )GDΓG†D =

=
∫
dE

2π fFD(E − EF ) [AD(E)] =
∫
dE

2π [Gn(E)]
(5.41)

Notice that a single contact is in equilibrium with the channel, and thus the previous
relations holds at equilibrium:

[Gn(E)]equilibrium = [AD(E)] fFD(E − EF )
and the density matrix [ρD] is intended at equilibrium. Notice that if two contacts are
considered then the density matrix changes (non-equilibrium density matrix) and the same
happens to [Gn] and [AD(E)]. To this purpose see section 5.13. Notice again that the
proof of all the above reported relations is provided in appendix C.3.
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The correlation function Gn

In eq. (5.39) it was introduced the matrix [Gn(E)], called “correlation function”. Its
physical meaning is clear when eq. (5.41) is considered: the correlation function is the
matrix version of the electron density per unit energy. Indeed, in section 5.10.3, it was
mentioned that the spectral function is the matrix version of the density of states per unit
energy. Here, since [Gn(E)]equilibrium = [AD(E)] fFD(E − EF ), the correlation function
gets the meaning of matrix representation of occupied density of states per unit energy.
Thus integrating it over the energy, the matrix version of the electron density, i.e. the
density matrix, is obtained.

Throughout this section I have followed the simple approach of [89]; a more formal
(but equally accessible) introduction to these topics (and to the correlation function) is
provided in [39].

5.12 Contact self-energy, levels broadening and finite
lifetime

It was demonstrated ion section 5.9 that a channel connected to a contact can be described
by a modified Schrödinger’s equation of the form:

[EID −HD − Σ]
{
ψD
}

=
{
S
}
→ E

{
ψD
}

= [HD + Σ]
{
ψD
}

+
{
S
}

Where Σ represents the effect of the contact on the channel. The matrix [HD + Σ] has
complex eigenvalues, that have the consequences of both broadening the channel density
of states and give the eigenstates a finite lifetime. The purpose of this section is exactly to
point out these two features.

5.12.1 The physical origin of broadening and the LDOS
As already pointed out in the previous section an isolated molecular channel has a density
of states that is made of discrete energy levels, i.e. a DOS of the kind:

D(E) =
∑
α

δ(E − εα)

In the moment in which the channel is coupled to the reservoir there is the creation of
chemical bond (e.g. a covalent bond) between atoms in the contact and in the channel
(usually with the so called anchoring group). There will thus be one energy level with
its wave-function largely on the channel, that corresponds to a state that was already
present in the isolated channel, but in addition there will be many other neighboring states
with their wave-functions residing partially on the channel (states that originally were
eigenstates of the isolated contact). This chemical interaction causes the DOS broadening,
i.e. electrons from contact (eigenstates) that are no more well localized within the contact
and can be localized also within the channel. The result in energy domain is a series of
(very close or continuum) energy levels with varying heights, reflecting the percentage of
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the squared wave-function residing in the channel. This phenomenon is well represented
by means of the LDOS already introduced with eq. (5.31):

D(~r;E) =
∑
α

|ψα(~r)|2 δ(E − εα)

In conclusion, the physical origin of DOS broadening is to be found in such contact
eigenstates that “spill over” a bit in the channel, giving rise to a non-null D(~r;E) within
the channel. In this regard notice that the broadened DOS will contain a mixture of the
device and the contacts states (hybridization of wave-function), but if a state cannot exist
within the contact it very likely will not be present also in the final DOS (unless particular
cases occur during the hybridization procedure).

Notice that the following “sum rule” holds true: if a device with a single level is coupled
to a contact, its DOS broadens into a series of levels, of varying strengths (weights),
representing that the contact wave-functions contribute to different extents to the device
DOS. But when a broadened DOS is integrated over the energy the same number of
electrons of the original level is recovered. It is possible to provide a formal demonstration
for this [89]. Nevertheless the point is quite intuitive: what a device loses from its one
level due to wave-function hybridization with the contact ones, it gains back from the
other levels, so that the broadened level in the device can accommodate exactly the same
number of electrons that the discrete one could accommodate before it got coupled to the
reservoir. See [89] for more details.

5.12.2 Finite lifetime of broadened states
In the introductory sections of this chapter it was highlighted the (space) impulse response
meaning of the retarded and the advanced Green’s function several times. Moreover in
section 5.6 it was pointed out that the retarded Green’s function has the physical meaning
of time impulse response for the time-dependent Schrödinger’s equation. Then in section
5.9.4 it was pointed out that the device retarded Green’s function of the device/channel is:

GD = [EID −HD − Σ]−1 (5.42)

and that it has again obviously the meaning of impulse response for the device, in the
moment in which it is connected to a reservoir. In this section these concepts will be
merged together and it will be proved that the effect of the contact on the device is to give
a finite lifetime to its eigenstates. Intuitively this has sense, since the system “contact +
channel” is an open system, in which electrons can escape (as already argued many times).

Considering the meaning of the (retarded) Green’s function as time impulse response
for the time-dependent Schrödinger’s equation (section 5.6), it is possible to write the
following equation (see equation (5.17) for comparison):(

i~
∂

∂t
− [HD]− [Σ]

)
[GD(t)] = [ID] δ(t) (wrong!) (5.43)

that corresponds to a modified channel Schrödinger’s equation to consider the contact
effects, with time impulse response given by [GD(t)] that is the Fourier anti-transform to
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time domain of eq. (5.42), carried out as indicated in section 5.6. Nevertheless equation
(5.43) is not generally correct. Indeed it corresponds to a Fourier anti-transform of the
following equation:

[EID −HD − Σ] [GD(E)] = [ID] (5.44)

but since the self-energy Σ(E) is generally energy dependent the Fourier transform, from
energy domain to time domain, of the product Σ(E)GD(E) should include a convolution
integral (indicated with “ * ”): Σ(t) ∗GD(t). Thus resulting in the more correct expression:(

i~
∂

∂t
− [HD]

)
[GD(t)]− [Σ(t)] ∗ [GD(t)] = [ID] δ(t)

Nevertheless for the purposes of this section it is much more convenient to get rid of this
“detail”, in order to focus on the physical insights of such equations. Thus the (wrong!)
equation (5.43), is considered. In order to keep things simple, let’s moreover consider
only the case in which a single energy ε level is present. The Hamiltonian matrix and
the self-energy becomes thus simple scalars (real and complex respectively). Under these
hypotheses equation (5.43) reduces to:(

i~
∂

∂t
− ε− Σ

)
[GD(t)] = δ(t) (wrong!)

whose solution is (in this regard see also section 5.6):

GD(t) = − i
~
θ(t)e−i(ε+Σ)t/~

where θ(t) is the Heaviside function. Notice that GD(t) is the response to an impulse
excitation of the device (connected to a contact) at time t = 0. Considering that Σ is
complex: Σ = Re(Σ) + i Im(Σ), the GD(t) becomes:

GD(t) = − i
~
θ(t)e−i(ε+Re(Σ)+i Im(Σ))t/~ = − i

~
θ(t)e−iε′t/~e−γt/2~ (5.45)

where:
ε′ = ε+ Re(Σ) , γ = −2 Im(Σ)

The real part of the self-energy causes a shift in the device energy level from ε to ε′, while
the imaginary part has the effect of giving rise to a finite lifetime (exponential decay in
time) of the eigenstate lifetime. This is evident when the squared modulus of the GD(t)
wave-function is considered:

|GD(t)|2 = 1
~2 θ(t)e

−γt/~ = 1
~2 θ(t)e

−t/τ~

The lifetime of the finite lifetime state is clearly linked to the imaginary part of the
self-energy:

τ = ~
γ

= ~
−2 Im(Σ)
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The last relation can be interpreted as the uncertainty relation between energy and time
that was already discussed previously (see e.g. section 4.1.1). In this optics τ corresponds
to the escaping time or intrinsic time introduced in chapter 4 and γ is the coupling factor
(or broadening of the Lorentzian distribution). In order to better visualize this, let’s
consider the Fourier transform of the impulse response of eq. (5.45), that is (see also
appendix C.1):

GD(E) = 1
E − ε′ + iγ/2

From equation (5.39) the spectral function is given by AD = i
[
GD −G†D

]
, and from

equation (5.34), considering that in this example these quantities are all scalars:

AD(E)
2π = D(E) = i

2π
(
GD(E)−G†D(E)

)
= i

2π

( 1
E − ε′ + iγ/2 −

1
E − ε′ − iγ/2

)
=

= γ/2π
(E − ε′)2 + (γ/2)2

that is a Lorentzian distribution. The meaning is again that the channel LDOS is broadened
into a Lorentzian of width γ equal to twice the imaginary part of the self-energy. Notice
that in general it is not said that the shape is Lorentzian since this result was obtained
by neglecting the energy dependence of the self-energy. In general a convolution should
be considered and the shape can be also very different (depending of the kind of energy
dependency of Σ).

5.12.3 The broadening function
In the previous section it was clarified that the imaginary part of the self-energy provides
the amount of broadening of channel energy levels and also the lifetime of the broadened
states. Nevertheless, in general, the self-energy is a matrix if more energy levels are present,
thus it is convenient to define a broadening matrix Γ(E) like the anti-Hermitian part of Σ:

Γ(E) = i
[
Σ(E)− Σ†(E)

]
(5.46)

Γ is responsible of the broadening of the energy levels. Instead the Hermitian component
of Σ:

ΣH(E) = 1
2
[
Σ(E) + Σ†(E)

]
can be seen as a correction of the Hamiltonian HD, responsible for the energy levels shift.
Notice that since Σ(E) is dependent on energy also Γ and ΣH are dependent on energy, and
in particular all these quantities are also dependent on the applied bias. Thus the applied
bias strongly modifies in general the transmission spectrum or transmission function (see
section 4.3), and thus the general behavior of the device.
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5.13 The two contacts case
In the case in which two contacts are considered, it is possible to exploit the linearity
of the Hamiltonian operator and the Schrödinger’s equation and write the total system
“channel + 2 contacts” Schrödinger’s equation by composing the three block:EI1 −H1 + iη −ζ†1 0

−ζ1 EID −HD −ζ2
0 −ζ†2 EI2 −H2 + iη




Φ1 + χ1
ψD

Φ2 + χ2

 =


S1
0
S2


where the notation is analogous to the one of section 5.9: H1, H2 are the Hamiltonians of
the isolated contacts (e.g. subscript 1 refers to source and subscript 2 to drain), I1, I2, ID
are identity matrices of suitable dimensions, ζ1, ζ2 are the coupling Hamiltonians, HD is
the device Hamiltonian, ψD indicates the wave-function inside the channel/device, Φ1, Φ2
are the wave-functions inside the contacts, S1, S2 are the source terms that represent the
amount of electrons going from the device to the contacts, +iη is the infinitesimal term
that represents the electrons escaping from the contacts, χ1, χ2 are the two scattered term.

It is possible to carry out calculations analogous to the ones of section 5.9, and since
the system is linear the following relations can be found (superposition of effects can also
be invoked): {

χ1
}

= G1ζ
†
1
{
ψD
}

,
{
χ2
}

= G2ζ
†
2
{
ψD
}

where G1 and G2 are the Green’s functions of the two isolated reservoirs:

G1 = [EI1 −H1 + iη]−1 , G2 = [EI2 −H2 + iη]−1

Moreover:

[EID −HD − Σ1 − Σ2] {ψD} = [EID −HD − Σ] {ψD} = {S} (5.47)

where:
Σ1 = ζ1G1ζ

†
1 , Σ2 = ζ2G2ζ

†
2 , Σ = Σ1 + Σ2

are the contacts self-energies, notice that the contributions from the two contacts can be
summed to get the total effect: Σ = Σ1 + Σ2. The corresponding broadening matrices are:

Γ1 = ζ1A1ζ
†
1 , Γ2 = ζ2A2ζ

†
2 , Γ = Γ1 + Γ2

where A1 = i
[
G1 −G†1

]
and A2 = i

[
G2 −G†2

]
are the spectral functions of the two

isolated contacts. The source term is:

{S} = {S1}+ {S2} = ζ1 {Φ1}+ ζ2 {Φ2} (5.48)

is the sum of the source term ({S1}) and the drain one ({S2}). Notice that (remember
that the Hermitian conjugate of a product of two matrices is the product of the Hermitian
conjugates of the two matrices taken in reverse order - see appendix C.3.1):

SS† = ζ1Φ1Φ†1ζ
†
1 + ζ2Φ2Φ†2ζ

†
2 + ζ1Φ1Φ†2ζ

†
2 + ζ2Φ2Φ†1ζ

†
1
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but since the wave-functions Φ1 and Φ2 are those of the two isolated contacts then the
cross-terms are null and:

SS† = ζ1Φ1Φ†1ζ
†
1 + ζ2Φ2Φ†2ζ

†
2 (5.49)

The device or channel (retarded) Green’s function is:

GD = [EID −HD − Σ]−1 = [EID −HD − Σ1 − Σ2]−1 (5.50)

by means of which it is possible to write the total wave-function ψD inside the device,
given by:

{ψD} = GD {S} → |ψD|2 = {ψD} {ψD}† = GD {S} {S}†G†D

The total device density matrix of the system with two contacts can be written in matrix
form as (see also the definition - equations (5.28) and (5.29)):

[ρD] =
∑
α

fFD(εα − EF ) {ψDα} {ψDα}†

Noticing that the product {ψDα} {ψDα}† depends only on the product {ψD} {ψD}† =
GD {S} {S}†G†D and that in {S} the cross products are null (see eq. (5.49)):

[ρD] =
∑
α

fFD(εα − EF ) {ψDα} {ψDα}† =

=
∑
α

fFD(εα − EF )GD

[
ζ1Φ1αΦ†1αζ

†
1 + ζ2Φ2αΦ†2αζ

†
2

]
G†D =

=
∑
α

fFD(ε1α − EF1)GDζ1Φ1αΦ†1αζ
†
1G
†
D +

∑
α

fFD(ε2α − EF2)GDζ2Φ2αΦ†2αζ
†
2G
†
D =

= [ρD]due to 1 + [ρD]due to 2

From which it is evident that the non-equilibrium device density matrix is given by the
superposition of the two device density matrices obtained considering separately the effects
of the two contacts (this follows form the fact the source term {S} has null cross-terms).
Exploiting the steps reported in appendix C.3.2 it is possible to rewrite each term in
function of the relative contact spectral function:

[ρD] =
∫
dE

2π fFD(E − EF1)GDζ1A1ζ
†
1G
†
D +

∫
dE

2π fFD(E − EF2)GDζ2A2ζ
†
2G
†
D =

=
∫
dE

2π
[
f1GDΓ1G

†
D + f2GDΓ2G

†
D

]
=
∫
dE

2π
[
GDf1Γ1G

†
D +GDf2Γ2G

†
D

]
=

=
∫
dE

2π GD [f1Γ1 + f2Γ2]G†D
(5.51)

where the shortened notation f1 = fFD(E −EF1), f2 = fFD(E −EF2) is used, and where
it is used also: Γ1 = ζ1A1ζ

†
1 and Γ2 = ζ2A2ζ

†
2. By defining:

Σin = [Γ1] f1 + [Γ2] f2
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It follows that:

Gn = GDΣinG†D =
= GD [Γ1] f1G

†
D +GD [Γ2] f2G

†
D = GD [Γ1]G†Df1 +GD [Γ2]G†Df2 =

= [A1] f1 + [A2] f2

(5.52)

where: [A1] = GD [Γ1]G†D and [A2] = GD [Γ2]G†D. This allows to rewrite the non-
equilibrium density matrix as:

[ρD] =
∫
dE

2π GDΣinG†D =
∫
dE

2π [Gn(E)] (5.53)

The last equation holds in non-equilibrium with the assumption that [Gn(E)] is given by:
[Gn(E)] = [A1] f1 + [A2] f2, that if compared to the equilibrium expression:

[Gn(E)]equilibrium = [A(E)] fFD(E − EF )

allows to think to the spectral function as consisting of two parts: [A1(E)] arising from the
spill-over (or propagation) of states in the contact 1, and [A2(E)] arising from the spill-over
(or propagation) of states in the contact 2. The former is filled according to f1 while the
second accordingly to f2. The device states are a superposition of the two contributions,
and the device spectral function is: AD = A1 + A2. This can be proved considering that
Σ = Σ1 + Σ2 and thus Γ = Γ1 + Γ2 from which: AD = GDΓG†D = GD [Γ1 + Γ2]G†D =
A1 + A2.

A remark on exclusion principle:

It was said and demonstrated that with two contacts superposition of the effects can be used.
It may appear that by superimposing the two individual fluxes or wave-functions coming
from the two distinct contacts, the Pauli’s exclusion principle is violated. Nevertheless as
long as the transport is coherent it is not so. Indeed in time domain it is very easy to see
that. Consider two electrons in the device originated from two distinct eigenstates Φ1 and
Φ2 in the two contacts. Initially there is no question of one blocking the other, since they
are in two distinct contacts. Thus their wave-function are orthogonal (non-interacting):
{Φ1}† {Φ2} = 0. At later times they propagate inside the device, thus the question can be
if they interact or not, and if they are still orthogonal or not. The time evolution can be
conveniently be evaluated by means of the time evolution operator (see section 2.5):

{ψD1(t)} = Ŝ(t, t0 = 0) {Φ1} = e−
i
~ Ĥt {Φ1}

{ψD2(t)} = Ŝ(t, t0 = 0) {Φ2} = e−
i
~ Ĥt {Φ2}

It follows that their overlap at any time is:

{ψD1(t)}† {ψD2(t)} = {Φ1}† e+ i
~ Ĥte−

i
~ Ĥt {Φ2} = {Φ1}† {Φ2} = 0

Thus wave-functions originating from orthogonal states remain orthogonal at all times and
Pauli blocking never occurs.

230



5.14 – Inflow, outflow and terminal current

The situation is different if phase-breaking phenomena (e.g. electron-electron inter-
actions) occur. If incoherent scattering phenomena occur then the phase is no more
maintained, and this argument does not hold anymore. Notice that fixed scatterers (such
as defect or fixed potential variations) are not phase-breaking phenomena (see also sec-
tion 4.2). Instead mobile perturbation, like en electron-electron interaction are. Thus
when incoherent scattering is considered it is possible to have forbidden transitions of
states due to Pauli’s exclusion principle. This topic will be further addressed in section 5.18.

5.14 Inflow, outflow and terminal current
After having discussed the case of two contacts connected to the device, and having derived
an expression for the non-equilibrium density matrix, it is possible to consider the fluxes
of electrons from contacts and then evaluating the electrical current flowing in the device.
Again this task will be addressed by steps, starting from the single contact case.

A remark before starting: the current is given by the charge per unit time. It is thus:
I = dQ

dt = (−q) electron flux, where the electron flux is given by the amount of electrons
flowing within the device in the unit time. Thus if a single electron is in the state ψD,
the flux of this electron will be the time derivative of the wave-function squared modulus:
d
dt |ψD|

2 = d
dtψ
†
DψD. This because of the wave-function squared modulus physical meaning

of position probability density. The time variation (derivative) of ψ†DψD thus provides
the time rate of change in the probability density inside the channel. Notice that if more
electrons are considered then the total flow will be the sum of the single electron fluxes, thus
they must be summed up. Since the interest is in the time derivative of the wave-function
the time-dependent Schrödinger’s equation will be considered, since it allows to estimate
such a time derivative.

5.14.1 One contact case
Consider again the case of one contact connected to the device. The Hamiltonian operator
in matrix form is:

Htot =
[
HD ζ
ζ† HR + iη

]
The corresponding time-dependent Schrödinger’s equation in matrix form is:

i~
∂

∂t
Ψ = ĤΨ ↔ i~

d

dt

{
ψD

ΦRtot

}
=
[
HD ζ
ζ† HR + iη

]{
ψD

ΦRtot

}
(5.54)

where ψD is the wave-function in the device and ΦRtot = ΦR + χ is the wave-function in
the contact. This equation corresponds to the time-dependent version of eq. (5.21) in
which the source term is dropped. Notice that since ψD is a scalar it is not a matter if the
trace is taken or not, thus:

ψ†DψD = Tr
[
ψ†DψD

]
= Tr

[
ψDψ

†
D

]
= ψDψ

†
D
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Its time derivative can be estimated from eq. (5.54), considering that such an equation
can be rewritten as a system of two equations:

i~ d
dtψD = HDψD + ζΦRtot

i~ d
dtΦRtot = ζ†ψD + (HR + iη) ΦRtot

Starting from first equation it is thus possible to find:
d

dt
ψ†DψD = 1

i~
Tr
[
ψ†DζΦRtot − Φ†Rtotζ†ψD

]
(5.55)

The complete calculations are reported in appendix C.4. Then noticing that ΦRtot = ΦR+χ
it is possible to rewrite eq. (5.55) as the sum of an inflow (i.e. from the contact to the
device) and an outflow (i.e. from the device to the contact):

d

dt
ψ†DψD = Inflow − Outflow (5.56)

and after a bit of algebra it is possible to show that:

Inflow = 1
~

∫
dE

2π fFD(E − EF )Tr [ΓAD] (5.57)

Outflow = 1
~

∫
dE

2π Tr [ΓGn] (5.58)

The full calculations are reported in appendix C.4. From the inflow and the outflow it is
then possible to write the electric current, as it will be done in sections 5.14.3 and 5.15.

5.14.2 Two contacts case
In the case of two contacts it is possible to proceed in an analogous manner to what did
in section 5.13, for the non-equilibrium density matrix, and invoke the superposition of
effects. In particular the important quantities are the inflow and the outflow at each
contact. Noticing that the total source term is (eq. (5.48)):

{S} = {S1}+ {S2} = ζ1 {Φ1}+ ζ2 {Φ2}

and that S†1S2 = 0 = S†2S1 (i.e. the cross-terms are null since no interaction there exists
between wave-functions of the two contacts that are thus orthogonal), it is possible to
decouple the effects of the two contacts and write directly the final inflow and outflow at
each contact:

Inflow contact 1 = 1
~

∫
dE

2π fFD(E − EF )Tr [Γ1AD]

Outflow contact 1 = 1
~

∫
dE

2π Tr [Γ1G
n]

Inflow contact 2 = 1
~

∫
dE

2π fFD(E − EF )Tr [Γ2AD]

Outflow contact 2 = 1
~

∫
dE

2π Tr [Γ2G
n]

232



5.15 – Transmission with NEGF

5.14.3 Many contacts case and terminal current
The procedure illustrated in the previous section can be generalized to a whatever number
of contacts, and in particular it is possible to write the i-th contact inflow and outflow like:

Inflow contact i = 1
~

∫
dE

2π fFD(E − EF )Tr [ΓiAD]

Outflow contact i = 1
~

∫
dE

2π Tr [ΓiGn]

Considering again the i-th contact, the electric current can be derived from the above
expressions for the inflow and the outflow at that contact. In particular the previous
expressions are already comprehensive of the contributions from all the electrons (i.e.
occupied states), as the integral in energy implies. To this purpose see also the full
calculations in appendix C.4. Thus the total net flow of electrons is: Inflow − Outflow.
This is the total flow of electrons entering the device from the contact i-th, i.e. the number
of incoming electrons in the unit time. By multiplying it by the charge of one electron −q
the net current at terminal i-th is obtained:

Ii = (−q) [ Inflow − Outflow ] =

= (−q)
~

∫ +∞

−∞

dE

2π
[
Tr [ΓiAD] fFD(E − EFi)− Tr [ΓiGn]

] (5.59)

Notice that by convention the electric current at terminal i-th should be positive if
incoming and negative if outgoing (electric user sign convention). Indeed since the net
flow: Inflow − Outflow is defined incoming, then, if incoming, it is positive, i.e.
Inflow − Outflow > 0, otherwise the electric current is outgoing and it should be
negative, exactly as it happens with eq. (5.59). Equation (5.59) provides a rule for
computing the current with the NEGF formalism at terminal i-th, providing at the same
the correct sign of such a current accordingly to the electric user sign convention.

In conclusion, it was finally obtained the crucial result of this chapter: the electric
current with the NEGF formalism can be calculated by means of eq. (5.59). Nevertheless
in the next section it will be provided an alternative expression for evaluating the current
with the NEGF formalism that is also very used. Moreover such an expression gives
rise to an interpretation in terms of transmission functions (i.e. Landauer formula), to
the previous expression, providing thus a link between the NEGF formalism and the
transmission one.

5.15 Transmission with NEGF
In the previous section it was derived an expression for the current at contact i-th, namely
equation (5.59), that can in general be used to evaluate the current with the NEGF
formalism. The purpose of this section is to provide a link with the transmission formalism
(see chapter 4), and thus rewriting the current in terms of transmission function (or
transmission spectrum), obtaining thus a Landauer’s formula for the current.
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Consider a two terminal device, with the source contact (contact 1) and the drain
contact (contact 2). It is possible to show that the currents at the two terminals are:

I1 = (−q)
~

∫ +∞

−∞

dE

2π
[
Tr [Γ1AD] fFD(E − EF1)− Tr [Γ1G

n]
]

=

= (−q)
h

∫ +∞

−∞
T1(E) [fFD(E − EF1)− fFD(E − EF2)] dE

(5.60)

I2 = (−q)
~

∫ +∞

−∞

dE

2π
[
Tr [Γ2AD] fFD(E − EF2)− Tr [Γ2G

n]
]

=

= (−q)
h

∫ +∞

−∞
T2(E) [fFD(E − EF2)− fFD(E − EF1)] dE

(5.61)

where:

T1(E) = Tr [Γ1A2]
T2(E) = Tr [Γ2A1]

(5.62)

and where the 2π is simplified with ~ to give h. The proof of equation (5.60), (5.61) and
(5.62) is provided in appendix C.5. In steady state the two terminal currents should be
equal (and opposite in sign), and indeed it is possible to verify it, since it is possible to
verify that:

Tr [Γ1A2] = Tr [Γ2A1] (5.63)

a proof of equation (5.63) is again provided in appendix C.5. Therefore it follows that
T1(E) = T2(E) = T (E).
Consequently the total drain to source current can be written as:

IDS = I2 = −I1 =

= (−q)
h

∫ +∞

−∞
T (E) [fFD(E − EF2)− fFD(E − EF1)] dE =

= −(−q)
h

∫ +∞

−∞
T (E) [fFD(E − EF1)− fFD(E − EF2)] dE =

= q

h

∫ +∞

−∞
T (E) [fFD(E − EF1)− fFD(E − EF2)] dE

(5.64)

where it is used: [fFD(E − EF1)− fFD(E − EF2)] = − [fFD(E − EF2)− fFD(E − EF1)],
and where the minus sign in front of I1 has the following meaning. If the electron
fluxes from contacts to device are defined such that they are incoming positive, that is
Net flux = Inflow − Outflow, it means that the current at source contact is assumed
incoming positive (according to the user convention of sign). Nevertheless the drain to
source current IDS is assumed to be outgoing from the source (and incoming to the drain).
Thus a minus sign is necessary, since: IDS = −I1. Instead for the drain contact the sign
convention is already coherent with the sign definition in IDS .
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In conclusion, by introducing the shortened notation: f1(E) = fFD(E − EF1) and
f2(E) = fFD(E − EF2), the total drain to source current is:

IDS = q

h

∫ +∞

−∞
T (E) [f1(E)− f2(E)] dE (5.65)

where:

T (E) = Tr [Γ1A2] = Tr [Γ2A1] = Tr
[
Γ1GDΓ2G

†
D

]
= Tr

[
Γ2GDΓ1G

†
D

]
(5.66)

where GD = [EID −HD − Σ]−1 is the device Green’s function (with Σ = Σ1 + Σ2), and
G†D = GA

D is the device advanced Green’s function. Notice that T (E) is called transmission
function or transmission spectrum (since it provides the transmittivity in function of the
energy E). Equation (5.65) is called “Landauer’s equation” for the current and indeed
it is analogous with the expression introduced in chapter 4 (see sections 4.1 and 4.3 -
equations (4.4), (4.6), (4.8) and (4.24)); to this purpose see also the below reported remark
concerning the spin degeneracy. The physical meaning of such equation (5.65), was already
highlighted in chapter 4. Nevertheless the point is that IDS can be viewed as the net
difference between two counterpropagating fluxes, one from the source to the drain and
the other from the drain to the source. The transmission function T (E) is a measure
of the amount of electrons that can be transmitted from one side to the other through
the channel. The energy states that contribute to the conduction are those for which the
difference between the source and the drain Fermi functions is non-null, at zero kelvin it
would reduce to the electron states between the two Fermi levels.

Spin degeneracy

The above reported calculations and results are referred to a net flux of electrons from
source to drain. Nevertheless they are not accounting for the spin degeneracy. Indeed for
each considered energy level E there exist two distinct electron states that are allowed
accordingly with the Pauli exclusion principle (they have different sets of quantum numbers,
considering the spin quantum number - see also section 2.5): the one with spin UP and
the one with spin DOWN. Such a spin degeneracy can be considered simply by adding a
factor two in front of the current expression:

IDS = 2q
h

∫ +∞

−∞
T (E) [f1(E)− f2(E)] dE (5.67)

where:

T (E) = Tr [Γ1A2] = Tr [Γ2A1] = Tr
[
Γ1GDΓ2G

†
D

]
= Tr

[
Γ2GDΓ1G

†
D

]
This correction holds true if the transmission function T (E) is independent on spin. If
for some reason the transmission functions for the spin UP and DOWN are different (e.g.
the channel is a magnetic conductor/molecule or there is an applied magnetic field or
again there occurs Coulomb blockade - see section 6.1), then they should be considered
separately, and the total current is the superposition of the two. To be very clear a spin
UP and a spin DOWN currents are found by means of eq. (5.65), with two different
transmission functions, and then they are summed.
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5.15.1 Transmission formalism vs NEGF
The main results of the last sections are two equivalent formulae for the evaluation of the
electric current, namely equation (5.59) and (5.65). By knowing the device Hamiltonian
and its coupling to the contacts Σ1,2 it is possible to calculate the current using either
(5.59) or (5.65). This is true as long as the transport is coherent, i.e. it does not suffer of
energy relaxation. In particular this topic was already discussed in section 4.3.4, and for
this reason here I only report the summary of situations in which a coherent transport
model can be used to obtain quantitatively reasonable estimation of the current-voltage
characteristics. In particular, equation (5.59) or (5.65) can be used to accurately calculate
the current if:

1. Purely coherent transport is considered, i.e. non-interacting electrons/particles,
that can be seen as proceeding from source to drain in completely separated and
independent channels (each electron carried by a single plane wave).

2. A rigid defect or scatterer is present in the channel, i.e. if an anomalous or irregular
potential shape is present in a point of the channel but it does not change in time. In
this case the effect of the defect or scattering center can be incorporated through an
appropriate defect potential in the Hamiltonian. Notice that instead if the scatterer
is time-dependent (such as a phonon/vibration a photon than case (4.) should be
considered).

3. Elastic non-coherent transport is considered (in which only phase-breaking phenomena
occur but not energy relaxation ones): this could be case of interacting electrons,
but with no energy dissipation (i.e. no other particles such as phonons are included
in the interaction). Indeed in such a case the energy lost by one electron is entirely
gained by the other, and since the two electrons are identical the final current is
independent on state exchange of the two electron. The final situation is similar to
the one depicted in point (1.). Indeed one could think to the two interacting electrons
as moving on separated channels, at different energies. Then the consequence of the
interaction (since no phonons/photons are involved: i.e. there is no energy dissipation
from electrons to channel etc...) is that the two electrons are exchanged, but the
final result is always of having one electron at a given energy and another at another
energy. Thus the final transmission function does not change and it is the same of
the case of coherent transport.

4. Inelastic non-coherent linear transport is considered. In general if energy dissipation
occurs, then equations (5.59) and (5.65) cannot be applied. Nevertheless if small
bias is considered, or if the transmission function T (E) is approximately constant
in the energy range within the bias window, then the response will be linear. This
means that T (E) can be approximated with its central value (or alternatively average
value): T (E) ∼ T (EF ) ∼ Taverage, and thus an electron that changes its states, e.g.
by loosing energy under the form of a phonon, reaches the drain with (almost) the
same probability of the case in which it is not scattered. In this case nevertheless the
model should be applied with caution.
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In general the transport through molecular channel is mainly coherent, and incoherent
contribution is very marginal. To this purpose see also section 4.4. Nevertheless in
some cases incoherent scattering could be important, and eventually incoherent transport
corrections should be used. This case will be briefly addressed in section 5.18.
Very often in literature the coherent transport case is addressed by means of the transmission
formalism (Landauer’s formalism - section 4.3) instead of the NEGF one [89]. Nevertheless
there are some advantages in using the NEGF formalism instead. In the words of [89]
these advantages are:

a. Generality of the NEGF formalism over the transmission formalism. The NEGF can
be applied with no additional complexity to whatever shaped channels and contacts
with no limitations. The partitioning between channel, described by [H], and contacts,
described by [Σ1], [Σ2], is very useful when dealing with complicated structures. It
is also an important conceptual point that can be useful to change the perspective
from classical transport and gain a physical intuition for the analysis and setting
up of simulations in nano-devices. Moreover it has a practical implication: in many
commercial softwares aimed in simulating nano-devices or molecular devices, it is
required to set up the desired geometry by dividing the device in channel and leads,
where the leads are the contact portions that interact with the channel. The above
mentioned forma mentis that is created by the NEGF formalism can be thus very
useful in correctly set up the geometry. The importance is that this step should be
performed by the designer with no help from the employed CAD, since the computer
cannot know what one desires to simulates today! Thus depending if ideal contacts or
defecting contacts or what is the specific situation one wants to study, the geometry
should be carefully set up in order to obtain reliable results.

b. The NEGF approach allows to easily compute the density matrix (i.e. the electron
density). This is very useful if the method for the electronic structure calculation is
e.g. the DFT one, that is indeed based on the electron density (or density matrix)
functionals. For this reason the couple NEGF + DFT is very popular in literature also
for coherent transport calculations, even if NEGF would be not at all necessary for
coherent transport. Within the transmission formalism framework it is also possible
to evaluate the density matrix, but this is not so easy as in the NEGF one [89], [122].

c. The NEGF formalism can handle incoherent transport as well, and as it will be
described in section 5.18, it can do it with no much additional complexity. In
transmission formalism instead phase-breaking processes can only be included phe-
nomenologically [89], [123].

5.15.2 Landauer’s formula, small bias and thermal broadening
As mentioned in chapter 4, section 4.3, the transmission formalism is often referred as
Landauer’s formalism, since Landauer pioneered the use of scattering theory of transport
in mesoscopic systems [89], [39]. The main result was the fundamental connection between
conductance and transmission function, indeed “conductance is transmission” in the
Landauer’s approach. This result was already pointed out in sections 4.1.3, 4.3; nevertheless
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it is now derived again starting from the last result of NEGF theory, i.e. equations (5.65)
and (5.67), with the gain of the concept of thermal broadening. The electric current is
identical zero when EFS = EFD, i.e. when f1 = f2 in eqs. (5.65) and (5.67). If a small
perturbative voltage δV is applied to the device (where δ indicates the fact that it is small),
then the current from eq. (5.67) becomes (the differential should be considered since both
T (E) and the Fermi-Dirac’s functions are function of the applied bias):

IDS = 2q
h

∫ +∞

−∞
T (E) [f1(E)− f2(E)] dE

→ IDS ∼
2q
h

{∫ +∞

−∞
δT (E) [f1(E)− f2(E)] dE +

∫ +∞

−∞
T (E)δ [f1(E)− f2(E)] dE

}
The first term is null since f1(E) − f2(E) is unchanged w.r.t. equilibrium and leads to
zero integral. The second term instead can be rewritten as:

IDS ∼
2q2V

h

∫ +∞

−∞
T (E)

[
−∂f0(E)

∂E

]
E=EFdot

dE

A full derivation of this formula can be found in [89], here I only notice that it is first
order Taylor expansion of the kind:

δ [f1(E)− f2(E)] ∼ ∂f0(E)
∂E

∣∣∣
E=EFdot

(E − EFdot)

where EFdot is the Fermi level of the quantum dot and (E − EFdot) = −qV . By defining
the thermal broadening function as (its explicit expression -out of the scope of this work-
is derived in [89]):

FT (E) = −∂f0(E)
∂E

The current becomes:

IDS ∼ GV , G = 2q2

h
T0 , T0 =

∫ +∞

−∞
T (E)FT (E − EFdot)dE

The thermal broadening function represents the fact that at temperature above zero
kelvin the Fermi-Dirac’s functions is smooth with “tails” extending above the Fermi level,
and thus there occurs a broadening of the energy levels of the order of kBT (being kB
the Boltzmann’s constant and T the temperature); while T0 represents the equilibrium
transmission spectrum. The physical meaning of the last equation is that the conductance
G is proportional to the transmittivity T (E), averaged over an energy range of a few kBT
around the equilibrium electrochemical potential EFdot, just as the quantum capacitance
(see section 4.1.8) is proportional to the average DOS centered in EFdot. This is the linear
response of the device (for small bias), indeed the transmission function is approximated
as constant. Notice that the last expression for the conductance corresponds to the
conductance expression previously introduced with the Landauer’s transmission formalism
(see section 4.3 equation 4.23).
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5.15.3 Channel proper modes and maximum conductance
In the case of more available modes (proper modes or energy levels for a quantum dot, or
subbands for a quantum wire), the transmission T0 includes the transmission though each
energy channel, if the number of modes is said to be M then one can rewrite the conduc-
tance (previous section 5.15.2) with: G = 2q2

h T̃0M , where T̃0 indicates the transmission per
mode. In this optics it is obvious that not only the conductance is transmission, but also
that it is directly proportional to the number of independent modes that there are within
the channel. In particular the same considerations made about the quantum conductance
in section 4.1.3 are still true. The interface resistance, or quantum limit of conductance, is
thus a direct consequence of the fact that the maximum conductance, or equivalently the
maximum transmission, is directly proportional to the number of modes in the narrowest
portion of the device. This is usually the channel. Nevertheless an important remark is
that if the channel has regions with more allowed modes (e.g. regions with more molecular
orbitals) and regions with less allowed modes (e.g. regions with less orbitals, i.e. less
allowed electron clouds), then the maximum will be always proportional to the number of
electron states in the region in which there are less allowed states (this is intuitive since
that regions will be like “bottlenecks” for the transport).
Notice also that in the case of a small molecule, short in the transport direction, if the
coupling is large enough it is possible to have transmission from the source to the drain
directly, even for energies not allowed in the molecular channel. This is a consequence
of the fact that electrons are not exactly confined in the contacts, but there is a finite
probability of finding them outside the contact (like in a finite height potential step).
Mathematically this corresponds to the effect of the contact self-energy imaginary part
(the broadened states or hybrid wave-functions), that causes a spatial exponential decay
of the wave-function. For some values of Γ this exponential decay can be so large that
the direct tunneling from source to drain is non-negligible. Instead in the case of a long
molecule (in the direction of transport), or if the short molecule is weakly coupled with
the contacts, this coherent transmission from source to drain is damped. In particular
the contact self-energies cause always an exponential decay in space of the wave-function,
but in that case the space interval separating source and drain can be too long to have
relevant direct tunneling between source and drain. Again in such a case the maximum
conductance will be proportional to the number of electron states in the region with less
available states, most likely the central portion of the molecule (if the source and drain
contacts are more or less equally coupled to the molecule).
This concepts were already pointed out in section 5.9.1, concerning the Krylov method for
the contact self-energy computation.
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5.16 Summary of NEGF transport equations
The purpose of this section is to summarize the main equations and quantities of the
NEGF formalism for transport in mesoscopic systems. The physical meaning and the
mathematical derivation were already provided in detail in the previous sections.

Contact self-energies Σ1, Σ2 of contact 1 and 2 (drain and source) respectively. They
represent the effects of the contacts on the quantum dot (molecule), and they can be
though as suitable boundary conditions that take into account the fact that the molecule
is not isolated but connected to the contacts:

Σ1 = ζ1gR1ζ
†
1 , Σ2 = ζ2gR2ζ

†
2 (5.68)

where:

• ζ1 and ζ2 are the contact coupling Hamiltonians which represent the strength of the
coupling between the contacts and the quantum dot, i.e. the molecule. They are
intimately linked to the quality of the chemical bonds between molecule (anchoring
groups) and the contacts. They are related to the aptitude of moving electrons
between contacts and molecule, and of course they are linked with the escaping
rate or time τ , i.e. the average time at which electrons escape from the device
towards a contact or vice versa. From section 5.8, in which a single contact was
considered, the coupling matrix is: ζ = (ESDR −HDR) and its Hermitian conjugate
was: ζ† = (ESRD −HRD). The extension to the case of two contacts is trivial.

• gR1 and gR2 are the two surface Green’s functions (SGF) of the two contacts. They
are essentially the impulse responses of the borders of the contacts (they can be
calculated starting from the knowledge on contact structures and only few surface
atoms are usually involved in their estimation).

Linearity can be exploited and the effects of both the contacts can be considered together
by summing up the two contacts self-energies obtaining:

Σ = Σ1 + Σ2 (5.69)

Broadening functions Γ1, Γ2 are matrices defined as the anti-Hermitian parts of contact
self-energies. They represent the effect of broadening of the isolated molecule energy levels
due to the presence of contacts. They are linked to imaginary part of energy (finite life-time
states) because the imaginary part of energy is the mathematical tool for describing the
broadening:

Γ1 = i[Σ1 − Σ†1] , Γ2 = i[Σ2 − Σ†2] (5.70)

Γ = Γ1 + Γ2 (5.71)

where i is the imaginary unit.
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Dyson’s equation:

GR
D(E) = [EID −HD − Σ]−1 (5.72)

GA
D =

(
GR
D

)†
(5.73)

where:

• GR
D is the retarded Green’s function of the device

• GA
D is the advanced Green’s function of the device

• ID indicates the identity matrix, in the case of non-orthogonal basis set it should be
substituted with the overlap matrix SD

• HD is the device Hamiltonian operator (matrix form)

• E is the considered energy value

The Dyson’s equation (5.72) can be considered as an operative definition of the retarded
Green’s function, i.e. of the device Schrödinger’s equation impulse response; while equation
(5.73) defines the advanced Green’s function (it is just the transpose complex conjugate
of the retarded one). It is useful to notice that all previously reported quantities are
function of energy E, that actually can represents the energy of a “test” electron (or in
general quantum particle) injected from contacts into the device, i.e. the energy of an input
stimulus to the system. From this remark it should be clear that the NEGF formalism
differentiates from conventional quantum mechanics since it corresponds to a forced study
of the system (in which the input stimulus, of energy E, is supposed known), instead of
a free oscillation study of the system as usually happens in quantum mechanics (see the
change of perspective of section 5.1). The retarded Green’s function has the physical
meaning of impulse response of the device/channel in the moment in which it is connected
to the contacts, thus it is the system output when the input stimulus is an impulse.

Transmission coefficient T (E):

T (E) = Tr[Γ1G
R
DΓ2G

A
D] (5.74)

where:

• T(E) is the transmission coefficient at that energy value E

• “Tr” represents the trace of a matrix

Once the transmission coefficient is known for each energy value E of interest, the current
can be evaluated by exploiting the Landauer’s equation (term 2 for spin degeneracy):

I = 2q
h

∫
T (E)[f1(E)− f2(E)]dE (5.75)
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where:

• q is the electron charge and h the Planck’s constant

• f1(E) and f2(E) are the Fermi-Dirac’s distribution functions of the two contacts
evaluated at energy value E (referred to EFS and EFD respectively)

Notice that the above reported Landauer’s formula includes only ballistic transport, as
discussed in section 5.15.1. Very often, considering the nanoscale dimension of a molecule,
it is reasonable to neglect incoherent scattering [90]. Notice that the real power of NEGF
formalism lays in the fact that is also possible to model incoherent scattering by means
of an additional self-energy Σs [89], [124], that represents the incoherent terms, like they
were adding or removing electrons from a fictitious contact (see section 5.18).

The single level case:

Notice that the previously reported NEGF formalism equations simplify in the correspond-
ing equations introduced in chapter 4 (section 4.1 mainly) if a channel with a single energy
level is considered. The complete demonstration of this correspondence is reported in
[89], while here it is omitted for brevity. The reader is invited to have a look at that
correspondence to gain confidence on the NEGF formalism.

5.17 The general procedure for the current calcula-
tion

Equation (5.75) can be used to evaluate the current flowing in the device of any coherent
device (ballistic transport). This holds true for any device and for any applied voltage,
and the complete I-V characteristics is obtained. A crucial point is that what just said
is true if and only if it is known how the voltage drops across the device. In general to
obtain quantitatively correct results a self-consistent loop must be implemented, providing
the simultaneous and self-consistent solution of the transport equations, summarized in
the previous sections, and also of the equation that provides the total voltage drop, i.e.
potential energy shape, within the conductive channel. The latter equation is the Poisson’s
equation as described in a while. Before proceeding in the description of the general
procedure for current calculations, a remark is provided about the special case in which
it is not necessary to solve self-consistently the set of equations for transport. Indeed
only in the special case in which a linear response is evaluated (i.e. with small applied
bias), instead of solving self-consistently the set of NEGF equations for transport with
the Poisson one, it is possible to simply assume a “reasonable” potential and solve only
one time the NEGF equations. There is no unique way to estimate such a reasonable
potential, and a detailed discussion is provided in [89]. For example if the applied bias is
small, then one can assume that the electric field within the channel is more o less constant
and thus the potential (energy) in the channel is linear decreasing from source to drain.
This can be correct qualitatively and only if the applied bias is very small (less than the

242



5.17 – The general procedure for the current calculation

thermal broadening, i.e. less than a few times kBT ). In general, as mentioned above, the
NEGF set of equations must be solved self-consistently with the Poisson’s equation, that
provides that potential shape within the channel. The principle is not so different from the
one presented in sections 4.1.6 and 4.1.7, for the evaluation of the function U , with the
difference that in general it is not sufficiently accurate considering the channel as having
no physical extension; but instead it must considered the precise position of the atoms in
order to evaluate the full 3D spatial variation of the potential energy from the Poisson’s
equation and thus solve the transport problem.

The self-consistent procedure for the evaluation of the electric current in a mesoscopic
system is summarized in figure 5.1. Within the SCF approximation (see section 3.2),
it is possible to evaluate a potential U embedding all the contributions, that represents
the average total potential that an electron feels due to the change δn(~r) in the electron
density, or more generally in the density matrix: δ[ρ]. This change can be due to an
applied bias that forces the device working in a non-equilibrium condition, thus polarizing
(or screening) the electron clouds/orbitals of the channel and varying the electron density.
This variation of ρ leads to a variation of the potential U , accordingly with the (modified)
Poisson’s equation:

∇2V (~r) = −n(~r)
ε0

↔ ∇2U(~r) = +qn(~r)
ε0

(5.76)

where n is the electron density, linked with the density matrix by equation (5.30), reported
here for simplicity:

n(~r) =
[
ρ̃(~r, ~r′)

]
~r′=~r

=
∑
α

∑
β

ρ(α, β)ψα(~r)ψ∗β(~r)

Thus the Poisson’s equation provides the Poisson’s potential U(~r) for a given electron
density n(~r), that is easily recovered from the density matrix [ρ] by means of the above
equation. The question now can be: “how is the density matrix evaluated?”. The answer
is simple: by means of equation (5.51) or analogously (5.53), derived previously in section
5.13, and reported here for simplicity:

[ρ] =
∫
dE

2π GD [f1Γ1 + f2Γ2]G†D =
∫
dE

2π GDΣinG†D =
∫
dE

2π [Gn(E)]

From which it is evident that the evaluation of the density matrix [ρ] requires the knowledge
about the potential energy U . Indeed U appears inside the device Hamiltonian HD, that
appears in the expression of the device Green’s function GD, highlighting again the necessity
of the self-consistent approach.

In summary, the electron density is calculated from the density matrix. The new
potential value is calculated from the electron density. The new density matrix is calculated
from the broadening functions of the contacts and from the device Green’s function, that
depends on the potential energy through the device Hamiltonian. The procedure should
be iteratively carried out until the convergence to a desired tolerance is obtained.
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Figure 5.1: General Self-Consistent procedure for the solution of the NEGF transport and
Poisson equations.

5.17.1 A “toy” pseudocode
To get confidence about this procedure it may be useful considering the following ultra-
simplified examples, before considering a real one.

First of all an equilibrium pseudocode, aimed to evaluate the equilibrium transmission
spectrum, is reported. The equilibrium transmission spectrum is of fundamental general
relevance in understanding conduction properties of molecules, and it is also the starting
point for all the non-equilibrium calculations. Notice that a ultra-simplified non-equilibrium
pseudocode can be simply derived from the one at equilibrium, by inserting it within two
additional loops on the drain and gate voltage values (see below). Here a “toy” equilibrium
pseudocode is reported:
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Evaluation of equilibrium isolated molecule Hamiltonian operator H0

FOR each (user defined) energy value E

Evaluation of contact self-energies Σ1 and Σ2

Σ(E) = Σ1 + Σ2
GR
D(E) = [EID −H0 − Σ]−1

GA
D =

(
GR
D

)†
Γ1 = i[Σ1 − Σ†1]
Γ2 = i[Σ2 − Σ†2]
Γ = Γ1 + Γ2
T (E) = Tr[Γ1G

R
DΓ2G

A
D]

END FOR

In order to understand the principle behind this pseudocode, it is better to firstly
recall the physical meaning of Green’s function. The Green’s function is the impulse
response for Schrödinger’s equation, i.e. the response of the system when the input is
a delta-Dirac function (in general both in time and space) [89], [39], [92]. Moreover the
formal introduction of Green’s function as quantum propagator [92], even if not used
here (and not reported for simplicity), is useful to clarify the physical meaning of Green’s
function under a slightly different perspective. In particular, as quantum propagator, the
Green’s function is something that creates a particle (I refer to this as “test electron”) in
a given spatial point and at a given time instant, then propagates it up to the moment
in which it is annihilated in another point and at another time instant [115], [116]. All
this under a possible perturbation of the equilibrium device Hamiltonian (e.g. under an
external bias). Notice that in general the final goal is to simulate an isolated device by
considering the effects of the external world; thus the creation or annihilation of an electron
physically corresponds to an electron that flows from contacts to the device or from the
device to the contacts respectively. By putting together the two aspects (impulse response
of Schrödinger’s equation and quantum propagator) it is clear that the NEGF formalism
can be used to study a forced operation of the system (i.e. the device), in an analogous
way to the forced operation study of a conventional LTI system (even if differences are
of course present - in this regard see section 5.1). By carrying on this analogy, it is clear
that injecting a test electron with a given (supposed known) energy E into the device
and seeing what is the system response (in terms of transmittivity at that given energy
value E), is conceptually similar to apply a sinusoidal signal of a given frequency to an
LTI system and measuring the response of the system at that given frequency (in terms of
transfer function). This explains the outer FOR loop on energy values that are chosen by
user. They are all the energy values (of a test electron injected into the device) at which
the system response, in terms of transimittivity, is tested. For each (user defined) energy
value, the set of equations introduced in the previous section is exploited in order to find
the transmission coefficient at that given energy value. In correspondence of molecular
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steady states (i.e. energy eigenvalues) transmission peaks will appear, anyway they will be
naturally broadened thanks to the contributions of contact self-energies and broadening
functions. Notice that in carrying on the analogy between LTI systems and NEGF, the
concept of frequency is substituted by the concept of energy.
The output of this pseudocode is of course the transmittivity (or transmission spectrum)
T(E), while its inputs are:

• the isolated molecule (equilibrium) Hamiltonian operator H0

• the contact self-energy matrices Σ1 and Σ2 (for each considered energy value E)

It is now reported another example, useful in understanding the “real world” example of
the next section. It is an approximated and very simplified out-of-equilibrium pseudocode:

Evaluation of equilibrium isolated molecule Hamiltonian H0

FOR each (user defined) bias VGS
FOR each (user defined) bias VDS

Evaluation of perturbed H(bias)
HD = H0 +H(bias)
FOR each (user defined) energy value E

Evaluation of contact self-energies Σ1 and Σ2

Σ(E) = Σ1 + Σ2
GR
D(E) = [EID −HD − Σ]−1

GA
D = GR†

D

Γ1 = i[Σ1 − Σ†1]
Γ2 = i[Σ2 − Σ†2]
Γ = Γ1 + Γ2
T (E) = Tr[Γ1G

R
DΓ2G

A
D]

END FOR

I(VGS , VDS) = 2q
h

∫
E T (E)[f1(E)− f2(E)]dE

END FOR
END FOR

The only difference w.r.t. equilibrium case is an outer loop on voltage bias points (eventually
two loops if both VGS and VDS are simultaneously considered) and the evaluation of the
perturbation of the Hamiltonian matrix due to the additional potential terms, that is
summed up to the equilibrium one to get the total Hamiltonian of the system under bias.
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Another difference is the integral of out-of-equilibrium spectra to get the value of current
for a given bias point. Even if not represented in this simplified pseudocode a self-consistent
procedure should be carried out, as described previously, to guarantee convergence of
results. A complete example is reported in the next section.

Practical remark: With reference to the commercial tool Quantum-Wise ATK, in simula-
tions it has no much sense choosing a very refined energy grid if the number of k-points is
not so high. Indeed usually calculations are carried out in Fourier space, i.e. in k-space.
Nevertheless the transmission spectrum in a given energy point is obtained summing up
the contributions for different k values. A very refined energy grid evaluates T (E) in many
points, but if the single T (E) values are not numerically precise (low number of k-points)
the result can be not so much significant.

5.17.2 The general procedure: a real example
In this section it is reported a real example of a self-consistent calculation, using the NEGF
set of equations for transport and the Poisson’s equation for evaluating the electron density.
This example is very important to get confident not only with NEGF equations and the
SCF approach in the solution of the transport problem, but also to explicitly point out
how the gate electrode can affect the transport from the rigorous standpoint of the NEGF
approach. The basic physical insights to this end were already introduced in chapter 4
(section 4.1.7), but now are considered under a different perspective. The example I briefly
introduce here corresponds to the solution algorithm implemented in the free available and
MatLab-based tool Huckel-IV 3.0, that allows for transport calculations in molecules (or in
general in quantum dots) exploiting an EHT + NEGF approach, considering gating as
well. It was developed mainly by prof. Ferdows Zahid with M. Paulsson, E. Polizzi under
the supervision of prof. S. Datta at Purdue University (Indiana, USA) between 2003 and
2005; references are present in literature [105], [41], [24].
This software exploits EHT with CNDO (see also below Poisson’s potential) to compute
molecular (in general quantum dot) and contacts Hamiltonian operators and NEGF for
transport calculations, along with a self-consistent description of electrostatics of the
system. The molecular and the “molecule + contact leads” Hamiltonians are evaluated
with EHT by means of a C code (a preliminary atom indexing Python code is used). The
contact (gold FCC (111)) self-energies are evaluated in MatLab following the procedure
explained in section 5.8 starting from the knowledge of the molecular and the contact
leads Hamiltonians. The transport calculations employ the set of equations summarized
in section 5.16. In the Huckel-IV 3.0 version, a full 3D self-consistent description of the
system electrostatics is performed. The molecule is supposed to be within a box with
electrode plates as its sides (for two terminal calculations the dimension of the box is set to
be 100Å× 100Å x L, being L the molecule length). Notice that up to four gate electrodes
are possible, of which two in plane and two out of plane. A self-consistent procedure,
comprising of two steps, is implemented to perform out of equilibrium analysis.
In this tool the device Hamiltonian (out of equilibrium) is divided into two parts: the
core Hamiltonian H0 (i.e. the equilibrium Hamiltonian) and the self-consistent potential
USCF = U(ρ). Notice that H represents the total perturbed Hamiltonian. The density
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matrix ρ is evaluated as described previously (and in section 5.13):

ρ = 1
2π

∫ +∞

−∞

[
f1G

R
DΓ1G

A
D + f2G

R
DΓ2G

A
D

]
dE (5.77)

where f1 and f2 are the Fermi-Dirac distribution functions of the two contacts (source and
drain respectively):

f1,2 = 1
1 + e(E−EF1,2)/kBT

Notice that a contour integral is needed to evaluate the integral of eq. (5.77) since the
Green’s functions have poles in energy domain (see section 5.5) that coincides more or less
with the proper eigenvalues of the isolated molecule.
The self-consistent potential U(ρ) is dependent on the density matrix, and it represents
the effects of the applied bias (both gate and drain electrodes) to the electrostatics of
the system, due to any change of the density matrix. In particular it takes into account
the charging effect (i.e. modification of molecule energy levels when a bias is applied due
to variations in number of electrons in the system - see section 4.1.5) and for screening
effect (essentially the molecule under bias is polarized, leading to variations of the spatial
distribution of charge - i.e. molecular orbitals/wave-functions - and thus a variation of the
density matrix the in real space representation).
In Huckel-IV the self-consistent potential is divided into three contributions as follows:

U(∆ρ) = ULaplace + UPoisson(∆ρ) + Uimage(∆ρ) (5.78)
where ∆ρ represents the change in density matrix under bias: ρ− ρequilibrium.
Since U(∆ρ) is a functional of ∆ρ it describes only the change in the potential under bias
and it is null at equilibrium. The spatial profile of the potential within the simulation
domain (i.e. the above mentioned “box”) is found, out of equilibrium, by means of eq.
(5.78). The first term in eq. (5.78) represents the spatial distribution of the applied voltage,
it is found by solving a standard Laplace’s equation:

∇2ULaplace = 0 with boundary conditions : ULaplace =


−qVS at source
−qVD at drain
−qVG at gate

(5.79)

In solving this equation the atomic sites are considered as points in free space (vacuum
dielectric constant ε0). As mentioned, an applied potential (i.e. the presence of an external
field) polarizes the molecule thus changing the spatial distribution of charge density
(orbitals) in the molecule (screening effect), and moreover makes changing the number
of electrons inside the device/molecule (charging effect). As a result of these two effects,
a Poisson’s potential arises. In principle it may be evaluated by solving the Poisson’s
equation (of the kind of 5.76) considering again the atoms like point charges in free space.
Nevertheless in this way an infinite potential would arise in the points in which atoms are
located, thus a different approach is followed in Huckel-IV. In particular the UPoisson(∆ρ)
in eq. (5.78) is evaluated by using CNDO method with Slater-type atomic orbitals (STO),
considering only Hartree’s potential (i.e. Coulomb interactions). The solution involves the
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so called “gamma matrix” that stores the CNDO parameters. Details are provided in [24].
The last term Uimage represents the image correction to the potential due to the presence
of contacts surrounding the molecule, and it is evaluated by solving the following equation:

∇2UImage = 0 with boundary condition : UImage = −UPoisson(~r) at the electrodes.

In this case atomic sites are again considered as point charges in free space. Notice that the
electrodes are modeled as perfect electrical conductors (PEC) such that the image theorem
is applied in order to evaluate the effect of the PEC on the resulting potential due to the
charge distribution within the simulation domain. All these electrostatic calculations are
performed by means of finite difference method (FEM). They are performed by a Fortran
90 program (using as preliminary Python and C programs) and by routines in MatLab.
The gate oxide is considered in the continuum approximation as an homogeneous medium,
thus characterized only with its dielectric permittivity and its thickness. This approxima-
tion holds as long as the oxide thickness is enough large.

The self-consistent loop consists of two steps:

• Step 1 : Calculate the self-consistent potential given a density matrix using the
functional relation of eq. (5.78) and thus get the total perturbed Hamiltonian H.

• Step 2 : Calculate the density matrix ρ starting from NEGF quantities by means of
eq. (5.77).

Hence the self-consistent field loop is built by using the density matrix as “checking
variable”. In general in a SCF loop the procedure is iterated up to when the difference
between the new value and the old value of the “checking variable” is lesser than the
desired convergence tolerance, or the maximum number of iterations is reached. Said A
the “checking variable”, the exit condition is: ∆A = Anew − Aold < tolerance. Anyway in
order to ensure convergence usually the “checking variable” is not simply updated, but the
new value is found by updating the old one with a suitable weight, following a relation of
the kind:

Anew = Aold + weight · Are−evaluated (5.80)

This is an extreme simplification, but it is useful to understand the so called mixing schemes
that are often used in SCF loops to ensure numerical convergence (indeed large variations
of the quantity of interest could lead to numerical oscillating behaviours). Several possible
mixing schemes are in general possible and well documented in literature, in Huckel-IV
the famous Pulay’s mixing scheme is used.
In Huckel-IV there is only one fitting parameter Vc, that is a number that somehow is aimed
to consider the relative position between gold contacts Fermi levels and isolated molecule
Fermi level. Indeed whenever a molecule is connected to the contacts a small amount of
charge is transferred between molecule and contacts in order to align the equilibrium Fermi
energy. Anyway the precise location of the equilibrium Fermi level depends very sensitively
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on many factors such as the nature of bonding between the anchoring group and the
contact, the surface condition of the contact, geometrical fluctuations of the structure and
environmental conditions. As a consequence in absence of detailed information on these
factors the position of EFdot can be justifiably treated as a fitting parameter, to be set
accordingly to experimental data or alternatively ab initio simulations. In Huckel-IV this
is done by means of Vc parameter. Another possible approach could be to self-consistently
evaluate it even at equilibrium (as for example did in Quantum-Wise ATK ).
The inputs of Huckel-IV are just the molecule geometry file and the orthogonal distance
between the anchoring atoms and the gold electrodes (it can be considered as an additional
fitting parameter, eventually considering good or bad chemical bonds). Of course the
fitting parameter Vc should be set suitably and information concerning the structure (such
as number of gates and oxide dielectric constant, etc...) should be provided. Finally the
bias has to be set to perform the desired simulation.
Its output are MatLab data structures and plots storing the current-voltage characteristics,
the transmission spectrum, the variations of number of electrons and molecular energy
levels with applied bias and all the other physical quantities of interest.
An operative description of such a tool is reported in appendix F. It will be used in the
practical part of the present work (part II chapter 9), in order to estimate the sensor stray
capacitances and other useful parameters to evaluate the sensor response time.

5.17.3 Mixing schemes
In the previous section it was already presented the concept of mixing scheme for guar-
anteeing the convergence of a self-consistent procedure. The purpose of this section is to
repeat it, in order to make it easily accessible when a fast consultation of this document is
performed.

In general, in a SCF loop, the procedure is iterated up to when the difference between
the new value and the old value of the “checking variable” is lesser than the desired
convergence tolerance, or the maximum number of iterations is reached. Said A the
“checking variable”, the exit condition is: ∆A = Anew−Aold < tolerance. Anyway in order
to ensure convergence usually the “checking variable” is not simply updated, but the new
value is found by updating the old one with a suitable weight, following a relation of the
kind:

Anew = Aold + weight · Are−evaluated (5.81)

This is an extreme simplification, but it is useful to understand the so called mixing schemes
that are often used in SCF loops to ensure numerical convergence (indeed large variations
of the quantity of interest could lead to numerical oscillating behaviours). Several possible
mixing schemes are in general possible and well documented in literature, in Huckel-IV
and also in Quantum-Wise ATK the default choice is the famous Pulay’s mixing scheme.
Notice that Quantum-Wise ATK allows the user to choose the mixing variable, that can
be the Hamiltonian, the density matrix, etc...
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5.17.4 Poisson’s solver in Quantum-Wise ATK
From the previous treatment it is evident that if the interest is in the entire shape of the
current-voltage characteristics (I-V ), then the potential profile obtained by solving the
Poisson’s equation is of crucial importance. The only case in which a non-self-consistent
solution of the set of NEGF transport equations leads to approximate not so bad results
is the case of linear response with small bias (much less than kBT ). The self-consistent
potential U can be calculated starting from the Poisson’s equation. In general this could
be a modified Poisson’s equation such that it accounts for the electron-electron interaction
(charging effect) by means of a correlation term (see section 3.2), in addition to standard
electrostatic (i.e. Laplace) effects (like it happens in the Huckel-IV tool introduced
previously). The purpose of this section is to highlight the methods and the correct
setting up of the Poisson solver implemented in the commercial tool Quantum-Wise ATK
(atomistic toolkit) by Synopsys® [125], [126]; that will be widely used in the practical part
of this work.

Throughout this entire section I am referring to the ATK manual, version Q-2019.12,
references: [125], [126].

In ATK there are four methods for the solution of the Poisson’s equation, that is a
second order differential equation. The methods are:

• FFT/FFT2D: In this method the Poisson’s equation is solved in the Fourier domain
(i.e. k-space), and not in real space. The Fast Fourier Transform algorithm (FFT)
is used to perform numerical Fourier transformations. This method is very efficient
and reliable for periodic systems, especially with periodic boundary conditions (see
later for boundary conditions). It is not much suitable for molecular devices (in
which there is no such periodicity) and it is not suitable if dielectric or metallic
(non-atomistic - PEC) regions are present. It exploits the FastFourierSolver, which is
the most efficient FFT solver in the QuantumATK package.

• MultiGrid and Direct: For general systems, even non-periodic and with molecular
channels, the Poisson’s equation can be solved using an algebraic MultiGridSolver
or DirectSolver. In that case the system is considered enclosed in a bounding box
(the cell of the Builder tool), and the Hartree’s potential (Laplace and Poisson
potentials of the tool Huckel-IV ) is defined on a regular grid inside the bounding box.
The solution is addressed in real space. The DirectSolver is well suited for parallel
computations and multi-process ones. Different boundary conditions can be imposed
on the solution at the bounding box surface, see later.

• Conjugate Gradient: This is a method for solving linear systems belonging to the
conjugate gradients family [127]. It solves again the Poisson’s equation in real space.
The differential equation must be discretized (by means of Finite Difference of Finite
Elements method) and then the resulting algebraic system of n unknowns in n
equations is solved by means of conjugate gradient method, that belongs to the
family of Gauss elimination (or reduction) methods. It requires modest memory
resources and exploits sparse matrices (with many zeros). It is very efficient for
parallel computations and multi-process ones.
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Boundary conditions

Since the Poisson’s equation is a second-order differential equation, boundary conditions are
required in order to fix the solution. Molecular systems have the boundary condition that
the potential goes asymptotically to zero, this is referred as Dirichlet boundary condition.
In such a case the potential value is fixed at the simulation domain boundaries, i.e. the
cell/box of the Builder tool. Instead in bulk systems, the boundary condition is that the
potential is periodic, with period equal to the one of the crystal lattice; this conditions
are called Periodic Boundary Conditions (PBC). In this case the potential value at one
boundary facet of the simulation domain, is repeated identical in the facet that is on front
the first one. Periodic boundary conditions only determine the Hartree’s potential up
to an additive constant, which reflects the physics that the bulk electrostatic potential
does not have a fixed value relative to the vacuum level. Experimentally, this can be
measured through the different work functions of different facets of a crystal. Finally
a third boundary condition is possible in ATK, i.e. Neumann boundary condition. A
Neumann boundary condition enforces the first derivative of the potential to be zero at
the domain boundaries (i.e. the cell/box boundaries). Since the electric field is given by
the first derivative of the potential, a Neumann boundary condition will set to zero the
electric field in the faces to which it is enforced. For this reason it is particular suitable in
modeling a PEC (Perfect Electrical Conductor) and thus it is the preferred choice where
metallic (non-atomistic) regions are present (such as gates).
Notice that in the transport direction the user setting is ignored and the program always
uses PBC for the electrodes and Dirichlet boundary conditions for the device. Indeed
the ATK solver preliminary considers the contacts (well indicated in the Builder tool by
vertical lines) as infinite and isolated, thus with PBC. Then, once their density of states
(found with ideal crystal hypotheses) is known, it considers only the device and leads
with at the two extremes the ideal contacts, that are no more considered as atomistic but
like ideal crystalline unperturbed contacts. In the device/active portion of the system
Dirichlet boundary conditions are used since they allow the potential to fluctuate and
reach convergence without artifacts (like periodicity or null electric field) that would not
correctly model it.

Solvent dielectric constant

In Quantum-Wise ATK, it is possible to perform calculations of solvents. In this case,
the volume of the configuration is defined by inscribing each atom in a sphere with a size
given by the van der Waals radius of the element. Inside the volume of the configuration,
the dielectric constant is 1, and outside the volume of the configuration, the dielectric
constant is equal to the value of the solvent dielectric constant. By contrast in Huckel-IV
the Poisson solver solvent constant was fixed to the vacuum one (i.e. 1).

5.17.5 Density matrix and contour integral
As mentioned previously in the SCF solution of transport equations it is required to
evaluated the density matrix from the NEGF quantities. This can be done by means of
equations (5.51) or analogously (5.53), or with reference with the practical example of
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before, eq. (5.77). In all cases the density matrix calculation requires to integrate the
Green’s functions, that in energy domain presents poles (see section 5.5). Consequently an
integral over a complex contour (remember that energy is complex, due to the infinitesimal
η), is required, analogously to what is done for evaluating e.g. the residues (e.g. for the
time contacts calculations in electrical circuits). In Quantum-Wise ATK it is possible to
set up the numerical method and few parameters in the “Contour Integral” section of the
calculator tool. For references and details see the manual [125] and [126]; very often the
default settings provide good result in terms of accuracy and computational cost.

5.18 The general self-energy concept and incoherent
transport

So far only coherent transport was considered and all the dissipative/phase-breaking
processes were assumed to happen only within the contacts, where they act to keep the
electrons in local equilibrium. Indeed in the moment in which an electron “jumps” from
the source to the channel, it leaves a hole in the source contact. Then there is an energy
re-distribution of states such that the local equilibrium is again recovered, and in particular
an electron at a higher energy will loose energy (under the form of heat/phonons) and
will occupy the free state. Actually in general it is possible to have such processes also
within the channel, and they are increasingly important as the channel length is increased.
Incoherent scattering processes arise from electron-phonon, electron-photon and even
electron-electron interactions. In the latter case, if only electrons are involved and the
interaction is elastic (no dissipation of energy occurs under the form of phonons/photons)
then a coherent model for transport is anyway correct (see e.g. the discussion in section
5.15.1).

The purpose of this section is to address the incoherent transport case, and how it is
considered within the NEGF framework. Since in many practical applications the transport
through molecules is with optimal approximation only ballistic, this topic is not covered in
detail. Consequently the details about the microscopic processes giving rise to incoherent
phenomena are not considered here, instead the focus will be on how to modify the NEGF
transport set of equations in order to include the incoherent scattering. In order to do
that, the matter will be addressed by steps, starting from the Bütticker theory and the
extension to multi-contacts case. This is actually a topic slightly outside the purposes
of this section (and of this work), nevertheless it is useful to understand why incoherent
scattering can be though as an additional contact and consequently represented by means
of a self-energy matrix as already done for the source and drain contacts. After that, the
concept of “scattering probe” or “contact” is introduced, in which it is highlighted the
analogy between the effects of scattering phenomena and a contact. Then the general
approach is presented, indeed there are some issues preventing a full correspondence with
the ballistic multi-probe case, and in conclusion few words about the dissipated power are
said.
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5.18.1 Bütticker’s probes and scattering
It is well known that conductance (or resistance) measurements are often performed using
a four probe structure. Two terminals are dedicated to the injection of the test current,
while the other two (kept separated from the previous two) are dedicated to the voltage
drop measurement. Nevertheless in small structures, like mesoscopic conductors, this
procedure had not a clear interpretation, until Bütticker in 1988 suggested an elegant
interpretation for them [123]. Indeed he suggested that the Landauer’s formula, see section
5.15.2 (and in chapter 4 section 4.3), that is (factor 2 for spin degeneracy):

G = 2q2

h
T̃ , I = 2q

h
T̃ [EFS − EFD]

can be generalized in the case multiple terminals i, by writing:

Ii = 2q
h

∑
j

T̃ij [EFi − EFj ]

where T̃ij is the average transmission from terminal j to i. A full treatment is outside the
purposes of this work, nevertheless it can be found in [89] and [39].
Now the point is another: it was mentioned in section 5.15 (and its subsections) that the
Landauer’s approach holds true only if the transport is coherent. But a voltage probe
actually behaves like a phase-breaking scatterer [123]. This is clear if one considers the
current flowing between two terminals with an additional third terminal acting as voltage
probe in between (think again to the measurement set up for a four terminal conductance
measurement). The voltage probe is aimed in measuring the voltage drop across the
conductor and no current flows in principle through it (high impedance terminal - open
circuit); and indeed it is left floating to an appropriate potential such that no current
flows in it. A fraction of the electrons participating to the conduction goes directly from
the source to drain terminal, bypassing entirely the probe. The remaining electrons from
the source interact with the probe, and in particular they enter the probe and have their
phases randomized before they reinjected into the device. Some of these electrons then
reach the drain terminal, while others are reflected back to the source. The effect of the
voltage probe is thus to introduce an incoherent component to the overall current, acting
like a phase-breaking scatterer.
It is possible to reverse this argument and conclude that a phase-breaking scatterer can be
emulated by means of a purely conceptual (voltage) probe, where none exist in the real
structure. The idea is thus to use one or more fictitious probes or contacts to emulate and
take into account the incoherent scattering phenomena; and then calculate the net current
using the Bütticker’s approach, that is general and can be applied to whatever number of
terminals. With this approach the current at terminal i becomes [39] (factor 2 for spin
degeneracy):

Ii = 2q
h

∫ +∞

−∞

∑
j

Tij(E) [fi(E)− fj(E)]

 dE = 2q
h

∑
j

∫ +∞

−∞
ĩj(E)dE

where :
ĩj(E) = Tij(E) [fi(E)− fj(E)]
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Incoherent scattering processes take electrons out from one energy channel (or eigenstate)
and reinject them at another energy value/channel (or eigenstate). Indeed they are inelastic
processes in which electrons loose energy/momentum. As a consequence the “spectral
current” ĩj(E) that represents an incoherent scattering process is negative at some energies,
representing the outscattering process, and positive at others, representing the inscattering.
Nevertheless invoking the matter conservation (i.e. electrons does not disappear from
the device even if they are scattered), it is clear that, if the j-th terminal is a conceptual
probe representing an incoherent scattering phenomenon, then the spectral current ĩj(E)
associated to it must have an energy integral null:∫ +∞

−∞
ĩj(E)dE = 0

Indeed the net outscattering must balance the net inscattering, and the net current flow in
such a fictitious probe must be null, since conservation of matter holds true as explained
above. Because of the scattering process the various channel energy eigenstates are coupled
together, indeed the effect of the scatterer is exactly to take out an electron from a given
energy and to reintroduce it at another energy. This fact extremely complicates the
treatment, as better described in the next section.
The function ĩj(E), that has the dimensions of a current per unit energy, i.e. a spectral
current, represents thus the “vertical flow” of electrons from one energy level to another
due to an incoherent process. In general depending on the particular scattering process
that is considered, ĩj(E) has a different expression, and it can be evaluated starting from
a microscopic theory of the scattering process. This usually requires the introduction of
the so called “second quantization” formalism, that in this work is completely omitted.
A simple treatment in this regard is for example provided in [89], in which the second
quantization is avoided, and thus only the lowest order approximation is considered: the
so called self-consistent Born approximation. Nevertheless this could be enough in many
practical cases [89]. Another example of incoherent scattering process simple treatment is
the one of [39].
Now, for the purposes of this work, the point is that it is possible to assimilate the incoherent
scattering processes to a fictitious probe/contact, and applying the Bütticker’s approach
for evaluating their effect on the final current. The details concerning the microscopic
treatment of the scattering process are not reported here while they are treated in a simple
way in [89], but the conceptual point is that it is possible to derive an expression for the
scattering process self-energy Σs. Once it is known Σs then superposition of effects can
be in principle applied, the device Green’s function is found and then the transmission is
calculated by means of eq. (5.74):

Tij(E) = Tr[ΓiGR
DΓjGA

D]
This expression can be derived with a similar procedure to the one of section 5.15 (and
5.14). The total current can be then found as explained above.

Sum rule

This section reports an interesting topic, even if it is not necessary for the general treatment.
An important result of the transmission formalism is that the sum of the rows or the
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sum of the columns of the transmission matrix, that provides the transmission coefficients
between the terminals of the device, must equal the number of channel proper modes Mi

(e.g. subbands in a quantum wire):∑
j

Tij =
∑
j

Tji = Mi

This formula can be demonstrated within the transmission formalism framework. This fact
was already introduced in sections 4.3.2 and 5.15.3; nevertheless this is a more mathematical
expression.
A similar expression can be recovered with the NEGF formalism:∑

j

Tij =
∑
j

Tji = Tr[ΓiAD]

In which the quantity Tr[ΓiAD] plays the role that the number of modes Mi plays in the
scattering theory of transport (see section 5.15.3). The previous equation can be easily
demonstrated as follows:∑

j

Tij =
∑
j

Tr[ΓiGDΓjG†D] = Tr[ΓiGD

∑
j

ΓjG†D] = Tr[ΓiGDΓG†D] = Tr[ΓiAD]

∑
j

Tji =
∑
j

Tr[ΓjGDΓiG†D] = Tr[ΓGDΓiG†D] = Tr[ΓiGDΓG†D] = Tr[ΓiAD]

where it is used: Γ =
∑
j Γj ; and that: AD = GDΓG†D; and notice that the trace is

invariant w.r.t. cyclic permutations.

5.18.2 The general approach and the scattering self-energy
In general the electron-photon and electron-phonon interactions are a complicated matter,
and no exact solution is generally possible. The standard way for considering them is by
means of the second quantization formalism [116], [115], [92]. In [89] and [39] there are
simple treatments of such interactions that do not require this formalism, but they are
limited to the lowest-order approximation: the so called self-consistent Born approximation.
Because of the reasoning reported in sections 4.4, 4.3.4, 5.15, the incoherent scattering
mechanism are very often non-relevant in molecular devices and for this reason they are not
considered in detail in the present work. I invite the reader to refer to the aforementioned
references for details. The purpose here, as already pointed out, is only in describing how
the scattering processes can be included within the NEGF framework. In the previous
section it was introduced the idea of representing such incoherent processes by means of
an additional contribution of self-energy Σs, and simply treat them as an additional and
fictitious probe or contact that “shuffles” electrons among different energy eigenstates.
Such a self-energy Σs explicit expression depends on the particular phenomenon considered
and it can be evaluated starting from a microscopic treatment, as mentioned above usually
with the second quantization formalism. Before going on a remark is due on the general
concept of self-energy.
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A remark on second quantization treatment and the general concept of self-
energy

So far it was introduced the so called “single-particle” Green’s function. In this optics the
so far considered Green’s functions are all referred to a single electron, and the effects
of the other electrons are accounted by means of as SCF potential. In general one may
write a Schrödinger’s equation involving more electrons and eventually also phonons and
photons. This would be a many-body Schrödinger’s equation for the entire system of
electrons, phonons and photons. It is then possible to carry out a procedure similar to what
did throughout this chapter and to define a many-body Green’s function as its impulse
response. With the second quantization treatment such many-body Green’s function
is called quantum propagator, indeed since it is an impulse response it propagates an
input stimulus happening in a given point at a given time instant through the system,
and provides information about the system response, in any point at any time instant.
In general the dynamic equation that provides the time evolution of the system is a
differential equation to be solved w.r.t. the total system many-body Green’s function,
somehow similarly to what reported in section 5.6. In general the problem with this
procedure is that, even if one wants writing down only the single-particle Green’s function,
in the equation of motion for such single-particle Green’s functions (i.e. essentially its
time derivative), the two-particle Green’s function appears. And analogously in recovering
an expression for the two-particle Green’s function the three-interacting-particle Green’s
function term appears, and so on. This procedure must thus be approximated at a given
point, and for example if one wants to consider only the Green’s function for a single
particle, the two-, three-, four- etc.. particle terms will be cut away (similarly to what did
in a Taylor’s series). Nevertheless it is possible to consider them within an additional term,
added starting from considerations about such interactions, and suitably approximating
them such that the infinite recursion mentioned above does not occur. Such additional
term is called “self-energy”. The self-energy concept is a seminal concept of the many-body
perturbation Green’s function theory, and it is far more general than the one widely
used so far for representing the contacts influence on the channel. In general any kind of
interaction: electron-electron, electron-phonon, electron-photon, etc... can be represented
by means of a suitable self-energy term. This term provides a sort of average effect for
that specific interaction, and allows to write a single particle Green’s function considering,
e.g. the electron-electron interactions within it (similarly to what did in chapter 3 section
3.2). In conclusion, any interaction, and in particular any incoherent scattering process
can be represented in terms of a suitable self-energy, whose explicit expression depends on
the kind of considered interaction and the approximation adopted. Once it is known one
can proceed as described in the following.

The general approach

In general it is unfortunately not possible to exploit the Landauer’s transmission formula
for evaluating the electric current in presence of incoherent scattering processes. This
because for the contacts it was demonstrated the following relation (see section 5.13):

Σin = [Γ1]f1 + [Γ2]f2 = Σin
1 + Σin

2 , Σin
1 = [Γ1]f1 and Σin

2 = [Γ2]f2
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that is not true in the case of scattering terms. Indeed from the microscopic theory it is
possible to easily find an expression for Σin

s , but there is no simple connection between
Σin
s and Σs or Γs: Σin

s /= [Γs]fs. So even if it is possible to simply add the scattering self
energy Σs to the contact self-energies in order to get the total self-energy of the system:

Σ = Σ1 + Σ2 + Σs

and even if the same holds true for Σin:

Σin = Σin
1 + Σin

2 + Σin
s

in general the Landauer’s formula, equation (5.65) or (5.75) does not hold. Nevertheless
the general expression for the electric current in terminal i is still valid, i.e. equation (5.59),
still holds with a small modification. This latter equation is reported now for clarity:

Ii = (−q) [ Inflow − Outflow ] =

= (−q)
~

∫ +∞

−∞

dE

2π
[
Tr [ΓiAD] fi(E)− Tr [ΓiGn]

]
Notice that it is an expression for the net flow of electrons, multiplied by the electron
charge. With the simple replacement Σin

i = [Γi]fi the previous equation becomes:

Ii = (−q) [ Inflow − Outflow ] =

= (−q)
~

∫ +∞

−∞

dE

2π
[
Tr
[
Σin
i AD

]
− Tr [ΓiGn]

] (5.82)

And this last equation provides the terminal current, at terminal i, with i = 1,2, s (where
s indicates the fictitious scattering terminal), in the general case and it holds true even for
the scattering case, and thus it holds in general.

In conclusion, starting from the physics of the incoherent scattering phenomena that
are considered, it is possible to derive an expression for Σs and for Σin

s , even if the two are
not simply connected. Then it is possible to write the general terminal current by means
of equation (5.82), that is always correct and general. It is possible to demonstrated eq.
(5.82) with a procedure similar to the one carried out in section 5.14. The concepts are
summarized in the next section.
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5.18.3 The general approach: a summary of transport equation
with incoherent scattering

The purpose of this section is to summarize what explained in the previous ones. In
particular once the scattering self-energy is known (to this purpose see [89] and [39] or for
a more formal introduction [115], [116]), it is possible to write the following equations and
recover the current by means of eq. (5.82):

Gn = GDΣinG†D

GD = [EID −HD − Σ]−1

HD = Hequi + USCF

AD = i
[
GD −G†D

]
Γ = i

[
Σ− Σ†

]
where :
Σin = Σin

1 + Σin
2 + Σin

s , Σin
1 = Γ1f1 , Σin

2 = Γ2f2

Σ = Σ1 + Σ2 + Σs , Σ1,2 = ζ1,2g1,2ζ
†
1,2 , Γ1,2 = ζ1,2a1,2ζ

†
1,2

where g1,2 are the surface retarded Green’s functions (of contacts 1 and 2 respectively,
i.e. the source and the drain), and where a1,2 are the surface spectral functions of the
two contacts. Moreover USCf is the potential energy U introduced in section 5.17, and
Hequi the equilibrium Hamiltonian. From the above formulae it is possible to calculate the
non-equilibrium density matrix and the current:

ρ = 1
2π

∫
Gn(E)dE

Ii = (−q)
h

∫ +∞

−∞

[
Tr
[
Σin
i AD

]
− Tr [ΓiGn]

]
dE (5.83)

Notice that the terms Tr
[
Σin
i AD

]
represent the inflows term, i.e. the electron fluxes

toward the channel, while the terms Tr [ΓiGn] the outflows, from the channel toward
the contacts (including the fictitious scattering contact). To this purpose see also figure
5.2. This was analytically already shown in section 5.14, but to get the point intuitively
one may think that if, for example, a single physical contact, namely 1, is present, then
Σin

1 = Γ1f1 provides an indication of the incoming electron flux. In particular Γ1 represents
the broadening, i.e. the wave-functions that “spill over” in the channel from such a contact,
and f1 the probability of occupation of such states. Thus it is intuitive that Tr

[
Σin
i AD

]
represents the inflow into the channel, since AD represents the amount of free states in the
channel (the spectral function is linked to the device DOS, i.e. allowed states) while Σin

1
represents the inflow from the contact 1. Instead the correlation function Gn is a measure
of the number of electrons inside the device/channel, and this is evident if it is considered
that its integral in energy gives the density matrix. Thus the term −Tr [Γ1G

n] with minus
sign is a measure of the flux of electrons leaving the channel, thus flowing toward the
contact 1, represented by Γ1, from the device, represented by Gn.
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Figure 5.2: Schematic representation of the model for considering incoherent scattering within
the NEGF framework. The various electron inflows and outflows are sketched.

Spin Degeneracy

Finally notice that if the spin degeneracy is considered, then a factor 2 should be considered
in the current expression (if the inflows and outflows of electrons are not dependent on
spin).

5.18.4 Incoherent scattering and transmission
In the previous sections it was pointed out that there is no a general simple way of writing
the total current flowing in a two-terminal device by means of a Landauer-like formula,
i.e. with a transmission function, if incoherent scattering is taken into account. Indeed
there is generally no simple way to link Σin

s and Σs, or analogously Σin
s with Γs unlike

it happens for the contacts (this is clear if one thinks that it has no sense of talking
about a Fermi-Dirac’s function fs of a fictitious contact representing actually a scattering
phenomenon). Nevertheless the simplicity and the immediate physical interpretation
of the Landauer’s formula for the current is a tempting matter. For this reason it is
sometimes defined an effective transmission function, by comparing equation (5.83) with
the Landauer’s formula of eq. (5.65) or (5.75). In particular this effective transmission is
defined as:

Teff,i(E) = Tr
[
Σin
i AD

]
− Tr [ΓiGn]

f1(E)− f2(E)
where i = 1,2, s with s representing the scattering term, and where f1 and f2 are the source
and drain Fermi-Dirac’s functions respectively. In this way equation (5.83) becomes:

Ii = (−q)
h

∫ +∞

−∞
Teff,i(E) [f1(E)− f2(E)] dE (5.84)
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assuming thus the form of a Landuaer’s formula for the current in terminal i. For the sign
convention please consider the discussion already reported in sections 5.14.3 and 5.15.

A remark on incoherent scattering enhanced current

One may think of simply writing the drain to source current as the sum of the coherent
term plus the scattering term calculated by means of eq. (5.83) or (5.84) with i = s.
Nevertheless in general it is not true because the electrons reinjected within the channel
from the scatterer can be also reflected toward the source, and it is not said they are
all transmitted toward the drain. Nevertheless if the applied bias is enough high, such
that the band diagram of electrons is bent toward the drain (higher potential at source
than at drain), and if the scattering processes are dissipative, e.g. phonon interactions
(no absorption of photons), i.e. the electrons loose energy from source to drain due to
scattering and they do not gain energy, then the amount of electron reflected back toward
the source contact is very small, and one may neglect such a contribution assuming that
all the scattered electrons go toward the drain. In such a case the current can be written
as (factor 2 for spin degeneracy):

IDS ∼
(2q)
h

∫ +∞

−∞
T1,2(E) [f1(E)− f2(E)] dE + (2q)

h

∫ +∞

−∞
Teff,S(E) [f1(E)− f2(E)] dE

where the first term is the ballistic contribution (the Landauer’s one) from source (contact
1) to drain (contact 2) and where T1,2(E) is the source-to-drain transmission function
evaluated neglecting incoherent scattering; while Teff,S(E) = Tr[Σins AD]−Tr[ΓsGn]

f1(E)−f2(E) is the
effective transmission function of the scattering fictitious contact, representing the incoming
electrons from the fictitious scattering probe. This expression highlight very well that
incoherent dissipative scattering, i.e. scattering processes that diminish the scattered
electron energies, can enhance the final drain-to-source current. This phenomenon is very
useful in explaining e.g. the valley of current that follows the current peak in resonant
tunneling diodes. In such devices indeed the coherent current predicts a much lower valley
after the resonance conduction peak. Instead when incoherent scattering is considered
then a more accurate result is obtained, and in particular the current is enhanced due to
incoherent scattering processes. The intuitive reason of that is the one mentioned above:
the scattering makes electron loosing their energy and thus enhancing the probability of
transmission, since they have no enough energy to “come back” toward the higher energy
source contact. This topic is very intuitively and clearly introduced in [89], while a great
detail treatment is present in [39] (chapter about resonant tunneling devices).

A remark on the SCF procedure for current estimation

A final remark, if the general SCF procedure for the current calculation of section 5.17
is considered, it should be modified such that within the SCF loop also the scattering
self-energy is evaluated. Indeed while the contacts self-energy are fixed once the applied
bias and the energy value is fixed, the scattering self-energy can vary, indeed it can be
dependent from the number of electrons within the channel (it affects the scattering rate
or probability) and moreover it changes the average number of electrons at a given energy.
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consequently it changes the density matrix and the electron density, that changes the SCF
potential that changes the scattering terms. In conclusion,the evaluation of scattering
terms must be included in the SCF loop to ensure correct convergence.

5.18.5 Dissipated power
One great advantage of the NEGF approach w.r.t. the transmission one is that with the
NEGF is possible to evaluated the dissipated power within the device. As long as the
transport is coherent there occurs no dissipation in the device. Indeed the electrons starting
at source with one energy value, reach the drain without loosing energy. The same holds
true for phase-breaking processes originating by the interactions among electrons only,
with elastic scattering processes and no dissipation of energy under the form of phonons.
In such cases the dissipation (Joule effect) happens in the contacts but not in the device.
In the contacts indeed inelastic processes are required to maintain the contacts in local
equilibrium, as already explained. In small conductors an important fraction of the total
dissipated power occurs in the contacts rather than in the conductor itself. In that case
by knowing the resistance RC of the contact the dissipated power is RCI2, where I is the
current. There is concrete evidence that this is true, see for example [89] and references
herein. This fact moreover allows to pump far more current through small conductors
than what would enough to destroy them [39], [89].
In the moment in which incoherent scattering is instead considered, energy is dissipated
and on average the electrons at drain side have less energy than the ones at source side.
With this mind, and recalling the definition of spectral current ĩi(E) at terminal i, it is
possible to define the dissipated power within the device as follows [89]:

Pd = IE,source − IE,drain , where : IE,i = 1
h

∫ +∞

−∞
E ĩi(E)dE (5.85)

where the term IE,i is called “energy current”. In order to interpret this definition notice
that IE,i would correspond to an electric current if the term E inside the integral were
not present and if it were multiplied by the electron charge. Instead without multiplying
the integral of the spectral current by the electron charge one gets only the net flow of
electrons at terminal i, with i = source, drain. moreover by multiplying the spectral
current inside the integral by E one gets a flow of electrons at terminal i (integral of the
spectral current) weighted on energy E. Thus it corresponds to a flow of energy, i.e. to a
power, that by definition is the energy in the unit time. In other words since the power
is exactly the energy per unit time, and since the term: 1

h

∫ +∞
−∞ ĩi(E)dE is the total net

flux of electrons (in the unit time), that flows through the terminal i, then by multiplying
it by the energy E, the total (incoming) power in the terminal i, i = source, drain, is
recovered. Moreover the dissipated power corresponds to the outgoing flux of energy, with
minus sign. Indeed the fluxes by definition are defined positive if they are incoming into
the device, thus an outgoing flux has negative sign, but with the user sign convention, the
dissipated power should be positive in a user, like the device is. Therefore the dissipated
power corresponds to the net outgoing power, with a minus sign in front. Since the above
mentioned net fluxes are by definition incoming net fluxes, then the net outgoing power
(from the device) is given simply by their difference (with no minus sign). Indeed the
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electrons at source have, on average, higher energy w.r.t. the ones at drain, thus the
difference: IE,source − IE,drain (that is positive) provides the incoming power into the
channel from the scattering fictitious contact. This because of the conservation of energy
(or power), that implies that the energy lost from source (higher energy) to drain (lower
energy) must flow in the scattering contact (is the amount of energy dissipated in the
incoherent scattering processes). The incoming power from the scattering probe to the
device, that as mentioned above corresponds to IE,source − IE,drain , is equal to minus the
outgoing power from the channel to the scattering probe (again invoking energy/power
conservation). And thus it is already the desired dissipated power. Notice that since the
integral is linear the above definition can be rewritten like:

Pd = IE,source − IE,drain = 1
h

∫ +∞

−∞
E
[̃
isource(E)− ĩdrain(E)

]
dE

With these considerations in mind and with the previous formula for the dissipated power,
the two cases of coherent and incoherent transport are now analyzed to highlight the
physical meaning and the origin of the power dissipation. In the case of coherent scattering
the electrons at source and at drain have the same energy, since no dissipation occurs. Thus
the two spectral current will have the same distribution in energy, and since they will be
the same the difference ĩsource(E)− ĩdrain(E) will be identically null, for each energy value.
This does not mean that there is no power dissipated, but simply that it is dissipated
within the contacts, and only the dissipated power within the device is null. Instead in the
case in which incoherent processes are present, the spectral currents at drain will have the
same (or similar) shape to the one at source, but shifted toward lower energies, since on
average electrons at drain will have less energy that at drain. In such a case the difference
ĩsource(E) − ĩdrain(E) will not be zero at all the energies, but in general it will different
from zero. Then considering that such a difference is multiplied by the energy E and that
at source the spectral current will be shifted toward higher energies, such a different is
generally positive, leading to a positive dissipated power (as expected by the user sign
convention). In conclusion, what makes the power to be dissipated within the device is a
shift in the energy distribution of the current (i.e. in the spectral currents) between the
two contacts, that finds its origin in the dissipative scattering processes. This happens
even if matter conservation implies the integral over energy of the scattering probe spectral
current ĩscattering(E) component to be null (see the discussion of the previous sections).

A qualitative example is reported in figure 5.3.
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Figure 5.3: Qualitative example of spectral currents at source (blue line) and at drain (or-
ange/red line) for a device. The incoherent scattering phenomena lead to an energy
shift between the two, and to a non-null dissipated power inside the device. The
purple line represents the difference between the two, multiplied by the energy E,
that is: E · (̃isource(E) − ĩdrain(E)). Always in purple it is highlighted the area
below such a curve, that corresponds to its integral, i.e. to the dissipated power.
Notice that there are a negative contribution and a positive contribution, but the
positive one (right-side “hill”) is greater, leading to a total positive dissipated power,
i.e. to a net dissipated power (accordingly to the discussed sign convention).
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Chapter 6

Transport regimes in
nano-devices

The NEGF approach introduced in the previous chapter is a rigorous and powerful frame-
work for the transport calculation in all kinds of nano-devices and not only in molecular
devices. It holds in general, provided that the channel electronic structure, the SCF
potential, and the various interactions (i.e. electron-electron, and if necessary incoherent
ones such as electron-phonon and electron-photon interactions) are accurately described.
The purpose of this chapter is to highlight the methods conventionally used for such
calculations in different transport regimes. In general the couple DFT + NEGF is very
common in literature, even if other solutions are possible and often used, such as the EHT
+ NEGF approach. Nevertheless in some cases these standard methods are not suitable to
obtain accurate results. This happens especially when Coulomb blockade occurs. This phe-
nomenon is introduced in section 6.1. It allows to discriminate between two modeling and
transport regimes that require substantially different approaches. In order to appreciate
these differences the various transport mechanisms that are possible in a molecular device
are briefly summarized in section 6.2. While the possible and common simulation methods
for the different transport regimes are briefly addressed in section 6.3, that is aimed in warn-
ing the user in selecting and judging the most suitable modeling technique for a specific case.

6.1 Coulomb blockade
In this section the so called “Coulomb blockade” or “single-electron charging” regime of
transport is addressed. In this transport regime the electrical current can be strongly
affected by the charging effect that was introduced in chapter 4 (section 4.1.5) and in
chapter 5 (e.g. section 5.17). In particular, energy levels within the conducting channel
come in pairs, indeed due to spin degeneracy there is one up-spin and one down-spin
electron state with same energy eigenvalue. In order to highlight the effects of the electron
charging phenomenon let’s consider a channel with a single energy level ε (two spin-
degenerate levels), that for example contains only one electron when neutral: N0 = 1
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(being N0 the number of electrons in ε at equilibrium). It is expected that if such a
level, that is broadened for example in a Lorentzian-like DOS, is entirely included within
the bias window, a current flows, accordingly to the transport model for a single-level
quantum dot presented in chapter 4, section 4.1. Nevertheless in some cases, under certain
conditions that will be clarified in while, the up-spin and the down-spin density of states
splits into two distinct energy levels, separated by the single electron charging energy (see
e.g. section 4.1.5). In other words the presence of a single electron causes the removal of
the spin degeneracy, and the two electron states have different energies. As mentioned,
the two levels are separated by an amount U0 = q2/CE , where CE is the total electrostatic
capacitance of the system, and U0 is the potential energy that the channel gains because of
the presence of the single electron (i.e. N0 = 1). This indeed corresponds to the charging
potential energy associated to a transfer of a single-electron (see section 4.1.5). In this
latter case if U0 is large, it can happen that the two levels are for example one above and
one below the bias window, thus leading to a very small current flowing through the device
(because in such a case only the Lorentzian “tails” fall in the bias window). In this case it
is said that the device is in the “Coulomb blockade” regime of transport. The Coulomb
blockade has been experimentally observed for systems in which the charging energy U0
exceeds the broadening γ of the energy level [89].

In the simple SCF picture (see section 3.2) there is no simple explanation for this
phenomenon. Indeed it is expected the two levels to be degenerate as long as they “feel”
the same SCF potential. Nevertheless this picture, that is the charging model based on
the simple Poisson’s equation, is a good-zero-order approximation. This is the Hartree’s
approximation for the SCF potential, as discussed in section 3.2, in which nevertheless
the correlation is neglected. As already mentioned there, the point is that an electron
does not “feel” any potential due to itself. Indeed assuming that the up-spin level is filled
before, then the potential barrier to be overcome to put another electron there is equal
to U0, that indeed represent the energy to be spent in order to place another electron in
the same level where an electron is already present (the work). In other words, the empty
down-spin level, because of the presence of one electron in the up-spin level, is shifted up
of U0. Nevertheless the up-spin level is not shifted up of U0 because the electron does not
“feel” any self-interaction. The same happens if the down-spin level is occupied before. In
that case the up-spin level is shifted up of U0 while the down-spin one does not. In both
cases if U0 is enough large, the two levels can fall outside the bias window, thus blocking
the current.

In general the standard approach for describing the electric current in such a Coulomb
blockade regime is based on a completely different theory from the one described so far
(the NEGF but also the simple model of section 4.1). It is based on the so called “Master
Equation” or “Orthodox Theory” [89]. Nevertheless there are attempts in literature of
exploiting the NEGF approach (along with the DFT) to model the transport also in this
regime, they are addressed in section 6.3.

Notice that in general there is no net distinction between the Coulomb blockade regime
and the coherent regime of transport (the one widely discussed so far). Indeed, a gradual
transition between the two and thus all the intermediate cases are in principle possible
(between strong Coulomb blockade regime and fully coherent regime - in which no Coulomb
blockade happen, i.e. U0 is very small). In particular, the following three regimes of
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transport occur [89]:

• SCF regime: if U0 ≈ kBT and/or U0 ≈ γ, the SCF approach (section 3.2) can be
used. Notice that the SCF method converges correctly if U0 is small, otherwise it
can have convergence problems.

• Coulomb blockade regime: if U0 � kBT and U0 � γ, the SCF approach is typically
not adequate. In that case high accuracy in estimating the electron-electron cor-
relation and in general the electron-electron interactions must be employed to get
quantitatively correct results. In general the so called Master Equation is convention-
ally used for this case. Nevertheless it has the big drawback of neglecting completely
the broadening (see section 6.3 and 6.3.2).

• Intermediate regime: if U0 is comparable to the larger between kBT and γ (i.e.
thermal or contact broadening), there is no simple approach in general. Indeed
the SCF method fails in representing the strong charging effect, while the Master
equation fails in representing the broadening. Notice that, as mentioned previously,
in general it is possible to have all intermediate cases between the two above cases,
thus this situation is not a minor importance case.

A last remark on the nature of U0 before proceeding. One may ask what determines U0.
The answer may be the extent of the electron wave-function. If one electron is smeared
over the surface of a sphere of radius R then the potential of that sphere will be: q

4πε0R
, so

that the energy needed to put another electron on the sphere will be q2

4πε0R
∼ U0. Well-

delocalized wave-functions (large R) have a very small U0, otherwise if R is small (i.e. the
wave-function is highly localized) U0 can be large. Consequently when there are delocalized
wave-functions the difference between the two energy levels (up-spin and down-spin) is
smaller, since U0 is smaller. Thus the more the conductive molecular channel orbitals are
delocalized, the better is the SCF approximation. This corresponds to the strong coupling
between molecule and contacts, in which there is an high level of hybridization of the
wave-function, i.e. the contact and the channel wave-functions mixed together. Instead the
charging energy U0 can be large if there is weak coupling between the molecular channel
and the contacts, i.e. if the states are localized and there is no (or small) hybridization
of the electron orbitals. Moreover notice that since U0 is inversely proportional to the
total electrostatic capacitance CE , the charging energy U0 can be large also if CE is
very small. This is the case of small mescoscopic conductors. In some cases electronic
devices/transistors are specifically designed to operate in the Coulomb blockade regime,
and in that case they are called “Single Electron Transistors” (or SETs).

I-V characteristic and conductance

Notice that due to Coulomb blockade the current-voltage characteristics usually presents
typical step-like shape. This because when the bias is increased (in modulus) from zero,
for example a level that is empty in equilibrium enters the bias window originating an
abrupt increment of the current, that from almost zero passes to a given finite value. After
that, even if the bias is further increased, the current does not increase anymore due to
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Coulomb blockade. Only when the bias is increased of at least U0 (w.r.t. to the first
conduction peak) a new electron can populate the energy level (with an opposite spin
w.r.t. to the previous one). And thus only when the bias overcome U0 a new step arise in
the current characteristics. Obviously the conductance will present peaks of conduction
in correspondence of the bias values multiple of the charging potential (the differential
conductance is the derivative of the current w.r.t. the voltage). These shapes of the
current-voltage characteristics and of the conductance-voltage characteristics are typical of
systems affected by Coulomb blockade.

6.2 Transport mechanisms
The purpose of this section is to briefly illustrate the possible physical mechanisms behind
the transport in molecular devices, with a particular reference to the review paper [10].
This is useful in understanding when and if the NEGF approach is more or less suitable for
modeling transport in such devices. Notice that usually the NEGF approach provides much
better and more accurate results than the simple fitting and idealized/simplified formulae
presented below. Nevertheless to gain a physical intuition/insight of what happens in the
molecular system, such formulae are sometimes used to fit the more precise NEGF results
in order to identify the main transport mechanism in a specific system. This could be
useful to derive design parameters and figure of merits, and thus to engineering the system
in order to optimize some specific transport features, that are better highlighted with a
simple intuitive model rather than with the more complete (and complex) NEGF.

In particular, the electron transport mechanisms in molecular junctions depend on
the molecular size and structure, the temperature and the applied voltage. Moreover if
not a single molecule but a self-assembled monolayer (SAM) connected to two metallic
electrodes is considered, the intermolecular interactions like van der Waals interactions or
polarization effects may be relevant. Concerning simulations, such effects can be considered
within a DFT framework (SCF / mean field) by means of a supermolecular approach as
described in section 3.7. However, in general, the following transport regimes are possible
in molecular junctions:

a. Coherent non-resonant tunneling: for short molecules strongly coupled to contacts,
without molecular energy levels in the bias window, the transport mechanism is direct
non-resonant tunneling from the source to the drain contact. It can be idealized with
a rectangular shaped barrier of finite height and small width (of the order of the
molecule length), such that an exponential decay of the wave-function allows to get
non-null probability of transmission through it (see section 2.3.7). This simplified
model is referred in literature as Simmons’ model. In this case the electron is
coherently transmitted, but, since there is no energy match between the electron
energy and an eigenstate within the molecule, an exponential decay with space occurs.
In the Landauer’s approximation the conductance can be written as [10]:

G = I

V
= 2q2

h
TSTDTmol , G = GcontTmol , Tmol = e−βd
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Where TS and TD are the transmission coefficients relative to source-molecule and
molecule-drain barriers, Gcont = 2q2

h TSTD, and the transmission through the molecule
is fitted with an exponential decay. In such a regime of transport, sometimes, the
experimental data or the more accurate simulation results (e.g. obtained with NEGF)
are fitted with an exponential, and an equivalent β decay constant (measurement
unit m−1) is derived. This procedure allows to a straightforward interpretation of the
transport through the molecule that, as mentioned, is seen as a rectangular barrier.
This transport regime is naturally accurately modeled by means of (coherent) NEGF
approach. Usually this regime is relevant at low bias V (qV < E0, being E0 the
barrier height). Notice that this mechanism is independent on temperature and it is
also independent on temperature.

b. Coherent resonant tunneling: in this case there is matching between the incoming
electron energy and a molecular eigenstate, thus there is high transmission probability
and small reflection probability. As already commented in chapter 5, a peak in
the transmission spectrum occurs (see also transparency of a potential barrier -
section 2.3.7). Such a transport regime is of course included within the NEGF
modeling framework for coherent transport. Notice that this mechanism is essentially
independent on temperature.

c. Fowler–Nordheim tunneling: if the bias is large (say qV > E0) then the simple model
for coherent non-resonant tunneling through the barrier (point (a.) above) is no more
valid since the barrier distorts, and it becomes triangular. In such a case it is possible
to have an enhancement of the tunneling transmission. Indeed for zero-bias it may
happen that the barrier width is to large to allow significant tunneling, while with
an enough high bias it tends to become triangular and thus thinner. Consequently
the exponential decay of the wave-function can be no more enough to stop electron
and a great improvement of the tunneling probability occurs. This is referred as
Fowler–Nordheim tunneling. It is a well known process in electronics since there are
many commercial memory devices based on this effect. In molecular devices such
an effect leads to an enhancement of the tunneling via orbital-mediated tunneling.
This transport regime is of course included within the NEGF modeling framework
for coherent transport. Notice that this mechanism is essentially independent on
temperature. Also in this case fitting parameters are sometimes extracted from
experimental data to highlight the voltage enhancement of tunneling, analogously to
what mentioned in point (a.).

These three transport mechanisms are coherent tunneling ones, independent on temperature.
The NEGF is far more accurate than all these three, nevertheless it was mentioned the
reason for introducing them, as conceptual tools to understand how to act in order to
engineer the desired transport features. A trivial example is that if it appears that the
transport mechanism is somehow essentially analogous to a Fowler–Nordheim tunneling,
and for a given application it would be better to have more current, an increase of the
voltage will trivially likely provide such an increased current, with an exponential relation.
In [10] are summarized fitting formula for these transport mechanisms.
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Higher order interactions (i.e. many body interactions), like the electron-electron, electron-
phonon and electron-photon interactions, can affect the transport through molecules.
In such cases other transport mechanisms might be relevant in molecular devices. In
particular, as discussed in section 4.4, in the strong coupling regime, the electronic states of
the electrodes and the molecular orbitals are strongly hybridized, molecular charging effect
(Coulomb blockade - see section 6.1) does not take place and elastic coherent tunneling
dominates the transport. In this case it is expected to have a mix of transport mechanisms
(a.), (b.), (c.). However, if a weak coupling occurs between the molecule and contacts,
Coulomb blockade and charging effects may be relevant. In such a case the coherence
between the motion of the electron from the left electrode to the molecule and that from
the molecule to the right electrode can be completely lost. Indeed as mentioned in section
4.4, the longer is the time that an electron spends within the molecule, the higher is the
probability that it interacts with molecular vibrations/phonons, etc... [112]. Indeed if the
time an electron stays in the molecule is of the order (or even longer) than the molecular
vibration period, the atomic positions cannot be assumed to be static, but instead they
act as dynamic scatterers, thus breaking the phase coherence of electrons, leading to both
interference among electrons and to inelastic/dissipative interactions (e.g. phonons). In
such cases the dominant transport mechanism is the incoherent tunneling or alternatively
the electron hopping mechanism (these transport mechanism will be introduced in a
while - see below). Moreover, all the possible intermediate situations in between a full
coherent picture (see above (a.), (b.), (c.) cases) and a full incoherent picture (see below)
are possible. In the intermediate coupling regime a variety of novel phenomena related
to electron–electron correlation effects (such as the Kondo effect and co-tunneling) are
observed [10], [112], [89]. Coherent tunneling is effective for very short molecules, let’s
say of the order of 1 nm. In general depending on the nature of the molecule, on the
nature of the contact-molecule coupling and on the applied bias range different transport
behaviors are possible for different molecule lengths. For example in [113], it is found
the limit molecular length for purely coherent transport in p-phenylenevinylene oligomers
(conjugated molecules) is of the order of 2.5 nm; while in [114] the same is found to be
around 4 nm for other conjugated molecules. Thus a wide variability is possible. The main
incoherent transport mechanisms through molecules are:

d. Incoherent or Sequential tunneling: in this case the transport through a molecule
is seen in terms of tunneling through multiple potential barriers/wells. This model
applies quite well to conducting polymers [10]. The main different w.r.t. coherent
tunneling is that the residence time of the electron in a potential well is long enough
to affect the phase of the electron. Thus the electrons do not tunnel with same phase
(or wavenumber) but each tunneling process, through each barrier, is independent
from the previous one (and involves different states, different wave-functions). The
whole electron transport process can be thus described as a series of discrete coherent
tunneling steps through barriers. It is not temperature-dependent, like the other
tunneling processes. This transport mechanism is again accurately modeled with
the NEGF approach, even if incoherent scattering mechanism should be included
to get accurate results. Indeed a strong electron-electron interaction or alternative
dissipative processes can be extremely relevant to estimate the transition probability
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from one energy level to another while the electron is in transit within the molecule.
And this is exactly what I called (with the notation of [39]) “vertical flow” of electrons
within the channel, i.e. transitions/flow between different energy values (generally
from an higher to a lower energetic channel/level but also vice versa). More details
are also provided in the next section (see weak coupling / Coulomb blockade case).

e. Hopping: in contrast to tunneling mechanisms (from (a.) to (d.)), hopping conduction
involves electron motion over the barrier. In the sense that it corresponds to electron
“jumps” from one molecular orbital to another. These jumps can occur if the electron
gains energy (phonon/photon absorption) such that it temporarily overcome the
barrier, or for example if the molecule is dynamically bent/twisted such that (in
real space) two orbitals get closer allowing for a shorter barrier length and thus
higher tunneling probability. In both the above mentioned cases it is noticeable that
hopping is a thermally activated process, since high thermal energy is required to
excite molecular vibrations such that an insurmountable barrier becomes instead
easily crossed by electrons. Generally hopping follows the exponential empirical
and classical Arrhenius relation. An explicit expression is provided for example in
[10]: I ∝ e

− Ea
kBT , where Ea is the “activation energy”, and the greater it is, the

greater is the temperature required to activate that hopping phenomenon. In general
it represents the barrier of potential energy that an electron should overcome to
transit from a molecular orbital to another. For example in [113], molecular wires
made by connecting together π-conjugated molecules are considered. In such a
case it is demonstrated that the activation energy Ea fitting the experimental data,
corresponds to the barrier for rotation of the π-conjugated aromatic rings, which
transiently couples the conjugated aromatic sub-units (the rings). Thus torsional
vibrations are responsible of the hopping, but only if they are enough wide. In
particular it is verified that such collective torsional vibrations are associated to an
energy of the order of Ea, that is thus the thermal energy necessary to stimulate such
vibrations and activate the hopping among adjacent orbitals (that are the hopping
sites). In general the activation energy is associated with the movements of nuclei.
As mentioned above hopping electron transfer can only occur after a rearrangement
of nuclei, that in the above example corresponds to a rotation of rings in a molecule
into a coplanar conformation. Hopping involves, like incoherent tunneling, a series of
transfers between different sites, but shows an inverse distance dependence. Hopping
is probable at low bias high temperature. The NEGF approach can model accurately
this transport mechanism but only if incoherent phenomena are considered. In
particular molecular vibrations and electron-phonon interactions must be considered.

f. Thermionic emission: the last transport mechanism in molecular device, discussed
here, is the thermoionic emission. It is present also in classical electronic devices. In
this case the electrons overcome the contact–molecule barrier by thermal agitation
and the resulting current has a strong dependence on temperature. The barrier
height is influenced by the local electric field which results in a nonlinear current
dependence on applied voltage. Thermionic emission can be described using the
classical Schottky–Richardson relation, that is conventionally introduced in electronic
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devices courses. An expression referred to molecular devices is present in [10].
Thermoionic is relevant at high temperature and low contact-molecule barrier height.
The NEGF approach intrinsically consider also this transport mechanism, especially
when incoherent (phonons) scattering processes are accounted for. Notice that
indeed electrons that are thermoionically emitted from source are those whose energy
overcomes the barrier height. The barrier height is precisely calculated in NEGF
thanks to the self-consistent loop by means of which the electrostatics of the system is
taken into account, while the number of electrons with suitable energy are estimated
by means of the Fermi-Dirac’s distributions of contacts. Molecular phonons can
enhance this transport mechanism.

In conclusion, even if conceptually very different, all the mentioned transport mechanisms
(from (a.) to (f.)) are accurately modeled and considered by means of the NEGF approach.
Obviously, if a relevant transport mechanism is non-coherent, the NEGF modeling should
include the incoherent scattering mechanisms, and this is possible as described in section
5.18. The NEGF formalism results thus to be a completely general and accurate model for
transport though molecules. As mentioned, the discussion reported in this section can be
important to gain an intuition about what is happening in a given molecular system, and
thus to correctly set up the desired simulations, such as, for example, incoherent features
or corrections.

A critical issue that needs a more in-depth and careful discussion is the case of strong
electron-electron interaction, that corresponds to large charging effect and Coulomb block-
ade regime (i.e. weak coupling with contacts). This is further addressed in the next section.

6.3 Modeling approaches: strong vs weak coupling
case and corrections

The purpose of this section is to provide a deeper insight in the NEGF modeling critical
issues relative to the electron-electron interactions. The topic is addressed by steps, firstly
summarizing the standard approach in transport modeling through systems in which it is
possible to neglect electron-electron interactions (section 6.3.1) and then considering the
possible corrections to such models, or directly alternative models to transport, for system
in which the electron-electron interactions are important and cannot be neglected (section
6.3.2).

6.3.1 Strong coupling case
It was already discussed (see section 4.4 and the previous sections in this chapter) that in
the case of strong coupling between the molecular channel and the contacts the charging
energy is small due to delocalization of molecular orbitals (hybridization). In such a case
an SCF mean field approach (see section 3.2) is accurate, Coulomb blockade does not
characterize the transport and no particular corrections should be performed. In this
case (weak electron-electron interaction or strong coupling with contacts) the standard
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mean field DFT method can be used for calculating the molecular electronic structure
while the standard (single-particle) NEGF, that was introduced in chapter 5, can be used
to calculate the transport features and the full I-V characteristics. In literature it is
very widely used the aforementioned couple DFT + NEGF, and this is also the approach
considered e.g. in [89]. Another possible approach is to use a semi-empirical method
instead of the DFT for the molecular electronic structure calculations. The most used
one is the EHT method, and in this case the EHT + NEGF pair is used (usually with
SCF self-consistent calculation in EHT). The differences between the two approaches are
essentially only due to the differences between the EHT and DFT methods, described in
chapter 3. Both the approaches are very accurate and successful as long as the electron
charging energy and thus the electron-electron interactions are weak.

6.3.2 Weak coupling case and the Single Electron Transistor
When the electron-electron interaction is strong and thus the electron charging energy
is large, the fact that the electron correlation is ignored or not precisely modeled within
an SCF framework can lead to confusion and inaccuracies [112]. Indeed the electron
correlation is the key to suitably model the interactions among electrons and thus the
charging effect (and consequently the Coulomb blockade). In fact it is because of the
interactions between electrons that important energy shifts upon charging can happen
[112], giving rise to the aforementioned phenomena. In general there is no unique way to
overcome the problem. The various solutions can be classified in three wide groups:

a. “Modified” DFT/Electronic structure calculations: the first approach can be to modify
somehow the SCF mean field approach to consider also accurately the electron-electron
interactions. In this case a “modified” DFT is employed along with a “non-modified”
single-particle NEGF. Therefore the complexity and the corrections are included
within the molecular electronic structure calculation method, i.e. the DFT, while
the NEGF portion of the self-consistent loop (section 5.17) is unchanged w.r.t. the
single-particle picture presented in chapter 5. This means that the effort is in
finding an SCF potential that suitably models also the electron-electron interactions,
while a single-particle picture is used for transport, considering a single-electron
moving in an average potential representing accurately such interactions. It was
mentioned in chapter 3 (section 3.4) that there exist electron correlation methods
for the calculations of accurate electron correlation/interaction. Such approaches are
not so used in literature, or better: some approaches (such as perturbation theories)
leads actually to the same of the methods illustrated below in point (b.), while others
are not usable as described above because of the excessive computational cost or
analytical complexity.

b. “Modified” NEGF: this approach moves the complexity within the NEGF/transport
part, i.e. an unaltered standard (SCF mean field) DFT method (or EHT) is used for
calculating the electronic structure while an “improved” NEGF is used for considering
also the electron-electron interactions. This is not in principle a novel approach, since
it simply correspond in the approach described throughout this work, simply with an
additional self-energy aimed in modeling electron-electron interactions (accordingly to
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what mentioned in section 5.18), indeed the self-energies (as said in section 5.18) are
in general used to represent any kind of interaction, comprised the electron-electron
one.

c. Completely novel approaches: the last approach can be the one of considering
completely new methods aimed in accurately describing such systems.

These three groups of solutions are further discussed in the following subsections. Before
going on a last remark on nomenclature. A transistor operating in the Coulomb blockade
regime of transport is often referred as Single Electron Transistor (SET).

a. “Modified” DFT/Electronic structure calculations

In this approach, the complexity is added to the DFT such that the electron-electron
strong interaction is considered within the SCF approach, i.e. by means of a potential that
is solution of a Poisson’s like equation. The critical point in using a mean field is indeed
the electron correlation: it is difficult to find an accurate exchange-correlation potential (or
exchange-correlation functional of the electron density / density matrix) that accurately
provides and models the electron-electron interaction (see section 3.2), especially in the
moment in which such an interaction is strong (as happens with weakly coupled molecular
channels to contact and in the Coulomb blockade regime). If it were possible to find an
enough accurate functional the problem will be easily overcome since it would be enough to
use such a functional and then set up all the rest of the calculations as presented previously
in this work (with single-particle NEGF, etc...).
As highlighted in [128], the problem with conventional exchange-correlation approximations
(e.g. LDA, GGA, ...) is that their functionals are essentially “too smooth”, and they are
not able to accurately account for first derivative discontinuities that might occur in the
total system energy eigenvalues. In particular, one may think the charging effect to be an
abrupt variation of the charging potential. Indeed the charging energy U0 arises abruptly
as soon as the number of electrons within a given energy value changes of one unity. In
other words, consider an energy level weakly coupled with contacts and for this reason very
localized and merely broadened, and consider an initial applied bias such that such a level
is slightly outside the bias window. Assume also that this level is initially empty. As soon
as the applied bias is increased a bit, the energy level enters abruptly in the bias window,
since it is merely broadened, and starts conducting. For example in such conditions a
single electron populate the level when it is in the bias window. At this point the charging
energy is increased of U0, that by hypothesis is large (see section 6.1). This means that, to
put another electron in the same level, the barrier U0 should be overcome, or analogously
that the mean field that is “felt” by a new incoming electron should be increased abruptly
of the order of U0 at least in the region in which there is such localized orbital. This is
possible if the exchange-correlation functional admits a discontinuous first derivative, such
that it is possible to the potential energy to have abrupt variations. Nevertheless this is
not the case of the standard LDA and GGA functionals, that instead have continuous
first derivative [128], [129]. This fact prevent the system total energy and the electron
density (or analogously the electron charge) within the channel to have abrupt variations,
as it should be in the case of strong electron-electron interaction or strong charging effect.
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Moreover, the continuity of first derivative of the total energy functionals in standard
approximations, is a consequence of the so called Self-Interaction Error (SIE), that is the
interaction of an electron with the exchange-correlation potential generated by its own
charge [128]. This spurious interaction is at the origin of the DFT failures in case of strong
electron-electron interactions [129]. Indeed as mentioned in section 6.1, an electron does
not “feel” any potential due to itself.
The simplest conceptual solution is the subtraction of such self-interaction contribution from
the functional. In general there are more ways of practically doing it, and these corrections
are called Self-Interaction Corrections (SIC) or Atomic Self-Interaction Correction (ASIC).
In the commercial tool Quantum-Wise ATK it is possible to use a SIC for DFT calculations
that is called “DFT-1/2” [125], [126], [130]; in which only one half of electron self-interaction
is subtracted, for details [130]. Further details on the usage are provided within the user’s
manual [125], [126].
Another possible correction in Quantum-Wise ATK for considering the strong electron-
electron interaction is the so called “Hubbard correction” [125], [126], [131], [132]. This is a
semi-empirical correction of the exchange-correlation functional in LDA, GGA functionals.
An additive term is added to such functionals, that is null if a molecular orbital is full or
empty, but has a non-null value if an orbital is half-filled. This method improves on the
deficiencies of the local exchange-correlation functionals discussed above. Further details
on the usage are provided within the user’s manual [125], [126].
A last approach of refining the electron-electron interaction and exchange-correlation
potential within the DFT framework is by means of hybrid functionals (section 3.5), such
as the famous B3LYP. Indeed such functionals allow to more accurately estimate the
exchange-correlation. In literature there are several examples in which this approach is
used also for simulating SETs. In Quantum-Wise ATK there is no wide choice for hybrid
functionals, nevertheless the user’s manual states that the functional TB09 (that is not
hybrid but a meta-GGA functional) has performances that are often comparable to hybrid
functionals ones [125], [126].

b. “Modified” NEGF

In this approach the complexity is moved inside the NEGF. In particular in section 5.18 it
was mentioned that there several orders of approximation to model more o less accurately
the many-body interactions such as the electron-electron, electron-phonon and electron-
photon ones. In [89] the lowest order approximation is considered, i.e. the so called Born
approximation. More refined approximations are possible in literature. One may think
to these approximations as higher order terms in a Taylor expansion. In this optics it is
clear that the higher order approximations lead to more accurate models. In particular in
this specific case higher order approximations means approximations in which two-particle,
or even three-particle or n-particle interactions are considered. The ways of “embedding”
such more refined approximations within the NEGF framework are essentially two: either
by means of additional self-energy contributions aimed in modeling the specific interaction
(i.e. the electron-electron one), or by means of a two-particle treatment (or in general
n-particle treatment).
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The first is for example the approach of [133]. The authors, starting from a general
many-body Green’s function (second order since two interacting electrons are considered),
recover an expression for a single-particle (i.e. first order) Green’s function of the system
(analogous to the one presented in chapter 5), with an additional self-energy ΣU that
models the two-electron-interaction (two-electron interaction is a second order term - i.e.
two particles). Notice that in this procedure there are approximations as well, indeed,
as already mentioned in section 5.18, in the moment in which the second order Green’s
function is written (i.e. the one of two-interacting particles), it turns out that it is function
of the third order one (three interacting particles), and so on... Thus the “recursion is cut”
at a certain point. As one can intuitively think ΣU is function of the number of electrons
at equilibrium and of the number of electrons outside equilibrium.
The latter approach is for example the one used in [134]. In that case the difference w.r.t.
the previous method is that the two-particles Green’s function is maintained for doing the
calculations. In deriving it the three-interacting-particle should be known, as mentioned
above, but it is not considered (cut - like in a Taylor expansion), and thus approximations
are introduced (the results are accurate for short range Coulomb blockade but for example
not so suited for the Kondo effect).

c. Completely novel approaches

In general it is possible to proceed with completely novel approaches in modeling devices in
which the transport is governed by Coulomb blockade, like in SETs. The standard approach,
historically very used, for SET modeling is indeed the so called “Orthodox Theory” or
“Master Equation” [116], [115]. The NEGF method is at the end a perturbative method,
indeed as mentioned in section 5.18, in the second quantization formal introduction of
NEGF, the Green’s function is a quantum propagator that propagates a stimulus, i.e.
a perturbation, through the system. The Master Equation approach is instead non-
perturbative. The disadvantage of the NEGF is that the analytical and computational
complexity increases fast if the one-particle picture is abandoned. Instead the Master
Equation approach has he advantage of being relatively simple and general, even if, in the
words of [116], it is a “quick and dirty” approach. In order to understand it notice that
in general a Master Equation is an equation involving probability, or better probability
rates or scattering rates. Thus the approach of the Master Equation is to use quantum
mechanical laws to determine the transition probability, or scattering rates, among all the
possible states of the multi-electron system. The Master Equation is the equation that
collect all these transition probabilities, and that is thus able to predict the scattering rates
among the different states. For this reason it is “quick”; because it does not requires many
additional concepts to the ones of standard quantum mechanics. Moreover it is “dirty”
compared with the extremely elegant Keldysh theory of the NEGF [116]. Nevertheless the
drawbacks of such methods are far beyond the “elegance”. There are mainly two extremely
limiting disadvantages in the using the Master Equation. Firstly, since it involves transition
probabilities among all the possible states, its complexity increases very fast with the
number of electrons composing the multi-electron system. In particular with Ne electrons
the Master Equation requires working with matrices of dimension 2Nex2Ne . Second, there
is no way of representing or introducing the broadening within the Master Equation
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framework. Thus it is of course not suitable for the strong coupling case, but neither for
all intermediate cases in which broadening is present, even if small. The above presented
approaches instead have no limitations in these terms. For this reason in literature the
Master Equation is usually employed for modeling simple SETs with few electron states
and in strong Coulomb blockade and extremely weak coupling with contacts. Because of
these disadvantages recent literature (last two/three years) seems to be oriented toward
the approach (a.) or eventually (b.) for high accuracy.

Another modeling technique, possible for SETs, is the so called Quantum Monte Carlo.
Analogously to its “classical” or “standard” counterpart, it is a statistical method in which
random transitions among states are performed (considering quantum mechanical laws)
and thanks to simulation of a huge number of transitions, accurate transition rates are
found. This method is very effective in considering also a large number of electron states,
and for this reason it is often used for circuit-level simulations of SET-based networks. A
drawback is that, with this method, the physics is “hidden”, and even if the final result
can be accurate, the physical insight of the device is lost.

In literature several references are present about these topics, here I have chosen to
avoid reporting them for conciseness, since I will never use these last two approaches in the
rest of this work. A simplified introduction to Master Equation is moreover present in [89].

A remark on EHT and other approaches

In chapter 3 it was mentioned many times that semi-empirical methods are generally less
accurate than ab initio ones, but the result might also be accurate. The correct general way
of dealing with semi-empirical methods is thus to “validate” them by means of comparisons
with experimental data or with ab initio calculations. Even in this case the approach
is again this one. Indeed with the above mentioned methods and corrections, there is
good confidence that calculations performed e.g. with NEGF or DFT + NEGF with the
corrections of point (a.) are close to reality, even if there is no comparison with experimental
data. Indeed in that cases the theory predicts it, and within a reasonable error range the
results can be assumed reliable (with the limits of the considered approximations). With
semi-empirical methods, and with EHT in particular, there is no a priori reason to assume
that the result is wrong or inaccurate. Nevertheless, there is neither a theory behind that
ensures the correctness (within certain limits). Thus in general one can use semi-empirical
methods or the EHT method, but they should be somehow “validated” as explained
above. In literature there are examples [33] [135] in which SETs, operating in the case of
Coulomb blockade, are simulated with EHT + NEGF method; but in general no theoretical
justification of the reason why the results are matched with experimental data or other
methods is provided. Likely because such explanation does not exist, accordingly to what
highlighted above. Sometimes in order to emulate weak contact coupling, the molecule is
placed a little bit more far away from the contacts, again with no theoretical justification
(also because in this case the geometry of the device is modified). Obviously if the molecule
is taken away from contacts the coupling diminish, like does the orbital delocalization, thus
the desired results can be obtained. In this optics one may think of treating the distance
between molecule and contacts as a sort of additional fitting parameter (notice that there
are already other fitting parameters in EHT and semi-empirical methods) for emulating
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the weak coupling with contacts. From this standpoint, if the final results are “validated”
and enough accurate (for the purposes of the study) then there is no reason in my opinion
of avoiding using such methods, that present the great advantage of being computationally
inexpensive when compared with DFT or other approaches, being however aware of the
above mentioned limits.

A final remark is provided about another approach, somehow similar in the principle
to the one just described. In [136] the authors successfully perform simulation in the case
of strong electron-electron interaction by proceeding as follows. They consider separately
the up-spin and the down-spin states, and in particular they calculate the transmission
spectra for up- and down-spin separately. At the end they sum the two spectra (obtained
considering separated the up-spin and the down-spin), and the final result is somehow
accurate. As the authors state this procedure allows to get good result but it is just a
computational tool, with no theoretical foundation. Indeed they are considering a C60
molecule that has no magnetic properties, thus in general there is no reason to consider
separated spins since electrons can in principle start at source with a given spin state
and reach the drain with another spin state, i.e. spin mixing is possible in principle (the
current is not spin-polarized). Nevertheless they neglect the spin mixing due to spin-orbit
coupling (i.e. an electron can change spin state during propagation). Moreover they make
another unphysical assumption: they neglect non-collinear spin densities (i.e. they assume
that the electron cannot point in any direction but it can be only UP or DOWN belonging
to the same plane). All these facts are non-physical, nevertheless the final result matches
with other experimental and theoretical works. Notice that the transport regime that is
considered is coherent (with separated spins). Since the final result is somehow accurate,
this method can be used for simulations in the weak coupling regime; with the awareness
of what just mentioned, and with some computational advantages. The reason why the
final results is not totally wrong is because by considering separately the UP and the
DOWN spin cases they are implicitly assuming that the electrons with different spins
do not interact and thus they travel in completely separated channels. This corresponds
somehow in emulating an high charging potential such that the presence of an electron in
a state prevent another electron to transit in the same level (Coloumb blockade). This
argument is not at all convincing, nevertheless such unphysical method works fine in some
situations, and, aware of its assumptions, there is no reason to avoid using it.
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Chapter 7

Molecular electronic sensors

Throughout the first part of this work I reviewed in detail the current state-of-the-art
techniques for modeling molecular devices in general, and more specifically molecular
electronic sensors (MES). The aim of this second part is twofold: firstly, to apply such
models to novel (gas) molecular electronic sensors in order to verify their performances and
effectiveness, and then to provide a practical methodology for the simulation and the design
at device level of such MES. The molecular electronic sensors were already introduced
in the introductory chapter in section 1.2, and table 1.2 summarizes their main distinct
features. At the present, and to the best of my knowledge, in literature there are only
few molecular electronic sensor examples (a dozen of papers in total - see bibliography).
This is thus a pioneering field of electronics and sensing science and not much is already
known, at least from the standpoint of practical implementations and MES performances.
Nevertheless the physical phenomena and theory for transport that are behind the working
principle of a MES are well known, and they are exactly the topics covered in the first
part of this work. The purpose of this short chapter is to bridge the “abstract” modeling
introduced in part I with the practice I am going to introduce in this part II of this work.
In section 7.1 I will briefly review the working principle of MES, with the gain and in
terms of the rigorous theoretical models introduced in the part I of this work. Moreover
I will also cite literature examples of MES and briefly comment them. In section 7.2 I
will introduce a possible methodology for proceeding in simulating and designing a MES
gas sensor. In the next chapters of this work I will follow this methodology to set up the
device geometry and verify its performances.
Notice that the SETs, and sometimes also molecular channel SETs, are often used and
demonstrated to be effective charge sensor. Also the elementary single electron charge
can be detected and moreover by exploiting the Coulomb blockade and injecting a spin-
polarized current it is possible to perform spin detection. This application is useful is
quantum computing memory reading operations, since the information is encoded by
means of the electron spin. Nevertheless such applications are outside the purposes of
this work, that instead is focused on molecular sensors, and since at moment in literature
such applications are barely considering molecular channels, but semiconducting (or metal)
quantum dots instead, they are not considered here.
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7.1 Working principle
A molecular electronic gas sensor is a molecular wire or transistor in which the molecular
channel conductivity is modulated such that it is possible to detect a given physical
phenomenon or a specific chemical interaction aimed in identifying the presence, in the
vicinity of the sensor, of a given chemical compound. In the rest of this work I will refer to
gas sensors, nevertheless other sensors are in principle possible. In the following subsections
I will considered them one by one, starting from the gas sensor one. In order to understand
the principle behind a gas sensor, the concepts of physisorption and chemisorption are
needed and for this reason they are preliminary introduced.

7.1.1 Chemical adsorption: physisorption and chemisorption
In surface chemistry the “adsorption” is the process by means the binding of a molecule to
a surface is performed [47], [104]. More generally the adhesion of atomic, ionic or molecular
species to a surface (both in gases and liquids) is referred as adsorption. Notice that it is
spelled different from “absorption”, that has the conventional meaning (e.g. the absorption
of a photon/phonon by an electron), and in macroscopic chemistry is instead referred to
dissolution of a chemical species (the absorbate) by a liquid or solid (the absorbent). In the
case of adsorption one talks about the adsorbate, that is the chemical species, adsorbed on
the surface of the adsorbent. As aforementioned the adsorption is a surface phenomenon,
while absorption involves the whole volume of the material [104]. In general the term
sorption includes both the adsorption and the absorption, while the term desorption is
used to indicate their reverse processes. Thus in the case of chemical adsorption, for
example, a given molecule can be adsorbed on a metal or graphene surface, indicating that
it is somehow bond to it (see below). After that, if an enough energy is provided to such
molecule (i.e. the to the adsorbate), then a desorption chemical process can take place
and make again free the molecule. The adsorption of a molecule to a surface can occur in
two fundamentally different ways: by physisorption or by chemisorption. The first process
is governed by van der Waals interactions, while in the latter a chemical bond (covalent or
ionic) occurs [47], [104].

Physisorption, also called physical adsorption [47], is a process in which the attraction
of a molecule to a surface occurs [104]. This might be due to an electric dipole in the
adsorbate or to a van der Waals attraction. The interaction between the surface and the
adsorbate is weak and typically is non-directional, i.e. little energy difference is expected
between different binding sites and diffusion across the surface can occur and be rapid
[104]. An important feature of physisorption is that no change to the chemical bonding
structure occurs. In general there is also no (or small) overlap between the adsorbate
and the adsorbent molecular orbitals. In a classical view (in the sense of Lewis theory for
chemical bond) no chemical bond is created with physisorption between the adsorbate and
the adsorbent. Since the van der Waals interactions are attractive, as the adsorbate moves
closer to the surface, its electron wave-functions start to overlap with that of the surface
atoms, leading, in turn, to a repulsive interaction (this is one of the so called steric effects
[104]). Therefore in general (in system allowed to relax - e.g. because there is enough
geometrical space) an equilibrium position or distance of the adsorbate from the surface
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is present. Such an equilibrium position is obviously the one that minimizes the total
potential energy of the system.

Chemisorption, contrarily to physisorption, involves the creation of new chemical
bindings between the adsorbate and the surface atoms. Consequently there can be a
significant orbital interaction between the two, leading to high binding energies [104].
This means that a larger amount of energy should be provided to break the chemical
bond and free the adsorbate w.r.t. the one needed in physisorption. The chemical bond
between the adsorbate and adsorbent in chemisorption can be either ionic or covalent [47].
Notice also that chemisorption is a very specific process, i.e. the nature and the intensity
of chemisorption can be greatly different depending on the considered chemical species.
It is interesting to notice that corrosion is for example due to chemisorption. Another
very interesting practical example of chemisorption is the formation of Self-Assembled
Monolayers (SAMs), that are indeed formed by chemisorbing reactive reagents with metal
surfaces. For example thiols (sulfur functional group S-H) adsorbing onto the surface of
gold, allow the formation of strong chemical bonds with the release of H2 (such that at the
end a molecule can be connected by means of a sulfur atom, called the anchoring group)
[104]. This is a widely spread technique at basis of fabrication of several molecular devices
[18], [15]. Notice that the chemisorption is also dependent on the initial kinetic energy of
the adsorbate [104]. The adsorbate needs to be trapped onto the surface by not possessing
enough energy to leave the gas-surface potential well. If it elastically collides with the
surface, then it would return to the bulk gas. If instead it loses enough momentum through
an inelastic collision, then it “sticks” onto the surface, forming a precursor state bonded
to the surface by weak forces, similar to physisorption. Then the particle diffuses on the
surface, indeed the physisorption interaction is not enough to keep it in a given position,
until it finds a deep chemisorption potential well (i.e. a position onto the surface that is
an equilibrium position by minimizing the total potential energy). Then it can react with
the surface or simply desorb after enough energy and time.

The main differences between physisorption and chemisorption are:
• Physisorption is a general phenomenon and occurs in any solid/fluid or solid/gas

system. Chemisorption is characterized by chemical specificity.

• In physisorption the forces at the basis of the interactions are the van der Waals
forces (see section 3.7.2) such as London forces, dipole-dipole attractions, dipole-
induced attraction and eventually hydrogen bonding. In chemisorption the creation
of chemical bonds occur.

• In chemisorption the electronic configuration is changed by the creation of a chem-
ical bond. In physisorption only small perturbation occurs (for example obitals
deformations due to steric repulsion of electron clouds).

• In practice, the categorisation of a particular adsorption as physisorption or chemisorp-
tion depends principally on the binding energy of the adsorbate to the substrate,
with physisorption being far weaker on a per-atom basis than any type of connection
involving a chemical bond. Typical binding energies for physisorption are indeed of
the order of 10÷300meV and non-localized. Chemisorption usually forms bonding
with energy of 1÷10 eV and localized.
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Finally notice that despite the fact that there is an equilibrium position/distance in both
physisorption and chemisorption (for chemisorption this is the bond length), there is no an
abrupt transition from the two phenomena. Indeed it was experimentally demonstrated
that it is possible a gradual transition between the two [137]. Namely the chemisorption
can be obtained from physisorption if the distance between the adsorbate and the surface
is forced to be reduced, with a gradual creation of the chemical bond (that it is not
created abruptly). In general, if a system is allowed to relax, depending on the nature
of the considered chemical species and also on the initial kinetic energy of the adsorbate
(see above), it is possible to have physisorption or chemisorption, and they will occur at
their equilibrium positions. This means that if a system is allowed to relax (there are no
particular geometry constraints), the adsorbate will be find at a distance from the surface
corresponding to the equilibrium distance of the phyisisorption/chemisorption process.
Otherwise if constraints are enforced, all the intermediate cases can occur, leading to
a gradual transition between physisorption and chemisorption and more generally to a
gradual creation of a chemical bond [137]. For example, in [137], the enforced constraint
is exactly the distance between a CO molecule, attached to the tip of an atomic force
microscope, by means of which such a distance is controlled. Then the interaction between
the CO molecule and the adsorbent surface is measured and monitored, proving what
mentioned above. The fact of having a “smooth” transition and creation of a chemical
bond is in accordance with the quantum mechanical treatment of chemical bonds [104],
that indeed justify the creation of chemical bonds by overlap of electron orbitals (due to
electron attraction from both/all the involved positive nuclei). This is in principle slightly
different from the classical Lewis theory of chemical bond, even if it is, in practice, a more
satisfying explanation of it.

Metal-molecule interactions and molecular devices

In [10] is provided a good review of the possible situations characterizing a molecule-
metal interface. In molecule-metal systems (such as molecular wires with metal contacts)
the quality of the interface is an important factor influencing the transport through the
entire system. Accordingly with the previous discussion, the molecule can generally be
physisorbed or chemisorbed onto the metal contact, nevertheless also intermediate cases
are possible. In general the following cases can be identified (with increasing interaction
strength) [10]:

• Physisorption with no charge transfer between the metal and the molecule. This can
be the case of saturated molecule, that are thus non-interacting (like noble gases are).
In this case there is essentially no interaction.

• Physisorption with possible charge transfer between the metal and the molecule. In
this case the molecule is still weakly coupled with the metal surface and an integer
electron charge can be transferred. This of course corresponds to high charging energy
case.

• Physisorption with rearrangement of electron density, i.e. molecule and metal surface
polarization. This is possible for neutral and polarizable molecules or for molecules
with an intrinsic dipole moment.
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• Weak chemisorption with a possible charge transfer. This is the case of molecules
with free electron pairs chemisorbed on metal surfaces. A small amount of charge is
exchanged between the molecule and the metal to reach Fermi level alignment and
thermodynamic equilibrium.

• Strong chemisorption with strong covalent bonds. In this case there is an high level of
hybridization of the orbitals and a charge transfer is possible to reach the equilibrium.
The presence of surface dipoles can arise due to the formation of covalent bonds
between atoms with (in general) different electronegativity (the molecule anchoring
group and the metal atoms). This case typically is the one in which a specific
anchoring group is exploited to guarantee the creation of such chemical bonds during
the fabrication process (see above the SAMs example).

In general, in the physisorption case, a weak coupling between the molecule and the
contacts occurs. This leads to localization of electron states, small or absent broadening,
high charging energy and Coulomb blockade. Usually no charge transfer is observed in
physisorption case [10], and by biasing the structure an integer electron charge can be
exchanged between the molecule and the metal. In the case of chemisorption a strong
(covalent) bond is instead created between the molecule and the contact, and usually
partial charge transfer occurs. This implies a strong interaction, with an high level of
orbital delocalization and small charging energy with no Coulomb blockade. Notice that
as mentioned above all intermediate cases are possible and there is no a net distinction
between the two regimes, instead there is a gradual transition between the two [137]. In
particular, to this purpose, notice that there will be two equilibrium distances between the
contacts and the molecule, corresponding to the equilibrium distance for physisorption and
for chemisorption respectively. Nevertheless if the system has constraints, it may happen
that the geometry cannot relax, an intermediate situation occurs. For example, there
can be a too short space in between the two electrodes to ensure physisorption relaxation
to equilibrium, but at the same such distance between the contacts can be too large to
ensure a creation of a strong chemical bond with wave-functions hybridization. In such
a case, if the technological process is designed to have that the molecule has no enough
kinetic energy to ensure being “caught” by the electrodes, then it will stay in between
the two contacts, but with no optimal geometry, i.e. the most stable configuration will
not be achieved. In that case the potential energy of the system will be higher than the
equilibrium potential energy for physisorption, but lower than the same for chemisorption,
and an external perturbation might easily (more easily than if equilibrium would reached)
be enough to distort the geometry and cause variations or desorption.

7.1.2 Gas molecular electronic sensors
In gas sensing applications the molecular channel is exploited as sensor of specific chemical
compounds present in air or solution, and its conductivity is uniquely modulated by the
presence of the target chemical species in proximity of the molecular channel. Examples in
literature, based on single molecule conductive channels, are: [33], [34], [38], [138], [139].
In general the target molecule (sometimes referred as the analyte especially in biological
applications [54]), will interact via van der Waals intermolecular interactions (see section
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3.7.2) with the molecular channel, thus changing the electron states and the transmission
function (thus the conductance - see Landauer sec. 4.3 and 5.15.2) of the channel. As a
final effect the electrical current will change depending on the presence or not of the analyte.
By detecting such a specific variation of current, it is possible to detect the presence of
the target analyte and likely also its concentration. Accordingly with the treatment of
section 7.1.1, the target molecule can be in general physisorbed or chemisorbed by the
molecular channel. Even if, precisely, this would be an abuse of notation, since the two
terms “physisorbed” and “chemisorbed” are strictly referred to an adsorbent that is a
surface, while a single molecule is not. In general, anyway, if the channel molecule is very
large w.r.t. the adsorbate then the process is quite similar. Even if it is not (i.e. the
sensor molecule and the adsorbate one have similar dimensions), one can use the terms
“physisorption” and “chemisorption” to highlight the nature of the chemical interaction [38],
having in mind that they are not referred to a surface phenomenon. In addition, such (not
precise) lexicon descend from a class of gas sensors that is very demonstrated in literature
both by means of theoretical studies/simulations and from prototypes experimental data:
namely the 2D FET-based gas sensors. In such sensors the working principle is analogous
to the one of gas-MES, that indeed can be seen as the “novel generation”, at moment at
embryonic level, of the previous ones. For example a GNR-gas-sensor is a sensor in which
a 2D sheet of graphene (i.e. the graphene nano-ribbon) is used adsconducting channel.
Then the target molecule can be physisorbed or chemisorbed onto the GNR resulting
in a modulated conductance. This class of devices, the 2D-FET-gas sensors, are well
demonstrated in literature [49], [50], [50], [58], [57], [60], [63], [61], [62], [52], [30], (1D
nano-wire example with the same principle: [64]).

In [33], a C60 fullerene is used as molecular channel for a complete molecular transistor,
and by means of simulations with EHT + NEGF methods, both at equilibrium and in non-
equilibrium, the authors support its application as ammonia (NH3) gas sensor, providing
also good results in terms of selectivity and response to different ammonia concentrations.

In [34], the authors prove the potential application of a modified/doped C70 fullerene
as gas sensor for sulfur dioxide (SO2) and nitrogen dioxide (NO2), that are very toxic for
humans [65]. In particular the study is focused only at equilibrium with no electrodes
(thus the entire device is not studied), and the adsorption properties of SO2 and NO2
by the metal ion (Cr2+ and Co2+)-prophyrin-induced C70 is proved to be effective, thus
making the latter promising candidate for gas nanosensors.

Similarly to the previous paper, in [38], the author prove the effective adsorption
properties of C20 fullerene of carbon monoxide (CO), carbon dioxide (CO2) and methane
(CH4). Again the study is carried out at equilibrium only and no complete device is
proposed.

The two papers [138], [139] present other two gas sensors with analogous principles of
the above mentioned ones.

Next in this work

In the next chapters of this work, inspired by the aforementioned papers, I will investigate
the C60 molecular wire as gas sensor, and I will use it as an example of study to develop a
general guiding methodology for the design at device level of a single-molecule gas sensor.
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Indeed, to the best of my knowledge this is still lacking in literature, and it can be an
important starting point toward a faster and critical analysis of such devices, that, as
already mentioned, are at the moment only at embryonic level. My pioneering work can
be useful in developing a standardized methodology of design of such devices toward a
design by levels of abstraction. My choice of investigating the C60 has multiple reasons:
firstly, it is a well known molecule, stable at room temperature, and since made of carbon
only it is pretty interacting, indeed the hybridization of molecular orbitals is not complete
in the sense that some valence electrons are not involved in chemical bonds and they
are highly interacting, thus promising good interaction properties with target analytes.
Moreover, its sensing properties were already investigated in recent years, especially in
standard chemo-sensor architectures (see introductory section 1.2) as summarized in the
review paper [37].

7.1.3 Single molecule event detection with molecular electronic
sensors

Single molecule detection is a novel frontier of sensing science, in which the presence
of a single molecule can be dynamically detected, making also possible the detection
of intermediate (unstable) products of a complex chemical or bio-chemical reaction [27].
There are many ways of achieving such a task [27], [28], among which the novel molecular
electronic sensor approach seems to be promising for a label-free real-time detection. For
example in [23] a molecular wire is exploited for this task. The working principle is
essentially identical to one presented previously for the gas sensors, with the exception that
here the channel molecule is engineered to allow high specificity and thus high selectivity
such that the sensor responds exclusively to the target analyte. In particular, for the first
time, it was experimentally proved that a given theoretically predicted chemical reaction
chain occurred, indeed the current flowing in the molecular wire resulted dynamically
modulated by the presence of an unstable intermediate chemical species with a short
life-time (of the order of ms) that results to be an intermediate product of the chemical
reaction. This is in my knowledge the first prototype of its type, fabricated and tested.
The presence of the target molecule is detected by means of a specific chemical interaction
with the molecular channel, causing a modulation of the molecular wire current. The
theoretical modeling is based on a DFT + NEGF approach: in particular it was used
DFT with the hybrid functional B3LYP (Gaussian software) and equilibrium Green’s
function (Quantum-Wise ATK software) for evaluating equilibrium transmission spectra.
The theoretical calculations matched the experimental data, thus being a literature prove
of the effective modeling techniques introduced so far in this work.

7.1.4 Light molecular electronic sensors
In principle light sensors are possible, even if at present in my knowledge there are
no practical or complete device studies in literature. The basic principle is very easy:
an incoming photon can be absorbed by the molecule thus exciting an electron to an
higher energy level and modulating the current flowing through it. The principle is thus
analogous to the working principle of conventional opto-electronic devices, also organic ones.
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The correct way for modeling the photon-channel interaction is by means of incoherent
transport, with the addition of a suitable self-energy within the NEGF framework in order
to account the photon-electron interaction, as already explained in section 5.18. The
potential advantage of molecular device used as light sensors is that the molecular channel
and the device can be optimized such that only specific transitions, involving only well
defined energy levels and thus photon energy, are allowed and therefore detected. This
allows to obtain great freedom at design level on the energy or wavelength of absorbed
photons. Molecules can also emit photons, in such a case they are no more sensors or
detectors but sources instead (analogously to Organic Light Emitting Diodes -OLED- ).

7.1.5 Humidity and temperature molecular electronic sensors
Humidity and temperature sensors can be also in principle realized. An example of trivial
humidity sensor is provided in [32]. In this case a SET is used to detect the presence of
H2O in air. In particular an empty device, with ideal (PEC) contacts is supposed to have
like a window in which air can circulating. If an H2O molecule happens to be in between
the source and the drain contacts, a variation of the (noise) current occurs, since it has in
principle specific conduction properties, and the detection is possible. In principle it is
also possible to have a molecular device (such as a C60-based wire) and to study if (and in
which way) the conductance changes if water molecule is present nearby the channel (in
this case the principle becomes exactly the one presented previously for gas sensors).
In the case of temperature sensor it is obvious that it somehow affect the transport, since it
influence the Fermi-Dirac’s functions and also the number and the energy of phonons; thus
it can be in principle be detected a temperature variation by detecting a current variation.

7.1.6 DNA sequencing with molecular SETs
A thrilling application of SETs and molecular electronic sensors is the possibility of
performing real-time DNA sequencing [35], [36], [85], [86], [84]. The working principle is
the following. The DNA molecular chain is forced to flow through a nanopore to which
a potential difference is applied. The nanopore can be an artificial graphene nanopore
(e.g. [85], [86]) or a suitable enzyme and it works as contact (an all-around contact that
surrounds the DNA nucleotides). By means of the applied electric field it is possible to
force the flow of the DNA through the nanopore, and at the same time by measuring the
electrical current it is possible to detect in real-time what nucleotide is in each moment
present in the nanopore. Indeed DNA nucleotides are molecules, and by changing the
molecule of the channel of the SET, it changes the electrical current flowing in it, thus
making possible the recognition. The simulations techniques [35], [36] are generally in
agreement with experimental data and prototypes were demonstrated to be functioning
and effective as a fast and reliable method for DNA sequencing [85], [84].
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7.2 Methodological approach: gas sensors
The purpose of this section is to summarize the logical steps I will follow in the next
chapters to discuss the structure, design and performances of a C60 gas sensor. In this
optics, it is a brief introduction to set the very practical part of this work, in order to
avoid getting lost in the following.

In order to keep the treatment as much systematic as possible I will proceed by points:

• First of all a molecule that should be used as channel and the target molecule should
be selected. In general there is no unique way of doing it, and the the channel can
also be engineered to posses some specific physical-chemical properties such that the
interaction with the target is enhanced and maximized, both from the standpoint of
the sensibility/detectability and from the standpoint of selectivity/specificity. In the
following I will consider a C60 molecule as channel, and I will initially investigate its
performances as ammonia (NH3) gas sensor, by following the approach of [33]. As
mentioned in section 7.1.2, the choice of the C60 has multiple reasons: it is a well
known molecule stable at room temperature [140], and since made of carbon only it
is pretty interacting [140], indeed some valence electrons are not involved in chemical
bonds and they are highly interacting, thus promising good interaction properties
with target analytes [140]. Moreover its sensing properties were already investigated
in recent years, especially in standard chemo-sensor architectures as summarized in
the review paper [37], besides that in [33]. By following what did in the same paper
I will firstly investigate such device as gas sensor for ammonia.

• Once the channel molecule is chosen it should be chosen the device structure. In
general mainly two architectures are possible: a molecular wire (two-terminal device)
and a molecular transistor (with one or more gates). Since the fabrication process is
more complex and thus expensive for molecular transistors than for the wires, I have
chosen to start with studying and testing a molecular wire. Then, once the wire is
characterized it is possible to add a gate in order to verify if a substantial performance
improvement can be obtained. If not so, it has no sense using a transistor.

• At this point the contact material and eventually the presence of anchoring groups (i.e.
functional groups aimed in anchoring the molecule to the contacts) should be selected.
This is a crucial point since the contact-molecule interface strongly determines the
quality and the regime of transport. In general in real cases it should be evaluated
considering also the technological process and the production necessities. I have
chosen to employ no anchoring group and metal electrodes of gold (Au), ideally FCC
(111), i.e. Face-Centered-Cube crystalline cell, with orientation (111) - please refer to
the widely used Miller notation, see e.g. [141], [142]. The reason behind this choice
is that the gold contact technology is already widely used and known for molecular
junctions [18], [15]; and at the same time it is demonstrated in literature that carbon
is capable of forming strong covalent bonds with gold, thus making an anchoring
group redundant.

• The main parameter to be fixed in a molecular wire is the gap length between the two
electrodes, in which the molecular channel will be host. In other words the distance
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between the contacts and the C60 molecule should be fixed. In order to do that, it
is advantageous choosing a distance that maximizes the sensitivity to the target, if
there exists one. In this optics I have studied the sensitivity dependence in function
of the contacts distance, resulting in higher sensitivity when the distance is smaller.
The chosen distance was thus the one corresponding to the covalent gold-carbon bond
length. This corresponds to the equilibrium distance in case of chemisorption, indeed
notice that the gold electrode is essentially a gold surface with large dimensions w.r.t.
C60 fullerene one, thus leading effectively to chemisorption. In order to choose and
fix the geometry it is also reasonable to perform geometry relaxation simulations, to
verify if the chosen geometry is actually a stable configuration, since it should be
robust in time (and resist to energy/phonon absorption in order to avoid dynamical
changes in the device geometry that would be highly undesired).

• In parallel to the geometry choice it should be also performed another kind of
important analysis. Indeed it is convenient to preliminary check if the molecular
channel is somehow sensitive to the target. This can be accomplished at equilibrium
by verifying a change in the DOS or in the transmission spectrum. Moreover this
analysis can be performed on the isolated C60, i.e. without the contacts, like for
example done in [34], [38]. Nevertheless the disadvantage of doing so, especially in
single molecules channels, is that the influence of contacts on the final DOS and
transmission features can be relevant and can considerably change the attended results.
For this reason I have chosen to perform a preliminary study on the equilibrium DOS
and transmission spectrum of the entire device, i.e. with contacts. Such a study
was performed with DFT calculations (considering the Grimme-D2 and Grimme-D3
correction for van der Waals interactions - see section 3.7.3). A significant variation,
in the case in which the target is present nearby the channel w.r.t. to the case in
which it does not, either in the DOS or in the equilibrium transmission spectrum, is
enough to verify the potentiality as sensor for that target.

• In general one may have time/resources requirements/constraints, such that it is not
always possible to use the method known to be the most accurate for representing
the physics/chemistry of interest. For example during my work I could not perform
non-equilibrium simulations with DFT methods, because the server in which all
computations were performed did not support it (the RAM was not enough to sustain
such calculations, even with simulation settings to minimize memory usage). In
that cases one may use other methods. For example I decided to use the EHT
one, conscious of its limits. Nevertheless as mentioned several times EHT method
should be validated. For this reason I have tried to reasonably validate it, for the
non-equilibrium case, starting from the equilibrium more accurate DFT method
simulations. The details are provided in the dedicated sections, nevertheless here the
point is on the general methodology: when a method, generally expected to be not
much accurate for the specific application, is used, then the obtained results should
be somehow validated.

• At this point the device geometry should be fixed and the device is expected to be
sensitive to some target. A crucial performance verification should be performed:
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the selectivity of the sensor. Indeed the sensor in order to be able to detect the
presence of a given target should respond in a unique way to the presence of such
target, like it does not happen in response to other substances that can be present in
the usage environment, such as air components (oxygen, nitrogen, humidity/water,
etc...). This means that many simulations should be performed in order to verify
such sensor selectivity. Moreover the sensor should provide a response to the various
orientations of the target (especially if polar), and in this regard also a study of
the equilibrium physisorption/chemisorption of the target onto the channel molecule
should be performed.

• Once all the aforementioned tests are performed then a suitable bias point should be
selected. The optimal one should maximize the sensitivity and selectivity, if those are
the most important feature for a given application. Otherwise it may be chosen to
maximize linearity and so no... Another criterion of choice can be the bias point for
which there is maximum correspondence between the EHT and the DFT simulations
(of course only if a method not at all suitable is used, as explained above).

• Sensor performances should also be checked, in order to highlight possible critical
issues. To this purpose the response to different target concentrations should be
studied, and for example the bias point with maximum linear response can be chosen
if linearity is important in the sensor specifications. Moreover also the maximum
distance above which no significant sensor response is obtained is a useful data for
proceeding in the design. Another useful check can be on response time of the sensor
and eventually dissipated power by it.

• Depending on the specifications several properties may be checked and verified. If
not satisfied a study on the reason why it is so is always helpful in understanding
if and how the device should be modified to satisfy the requirements. The actual
device structure of MES is quite easy if compared to conventional nowadays electronic
devices. Thus in order to keep the structure simple (since already in this way the
technology is a big issue [18]), few parameters can be changed, unless the channel
molecule is modified or changed. The latter solution is very effective and opens
the way to an incredible variety of heterogeneous solutions. Nevertheless another
solution can be to modify somehow the device; this could require a long time before
converging to the desired solution.

• In order to improve performances the introduction of a gate electrode can be consid-
ered. This is a trivial solution that nevertheless can be potentially very effective in
ameliorating the overall performances of the sensor.

By following more or less the above reported points it is possible to predict several
features of the sensor and have thus a complete model, more or less refined, for the sensor,
providing an idea on its behavior and response in different more or less realistic situations.
In a real design process, depending also on the specifications and requirements, it is possible
to have jumps among the above introduced points, and also it is possible to have a sort
of feedback among them in order to optimize the device with the gain in knowledge of
its performances, etc... This is indeed what I did and what I will try to present in the
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next chapters. So the aforementioned steps are only indicative and can (and should!) be
dynamically changed or ordered depending on several factors. Once the device is somehow
characterized at least in terms of the above mentioned features it is possible to model it
by means of a sort of “black-box” to be used for the design of the conditioning circuit
or anyway at higher levels of abstraction. This step is not at all completed in this work.
Of course operating by levels of abstraction has the advantage that the circuit-level or
system-level designer is not required to have specific knowledge on modeling the MES,
exactly as it happens for conventional electronic systems.
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Chapter 8

C60-based ammonia gas sensor

In this chapter the simulation results relative to a C60 molecular electronic sensor for
ammonia gas detection are reported and discussed. In particular the main purpose is to
verify the effectiveness of the methodology presented in the previous chapter 7 (section
7.2) in designing a MES device, and verifying its performances. Moreover the implemented
procedure is an example of practical and real modeling of a complete MES. Indeed the
methods presented in the theoretical part I of this work are now exploited in practice
to simulate the sensor. In the presentation I will not always follow a chronological path,
but instead I will try to prefer the natural logical exposure that follows the methodology
conceived in section 7.2.
Throughout the present chapter I will investigate the C60 molecular wire as ammonia gas
sensor, and as mentioned in the previous chapter 7, I will use it as an example of study to
develop a general guiding methodology for the design at device level of a single-molecule
gas sensor. Again as mentioned previously, to the best of my knowledge, this design
methodology is still lacking in literature, while in my opinion it is important since it can
be the starting point toward a faster and critical analysis and design of MES. In this optics
the work presented here is a pioneering work, at least at Politecnico di Torino, where
currently at the VLSI lab there is no such established methodology, simply because MES
are novel devices conceived during the last few years only, and research in this field is
still at embryonic level. Again as already discussed, my choice of investigating the C60
has multiple reasons: it is a well known molecule stable at room temperature [140], and
since made of carbon only, it is pretty interacting [140], indeed some valence electrons
are not involved in chemical bonds and they are highly interacting, thus promising good
interaction properties with target analytes [140]. Moreover its sensing properties were
already investigated in recent years, especially in standard chemo-sensor architectures as
summarized in the review paper [37], besides that in [33].
All the simulations reported here were performed by means of Quantum-Wise ATK soft-
ware by Synopsys®.
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8.1 Device structure and geometry
First of all the contact material and eventually the presence of anchoring groups (i.e.
functional groups aimed in anchoring the molecule to the contacts) should be selected. In
general this choice should be done by considering also the technological processes and the
production necessities. I have chosen to employ no anchoring group and metal electrodes
of gold (Au), ideally FCC (111), i.e. Face-Centered-Cube crystalline cell, with orientation
(111) (for Miller notation see e.g. [141], [142]). The reason behind this choice is that the
gold contact technology is already widely used and known for molecular junctions [18], [15];
and at the same time it is demonstrated in literature that carbon is capable of forming
strong covalent bonds with gold, thus making an anchoring group redundant [143], [144],
[145], [146], [147]. At the beginning it was chosen no particular orientation of the C60
molecule, placed in between the two gold contacts. Moreover the distance between the
fullerene and the contacts was fixed to be of about 2.7Å, similarly to the one used in
[33]. This choice was no theoretically motivated, for the moment, since no preliminary
study was performed in order to fix it. In the next sections, this point will be further
discussed and the final geometry will result to be slightly different. With reference to a
general methodology this initial choice can be intended to be a sort of “initial guess” for
the geometry, in order to perform the preliminary analyses reported in the next section.
The next two subsections summarize the C60 molecule properties and the initial geometry,
respectively.

8.1.1 The C60 fullerene
The fullerenes are carbon allotropes, i.e. structurally different forms of the same element,
in this case carbon [140]. The shape is somehow similar to the one of an empty sphere, with
the surface composed by hexagons and pentagons with carbon atoms at vertices. In general
the fullerene shape can be ellipsoidal or even tubular. The spheric and ellipsoidal fullerenes
are called “buckyballs”, while the tubular ones “buckytubes” (e.g. carbon nanotubes) [140].
The C60 fullerene is also called “buckminsterfullerene”, and two pentagons do not share
any side [140]. The presence of pentagons prevent the C60 fullerene geometry to be planar,
and originate the aforementioned spherical shape. All fullerenes are very electronegative
and with an high degree on unsaturation, i.e. all the carbon atoms are unsaturated. This
means that they have valence electrons in the external shells not involved in chemical bonds
and in this sense “free” of interacting with other chemical species [140]. Instead saturated
(organic) molecules are such that all valence electrons are involved in chemical bonds
and thus they are barely interacting molecules [140]. For this reason the C60 fullerene is
expected to be interacting with other chemical species, among which an high interaction
with the target molecule is desired. The C60 fullerene diameter is of around 7Å, for this
reason it can incorporate atoms or diatomic molecules, thus changing significantly its
physical-chemical features [140], and also the transport [147].
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8.1.2 The initial geometry
As discussed and motivated at the beginning of the present section the initial geometry
was fixed to be a molecular wire with a C60 molecule as conducting channel, gold Au FCC
(111) electrodes at a distance of around 2.7Å, compatible to one used in [33]. No gate was
considered, since it has no sense of introducing such complex (and more expensive) solution
in the device, at least if the performance specifications are already satisfied without it. In
this the geometry used for the preliminary estimations of the next section is different from
the one in [33]. It is depicted in figure 8.1.

Figure 8.1: Initial geometry of the C60 fullerene ammonia gas sensor. The C60-contacts distances
were fixed at around 2.7Å, no special orientation of the C60 was considered.
The figure was generated by ATK software [125], [126] (used for performing the
simulations).

In order to investigate the device sensitivity to ammonia (NH3) other geometries were
considered. In particular geometries with 1, 3 and 5 additional ammonia molecules were
considered. Such ammonia molecules were positioned above the C60, centered on it, like
it was the face of a die: one molecule at the center, three molecules in diagonal and
five molecules with a center one and four around it like vertices of a square. All the
molecules were positioned at a distance of about 2.2÷2.3Å above the fullerene, in order
to ensure van der Waals graphical spheres to be intersected. This should ensure an high
level of interaction between the C60 and the ammonia molecules. The distance of about
2.2÷2.3Å is also justified from the fact that it is a sort of average distance for strong
intermolecular interactions, in the sense that since intermolecular interactions are strongly
inversely dependent on distance, above 4÷5Å they decay rapidly and above few nm they
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are no more effective (see section 3.7). Thus such a chosen distance can be interpreted as
an average short-distance strong intermolecular interaction distance. The distance from
contacts was initial maintained to 2.7Å. Images representing the three geometries with
ammonia are reported in appendix D.1.

8.2 Preliminary equilibrium properties of the device
In order to perform a preliminary check of the potential of the C60 gas sensor the following
equilibrium simulations were performed in Quantum-Wise ATK exploiting the geometries
considered in the previous section. Both DFT and EHT methods were considered.

8.2.1 DFT equilibrium simulations settings
The DFT simulations were performed at equilibrium with the GGA PBE functional and
with a DZP basis set (FHI DZP). The complete list of the simulations settings are reported
in tables 8.1, 8.2 and 8.3. Notice that the intermolecular van der Waals correction Grimme
DFT-D2 was taken into account, essentially leading to no difference w.r.t. to uncorrected
DFT. Moreover simulations with Grimm DFT-D3 simulations were also performed leading
again to no significant variations. For the sake of completeness also electron-correlation
corrections were considered. Hubbard correction (with default fitting parameters) did
not lead again to any difference, while DFT-1/2 did. The results in terms of equilibrium
DOS and transmission function T (E) are reported in appendix D.2. In the end, since
no great charging effects was expected, the electron correlation correction DFT-1/2 was
not considered in the rest of this work (indeed as it will be addressed in section 8.3 the
molecular orbitals resulted well hybridized with contacts ones, thus leading to an expected
small charging energy).
Notice that the parameter “Broadening” in “Numerical Accuracy” section of table 8.1 is
measured in kelvin thus having the measuring unit of broadening temperature. Nevertheless
this is not a physical temperature, but it is an artificial temperature to achieve the conver-
gence of device self-consistent calculations in a smooth and faster way. The corresponding
solution and derived physical quantities should not virtually depend on this temperature
value within some user-set tolerance. Instead the device operating temperature is specified
in “Electrode parameters”, and since by default it is 300K, it was not modified. Notice
that the MES is thus supposed to work at room temperature.
Since essentially all the other settings were already discussed in the previous chapters of
this work, they are no commented here.

8.2.2 A remark on transmission function T (E) in ATK
It was chosen to already analyze the full device “C60 + gold contacts”, indeed as mentioned
in section 7.2, the final DOS and T (E) can be affected by the electrodes. Moreover
by putting already in this phase the contacts the transmission spectrum T (E) can be
evaluated (otherwise it does not since it has no sense talking about transmission if without
electrodes).
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Table 8.1: ATK-DFT equilibrium calculator settings. If not differently stated, all the DFT
simulations were performed with these settings.

ATK-DFT: LCAO Calculator

LCAO
Basis
Set

Exchange correlation: GGA,
Functional: PBE,
van der Waals correction: Grimme DFT-D2,
Pseudopotential: FHI,
Basis set: DZP

Numerical
Accuracy

Density mesh cut-off: 75 Hartree,
Occupation method: Fermi-Dirac,
Broadening: 1000 K,
k-points: Preset-Density: [4.0,4.0,150.0] Å

Iteration
Control

Tolerance: 0.0001 (default),
Maximum steps: 100,
Algorithm: Pulay Mixer,
Damping factor: 0.1,
History steps: 20,
Mixing variable: Hamiltonian

Device
algorithm

Initial density: (default)
Electrode constraint: off (default)
Equilibrium Method: Green’s functions,
Equilibrium Self-Energy: Recursion,
Non-equilibrium Method: Green’s functions,
Non-equilibrium Self-Energy: Recursion,
Caching strategy: (default)

Contour
Integral
parameter

default settings

Poisson
Solver

Solver type: Conjugate gradient,
Boundary conditions:
(A) direction: PBC,
(B) direction: Dirichlet,
(C) direction (transport): Dirichlet

Electrode
parameters default settings

A remark on the Quantum-Wise ATK notation. The real total transmission coefficient is
not actually T (E). Indeed one should perform an additional and separated transmission
eigenstates and eigenvalues calculation to get the actual transmission probability, that is
indeed provided by the so called transmission eigenvalues. These are the eigenvalues of the
transmission quantum mechanical operator. Its eigenstates can be instead evaluated and
projected in the real space as surfaces. These surfaces are the “transmission eigenchannels”
of such an operator in real space, i.e. they correspond to the region of space in which
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Table 8.2: ATK-DFT equilibrium DOS calculator settings. If not differently stated, all the
DOS simulations were performed with these settings.

Analysis: Device DOS
Energy
range

E0 = −3.0 eV, E1 = 3 eV,
Points = 401

k-point
sampling Density: na = 7, nb = 7

Contributions All
Energy zero
parameter Average Fermi level

Infinitesimal 1e-06 eV
Self-energy
calculator Recursion

Table 8.3: ATK-DFT equilibrium transmission spectrum calculator settings. If not differently
stated, all the transmission spectrum simulations were performed with these settings.

Analysis: Transmission Spectrum
Energy
range

E0 = −3.0 eV, E1 = 3 eV,
Points = 401

k-point
sampling Density: na = 7, nb = 7

Energy zero
parameter Average Fermi level

Infinitesimal 1e-06 eV
Self-energy
calculator Recursion

transmission occurs, or better they are the iso-surfaces of transmission, once a given value
of transmission is chosen and fixed. Notice that if such surfaces are similar to molecular
HOMO or LUMO levels it means that the main transmission channel for that given
transmission value, or better the transmission eigenvalue, is indeed the HOMO or the
LUMO. As said above the transmission eigenvalues are the actual transmission coefficients
and they are indeed normalized to 1. This is clear when they are interpreted as the
transmission operator eigenvalues, i.e. the results of a measurement on the transmission
operator (see sections 2.3.6, 2.3.3), that provide a transmission coefficient (pure number -
no measuring unit).
Instead T (E) represents the transmission spectrum, i.e. the total transmittivity per unit
energy (“spectrum” is indeed referred to Fourier transform in energy domain). As explained
in the user’s manual [125], [126], it may happen that several transmission eigenvalues (that
are normalized to 1) can sum at a given energy, providing a total transmission spectrum, at
that given energy, greater than unity. This corresponds to the situation in which, for that
specific energy value, more transmission channel are available and sum to give T (E) > 1.
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In other words, in such a situation, the electrons can be transmitted from the source to the
drain by means of different paths/states, i.e. different transmission channels/eigenstates.
A single electron with a certain energy can thus travel from source to drain by means of
different transmission channels/regions (of space), and the total transmission spectrum for
that energy can be greater than unity.
In general ATK provides separated transmission spectra for different spins. In this work
I am not considering spin-polarized currents or magnetic molecules such that the two
T (E) for the two spins will always be equal. For this reason all the reported transmission
spectra are intended to be single spin (UP or DOWN - they are equal), and the total one
is obtained by summing them (double since they are equal). If not so I will declare clearly
what the plot represents.
A last remark on the aforementioned transmission operator and the NEGF formalism.
Within the NEGF framework the transmission function T (E), that provides the transmis-
sion in function of energy, i.e. the transmission spectrum, can be evaluated by means of
equation (5.74) or analogously equation (5.66):

T (E) = Tr [Γ1A2] = Tr [Γ2A1] = Tr
[
Γ1GDΓ2G

†
D

]
= Tr

[
Γ2GDΓ1G

†
D

]
This is a representation of the transmission quantum mechanical operator in the system
energy eigenstates (and this is obvious, considering the procedure that led to such expression
- sections 5.14.3 and 5.15). Nevertheless it is a quantum mechanical operator representing
a physical observable, namely the transmission from source to drain. Therefore it is
represented by an Hermitian quantum mechanical operator (see chapter 2), and there
is a theorem stating that Hermitian matrices are always diagonalizable (see [87]). Thus
it is always possible to diagonalize T and obtain a representation of T in its eigenstate
representation, i.e. in the transmission eigenstates basis set. The latter representation for
T is the representation mentioned previously. The diagonalization procedure will provide
its eigenvalues, i.e. the transmission eigenvalues, normalized to 1; and also its eigenstates,
i.e. the aforementioned transmission states/channels. If T is represented in energy domain,
i.e. in the basis set of the system energy eigenstates, it is not said that it will be normalized
to 1, and in general this does not happen. Indeed as mentioned above there may be more
than one transmission eigenchannel that conduct for a specific energy, thus leading to a
sum greater than 1. Finally notice that a real space representation of T corresponds to a
projection in real space of T , that are surface of iso-transmission in space, as mentioned
above.

8.2.3 DFT equilibrium simulations results
The equilibrium simulations (with the settings of section 8.2.1) showed a significant
variation in the device DOS depending on the concentration of ammonia (1, 3 or 5 NH3
molecules). The ammonia molecules were placed on top of the fullerene as described
previously. The obtained DOS are reported in figure 8.2. Since the device DOS per unit
energy is significantly different depending on the presence or not of ammonia nearby the
fullerene, it is expected to have different non-equilibrium behaviors depending on the
presence or not of ammonia molecule. Indeed the DOS is relevant in transport since it
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determines the number of electron states that might participate to conduction. In order
to have a better insight in the transmission properties also the equilibrium transmission
spectra, again with no, 1, 3, and 5 NH3 molecules were calculated and analyzed. The
results are reported in figure 8.3. Notice that this is an equilibrium transmission spectrum,
that has the physical meaning already pointed out in section 8.2.2, and notice that it is a
quantity defined also at equilibrium. In non-equilibrium case the applied bias, the charging
effect and the molecule screening can affect and modify the shape of the transmission
spectrum, that plays the role of the transmission function discussed in chapters 4 and 5.
Indeed it was mentioned that it is function also of the applied bias, also because the contact
self-energies and the broadening functions are functions of the bias as well. Nevertheless
the (converged) equilibrium spectrum is the starting point for the non-equilibrium spectra
and thus the current. This both from a computational standpoint (in ATK the non-
equilibrium calculations start always from a converged equilibrium one), and from a
physical standpoint. Indeed it is reasonable thinking the applied bias as modifying the
equilibrium properties among which the transmission probability plays a central role. This
for justifying the fact that here an equilibrium transmission spectrum is used to make
predictions about non-equilibrium properties, i.e. the electrical current. This is accurate
if the applied bias is small (see sections 4.3, 4.4, 5.15.1, 5.15.2), that means considering
energies nearby the zero in figure 8.3 (since it is shifted around the equilibrium Fermi level
of the system). The more the applied bias is large, the greater are the differences between
the equilibrium transmission spectrum and the non-equilibrium one. Nevertheless the
important point here is that evident differences are present depending on the number of
ammonia molecules around the fullerene, and since the transmission spectrum is changed,
also changes in the electrical current are expected (Landauer’s equation: (5.75)). This is
evidently true at low bias, while rigorously it is not said at high bias, accordingly with the
above discussion. Nevertheless it is reasonable thinking that even at high bias differences
will occur, but they cannot be estimated considering the equilibrium spectrum; in other
words the non-equilibrium transmission features can be very different from equilibrium
ones.

In figure 8.4 the same equilibrium spectra are reported separately in order to make
more clear the differences between the case of no ammonia molecule with the cases of 1,
3, 5 molecules. The bottom-right plot is the same of figure 8.3. Notice that important
differences in the transmission spectra occur in the transmission peak at around −1.4 eV,
that not only changes its height but also its width/broadening. In general non-negligible
differences occur in the HOSO-1, HOSO, LUSO, LUSO+1 levels. Where HOSO is the
Highest Occupied System Orbital, and the LUSO is the Lowest Unoccupied System Orbital.
They have analogous meaning to molecular HOMO and LUMO but they are referred to
the entire system. No evident differences appear in the HOSO-LUSO-Gap (HLG), that is
the energy range approximately between −1 eV and 0 eV. This means that the presence of
ammonia is not expected to relevantly change the (possible) conductance gap width, i.e.
the sensor is not expected significantly conducting “before” (for lower bias) depending on
the presence or not of the ammonia. Nevertheless with the fullerene C60 such a conductance
gap is essentially null, i.e. it conducts or in other words the current is non-negligible,
already for low biases close to zero. This can be deducted from the equilibrium spectrum
around the zero bias condition (i.e. around 0 eV in the plot - that corresponds to the
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Figure 8.2: Device equilibrium DOS with different ammonia molecule concentrations: 1, 3 and
5 NH3 molecules were considered.

Figure 8.3: Device equilibrium transmission spectra with different ammonia molecule concen-
trations: 1, 3 and 5 NH3 molecules were considered.

system Fermi level). If a bias is applied the bias window, under the hypothesis of having a
symmetrical voltage division factor (see section 4.1.4), that is expected in this case since the
device was built completely symmetrical w.r.t. to source and drain (in terms of distances
etc..), is centered around the zero. And because of the presence of the small transmis-
sion peak for slightly positive energies, the current is expected flowing already at small bias.

301



C60-based ammonia gas sensor

In conclusion, the equilibrium analysis showed that the C60 MES can be potentially
significantly sensitive to the presence of ammonia and thus it can potentially be used
as ammonia sensor. In addition it showed sensitivity to different concentrations, since
the DOS and T (E) were significantly changing depending on the considered number of
ammonia molecules.

Figure 8.4: Device equilibrium transmission spectra with different ammonia molecule concen-
trations: 1, 3 and 5 NH3 molecules were considered.

8.2.4 EHT equilibrium simulations
The same analysis performed with the DFT method and described previously was repeated
with the EHT one. The EHT method requires less computational effort, and for this
reason if the simulations would be compatible with the DFT obtained ones, it can be used
in place of the latter to speed up the analysis and design of the MES. In table 8.4 the
settings for the performed EHT equilibrium simulations are reported. The settings for the
equilibrium DOS and the equilibrium transmission spectrum are the same used for the
DFT case, refer to tables 8.2 and 8.3.
The obtained results, DOS and T (E), are reported in figures 8.5, 8.6 and 8.7, respectively.
The DOS estimates less electron states w.r.t. DFT one. Nevertheless it shows relevant dif-
ferences depending on the number of molecules of ammonia. Analogously to the DFT case
this is an important fact, implying the EHT method as well is capable of catching ammonia-
carbon interaction in a significant manner, leading to DOS variations. The transmission
spectrum also shows variations depending on the concentration of ammonia. In general it
is less broadened than the DFT one, and the main transmission peaks are slightly shifted
toward lower energy (this is a general feature of EHT method that tends to underestimate
the energy levels w.r.t. DFT one [105]). Moreover, the EHT method estimate less trans-
mission in the HLG w.r.t. to DFT, with a slightly large HLG. Nevertheless the important
feature is that there occur clear variations depending if the ammonia molecule is present
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Table 8.4: ATK-SE (EHT) equilibrium calculator settings. If not differently stated, all the EHT
simulations were performed with these settings.

ATK-SE: Extended Huckel Calculator

Hamiltonian

Parameterization: Extended Huckel,
Parameters (basis type): Hoffmann,
Weighting scheme: Wolfsberg,
Spin: Unpolarized,
SCF iteration = YES

Numerical
Accuracy

Density mesh cut-off: 10 Hartree,
Interaction max range: 10 Ang,
Occupation method: Fermi-Dirac,
Broadening: 300 K,
k-points: Preset-Density: [4.0,4.0,150.0] Å

Iteration
control
parameter

Tolerance = 1e-05,
Maximum steps = 100,
Algorithm = PulayMixer
Damping factor = 0.1
History steps = 20,
Mixing variable: Hamiltonian,
Preconditioner: Off

Device
algorithm

Initial density: (default)
Electrode constraint: off (default)
Equilibrium Method: Green’s functions,
Equilibrium Self-Energy: Recursion,
Non-equilibrium Method: Green’s functions,
Non-equilibrium Self-Energy: Recursion,
Caching strategy: (default)

Countour
integral
parameter

default settings

Poisson
Solver

Solver type: Conjugate gradient,
Boundary conditions:
(A) direction: PBC,
(B) direction: Dirichlet,
(C) direction (transport): Dirichlet

Electrode
parameters default settings

or not and in what concentration (number of molecules). In particular relevant differences
are present for slightly positive energies (LUSO) and for HOSO peak (between −1 eV and
−1.5 eV). For what is concerning the HOSO, the EHT method estimates smaller variations,
nevertheless this level will likely participate to transmission for bias windows of the order to
2 or 3 volts (if no large variations of T (E) occurs due to bias), thus make such a difference
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not much relevant, at least at low bias. In conclusion to this preliminary analysis, it ap-
pears that the EHT can be potentially used to perform calculations on the considered MES.

Figure 8.5: Device equilibrium transmission spectra with different ammonia molecule concen-
trations: 1, 3 and 5 NH3 molecules were considered (EHT method).

Figure 8.6: Device equilibrium transmission spectra with different ammonia molecule concen-
trations: 1, 3 and 5 NH3 molecules were considered (EHT method).
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Figure 8.7: Device equilibrium transmission spectra with different ammonia molecule concen-
trations: 1, 3 and 5 NH3 molecules were considered (EHT method).

8.3 Device geometry engineering
According with the methodology presented in section 7.2, the first (and the main) design
step consists in fixing the MES geometry. Since the chosen device structure is a molecular
wire, the main things to be fixed are the distance between the C60 fullerene and the
contacts, and the orientation of the C60 molecule. In this section I will consider both,
starting from the first one. Notice that throughout the present section I will present only
EHT method simulation results when in non-equilibrium conditions, the justification for
doing so will be presented in section 8.5. I will start by considering the effect of the contact
distance on the equilibrium DOS and transmission spectrum, and only then I will consider
the non-equilibrium case. Only after these preliminary checks I will consider the presence
of ammonia nearby the conducting channel and the sensitivity dependence with contact
distance.

8.3.1 Equilibrium DOS and T (E) and contact distance
In order to understand what was the optimal distance between the fullerene and the
contacts, it was performed a preliminary equilibrium study on the DOS and transmission
spectrum. These results will be useful to understand the trend in the current and in
the sensitivity to ammonia presented later in this section. The various DOS and T (E)
obtained at various distances between the C60 and the contacts are reported in figures
8.8 and 8.9 respectively. In these two plots the initial distance of 2.7Å was increased
with a step of about 0.3Å, the considered values were thus: 3.0Å, 3.3Å, 3.6Å, 4.0Å,
5.4Å (the last value of 5.4Å corresponds to roughly the double of the initial distance of
2.7Å). The DOS in this case does not provide crucial information, instead the equilibrium
transmission spectra (figure 8.9) show a very important fact: the equilibrium spectrum is
more broadened if the molecule is closer to the contacts, and moreover it presents higher
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transmission peaks if, again, the contacts are closer to the fullerene. This is obvious if
one considers the physical origin of broadening (section 5.12), i.e. that it is intimately
linked to the degree of hybridization of the electron wave-functions (of the channel with
the ones of the contacts). Higher transmission peaks are moreover related to the higher
transmission probability that occurs if the distance (i.e. the barrier thickness) is reduced.
Notice that with 5.4Å the transmission is essentially negligible, it oscillates between 10−15

and 10−11 (only slightly above the numerical noise), and the same is expected and it will
be confirmed for the electrical current, making not possible to realize a sensor with such a
tiny transmission/current. Thus to get an enough high current, in order to make possible
to interface the MES with conventional electronics, it is necessary to choose an enough
small contact-molecule distance. Nevertheless, in choosing such a distance, I followed also
another important criterion: the MES sensitivity w.r.t. ammonia (see later).

Figure 8.8: Device equilibrium DOS with different molecule-contact distances: 2.7Å, 3.0Å,
3.3Å, 3.6Å, 4.0Å, 5.4Å (EHT method).

It is interesting to find the dependence relation of the transmission peaks w.r.t. distance
of contacts. To this purpose the transmission peaks for different distances at around 1 eV
were considered. Notice that such an interpolation is not at all significant, indeed the
considered transmission peaks drift in energy as distance is changed. Indeed, as evident in
figure 8.9, if the distance is increased then the transmission local maximum peak occurs
at lower energies, thus making the comparison not at all justified. In spite of this the
maximum peaks (as mentioned at around 1 eV) were interpolated with an exponential
function of the kind:

g(x) = A−Be−Cx , A,B,C ∈ R (8.1)
The result is plotted in figure 8.10. The graph and the fitting are generated with the
MatLab code in appendix D.3. The exponential is a good fitting curve indicating that by
increasing the distance the transmission exponentially decay, as expected from theory (see
chapter 2, section 2.3.7). This corresponds to the Simmons’ model introduced in section
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Figure 8.9: Device equilibrium transmission spectra with different molecule-contact distances:
2.7Å, 3.0Å, 3.3Å, 3.6Å, 4.0Å, 5.4Å (EHT method).

6.2, i.e. the coherent-short-molecule transport case. Notice that since incoherent transport
was not considered, it is obvious that only coherent transport appears, with the usual
exponential decay with distance. Nevertheless here the point in subtle: since by increasing
the contact distances the transmission peaks, at least around 1 eV, decay exponentially,
it means that there is a potential barrier between the contacts and the fullerene, that
approximately is square (Simmons’ model), that prevent a full transmission. The physical
origin of such a barrier will be investigated in the nest section and it corresponds in a less
hybridization and thus delocalization of electron wave-functions between the contacts and
the fullerene as distance increase. If the task were to design a SET thus a suitable and
enough large distance with contacts should be chosen, such that localized states allow for
having a relevant charging effect and possibly Coulomb blockade. Nevertheless here the
task is slightly different: the final goal is indeed to design and optimize the geometry such
that the molecular wire behaves like a MES. This implies that of extreme importance is
the ability of the sensor of modulating the channel conductance depending on the presence
or not of the target, i.e. the ammonia, and this is the property above all the others to
be considered in the design. Moreover in the optics of exploiting conventional electronic
devices (CMOS or FinFET devices) to implement the conditioning circuit, the electrical
current flowing in it, and even its variations due to the ammonia, should be enough large
to make detectable the ammonia presence. In this regard, a short distance between the
contacts and the C60 is desired.
Notice also that the performed exponential fitting at around 1 eV is a special case, indeed
if one looks at the other transmission peaks recognizes that not always this is the rule.
For example at around 0.3 eV the transmission peak for 2.7Å is less than the one for
3.0Å, and a greater shift occurs for different distances. Moreover the peak for 2.7Å is
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Figure 8.10: Device equilibrium transmission spectrum peaks at around 1 eV values and their
interpolation with an exponential fitting curve. The different considered molecule-
contact distances are: 2.7Å, 3.0Å, 3.3Å, 3.6Å, 4.0Å, 5.4Å (EHT method). On
abscissa axis the distance between the fullerene and the contacts, on ordinate axis
the transmission peak value (at 1 eV).

more broadened than the one for 3.0Å. This indicates, as expected, a greater level of
delocalization/hybridization, and the total transmission peak integral (centered in 0.3 eV)
is anyway greater for 2.7Å than for 3.0Å. Thus the matter is far more complicated than
the simple Simmons’ model, even if it was useful in understanding the fact that there are
barriers between the contacts and the molecule, and they are more thick if the distance is
increased.

8.3.2 Device orbitals (MPSH) and contacts distance
The results obtained previously regarding the DOS and the T (E) are well explained in
therms of system orbitals. In this section I consider the so called Molecular Projected
Self-Consistent Hamiltonian (MPSH), that corresponds essentially to a projection in the
real space (thus a real space representation) of the Hamiltonian of the system, that
is evaluated self-consistently. Notice that the molecular Hamiltonian is the quantum
mechanical operator representing the total energy of the system, and its eigenvalues are the
possible energy levels of the system under study. Instead its eigenstates are corresponding,
in real space (i.e. when “projected” in real space), to iso-energetic surfaces (once the
energy is fixed), i.e. to the molecular orbitals; where “orbital” indicates the electron cloud
in which it is highly probable to find the electron, i.e. the squared magnitude of the
system electron wave-function. In other words the MPSH can be achieved by projecting
the self-consistent Hamiltonian onto the Hilbert space spanned by the basis functions of
the atoms in the central scattering region [148], i.e. the C60 molecule, eventually with
leads. Notice also that the eigenstates of the MPSH are associated with the poles of the
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Green’s function (section 5.5) and roughly correspond to the transmission peaks in the
transmission spectrum [148]. The equilibrium MPSH were inspected for all the considered
distances. I report here only few interesting cases to be compared in order to have an
insight of the physics of the device. For a distance of 5.4Å, reported in figure 8.11, the
HOSO and LUSO MPSH are both extremely localized, the first around the contact only,
the second around the fullerene only. This means that an applied bias can cause a current
flow only if the electron are transmitted through a barrier, that has a thickness of the
order of the contact-fullerene distance (actually less since the wave-functions envelope the
atomic nuclei). This explain the extremely small transmission probability, since no other
possibility of exchange of electrons between the molecule and the contact is possible. This
is a weakly coupled case.
Instead in figure 8.12 the HOSO for a distance of 4Å and for a distance of 3Å are reported,
while in figure 8.13 the LUSO for the same two distances are reported. At a distance of
4Å the situation is already very different for the HOSO if compared to the 5.4Å case. It
presents indeed a better delocalization. Nevertheless decreasing the distance at 3Å the
delocalization is far more accentuated, explaining the larger broadening in the equilibrium
transmission spectrum, and the greater current (see next section). The same happens
for the LUSO level, that at 4Å is merely delocalized while at 3Å it is very delocalized,
creating possible transmission channels between the two contacts without the necessity of
changing state.
The MPSH analysis carried out in this section confirm the reasonable and intuitive result
already highlighted in the previous section and further confirmed in the next ones: the
closer are the contacts, the greater the delocalization, thus the broadening and thus the
current.
As mentioned previously the criterion for selecting the contact distances in the case of
a MES can be to maximize the sensitivity to the target analyte. It can be now intuited
that if the system are more delocalized, i.e. if the distance between the C60 and the
contacts is reduced, then they are more interacting with the ammonia, simply because
they occupy a larger space region, leading to a more probable interaction between the
sensor and the ammonia orbitals. Remember that interaction between orbitals is a so
called steric effect. Actually the functioning principle is more complicated than this since
all intermolecular interactions must be considered (i.e. also dipole-dipole interactions), but
the fact that a greater region of space is occupied by the sensor orbitals implies a (slightly)
larger interacting region, from the standpoint of electron clouds repulsion (van der Waals
interactions). The analyses carried on in the next sections will confirm that the sensor
sensitivity is indeed increased when the contact distances are reduced.
The other advantage of using closer contacts is that, as mentioned previously, they lead to
a larger current, thus more “handy” with pretty conventional circuits, and thus avoiding
complicated and ingenious architectural solutions. This can be relevant in the total cost
and complexity of the final sensor with its conditioning circuit.
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(a) HOSO

(b) LUSO

Figure 8.11: MPSH of the HOSO (Highest Occupied System Orbital) and the LUSO (Lowest
Unoccupied System Orbital) of the C60 molecular wire with molecule-contact
distances of 5.4Å. The two colors (teal and fuchsia) are referred to the phase
(negative or positive) of the MPSH. The figure was generated by ATK software
[125], [126] (used for performing the simulations).
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(a) 4 Å

(b) 3 Å

Figure 8.12: MPSH of the HOSO (Highest Occupied System Orbital) of the C60 molecular
wire with molecule-contact distances of 4Å and 3Å, respectively. The two colors
(teal and fuchsia) are referred to the phase (negative or positive) of the MPSH.
The figure was generated by ATK software [125], [126] (used for performing the
simulations).
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(a) 4 Å

(b) 3 Å

Figure 8.13: MPSH of the LUSO (Lowest Unoccupied System Orbital) of the C60 molecular
wire with molecule-contact distances of 4Å and 3Å, respectively. The two colors
(teal and fuchsia) are referred to the phase (negative or positive) of the MPSH.
The figure was generated by ATK software [125], [126] (used for performing the
simulations).
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8.3.3 Physisorption, chemisorption and equilibrium distances

In section 7.1.1 the concepts of physisorption and chemisorption were introduced. Consider-
ing that the electrodes are gold (111) surfaces, such concepts can be useful in understanding
the anchoring of the C60 molecule to the contacts. In literature there are theoretical DFT
calculations [144] and experimental data [143] showing that the C60 can be adsorbed
onto a gold (111) surface, and in particular, when it is allowed to relax, it is adsorbed by
chemisorption with the creation of covalent bonds between the carbon and the contact
gold atoms with a bond length of 2.4Å (that corresponds to a gold-carbon perpendicular
distance of about 1.8Å) [144], [143]. Moreover in [143], it was experimentally verified
that there are two more favourable orientations of the C60 w.r.t. gold surface when the
chemisorption is completed. These consist of a C60 molecule with a hexagon side toward
the gold surface centered in a vacancy (at the center of the hexagon there is a vacancy
and not a gold atom) and a C60 molecule with a pentagon, i.e. carbon-carbon 6:6 bond,
toward the gold surface. Between the two orientations the most stable is the first one
[143], i.e. the one with an hexagon toward the gold surface (centered on a vacancy); and at
room temperature the 60% of the C60 fullerenes were experimentally found to be in such a
configuration. This is confirmed by theoretical DFT calculations on adsorption of fullerene
C60 on gold (111) surface [144]. Such a geometry is shown in figure 8.14. This means that
it has no much sense forcing a lesser distance than 2.4Å since it would lead the C60-gold
wire to operate in an non-equilibrium condition, thus making easier to have geometry drift
in time. Indeed if the system is not at equilibrium, it has a potential energy that is greater
than the minimum one (by definition of equilibrium geometry/situation), that implies that
a smaller amount of energy is enough for example to accomplish the fullerene desorption,
or anyway a modification in the geomtery. For this reason the minimum distance between
C60 and contacts was fixed to 2.4Å, being as experimentally and theoretically verified, the
equilibrium chemisorption distance. Actually, I decided to consider initially two geometries,
both at 2.4Å. The first was a geometry in which the same casual orientation of before
(previous sections) was considered for the C60; the second, a geometry with the above
mentioned most stable configuration for chemisorption, i.e. the one with hexagons toward
the gold (111) face. This choice was motivated by the fact that previously no special
orientation of the fullerene was considered, and thus the same (non-special) orientation
was still considered with the reduced contact-C60 distance at 2.4Å, in order to be sure
that possible differences in the current and in the sensor sensitivity (see later) were only
due to the contact-C60 distance. Then the special orientation with hexagons toward the
gold surface was considered, in order to verify possible variations in the current and in the
sensor sensitivity due to the fullerene orientations. It was verified that the latter geometry
is the one providing the best performances for the sensor both concerning the current (it
was generally higher) and the sensitivity (it was higher on average). These results are
further considered and commented in the next sections.
In figure 8.15 is reported the equilibrium transmission spectrum at all distances considered
previously and also at 2.4Å with both the casual and the hexagon on gold surfaces
orientations. The comments are similar to the one already did previously: decreasing the
distance the broadening increases, and generally peaks are less high and sharp, nevertheless
leading to greater transmission since they are broadened. An interesting feature is that
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the hexagons on gold surfaces orientation presents more broaden peaks w.r.t. the casual
orientation one. This can be explained considering that in such a configuration strong
covalent bonds are created, and thus a greater hybridization/delocalization of the wave-
functions occurs, leading to greater broadening. Moreover a small transmission peaks shift
toward lower energies is present. It is believed to be linked to a small shift toward lower
energies of the system energy levels due to a more stable configuration.

(a) (b)

(c) (d)

Figure 8.14: Equilibrium geometry for chemisorption with gold-carbon bond length of 2.4Å,
and with the hexagons on the gold surfaces. Top-left (a): the C60 orientation.
Lighted up atoms are the ones of the first contact layer, notice that the fullerene
hexagon is centered on a vacancy. Top-right (b): the distance of 2.4Å is measured.
Bottom-left (c): side view. Bottom-right (d): top view. The figure was generated
by ATK software [125], [126] (used for performing the simulations).

8.3.4 C60 orientation and geometry optimization
From the discussion of the previous section it is evident that since the distance of 2.4Å
corresponds to the creation of covalent bonds, higher distances, like the others already
considered, corresponds to a transition between chemisorption and physisorption and to
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Figure 8.15: Device equilibrium transmission spectra with different molecule-contact distances:
2.4Å (both with casual/non-special orientation and with the hexagons on gold
surfaces one), 2.7Å, 3.0Å, 3.3Å, 3.6Å, 4.0Å, 5.4Å (EHT method).

the physisorption cases. Moreover as mentioned in section 7.1.1 both the chemisorption
and the physisorption have an equilibrium distance. In particular from theoretical and
experimental data in literature, namely [144], [143], the chemisorption equilibrium distance
is 2.4Å. In order to fast verify that, and in order to understand the order of magnitude of
the physisorption equilibrium distance, the following geometry optimization calculations
were performed. First of all, since the literature data were already very clear and detailed,
it was not necessary to carry out a complete and accurate geometry optimization, but
instead only a fast check. To this purpose, even if usually one should perform geometry
optimization calculations with the same electronic structure calculation methods that
wants to use for performing the rest of the simulations, I decided to perform the geometry
optimization with the force field method in ATK. My choice was justified by the fact that
the aim was not to carry out a complete and accurate calculation, but instead a fast,
immediate check, of the well documented literature results [144], [143]. The geometry
potential energy minimization calculations were performed with the default settings, using
force field and allowing to relax the fullerene (carbon atoms) and the first two gold layers
(per contact). For brevity I will not report here the images and figures generated, since
they would be many (a video was realized for each simulation by putting together the
various frames). Nevertheless the results were the following:

• For the initial geometry with distance 2.4Å and with hexagons toward of gold surfaces
a small relaxation of the geometry occurred. The electrodes resulted essentially
unmodified, with only few covalent bonds among some gold atoms missing. This
was in agreement with other calculations in literature [144]. The explanation of such
missing bonds is the following: since the carbon atoms nearby the contacts create
covalent chemical bonds with the gold surface atoms, the gold atoms are less bond
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together, because electrons are involved in the other bonds [144]. This leads to have
gold atoms drift in time at room temperature, as detected in [143]. The fullerene
resulted just slightly distorted and also slightly rotated on one side. This is again in
agree with previous calculations [144] and experimental data [143]. In conclusion this
geometry resulted to be stable, with a verification with force field method. Since the
distortion of the fullerene was very small (let’s say less than 10% of perturbation w.r.t.
the initial geometry) I decided in the following to consider the initial ideal geometry.
Indeed, in theory one should optimize the geometry using the same method that
is used for the other calculations, and possibly with a good accuracy. Nevertheless
on the VLSI server it was not possible to perform DFT geometry optimization due
to RAM failure. For this reason I decided to do not rely on the force field method
and considering the (ideal) initial geometry. Moreover also in [143] it was verified
that such a geometry leads to just small distortions of the fullerene, and assuming it
undistorted should not compromise the final results of this study.

• For the initial geometry with distance 2.4Å and with casual orientation, the fullerene
resulted very distorted. It rotated strongly and resulted deformed (like a rugby
ball). Moreover on one side the molecule resulted closer to the contact while on the
other side more distant, at around 3.0Å. This is not expected to be an equilibrium
geometry.

• For all the other distances the results were similar to the previous one, but less
evident. In particular an important rotation of the fullerene always occurred. It
resulted evidently distorted (like a rugby ball). Moreover it drifted toward one of
the contacts leaving a greater distance on the other side. The more was the initial
distance between the fullerene and the contacts the less evident was this fact. It
seemed to be an equilibrium distance at around 3.07Å. In my opinion this could
correspond to the equilibrium distance for physisorption of the fullerene on gold (111).
Nevertheless more accurate calculations should be performed to confirm this.

In conclusion, the geometry optimization with the force field method confirmed that
the most stable configuration, among the various considered in this work, was the one
with chemisorption, bond length 2.4Å, hexagons toward gold surface. All the other
configurations resulted less stable. In particular a C60-contact distance of about 3.07Å
resulted to likely be another stable point, even if less stable than the above mentioned one
(indeed major modifications occurred in the geometry in such a case). In the following
sections, in addition to the previously considered distances also the 2.4Å distance will be
considered, and for that distance both the casual orientation of the fullerene and the one
with hexagons on gold surfaces will be considered. The first one to verify that possible
current/transmission variations and sensitivity variations were due to distance only (indeed
this orientation is equal to the others considered previously); the latter to verify if any
variation/amelioration occurs when the most stable orientations is considered.
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8.3.5 I-V characteristic and contact distance
The current voltage characteristics with the different contact distances considered previously
are reported in figure 8.16. Notice that in appendix D.4 it is reported also a plot with the
I-V characteristic of the two orientations of the fullerene for 2.4Å. They are evaluated
using the EHT method, indeed it was not possible to carry out non-equilibrium calculations
using DFT methods. In this regard see also section 8.5. The ATK settings used to perform
these simulations are reported in table 8.5.

Table 8.5: ATK-SE (EHT) non-equilibrium I-V characteristics calculator settings. If not differ-
ently stated, all the non-equilibrium I-V characteristic simulations were performed
with these settings.

Analysis: IV-curve
Voltage bias
range

V0 = 0 V, V1 = 2 V,
Points = 11

Energy
range

E0 = −2 eV, E1 = 2 eV,
Points=101

k-point
density

Grid type: Monkhorst-Pack
na = 7, nb = 7

Energy zero
parameter Average Fermi level

Infinitesimal 1e-06 eV
Self-energy
calculator Recursion

As expected, the current increases if the distance between the C60 and the contacts is
decreased. This was already clear from the equilibrium analysis performed in the previous
sections on the transmission spectra and the MPSH. The reason for that is expected to be
in the barriers electrons have to overcome between the contacts and the fullerene.

In order to verify if the current dependence with the contact distances were exponential,
as it could be for coherent tunneling through potential barriers (Simmons’ model), the
current values at fixed voltage values for the different considered distances were interpo-
lated with the exponential function of eq. (8.1). Also the case of 2.4Å was considered,
nevertheless only the casual orientation was considered in order to compare it with the
other distance cases (that indeed have casual/non-special orientation). The result for
VD = 1 V is reported in figure 8.17, while the results for VD = 0.4 V and VD = 1.6 V
are reported in appendix D.4. The calculations were performed (and the figures were
generated) with a MatLab code analogous to the one of appendix D.3 (with just different
numerical values to be interpolated). In all the three cases the current showed a clear
exponential dependence on distances with contacts, thus confirming that in the coherent
transport regime the main obstacles to conduction are the barriers between the contacts
and the fullerene. This is reasonable by considering the great delocalization of fullerene
orbitals (see also MPSH), that indeed allow electrons to move freely across the fullerene,
thus being no a relevant obstacle to conduction. Of course depending on the considered
molecules other situations are possible. The important point is that, since the exponential
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Figure 8.16: Current-voltage (I-V ) characteristics for the various considered distances between
the contacts and the C60 fullerene: 2.4Å (both with casual/non-special orientation
and with the hexagons on gold surfaces one), 2.7Å, 3.0Å, 3.3Å, 3.6Å, 4.0Å, 5.4Å
(EHT method).

dependence of the current on the contact distance, the main design parameter for the
C60-based MES is exactly such a distance, because it is the “bottleneck” determining the
main transport features. As long as the channel is a single C60 molecule, the main design
degree of freedom strongly determining the transport is indeed such a distance. This
justifies the great attention in fixing it.
For the sake of completeness the analysis was then extended to all the considered bias
points from 0V to 2V, the result is reported in figure 8.18. If the bias point is fixed
the independent variable is only one, namely the distance between the fullerene and the
contacts. But since here the bias is made varying, the independent variables are two: the
contacts distance and the bias voltage, thus leading to a surface plot in a 3D plot, like in
figure 8.18. The red dots are the simulated points while the surface it created by merging
the interpolating curves at all the considered bias. The general trend for all the voltages is
again exponential, decaying fast as the contacts distance is increased. In appendix D.4,
figure D.21, is reported the same graph of figure 8.18 with voltages only up to 0.8V, in
order to enlarge that region and highlight the good exponential trend for all the bias point.
This is an additional confirmation of what stated above. The MatLab code generating such
3D plots is reported in appendix D.4.1.

8.3.6 Geometry for maximum sensitivity
As mentioned in the previous sections an important criterion for the choice of the final
geometry of the MES is the sensitivity to ammonia. In this optics, the distance that
maximizes the sensor sensitivity to the target (ammonia), if there is one, should be
preferred. Indeed it would be the best case, in which a larger current modulations occur
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(a)

(b)

Figure 8.17: Dependence of current values on the distance between the fullerene and the
contacts for a fixed voltage: VD = 1 V. The exponential fitting performs well.
Top: linear scale, bottom: semilogarithm scale.

due to the presence (and possibly in which concentration) or not of the target. In order
to check if there is and what is the geometry with maximum sensitivity to the ammonia,
the I-V characteristics in presence of 1, 3 and 5 NH3 molecules were calculated with EHT
method (in section 8.5 is reported the reason of this choice - the settings are the same of
table 8.5). By way of example, in figure 8.19 are reported the I-V characteristics for the
case of a distance of 2.7Å. It is noticeable a variation depending on the concentration of
ammonia, i.e. on the number of ammonia molecules.
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Figure 8.18: Device current as a function of the applied voltage and the contacts distance. Red
dots are the simulated points, while the surface corresponds to the exponential
interpolation. Purple dots are those below the semi-transparent surface. A general
good agreement is present (EHT method).

Figure 8.19: Current-voltage (I-V ) characteristics for distances between the contacts and the
C60 fullerene of 2.7Å; the cases with 0, 1, 3, and 5 NH3 molecules are considered
(EHT method).

In order to compare the various geometries/distances with contacts, the absolute variations
|∆ID| defined as:

|∆ID(VD)| = | ( ID(VD)|ammonia − ID(VD)|only fullerene ) |

were evaluated, for all the bias points VD, for all the distances and for all the concentrations.
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In figure 8.20 are reported the absolute variations in µA for the case of 2.7Å of distance
between the contacts and the fullerene. The other graphs for the other considered distances
are reported in appendix D.4. In figure 8.21 the interpolated I-V characteristics and the
interpolated absolute variation |∆ID| are reported. They are obtained by spline (3rd order
cubic) interpolation of the previous plots.

Figure 8.20: Absolute variations of current due to the presence of 1, 3, 5 NH3 molecules, for
distances between the contacts and the C60 fullerene of 2.7Å (EHT method).

A good current variation and sensitivity is present, but it depends strongly on the considered
bias point. For example at VD = 0.8 V, the variations of current in presence of ammonia
are: 147 nA for 1 NH3 molecule, 0.83µA for 3 NH3 molecules and 1.17 µA for 5 NH3
molecules. It is thus possible to detect this variations with a suitable conditioning circuit.
Instead for example at VD = 1 V the variations of current are very small, making very
hard the detection. For VD = 1.8 V the variations are: 1.59µA for 1 NH3 molecule,
2.53µA for 3 NH3 molecules, and 3.28µA for 5 NH3. These variations are detectable
with quite conventional electronics, thus making possible a low-cost detection. In general
for all the considered distances (see also plots in appendix D.4), there are bias points in
which the current variations are greater, thus making easier the detection, and others in
which this do not occur. Nevertheless the variations are not so abrupt, so it is possible
to think of selecting a suitable bias point to get the desired current variation without
having problems due to the bias point drift. This is important, indeed it is the first
(non-equilibrium) confirmation that the ammonia C60-based sensor can potentially work,
with a quite standard and low-cost conditioning circuit.
From the current modulation analysis it was clear that, in general, by decreasing the
distance the sensitivity is increased, indeed greater absolute variations of currents occurred.
This result is in contrast to what stated and assumed in [33], in which the authors assumed
for grant that the sensor sensitivity was increased for increasing distances with contacts.
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(a)

(b)

Figure 8.21: Top (a): Interpolated current-voltage (I-V ) characteristics for distances between
the contacts and the C60 fullerene of 2.7Å; the cases with 0, 1, 3, and 5 NH3
molecules are considered (EHT method). Bottom (b): Interpolated absolute
variations of current due to the presence of 1, 3, 5 NH3 molecules, for distances
between the contacts and the C60 fullerene of 2.7Å (EHT method).

Nevertheless they based their statement on literature studies that are performed on 1D/2D-
FET devices used as gas sensor. In 2D devices it is intuitive thinking that by increasing the
distance between the two contact the sensitivity increases, indeed in doing so it is increased
the interaction surface with the target chemical species (think to a sheet that in lengthened,
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its area increases). Nevertheless, it is not said that a molecular device undergoes to the
same rule. And in particular in this case, the simulations performed showed the opposite
trend: i.e. the absolute sensitivity decreased when the distance was increased. In order to
have a concise and overall vision of the final result of this analysis the graph of figure 8.22
was conceived. In this plot the number of ammonia NH3 molecules considered is on the
abscissa axis, it is 1, 3, or 5. On the ordinate axis there is the overall absolute variation
of current |∆ID|, averaged over all the considered bias points in the range [0,2] V. It is
evident that the more the distance is decreased the larger is the current variation, and
thus the absolute sensor sensitivity is increased. A relevant improvement occurs between
the 2.7Å distance case and the 2.4Å case, and a further unexpected improvement if the
chemisorption orientation of the C60 is considered (blue line). Indeed a significant and very
important improvement of the absolute average sensitivity is obtained by simply rotating
the fullerene in its favoured orientation.

Figure 8.22: Mean absolute variations of current, averaged over the range [0,2] V of applied
voltage, due to the presence of 1, 3, 5 NH3 molecules, for all the considered
distances between the contacts and the C60 fullerene (EHT method).

In order to have a deeper insight on how the sensitivity changes with the contact distances
and with the C60 orientation the case of a single ammonia molecule was considered at
all distances. In figure 8.23 are reported the various absolute variations of current for all
the distances, and for the chemisorption equilibrium orientation of the fullerene. Even if
the the differences among the various cases are well marked at high bias, above 1V, this
is not so at low bias, below 1V. In the latter range of voltages there is still the trend
of increasing sensitivity for decreasing the distance, but it is less evident and above all
the case of chemisorbed C60 fullerene (black dashed curve) corresponds to an average
less sensitivity w.r.t. the casual orientation. In addition at bias 0.4V and 0.8V it is less
favourable than larger distances. Notice that analogous plots for the cases of 3 and 5
ammonia molecules are reported in appendix D.4, analogous considerations hold true, even
if an amelioration of the chemisorbed geometry performances is present.
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Figure 8.23: Absolute variations of current due to the presence of 1 NH3 molecule, for all the
considered distances between the contacts and the C60 fullerene (EHT method).

So, to check the “low-bias” sensitivity average variation w.r.t. contact distances and C60
orientation a graph similar to the one of figure 8.22 was conceived, in which the averages
are considered only on the bias range [0,1] V. It is reported in figure 8.24. It shows again
that in general the sensor sensitivity to ammonia is increased if the contact distances are
reduced. Nevertheless in the bias rang [0,1] V the highest average sensitivity is obtained
with a casual orientation of the fullerene, instead than with the chemisorption equilibrium
orientation. An intuitive explanation for this (to be confirmed by calculations) can be the
following: since in the chemisorption equilibrium position some electrons of the fullerene
are involved in forming covalent bonds with the gold, they do not interact much with
the ammonia, moreover the C60 orbital orientation can be relevant in determining the
magnitude of interaction with the ammonia. These suppositions can only be confirmed
by means of analysis of the transmission channels and the MPSH. Nevertheless for the
moment this was not carried out (see later for an example of this kind of analysis).
The main point here is that decreasing the distance the absolute variation of current due
to the presence of ammonia is increased. In the overall interval [0,2] V of applied voltages
the maximum average sensitivity is obtained by means of the chemisorbed geometry at a
distance of 2.4Å and with hexagons toward gold surfaces. An extremely high improvement
of the sensitivity occurs for that geometry especially at high bias, for VD > 1 V, as evident
from the graph of figure 8.23. Instead in the range [0,1] V of applied bias the same geometry
provides best sensitivity for VD = 0.2 V and for VD = 0.6 V (in the latter case comparable
with the casual orientation at same contact distance). These two bias point are thus
optimal bias points for doing a sensor working at low bias (VD < 1 V) with such a geometry,
that has also the advantage of being the equilibrium one. The same geometry provides best
sensitivity for VD > 1 V. Nevertheless it is lacking of performances in other bias values
especially below 1V, e.g. for VD = 0.4 V and VD = 0.8 V, where other geometries present
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better performances. In addition the configuration with casual orientation (and a distance
of 2.4Å) provides best average performances over all the others for VD < 1 V. Notice that
analogous analysis carried on the 3 and 5 NH3 molecule cases, showed an amelioration of
the chemisorbed geometry sensitivity for VD < 1 V (see appendix D.4).

Figure 8.24: Mean absolute variations of current, averaged over the range [0,1] V of applied
voltage, due to the presence of 1, 3, 5 NH3 molecules, for all the considered
distances between the contacts and the C60 fullerene (EHT method).

An additional analysis was performed before choosing the final sensor geometry. It was
said at the beginning of this section that the current exponentially decreases with contact
distances, and the same trend was verified for the sensor sensitivity. For this reason the
percentage variations of current were also considered. In particular a percentage variation
was calculated as (in each bias point VD):

|∆ID(VD)| = | ( ID(VD)|ammonia − ID(VD)|only fullerene ) |
ID(VD)|only fullerene

· 100

The general and average trends (averaged over the entire bias range: [0,2] V) for the
percentage variations of current are reported in figure 8.25. It is clear that beside the
absolute variations of current due to ammonia increase by decreasing the contact distances,
the percentage ones decrease. Therefore the percentage variation of current is greater
for larger contact distances. The average percentage values are also reported in table
8.6. Notice that in this analysis, like in the previous one, the distances above 3.6Å were
not considered, since they would lead to a too small current to be reliably used with a
conditioning circuit supposed to be implemented with conventional electronic devices.
In order to have a significant improvement, i.e. greater than around 2%, of the percentage
current variations, a contact distance greater than 3.0Å should be considered. In the
hypothesis of exploiting conventional electronic devices for the conditioning circuit the
distances of 4Å and 5.4Å were not considered since they would lead to a too small current
value. Thus the only two possible distance would be 3.3Å and 3.6Å. Nevertheless it must
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Figure 8.25: Mean percentage variations of current, averaged over the range [0,2] V of applied
voltage, due to the presence of 1, 3, 5 NH3 molecules, for all the considered
distances between the contacts and the C60 fullerene (EHT method).

Table 8.6: Mean percentage current variation values, averaged over the range [0,2] V of applied
voltage, due to the presence of 1, 3, 5 NH3 molecules, for all the considered distances
between the contacts and the C60 fullerene (EHT method).

distance |∆ID|% (1 NH3) |∆ID|% (3 NH3) |∆ID|% (3 NH3)
2.4Å (hex) 7.85 % 9.56 % 9.99 %

2.4Å (casual) 5.83 % 8.39 % 11.82 %
2.7Å 7.94 % 11.52 % 16.44 %
3.0Å 11.75 % 18.31 % 29.25 %
3.3Å 32.11 % 41.39 % 45.34 %
3.6Å 103.72 % 45.34 % 56.65 %

be considered that the current decreases exponentially with contact distance and thus such
a large percentage variations corresponds to absolute variations of the current of the order
of 0.2µA ÷ 0.4 µA (see figures 8.22 and 8.24), that are less than half the current variation
at 2.4Å (of the order of 1 µA ÷ 2 µA). The latter are thus much easily recognizable by
a conditioning circuit. In addition to these considerations also what discussed in section
8.3.4 must be considered. It is indeed an enormous advantage to have an equilibrium
geometry preventing the system to time drift due to relaxation. This means that if an
energy exchange occurs for some reason, it is very unlikely that the device geometry is
significantly perturbed. Moreover there is an higher probability of obtaining the desired
geometry during the fabrication. Indeed as mentioned in the introductory chapter, process
variations are at the moment the main limits in successful fabrication of such devices, since
they are responsible of the low fabrication yield.
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8.3.7 The final C60-wire geometry
In conclusion, it was chosen to fix the sensor geometry to a contact-fullerene distance
of 2.4Å, with the fullerene hexagons on gold surfaces. This configuration, beside the
above mentioned drawbacks has the advantage of maximizing the absolute (but not the
percentage) sensitivity to ammonia and above all to be the most stable configuration,
leading to higher expected reliability from technological standpoint. In addition it provides
enough large current to be easily interfaced with conventional electronic devices supposed to
implementing the conditioning circuit. This is not the only possible choice, and depending
on the specifications, after the analysis performed in this section, one could choose another
structure having better performances for that specific interest.

8.4 Equilibrium properties of the final C60-wire sen-
sor

At the end of the previous section it was chosen the final C60-based gas sensor geometry,
and it corresponds to a distance between the contacts and the fullerene of 2.4Å and
to an orientation of the fullerene such that its hexagonal faces are pointed toward the
electrodes surfaces and centered on a gold vacancy. This geometry is a good trade-off
between stability and ammonia sensitivity as mentioned previously. In this section the
equilibrium properties of such a system are considered and briefly analyzed. The equilibrium
transmission spectrum for different ammonia concentrations is reported in figures 8.26
(DFT method) and 8.27 (EHT method). The two methods provide a compatible picture of
the transmission properties of the sensor. With both the methods there are differences in
the transmission peaks due to the presence of ammonia and also with different ammonia
concentrations. This feature is expected to hold true also in non-equilibrium, i.e. for the
I-V characteristics. Actually this was already verified in the previous section where the
I-V characteristics and their sensitivity to ammonia were already investigated for all the
considered geometries, and in particular also for the selected one.
In appendix D.5 is reported also a comparison between equilibrium transmission spectra
(without the ammonia) calculated with both the methods (DFT and EHT). The DOS are
not reported for brevity, nevertheless they present differences, but as reported previously
for the case of the initial 2.7Å geometry, it is difficult to have precise insight by looking at
them, while the aforementioned and commented equilibrium spectra provide. Notice also
that, in the approximation of having a rigid T (E) independent on applied bias, from the
equilibrium transmission spectrum of figure 8.27, it is possible to predict a good ammonia
sensitivity due to significant transmission spectrum peak modulations at:

• low bias, slightly above the zero, due to zero-centered transmission peak modulation.
In the next section it will be clear that this is the reason for the sensitivity local
maximum at VD = 0.2 V.

• greater biases, sensitivity oscillations are probable since there is, at right-side of the
zero, a sequence of peaks that are modulated and then spaced by low transmission
values. In the next section it will be clear that this is the reason for the sensitivity
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local maximums at VD = 0.8 V and VD = 1.2 V.

• bias around 2V for which the left-side very modulated peaks at around −0.8 eV enter
the bias window. This will be confirmed in the next section.

Figure 8.26: Equilibrium transmission spectra of the final ammonia sensor geometry, in the
cases of 1, 3, 5 NH3 molecules (DFT method).

Figure 8.27: Equilibrium transmission spectra of the final ammonia sensor geometry, in the
cases of 1, 3, 5 NH3 molecules (EHT method).
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8.5 EHT non-equilibium calculations validation
It was said several times throughout the chapter 3 and also in highlighting the general
methodology in section 7.2, that the usage of semi-empirical methods, such as EHT one,
should be somehow validated. Unfortunately during this work it was not possible to carry
out non-equilibrium simulations with the DFT method, due to a RAM failure on the
VLSI laboratory server (at Politecnico di Torino) in which all simulations were performed
(even with settings aimed in saving memory during execution). For this reason all the
non-equilibrium simulations, such as the I-V characteristics, reported in the present work
are performed by using the EHT methods. Nevertheless, in general, it not said such a
method to be reliable, especially in presence of intermolecular interactions (see section 3.7).
For this reason the non-equilibrium simulations with EHT method should be somehow
validated, and this is the attempt of this section.
In general the transmission spectrum T (E) is a function of the applied bias, nevertheless if
the applied bias is small it can be at first approximation assumed to be voltage-independent
(sections 4.4, 5.15.1). In the reasoning carried out in this section the following assumption
was made: the transmission spectrum T (E) does not undergo to substantial variation
w.r.t. equilibrium when a bias is applied. As mentioned, the smaller the bias, the better
this approximation is. Then, since only coherent transport is considered, the drain current
can be calculated by means of the Landauer’s formula eq. (5.75); that is: the current is
proportional to the integral within the bias window of the transmission spectrum. Another
assumption that was made is the following: the Fermi-Dirac’s distribution “tails” are
inessential and thus neglected; that is: the integrals are evaluated between the drain and
the source Fermi levels without considering the thermal broadening/spreading over energy
of the Fermi-Dirac’s functions.
With these approximations in mind a measure of the accuracy of the non-equilibrium
EHT simulations w.r.t. (expected) DFT ones can be estimated as follows. Different bias
windows are considered, for example with a step of 0.1V, i.e. VD=0, 0.1, 0.2, 0.3, ... (V).
Then for each considered bias window the integrals, with and without ammonia molecules,
and with both the DFT and the EHT methods were considered. Then the difference in
such integrals were considered, i.e. the integral over the considered bias window of the
DFT transmission spectrum without ammonia was subtracted to the integral over the
same bias window of the DFT transmission spectrum with one NH3 molecule, and so on
for each bias window. The same was did for the EHT method. The results of such a
differences are reported in figure 8.28, for the case of 1 NH3 molecules. The cases of 3 and
5 ammonia molecules are reported in appendix D.6. On the abscissa axis, in this plots,
there is the applied voltage, i.e. the bias window width. Instead on the ordinate axis the
previously mentioned differences of the integrals over that bias window are reported. A
curve (blue) is referred to DFT method, while the other (red/orange) is referred to EHT
method. The integrals were performed with trapezoidal numerical method in MatLab, over
the bias windows from 0.1V to 4V with a step of 0.1V. The bias windows of interest (in
the range [0,2] V) are highlighted with the black ellipsoid. In appendix D.6 is reported the
used MatLab code.
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Figure 8.28: Integral difference of the final ammonia sensor equilibrium transmission spectra
in the cases of 1 NH3 molecule. The results obtained with the two methods: DFT
(blue curve) and EHT (red/orange curve) are compared. The ellipse is around the
considered range of bias windows, i.e. up to 2V. The integrals were performed
with trapezoidal numerical method in MatLab, over the bias windows from 0.1V
to 4V with a step of 0.1V.

Two are the important results of this analysis:

1. The DFT spectrum differences (blue curve) are always greater than the EHT ones.
This means that the non-equilibrium EHT simulations are expected to be all an
underestimation of the real sensor sensitivity. This fact is likely intimately linked to
the fact that EHT method does not explicitly account for intermolecular interaction,
like the DFT instead does (remember that Grimme DFT-D2 correction was used).
Despite of this also the EHT method is able to capable differences due to the presence
of ammonia, but they are expected to be less evident than the actual ones.

2. There are some values of bias voltage for which the two methods are expected to
provide very close non-equilibrium values. For example with reference to the figure
8.28 this happens for VD of the order of 0.2V, 1.4V, and 1.8V. This can be a good
criterion of choice for the bias point. In particular if there is a bias point for which
the sensor has a good sensitivity to ammonia, and moreover DFT non-equilibrium
results are expected to be in agreement with the EHT ones, then it is expected the
EHT previsions to be accurate, or close to reality. Notice that since this analysis was
based on the assumption of having a bias independent T (E), and this is good only
for small biases.

In conclusion, it is meaningful considering EHT simulations for the non-equilibrium case,
with in mind the two important remarks (1.) and (2.) of above. In particular the
aforementioned remarks are useful in determining an operating bias point for the MES.
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8.6 Non-equilibrium properties and I-V characteris-
tics

The I-V characteristics obtained for the final sensor geometry, with 0, 1, 3, 5 ammonia
molecules, are plotted in figure 8.29 (a) together with their spline (3rd order cubic) inter-
polations (b). The corresponding absolute differences in current, evaluated as previously
explained, are instead reported in figure 8.30 (a), together with their spline (3rd order
cubic) interpolation (b).

Considering the previous remarks about the choice of bias point, see previous section
8.5, a very good candidate can be VD = 0.2 V. Indeed it is enough small to ensure as a
first approximation a T (E) independent on the bias, and thus, accordingly to figure 8.28 a
good correspondence between EHT and DFT method. Other possibilities, according to
figure 8.30 can be voltages above 1.4V, where, especially for the case of a single ammonia
molecule there is an high sensitivity of the sensor to ammonia. Noticing that in the graph
of figure 8.28 it is expected having an actual sensitivity (DFT) greater than the predicted
one by the EHT, also other bias points could be very likely appropriate. Nevertheless from
the EHT analysis it could be very hard quantifying exactly the actual entity of the real
current variations. This is the reason why I mentioned that the 0.2V can be instead a
good choice.
In order to choose the bias point, also the sensor selectivity should be considered. Indeed
in this way it is possible to choose a bias voltage such that the ammonia sensitivity
is maximized and at the same time the sensor sensitivity to other atmospheric gases
is minimized. This kind of analysis is carried out in the next sections. Nevertheless I
anticipate since now that such a selectivity and specificity analysis will show a failure
in the ammonia C60 sensor, revealing that it is equally sensitive to ammonia and other
atmospheric gases.
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(a)

(b)

Figure 8.29: Top (a): Current-voltage characteristics for the final sensor geometry, the cases
with 0, 1, 3, and 5 NH3 molecules are considered (EHT method). Bottom (b):
Interpolated (cubic spline) current-voltage characteristics for the final sensor
geometry, the cases with 0, 1, 3, and 5 NH3 molecules are considered (EHT
method).
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(a)

(b)

Figure 8.30: Top (a): Absolute current variations for the final sensor geometry, the cases
with 0, 1, 3, and 5 NH3 molecules are considered (EHT method). Bottom (b):
Interpolated (cubic spline) absolute current variations for the final sensor geometry,
the cases with 0, 1, 3, and 5 NH3 molecules are considered (EHT method).

8.6.1 Sensitivity to different NH3 orientations
Intermolecular interactions (see section 3.7) are supposed to be at the basis of the working
principle of the considered MES. Nevertheless they are anisotropic interactions, i.e. they
depend on the relative orientation of the two considered molecules, namely the C60 channel
and the ammonia NH3. In order to verify this and to quantify (within the EHT method
limits) such anisotropy, the following simulations were performed. The ammonia is a polar
molecule, with the nitrogen more electronegative if compared to hydorgens. This implies
an electron orbital/cloud shifted toward the nitrogen, that is: on average the electrons will
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spend more time close to the nitrogen atom than close to hydrogen atoms [107], [108]. For
this reason a small negative charge δ− arises nearby nitrogen and small positive charges δ+

arise nearby the hydrogens. This makes the NH3 molecule polar, and this fact can affect
the transport through the sensor, since it will cause different electron orbitals interactions.
In particular intermolecular and steric effects (arising from the repulsive forces between
electron clouds/charges) can be significantly dependent on the orientation of ammonia
molecule. This is exactly what happens leading to slightly different responses, as evident
in figure 8.31, where the I-V characteristics of the sensor with two different ammonia
orientations are reported in terms of current (a) and absolute current variations (b) . In
this case the absolute variations were not assumed in magnitude, in order to highlight if
the current is increased of decreased depending on the orientation of ammonia.
The current variations are thus evaluated accordingly with the following formula:

∆ID(VD) = ID(VD)|ammonia − ID(VD)|only fullerene (8.2)

thus a positive ∆ID indicates an increased current w.r.t. the case with no ammonia, and
vice versa a negative ∆ID current indicates a decreased current. Notice that at low bias, i.e.
for VD < 1 V the two orientations lead to different trends in the current. In particular in
the case of nitrogen atom pointing down toward the fullerene the current is decreased, while
in the case of hydrogens pointing down toward the fullerene it is increased. An intuitive
explanation for this can be that due to the repulsive forces occurring in the first case (N
down) the fullerene electron clouds are displaced (flattened), thus probably reducing the
transmission due to transmission channel inhibition (like a bottleneck due to repulsive
force between electrons and the negative N charge). Vice versa the hydrogen positive
charge attract the fullerene orbitals thus making probable an enhancement of transmission
channels. This hypothesis nevertheless is obviously too simple, indeed it does not explain at
all the great increased of current obtained for high bias, Vd > 1 V. Notice that it is not said
a priori that for this range EHT simulations are accurate, indeed the bias is already enough
large to possibly make non-valid the analysis of section 8.5. More precise DFT-based
calculations can be thus necessary to have accurate result at high bias. Nevertheless the
above reported intuition seems reasonable. But it necessitates of a more quantitative
verification, for example by means of non-equilibrium MPSH analysis, carried out together
with transmission eigenstates analysis, in order to identify the orbitals responsible of
conduction and how the ammonia modifies the transmission channels thus changing the
conductance. Nevertheless for the moment this analysis is not performed. The reason
is that for the moment the interest is above all in determining the sensor performances
in terms of selectivity and specificity, and not to gain physical insight/intuitions on the
sensor behavior. The selectivity will be investigated in the next section.
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(a)

(b)

Figure 8.31: Top (a): Current-voltage characteristics for the final sensor geometry, two different
ammonia orientations are considered, namely the one with nitrogen N down
pointing toward the fullerene, and the one in which the hydrogen atoms H are
down pointing toward the fullerene (EHT method). Bottom (b): Absolute current
variations with sign are considered for the same two cases (EHT method).

8.6.2 Selectivity to common atmospheric gases: the C60 ammo-
nia gas sensor failure

An extremely important feature for a MES is its selectivity or specificity, i.e. if it
responds, at least in some conditions (e.g. for certain bias points) exclusively or in a
well recognizable way only to the target chemical species. In order to verify the C60
fullerene gas sensor selectivity to ammonia, various non-equilibrium I-V characteristics
were evaluated by placing around the sensor molecules composing the Earth atmosphere.
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The main components of the Earth atmosphere are reported in table 8.7 along with their
percentage [149] and indications concerning their polarity [107], [108]. In the following
only N2, O2, Ar, CO2 will be considered since representing the great majority of the total
atmosphere. Table 8.7 considers dry air, in addition humidity (H2O) can be present and
for this reason it is considered. Moreover other pollutants will be considered later in this
work (CO, NO, NO2, C4H10, PbO, PbCl2, PbSO4, etc...).

Table 8.7: Major atmosphere constituents.

constituent percentage polar
N2 ∼ 78 % no
O2 ∼ 21 % no
Ar ∼ 1 % no
CO2 ∼ 0.04 % no
Ne ∼ 0.001818 % no
He ∼ 0.000524 % no
CH4 ∼ 0.00018 % no
Kr ∼ 0.000114 % no
H2 ∼ 0.000055 % no
H2O - yes

Non-polar molecules present a uniform (or better isotropic) distribution of the electron
clouds around their nuclei, so that they are neutral and no electric charge arise. For these
molecules it not necessary (at least as first analysis) to perform simulations with different
orientations, since they are, indeed, isotropic. Instead molecules like water (water vapor)
are polar. In water the oxygen is more electronegative than hydrogen and thus a slightly
negative charge appears close to it, since electrons will “spend” on average more time nearby
it. Consequently a slightly positive charge arises around hydrogens. For polar molecule
it is better to verify the changes in the I-V characteristics with different orientations,
similarly to what did previously for the ammonia. Indeed in general convective motions
of air particles can move the molecules and thus in different moments such molecules
can be nearby the sensor with different orientations. It can be also possible to perform
an adsorption study of such molecules, in order to understand what are the possible
configurations of equilibrium, that will appear if attractive forces will start the adsorption
process (see section 7.1.1). Nevertheless for the moment this analysis is not believed
necessary, since as said before it may happen that various molecules in various time
instants come close the sensor with casual orientation and with so high kinetic energy that
no adsorption occur.
Before going on, notice that in general molecules made by atoms from different elements
are polar, because the different elements will have different electronegativity. Nevertheless
in practice some can be non-polar. For example the CO molecule is practically non-polar.
Indeed even if oxygen attracts electrons more, there is a sort of compensation mechanism,
leading to a negligible electric dipole. CO is a diatomic linear molecule, and a sigma
bond (σ-bond) is present (lower energy level/orbital - see [107], [108]). This sigma orbital
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is polarized toward oxygen, thus leading to a slightly negative charge at oxygen side.
Nevertheless there are still two valence electrons in oxygen that are not involved in such
chemical bond. They both participate in creating a π-bond, that is more delocalized w.r.t.
sigma one (that occupies the axis between the two nuclei mainly). Because of electrons
repulsion (i.e. correlation) between the σ-bond electron cloud and the π-bond (it is a steric
effect) the π-bond is shifted more toward the carbon, thus compensating for the dipole
momentum, that in many practical applications is at all negligible [107], [108]. A similar
mechanism occurs also in CO2, that again presents electric dipoles that cancel each other
out, thus resulting in a non-polar CO2 molecule. Notice again that CO2 is linear, like CO,
and for this reason the dipoles cancel out [107], [108].
The various considered atmospheric gas molecules were placed at a distance of around
2.2÷2.4Å depending on the molecule and on the molecules size/shape. The range of
distances was chosen so close to the fullerene in order to ensure consistent comparisons
with the previously reported results for the ammonia, that indeed was placed at a distance
of about 2.2Å from the fullerene.
The I-V characteristics of the C60 sensor with ammonia (both orientations, namely with
N down toward the fullerene and with H down toward the fullerene), along with various
very common atmospheric gases are reported in figure 8.32 (a); while the absolute current
variations (with sign, defined accordingly to eq.(8.2) - with the different chemical species
instead of ammonia) are reported in figure 8.32 (b).
As evident from figure 8.32 the current variations due to the presence of ammonia cannot
be clearly and uniquely detected, since in all the bias points such variations are too
similar to variations due to other chemical species, making impossible the detection within
certain reliability limits. This result is in net contrast with the result reported in [33], in
which instead the authors find a good selectivity to ammonia, even in the case of other
atmospheric components. This occurs even if in [33] the authors use Quantum-Wise ATK
suite and EHT+NEGF method (as I did in this section), and if the I-V characteristics
were compatible with the one I have reported previously. It must be said that there is
an important difference between the device geometry I used in this work and the one in
[33]: the authors indeed use a transistor configuration with a gate and a gate voltage of
1V. Nevertheless considering that the ideal effect of the gate is only to suitably shift the
transmission function T (E) in energy and thus centering the bias window, in my opinion
this is not enough to justify such different results. In order to definitively clarify this point
a gate should be considered and all the simulations should be performed again, but this is
outside the purposes of this work (notice also that the distance at which chemical species
are placed around the fullerene is important and can strongly affect the results - but in
[33] such a distance is not declared making difficult a complete comparison).
Instead the main purpose of this work is to identify a general design methodology, starting
with the cheaper molecular wire solution, and only then considering the gate solution for
eventually improving the performances. In this optics, the main result of this chapter is
the method accordingly with which it is possible to design the C60-contact distances, the
method for validating the EHT non-equilibrium simulations and the method for performing
all the other secondary steps reported previously, that are anyway important to understand
the device and thus gain control on the various design parameters.
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(a)

(b)

Figure 8.32: Top (a): Current-voltage characteristics for the final sensor geometry, the two
different ammonia orientations are considered along with various atmosphere
constituents (EHT method). Bottom (b): Absolute current variations with sign
are considered for the same chemical species (EHT method).

In appendix D.7 additional graphs concerning the sensor selectivity are reported, among
which two zoomed in plots of the I-V characteristic of figure 8.32 at around 0.2V and
1.4V, two possible choice of bias accordingly with the discussion of the previous sections.
From this plots it is evident that water, CO, CO2 and N2 curves are too close to the NH3
ones. These are all very common constituents of atmosphere (a part CO), and again the
detection is not feasible. In the next section other considerations are made, and in the next
chapter the remaining steps of the general methodology of section 7.2 will be performed,
no more relatively a C60 ammonia gas sensor, but to a lead sulfate one.
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8.6.3 The C60 lead sulfate gas sensor proposal

From the analysis of the previous section, it is clear that the selectivity of the MES to
ammonia is inadequate. For the sake of completeness and in order to check if it would have
been selective w.r.t. other pollutants the following non-equilibrium I-V characteristics and
current variation analyses were carried out. All the mentioned analyses were performed
following the same methods indicated previously, and the resulting graphs are reported
in appendix D.7. In particular notice that all the chemical species were placed nearby
the fullerene at around the same distance in order to make compatible the results for a
comparison.
The sensitivity and selectivity to methane (CH4) and butane (C4H10) were verified to
be extremely modest, thus proving that the MES was unable to reliably recognize the
presence of such chemical species. The butane (C4H10) is a bulky molecule w.r.t. ammonia,
and thus it seemed that the molecular mass and above all the number of electron states
was not a discriminating factor for what is concerning the MES operation. Moreover both
these molecules are non-polar, thus increasing the suspect that the MES was able to well
recognize strong polar molecules. For this reason it was supposed a strong correlation
between the polarity of the target and the intensity of the intermolecular interactions at
the basis of the conductance modulation. Consequently other polar pollutant molecules
were take into account.
The MES sensitivity and selectivity to nitrogen oxide and dioxide (NO and NO2) were
tested, see relative graphs in appendix D.7. Both the molecules are polar and thus different
orientations were considered. It resulted that only in some bias points the current variations
were enough large to allow a feasible and easy recognition of the target chemical species.
Indeed whenever the ∆ID due to the target chemical species, in a given bias point, is
enough “far away” from the other ∆ID due to other/common atmospheric constituents, it
is in principle possible to reliably recognize the current variation ∆ID due to the target,
and thus the presence of the target. For example, for the NO, it resulted that at VD = 1 V
the ∆ID due to NO was clearly recognizable for all the main possible orientations of
NO w.r.t. the fullerene (figure D.27). Indeed in such bias point the ∆ID due to all the
orientations of NO were enough different from all the others. Notice that it is not necessary
that such a current variation is larger (in magnitude) than all the others, but simply that
it is, within a reasonable limit, different. Again with reference to figure D.27, the ∆ID due
to NO oriented with oxygen pointing toward the C60 (O down) and in “flat” position are
about 3 µA lower that the closest ∆ID due to other chemical species, namely the O2. In
the same bias point the NO oriented with N down pointing toward the fullerene, provides
a ∆ID that is different from those relative to other chemical species of at least 0.94 µA
(referred to the closest curve, i.e. water - from argon the “distance” is of about 1.7µA). In
summary, the sensor is reasonably sensitive to NO, and with a ∆ID at least “distant” from
all the others of about 1 µA, it is possible to perform a recognition of the target (NO).
Analogous considerations can be made relatively to NO2. In such a case the sensor shows
a recognizable ∆ID for example for VD between 1.6V and 1.8V (see figure D.28).
From the above analysis on NO and NO2 it seems that the C60 MES is able to recognize
the presence of polar compounds, and it seems also there is a correlation between the
atomic number of the atoms composing the polar chemical species and the sensitivity.
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An intuitive explanation for this is that the greater is the atomic number, and thus the
number of electrons, the larger will be polar charges δ− and δ+ and thus the stronger the
(essentially electrostatic) intermolecular interaction. This reasoning seems to be confirmed
also by noticing that the argon ∆ID for high bias (likely causing great polarization of argon
atom) is very large when compared to all the others. And noticing that argon has the
highest atomic number among the considered ones this intuitive reasoning seems confirmed
(also considering that intermolecular forces are greater for greater molar mass and/or
electric charge - like in ions, see section 3.7). In the next chapter a more quantitative
analysis will be presented in this regard. Notice that the argon is a noble gas, i.e. it
has a complete octect and accordingly to Lewis’ chemical bond theory it should not be
interacting. Nevertheless the interactions considered here are intermolecular van der Waals
ones, thus regarding mainly (as supposed above) polarization, like temporary (London)
or permanent dipoles of the molecules/orbitals. And in this regard it is useful recall
that London discovered the “London forces” (induced dipole moment interactions) by
experimental results on argon, thus making this hypothesis more sustained.
With this remark in mind it was decided to test the sensor sensitivity and selectivity to
heavy metals compounds, that are involving both polar molecules and atoms with high
atomic numbers (the heavy metals). If the intuition is correct, it is expected a good
sensitivity and selectivity. Among the possibilities it was chosen to test the sensor with
lead oxide (PbO), lead chloride (PbCl2) and lead sulfate (PbSO4), that correspond to the
possible toxic volatile species involving lead in atmosphere [150]. More details on such
molecules and a deeper investigation will be provided throughout the next chapter. For
the moment the focus is again on sensor selectivity. Since such chemical species are polar
then different possible orientations were considered. For PbCl2, at voltage VD = 1.4 V
the current variations due to the target (PbCl2) are well recognizable w.r.t. the other
atmospheric gases, presenting indeed enough separation w.r.t. them (see figure D.29).
Similar considerations hold true for the PbO at again 1.4V (see figure D.30).
The current variation plot relative to lead sulfate is instead reported in figure 8.33. Again
due to PbSO4 polarity, various molecule orientations were considered. They are better
considered, explained and detailed in the next chapter. Nevertheless the legend “left-right”
indicates a 180° rotation around a vertical rotation axis, such that the initial left-side
becomes the right one and vice versa. Analogous for “up-down”, while “SO down” and
“Pb down” indicate that SO4 group and Pb are pointing down toward the fullerene. At
bias VD = 0.8 V the separation between the ∆ID of all the four orientations and the
∆ID due to other atmospheric gases is enough large to make likely possible a reliable
recognition of the lead sulfate. Indeed the deviation between the “PbSO4-SO-down” and
the closest chemical species, i.e. O2, is of about 0.81µA, while the analogous between
PbSO4 and Ar is of the order of 1.7µA. These deviations should be enough to ensure a
reliable detection of the lead sulfate, whatever is the orientation. This remark, the above
intuition relative to polarity of chemical species, atomic numbers and sensor sensitivity
and selectivity are at the basis of the analysis carried out in the next chapter of this
work, relative to the investigation of the C60-based MES for the detection of mainly PbSO4.
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Figure 8.33: Absolute current variations (with sign) to lead sulfate (PbSO4) and other common
atmospheric gases. Different orientations of PbSO4 are considered (EHT method).
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Chapter 9

C60-based lead sulfate gas
sensor

In the previous chapter it was considered the C60-based MES as a gas sensor for ammonia.
Accordingly the general methodology of section 7.2, the equilibrium properties were in-
vestigated, resulting in discrete variations depending if the ammonia was present or not
and in which concentration. Then the device geometry was engineered (8.3) leading to the
final geometry detailed in section 8.3.7 (see also section 8.3.3), that is the best compromise
between maximum absolute sensitivity of the sensor to ammonia (the situation is different
for the percentage sensitivity) and stability of the structure, since it corresponds to the
expected equilibrium geometry for chemisorption of the fullerene onto the gold surfaces
of the electrodes. Finally, different equilibrium and non-equilibrium properties of such a
sensor were investigated in order to characterize it and perform a functional analysis of
the device. This highlighted a failure of the C60 ammonia MES in selectively recognizing
the presence of the target. Nevertheless additional sensitivity checks showed that it can
potentially and selectively respond to other chemical species, among which the nitrogen
oxide, nitrogen dioxide, lead chloride, lead oxide and lead sulfate (PbSO4).
The focus in this chapter is instead on the last few steps of the general methodology
introduced in section 7.2. In particular they are considered in order to carry out and
complete the design at device level of a lead sulfate MES, based on the C60 molecular
channel. Indeed, since the analysis reported in the previous chapter showed a failure in
the case of ammonia regarding the sensor selectivity, it was not particularly interesting
carry out the last steps of the design on it, while it could much more interesting doing
that for the lead sulfate. In this optics, the attempt of the present chapter is to verify,
by means of simulations, the various properties of a C60 lead sulfate gas sensor, and to
perform a possible (ideal) design at device level of such a sensor. To this purpose the
first sections are aimed in briefly summarize the same steps carried out in the previous
chapter relatively to the C60 ammonia gas sensor for the PbSO4 one, and then to apply
the last steps of the general methodology (section 7.2) to it, in order to verify its main
features and characterize it by gaining at the same time a deeper insight on its physical
principles/behaviors, to be considered as general considerations true for all gas MES.

343



C60-based lead sulfate gas sensor

9.1 The PbSO4 molecule
According with the World Health Organization report on “Health risks of heavy metals
from long-range transboundary air pollution” [150] (2007), heavy metals cadmium, lead
and mercury are still common air pollutants, being emitted mainly as a result of various
industrial activities, even if their emission were strongly reduced in the last three decades.
Although the atmospheric levels are low, they contribute to the deposition and build-up
in soils of dangerous level of toxic agents, indeed heavy metals are persistent in the envi-
ronment and are also subject to bio-accumulation in food-chains. In particular, lead is a
well-known neurotoxin [150], and lead exposures have developmental and neurobehavioral
effects on fetuses, infants and children, and elevate blood pressure in adults [150]. Even
if food is the predominant source of lead uptake in the general population, inhalation
exposure may be significant and lead emissions to the atmosphere should therefore be
kept as low as possible [150]. Lead is released into the atmosphere from natural and
anthropogenic sources, the latter because of combustion of fossil fuels from, for example,
traffic, non-ferrous metal production, iron and steel production, cement production and
waste disposal [150]. Lead concentration monitoring can be thus important already in
industrial production processes. Generally atmospheric lead is bound to particulate matter
(usually it is associated to large particles - 0.2÷ 1µm), but the main species upon emission
are chlorides (PbCl2), oxides (PbO) and sulfates (PbSO4) [150]. In this chapter a MES for
the single-molecule lead sulfate PbSO4 is considered.
PbSO4 is an ionic compound in which sulphate ion, SO2−

4 is the anion (negatively charged).
Since the charge on sulphate ion is −2q (being q the elementary charge), the charge on Pb
ion is +2q (it is the cation - positively charged), and thus the oxidation state of Pb is +2q
[107], [108]. Remember that the oxidation number, also called oxidation state, is the total
number of electrons that an atom either gains or loses in order to form a chemical bond with
another atom [107], [108]. In the case of PbSO4 such chemical bond is an ionic bond, i.e.
the electrostatic interaction between the two ions (namely Pb2+ and SO2−

4 ) is at the origin
of the chemical bond. Usually the ionic compounds tend to form a crystalline structures,
instead of single isolated molecule. As mentioned previously, in this chapter a C60-based
sensor of PbSO4 single molecules will be addressed, analogously to what did in the previous
chapter for single molecules of ammonia. Independently on the real applications of such
a device, the design procedure carried out here allows to gain important insights in the
physics and engineering of a general MES, thus being significant for the methodology, main
point of this work. In particular, studying such a structure is clarifying because of the
chemical properties of the target chemical species, i.e. PbSO4, that allow to understand
the general behavior of the C60 MES, thus providing explanation to the phenomena high-
lighted in the last sections of the previous chapter. In particular, the lead sulfate has the
distinguishing features of being polar, indeed it is an ionic compound with strong charge
localization (cation Pb is +2q while anion SO4 is −2q), involving also an heavy metal
(Pb) whose atomic number is high (82), and its investigation can be thus give answers to
the question arose at the end of previous chapter, by confirming or not the hypotheses made.
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9.2 Device structure and geometry
The first and maybe the most important step of the general methodology (section 7.2) is to
fix the MES geometry. Since the considered MES is very simple, it corresponds essentially in
determining the distances between the contacts and the C60. This corresponds, in practice,
to the design of the device. As mentioned, two main features should be considered: first,
the geometry stability and reliability, that from section 8.3 (also 8.3.4, 8.3.7) are known to
be satisfied by the geometry with carbon-gold bonds of 2.4Å and with hexagons toward
gold surfaces, and then the sensor sensitivity to the target, in this case PbSO4. In order to
verify how the MES sensitivity to lead sulfate varies with distances, an analogous procedure
to the one already described in section 8.3 was carried out with the PbSO4. The following
distances between contacts and fullerene were considered: 2.4Å (both casual and general
orientation), 2.7Å, 3.0Å, 3.3Å, 3.6Å. Moreover, for each of them, 0, 1, and 2 lead sulfate
molecules were placed nearby (at around 2.25Å) the fullerene, ensuring intersection of van
der Waals spheres in ATK graphical interface and a strong intermolecular interactions.

9.2.1 The distance from contacts
First of all, it was verified if the optimal geometry found for the ammonia gas sensor case
(section 8.3.7), were the optimal one also for the lead sulfate sensor. In order to do that an
analogous procedure to the one presented in section 8.3.6 was carried out. It resulted an
improvement of the total average sensor sensitivity if the distance between the fullerene and
the contacts was reduced. To this purpose in figure 9.1 (a) is reported the average absolute
current variation, evaluated as the arithmetic mean of the absolute current variations
due to the presence of 1 and 2 PbSO4, averaging over the half voltage range: [0,1] V.
The maximum current variation can be obtained with the minimum distance, i.e. 2.4Å,
confirming that to be the optimal geometry, for “low-bias” case. In the case in which the
entire range of voltages [0,2] V is taken into account, then for a single PbSO4 molecule the
maximum average sensitivity is achieved again for 2.4Å, while with two PbSO4 molecules it
does not. Nevertheless it is unlikely that two separated PbSO4 molecules are simultaneously
present nearby the fullerene, if their dimensions are considered (they are bulky molecules
w.r.t. ammonia for example, thus making less probable having much of them in proximity
of the sensor). Considering also the great advantage of being 2.4Å the chemisorption
equilibrium distance, it was chosen it to be the final sensor geometry also in the case
of PbSO4. In appendix E.1 additional figures are reported, with the absolute current
variations (both in absolute value and with sign) in function of the applied voltage VD.
They show clearly that even though for the average variations it holds true what mentioned
above, there are specific bias points in which the absolute variations for longer distances
are greater than the ones for 2.4Å. Nevertheless from the previous analysis on selectivity
of section 8.6.3 it resulted convenient to use the sensor at 0.8V. For that specific voltage
value the best performances in terms of current variations are obtained with the above
mentioned chosen geometry (2.4Å hexagons pointing toward gold contacts).
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(a)

(b)

Figure 9.1: Top (a): Average current variations in the case of 1 and 2 PbSO4 molecules. The
arithmetic mean is over the half voltage range: [0,1] V and considers absolute values
of the current variations. Bottom (b): Average current current variations in the
case of 1 and 2 PbSO4 molecules. The arithmetic mean is over the full voltage
range: [0,2] V and considers absolute values of the current variations.

For the sake of completeness also the percentage variations were evaluated. The average
absolute and average variations are reported in table 9.1. As in the case of ammonia the
percentage variation strongly decreases with decreasing the contact distances, resulting
in the minimum percentage variation of current for 2.4Å. Nevertheless, like done in
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the case of ammonia, it was given more importance to the absolute current variations,
since the percentage one are very favorable for large contact-fullerene distances, implying
small currents and small absolute variations, likely difficult to be detected with standard
electronic circuit/devices.

Table 9.1: Mean absolute and percentage current variation values, averaged over the range [0,2]
V of applied voltage, due to the presence of 1 and 2 PbSO4 molecules, for all the
considered distances between the contacts and the C60 fullerene (EHT method).

distance |∆ID| (1 PbSO4) |∆ID|% (1 PbSO4)
2.4Å 4.99µA 28.72 %
2.7Å 2.75µA 40.1 %
3.0Å 1.6µA 81.8 %
3.3Å 3.1µA 104.04 %
3.6Å 0.25µA 476 %

distance |∆ID| (2 PbSO4) |∆ID|% (2 PbSO4)
2.4Å 3.9µA 30.05 %
2.7Å 4.96µA 73.68 %
3.0Å 2.19µA 116.35 %
3.3Å 2.86µA 55.8 %
3.6Å 0.82µA 1314 %

Finally, the two different orientations of the C60 molecule were compared in terms of
sensitivity to PbSO4, at the chosen distance of 2.4Å. The result is reported in figure 9.2
in which the absolute current variations are reported for the two orientations in function
of the applied voltage. Notice again that, even if in some bias points the casual orientation
presents a larger sensitivity, at the above mentioned VD = 0.8 V the best performance is
obtained with the geometry with hexagons toward gold surfaces, thus being an additional
reason to choose it (considering again also the maximum selectivity to PbSO4 at that
voltage - section 8.6.3). Moreover the geometry with hexagons toward gold surfaces
presents an average better sensitivity, indeed the average current variation with such a
geometry is of around 5 µA while with the casual orientation it is only of the order of
3.8µA; while the averages over only half range are 2.6µA and 1.94µA, respectively. In
appendix E.1 is reported the same graph of figure 9.2 but with additional curves relative
to current variations due to atmospheric constituents (figure E.1), from which the superior
performances in terms of selectivity at VD = 0.8 V of the geometry with hexagons toward
gold on the casual orientation are well highlighted, thus being an important reason to
choose such a geometry.

9.2.2 The final geometry
In conclusion, the final geometry was the same of the ammonia case, i.e. 2.4Å of distance
between the contacts and the fullerene with the C60 hexagons pointing toward the gold
surfaces. This is indeed the geometry maximizing the sensor absolute sensitivity to lead
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Figure 9.2: Current variations in the case of 1 PbSO4 molecule for the casual orientation of
the fullerene and for the special chemisorption equilibrium orientation (hexagons
toward the gold surfaces). On average the latter presents better performances.

sulfate, at least in the range of voltage below 1V. Moreover it is the most stable geometry
for chemisorption thus ensuring long-term device reliability and likely less process variation
issues. As mentioned above it is moreover the best configuration for maximizing all the
sensor performances at VD = 0.8 V, being a possible choice of bias voltage also for the
maximum sensor selectivity to lead sulfate, as already pointed out in section 8.6.3.

9.3 Preliminary equilibrium properties of the final
C60-wire sensor

An analogous procedure to the one carried out in the previous chapter (section 8.4) was
carried out also in the case of the PbSO4 sensor. The DFT calculated transmission
spectra are reported in figure 9.3 while the one evaluated with EHT method in figure
9.4. In both cases variations in the transmission properties are present depending on
the presence or not of the target chemical species (PbSO4). Moreover these variations
are dependent on the concentration of PbSO4, i.e. the number of molecules. From the
equilibrium spectra it is expected a relevant variation of transmission properties, and
thus of current, already at low bias, indeed with both the methods the transmission
peaks around zero energy (i.e. around the system Fermi level since abscissa axis is the
energy minus such a level) are modulatd by the presence of PbSO4. Similarly to what
noticed for the ammonia case, differences exist between the two methods. In particular the
energy levels with EHT method are slightly shifted toward lower energies and with less
transmission in the HLG, that moreover appears slightly overestimated w.r.t. DFT method
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one. The presence of two PbSO4 molecules nearby the channel give rise to additional
transport states within the HLG in the EHT method while in the DFT one the number
of peaks in the HLG are essentially unchanged. Other peaks are subjected to similar
modifications with both the methods due to the presence of PbSO4. In the next section a
deeper analysis on integrals of such spectra will clarify differences between the two methods.

Figure 9.3: Equilibrium transmission spectra calculated with DFT method for the cases of 0, 1,
2 PbSO4 molecules.

Figure 9.4: Equilibrium transmission spectra calculated with EHT method for the cases of 0, 1,
2 PbSO4 molecules.
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9.4 EHT non-equilibrium calculations validation

By carry out an analogous procedure to the one presented in section 8.5, and under the
same hypotheses, the graph of figure 9.5 was obtained (the calculations and the plots are
realized in MatLab with a code analogous to the one reported in appendix D.6). This graph
can be useful in validating the EHT method non-equilibrium simulations on the basis of
the non-equilibrium properties expected with the DFT method, analogously to what did
in section 8.5. The EHT and DFT methods are expected to provide current variations
of the same order of magnitude for low bias, let’s say below 0.3V, and for biases until
0.7V. This is in contrast w.r.t. the ammonia case in which it always expected the EHT
method to underestimate the current variations. Around 0.8V÷1.2V, the EHT method is
expected to provide an underestimation of the current variations. This is positive since
in that range, and especially for VD = 0.8 V the sensor is also expected to present good
selectivity (see section 8.6.3, and successive sections of this chapter), i.e. to have larger
current variations with PbSO4 than with all the other common atmospheric gases. In
other words, for VD = 0.8 V the EHT curve (fig. 9.5) is below the DFT one, meaning that
the EHT method can be considered as a “worst case”, in which the current variations
are underestimated. Therefore a design carried out with such a voltage value should be
work as well even in the DFT case or better in the real case (the DFT is expected to be
more accurate, since also the Grimme DFT-D2 correction was used - table 8.1). Finally, in
between around 1.2V and 1.7V, the EHT method is again expected to overestimate the
current variations and then, from 1.7V to 2V, again the vice versa occurs.

Figure 9.5: Integral difference of the final lead sulfate sensor equilibrium transmission spectra
in the cases of 1 PbSO4 molecule. The results obtained with the two methods:
DFT (blue curve) and EHT (red/orange curve) are compared. The ellipsoid is
around the considered range of bias windows, i.e. up to 2V. The integrals were
performed with trapezoidal numerical method in MatLab, over the bias windows
from 0.1V to 4V with a step of 0.1V.
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In appendix E.2 is reported an analogous graph for the case of two lead sulfate molecules.
Analogous considerations are possible, and in particular also in this case there are bias
points in which it is expected the EHT method to underestimate the current variations and
others in which it is expected to overestimate them, and again others in which the EHT
and DFT methods are expected to provide comparable current variations. Nevertheless
in this case the EHT method generally underestimate more the current variations w.r.t.
DFT if compared with the previous case (of a single PbSO4 molecule).

In conclusion, on average, greater current variations are expected than the ones calcu-
lated with EHT method, even if in this case, depending on the bias point, the EHT method
could also overestimated the current variations. The best solution would be performing
non-equilibrium simulations with DFT method, but this was not feasible (for the same
reasons explained in the previous chapter). EHT method is nevertheless expected to
underestimate the current variations at 0.8V that was previously noticed as possible bias
point. If it would be chosen as the operating bias, it is thus expected the design to work
in a worst case approximation w.r.t. the actual device.

9.5 Non-equilibrium properties and I-V characteris-
tics

The non-equilibrium simulations were performed by means of EHT method, for the same
reason already explained in the previous chapter. The warnings in using this method
were already reported and commented in the previous section. In figure 9.6 (a) the I-V
characteristics in the case of 0, 1, and 2 PbSO4 molecules are reported. Evident differences
are present depending if there is the target (PbSO4) chemical species is present or not,
and in what concentration (1 or two molecules). This is a proof of the fact that the sensor
can potentially be sensitive to PbSO4. In figure 9.6 (b) the interpolated (3rd order cubic
spline) I-V characteristics are reported. A deeper look at the current variations is instead
provided in figure 9.7, in which the absolute (in magnitude) current variations in the case
of 1 and 2 lead sulfate molecules are reported. Notice that it is possible to distinguish
between the concentrations in all bias points (a part for VD = 0.9 V and high biases near
2V). It is highlighted the point at 0.8V, being a possible operating bias point from section
8.6.3 and previous sections.

9.5.1 Sensitivity to different PbSO4 orientations
Since the lead sulfate molecule is strongly polar it is interesting to study the changes in
the I-V characteristic due to one molecule of PbSO4 positioned with different orientations.
In order to make data comparable among them, the same distance of about 2.25Å was
assumed in all cases. The different orientations corresponds to the figures reported in
appendix E.3. In particular “PbSO4” with no particular nomenclature/label refers to the
a single PbSO4 molecule placed horizontally with lead ion toward the source and the SO4
group toward the drain (figure E.4). The “left-right” label refers to the same but with the
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(a)

(b)

Figure 9.6: Top (a): I-V characteristics with 0, 1, and 2 PbSO4 molecules (EHT method).
Bottom (b): Interpolated (cubic spline) I-V characteristics with 0, 1, and 2 PbSO4
molecules.

lead ion toward drain and the SO4 toward the source. The “up-down” refers to the PbSO4
molecule rotated on its geometrical center of 180° degrees along a rotation axis parallel to
transport direction. In this way the “top” becomes the bottom and vice versa, so the side
pointing toward the fullerene (down) is now pointing upward. The “SO-down” refers to
the orientation in which the SO4 functional group is down-oriented pointing toward the
fullerene, and the “Pb-down” refers to the orientation in which the Pb ion is down-oriented
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Figure 9.7: Current variations in the case of 1 and 2 PbSO4 molecules (EHT).

pointing toward the fullerene. The different I-V characteristics are reported in figure
9.8. The four orientations always provide an enough different current characteristics w.r.t.
the case in which no lead sulfate molecule is present (blue curve). Nevertheless there is
the drawback that the different orientations provide slightly different I-V shapes, thus
making slightly more complex the detection. Nevertheless as already mentioned in section
8.6.3, and it will repeated in the next section 9.5.2, the current variations are always
enough different from the one obtained with other common atmospheric gases, thus making
possible the detection.
Notice that in general convective motion of air will move molecules and thus it is possible
that dynamically they rotate and different PbSO4 molecules with different orientations
interact with the channel. For this reason it is possible that the sensor must correctly
detect the presence of PbSO4 with different orientations. It is also possible that a favoured
configuration is present, corresponding to an equilibrium geometry for physisorption or for
chemisorption, if the target molecules have enough low kinetic energy while approaching
the sensor, when the transient (in which geometry modifications occur) is extinguished. A
geometry optimization analysis can be performed to ascertain this. Nevertheless due to
the lack of force fields (and also Slater-Koster parameters), relatively to lead mainly, it was
not possible to perform such a study with such fast methods, while a DFT study would
have required too much time and RAM resources, and for this reason it was not possible
to consider it. Nevertheless in future for real applications it is suggested to perform such
an analysis of geometry optimization in order to verify if and which orientation is the most
stable one, and if corresponds to physisorption, chemisorption or other configurations.
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Figure 9.8: I-V characteristics obtained with four different orientations of the lead sulfate
molecule (EHT method).

9.5.2 Selectivity to common atmospheric gases: the PbSO4 gas
sensor proposal

In this section essentially the same analysis presented in section 8.6.3 is again proposed,
with the gain of the knowledge of the previous sections. In figure 9.9 the current variation
plot relative to the four above considered orientations of lead sulfate is reported, along
with the current variations due to the other common atmospheric constituents. Among
the possible different bias points, notice that at VD = 0.8 V the separation between the
∆ID of all the four orientations and the ∆ID due to other atmospheric gases is enough
large to make likely possible a reliable recognition of the lead sulfate. Indeed the de-
viation between the “PbSO4-SO-down” and the closest chemical species, i.e. O2, is of
about 0.81µA, while the analogous between PbSO4 and Ar is of the order of 1.7µA.
These deviations should be enough to ensure a reliable detection of the lead sulfate, what-
ever is the orientation, making VD = 0.8 V a possible choice for the DC operating bias point.

9.5.3 Possible choice for the PbSO4 gas sensor bias voltage
As mentioned in the previous section (and throughout the entire present chapter), a good
candidate for a DC operating bias point is the VD = 0.8 V. For this voltage value indeed
the C60-base lead sulfate sensor presents the following advantages (see previous sections
for an explanation of all these features):

• maximum absolute sensitivity, i.e. absolute current variation to lead sulfate (w.r.t.
all the other contact-fullerene distances and orientations of the fullerene).

• It is probable and expected that the real sensor has an even higher sensitivity than
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Figure 9.9: Absolute current variations (with sign) to lead sulfate (PbSO4) and other common
atmospheric gases. Different orientations of PbSO4 are considered (EHT method).

the one predicted with EHT method for such a bias voltage, making the design a
“worst case” design and making in this optics the design likely robust and reliable.

• Different current values are expected with different concentrations of lead sulfate,
thus making potentially possible the detection and the measurement of the PbSO4
concentration.

• The sensor presents reliable selectivity for such a bias point, for all the considered
possible orientations of the lead sulfate, thus making the detection reliable in air in
presence of the common atmospheric gases.

The selected bias point is highlighted in figure 9.10 (a) with an ellipse. In such a graph
the various I-V characteristics obtained with all the four considered orientations of the
lead sulfate and with the presence of the other common atmospheric gases are reported.
Figure 9.10 (b) reports an enlargement around the bias point, highlighting the different
curves and the fact that the separation among them is clearly visible, as already mentioned
and discussed in the previous section (9.5.2), in which the current variations were considered.

9.5.4 Sensitivity to different PbSO4 distances
So far the distance between the sensor (the fullerene) and the target chemical species was
maintained approximately fixed at around 2.2Å÷2.5Å. It might be interesting to check
the dependence of the current value w.r.t. the above mentioned distance. The ideal case
is the one in which no current variation occurs with such a distance in a given range of
distances, but this is obviously impossible. Indeed the intermolecular interactions like van
der Waals ones and London dispersion ones, are strongly dependent on the distance, thus

355



C60-based lead sulfate gas sensor

(a)

(b)

Figure 9.10: Top (a): I-V characteristics with different PbSO4 molecule orientations, the
possible bias choice is highlighted by means of an ellipse - VD = 0.8 V (EHT
method). Bottom (b): Enlargement of the graph (a) around the chosen bias point.

influencing the current with distance. From the analysis it was clear that no general rule
was present. In figure 9.11 is reported the plot of the current values in function of the
distance between the PbSO4 and the fullerene for a fixed voltage of 0.8V, both simulated
(black circles) and interpolated (blue line with cubic 3rd order spline and orange/red curve
with linear polynomial of degree 1). There is no a well defined trend, neither increasing
nor decreasing. With a distance in between 2.6Å and 3.2Å the deviation is small and
thus it would be a good recognition range. For smaller and larger distances the deviation
increases, leading to greater current fluctuations depending on the distance.
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Figure 9.11: Current values for different PbSO4 distances at VD = 0.8 V. Black circles: simu-
lated data. Blue line: cubic 3rd order spline interpolation. Red/Orange: linear
interpolation.

The same kind of analysis can be repeated to all the considered bias points, leading to
the surface plot of figure 9.12. In such a plot the red dots are simulated points, the
surface is obtained by merging together the spline interpolating curves. In red it is
highlighted the chosen bias point with VD = 0.8 V. In general by increasing the bias the
fluctuations increase, providing an insight on the mechanism that give rise to them. For
small bias very small variations occur, leading to good linearity of the sensor response
w.r.t. the target analyte distance. This is very likely due to the small dependence at
low bias of the transmission spectrum T (E) on the applied bias. Instead by increasing
the bias the dependence of T (E) with the applied voltage (and electric field) increases,
and transmission peaks undergo to greater variations and modifications due to the bias,
accentuating eventual current variations. Moreover the greater current magnitude results
in greater current absolute variations even in the case of fixed percentage oscillations, thus
accentuating again this effect. Among the considered biases the chosen one at VD = 0.8 V
is a good compromise in terms of current variations due to the target analyte distance
(see red line in the graph of figure 9.12). Generally it is often more important the sensor
linearity with the target concentration (see section 9.5.5), nevertheless if also the sensor
linearity and/or current oscillations due to the target distance is relevant, the analysis
carried out in this section can be useful to select a proper bias point to satisfy specification
in such a direction.
In appendix E.4 a table and a graph summarizing the maximum error from linear response,
for each bias point, are reported. The linear response is obtained by linear interpolation
of the simulated current values in function of the target distance (analogously to figure
9.12). The chosen bias point presents the same “degree” of linearity w.r.t. the others below
1V, thus resulting a good trade-off among them. Small deviations are present especially
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Figure 9.12: Current values for different PbSO4 distances at different bias voltages. The chosen
bias voltage (0.8V) corresponds to the red line. Red dots are simulated values,
the surface corresponds to cubic spline interpolation curves. Notice the greater
variations/oscillations for larger bias points.

at 0.2V and at 1V. For voltages greater than 1V strong non-linear behavior and large
current variations w.r.t. target distance occur.
Notice again that a large current variation of the expected current w.r.t. target distance
from sensor makes more difficult the detection since the conditioning circuit is required to
recognize it properly. In practice, this can be a crucial point of the sensor specifications,
and if necessary another bias point, with smaller variations, can be chosen. To this purpose
the graph of figure 9.12 and the data in appendix E.4 can be useful tools.

9.5.5 Sensitivity to different PbSO4 concentrations
An important property for a sensor is its linearity in detecting different concentrations
of the target substance. In order to verify it, different concentrations of PbSO4 were
considered: 0, 1, 2 PbSO4 molecules were placed nearby the fullerene at a distance of
2.25Å. At most two lead sulfate molecules were considered due to their large dimension
when compared with fullerene, making impossible placing three or more molecules nearby
the fullerene without atoms overlap. In figure 9.13 the resulting current values for the
different numbers of PbSO4 molecules and for the chosen bias point of 0.8V are reported
(black circles); moreover they are interpolated with cubic 3rd spline (blue curve) and with
a linear straight line (red/orange). A good linearity is present. The maximum deviation
from linearity, i.e. the maximum (absolute value) distance between the spline and the
straight line resulted to be 1.35 µA. As mentioned previously the linearity of the sensor
(w.r.t. the target concentration) is an important property, and thus it is useful verify the
overall performances of the sensor for all the possible bias points, in order to have an idea
of the general behavior of the sensor. Moreover, in the case in which “more linearity” is
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required, another bias point with a more linear, if there exist one, can be selected to this
purpose.

Figure 9.13: Current values for different PbSO4 concentrations and for VD = 0.8 V. Black cir-
cles: simulated values; blue curve: cubic 3rd order spline interpolation; red/orange:
linear interpolation.

In figure 9.14 the current values for different sensors concentrations and for all the considered
bias points are reported (red dots). They are interpolated with cubic splines, that all
together give rise to the surface. The red line highlight the chosen bias point (0.8V), for
which notice that a good linearity is present. From this plot and from such an analysis it
is evident that the best sensor linearity is obtained with a bias VD = 0.4 V, that indeed
provides a maximum deviation from linearity of only 0.3 µA. In table 9.2 all the maximum
deviations from linearity are reported for all the considered bias points. Notice that the
chosen bias point (0.8V) is the second just after the aforementioned 0.4V one, thus being
a very good choice and trade-off for linearity of the sensor to different concentrations. In
appendix E.5 a plot of such maximum deviations is reported, in function of the applied bias
voltages. Notice again the good linearity for VD = 0.8 V (i.e. small deviation). Moreover,
always in appendix E.5, a quadratic interpolation of the current values for the different
concentrations of PbSO4 and for VD = 0.8 V is reported. The quadratic curve (red/orange
one) is perfectly overlapped with the spline one, thus proving that for VD = 0.8 V the
sensor response to the PbSO4 concentration is of second order, i.e. quadratic, but with a
small curvature, leading indeed to good linearity and small deviation error as mentioned
above.
Finally as title of example in appendix E.5 two additional graphs are reported for VD =
0.2 V, showing bad linearity and strongly non-linear response, and for VD = 0.4 V, showing
extremely good linearity. Such plots are essentially cuts at constant voltage of the plot of
figure 9.14. In the case in which more linearity is needed the voltage can be set to 0.4V,
providing best linearity.
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Figure 9.14: Current values for different PbSO4 concentrations at different bias voltages. The
chosen bias voltage (0.8V) corresponds to the red line. Red dots are simulated
values, the surface corresponds to cubic spline interpolation curves. Notice the
worse linearity for larger bias points.

Table 9.2: Maximum absolute deviation between the cubic spline interpolation and the linear
interpolation of the current values in function of the PbSO4 concentration, for the
various considered bias points.

VD (V) Maximum deviation (µA)
0.2 6.66
0.4 0.3
0.6 5.58
0.8 1.35
1 13.57
1.2 13.33
1.4 17.38
1.6 34.41
1.8 6.04
2 19.05

The case of two PbSO4 molecules with opposite orientations

It is interesting to study the case in which two lead sulfate molecules are present nearby
the fullerene, at the same distance, but with opposite orientations. The case of two
PbSO4 molecules considered so far, assumed the two lead sulfate molecules to be with same
orientation, just shifted in the direction transverse to the transport and at the same distance
w.r.t. fullerene, i.e. with both lead ions pointing toward the source. In this situation the
two molecules are just shifted the one w.r.t. the other in x-direction, accordingly to figure
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E.5, but both with lead at left-side (according to fig. E.5). Instead in this subsection
another case is considered. It is now supposed to have again two lead sulfate molecules
placed at the same distance from the fullerene and shifted the one w.r.t. the other in
x-direction; but now the two molecules are supposed to have the lead ions pointing in
opposite directions, one toward the source and the other toward the drain. This geometry
is identified in this work with the label “opposite direction”. The obtained result is very
interesting, and if considered together with the analysis on transport and transmission
eigenstates that will be presented in the next section, is an extremely elucidating example
concerning the physical working principle of single molecules gas sensors in general. In
particular, in figure 9.15 the I-V characteristics with 0, 2, and “2 opposite direction” PbSO4
molecules are reported. It is noticeable that in all the bias points the current is improved
if two lead sulfate molecules, pointing toward opposite directions, are considered. Such an
improvement is substantial also w.r.t. two lead sulfate molecules case. The same can be
noticed concerning the equilibrium transmission spectrum, reported in appendix E.5. The
spectrum results enhanced with more (in number) and also more pronounced transmission
peaks in the case of two PbSO4 “opposite direction” molecules. The final reason for these
important features will be provided in the next section, that finally elucidate and clarifies
the working principle of single-molecule gas sensors, explaining at the same the great
majority of the gas sensors properties noticed so far.

Figure 9.15: Current-voltage characteristics in the case of 0, 2, and 2 with “opposite direction”
PbSO4 molecules. Notice the current improvement in the latter case.

As it will be clarified later, the main point is that the positive charge around the lead
ions enhance the transmission since it attracts electrons from contacts, thus lowering the
potential barriers they have to overcome. If such ions are on the same side, only the
barrier at that side is lowered (let’s say the source contact one), with a certain amelioration
in terms of current. If instead they are one at source side and the other at drain side,
they lower both barriers, enhancing much more the transmission by creating conducting
channels between the two contacts. Further details will be provided in the next section,
along with more details on this fundamental mechanism.
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9.5.6 Transmission eigenstates in real space: an insight in detec-
tion mechanism

The purpose of this section is to definitively clarify what is the physical principle behind
the differences in transport properties in the different cases considered so far. In other
words, the aim is to answer the question why the lead sulfate, placed at the same distance
of the ammonia, provides much higher current variations w.r.t. the case of only C60, than
the ammonia. The task can be accomplished by having a deeper look in the electron
transmission mechanism from source to drain in the different cases. In order to do that
the transmission eigentstates must be considered. In section 8.2.2, it was already pointed
out the difference between the transmission spectrum T (E) and the transmission operator
eigenvalues and eigenstates. In particular the transmission at a given energy E, i.e. T (E),
is the result of the sum of the transmission eigenvalues that cooperate in transmitting
electron from source to drain at that specific energy. In other words, the transmission of
an electron with energy E from source to drain, can be accomplished by means of different
paths, all accessible to such an electron with such an energy. Each path, or transmission
channel, is associated to a well defined transmission probability, or transmission coefficient,
that is the transmission eigenvalue associated to such a transmission channel or eigenstate.
Due to the physical meaning of transmission eigenvalues (i.e. transmission coefficients),
they are indeed normalized to one. Nevertheless since more paths are possible in general
for an electron with a given energy, their sum, i.e. T (E), can be greater than one. In this
section the focus is on the transmission eigenstates in real space. They are the projection
onto the real space basis set of the eigenstates (i.e. eigenvectors) of the transmission
operator. They are thus surfaces of iso-transmission, i.e. surfaces in the 3D space, of equal
transmission probability, and as such they corresponds to regions of space in which the
transmission occurs. The simple visual inspection of the transmission eigenstates provides
extremely useful and important information on the nature of the transport. Indeed if for
example the transmission eigenstate of interest were very similar to a specific orbital, then
one may conclude that the transmission for that specific energy value E, and by means of
that specific transmission channel (generally cooperating with others to the total T (E)), is
mainly due to such an orbital, providing thus important insights on the transport features.
In Quantum-Wise ATK it is simple to perform a transmission eigenvalues and eigenstates
analysis [125], [126]. Firstly, one should select a bias point to be investigated from this
standpoint. In the case of the PbSO4 it can be VD = 0.8 V, since it is the selected bias
point for the potential lead sulfate sensor. Then for that bias point the transmission
spectrum T (E) should be inspected, in order to select the main peaks of transmission
within the bias window. In the case of the PbSO4 sensor, with the PbSO4 placed nearby
the conductive channel, three main transmission peaks were present (see appendix E.6
figure E.6 that reports the computed transmission spectrum at VD = 0.8 V):

a. at energy 0.04 eV, with a transmission peak of 0.587924

b. at energy 0.28 eV, with a transmission peak of 1.05351

c. at energy 0.4 eV (at the limit of the bias window), with a transmission peak of 1.08796
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One the interesting and relevant transmission peaks are selected it is possible to calculate
the transmission eigenvalues that cooperate (that sum) to give rise to such peaks. For the
three selected peaks of above the transmission eigenvalues are reported in table 9.3. They
are labeled with a quantum number (QN); the eigenvalue with QN = 0 is the highest
one (highest transmission probability), then they are decreasing for increasing QN . In
table 9.3 only the largest transmission eigenvalues are reported, in general for each energy
value only few eigenvalues contribute significantly to transmission while the others are
very small. Notice that the sum of the transmission eigenvalues for a fixed energy is equal
to the transmission peak for the same energy (actually the sum is slightly lesser than the
transmission peak simply because very small eigenvalues are neglected even if they also
contribute to the transmission).

Table 9.3: Transmission eigenvalues for the three main transmission spectrum peaks within the
bias window at VD = 0.8 V, for the sensor with a single PbSO4 molecule nearby the
fullerene.

Energy (eV) Transmission eigenvalue Quantum number QN
0.04 5.654839e-01 0
0.04 2.229667e-02 1
0.28 8.373195e-01 0
0.28 2.119902e-01 1
0.4 6.899972e-01 0
0.4 3.125305e-01 1
0.4 8.513583e-02 2

Once the eigenvalues are calculated it is possible to calculate the relative eigenstates in
real space. The resulting plots are reported in appendix E.6. They are significant framings
of the 3D plots generated in ATK. The main point that is present in all of them is the
following. Since as mentioned in section 9.1 the lead donate two electrons to the SO4, the
first becomes a positive ion with charge +2q, the latter a negative ion with charge −2q.
By inspection of the transmission eigenstates it is evident that in all the considered cases
the positive charge of lead attracts electrons from the nearest contact, thus enhancing the
transmission. Indeed a positive charge, will generate an attractive Coulombic potential,
thus lowering the potential barrier between the contact and the C60, allowing for the
creation of transmission channel that easily can transmit electrons from (or toward) the
contact to (or from) the C60+Pb system. In the eigenstate plots, this corresponds to large
transmission surfaces nearby the lead. Moreover, noticing that the lead has atomic number
82 (i.e. it has 82 electrons), and that its electronic configuration is thus: 1s2 2s2 2p6 3s2

3p6 3d10 4s2 4p6 4d10 5s2 5p6 4f14 5d10 6s2 6p2, the shape of such transmission surfaces is
explained. Indeed the upper orbital is of p-type, thus leading to such a well known shape.
The different colours correspond to different electron phases, and in particular the two
lobes of the surface have indeed a phase shift of approximately π, corresponding exactly to
atomic p-type orbitals phase (this is a consequence of the Pauli’s exclusion principle and
the fact that many body fermions wave-functions must be anti-symmetric - section 2.5).
The effect of the Pb2+ ion is thus to lower the contact-fullerene barrier and enhancing the
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transmission, due to Coulomb attraction, by creating new transmission channels that are
not present without it. On the other hand the SO2−

4 ion screens the electrons. Indeed it
has a negative charge, thus a repulsive Coulombic force is acting on electrons nearby such
an ion, and they undergo to an higher potential barrier. In all the analyzed transmission
eigenstates there is always no transmission or very small transmission nearby the SO2−

4
ion (a sort of “hole” with no iso-transmission surfaces is present). Nevertheless the final
result is in an increase of the current. Indeed the electrons attracted by the lead ion easily
overcome the first barrier between the source and the fullerene, then they can proceed to
drain by means of transmission channels that are already present in the case of the C60
without the PbSO4. This is evident in the transmission eigenstates plots since coherent
(same color) surfaces are present, connecting the surfaces nearby the lead to the other
contact (the drain), avoiding the SO2−

4 ion.
In summary, the positively charged lead ion Pb2+, by attracting electrons lowers

the repulsive barrier between one contact and the fullerene, resulting in an improved
transmission. On the other hand the SO2−

4 ion still repels electrons, that in spite of this
can proceed toward the drain through other transmission channels. This mechanism also
intuitively explain the presence of transmission peaks within the HLG that without the
PbSO4 are not present. For example, this is the case of the peak (a.) at energy 0.04 eV
that was not present without the lead sulfate. The explanation is again simple: since the
positive charge of lead enhances transmission, it allows electrons at that specific energy to
be transmitted easily from the (source) contact to the fullerene (and then proceed toward
the drain); fact that is not possible for such a low energy electrons without the lead ion.
Finally notice that this entire analysis was performed for a constant bias VD = 0.8 V, and
the improvement in transmission by the lead ion and the current is to be intended w.r.t.
the same bias point without the PbSO4 molecule (with only fullerene). Analogous analyses
can be performed in all the other bias points, elucidating the transport mechanism and
the transmission features for such specific bias points.

In conclusion, the important result of this section is the gain in the physical intuition
and transport/transmission insights relative to the working principle of a single-molecule
gas sensor. The important point is that a fullerene based sensor is able to well recognize
polar molecules in proximity to its conductive channel. The stronger the polarization,
i.e. the electric charge, present or induced (for temporary polarization) on the target
molecule, the larger is the obtained current variation due to the presence of such chemical
species. Thus the better is the recognition ability of the sensor for that chemical species,
meaning that the sensitivity to such a molecule is larger and consequently the selectivity
is improved (i.e. the current variations or sensitivity to the target compared with the ones
due to other “spurius” chemical species). The lead sulfate molecule presents a very large
permanent dipole, indeed it is an ionic compound maintained together by an ionic bond
that allows the basic cell/molecule to have a charge equal to two times the electron charge
on one side and minus such a quantity on the other side. The polarization charge is thus
very large making possible great current variations and a good recognition.
For the ammonia the polarization involves smaller charges, thus making smaller also the
current variations and the sensitivity and the selectivity. The proximity of the ammonia
molecule to the fullerene is evidently moreover insufficient to temporary more polarize the
molecule thus enhancing the recognition mechanism. Instead the argon is responsible of
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larger current variations for large biases because it has an high number of electrons (atomic
number 18), and thus when temporary polarized it is responsible for larger positive charges
nearby the fullerene, leading to an improvement of transport by lowering the barriers.
The argon is considered more in details in appendix E.7. In the following subsections
additional interesting cases of study are considered, to gain deeper understanding of the
basic behavior explained above.
Before proceeding notice that this kind of analysis was not performed in the previous
chapter in order to avoid repetitions and redundant topics. Indeed in the previous chapter
the main topics were the first steps of the design methodology of section 7.2:

• fix geometry of the device (successfully done for maximizing the sensitivity)

• fix a method for validating the non-equilibrium EHT simulations (successfully
achieved)

• verification of the gas sensor sensitivity to ammonia (successfully done)

• verification of the gas sensor selectivity to ammonia (successfully done, even if the
result consists in a sensor failure)

While in this chapter the focus was mainly on the sensor features in terms of response to
different concentrations and distances of the target, etc... comprising also the analysis of
this section, aimed in clarify fundamental issues concerning the detection in single-molecule
sensors. The analysis reported above confirmed the physical intuition mentioned at the
end of the previous chapter, in section 8.6.3.

Two PbSO4 molecules with opposite orientations

The analysis on the transmission eigenstates was repeated again at a bias voltage of
0.8V, for the case in which two PbSO4 molecules are placed nearby the fullerene with
opposite directions such that their lead ions point toward the two opposite contacts.
Three main transmission peaks were present within the considered bias wind at energies:
−0.16 eV with transmission 0.887169; 0.04 eV with transmission 0.915297; and at 0.16 eV
with transmission 0.849489. Their transmission eigenvalues were calculated and the relative
transmission eigenstates, only for the highest eigenvalues, were evaluated and projected in
real space. As a title of example the transmission eigenstate corresponding to the second
eigenvalue (i.e. QN = 1) at energy 0.04 eV is reported in figure 9.5.6. In this case it is
very well highlighted the role of the two Pb ions. They are in the middle of the two p-type
orbitals with a blue lobe and a brown/orange lobe. In the picture it is well highlighted
that the blue lobes of the two Pb ions are well delocalized and merged with the contacts
wave-function, meaning an high coherent transmission from contacts to such an orbital
nearby the lead atoms. The left Pb atom is not visible since hidden by the p-type lobes,
while the right one is partially visible (dark grey color) in the middle of the blue and
brown/orange lobe on the right. The role of the two lead ions is thus to lower both the
barriers between the fullerene and the contacts. Instead very low transmission occurs
nearby the SO4 groups, indeed no iso-transmission surface is present there. This again
confirms that the negative charge of the SO2−

4 ions contributes in increasing the potential
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barrier. Nevertheless once an electron is in the central region (fullerene plus lead sulfate)
of the device, it can be transmitted to the other contacts by means of other transmission
channels. For fully coherent paths an electron can follow the blue (or brown/orange)
orbitals, otherwise if phase-breaking is possible, it can move across transmission surfaces
of different colors (as mentioned in sections 4.4 and 5.15.1 phase-breaking processes are
naturally included in a coherent picture since electrons are indistinguishable particles and
if exchanged no difference occurs since the transmission in each channel/energy is the
same). Additional pictures of transmission eigenstates for this specific geometry (and bias
point) are reported in appendix E.6.1.

Figure 9.16: Transmission eigenstate (top view) corresponding to the transmission eigenvalue
3.540307e-1 with quantum number QN = 1, transmission peak at energy E =
0.04 eV, the geometry is the one with two PbSO4 molecules with opposite directions,
and with a bias voltage VD = 0.8 V. The surface corresponds to an iso-transmission
surface, the colors correspond to different phases. The figure was generated by
ATK software [125], [126] (used for performing the simulations).

The point is that by means of the transmission eigenstates analysis carried out in this
section it was possible to intuitively explain the result obtained at the end of the previous
section, in which it was found that with such a geometry with two opposite PbSO4 a great
current improvement occurred. The reason for that is exactly in the lowering of the contact-
central region barriers thanks to the two positive lead ions. In the case of two PbSO4
parallel molecules the two lead ions are on the same side thus only lowering one of the
barriers and providing a lesser current increase. This again confirm the intuition of section
8.3.5, in which it was stated that the main bottleneck for transport in a fullerene-based
molecular wire are indeed the contact-fullerene barriers.
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The PbSO4 molecule orientations with SO4 group pointing down toward the
fullerene

From the analysis performed in section 9.5.1 it was clear that at the chosen bias (VD = 0.8 V)
the sensor had an improved current for three over four orientations. The one leading to a
current decrease w.r.t. the case in which no PbSO4 is present was the orientation with
the SO4 group pointing down toward the fullerene. A transmission eigenstates analysis
for such a geometry and bias point can elucidate the reasons for that. For the selected
bias point the transmission spectrum showed a peak entirely included in the bias window
at energy 0.28 eV and two peaks at the two sides of the bias window. It was considered
only the first peak and for it only the first transmission eigenvalue (with quantum number
QN = 0, corresponding to the highest transmission coefficient for that transmission peak).
The corresponding eigenstate is depicted in figure 9.17.

Figure 9.17: Transmission eigenstate (full view) corresponding to the transmission eigenvalue
with quantum number QN = 0, transmission peak at energy E = 0.28 eV, the
geometry is the one with a single PbSO4 molecule, with the SO4 group pointing
down toward the fullerene with opposite direction, and with a bias voltage VD =
0.8 V. The surface corresponds to an iso-transmission surface, the colors correspond
to different phases. The figure was generated by ATK software [125], [126] (used
for performing the simulations).

The negative charge at SO4 side contributes in decreasing the transmission due to repulsive
Coulomb force and an enhancement of the potential barrier electrons have to overcome to
be transmitted from source to drain. Indeed nearby the SO4 group no transmission occurs
(the transmission eigenstates is not present there), and the Pb positive ion is too far for
improving the transmission. As evident in figure 9.17 the transmission occurs exclusively
through the fullerene and a clear transmission free region is present in the upper side of
the device, closely to the SO4 group. This is the reason why a current decrease occurs for
such a bias point for the considered geometry.
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9.6 Sensor LUT-based circuit model
The aim of this section, and of the next two ones, is to build a MES model to be used in
circuit behavioural and performance analysis. The task is split into two parts, firstly, in this
section, a simple look-up-table model is implemented in Cadence Virtuoso® environment
in order to allow performing behavioral and functional analyses at circuit level; then,
in the next section, the sensor device stray capacitances are calculated along with some
dynamic quantities that I will call “dynamic resistances”, and finally in section 9.8 such
parameters are exploited to estimate the order of magnitude of the sensor response time,
by implementing a circuital model, for dynamic analyses that includes them.
As mentioned above, the focus in this section is on functional and static analyses of circuits
including a MES, or generally a molecular wire or transistor (a molecular device). In order
to evaluate the functionality and the behavior of circuits including a MES, the only needed
information is the current-voltage characteristics of the considered MES. Notice that in
principle this is also enough to estimate the static power performances of the circuit. In
general, starting from previously simulated I-V characteristics, for example in an atomistic
tool like Quantum-Wise AKT, as reported in the previous sections of this chapter, it is
possible to obtain a sort of Look-Up-Table (LUT) in which the current value for a given
input voltage VDS is reported. This holds true if a molecular wire structure is used, instead
if the device includes also a gate terminal (molecular transistor) such a LUT should store
the current values for a given input voltage couple: (VGS , VDS). Moreover in the case of a
MES the I-V characteristics are affected also by the presence of the target analyte, like
PbSO4. In this regard the LUT should store the current values for each input voltage
value/pair and for each considered number of target molecules (e.g. PbSO4).
For example, the MES considered previously in this chapter is a molecular wire, and thus
it has no gate and no VGS . So the LUT representing it should store the current values IDS
for each voltage value VDS and for each number of PbSO4 (target) molecules: namely 0
(no lead sulfate but only C60 “alone”), 1, 2 PbSO4 molecules. In order to account for the
number of lead sulfate (target) molecules in proximity of the sensor, an additional input
terminal can be used (besides the drain and the source ones), assuming that it is just a
fictitious terminal able to select the correct I-V characteristics for the desired number of
target molecules.
Once the output current IDS is known for a set of input voltage values, it can be interpolated
(in more or less refined way) to get a realistic quantitative previsions of the behaviour of
the the considered device, placed within a given circuit (e.g. the conditioning circuit) under
given operating conditions (i.e. specified VGS and eventually VDS values and number of
target molecules nearby the MES). This is of course true at steady state, when all dynamic
phenomena are extinguished, and the circuit DC operating point is stable. However, this
model can also be used in performing some kinds of dynamic analyses. In particular if the
interest is not in dynamic power nor in delay performances of the network, but just in
quantitatively estimate the response of the circuit to a certain time-varying stimulus, this
LUT-based simple model is effective as well. Indeed it is able to provide a good estimation
of the output quantity values for a whatever time-varying input quantity. The obtained
results are reliable if time-varying phenomena are slow enough to address a quasi-static
regime of operation, in which all transients extinguish before a new variation of input
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voltages occur. Two main limitations are present in this approach: first, there is no delay
in the response of the circuit (the simulator will instantaneously update the output when
the input is changed); second, the output waveform shapes are ideal, in the sense that no
stray capacitive or other stray effects are taken into consideration with this model, and as
a result the response will neglect all waveform variations due to these effects.
The practical implementation of this model was performed directly in Cadence Virtuoso®

as follows. Firstly a new symbol was created for the PbSO4 MES, it is reported in figure
9.18. This means creating a new “cellview” of type symbol (eventually placed in a new
library). Then another “cellview” of type verilogA (with the same name) for the PbSO4
MES was created, in which a verilogA description of the device was provided. It consists in
an interpolation (3rd order spline polynomial function) of the LUT, that was built starting
from simulated I-V characteristics of the sensor. More details and the verilogA code are
provided in appendix G, section G.1. Notice that a fictitious terminal named “N_PbSO4”
is used to select the I-V characteristics for the desired number of PbSO4 molecules. For
simplicity it was defined as an input voltage terminal assuming the user to be aware of the
fact that it can assume only 0, 1, or 2 value, meaning that there 0, 1, or 2 PbSO4 molecules
nearby the sensor and selecting the correct I-V characteristics. Notice also that there is
an advantage in treating such a fictitious contact like a continuum analog input voltage:
by making varying for example from 0 to 1 (fictitiously “volts”), it can be emulated the
approaching of the PbSO4 molecule to the sensor. Indeed the interpolation between the 0
PbSO4 molecules and the 1 PbSO4 molecule curves will provide a reasonable estimation of
the real transient between the two I-V characteristics, that actually happens when the
target dynamically approaches the sensor.

Figure 9.18: Circuit symbol for the PbSO4 MES. Notice the drain terminal (D), source terminal
(S), and the fictitious terminal “N_PbSO4” that represents the number of lead
sulfate molecules nearby the sensor. In yellow the instance name. The image
is generated by Cadence Virtuoso software, used for performing circuit level
simulations.

In conclusion, the simple LUT-based modeling approach can be used, in an effective way,
for two main purposes:

• DC operating point or static analyses: steady state analyses require only the knowledge
of the IDS(VDS , N_PbSO4) for the two terminal device or IDS(VGS , VDS , N_PbSO4)
for the gated one.
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• Dynamic functional analyses (quasi-static regime): dynamic analyses can be per-
formed if it is supposed to have enough slow variations of the inputs such that the
outputs have always enough time to completely stabilize before a new variation is
performed; keeping in mind that all dynamic effects (stray capacitances, etc...) are
neglected and the device is thus considered as ideal.

Moreover if needed also static power analyses can be performed with such a trivial
model: the static power for single device (i.e. the dissipated power when the network is in
a given well-defined and stable state, to keep the network working in that state) can be
simply and roughly estimated as IDS · VDS .
In addition to above reported analyses, one may also be interested in performing dynamic
power and transient duration analyses. In order to do that it is necessary to improve the
LUT-based model as described in the following sections.

Functional verification of the LUT-based model

In order to verify if everything worked as expected the following functional verification of
the LUT-based model was performed. The sensor symbol (i.e. the LUT) was connected to
ideal voltage generators as depicted in figure 9.19 (a). The drain to source voltage (Vdd in
the figure) was set to the chosen bias voltage for the PbSO4 sensor, i.e. to 0.8V. Then
the fictitious voltage N_PbSO4 was switched from 0 to 1, emulating the approaching
of a single PbSO4 molecule to the contact channel. The sensor current was verified to
switch from 10.527µA (corresponding to the current value with zero PbSO4 molecules for
an applied voltage of 0.8V) to 13.573µA (corresponding to the current value with one
PbSO4 molecules for an applied voltage of 0.8V). The result is shown in figure 9.19 (b). A
transient simulation was performed with the following settings (see figure 9.19 (a) for the
defined quantities): Vdd = 0.8V; Vn from 0 to 1 with linear transient, transient duration
100ms centered around time instant 500ms. Notice that the circuit behavior is ideal with
no delay in the device response, as expected. Moreover additional tests were performed
with different Vdd and Vn values, all leading to correct results and ideal results.

9.7 Sensor capacitances and “dynamic” resistances
In order to perform dynamic performance analyses at circuit level, it is necessary to
estimate the electrostatic capacitances of the device. In particular, they are needed to
estimate the dynamic power and the transient duration. The latter is in general particularly
interesting for estimating the MES response time.
In order to correctly quantitatively estimate the device electrostatic capacitances, the
quantum capacitance should also be considered and evaluated. It is an additional contribu-
tion of capacitance representing essentially the state filling within the molecular channel
of the sensor. It was already introduced in section 4.1.8. Moreover, to estimate the time
duration of transient phenomena (ad thus the MES response time), additional resistance
contributions should be estimated as well, they are the source “dynamic” resistance Rs, and
the drain “dynamic” resistance Rd. These two resistances do not model access resistances
of the device, that are not present in a molecular wires or transistors. Indeed in a molecular
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(a) (b)

Figure 9.19: Left (a): LUT-based model testbench schematic. Right (b): Result of the transient
simulation with the circuit in (a). The red line is the Vdd voltage, i.e. the DC
voltage of the top DC generator in (a), DC voltage between ground and D. The
yellow line is the fictitious voltage step applied to the N_PbSO4 input terminal
of the sensor (the bottom generator in (a)). The blue line is the sensor drain to
source current, varying from 10.527 µA to 13.573 µA. The image is generated by
Cadence Virtuoso software, used for performing circuit level simulations.

device the source and drain contacts are directly connected to the molecular channel, and
thus the contact resistances are present (they are the resistances of the electrodes), while
the access resistances, conventionally present in silicon devices, are not present. The above
mentioned Rs and Rd contributions do not represent the contact resistances that will
be neglected in the following, and that are very dependent on the specific technological
process (since they depend on the contact dimensions). They instead represent the average
amount of charge that, due to finite value of escaping rates (see coupling factors between
channel and source/drain (S/D) contacts in section 4.1), can be exchanged between the
molecular channel and the source and drain contacts in the unit time. Rs and Rd are
useful in modeling the dynamics of the molecular device, and they are identically null in
steady state case. Or better, source and drain intrinsic resistances themselves are of course
already included in the IDS(VDS) slope (i.e. they are the inverse of the conductance),
and statically the channel conductance is known for each VDS value as the tangent of
the IDS(VDS) curve in that point. But, here, the Rs and Rd values which I am referring
to are not linked to the slope of IDS(VDS) curve; their physical meaning is not the one
of “conventional” resistances. They are just resistive contributions, to be considered in
correctly modeling of source and drain electrostatic capacitances charging and discharging
phenomena. In particular, they are just a way of modeling the amount of charge that (on
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average) can “pass” (or be exchanged) between the S/D contacts and the molecule in order
to charge/discharge Cs and Cd. They are thus useful in transient duration analyses only
(consider that in single-pole approximation the S/D time constants are approximated as
RsCs, RdCd).
In the following these concepts will be further clarified and moreover a practical estimation
of all these capacitive and resistive effects is performed. Notice that all the calculations I
am referring to in this section were performed in MatLab, and the employed scripts are
reported in appendix G (further details on methods and algorithms are explained directly
in comments within the codes). In conclusion to this section also the gate capacitance and
resistance are evaluated for completeness since they are useful if a third gate terminal is
considered.

Practical implementation and the “Huckel-IV” tool

In chapter 5, section 5.17 (see in particular section 5.17.2), it was already introduced a
free available MatLab-based tool called Huckel-IV 3.0 and originally developed by prof.
Ferdows Zahid with M. Paulsson, E. Polizzi under the supervision of prof. S. Datta at
Purdue University (Indiana, USA) between 2003 and 2005 [105], [41], [24]. The general
approach, method and algorithm behind this tool were already explained in detail in
section 5.17.2. In appendix F is reported an operative description of such a tool, in the
version I have modified (along with the precious contribution of Chiara Elfi Spano) during
another project, the interdisciplinary workshop “Innovative Systems”, a.y. 2018/2019 and
2019/2020. Such a version of the tool is obviously again free and available under request
to me (or my colleague Chiara Elfi Spano). There are no substantial differences between
the “our” version of the tool and the original one, only few changes in the system calls
in order to ensure correct compiling on today’s computers and few other things (such as
the usage of the sign convention of voltage instead of the one of potential energies, etc...).
All the operative details are well explained in our previous report about the workshop
“Innovative Systems”, and the main features are summarized in appendix F.

In the practical calculations of the quantities I am going to present in this section the
simulated I-V characteristics were the ones obtained with such a tool (instead than the
ones obtained with ATK ). The main reason behind this choice is that the Huckel-IV 3.0
tool provides very useful data that are not easily accessible in ATK, and that are needed
to perform the calculations I am presenting in a while. For example, in Huckel-IV 3.0
it is trivial to separate the Laplace potential contribution (the one directly due to the
applied bias) from the Poisson one (that accounts for the screening and the charging of
the molecular channel) - see section 5.17.2; that is a key information for doing all the
calculations I need to introduce in the following.

In appendix G.2 is reported the MatLab code that was used to perform all the capac-
itance and resistances calculations reported in the following. The input data structure
are the ones obtained with Huckel-IV 3.0 tool simulations and they are briefly presented
in appendix F. Details on specific methods and algorithms are reported directly in the
employed MatLab scripts.

372



9.7 – Sensor capacitances and “dynamic” resistances

Quantum capacitance Cq calculation:

For an introduction to the quantum capacitance see section 4.1.8. It is an additional
contribution of capacitance representing the state filling in the channel and to be con-
sidered in the total capacitive balance of the system. The calculation of the quantum
capacitance becomes practically much complicated in the moment in which large variations
occurs. In order to keep as simple as possible, I decided to proceed in a rough linearized
approximated estimation of it, based on the following considerations. The equilibrium
quantum capacitance value was determined exploiting the linearized definition:

Cq = q2DOS(EF ) (9.1)

Then out-of-equilibrium values were determined exploiting again eq. (9.1), but with an
average density of states DOSAV value instead of DOS(EF ). Such an average DOSAV
was evaluated as the average (arithmetic mean) of the molecule DOS, considering only
the values within the bias window for each bias point. Moreover an additional average
quantum capacitance CqAV was then estimated as the average of all Cq values found in all
bias points.
In appendix G.2.3 is reported the MatLab function that performs the quantum capacitance
calculation.

Source and drain electrostatic capacitances Cs, Cd:

In addition to state filling (i.e. Cq), conventional electrostatic capacitances should be
considered. Indeed the movement of charges in response to the applied voltages would lead
to capacitive effects. An introduction to electrostatic capacitances was already provided
in chapter 4 (sections 4.1.4, 4.1.5, 4.1.7). Remember that in general the electrostatic
effect and the charging effect are linked, and a self-consistent loop is necessary to ensure
convergence (as for example implemented in Huckel-IV suite).
In order to correctly estimate the source and drain electrostatic capacitances in an easy
way, the simple capacitive model of figure 4.6 can be considered. This is again a linear (or
better linearized) model in which superposition of effects is used to find the total channel
potential variation due to the different contributions, i.e. due to the applied voltages VGS
and VDS , and the charging effect. In particular, it is possible to proceed in this simple way
since the Huckel-IV suite outputs include:

• The Laplace potential within the channel in each considered bias point (in function
of the y-coordinate, i.e. transport direction). It is the electrostatic effect (solution of
Laplace’s equation (5.79)).

• The total potential within the channel in each considered bias point, including also
the charging effect (i.e. the Poisson’s potential - eq. (5.78)) and the image correction.

By exploiting the capacitive model of figure 4.6, by knowing the applied voltages VGS
and VDS and the resulting channel potential, it is simple to derive the source and drain
capacitances as follows. Exploiting as already mentioned the superposition of effects
(linearized system hypothesis) the total average channel potential (this is the average

373



C60-based lead sulfate gas sensor

potential inside the quantum dot, that in this model is considered without physical
dimensions) is given by (see also section 4.1.8, the only differences are due to a different
notation):

UtotAV = ULaplace + Ucharging = UV gs + UV ds + Ucharging

⇒ UtotAV = −q Cg
CES

VGS − q
Cd

CES
VDS + q2 δn

CES

where CES = Cs + Cd + Cg is the total electrostatic capacitance. Remembering the
definition of quantum capacitance, it is possible to rewrite the last equation as follows:

UtotAV = −q Cg
CES

VGS − q
Cd

CES
VDS −

Cq
CES

UtotAV

from which:

UtotAV = −q Cg

CES + Cq
VGS − q

Cd

CES + Cq
VDS

that finally can be rewritten in terms of small (linearized) variations as:

δUtotAV = −q Cg

CES + Cq
δVGS − q

Cd

CES + Cq
δVDS (9.2)

At this point considering that the chosen bias points (i.e. VGS and VDS) are of course
known, the total channel potential Utot is known from Huckel-IV simulations, the gate
capacitance Cg, if present, can be evaluated from the device geometry as explained in the
following and thus it is known, and the quantum capacitance (in each bias point) was
already estimated (see above); the remaining only two unknowns are Cs and Cd. They
can be easily estimated if it is assumed that Cs = Cd. This hypothesis is good in the ideal
case in which the molecule is geometrically symmetric along the transport direction (as
usually happens and like it happens for the C60 geometry chosen for the MES), and it is
well (and symmetrically) anchored to the source and drain contacts. In particular this is
often true if no dangling chemical bonds are present, and the source and drain contacts
are made of same material (and same orientation). Under these hypotheses, Cs and Cd
were estimated starting from the simple capacitive dividers of equation (9.2). In particular
starting from the Huckel-IV outputs, it was possible to recover the space average (along
the transport y-direction) channel potential UtotAV for each bias value. This was assumed
the arithmetic mean of the total potential in each point along y. Then by fixing either
VGS or VDS (i.e. considering an output characteristics only or a trans-characteristics only),
it possible to consider only the relative term in eq. (9.2), thanks to the superposition
of effects. Considering only small variations, that means considering the succession of
simulated bias points starting from equilibrium and going up step-by-step up to the last
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one, and then starting again from equilibrium and going down step-by-step till the last
one, it is possible to get the total capacitive ratios:

δUtotAV
δVGS

∣∣∣∣
VDS=0

= −q Cg

CES + Cq
⇒ Cg

CES + Cq
known

δUtotAV
δVDS

∣∣∣∣
VGS=0

= −q Cd

CES + Cq
⇒ Cd

CES + Cq
known

From which it is possible to find Cs and Cd values in function of the bias. In order
to minimize the numerical error, source and drain capacitances were evaluated in the
middle bias point between two consecutive simulated bias points, from which the variations
δUtotAV , δVGS and δVDS were evaluated. In the case of a molecular wire Cg was set to
zero and VGS was obviously not considered.
Notice that a different script was used to recover the equilibrium Cs and Cd. Equation
(4.16) can be rewritten, by taking into account also the electrostatic effect, as follows ([90]
- eq. (3.10) page 84):

δEF = q2

Cq
δn+ q2

CES
δn (9.3)

where the first right-side term considers the state filling (i.e. quantum capacitance) and
the second one the relative charging electrostatic effect (i.e. the fact that filling that
states with charged electrons would lead to a shift in the molecule levels). This equation
represents the charge transfer phenomenon to reach the equilibrium condition, and Cq and
CES to be considered are the equilibrium values. The equilibrium quantum capacitance
was already estimated (see above). The δn term is the difference in the number of electrons
in the isolated molecule and the number of electrons in the molecule with contacts when
the thermodynamic equilibrium is achieved. It is known from Huckel-IV simulations.
The only unknown is then CES , that represents the total electrostatic capacitance at
equilibrium. It was assumed that CES in equation (9.3) was given only by the sum of the
source and the drain capacitances, since the charge transfer (electron transfer) to reach
the thermodynamic equilibrium involves essentially only source and drain contacts and
not the gate contact. Again, once CES is recovered (from eq. (9.3)), under the previous
hypothesis and under the assumption of having Cs = Cd it is trivial to recover them at
equilibrium.
Moreover the average Cs_AV and Cd_AV capacitances (simply obtained as the arithmetic
mean over all bias point including equilibrium as well) were also estimated, in order to have
single scalar values that immediately provide a fast estimation of the order of magnitude
of the source and drain electrostatic capacitances for the considered molFET.
Finally another script was implemented in order to have a very fast, but also very rough,
estimation of Cs and Cd. In this case they were evaluated using the parallel plate
approximation, thus starting only from the molFET geometry, considering as source
contribution half of the molecule in the transport direction, and for the drain contribution
the other half. The dielectric constant of the molecule was simply approximated as the
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vacuum one. Even if this last approach is essentially wrong, it surprisingly led to estimated
values that were not so different from the averaged ones.
All the developed MatLab scripts are reported in appendices G.2.2, G.2.4, and G.2.5.

Source and drain dynamic resistances Rs, Rd:

As mentioned above, in response to bias voltage variations, a variation in the channel free
charges and thus in the device current occur too. This is modeled accordingly with eq.
(4.20), by considering the electrostatic capacitances as proportionality factors between
voltages and channel charge variations. However this is possible considering also the
additional quantum capacitance contribution, i.e. the amount of available electron states
(within the bias window), for which transitions between the contacts and the molecule are
possible. For example, it is possible to have an electron transition from the source contact
to the molecular channel only if in the molecule there is at least a free electron state at
the considered energy eigenvalue. The amount of the exchanged charged is thus taken into
consideration by means of the previously introduced capacitances.
In this section the focus is on how much time is required to accomplish a charge movement
between the contacts and the molecule, in response to a (small) voltage variation. The
answer must be of course linked to the quantum capacitance concept, that models the state
availability in the channel, but also to the concept of escaping time that was introduced in
section 4.1. In particular the total amount of charge that can be transferred between the
contacts and the molecule is determined by Cq (i.e. by the DOS), while the time required
to move that amount of charge is intimately linked with the escaping times of source
and drain contacts τs, τd. Here I follow the approach of [90] (see part 3). In particular I
make the hypothesis of having only small variations, ideal source and drain ohmic contacts
(and thus no contact resistances), and to be at zero kelvin. Under these assumptions it is
possible to show (see [90] - part 3 for the detailed demonstration) that the current injected
by the source contact into the molecule can be approximated as:

IS = q

τS

∫ +∞

−∞
DOS(E − UtotAV ) [fFD(E,EFS)− fFD(E,EFdot)] dE ≈

Cq
τS

EFS − EFdot
q

(9.4)

where EFS is the source Fermi level, EFdot is the molecule Fermi level, τS the source to
molecule escaping time and Cq the quantum capacitance. It follows that (even under
the hypothesis of having ideal ohmic contacts) there is a source resistive contribution
that, together with Cs, determines the amount of time required in transferring charges
toward/from the molecule. This is the physical meaning of Rs. Moreover, this is of course
only a dynamic quantity that plays a role only in the moment in which input voltages are
varied. In particular from eq. (9.4) it is possible to define:

Rs = τS
Cq

(9.5)
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Proceeding analogously for the drain contact:

Rd = τD
Cq

(9.6)

In practice, Cq is already known for each bias point. From the Huckel-IV output data it is
possible to recover the coupling matrices (for source and drain contacts) in each bias point:

ζS = ESSD −HSD , ζD = ESDD −HDD (9.7)

where E is the energy, SSD is the source-to-device overlap matrix, HSD is the source-to-
device coupling Hamiltonian, and analogous notation is assumed for drain case. At this
point by exploiting energy-time uncertainty relation it is possible to recover the escaping
time matrices:

τS = ~
ζS

, τD = ~
ζD

(9.8)

Then the Rs and Rd values for each considered bias point were evaluated by means of
equations (9.5) and (9.6). Finally overall average scalar values of Rs and Rd (namely
Rs_AV and Rs_AV ) were recovered by averaging over all bias points.
The developed MatLab scripts that evaluated such quantities are reported in appendix
G.2.7.

Gate capacitance Cg:

If the device has the structure of a molecular transistor a gate terminal is present. For
completeness the gate capacitance and resistance are evaluated too. In this subsection the
first is considered while the latter is considered in the next section.
The gate capacitance arises from the device structure, and it is a physical electrostatic
capacitance. It is due to the fact that a gate oxide (or in general a gate dielectric insulating
material) is in between the metal gate electrode and the channel, that is supposed to be
populated by free carriers (at least in ON state) that originate the drain to source current.
Since, in this work, the focus is not in an extremely accurate estimation of the capacitances,
but more in their order of magnitude, I decided to evaluate the gate capacitance by using
the parallel plate capacitor approximation. The gate capacitance was thus approximated
as:

Cg = εoxε0
tox
· Area (9.9)

where εoxε0 is the gate oxide dielectric constant, tox the gate oxide thickness, and the gate
contact area is evaluated as the molecule length in longitudinal direction L, multiplied by
the total width Wtot, that consists in the molecule width plus 100Å (i.e. the dimension of
the simulation box in Huckel-IV suite).
The developed MatLab code used for estimating the gate capacitance (with the method
explained above) is reported in appendix G.2.1.
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Gate resistance Rg:

The device gate resistance Rg arises from the device structure, and it is essentially the
resistance of the gate oxide. Again in order to keep things easy, I decided to simply estimate
Rg as the resistance of the gate piece of insulator. Thus, starting from the knowledge of
the insulating material resistivity (in the following it will be always zirconium dioxide
ZrO2) and the geometry of the gate structure (see also above the discussion concerning
the gate capacitance), Rg was estimated as:

Rg = ρZrO2 · tOX
Area

(9.10)

where ρZrO2 is the ZrO2 resistivity, tOX is the gate insulator length, and the area is
evaluated from the knowledge on the system geometry, similarly to what explained for the
gate capacitance Cg.
The developed MatLab code used for evaluating the gate resistance is reported in appendix
G.2.6.

9.7.1 Cadence circuital dynamic model
Once all the dynamic contributions of interest are known (see previous section), it is
possible to proceed in making more realistic dynamic previsions concerning circuits that
include a MES. In particular, from the knowledge of Cg (if present), Cs, Cd and of Rg (if
present), Rs and Rd it is possible to estimate the transients duration (see next section)
and thus the sensor response time. If necessary it is also possible to estimate the dissipated
dynamic power, even if in this work it will be not considered.

In order to do that an equivalent circuit, that includes all these effects, can be derived,
simply by placing each contribution next to the relative ideal S, D, (and eventually G)
terminal. Depending on the purposes of the simulations different values for Cg (if present),
Cs, Cd, Rg (if present), Rs and Rd can be employed: the average scalar ones, or the values
at a fixed bias point, calculated as described previously.

In the next section the PbSO4 MES response time will be estimated. The device
structure is a molecular wire thus without the gate capacitance and resistance. A possible
circuit schematic for such a device is reported in figure 9.20. Notice that this schematic
is not suitable in estimating static or steady state properties of the network, but only
for estimating transient properties such as the transient duration to perform a change
of state of the network. Indeed at steady state the Rs and Rd are null, and should not
considered (remember their physical meaning explained in the previous section). Moreover
the current and voltages values obtained with that schematic are not significant, since,
due to the fact that Rs and Rd disappear at steady state, they are not correctly estimated.
Nevertheless, despite its limitations, the circuit of figure 9.20 can be used to estimated the
response time of the sensor as follows. In the single-pole approximation the source and
drain time constants, i.e. the time constants characterizing a transient from a steady state
to another one, can be easily estimated as: RsCs and RdCd. Nevertheless the single-pole
approximation is not bad if there is a well-dominant single-pole that mainly determines the
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cut-off frequency. In general this is not true since the source and the drain are interacting.
From a circuit standpoint the source and drain capacitances generally can belong to the
same closed loop in the network, thus leading to mixed frequency interaction since the
two poles “will interact” giving rise to a novel frequency behavior. A more correct way of
proceeding for the estimation of the transient duration is by means circuit simulation, for
example performed in Cadence Virtuoso® environment. The circuit simulator accurately
solves the network providing a more realistic information concerning the system cut-off
frequency.
The exact procedure used to estimated the sensor response time is reported in the next
section, it exploits the circuit of figure 9.20.

Figure 9.20: Circuit schematic for the sensor circuital model including Cs, Cd, Rs and Rd. The
image is generated by Cadence Virtuoso software, used for performing circuit level
simulations.
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9.8 Sensor response time estimation
The previous two sections were dedicated in developing and implementing in a circuit level
simulator, namely Cadence Virtuoso®, an equivalent circuit model for the molecular sensor
aimed in detecting the lead sulfate. The sensor has two terminal, i.e. it is a molecular wire,
and its model is derived from an ideal LUT-based model (section 9.6) by adding source and
drain electrostatic capacitances and “dynamic” resistances (section 9.7). The final circuit
model, implemented in Cadence Virtuoso®, that can be used for estimating the sensor
response time is shown in figure 9.20. The fictitious input terminal called “N_PbSO4” is
aimed in selecting the number of lead sulfate molecules nearby the molecular channel of
the sensor. The purpose of this section is to estimate the order of magnitude of the MES
response time, intended as the time needed to the PbSO4 sensor to change the state and
thus its current from the value of about 10.527µA, corresponding to the case in which no
lead sulfate molecules are present close to the MES, to about 13.573µA, corresponding
to the case in which one lead sulfate molecule is nearby the channel. The goal is not to
precisely calculate such a response time but more to have an estimation of its order of
magnitude. The interest in estimating it is because if such a time would be greater than
the average time during which the lead sulfate is enough nearby the sensor, it would be
not able to change the state due to the presence of PbSO4 before the latter leaves the
significant interaction region, thus making impossible a reliable detection. In this section I
will firstly address the sensor time response estimation and only then the comparison of it
with the interaction time.

In order to estimate the sensor response time by means of the circuit model of figure
9.20, the source and drain electrostatic capacitances and “dynamic” resistances should be
estimated. To do that the methods presented in the previous section can be used. Such
methods exploits MatLab scripts for the calculation of Cs, Cd, Rs and Rd, starting from
data structure obtained, in turn, by means of Huckel-IV simulations. So the first step
to achieve, is to simulate the C60 molecular wire sensor by means of Huckel-IV tool and
obtain I-V characteristics and the other needed (output) data structures. In figure 9.21
there are three I-V characteristics obtained with Huckel-IV tool for the following values of
the fitting parameter Vc: 0.6, 0.625, 0.65. The other input parameter for obtaining these
results are reported in appendix F, table F.1. The geometry file was generated in ATK,
and corresponds to the sensor geometry already widely discussed previously in this chapter.
Above 1.5V there is a bad agreement between the I-V curves obtained with the two tools.
Instead a good agreement is obtained for low bias voltage up to 1.2V. In particular the
obtained current shape is not well in agreement, and depending on what is the bias point
of different Vc values provide good agreement between the results with the two tools. At
around 0.8V, i.e. for the sensor chosen bias point, a very good agreement is obtained with
Vc = 0.65.

The Huckel-IV simulation result with Vc = 0.65 can be thus useful in estimating the
sensor capacitances Cs and Cd, and the sensor “dynamic” resistances Rs and Rd. Starting
from the Huckel-IV output data structures (see appendix F), and exploiting the MatLab
scripts reported in appendix G.2, it was possible to estimate Cs, Cd, Rs and Rd. The
estimated values at VD = 0.8 V together with average values are reported in table 9.4 .
Since it is supposed to use the PbSO4 sensor at VD = 0.8 V the values obtained for that
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Figure 9.21: I-V characteristics obtained with ATK and with Huckel-IV 3.0 tool. The ellipse
highlight the chosen bias point, i.e. 0.8V. Notice the different values of the fitting
parameter Vc. Depending on what is bias range of interest a different Vc values
can be used. For VD = 0.8 V the best agreement is obtained with Vc = 0.65.

voltage value were considered and used for Cs, Cd, Rs and Rd in the Cadence Virtuoso
circuit of figure 9.20. Notice that in order to minimize the numerical error on calculating
the source and drain capacitances they are not directly evaluated in 0.8V, but instead
at 0.775V and 0.825V; for this reason their arithmetic average was considered and it
was assumed: Cs=Cd=2.7844·10−21F. Notice that this procedure implicitly implies the
assumption that Cs, Cd, Rs and Rd are constant during all the sensing process. This is
an approximation and in general it is not true. Indeed Cs, Cd, Rs and Rd are dependent
from the bias point and in the moment in which a PbSO4 molecule approaches the sensor
the current is obviously changed, thus changing, in general, also the Cs, Cd, Rs and Rd.
Nevertheless this is neglected for simplicity, and the source and drain capaticances and
“dynamic” resistances are assumed constant (like standard components are). This is a great
simplification that makes very simple the estimation of the sensor response time, indeed
all the parameters in the Cadence circuit of figure 9.20 are assumed constant. Notice
once more that Rs and Rd are not the contact resitances that are now assumed null (i.e.
ideal ohmic contacts), but they are, together with Cs and Cd, a way of measuring the
time needed to move charges in/out the molecular channel of the sensor for achieving the
state commutation that occurs in the moment in which a lead sulfate molecule approaches
the MES. For this reason in the following analysis the steady state currents and voltages
are not significant of the operation of the sensor. Indeed at steady state the source and
drain “dynamic” resistances should be null to provide correct current (and voltage) values.
Moreover, since their values, along with the electrostatic capacitances values, dynamically
change, the sensor response time will be estimated with low accuracy, also because other
stray elements, that actually influence the response time, are neglected (such as the contact
resistances). The following analysis will thus provide only the order of magnitude of the
sensor response time.

381



C60-based lead sulfate gas sensor

Table 9.4: Source and drain capacitance and “dynamic” resistance values calculated from the
Huckel-IV current-voltage characteristic with Vc = 0.65 for the fullerene molecular
wire. The average values and the values at 0.8V are reported. Notice that the
approximated (parallel plates) source and drain capacitances resulted to be: Cs =
Cd = 1.89516e-18 F. The Cs and Cd values at 0.8V are the arithmetic mean of those
at 0.775V, that are: Cs = Cd = 2.171e-21 F, and those at 0.825V, that are: Cs =
Cd = 3.3978e-21 F.

Vc = 0.65 curve Average Value at 0.8V
Quantum capacitance Cq 5.77115e-19 F 3.875e-19 F

Source electrostatic capacitance Cs 4.51839e-20 F 2.7844e-21 F
Drain electrostatic capacitance Cd 4.51839e-20 F 2.7844e-21 F

Source dynamic resistance Rs 250707 W 312600 W
Drain dynamic resistance Rd 1.00308e+06 W 1250710 W

The simulation in Cadence environment was set up as follows. A transient simulation
was performed. A sharp rising edge from 0 to 1 on the N_PbSO4 terminal (fictitious)
voltage was applied, emulating an extremely rapid appearance of a single lead sulfate
molecule. Then the transient duration, i.e. the sensor intrinsic response time was estimated
in Cadence. This procedure allows for estimating the intrinsic response time of the sensor
for actuating the state transition between the C60 only current value to the C60 + PbSO4
one. If the voltage at the fictitious N_PbSO4 terminal were made varying too slowly
there would be no possibility of appreciating the sensor response time. Instead by making
it varying fast the sensor will respond with an exponential transient, allowing for the
estimation of the response time. The delay after which the step on the N_PbSO4 was
occurring was set to 0.1 fs; the rise and fall times were assumed to be 1× 10−20 s; the
rising edge shape was assumed to be half-sine. The following quantities were monitored,
with reference to figure 9.20. The “intrinsic” drain and source voltages, i.e. the voltages at
the drain and source nodes close to the sensor symbol (between the sensor symbol and
the RC groups), and the drain current flowing into the sensor drain terminal. The longest
transient duration, among the three considered quantities, was assumed to be significant of
the order of magnitude of the sensor response time. In Cadence environment it is possible
to directly estimate the transient duration by means of the tool “Transient Measurements”.
It automatically detected the rise and fall edges (20% - 80%) occurring in the drain and
source voltages, and in the drain current, and consequently the rise and fall times. The
results are reported in table 9.5 . The obtained waveforms in function of time are instead
reported in figure 9.22. Notice again that the specific values of voltages and current are
not of interest, but only the time require to perform the state transition and reach the
steady state is of interest. Indeed such values are wrong since the voltage drops across Rs
and Rd are actually a fictitious effect, since such resistances are not present in reality.

In addition to this analysis another “customized” analysis was carried out in MatLab
environment starting from the Cadence simulated waveform. As already mentioned in
the previous section, the source and drain capacitances are generally interacting, making
necessary a precise calculation by means of a circuit simulator like Cadence Virtuoso. Once
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Table 9.5: Rise and fall times for the drain and source voltages and the drain current of
the sensor, evaluated by means of the “Transient Measurements” tool in Cadence
environment. The quantities are defined with reference to figure 9.20. The undershoot
and overshoot are provided in % w.r.t. the steady state (final) value.

Quantity Rise time (s) Fall time (s) undershoot (%) overshoot (%)
Drain voltage 560.7e-18 - 0.4 -
Source voltage - 13.73e-18 - 0.943
Drain current 34.46e-18 3.623e-21 0.257 0.0966

Figure 9.22: Time dependent waveforms for the drain, the source voltages and the drain current
of the circuit in figure 9.20. The analysis was carried out in Cadence Virtuoso®

environment. The current and voltage values are not of interest in this analysis,
so they are not considered (they are wrong); the transient duration is instead
significant of the sensor response time.

the time dependence of the three quantities of interest (drain and source voltages and drain
current) was obtained, a MatLab script was developed and used to estimate the transient
duration my means of a graphical method. Indeed from basic circuit theory it is known
that the time constant of a circuit is the exponential time constant of the time evolution
waveform, and thus it can be estimated by evaluating the intercept of the exponential
tangent straight line and the time axis. Then the transient can be estimated to be long
3÷7 times such a time constant. In the developed MatLab code it was assumed to be long
7 times the time constant, being this the worst case with largest margin. The developed
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MatLab script is reported in appendix G.3, together with the plots that it generated (with
the above mentioned interpolation). The estimated values for the transient duration are
instead reported in table 9.6. Since it was aimed in estimating the worst case in order to
have margin for the design, all the time constants and response times (i.e. 7 times the
time constants) are longer than the ones estimated in Cadence. The longest one is the
source voltage time constant, whose transient duration is of the order of 10−14 s.

Table 9.6: MatLab estimated time constant and transient duration, defined as 7 times the
relative time constants. The considered quantities are defined with reference to
figure 9.20. The time constants are defined with a graphical method.

Quantity Time constant: τ (s) Transient duration: 7 · τ (s)
Drain voltage 1.16022e-16 8.12151e-16
Source voltage 1.66579e-15 1.16605e-14
Drain current 4.38149e-17 3.06704e-16

For the sake of completeness also the source and drain time constants in the single-pole
approximation were evaluated. In this approximation the two terminals (source and drain
one) are supposed to be non-interacting, with the capacitances belonging to different loops.
This is not true in general. Despite the simplicity of this model the obtained values are
similar, in their order of magnitude, to the previously reported ones:

source time constant : τS(0.8 V) = Rs · Cs
∣∣
VD=0.8 V = 8.70403 · 10−16 s

drain time constant : τD(0.8 V) = Rd · Cd
∣∣
VD=0.8 V = 3.48248 · 10−15 s

9.8.1 Estimated interaction time and sensor response
So far the focus was in estimating the order of magnitude of the sensor response time, i.e.
the time required to change its state, and thus its current, from the value corresponding to
the C60 alone to the value obtained with the C60 molecular channel with a single molecule
of lead sulfate in proximity. The purpose of this section is to estimate also the average
expected interaction time, defined as the time interval in which a non-negligible and well
detectable interaction of the PbSO4 molecule with the sensor occurs, and to compare the
latter with the sensor response time. Indeed if the sensor response time were too large
when compared to the interaction time, the detection of the lead sulfate by the sensor
would likely not be reliable, thus requiring additional precautions and expedients to ensure
a reliable detection.

In general, accordingly with the kinetic theory of gases [151], [152], a gas can be
described by a large number of particles or molecules which are in constant, rapid, random
motion. In this simplified treatment the particles size is assumed to be much smaller than
the average distance between them. Moreover the collisions are assumed to be elastic, and
except during collisions, the interactions among molecules are assumed negligible (this
last hypothesis ensure quantum mechanical effects to be negligible). In such a theory the
average kinetic energy of the gas particles depends only on the absolute temperature T of
the system. A detailed treatment is for example provided in [151].
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One main result of this theory is that the single particle has a kinetic energy per degree of
freedom that is given by Ed = 1

2kBT , where kB is the Boltzmann’s constant and T the
temperature. Thus the kinetic energy of a single particle in the 3D space, with 3 degrees
of freedom, is given by: E = 3

2kBT . And the kinetic energy of system of N particles, each
with three degrees of freedom is 3N

2 kBT . In the following the focus will be on the single
particle (with 3 degrees of freedom) case, indeed the attempt is to estimate the average
velocity of a single PbSO4 molecule in air at room temperature, by means of which the
average interaction time will be estimated.
If a single gas molecule is considered, its kinetic energy is E = 3

2kBT = 1
2mv

2, where m
is the mass of the molecule and v its velocity. In particular it is possible to define three
different velocities for the gas molecules [151], and v corresponds to the root means square
velocity (rms): vrms. Thus the root mean square velocity of a molecule can be estimated
as:

vrms =

√
3kBT
m

=
√

3NAkBT

mNA
=
√

3RT
M

where NA is the Avogadro’s number (NA = 6.02214076 · 1023mol−1), i.e. the number
of particles (molecules) contained in a mole (that indeed is the substance quantity that
contains exactly NA elementary entities, e.g. molecules); R = NAkB is the so called
(universal) gas constant; and M = mNA is the molecular mass (i.e. the mass of a mole).
As mentioned previously in addition to the root mean square velocity it is also possible to
define the most probable velocity, that results to be [151]:

vp =
√

2
3vrms

and the arithmetic mean or average velocity [151]:

vav =
√

2
π
vp

In the case of the PbSO4 the molar mass M is 303.26 g/mol, and the at room temperature
T = 300 K the three velocity result to be:

vrms ∼ 157 m/s , vp ∼ 128 m/s , vav ∼ 145 m/s

In order to estimate the time during which, on average, it is expected to have a PbSO4
molecule nearby the channel such that a sufficiently large variation of current occurs and
allows for its detection, the following reasoning is carried out. In section 7.1.1 it was
mentioned that, in general, a molecule moves because of the kinetic thermal energy and the
convective motion of air. It may approaching the sensor, and if its kinetic energy is enough
large it can “collide” on it without being chemisorbed or physisorbed and then move away
from it (elastic interaction). Now this situation is assumed to be the one happening, since
it corresponds to a worst case situation in which the lead sulfate is not interacting with
the sensor for a long time (as it would be it were chemisorbed or physisorbed). The kinetic
theory of gases strictly holds under some assumptions that are not said to be satisfied in
general (e.g. it strictly holds for gases made of same elementary particles, while in general
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different particles with different masses and chemical/physical properties are present).
Nevertheless such a theory is assumed to be valid. Moreover it is assumed that no other
molecule is present for all the interaction time nearby the sensor, and thus the PbSO4 is
unperturbed, and it moves with a straight trajectory perpendicular to the sensor and it
moves away on a similar trajectory (this is not relevant since the focus is only on a order of
magnitude estimation of the interaction time). With reference to the figure 9.11, the range
of distance (between the PbSO4 molecule and the fullerene) in which the interaction is
assumed to be enough strong to allow a reliable detection of the lead sulfate by the sensor
is assumed to be less than 3.9Å (indeed the current variation for such a distance is still
enough large). Moreover it is assumed the PbSO4 to do not reach the zero distance but
to be “reflected” back at a distance of 1.5Å (indeed electron clouds will already strongly
interact at such a distance likely causing the reflection - if kinetic energy is enough high as
supposed). Thus the useful region or distance in which the detection can occur is a region
3.9− 1.5=2.4Å long. In the moment in which the PbSO4 is reflected it should again travel
such a distance in order to move enough far away from the sensor to be no more detectable.
By neglecting any change of velocity of the PbSO4 molecule in the whole process, it is thus
possible to estimate the interaction time as the time needed by the lead sulfate molecule to
travel toward the sensor for a distance of 2.4Å and then to come back. The total distance
is thus two times 2.4Å. The interaction time can be finally estimated like:

Interaction time = total distance

velocity

Since three velocity definitions are possible three interactions times can be defined. They
were evaluated by means of a trivial MatLab code, that was also used to estimate the
sensor response time in the single-pole approximation. It is reported in appendix G.4.
The resulting interaction times are reported in table 9.7 . It is important their order
of magnitude of 10−12s (i.e. ps). Notice that also with slightly shorter distances the
interaction time order of magnitude is unchanged. It is two order of magnitude lesser than
the longest (worst case) response time of the sensor, that, as estimated previously, was of
the order of 10−14s.

In conclusion, from the analysis carried out, the expected interaction time (at room
temperature) is of the order of 1 ps, and since it is two order of magnitude greater than
the longest response time for the sensor (of the order of 10−14s) it is expected the sensor
to respond fast to the presence of the target PbSO4 molecule, thus allowing a reliable
detection. Notice that an high speed conditioning circuit is required to detect the target
analyte if a single event like the one described above happens.

Table 9.7: MatLab estimated interaction time accordingly with the described approximations
and method.

Velocity used for calculations Interaction time (s)
root mean square velocity 3.0557e-12
most probable velocity 3.74245e-12

average velocity 3.31666e-12
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9.9 Gating the sensor
It was mentioned in section 7.2 that it has no much sense considering since from the
beginning a molecular transistor configuration for the sensor. Indeed such a device structure
is more complicated and expensive since more technological steps are needed. Even if the
fabrication steps are more in number they should not influence strongly the device reliability,
indeed the transistor gate is usually built in a configuration like the one presented in the
introductory section in figure 1.3, i.e. with the gate below the molecule. In such a device
conventional and standardized technological steps can be used to build the metal gate and
the insulator layers, thus with the high process reliability of conventional CMOS devices.
The most critical part of the technological process is the realization of the molecular
junction [18]. In the previous sections and also in the previous chapter the low cost and
effective molecular wire device structure was used for the MES. Instead the purpose of
this section is to briefly address the transistor configuration and in particular investigate if
it can have potential performances w.r.t. the wire one.

9.9.1 Gate control and choice of the gate voltage
The gate terminal is not physically connected to the molecular channel (i.e. the fullerene),
but instead it is only electrostatically coupled to it. The effect of a gate voltage was already
introduced and discussed in section 4.1.7 and also, more formally, in section 5.17. The
main point is that it changes the electrostatic of the system, thus it affects the energy
levels and from the standpoint of the electrical current, in the Landauer’s approximation of
coherent transport, it modifies the transmission spectrum (and consequently the current).
In an ideal case (see section 4.1.7) the effect of a gate voltage is to shift (up or down
depending on its sign) the transmission spectrum T (E) rigidly. And in this simplified
optics, it allows to work around at a specific energy value (i.e. it shifts the zero energy,
i.e. the molecule Fermi level). Nevertheless from the detailed discussion of chapter 5, it is
known that, actually, by applying a gate voltage, the transmission spectrum is modified in
a more complex way, and its transmission peaks are shifted, merged or split, and modified
in magnitude. In general there is no immediate and trivial way of predicting what will be
the final T (E) with a given gate voltage, and a self-consistent algorithm should be used to
make predictions on it.

These arguments make very difficult the choice of the optimal gate voltage for a given
sensor. Indeed in a MES the gate voltage should improve the performances of the sensor
(w.r.t. the wire configuration ones), but it is difficult actually predicting for which gate
voltage value, and if, this occurs. In order to choose a gate that likely will improve the
sensor performances the wire MES equilibrium transmission spectrum was analyzed. It
is reported in figure 9.23 (a). In the approximation (this is an ideal non-realistic case)
in which the transmission spectrum is not affected by the applied bias, and in which the
gate voltage only shifts it around a given energy, it was chosen to try forcing the device
working round the transmission peak at approximately 1.8 eV÷2 eV. Indeed for such an
energy range the T (E) is well modulated by the presence or not of the target PbSO4
molecule. If the effect of the gate voltage would be to shift rigidly the spectrum, a gate
voltage VG ∼ 1.9 V should be enough to make the device working around that transmission
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peak. Nevertheless an additional non-ideality must be also considered. With reference to
the treatment of section 4.1.7, the effect of the VGS , can be considered by means of the
potential energy term UV gs:

UV gs = −q CG
CES

VGS

where CES = CG + CS + CD is the total electrostatic capacitance. Thus it is evident
that a gate voltage VGS will ideally shift the transmission spectrum T (E) of a quantity
UV gs = −qVGS only if the capacitive ratio is almost unitary: CG

CES
∼ 1. This is possible only

if the gate capacitance is very large if compared to the source and drain ones CG � CS , CD,
such that CES ∼ CG. This is again an ideal assumption, that usually in molecular devices
is extremely wrong. Indeed molecular devices usually suffer of bad electrostatic control of
the channel charge by the gate [12], [90]. This should not be a surprise since the standard
electronic CMOS devices suffer of the same issue (short channel effects). In order to
consider, at least to a small extent (let’s say “to counteract a bit”), the latter non-ideal
effect, it was chosen to fix the gate voltage to VGS = 2.5 V. In principle, at least if the gate
capacitance is actually not too much small w.r.t. the source and drain ones, this should
allow to work around the transmission peak at energy 1.8 eV÷2 eV, at least to benefit a
bit of such large transmission modulation for some bias points in the bias window (i.e. for
some applied VDS).

Moreover, if the insulator thickness is small and its dielectric constant is large, then the
gate capacitance is larger, and the gate electrostatic control of the channel is better [2].
This is exactly analogous to what happens in conventional electronic CMOS devices. Indeed
the MES transistor structure (refer again to figure 1.3) is quite similar to conventional
electronic device ones. In order to make plausible calculations and quantitative estimations,
a realistic gate insulator material and thickness should be chosen. It was chosen the
zirconium dioxide material (ZrO2), that is a well known high-k material with relative
dielectric constant εR = 25.0 [153]. The gate insulator thickness was chose equal to a
single-atomic layer of ZrO2, i.e. 5.1Å. Actually in [153] the lattice constant of ZrO2 is
declared to be 5.07Å, but since in [154] the experimentally measured one is (5.135 ± 0.005)
Å, it was chosen an intermediate thickness value of 5.1Å. Notice that the simulations were
performed in ATK, that allows the usage of gate terminals in the continuum approximation.
This means that the gate insulator and metal regions are assumed to be continuum regions
with ideal properties, and they are not treated as atomistic regions or contacts. This implies
that the dielectric region is simply characterized by having a given dielectric constant, and
insulator atom resolution is not considered. Moreover the metallic region is treated as an
ideal metal region, i.e. like a PEC (Perfect Electrical Conductor), and indeed the used
metal material should not be specified. The final geometry with the C60 fullerene is shown
in figure 9.24.

As evident from figure 9.23, the gate effect is only barely the one of shifting the
transmission spectrum toward higher energies, while the main effects are in modifying the
shape and the height of the transmission peaks. The transmission peak around the zero
is barely shifted to the left of approximately 0.06 eV, thus making evident that the ideal
behavior is actually much different from reality in this specific case. In the next sections
the gated MES performances are presented and discussed.
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(a)

(b)

Figure 9.23: Equilibrium transmission spectra with and without the PbSO4 molecule for the
wire configuration (a) and the transistor one (b).

The simulations were again performed in ATK software, and the settings were the same
of the wire case (tables 8.1, 8.2, 8.3, 8.4, 8.5), except for the Poisson solver boundary
condition in the face in which the gate is present, that was set up to Neumann boundary
condition (i.e. null electric field - indeed a PEC is present).
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Figure 9.24: MES structure with gate contact. The fullerene orientation and distance from
source and gate contacts are unchanged. The gate terminal is added at the bottom.
The purple region is the gate insulator, i.e. ZrO2 (dielectric constant 25.0) with
thickness 5.1Å. The white/light grey region is the metal contact. The figure was
created with ATK software, used for performing the simulations.

9.9.2 Sensor sensitivity and selectivity

In figure 9.25 is reported the I-V characteristics with and without PbSO4 molecules nearby
the conductive channel both for the wire MES and the transistor one (with VGS fixed at
2.5V). Notice that with the transistor configuration there is an increase of the current.
Also in the case of the transistor configuration a significant current variation is present
depending on the presence or not of the target PbSO4 molecule.
The absolute and percentage average current variations are reported in table 9.8. With the
gate, there is a significant improvement for the absolute variations (they are larger with
the transistor than with the wire), for low biases, in the range [0,1] V; while the percentage
current variation is essentially the same, even if it slightly decreased with the gate. Instead
in the [0,2] V voltage range there is no improvement of performances but a slight decrease
of the absolute variation and a significant decrease in the percentage one. In particular,
depending on the considered bias point, there may be either a significant improvement
in the absolute current variation or a worsening of the performances, since it can also be
reduced w.r.t. the wire case. In appendix E.8, figure E.34, the absolute current variation
for each bias point is reported. Notice that a good current variation improvement is present
at 0.4V and at 1V, while at 0.8V there is an improvement but less marked. Nevertheless
such an improvement is of the order of 1 µA, thus being non-negligible, especially if the
conditioning circuit for some reason needs more absolute current variation to ensure a
reliable operating of the sensor. Moreover, the percentage current variation at 0.8V is
slightly reduced with the gate w.r.t. the wire case (see figure E.35 in appendix E.8).
In figure 9.26 the sensor current variations (with sign) to different PbSO4 orientations and
to different common atmospheric gases are reported. It is important to notice that even
in the case of sensor with the gate for 0.8V the current variations due to PbSO4 (in all
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Figure 9.25: Current-voltage characteristics with and without the PbSO4 nearby the fullerene,
both in the case of the wire sensor and in the transistor-based sensor one. For the
transistor sensor the gate voltage was fixed at VGS = 2.5 V.

Table 9.8: Absolute average current variations |∆ID| and percentage average current variations
|∆ID|% in the voltage ranges [0,1] V and [0,2] V; both in the case of the sensor wire
and transistor structures.

Quantity Wire Transistor
|∆ID| in the range [0,1] V 2.252µA 3.767µA
|∆ID| in the range [0,2] V 4.799µA 4.709µA
|∆ID|% in the range [0,1] V 30.78 % 29.55 %
|∆ID|% in the range [0,2] V 28.72 % 23.02 %

the considered orientations) are enough distant from all the others, thus being again a
potential DC working bias point also in this case. In the next section it will be verified
that a very good linear response to different concentrations of PbSO4 will be possible at
such bias voltage, thus making it more desirable as choice of bias point.

9.9.3 Sensor response to PbSO4 concentration
The same analysis of section 9.5.5 was carried out also in the case of the gated sensor.
In particular, 0, 1, and 2 PbSO4 molecules were considered, and the sensor response
was analyzed in order to verify the linearity of the current variation w.r.t. the number
of target molecules. By merging the spline (3rd order cubic) interpolating curves of the
current-voltage characteristics for the above mentioned numbers of PbSO4 molecules placed
nearby the sensor, the surface plot of figure 9.27 was obtained. Notice that for VD = 0.8 V
there is a very good linearity in the sensor response w.r.t. other bias points.
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Figure 9.26: Current variations (with sign) to different PbSO4 orientations and to different
common atmospheric gases are reported in the case of transistor-based sensor.

Figure 9.27: Current flowing in the sensor with the gate structure in function of the applied
drain-to-source bias VD and of the number of PbSO4 molecules nearby the molec-
ular channel. Red points are simulated data, the surface is obtained by merging
the spline (3rd order cubic) interpolating curves. The red line corresponds to the
chosen bias point of 0.8V; a good linearity is present.

In appendix E.8 the 1D graphs of the sensor current in function of the PbSO4 concen-
tration (i.e. number of molecules) are reported for VD equal to 0.4V, 0.8V and 1V. The
most linear curve is the one for 0.8V, while for 0.4V and for 1V the curves are extremely
non-linear. For this reason, even if for 0.4V and for 1V the current variations are larger
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both in absolute and percentage value (see previous section), a good choice for the bias
point can be 0.8V. Indeed, usually, the sensor linearity to target concentration is believed
to be relevant, since it simplifies much the conditioning circuit and the detection process.
Therefore, even in the gated device case, the 0.8V can be a good choice for the sensor
DC working point, due to its more linear behavior. This is also highlighted in figure E.42,
in appendix E.8, in which the maximum error from linearity (i.e. maximum difference
between interpolating straight line and spline 3rd order interpolation) is reported for each
bias point. At 0.8V such deviation from linearity is very low.

Even if the bias of 0.8V leads to very good linearity w.r.t. PbSO4 concentration, the
best interpolating curve is obviously non-linear, but with a quadratic curve an extremely
accurate interpolation is performed. To this purpose see e.g. figure E.40 in appendix E.8.

9.9.4 Sensor response to PbSO4 distance
In this section the different current-voltage characteristics for various distances of the
target PbSO4 molecule w.r.t. fullerene C60 molecular channel are considered. In particular,
the same analysis of section 9.5.4 (for the case of the wire sensor), was repeated in the
gate device case, and a good linearity was found also in the latter case for a bias 0.8V. In
figure 9.28 is reported the interpolating surface, obtained by merging all the different cubic
3rd order spline interpolating curves for all the considered distances of the lead sulfate.
The linearity is very good at 0.8V, and this could be an additional reason to choose again
such a voltage as the DC working voltage for the sensor even in the gate case. Notice also
that in general a better linearity and less marked current variations are present in the case
of the gate w.r.t. the wire case, indeed the ranges of current values with PbSO4 distance
are smaller than with the wire.
In appendix E.8, the plot at bias 0.8V is reported and the linearity is again highlighted,
even if w.r.t. the wire case it presents “slightly better linearity” and less current variations
(absolute). Moreover in table 9.9 is reported the maximum error from linearity, i.e. the
maximum difference between the spline and the straight line interpolating curves. Always
in appendix E.8, the maximum errors are plotted w.r.t. the bias in figure E.44. Notice
again that for 0.8V the error is very low w.r.t. the other bias points and a good linear
response to different lead sulfate distances is present.

9.9.5 Sensor response time
In this section the sensor response time in the case of the gated device is considered. The
starting point for estimating the sensor response time is to evaluate the sensor capacitances
and “dynamic” resistances. In particular, the same methodology already used for the
wire sensor was used also in this case, and the procedures illustrated in sections 9.6,
9.7, 9.8 were employed also in this case. The same MatLab scripts were used, i.e. the
ones reported in appendix G.2, indeed they already included the gate case. The initial
Huckel-IV simulations for the sensor parameters calculation in the case of the gated device
were obtained by adding a gate (dielectric permittivity 25.0) at a voltage of 2.5V, and
by setting the fitting parameter Vc to 0.625 (to this purpose see figure E.45 in appendix
E.8.1). No other modifications were present. A new symbol was defined for the static
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Figure 9.28: Current flowing in the sensor with the gate structure in function of the applied
drain-to-source bias VD and of the distance of PbSO4 molecule from the molecular
channel. Red points are simulated data, the surface is obtained by merging the
spline (3rd order cubic) interpolating curves. The red line corresponds to the
chosen bias point of 0.8V; a good linearity is present.

Table 9.9: Absolute maximum errors from linearity for the different bias voltages, in the case
of the C60 lead sulfate sensor with gate.

Bias voltage (V) Error from linearity (µA)
0.2 1.92
0.4 1.69
0.6 15.43
0.8 4.74
1 11.12
1.2 17.11
1.4 7.54
1.6 28.8
1.8 77.33
2.0 68.82

model, with four terminals (an additional terminal for the gate). Its VerilogA description
exploits the code reported in appendix G.5, and the .txt file storing the simulation data
was structured as described in the VerilogA code comments.

The corresponding circuit symbol is reported in figure 9.29, that reports also the DC
and transient generators used for verifying the LUT-based sensor model correct behavior.
The correct current value was always obtained as expected (like reported in section 9.6 for
the wire case).
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Figure 9.29: LUT-based ideal model test-bench schematic. Notice the circuit symbol for the
PbSO4 MES. Notice the drain terminal (D), source terminal (S), and the fictitious
terminal “N_PbSO4” that represents the number of lead sulfate molecules nearby
the sensor. In addition a gate terminal (G) is present. In yellow the instance
name. The image is generated by Cadence Virtuoso software, used for performing
circuit level simulations.

The same approximations already discussed in sections 9.7, 9.8 were used here. In
particular it was assumed that all the capacitances (Cs, Cd and Cg) were constant for all
the transient duration. The same for the resistances (Rs, Rd, and Rg). Since, during the
transient, the sensor DC working point was supposed to be fixed the used values were the
ones obtained for VGS fixed at 2.5V and for VDS = 0.8 V. The used values are reported in
table 9.10 . Notice that the gate capacitance and gate resistance calculation were already
discussed in section 9.7, since the MatLab scripts in appendix G.2 are general and consider
automatically also the gate case. Nevertheless such a MatLab code estimates the gate
capacitance and resistance assuming the device geometry of Huckel-IV tool, that has a
fixed gate contact width (see section 5.17.2 and appendix F), slightly different from the one
used for performing the ATK simulations. This is optimal if the LUT data are the ones
obtained from Huckel-IV tool simulations. Nevertheless in this case the LUT data were
those obtained with ATK simulations. For this reason the same approach and formulae (see
equations (9.9) and (9.10)) were used to calculate Cg and Rg, but the device geometry (i.e.
the gate area) was the one corresponding to the geometry of ATK simulations. Such values
are reported are those reported in table 9.10 and used during time constant estimation.
They are close to the ones obtained with Huckel-IV -based calculations, and in particular a
very close single-pole approximation time constant is obtained: τg = RgCg = 6.9950 ·10−7s,
in the case of ATK geometry, and τg = RgCg = 6.9948 · 10−7s, in the case of Huckel-IV
geometry.

In order to estimate the sensor response time the circuit schematic of figure 9.30 was
used. In addition to the LUT-based sensor model also the capacitances Cs, Cd, Cg, the
gate resistance Rg (remember that this is a real resistance present in the device because
of the gate structure), and the “dynamic” resistances Rs, Rd were considered around it.
With the same approximations, physical meaning and procedures already described in
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Table 9.10: Source and drain capacitance and “dynamic” resistance values calculated from the
Huckel-IV current-voltage characteristic with Vc = 0.625 for the fullerene molecular
transistor. The average values and the values at 0.8V are reported. Notice that
the approximated (parallel plates) source and drain capacitances resulted to be:
Cs = Cd = 1.89516e-18 F. The Cs and Cd values at 0.8V are the arithmetic mean
of those at 0.775V, that are: Cs = Cd = 8.8539e-18 F, and those at 0.825V, that
are: Cs = Cd = 8.2754e-18 F. The gate capacitance and resistance were evaluated
starting from the device geometry (parallel plate approximation); thus only one
(average) value is reported.

Vc = 0.625 curve Average Value at 0.8V
Source electrostatic capacitance Cs 1.40895e-17 F 8.5647e-18 F
Drain electrostatic capacitance Cd 1.40895e-17 F 8.5647e-18 F

Source dynamic resistance Rs 179795 W 220426 W
Drain dynamic resistance Rd 719361 W 881926 W

Gate electrostatic capacitance Cg 2.2243e-18 F -
Gate dynamic resistance Rg 3.1448e+11 W -

section 9.8, an estimation of the order of magnitude sensor response time was obtained.
In particular, the fictitious voltage at terminal “N_PbSO4” was made abruptly changing
from 0 to 1 (“V”), emulating that suddenly a PbSO4 appears nearby the sensor. Then a
transient occurred in order to make the current flowing in the sensor changing from the
value corresponding to fullerene only case to the one corresponding to 1 PbSO4 molecules
nearby the channel. The transient duration was monitored for the source, drain voltages
and for the drain current (see figure 9.30). The sensor time constants were estimated both
in Cadence (transient measurements tool) and in MatLab (see appendix G.3). The resulting
values are reported in table 9.11. Notice that the longest one corresponds to about 26 ps.
If compared to the wire sensor case, in which the sensor response time was of the order
of 0.01 ps, an important slowdown of the sensor response is present. This is due to the
additional gate capacitance, that along with the gate resistance, gives rise to an additional
time constant, thus slowing down the device. Moreover, the sensor interaction time can be
evaluated as did in section 9.8 (see appendix G.4). Considering the previously reported
analysis about the variation of the sensor current response for different PbSO4 molecule
distances (see also figure E.44), a decreasing trend is present. Thus the “interaction”
distance that determines the interaction time can be slightly reduced w.r.t. the wire sensor
case, thus leading to a slightly smaller interaction time. This is obviously undesired, since
it may be no more reliable the detection. Notice that the analyses carried out are rough
estimations of the order of magnitude of such quantities, and moreover they are also worst
case approximations. In light of this it is probable that the gate sensor is still able to detect
the presence of PbSO4, but as mentioned with less reliability, or better less robustness to
all possible operating conditions. In particular, the interaction time analysis is a worst
case since it is supposed to have the target moving at constant velocity with no collisions
with other molecules that actually are present. Nevertheless it may happen that in some
cases the gated PbSO4 is not able to quickly respond, making difficult the detection.
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Figure 9.30: Circuit schematic for the sensor circuital model (with gate) including Cs, Cd, Cg,
Rs, Rd and Rg. The image is generated by Cadence Virtuoso software, used for
performing circuit level simulations.

Table 9.11: MatLab and Cadence estimated time constants and transient duration. The consid-
ered quantities are defined with reference to figure 9.30. The MatLab time constants
τ are estimated with a graphical method. Notice that Cadence failed in identifying
correctly the rise/fall edges for the current.

Quantity MatLab: τ (s) MatLab: 7 · τ (s) Cadence rise/fall time (s)
Drain voltage 3.72251e-12 2.60575e-11 1.788e-12
Source voltage 3.46648e-12 2.42654e-11 36.29 e-15
Drain current 1.79118e-13 1.25383e-12 -

9.10 Final remarks
In conclusion to this long chapter I would like to summarize the main practical results
obtained throughout this chapter, in order to avoid to be lost in the big amount of
information provided.

In the last two chapters the methods and the models presented in the part I of this
work were applied to the study of ammonia and lead sulfate C60-based molecular electronic
sensors. The general methodology introduced in section 7.2 was followed to discover step
by step the properties of these two sensors.

Chapter 8 was mainly focused on the methods and design figures of merit for choosing
and fixing a device geometry, intended as distance between the fullerene and the contacts
and the fullerene orientations. At the end of that chapter the selectivity verification showed
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a potential failure in the detection of ammonia when other common atmospheric gases are
present. For this reason the present chapter collects the remaining steps of the general
methodology of section 7.2 relatively to a lead sulfate gas sensor.

In the present chapter, once fixed the sensor geometry, the equilibrium properties were
briefly analyzed, with methods consistent to the ones already widely used in the previous
chapter, and then non-equilibrium properties were taken into consideration. In particular
the sensor current sensitivity to lead sulfate, in its main orientations were considered
(section 9.5.1), then the sensor sensitivity to different PbSO4 concentrations and distances
were analyzed along with the selectivity w.r.t. other common atmospheric gases (sections
9.5.2, 9.5.4, 9.5.5). These analyses allow to get familiar with the sensor properties and
thus they are believed to be of help in the design process. They moreover allow to extract
simple but meaningful figures of merit concerning different sensor features.

The choice of investigating the lead sulfate was not casual. Indeed, even if in practice
it may have few applications (often a single PbSO4 molecule is rare, since lead sulfate
tends to create conglomerates of small crystals that then are bond to large -of the order of
the µm- particles), it was helpful to more deeply elucidating the functioning of MES gas
sensors and of the mechanisms at the basis of their transport properties. In this regard,
section 9.5.6 reports all the details. A potentially more practical (or market oriented)
application will be investigated in the next chapter 10.

Moreover in sections 9.6, 9.7, and 9.8 useful device parameters were calculated and
used to build an easy but effective, even if oversimplified, circuit equivalent model for the
sensor. Starting from a simple LUT-based static model, more complete model for transient
analyses was conceived. The developed model can be seen as a first (even if rough) step
toward an equivalent “black-box” model of MES in general, in which the circuit-level
designer does not care about the physical principles at the basis of the working of the
sensor, but simply can exploit such a model to design the conditioning circuit, treating it
as any other circuit component. This fancy “black-box” complete circuit level model is still
far from the one developed in this chapter, nevertheless I believe an interested reader can
find this helpful as a starting point for achieve the ambitious goal I have just mentioned.

In the last section 9.9, a slightly different device structure was considered, namely the
transistor configuration with a gate terminal, in order to verify if a significant performance
amelioration occurred or not. The purpose now is to comment the results and briefly
compare them with the wire sensor case.

Introducing a gate terminal (ZrO2, VGS = 2.5 V) allows again to have a reliable
sensitivity to lead sulfate and to reliably detect it, again for a drain-to-source working
voltage of 0.8V. The sensor absolute sensitivity is increased with the gate w.r.t. the wire
case. This is more evident at low bias (below 1V) while less marked at high bias (above
1V). Nevertheless since the gate (at VGS = 2.5 V) enhances the current in the device
the percentage sensitivity of the sensor to the target is decreased. Again the reduction is
very small at low bias (below 1V) while significant at high bias (above 1V). Moreover by
introducing a gate terminal, the sensor linearity is significantly enhanced w.r.t. the PbSO4
molecule distance; and less current variations are present. For what is concerning the
linearity to different PbSO4 concentrations (or number of molecules), instead, the situation
is the reverse: the gate slightly worsen the linearity and increases the current variations to
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different PbSO4 concentrations. From one side this allows for an easier recognition of the
different concentration (if the trend is kept increasing -or decreasing- as it happens), from
the other side a strongly non-linear sensor is undesirable. Nevertheless in both cases the
deviation from linearity is contained.

In terms of sensor response time, the additional gate capacitance considerably increase
the sensor response time w.r.t. the wire sensor. In particular it was estimated it to be
longer of about three order of magnitude, thus making difficult a possible detection in case
of fast interaction time (worst case).

Finally notice that in general it is not said that two lead sulfate molecules can be
present nearby the channel, even for relatively high concentrations of PbSO4, that are
anyway expressed in ppb thus meaning that the amount of lead sulfate is minimal w.r.t.
common atmospheric gases. A possible solution can be to exploit an array of sensors
displaced over a given area in order to improve the probability of interaction of the sensor
with the target. In this case the concentration of lead sulfate (or whatever target) can be
then measured starting from statistical analyses about the number and the frequency of
PbSO4 detection events happening in such a system.

Still a last remark is due relatively to sensor power. Indeed in general an important
property for a sensor (and more generally for an electronic device characterization) is the
dissipated power. Nevertheless, considering that the present work is a pioneering work
on MES, that are still at embryonic phase of their development, and considering that
likely several device optimizations and modifications will occur in order to optimize the
performances and the fabrication of such devices, it is believed that at the moment it is
poorly significant evaluating the dissipated power by the device. For this reason this topic
is left to next studies on more realistic devices. For the moment, an indication can be
obtained multiplying the applied bias voltage times the current flowing in it. At 0.8V
it means a dissipated static active power of the order of a dozen or a ten of µW, to this
purpose see table 9.12. Nevertheless, a precise estimation of the power dissipated within
the device (and within the contacts) requires more accurate analyses, as briefly mentioned
in section 5.18 (e.g. eq. (5.85) can be used).

Table 9.12: Rough estimation of the static active dissipated power, for the wire and the gate
PbSO4 sensors.

Device Power without PbSO4 (µW) Power with 1 PbSO4 (µW)
Wire 14.3 17.6
Gate 8.42 10.9
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Chapter 10

A glimpse on the C60-based
nitric oxide gas sensor

This chapter is motivated by the analysis carried out in section 8.6.3, where it was verified
a significant C60 wire sensor sensitivity to the nitric oxide (NO). The purpose is not
to provide a detailed and complete analysis and design of an optimized sensor of nitric
oxide, but instead to briefly investigate the main sensor properties and response to nitric
oxide, in order to identify if a future additional work on a NO MES can be potentially
profitable. Indeed in this entire work the focus is more on methods for modeling MES,
both from a more theoretical standpoint (electronic structure, intermolecular interactions
and transport), and from a practical standpoint (methodology for approaching the MES
device-level modeling by atomistic simulations and extraction of relevant figures of merit).
In this regard, in chapter 8 the basic C60 wire and basic equilibrium and non-equilibrium
analyses were performed, supposing of being ammonia (NH3) the target. In chapter 9
relevant analyses were developed mainly for the study of non-equilibrium (under bias) sensor
properties, comprising dynamic features like the sensor response time. The important,
even if conceptually simple, analyses carried out in chapter 9 allowed to characterize the
sensor under few different important standpoints, and I believe they constitute a good set
of analyses useful for the understanding and the design of MES aimed for gas analytes
detection in general. Moreover a deeper insight on the basic physics behind the transport
properties of such devices was given. This was possible supposing of being the lead sulfate
the target of the sensor. In this chapter instead no novel analyses and methods will be
proposed, but the already presented ones will be exploited to provide a brief and, even if
incomplete under many aspects, satisfactory analysis of the C60 sensor for the detection of
the nitric oxide. Because of the lack of time a complete analysis was not performed. For
example it was assumed that the same geometries (wire and gate ones) already used for
the ammonia and the lead sulfate were optimal also for the NO case, and thus only brief
non-equilibrium analyses were carried out. Nevertheless it is believed the work to have
anyway good consistency, since it summarizes in a concise way the steps for extracting the
non-equilibrium figures of merit, presented in detail in the previous chapter. Moreover a
series of significant analyses will be presented, showing the potentiality of the same sensor
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to be able to detect both lead sulfate and nitric oxide, opening the way to multi-purpose
potentially low-cost sensors. In this optics this chapter can be seen as a glimpse toward
more practical consequences of the entire work, also considering the extreme importance
of the detection (and purification) of air from nitric oxide (and all nitrogen oxides NOx in
general), as they are the collateral products of several motorized vehicles and industrial
processes [65].

In conclusion to this introduction, I would like to point out that an interested reader
can perform the same procedures and design/analysis steps I have conceived and reported
in the previous two chapters for the case of nitric oxide (or whatever other target analyte),
obtaining a more accurate picture on such a sensor, and e.g. choosing an eventually more
suitable geometry (or voltages) for maximizing the sensitivity and selectivity of the sensor
to NO. It does not require much effort indeed to exploit the methods reported previously
and carry out such a more complete analysis. As I will mention again in the next chapter,
relatively to future works, I believe such analyses could be a big step in clarifying if the
NO detection can be an actual potential application, thus confirming the brief analyses I
am going to report in the following, or not.

10.1 Preliminaries
Nitric oxide (NO) is a toxic pollutants often found in air due to human activities; it is
especially produced by combustion processes in motorized vehicles and industrial processes
[65]. It is sometimes called nitrogen monoxide or nitrogen oxide, even if the latter is a
generic term referred to all the NOx compounds (all toxic and emitted during several
combustion processes). Due its relevant importance a novel NO sensor for NO detection in
air can potentially appear as a market for a gas MES.

Nitric oxide is one of the principal oxides of nitrogen, it is an hetero-nuclear diatomic
molecule and it is a free radical, i.e., it has an unpaired electron [107], [108]. Due to
the slightly different electronegativity of N and O it is a polar molecule, and due to
the unpaired electron it is very reactive and sensitive to electric fields and polarization.
Accordingly to the analysis carried out in section 9.5.6, this seems to be, intuitively, the
reason for the ample current variations already verified in section 8.6.3 (in this regard see
also section 3.7).

In the next section the two device structures, namely the wire one and the gated one,
are considered and a brief analysis on them is carried out. Since the purpose of this chapter
is mainly to verify the potentiality of the C60 sensor in being effective not only in the lead
sulfate detection but also in the NO one, only few of the many analyses and design steps
of the previous two chapters (and section 7.2) will be carried out. In particular it will be
assumed that the device structures for both the wire and the gate sensor are the same
already analyzed and fixed in the previous two chapters. In particular the C60 fullerene
is positioned at 2.4Å from the contacts (chemisorption equilibrium distance) with the
hexagons pointing toward the gold FCC (111) electrodes. In general it is not said this to
be the device structure that maximizes the sensitivity to NO. In general the steps detailed
at the beginning of chapter 8 can be performed again in the case of the NO sensor to

402



10.2 – The C60 wire sensor

verify what is the device structure (i.e. distances from contacts and C60 orientation) that
maximizes the sensor sensitivity to NO. Nevertheless, since the chosen configuration was
the most stable with the already discussed advantages in these terms, in this chapter it
is chosen the same structure. Moreover, this chapter can be seen as an extension of the
previous one, in the sense that it can be seen as an attempt of answering the question
if the already developed and studied PbSO4 sensor can also be used as well as for the
NO detection or not. In this optics, if it would be verified that it can work also for the
NO detection, the same device could be used as a multi-purpose device, thus potentially
decreasing the cost.

Since the geometries are the same already discussed throughout this work they are no
more reported here. Notice that the NO molecule was put at a distance of about 2.2Å
from the fullerene, as already done for all the others considered chemical compounds (in
order to ensure meaningful comparisons). Since NO is a polar molecule three different
orientations were considered, namely the one with N and O equidistant from the fullerene
with the bond axis along the transport direction (flat); the one with N atom pointing down
toward the fullerene (N down); and the one with the O atom down (O down).

Once the geometry is fixed (see above), the equilibrium properties of the sensor can
be studied. This step is again omitted in this chapter. The reason is simply to speed
up the analysis. It is in principle possible to perform the sensor equilibrium properties
analysis as already done in chapters 8 and 9 (see sections 8.4 and 9.3). Nevertheless, from
the non-equilibrium I-V characteristic analysis of section 8.6.3, it was already verified a
significant sensor sensitivity to NO.

In principle it is not at all correct, in terms of results reliability, consider EHT method
without having validated it (like done in sections 8.5 and 9.4). Nevertheless this step is
again omitted in this chapter. Therefore in the next sections only few non-equilibrium
analyses will be performed, such as the sensitivity and especially selectivity verification,
and sensor response estimations.

10.2 The C60 wire sensor
The purpose of this section is to answer the question if the wire C60-based MES, already
designed in chapters 8 and 9, is also capable of detecting the presence of nitric oxide nearby
the channel or not. From the I-V characteristics with 0, 1, 2, and 3 NO molecules nearby
the sensor (not reported here for brevity) significant variations of current were noticeable,
depending if NO was present or not nearby the sensor and in what concentration (molecules
number). Indeed the four above mentioned I-V characteristics were sufficiently different
the one from the others. They were merged together to give rise to the surface of figure
10.1, generated with the same methods and scripts described in section 9.5.5. Notice that
there is no much linearity, and the most linear current variations w.r.t. the number of NO
molecules are obtained for 0.2V and 1V. Instead for the chosen bias point in the case
of the PbSO4 sensor, i.e. 0.8V, a strongly non linear behavior is present. In general the
sensor presents less linear trend w.r.t. the PbSO4 one, concerning the target molecule
concentration.
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Figure 10.1: Current flowing in the wire NO sensor in function of the applied drain-to-source
bias VD and of the number of NO molecules nearby the molecular channel. Red
points are simulated data, the surface is obtained by merging the spline (3rd

order cubic) interpolating curves. The red line corresponds to the PbSO4 sensor
operating bias point: 0.8V.

The NO wire sensor selectivity was then tested. To this purpose see also the discussion of
section 8.6.3. In appendix D.7, figure D.27 is reported the plot of the (signed) absolute
current variations due to the NO, with the main three orientations already discussed
in the previous section, and together with the current variations due to other common
atmospheric chemical species. Only in some bias points the current variations were enough
large to allow a reliable detection of the target substance, i.e. NO. It occurs essentially
only for VD = 1 V, with large reliability margins, in which the NO is clearly recognizable
for all its possible orientations. In particular the ∆ID due to NO oriented with oxygen
pointing toward the C60 (O down) and in “flat” position are about 3 µA lower that the
closest ∆ID due to other chemical species, namely the O2. In the same bias point the
NO oriented with N pointing down toward the fullerene, provides a ∆ID that is different
from those relative to other chemical species of at least 0.94 µA (referred to the closest
curve, i.e. water - from argon the “distance” is of about 1.7µA). Therefore, the sensor is
reasonably sensitive to NO, and with a ∆ID at least “distant” from all the others of about
1 µA it is possible to potentially perform a recognition of the target (NO).

Nevertheless this is true only for VD = 1 V, and not for VD = 0.8 V. This means that
the same wire sensor, i.e. the same device, with different operating voltage can be used
as PbSO4 sensor (if VD = 0.8 V), and as NO sensor (if VD = 1 V). This can in principle
be a limiting factor, even if I believe it is not a big issue in practical implementations.
Indeed a series o many parallel C60 MES can be fabricated on the same chip with the
same technological process, and then some of them can be fed with a VD = 0.8 V, and
connected to a conditioning circuit for the PbSO4 detection, while the others can be fed
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with VD = 1 V and connected to a different conditioning circuit (or the same with suitable
modifications where needed) aimed in the detection of NO. Another solution can be e.g.
to dynamically change the voltage of the same sensor between 0.8V and 1V, in order to
make possible the reliable detection of both the targets. Anyway, in both cases, this is
obviously a drawback, since the cost and the chip complexity are unavoidably increased
w.r.t. the case in which the sensor can work as both PbSO4 and NO sensor with the
same voltage (a solution can be to fix an intermediate voltage at 0.9V accepting greater
detection errors and less robustness).

In figure 10.2 the absolute current variations (with sign) obtained with PbSO4 and
NO in the case of the wire sensor are reported. In the two bias points of interest, i.e.
VD = 0.8 V and VD = 1 V, such current variations are enough different (they differ of at
least 1 µA), thus making possible a potential usage of the sensor for both the lead sulfate
and nitric oxide detection, as described above.

Figure 10.2: Current variations (absolute with sign) obtained with PbSO4 and NO molecules
nearby the wire C60 wire sensor.

In conclusion to this section, the NO wire sensor response time is considered. The
same methods, approximations and calculations already used for the PbSO4 wire sensor
are used also in this case. The details were already illustrated in sections 9.6, 9.7, 9.8.
The same MatLab scripts were used, i.e. the ones reported in appendix G.2, indeed they
already included the gate case. The initial Huckel-IV simulations for the case of the NO
sensor are again those for Vc = 0.65. Indeed, like in the case of PbSO4, it was supposed of
having constant capacitances and “dynamic” resistances at source and drain, and they
are determined without the target molecule, but with the fullerene alone, thus being
unchanged also in the present case. The simulations were performed again in Cadence
environment. In particular the used capacitance and resistance values are summarized in
table 9.4. Moreover, a LUT model was developed in Cadence, exactly like already discussed
in section 9.6. A new symbol analogous to the one of figure 9.18 was defined, with the
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only difference that the third terminal (the fictitious one) was called “N_NO” (instead
of “N_PbsO4”), and that the table (the .txt file) stored the NO simulation data. The
LUT-based model correct behavior was verified by means of test-bench circuit analogous
to the one of figure 9.19 and then the sensor response time to a step from 0 to 1 in the
fictitious terminal N_NO was calculated by means of a transient simulation, exploiting a
circuit analogous to the one of figure 9.20. Then, both an analysis in Cadence (by means
of the tool “transient measurements”) and an analysis in MatLab (by means of the script
reported in appendix G.3) were carried out. The final results are summarized in table 10.1.

Table 10.1: MatLab and Cadence estimated time constants and transient duration. The MatLab
time constants τ are estimated with a graphical method.

Quantity MatLab: τ (s) MatLab: 7 · τ (s) Cadence rise/fall time (s)
Drain voltage 1.18622e-16 8.30354e-16 2.037e-15
Source voltage 3.56136e-17 2.49295e-16 25.95e-18
Drain current 3.84138e-17 2.68897e-16 rise: 22.96e-18 fall: 1.426e-21

For brevity it was not performed an analysis of the current variations in function of the
distance of the NO molecule, so it is unknown above which distance the interaction is so
small that a negligible current variation occurs. Assuming the same interaction distance
as the lead sulfate, see section 9.8, with the same procedure (and MatLab script) discussed
in section 9.8, it was obtained an interaction time of the order of 1 ps (considering the NO
molar mass of 30.01 g/mol). The worst case (longest) of the NO wire sensor response times
is well below such a time, indeed it is of the order of 2 fs, thus three order of magnitude
less. Nevertheless, from the detailed analysis about the transport mechanisms and the
transmission eigenstates of section 9.5.6, it is supposed the lead sulfate to be more strongly
interacting than the NO (because of the ionic bond that leads to strong polarization and
the larger number of electrons in the molecule). For this reason the NO-fullerene interaction
distance was also reduced. The minimum considered one was of the order of 1Å, meaning,
accordingly to the simple model based on kinetic gas theory of section 9.8, that the NO
molecule is interacting with the sensor for 0.5Å only and then it is reflected and interacts
again only for 0.5Å. This is a reasonable worst case. The resulting interaction time was of
the order of 0.2 ps, that is still two order of magnitude greater than the sensor response
time.

In summary, the NO wire sensor seems promising as potential sensor, also in the
same device structure, of the already discussed PbSO4 sensor. From the preliminary
brief analyses carried out in this section it seems that the detection of NO can occur for
VD = 1 V. A discrete sensor linearity to NO concentration is expected, and the sensor
can potentially distinguish the PbSO4 presence from the NO, at the chosen bias voltage
(for 1V). Moreover the sensor response time is estimated to be low enough if compared
with the interaction time, to make the detection possible and likely reliable. Additional
investigations, for example analogous to the other analyses reported in chapters 8 and 9,
can elucidate more sensor properties and features, and point out possible ameliorations for
the NO detection with a C60 wire.
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10.3 The sensor with gate
The purpose of this section is to answer the question if the C60-based MES with the
gate terminal, already discussed in chapter 9, section 9.9, is also capable of detecting the
presence of nitric oxide nearby the channel or not. Since the purpose is not to design an
ad hoc sensor optimized for the NO detection, that can anyway be designed by following
the methodology and procedures already presented in the previous chapters, the same
device of section 9.9 is considered throughout the entire present section. In particular,
w.r.t. the wire sensor treated in the previous section, a gate contact is added with a
ZrO2 gate insulator of thickness 5.1Å and with a gate voltage fixed at VGS = 2.5 V. In
principle it is not said that such a gate voltage is optimal for the NO detection. In this
regard the equilibrium wire sensor spectra, with and without the NO molecule, can be
of help in determining the first guess for the VGS maximizing the detection performances
of the sensor, as described for the lead sulfate at the beginning of section 9.9. Moreover
the VGS can be successively refined, by making it varying and considering the sensor I-V
characteristics with and without the NO molecule and thus the sensor sensitivity to NO
for various VGS .
Nevertheless this is not the purpose of this section, that, again, is to check if the already
designed sensor, with the geometry described in section 9.9, and with VGS = 2.5 V, is
capable of simultaneously detecting, along with the lead sulfate, also the nitric oxide.

From the I-V characteristics with different NO orientations w.r.t. the fullerene channel,
a potential detection capability is evident, indeed they are all significantly different from
the C60 alone I-V characteristic. They are reported in figure 10.3. Notice that for a drain
voltage of 0.8V, the various NO orientations lead all to different currents, leading to a
potential usage of the device as NO sensor.

With the gate terminal at 2.5V an increase of the current flowing in the device occurs,
analogously to what described for the lead sulfate sensor (section 9.9). In particular the
shape of the I-V characteristics is essentially unchanged but “translated” toward higher
current values, see figure H.1 in appendix H. In both cases the punctual (i.e. in each bias
voltage) current variations are not much changed (figure H.1), with a slight reduction in
the gate device case. The average current variations both in the range of voltage [0,1]
V and in the one [0,2] V and both absolute and percentage are reported in table 10.2 .
The whole absolute behavior over the entire range [0,2] V is essentially unchanged even if
the percentage current variation is reduced with the gate case (due to the fact that the
same current variations must be referred to a greater C60 current reducing the percentage
excursion). Instead in the range of voltages [0,1] V a significant reduction of the average
current variations occurs also in absolute terms (and consequently also in percentage
values). Thus from this standpoint it seems, at the moment, that there is no advantage in
using a gate terminal.

Although with the gate there is a decrease in the sensor average performances, and
thus the wire allows for better detection properties, from a selectivity analysis (carried out
in an analogous way of the one of sections 8.6.2 and 8.6.3) it turned out that it presents
the great advantage of being potentially used for a reliable detection of NO, with all the
three main possible orientations, at several bias points, also at low bias. In particular
from figure 10.4, that reports the current variations due to the NO and other common
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Figure 10.3: I-V characteristics obtained with the C60 sensor with gate alone and with a single
NO molecule with different relative orientations w.r.t. the fullerene. “Flat”: the
NO molecule is oriented with the bond axis parallel to transport direction, i.e.
with N and O atoms at same distance from fullerene. “O down”: the NO molecule
is oriented with oxygen atom pointing down toward the fullerene. “N down”: the
NO molecule is oriented with nitrogen atom pointing down toward the fullerene.

Table 10.2: Absolute average current variations |∆ID| and percentage average current variations
|∆ID|% in the voltage ranges [0,1] V and [0,2] V; both in the case of the sensor
wire and transistor structures.

Quantity Wire Transistor
|∆ID| in the range [0,1] V 1.228µA 5.207µA
|∆ID| in the range [0,2] V 4.745µA 4.741µA
|∆ID|% in the range [0,1] V 10.07 % 3.89 %
|∆ID|% in the range [0,2] V 4.77 % 1.34 %

atmospheric gases, it appears that a reliable detection of NO can be performed at VD
equal to 0.4V, 0.6V, 0.8V, 1.2V, 1.4V, 1.8V. This is obviously a great advantage for the
NO (gate) sensor.

So far it seems that in principle is possible to perform reliable detection of both PbSO4
and NO at 0.8V, since they both provide sufficiently different current variations w.r.t.
other common atmospheric gases. In figure H.2, in appendix H, the current variations
due to both lead sulfate and nitric oxide are reported for all the bias points. An issue is
present at 0.8V since the PbSO4 with the SO4 group pointing toward the C60 fullerene
and the NO with the N atom pointing toward the C60 fullerene produce very similar
current variations (and current value). Indeed they only differ for 0.27µA, making the
detection and the distinction between them very challenging and difficult. This is a big
drawback, since a sensor that in principle should work as multi-purpose sensor for the
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Figure 10.4: Current variations due to the different orientations of NO, and to other common
atmospheric chemical species.

simultaneous detection of both the chemical species (i.e. PbSO4 and NO) should reliably
distinguish between them. Smart solutions at conditioning circuit level are likely possible
for overcome this issue, even if the cost would be likely increased. The simplest solutions
are the following two. Firstly, supposing of using the sensor in a controlled environment,
in which only one of the two chemical species is known can be present. In such a case
the same sensor can be used for the detection either of PbSO4 only or NO only, and
the issue is no more present. The second solution can be to avoid the detection for that
current value corresponding to the NO (N down) and PbSO4 (SO down) ambiguity. In
such a case the sensor is supposed to correctly detect both the presence of PbSO4 and
NO simultaneously (and it works at a fixed 0.8V), but only if they are nearby the sensor
with some specific orientations (namely not with N toward the sensor for the NO, and
not with SO4 group toward the sensor for the PbSO4). In such a case, supposing that
all the possible lead sulfate and nitric oxide orientations are equally probable, the sensor
will detect NO with a reliability of the 66% (two cases over three), and the PbSO4 with a
reliability of the 80% (four cases over five possible are correctly detected). Of course these
arguments are at the present only fantasy, since a real implementation is still far from
now, and additional analyses (like the ones carried out in the previous sections and more
accurate ones besides those) should be performed before making such kind of statements.
Nevertheless the point is that unfortunately the PbSO4 and NO lead in some cases to an
indistinguishable current variation in the sensor, but at the moment, with the information
I have at the present, I believe solutions are possible, at different levels, for overcoming
the issue toward a realization of a multi-purpose sensor.

The sensor current-voltage characteristics for different numbers of NO molecules placed
nearby the channel were evaluated, and merged together in the surface of figure 10.5 (spline
3rd order interpolation is used). The main result is that at 0.8V the sensor presents an
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extremely high linear response to different NO molecules concentrations (number). This
is a great advantage of the NO sensor (with gate), indeed as mentioned several times
the linearity to concentration is an important property of sensors. In appendix H is also
reported the maximum error from linearity for the different bias points, confirming a very
low error in the case of 0.8V. Nevertheless it must be noted that such a linearity is only
due to the fact that at 0.8V the NO causes a very small current variation w.r.t. the case
in which the fullerene alone is present and also among the different cases of 1, 2, and 3 NO
molecules. Thus, considering also this, the sensor appears less attractive, since a difficult
recognition can be an issue. In this regard consider also figure H.4 in appendix H, in which
it is evident that the sensor is actually non-linear to NO concentrations at 0.8V, and it
presents small current variations. Further investigations can be carried out to this purpose,
in order to elucidate more details concerning the issue.

Figure 10.5: Current flowing in the NO gate sensor in function of the applied drain-to-source
bias VD and of the number of NO molecules nearby the molecular channel. Red
points are simulated data, the surface is obtained by merging the spline (3rd

order cubic) interpolating curves. The red line corresponds to the PbSO4 sensor
operating bias point: 0.8V.

The current-voltage characteristics for different NO molecule distances from the sensor
channel were evaluated, and merged together in the surface of figure 10.6 (spline 3rd order
interpolation is used). The main result is that at 0.8V the sensor presents good linearity
w.r.t. the NO molecule distance, especially between 3.0Å and 4.0Å, in which the current
value is very close to the one obtained for a distance of around 2.25Å. This is better
highlighted in figure H.5 in appendix H. The consequence is that, if it is possible to detect
the NO molecule (with VD = 0.8 V) at 2.25Å (and from the analyses reported previously
it seems to be so), it should be possible to detect it also for greater distances up to 4.0Å.
As already noticed in the previous chapter for the PbSO4 case, the non-linear behavior
increases when the voltage increases.
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Figure 10.6: Current flowing in the sensor with the gate structure in function of the applied
drain-to-source bias VD and of the distance of the NO molecule from the molecular
channel. Red points are simulated data, the surface is obtained by merging the
spline (3rd order cubic) interpolating curves. The red line corresponds to the
chosen bias point of 0.8V; a good linearity is present.

The above mentioned result can also be useful in estimating the interaction time of the
NO molecule with the C60 sensor. Indeed since the current variation is almost constant up
to 4.0Å, it can assumed that the sensor successfully interacts with the NO from 2.25Å to
4.0Å (or slightly more), thus for a distance of about 2Å (see interpolating curve - figure
H.5). Considering the reflection a total interaction distance of about 4.0Å is assumed, and
by exploiting the already introduced (section 9.8) reasoning and method (and the practical
implementation in MatLab - appendix G.4) an estimated interaction time in between 1.5
and 2 ps was evaluated. This can be thus compared with the sensor estimated response
time to verify if a dynamic detection process can be reliable or not.

Before doing it, notice that this is consistent with the estimation performed previously
for the wire case (an analogous procedure should definitively clarify this point); thus
making reasonable the considerations made in the previous section.

The sensor (with gate) response time was estimated with the same procedure and
methodology already discussed in the previous chapter (see section 9.9.5). Moreover, as
did for the wire NO sensor in the previous section, the same capacitance and resistance
values were used in a circuit schematic analogous to the one of figure 9.30 (with the only
difference that the LUT stored simulation data obtained for the NO case). Indeed, as
already commented in the previous section, in the hypothesis that such capacitances and
resistances are fixed, they do not change during the sensor dynamic evolution from the
state with no NO molecules to the one with 1 NO molecule, and they fixed to their initial
values, i.e. those reported in table 9.10. The transients duration was then estimated both
by means of the Cadence tool (“transient measurements”) and in MatLab (appendix G.3),
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and their values are reported in table 10.3. The longest time (worst case) is 25.5 ps, and
it is well above the estimated interaction time of the order of 1 or 2 ps. This can be a
compromising drawback for this device structure, making extremely difficult the detection
of NO by means of such a device. From this standpoint the wire sensor is believed to be
much better.

Table 10.3: MatLab and Cadence estimated time constants and transient duration. The consid-
ered quantities are defined with reference to figure 9.30, suitably modified to model
a NO molecule sensor (the LUT was modified with NO ATK simulated data).
The MatLab time constants τ are estimated with a graphical method. Notice that
Cadence failed in identifying correctly the rise/fall edges for the current.

Quantity MatLab: τ (s) MatLab: 7 · τ (s) Cadence rise/fall time (s)
Drain voltage 4.45146e-13 3.11602e-12 1.534e-12
Source voltage 3.6485e-12 2.55395e-11 110.3e-15
Drain current 1.79118e-13 1.25383e-12 -

10.4 Final remarks
In this chapter the previously analyzed lead sulfate sensors were briefly studied for the NO
detection. Even if the illustrated analyses are incomplete, they show already significant
results. More details can be extracted for example by implementing the analyses illustrated
in the previous two chapters.

The C60 fullerene molecular wire showed a discrete sensitivity to nitric oxide NO, and
a good selectivity for a voltage VD = 1 V. It seems potentially and reliably usable as NO
gas sensor for such a voltage value, with the drawback of requiring a different working
voltage w.r.t. the C60-based PbSO4 sensor. For such a bias points the current variations
due to PbSO4 and NO are sufficiently different. If compared with the gate device it
shows generally greater both absolute and percentage current variations w.r.t. to the one
obtained with the gated device, but at the same time it presents worse linear behavior
w.r.t. NO concentration (i.e. number of molecules). From the fast estimations concerning
the interaction and the sensor response times it seems to be able to reliably detect the NO
presence, indeed the sensor response time is estimated to be three orders of magnitude
less than the minimum interaction time of NO molecule with the sensor.

The C60 fullerene molecular transistor (with the gate terminal) showed again a discrete
sensitivity to nitric oxide NO, and a good selectivity for the following drain-to-source
voltages: VD = 0.4 V, 0.6 V, 0.8 V, 1.2 V, 1.4 V, 1.8 V. It seems potentially and reliably
usable as NO gas sensor for such voltage values, with the advantage of being potentially
able to correctly detect the NO presence at 0.8V, i.e. the same working voltage of the
PbSO4 sensor. Nevertheless for such a bias points the current variations due to PbSO4
and NO are too close for a given orientations (PbSO4 with SO4 group toward the fullerene
and NO with N toward the fullerene). This makes difficult the distinction between the
two chemical species. A different working voltage can be used for the NO detection, thus
recovering the same drawback of the wire sensor. If compared with the wire device it
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shows generally smaller both absolute and percentage current variations w.r.t. to the one
obtained with the wire device, but at the same it presents better linear behavior w.r.t. NO
concentration (i.e. number of molecules). Moreover it presents a good linearity with small
current variations (at 0.8V) w.r.t. the NO distance. From the estimations concerning the
interaction time and the sensor response time it seems to be not able to reliably detect the
NO presence, since the sensor response time is estimated to be one order of magnitude
greater than the interaction time. This could be an effective important drawback, that in
the wire sensor is not present.

Considering the overall advantages and drawbacks of the two devices, the wire NO
sensor seems to be more promising as effective and reliable low cost NO gas sensor. Further
investigations should be carried out to confirm this, again starting e.g. from the analyses
already presented in the previous chapters of this work.
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Chapter 11

Conclusions and future works

This entire work was mainly focused on the modeling of molecular electronic sensors (MES).
The concept of MES was introduced in chapter 1, section 1.2, while the long way that led
to them, passing through the beyond CMOS technologies and the molecular electronics,
was briefly addressed again in the introductory chapter 1, section 1.1.

The first part of this work was essentially a literature review of the MES theoretical
physical-chemical modeling techniques. Chapter 2 was aimed in reviewing quantum
mechanics, i.e. the theory in which the MES models have their roots. All the needed
topics to get a complete comprehension of the next chapters were introduced and discussed
there. Chapter 3 was aimed in modeling the molecular channel electronic structure, i.e.
the starting point for all the equilibrium and non-equilibrium modeling techniques of MES
and transport through them. Moreover, intermolecular interactions and relative modeling
techniques were discussed. They are of extreme importance for correctly modeling gas
sensors, like those considered in the practical part (II) of this work. Chapters 4 and
chapter 5 were dedicated to an deepened treatment of transport through MES. The first
provided an intuitive introduction to the basic concepts, while the latter reported a formal
and precise treatment. The attempt was always to keep the focus on the reasoning and
the concepts behind the formalism. The detailed treatment of such topics is in general
needed to understand and correctly setting up the atomistic simulations to be performed
to practically make calculations on MES. Then, in chapter 6 additional transport-related
topics were addressed, in order to mention also that cases that can practically happen
and that are very important to be suitably modeled in order to avoid rough mistakes
and wrong results. The information provided throughout the part I should be enough
to perform an aware and correct setting up of atomistic simulations and to judiciously
interpret the results.

The second part was instead focused on developing a general and complete methodology
for the design and the analysis of a MES, by means of three cases of study that resulted to
be very significant in order to develop such a methodological approach in MES simulations
and design. At the moment, this crucial point is still lacking in the literature, even if
it should be the first step toward the engineering and industrialization of the design
process. In chapter 7 the methodology I followed during the work was briefly introduced,
along with additional topics aimed in taking the step from the theory to the practice. In
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particular the MES working principles were reviewed with the gain of the part I theoretical
treatment, and a focus on gas sensors was provided. In chapter 8, the C60 fullerene
molecule was used as molecular channel for an ammonia MES. This practical application
was the occasion to develop a method for the device geometry choice and optimization, to
develop a simple approach for validating the EHT non-equilibrium simulations starting
from DFT equilibrium ones and to quantitatively estimate the sensor sensitivity and
selectivity. Unfortunately a failure in the ammonia selectivity occurred, and for this reason
the next steps of the general methodology were carried out on a lead sulfate sensor, that
was the subject of chapter 9. In such a chapter, after a brief repetition of the methodology
steps already introduced, the main non-equilibrium properties of the lead sulfate MES were
analyzed. In particular the sensor selectivity, sensitivity to different target orientations,
concentrations and distances were analyzed and verified. These properties, all together,
allow to gain a complete understanding of the sensor detection capabilities. Then a detailed
analysis on transmission eigenstates of the MES under study was performed. Thanks to
the strong lead sulfate polarization and the high atomic number of the lead (or high lead
sulfate molecular mass), it was possible to clearly recognize the basic principles behind the
transmission and the operation of the MES, providing, at the same time, an explanation
of the reasons why the lead sulfate detection was reliable while the ammonia one was
unreliable. An intermediate case between the ammonia and the lead sulfate was expected
to be the nitric oxide case (as indeed it was confirmed in the chapter 10 analysis). In
conclusion to chapter 9 an equivalent static and an equivalent dynamic circuit models of
the sensor were proposed, aimed in evaluating the functionality of circuits including the
MES (LUT-based model) and the sensor response time (dynamic model). A gate was also
considered to verify the different performances in such a case. The last chapter of this
work (chap. 10) was dedicated to a brief study of the nitric oxide detection by the same
device structure already analyzed in the previous two chapters. Both the molecular wire
and the molecular transistor device structures were considered and the same steps and
methods, already introduced in the previous two chapters for the ammonia and the lead
sulfate cases, were exploited to provide a brief characterization of the nitric oxide detection
by the C60-base MES.

This was, in short, what was did during this work. In the next section 11.1, the main
obtained results are again considered, chapter by chapter, in order to succinctly collect all
them together within a single paragraph. Then, in section 11.2, some ideas about what
can be done next in this fascinating field are briefly illustrated.
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11.1 Summary of the results
In this section the main points of this work, along with its main obtained results, are
summarized. The treatment will be divided between part I and II and by chapters, such
that an interested reader can easily refer to the parts of interest.

11.1.1 Part I
As mentioned previously, the part I of this work was aimed in providing a complete review
of the theoretical modeling techniques of molecular devices generally, and of molecular
electronic sensors specifically. The topics are quite well established in literature, and the
main result of this part is to collect all the needed theoretical aspects, also belonging
to very different fields, within the same document. In addition, since the only topics
assumed for granted are the basic mathematical and physical knowledges, common to
all engineering and scientific backgrounds, this document should be accessible without
any extra requirement to electronic engineers. It was conceived to be a reference for
understanding the meaning of the many input parameters of atomistic simulations that are
usually required to be set up. Since very often the calculations are performed by means
of commercial tools (like Quantum-Wise ATK used in this work), the task of setting up
simulations may appear to be easy. Nevertheless a great amount of knowledge is actually
required to avoid wrong settings and consequently unreliable results. This is the reason
why this part resulted to be so long.

Chapter 2: “Brief review of quantum mechanics”

In this chapter the fundamentals of quantum mechanics were reviewed. This is a well
established theory and the proposed treatment was not particularly novel. Nevertheless,
since this work assumes the reader to have an electronic engineer background, the treated
topics may or may not be already known, depending on the specific course of study, and
for this reason also the very basics were recalled.
All the covered topics are important to have a full understanding of the following chapters,
that in turn are important to correctly set up simulations and deal with MES. Basic
quantum mechanics results (like confinement, electron wave-functions and orbitals, etc...)
are indeed the starting point of chapters 3 and 4, and it was chosen to recall them in
order to have an homogeneous notation and lexicon. The matrix notation for quantum
mechanical operators, widely used in chapter 5, was also introduced.

Chapter 3: “Molecular electronic structure”

In this chapter the useful information for setting up molecular electronic structure cal-
culations, geometry optimizations, and molecular device simulations was reported and
discussed. In particular, the focus was on concepts and approximations behind the specific
methods. Then, a more in-depth insight was provided relatively to the DFT (Density
Functional Theory) and the EHT (Extended Hückel Theory) methods, since they were
the ones used in the part II of this work. In addition, the advanced modeling techniques
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for weak interactions (like van der Waals ones) were briefly addressed with a focus on the
recent supermolecular approach, suitable to correct DFT calculations. Such topics are the
fundamentals for a correct setting up of atomistic simulation relatively to MES, especially
for gas sensors or single molecule event detection, in which the working principle directly
involves such kind of weak interactions.

Chapter 4: “An introduction to transport in molecular devices”

In this chapter the transport through molecular devices was introduced with an over-
simplified model that allows to gain the physical intuition of what actually happens in
such a kind of devices. All the main transport features of MES (and molecular devices
in general) were introduced, along with a powerful and simple electrostatic treatment
of the system. Moreover an introduction to transmission formalism was provided. This
allowed to perform an interesting discussion about the molecular devices coherent transport
framework limits of application, that in its features is at the present novel in literature
(section 4.4). Actually, the concepts mentioned in such a discussion are not a news (see
references therein), but their application and explication to molecular devices are.

Chapter 5: “The Non-Equilibrium Green’s Function formalism”

In this chapter the transport through molecular devices was addressed by means the formal
and general NEGF formalism, that allows not only to model transport in such devices in
all their possible regimes of transport, but also to understand the meaning of the many
simulation parameters to be set up in atomistic simulations and the way to correctly set
up them. This was did in the relative short treatment of this chapter, that contains also
purely qualitative sections, focused on concepts only. Moreover, a practical and complete
example was provided, being the occasion to introduce an interesting free tool for EHT +
NEGF transport calculations through molecular systems: Huckel-IV tool, that was also
used in the practical part of this work for the sensor response time estimation.

Chapter 6: “Transport regimes in nano-devices”

In this chapter a brief review of the transport mechanisms through molecules was provided,
and the way of accounting for them in the NEGF framework was presented. Moreover, the
Coulomb blockade phenomenon was also addressed, and the possible modeling approaches
in Coulomb blockade transport regime were explained, with reference to the methods that
are increasingly becoming popular in literature in recent years (e.g. DFT corrections).
Notice that every time there is suspect that Coulomb blockade regime can be present or
dominant in the device under study, such corrections should be carefully considered to
avoid completely wrong results.

11.1.2 Part II
As mentioned previously, the part II of this work was aimed in developing a general method
for analyzing and designing molecular electronic sensors by means of simulations. This was
accomplished by considering three cases of study: a C60 gas sensor for ammonia detection,
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a C60 gas sensor for lead sulfate detection, and a C60 gas sensor for nitric oxide detection.
In literature there is still very few about the topics covered in this part, and the great
majority of the papers are still focusing on theoretical simulation studies rather than on
prototypes. For this reason this part of the work is a pioneering attempt to “put order” in
the large landscape of possible analyses and simulation one can perform on MES, in order
to identify the analyses that are effective and useful to extract information and eventually
figures of merit of such a kind of novel devices. The advantage of treating these topics
by means of real cases of study was obviously the direct feedback about critical issues of
such novel devices. In particular, first of all, an ammonia sensor was considered, inspired
by a pair of the few papers that are present in literature relatively to MES. It allowed to
fix many device parameters and to develop a way of doing it. The selectivity failure that
occurred for the ammonia was of great help in having the intuition of the basic mechanisms
at the basis of the detection process in gas MES. This was then confirmed from the lead
sulfate study, that, even if likely of few practical interest, allowed, thanks to the particular
properties of the lead sulfate single-molecule, to confirm the above mentioned intuition
and to elucidate the detection working principle. Finally the nitric oxide was considered,
being likely more interesting from a practical or a market standpoint.

Chapter 7: “Molecular electronic sensors”

In this chapter the working principles of different molecular electronic sensors were intro-
duced, with the gain of the part I of this work. A focus was provided on the concepts
of chemisorption and physisorption, that are very useful when gas sensors is considered,
and also in the moment in which metal electrodes are used to contact the molecular
channel. Moreover the general methodology, followed in the next chapters of this work,
was introduced.

Chapter 8: “C60-based ammonia gas sensor”

In this chapter the C60 molecular wire (with gold electrodes) was studied as an ammonia
gas sensor. The first result was an understanding of the equilibrium properties of such a
sensor, from which it was confirmed that fast and simple analyses on equilibrium properties
like the device DOS and transmission spectrum are enough to qualitatively understand
if the device can be potentially able to detect the target. This depends on if significant
variations in the above mentioned equilibrium properties occur or not. Then a method for
designing and engineering the device geometry was developed and used to actually do it.
During this analysis it was also obtained an insight on the transport mechanism through
the fullerene. In particular, by analyzing the obtained I-V characteristics for different
distances between the fullerene and the contacts, a clear exponential decreasing trend of the
current with the fullerene-contact distance was identified. Accordingly with the Simmon’s
model, it was thus concluded that, due to the high delocalization of the fullerene orbitals,
the main obstacles to electron transmission from source to drain in a C60 wire are the
contact-fullerene barriers. Once the geometry was fixed, the main equilibrium properties
of the sensor with the final geometry were again analyzed. In addition, a methodology for
validating non-equilibrium EHT simulation results, starting from equilibrium DFT ones,
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was conceived and presented. Then, the non-equilibrium properties and current-voltage
characteristics were considered. The sensor sensitivity to ammonia and selectivity were
estimated, considering also the sensor response to the most common atmospheric gases.
The main result of this analysis was the failure of the sensor in reliably detecting ammonia
if it is placed in an uncontrolled environment (in air). Nevertheless, it was obtained a
potentially good sensor response to lead sulfate, nitric oxide and nitric dioxide. All these
are polar molecules (like ammonia also is), and in particular lead sulfate contains the lead
that is an heavy metal with high atomic number. At the same time considering that the
sensor response to methane and butane was verified to be very poor, it was supposed the
detection mechanism being related to the molecule polarity and the high atomic number
of elements composing the target (high molecular mass), while it was supposed to be less
dependent on the number of electron states of the target molecule. This intuition was
confirmed in the next chapter.

Chapter 9: “C60-based lead sulfate gas sensor”

In this chapter the C60 molecular wire (with gold electrodes), already considered in
the previous chapter, was studied as a lead sulfate gas sensor. Besides the likely poor
applications (related to the fact that single lead sulfate molecule is very rare in air), this
choice was motivated by the interest in better understanding the physical mechanisms at
the basis of the detection process, in order to be, in future, able to more suitably select
target and sensor molecules, and to address useful analyses to speed up the complete design.
The same equilibrium and non-equilibrium analyses already presented in the previous
chapter were carried out in this chapter relatively to lead sulfate detection, along with
the device geometry choice and optimization for the best compromise between maximum
sensitivity and most stable structure. Again, the EHT non-equilibrium simulation results
were validated with the same method already used in the previous chapter. After that, the
main non-equilibrium sensor properties like sensitivity to target and sensitivity to different
orientations of the target (being a polar molecule and being the intermolecular interactions
strongly anisotropic this should always be checked), along with the sensor selectivity. In
addition the sensor response to different target concentrations and distances were analyzed.
The main results of these analyses are that the sensor seemed to be promising as potential
sensor for lead sulfate detection in air, or in controlled atmosphere. As already mentioned,
a transmission eigenstates analysis was carried out confirming the intuitions reported
at the end of the previous chapter to be true. The gas MES are thus very sensitive to
polar molecules, the greater the target molecule electric dipole, the better the detection is.
Moreover due to steric effects, the greater the atomic number of the target the better is
expected to be the detection.

In order to estimate the sensor response time, a series of steps were performed, leading
simultaneously to the construction of an equivalent MES circuit model. Firstly a simple
static circuit model was conceived. This was a LUT-based model, aimed in performing static
analyses and functional or behavioral verifications. Then the electrostatic capacitances of
the sensor and other dynamic quantities having the dimensions of resistances, but with the
only purpose of representing the fact that moving charges from/toward the sensor channel
requires time, were estimated (I referred to such quantities as “dynamic” resistances). This
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led to another equivalent circuit model aimed in estimating the sensor transients duration
and thus the sensor response time. By comparison with the estimated interaction time
between the sensor and the target molecule, it was verified the potentiality of the sensor in
performing real time detection of the target. Moreover the developed static and dynamic
models were believed to be a useful starting point toward a general “black-box”-like circuit
model of MES, to be used in designing conditioning circuits for the sensors and electronic
systems including them.

In conclusion to this chapter, a different sensor device was considered, namely a sensor
with an additional gate terminal. The gate structure and voltage were set to try enhancing
the detection performances of the sensor, but at the same time to be realistic structure
with the current technology. The analyses carried out for the wire sensor were all repeated
for the gated sensor. A slightly greater sensor sensitivity was found with the gate w.r.t.
the wire sensor, even if the percentage sensitivity was reduced (since there was an overall
current increase with gate). In general no significant performance amelioration was found,
and, in addition, the sensor response time resulted considerably longer (three order to
magnitude greater), thus being a potential important drawback for a reliable real time
detection of the target.

Chapter 10: “A glimpse on the C60-based nitric oxide gas sensor”

In this chapter the C60 molecular wire and transistor, already considered in the previous
chapter, were studied as nitric oxide gas sensors. The already developed methodology was
simply applied to the study of the nitric oxide detection properties of the same devices
considered previously, with no differences in the devices structure. The wire sensor resulted
capable of potentially recognize the presence of nitric oxide only for an applied voltage of
1V, value different from the one employed for the lead sulfate detection in chapter 9. Apart
from this, the sensor presented potential good response properties, including an enough
fast response time, being thus suitable as nitric oxide sensor. The gate sensor did not
reveal particular advantages w.r.t. the wire configuration, a part a wide range of voltages
in which it resulted able to perform reliable detection of the target. Again, like for the lead
sulfate, it also presented a significant increase in the sensor response time that resulted to
be one order of magnitude longer than the interaction time between nitric oxide and the
sensor, leading to an unreliable detection capability in an uncontrolled environment.

Final remarks

In conclusion, the MES modeling techniques were reviewed and used to investigate the
detection properties of a C60-based MES (with wire configuration and gated one). The
ammonia, lead sulfate and nitric oxide detection capabilities of such devices were studied,
and a general analysis and design methodology was developed. Few simple figures of merit
were proposed to investigate the sensitivity and selectivity of such MES devices, allowing
also to coherently compare them. The ammonia detection resulted unreliable because
the low sensor selective response to ammonia if compared to the responses obtained with
other common atmospheric chemical species. Instead the lead sulfate and nitric oxide
detection resulted potentially possible. A simple circuit model for static and behavioral
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analyses of circuits including MES was developed and implemented, and successively
refined to get an equivalent circuit model able to estimate the sensor dynamic response
time to concentration variations of the target chemical species. This model can be the
starting point toward a more refined circuit equivalent “black-box”-like model to be used
in designing circuits including MES. The MES devices with gates (i.e. molecular transistor
configurations) analyzed in this work did not present significant advantages w.r.t. the
(cheaper) wire ones, while all presented the drawback of an increased response time, thus
potentially implying a non-reliable detection of target, that, instead, with the wire sensors
resulted always possible.

There is still much to do in this fascinating field of research before achieving the design
confidence to prototype and develop real devices; and then, there will be again much to do
in order to achieve the confidence required to eventually put into production MES. During
the long road still to go I believe much novel properties and discoveries will be achieved
by studying MES, likely also in some transverse field of science and knowledge. In the
next, and last, section of this work I will provide some suggestions on future topics to be
investigated I had in mind during the development of this work, but that I had no time to
address.

11.2 What is next?
In this section I would like to collect a set of ideas relative to future works in this field I
conceived during the development of this work, but that I had no time to address. The
section will be again divided into more theoretical or general topics, mainly related to part
I of this work, and to more application-oriented topics, mainly related to part II of this
work.

General methodology and modeling

The possible future works concerning the general modeling of molecular electronic sensors,
and more in general of molecular electronic devices, can be divided into two groups: possible
improvements and customization of the free tool Huckel-IV, and possible improvements of
the MES equivalent circuit model. They are considered in the following:

• Possible improvements of the Huckel-IV suite:

a. inserting more contact materials (e.g. silicon or graphene contacts), that practi-
cally would mean to evaluate the surface Green’s functions for the new contacts

b. eliminating the fitting parameter Vc, or better evaluating it, by means of a self-
consistent procedure for equilibrium calculations, starting from isolated contact
and device geometries only

c. including also non-coherent scattering (on which electronic transport in weakly
coupled devices is based)

d. improving it for simulating all kinds of quantum dots (such as nanocrystals,
etc...) or even (short) quantum wires (always by means of atomistic simulations)
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e. improving it by including a DFT + NEGF method (along with EHT + NEGF)
f. creating a graphical interface (or even an effective command line interface) in

order to further ease the usage and the setting up of simulations by non-expert
users

• Possible improvements of the equivalent circuit model:

a. more accurate estimations of the circuit model parameters: Cg, Rg, Cs, Rs, Cd,
Rd

b. inclusion of parasitic capacitive and resistive components, e.g. to account for
contact resistances

c. development of a large and a small signal models, in order to treat the MES in
the same way as conventional analog electronic devices

MES gas sensors

The possible future works concerning specifically MES for gas sensing applications can be:

• Further in-depth investigation of the nitric oxide and of other relevant chemical
species (e.g. pollutants, etc...) detection capabilities, e.g. by following the same
methodology of this work.

• Further investigation of the transistor device configuration for the detection of relevant
chemical species.

• Investigation of different molecules for the sensor molecular channel in order to
gain knowledge about the sensing properties of different classes of molecules, with a
spetial consideration for the anchoring groups and their influence on sensing. For the
molecular channel an example to be investigated can be the C20 fullerene, that is the
smallest fullerene, and presents greater chemical reactivity due to the smaller radius
of curvature [140] w.r.t. the C60 fullerene. Therefore it would be interesting, in my
opinion, to investigate it as molecular channel to verify if, and in what terms, it can
affect the sensing of target chemical species.

• Investigation of different contact materials, such as the graphene. Indeed the graphene
is already used in 2D gas sensors due to its high reactivity and potential selectivity
[50], [48], [49]. Therefore it would be interesting, in my opinion, to investigate it
as contact material, considering also the recent development in graphene molecular
junctions [21], [22], [23], to verify if, and in what terms, it can affect the sensing of
target chemical species.

• Investigation of the sensor noise, and thus of noise in molecular electronic devices.

• Design and development of the conditioning circuit and of the entire measuring
system.
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Appendix A

Additional quantum mechanics
related topics

A.1 Solution of second order homogeneous differen-
tial equations

The steady state Schrödinger’s equation can always be written as:

− ~2

2m
d2

dx2ψ(x) + U(x)ψ(x) = Eψ(x) , U(x) = 0 ∀x ∈ R

→ d2

dx2ψ(x) + k2ψ(x) = 0 , k =
√

2m
~2 (E − U(x))

Usually in practical cases a piece-wise constant potential energy is recovered. Let’s call
the potential constant value in the interval of interest with U0. Thus:

d2

dx2ψ(x) + k2ψ(x) = 0 , k =
√

2m
~2 (E − U0)

This is an homogeneous ordinary differential equation of second order with constant
coefficients. Depending if E > U0 or E < U0 two different solutions are possible.
In general, a second order homogeneous equation can be written as:

d2

dx2 y(x) + a
d

dx
y(x) + by(x) = 0 with a, b ∈ R

and its solution depends on the discriminant of the characteristic polynomial:

λ2 + aλ+ b = 0 → λ1,2 = −a±
√

∆
2 , where : ∆ = a2 − 4b

In the Schrödinger’s equation case a = 0 and b = k2:

λ2 + k2 = 0 → λ1,2 = ±
√
−k2 = ±ik and ∆ = −4k2
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The following cases are generally possible:
• ∆ > 0: the characteristic polynomial roots are real and distinct. In the Schrödinger’s

equation case this corresponds to a purely imaginary k. This is the case in which
E < U0 such that:

k = iβk ∈ C , βk =
√

2m
~2 (U0 − E) ∈ R+

Indeed ∆ = −4k2 = +4β2
k > 0. The general solution is:

y(x) = Aeλ1x +Beλ2x A,B ∈ R

that in the Schrödinger’s equation case becomes:

λ1,2 = ±ik = ∓βk ∈ R and thus : ψ(x) = Ae+βkx +Be−βkx , A,B ∈ R

• ∆ = 0: in this case the two roots of the characteristic polynomial are real and equal.
Nevertheless this case cannot appear in the solution of the Schrödinger’s equation
since it would correspond to k = 0, that means no state (trivial solution - not of
interest).

• ∆ < 0: in this case the two roots of the characteristic polynomial are complex
conjugate. This is the case in which E > U0 such that:

k =
√

2m
~2 (E − U0) ∈ R+

In this case ∆ = −4k2 < 0. The complex conjugate solutions of the characteristic
polynomial are indicated as: λ1,2 = σ ± iε. The general solution is:

y(x) = C1e
σxcos(εx) + C2e

σxsin(εx) , C1, C2 ∈ R

that in the Schrödinger’s equation case becomes:

λ1,2 = ±ik , with : σ = 0 and ε = k

and thus : ψ(x) = C1e
σxcos(εx) + C2e

σxsin(εx) , C1, C2 ∈ R

Noticing that σ = 0 and thus eσx = 1, that ε = k and remembering that is possible
to express cosine and sine functions in term of complex exponentials:

ψ(x) = C1 · 1 ·
eikx + e−ikx

2 + C2 · 1 ·
eikx − e−ikx

2i =

= C1

2
(
eikx + e−ikx

)
+ C1

2i
(
eikx − e−ikx

)

→ ψ(x) =
(
C1

2 −
C2

2 i

)
eikx +

(
C1

2 + C2

2 i

)
e−ikx

and said: A = C1
2 −

C2
2 i and B = C1

2 + C2
2 i it becomes:

ψ(x) = Ae+ikx +Be−ikx , A,B ∈ C
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In summary, the two cases of interest that is possible to encounter in the solution of the
steady state Scrhödinger’s equation are the following:

• E < U0: for which:

k = iβk ∈ C , βk =
√

2m
~2 (U0 − E) ∈ R+

and the general solution is:

ψ(x) = Ae+βkx +Be−βkx , A,B ∈ R

• E > U0: for which:

k =
√

2m
~2 (E − U0) ∈ R+

and the general solution is:

ψ(x) = Ae+ikx +Be−ikx , A,B ∈ C

It is possible summarize the results by saying that the general solution is always:

ψ(x) = Ae+λ1x +Be+λ2x

with λ1,2 = ±ik solutions of the characteristic polynomial.
Then if E < U0, thus k is purely imaginary, by writing it as k = iβk (where βk is real
positive) one gets: λ1,2 = ±βk and the solution becomes:

ψ(x) = Ae+βkx +Be−βkx , remembering that : A,B ∈ R

Otherwise if E > U0, thus k is real (positive), then: λ1,2 = ±ik and the solution becomes:

ψ(x) = Ae+ikx +Be−ikx , remembering that : A,B ∈ C

A.2 Another method for the 1D finite height quan-
tum well

In section 2.3.7 it was addressed the solution of the steady state Schrödinger’s equation
in the case of a finite height 1D quantum well. It was pointed out that no full analytical
solution is possible, but also that another procedure, less involved of the one briefly
discussed there, is possible. In this appendix this way of proceeding is briefly presented.
The same result obtained in section 2.3.7, can also be obtained in an another way by noting
that the potential U(x) has an even symmetry. It is possible to verify that in this case the
solutions ψ(x) can be symmetric or anti-symmetric. In the first case ψ(x) is even, while in
the second it is odd. Within the Schrödinger’s equation: Ĥψ = Eψ , the wave-function is
multiplied by a second order derivative and by the potential energy at left hand side (Ĥ),
and by a real scalar E on right hand side. Thus an even wave-function can be a solution
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for that equation if the application of the Hamiltonian operator on it (left hand term) does
not change its symmetry (that on the right hand side is not changed by the multiplication
with the real scalar E). Fortunately a second order derivative of an even function is even
and the multiplication of an even function U(x) by an even function ψ(x) is still even.
Thus an even wave-function can be solution of the Schrödinger’s equation. Analogously an
odd wave-function can be a solution of the Schrödinger’s equantion, since a second order
derivative of an odd function is odd and the multiplication of an even function U(x) by an
odd one ψ(x) is again odd. Notice instead that a wave-function that is given by the sum
of an even and an odd functions cannot be a solution. Consequently there are two types
(even or odd wave-function) of independent solutions. They will be addressed separately.

The results that are the starting points for what is presented now (see section 2.3.7 for
their derivation) are the wave-function general expressions:

ψ(x) =


ψI(x) = K1e

+βkx if x < −L
2 (region I)

ψII(x) = K2cos(kx) +K3sin(kx) if − L
2 ≤ x ≤ +L

2 (region II)
ψIII(x) = K4e

−βkx if x > +L
2 (region III)

and the continuity conditions on it and its first derivatives:

ψI(−L
2 ) = ψII(−L

2 ) (cond. 1)

ψII(+L
2 ) = ψIII(+L

2 ) (cond. 2)

d
dxψI(x)|x=−L2

= d
dxψII(x)|x=−L2

(cond. 3)

d
dxψII(x)|x=+L

2
= d

dxψIII(x)|x=+L
2

(cond. 4)

Case of ψ(x) even: From the general solution of ψ(x) in order to have an even solution it
is possible to set K1 = K4 and K3 = 0, such that:

ψ(x) =


ψI(x) = K1e

+βkx if x < −L
2 (region I)

ψII(x) = K2cos(kx) if − L
2 ≤ x ≤ +L

2 (region II)
ψIII(x) = K1e

−βkx if x > +L
2 (region III)

From the continuity condition (cond. 1) one gets:

K1e
−βk L2 = K2cos(−k

L

2 ) = K2cos(k
L

2 ) (A.1)

From the continuity condition (cond. 3) one gets:

K1βke
−βk L2 = −K2 k sin(−kL2 ) = +K2 k sin(kL2 ) (A.2)
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The equations (A.1) and (A.2) constitute an homogeneous linear system of two equations
in two unknowns (namely K1 and K2). The system is:{

K1e
−βk L2 −K2cos(kL2 ) = 0

K1βke
−βk L2 −K2 k sin(kL2 ) = 0

Its determinant should be enforced to be null such that only non-trivial solutions can be
found: ∣∣∣∣∣∣∣

e−βk
L
2 −cos(kL2 )

βke
−βk L2 −ksin(kL2 )

∣∣∣∣∣∣∣ = 0

From which:
−e−βk

L
2 k sin(kL2 ) + βke

−βk L2 cos(kL2 ) = 0

→ βk = k tan

(
k
L

2

)
(A.3)

This last equation represents a constraint on the possible energy values that are permitted
for the quantum well (in the sense that they are the proper energy values for that structure).
Indeed both k and βk are function of energy E, and thus the equation leads to possible
values of E, i.e. of energy eigenvalues for the quantum well.

Case of ψ(x) odd: By proceeding in an analogous way for an odd solution it is possible to
recover a similar expression, that is again a constraints on the possible energy values E,
coming from the odd solutions of the Schrödinger’s equation. The wave-function can be
made odd by assuming K1 = −K4 and K2 = 0, such that:

ψ(x) =


ψI(x) = K1e

+βkx if x < −L
2 (region I)

ψII(x) = K3sin(kx) if − L
2 ≤ x ≤ +L

2 (region II)
ψIII(x) = −K1e

−βkx if x > +L
2 (region III)

From the continuity condition (cond. 1) one gets:

K1e
−βk L2 = K3sin(−kL2 ) = −K3sin(kL2 )

From the continuity condition (cond. 3) one gets:

K1 βk e
−βk L2 = K3 k cos(k

L

2 )

The last two equations constitute an homogeneous linear system of two equations in two
unknowns (namely K1 and K3). The system is:{

K1e
−βk L2 +K3sin(kL2 ) = 0

K1βke
−βk L2 −K3 k cos(kL2 ) = 0
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Its determinant should be enforced to be null such that only non-trivial solutions can be
found: ∣∣∣∣∣∣∣

e−βk
L
2 sin(kL2 )

βke
−βk L2 −kcos(kL2 )

∣∣∣∣∣∣∣ = 0

From which:

−e−βk
L
2 k cos(kL2 )− βke−βk

L
2 sin(kL2 ) = 0

→ βk = −k cot
(
k
L

2

)
(A.4)

This last equation represents a constraint on the possible energy values that are permitted
for the quantum well (in the sense that they are the proper energy values for that structure).
Indeed both k and βk are function of energy E, and thus the equation leads to possible
values of E, i.e. of energy eigenvalues for the quantum well.

The two equations (A.3) and (A.4) must hold simultaneously, thus they constitute a system
of two equations to be satisfied in order to have acceptable solutions of the Schrödinger’s
equation for the quantum well. Equation (A.3) must hold for the even wave-functions, while
equation (A.4) for the odd ones. Nevertheless the solutions must be merged, indeed they
are simultaneous solutions of the same equation, even if they were recovered independently
the one from the other. A full analytical solution of the system of equations (A.3) and
(A.4) is not possible. Numerical or graphical procedures are needed, usually the graphical
procedure is preferred because it allows to understand better the concept of “binding
power” introduced in section 2.3.7. In order to do that the functions k tan

(
kL2

)
and

−k cot
(
kL2

)
can be plotted with kL on abscissa axis, see figure A.1. The solutions are

given by the intersections of these curves with the βk(k) ones (since they must be equal).
Notice that βk is function of k (and thus of E):

βk(k) =
√

2m
~2 (U0 − E) =

√
2m
~2 U0 −

2m
~2 E =

√
k2

0 − k2

where k2
0 = 2m

~2 U0 and k2 = 2m
~2 E. The intersections between the curve

√
k2

0 − k2 and the
above mentioned k tan

(
kL2

)
(even modes) and −k cot

(
kL2

)
(odd modes) corresponds to

the only possible k values for the quantum well. From figure A.1 it is evident that these
values are quantized (indeed there is no a continuous range of values but only discrete
points), and consequently the permitted energy eigenvalues for the quantum well are
discretized, indeed:

E = ~2k2

2m , k is quantized.
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A.3 – MatLab implementation of the finite difference method for the 1D finite height quantum well

Figure A.1: Graphic solution of the system of the two equations (A.3) and (A.4). In blue:
k tan

(
kL

2
)
; in orange: −k cot

(
kL

2
)
; in black: the functions βk =

√
k2

0 − k2 for
various k0. The only possible solutions are the intersection points, highlighted with
red circles, between βk =

√
k2

0 − k2 and the functions k tan
(
kL

2
)
and −k cot

(
kL

2
)
.

These intersection points correspond to discrete values of k and thus of energy E.

A.3 MatLab implementation of the finite difference
method for the 1D finite height quantum well

In this section is reported a MatLab code that solves the steady state Schrödinger’s equation
in the case of a quantum well. The quantum well is supposed to be tall U0 and long L.
The well can also have an internal barrier of thickness W and height U1. The electron mass
is assumed to be the free electron mass (effective mass set to 1). The code was developed
during the course “Micro & Nano systems” (a.y. 2018/2019) as an exercise. Instructions
and remarks on its usage are directly provided within the code comments.

1 %% Micro&Nano d i s c r e t i z e d Quantum Well Hamiltonian e x e r c i s e .
2 c l e a r a l l
3 c l o s e a l l
4 c l c
5 str ing_to_be_displayed = s p r i n t f ( ' P o t e n t i a l we l l e x e r c i s e . \ n ' ) ;
6 di sp ( str ing_to_be_displayed ) ;
7

8

9 %% Use fu l cons tant s : ( do NOT modify p l e a s e ! =) )
10 m0 = 9.10938291 e−31; % e l e c t r o n mass , kg
11 q = 1.6021766208 e−019; % elementary charge , C
12 h = 6.626070040 e−34; % Planck constant , J∗ s
13 hbar = h/(2∗ pi ) ; % J∗ s
14 h_eV = h/q ; % Planck constant , eV∗ s
15 hbar_eV = h_eV/(2∗ pi ) ; % eV∗ s
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16

17 %% input data : ( s e t them proper ly ! =) )
18 L = 10e−9; %try : 22e−9; % width o f the wel l , m
19 N = 100 ; % number o f nodes
20 U0 = 1 ; % he ight o f the wel l , eV
21 % c e n t r a l por t i on o f the we l l :
22 U1 = 0 . 8 ; % he ight o f c e n t r a l por t i on o f the wel l , eV ( i t should be

l e s s e r than U0 ! )
23 W = 5e−9; % c e n t r a l we l l width , m ( i t should be l e s s e r than L ! ! )
24 % e l e c t r o n e f f e c t i v e mass in cons ide r ed mate r i a l :
25 m = 1 ∗ m0; % by d e f a u l t i t i s s e t equal to f r e e e l e c t r o n mass : m = 1 ∗

m0;
26 %
27

28 %% Hamiltonian operator c o n s t r u c t i o n :
29 %
30 % s e t the mesh g r id ( i t i s c r ea ted a mesh 2L long ) :
31 space = l i n s p a c e (−L , L , 2∗N) ;
32 % Create the p o t e n t i a l shape :
33 U = l i n s p a c e (−L , L , 2∗N) ;
34 U( 1 : end ) = U0 ; % eV , i n i t i a l i z a t i o n to U0
35 % index and c o r r e c t p o t e n t i a l shape gene ra t i on :
36 we l l = f i n d ( abs ( space ) < L/2) ;
37 smal l_wel l = f i n d ( abs ( space ) < W/2) ;
38 U( we l l ) = 0 ; % eV
39 U( smal l_wel l ) = U1 ; % eV
40 %
41 % Kinet i c energy operator term :
42 a = space (2 ) − space (1 ) ; % elementary i n t e r v a l ( l i n s p a c e i s used so each

i n t e r v a l s are a l l equal )
43 t0 = hbar_eV^2/(2∗m∗a ^2) ;
44 %
45 % H diagona l e lements :
46 diag_elements = 2∗ t0 ∗ ones (1 , l ength (U) ) ;
47 diag_elements = diag_elements + U/q ; % here U i s expres sed in J
48 H = diag ( diag_elements ) ;
49 % H upper/ lower diag e lements :
50 up_low_diag_elements = −t0 ∗ ones (1 , l ength (U)−1) ;
51 H = H + diag ( up_low_diag_elements , 1) ;
52 H = H + diag ( up_low_diag_elements , −1) ;
53 %
54

55 %% Eigenvector s and Eigenva lues c a l c u l a t i o n :
56 % Function " e i g " ev a l ua t e s the f i r s t 2N e i g e n v a l u e s and e i g e n v e c t o r s

where N
57 % i s the H dimensione (2Nx2N, with N s e t in input data s e c t i o n ) .
58 % Bounded s t a t e s ( i . e . s t a t e s o f i n t e r e s t in t h i s code /problem )
59 % are then found by s e l e c t i n g the e i g e n v a l u e s ( and correspond ing
60 % e i g e n f u n c t i o n s ) with energy below U0 .
61

62 [ EigenVect , EigenValues ] = e i g (H) ;
63 EigenValues_eV = EigenValues ∗q ; % eV
64 %
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65 % copy e i g e n v a l u e s in an s u i t a b l e output data−s t r u c t u r e :
66 Energy_Values = z e r o s (1 , l ength (U) ) ;
67 Energy_Values = diag ( EigenValues_eV ) ;
68 %
69 % Bounded s t a t e s s e l e c t i o n : s t a t e s with energy below U0 .
70 Confined_Energy_Values = f i n d ( Energy_Values < U0) ;
71 %
72 % % IN THE CASE IN WHICH U1>U0 AND YOU WANT TO PLOT ALSO THE

EIGENFUNCTIONS
73 % % WITH EIGENVALUES IN BETWEEN U0 AND U1 : PLEASE COMMENT THE INSTRUCTION
74 % % ABOVE AND USE THE FOLLOWING (uncomment i t ) :
75 % Umax = max(U0 , U1) ;
76 % Confined_Energy_Values = f i n d ( Energy_Values < Umax) ;
77

78 %% PLOT RESULTS:
79 %
80 % CONFINED EIGENVALUES:
81 f i g u r e (1 )
82 hold on
83 g r id on
84 p lo t ( space ∗1e9 , U, ' k ' , ' LineWidth ' , 2) ;
85 % we l l a b s c i s s a a x i s d e f i n i t i o n :
86 a b s c i s s a = l i n s p a c e (−L/2 , L/2 , N) ;
87 f o r i =1: Confined_Energy_Values ( end )
88 EigenValue_to_be_plotted = Energy_Values ( i ) ;
89 EigenPLOT = EigenValue_to_be_plotted ∗ ones (1 ,N) ;
90 p lo t ( a b s c i s s a ∗1e9 , EigenPLOT , ' LineWidth ' , 2) ;
91 end
92 x l a b e l ( ' space−a x i s (nm) ' ) ;
93 y l a b e l ( ' Energy (eV) ' ) ;
94 t i t l e ( ' Eigenva lues o f con f ined s t a t e s in the we l l ' ) ;
95 s e t ( gca , ' f o n t s i z e ' , 15) ;
96 %
97 % NUMBER OF CONFINED EIGENVALUES IS PRINTED in command window :
98 str ing_to_be_displayed = s p r i n t f ( 'Number o f con f ined e i g e n v a l u e s : %g . \ n ' ,

Confined_Energy_Values ( end ) ) ;
99 di sp ( str ing_to_be_displayed ) ;

100 %
101 str ing_to_be_displayed = s p r i n t f ( '

_________________________________________' ) ; % j u s t f o r appearance
reasons

102 di sp ( str ing_to_be_displayed ) ;
103 %
104 % WAVEFUNCTIONS PLOTS:
105 str ing_to_be_displayed = s p r i n t f ( ' Press any key to cont inue ( as many

times as the number o f con f ined e i g e n v a l u e s ) − f i g u r e (2 ) . \ n ' ) ;
106 di sp ( str ing_to_be_displayed ) ;
107 %
108 f i g u r e (2 )
109 a e s t h e t i c _ f a c t o r = 2 ;
110 f o r i =1: Confined_Energy_Values ( end )
111 hold on
112 g r id on
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113 x l a b e l ( ' space−a x i s (nm) ' ) ;
114 y l a b e l ( ' Wavefunctions (eV) ' ) ;
115 Umax = max(U0 , U1) ;
116 ylim ([−Umax/2 Umax ] ) ;
117 t i t l e ( ' Bounded wavefunct ions in func t i on o f space ' ) ;
118 s e t ( gca , ' f o n t s i z e ' , 15) ;
119 p lo t ( space ∗1e9 , U, 'k−− ' , ' LineWidth ' , 2) ;
120 p lo t ( space ∗1e9 , a e s t h e t i c _ f a c t o r ∗ EigenVect ( : , i ) , ' LineWidth ' , 2) ;
121 l egend_str ing_wel l = s p r i n t f ( ' quantum we l l shape ' ) ;
122 l egend_str ing = s p r i n t f ( ' wavefunct ion %g ' , i ) ;
123 l egend ( legend_str ing_wel l , l egend_str ing , ' Locat ion ' , ' best ' ) ;
124 pause
125 i f ( i ~= Confined_Energy_Values ( end ) )
126 c l f
127 end
128 end
129 %
130 str ing_to_be_displayed = s p r i n t f ( ' Press any key to cont inue ( as many

times as the number o f con f ined e i g e n v a l u e s ) − f i g u r e (3 ) . \ n ' ) ;
131 di sp ( str ing_to_be_displayed ) ;
132 %
133 f i g u r e (3 )
134 a e s t h e t i c _ f a c t o r = 0 . 4 ;
135 hold on
136 g r id on
137 x l a b e l ( ' space−a x i s (nm) ' ) ;
138 y l a b e l ( ' Wavefunctions (eV) ' ) ;
139 t i t l e ( ' Bounded wavefunct ions in the we l l ' ) ;
140 s e t ( gca , ' f o n t s i z e ' , 15) ;
141 p lo t ( space ∗1e9 , U, ' k ' , ' LineWidth ' , 2) ;
142 f o r i =1: Confined_Energy_Values ( end )
143 p lo t ( space ∗1e9 , Energy_Values ( i ) + a e s t h e t i c _ f a c t o r ∗ EigenVect ( : , i ) , '

LineWidth ' , 2) ;
144 pause
145 end
146 %
147 str ing_to_be_displayed = s p r i n t f ( ' Press any key to cont inue ( as many

times as the number o f con f ined e i g e n v a l u e s ) − f i g u r e (4 ) . \ n ' ) ;
148 di sp ( str ing_to_be_displayed ) ;
149 %
150 str ing_to_be_displayed = s p r i n t f ( '

_________________________________________' ) ; % j u s t f o r appearance
reasons

151 di sp ( str ing_to_be_displayed ) ;
152 %
153 f i g u r e (4 )
154 a e s t h e t i c _ f a c t o r = 2 ;
155 hold on
156 g r id on
157 x l a b e l ( ' space−a x i s (nm) ' ) ;
158 y l a b e l ( ' Wavefunctions (eV) ' ) ;
159 t i t l e ( ' Squared modulus o f bounded wavefunct ions in the we l l ' ) ;
160 s e t ( gca , ' f o n t s i z e ' , 15) ;
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161 p lo t ( space ∗1e9 , U, ' k ' , ' LineWidth ' , 2) ;
162 f o r i =1: Confined_Energy_Values ( end )
163 p lo t ( space ∗1e9 , Energy_Values ( i ) + a e s t h e t i c _ f a c t o r ∗ abs ( EigenVect ( : , i

) ) . ^2 , ' LineWidth ' , 2) ;
164 pause
165 end
166 %
167 str ing_to_be_displayed = s p r i n t f ( ' Execution Terminated . \ n−−>> I f a graph

i s not c l ea r , p l e a s e modify the r e l a t i v e a e s t h e t i c f a c t o r in p l o t
f u n c t i o n s ! =)\n ' ) ;

168 di sp ( str ing_to_be_displayed ) ;
169 %

A.4 MatLab implementation of the finite difference
method for the 1D potential barrier (and step)

In this section is reported a MatLab code that solves the steady state Schrödinger’s
equation in the case of a potential step, barrier or double barrier. It was derived from
the code reported in the previous section A.3. Notice that in this exercise the energy
of the incoming electron should be arbitrary. Nevertheless in order to speed up and
simplify the solution, only proper eigenstates of the space domain are considered, and they
were evaluated with no boundary conditions. This means that the space is considered
limited instead of unlimited, with a total extension equal to L (that is the input domain).
Consequently discretization occurs and only wave-functions that are proper eigenmodes
of the structure (that is long L) are considered. In a real world potential step/barrier
the space is considered unbounded and infinite to both left and right sides. Consequently
the Hamiltonian spectrum is continue and not discrete, like it happens here. Among the
calculated (discrete) eigenfunctions, the plotted ones (see section 2.3.7) are the so-called
“considered” ones, i.e. those with energy lesser than Emax (see input parameters). They
are anyway significant of the main physical insights of this class of problems. Depending
on the particular case it is left to the user the physical interpretation of the plotted
wave-functions. They may correspond to incoming electrons from left or from right, or
even from any intermediate region. All the solutions are anyway solutions of the steady
state Schrödinger’s equation for the considered shape of the potential. This code should
be refined such that suitable boundary conditions are enforced and only interesting cases,
namely corresponding to incoming electrons from left, are found.
Instructions and remarks on its usage are directly provide within the code comments.

1 %% Micro&Nano d i s c r e t i z e d Quantum Well Hamiltonian e x e r c i s e . By Fabbro .
2 c l e a r a l l
3 c l o s e a l l
4 c l c
5 str ing_to_be_displayed = s p r i n t f ( ' P o t e n t i a l s tep / b a r r i e r e x e r c i s e . \ n ' ) ;
6 di sp ( str ing_to_be_displayed ) ;
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7

8 %% Use fu l cons tant s : ( do NOT modify p l e a s e ! =) )
9 m0 = 9.10938291 e−31; % e l e c t r o n mass , kg

10 q = 1.6021766208 e−019; % elementary charge , C
11 h = 6.626070040 e−34; % Planck constant , J∗ s
12 hbar = h/(2∗ pi ) ; % J∗ s
13 h_eV = h/q ; % Planck constant , eV∗ s
14 hbar_eV = h_eV/(2∗ pi ) ; % eV∗ s
15

16 %% input data : ( s e t them proper ly ! =) )
17 L = 10e−9; % t o t a l space l ength o f r eg i on o f i n t e r e s t , m
18 N = 1000 ; % number o f nodes f o r numeric s o l u t i o n
19 %
20 U0 = 2 ; % he ight o f the FIRST b a r r i e r , eV
21 W0 = 5e−9; % width o f the FIRST b a r r i e r , m ( i t should be l e s s e r than L ! ! )
22 sp0 = 0e−9; % x−coord ina te at which the FIRST b a r r i e r s t a r t s , in m
23 %
24 U1 = 0 ; % he ight o f the SECOND b a r r i e r , eV
25 W1 = 0e−9; % width o f the SECOND b a r r i e r , m ( i t should be l e s s e r than L

! ! )
26 sp1 = 7e−9; % x−coord ina te at which the SECOND b a r r i e r s t a r t s , in m
27 %
28 % Set the max energy l e v e l you d e s i r e to c o n s i d e r in s o l v i n g the problem ,
29 % the e i g e n s t a t e with E < Emax w i l l be p l o t t ed :
30 Umax = max(U0 , U1) ;
31 Emax = 1.25 ∗ Umax; % d e f a u l t i s : Umax
32 % e l e c t r o n e f f e c t i v e mass in cons ide r ed mate r i a l :
33 m = 1 ∗ m0; % by d e f a u l t i t i s s e t equal to f r e e e l e c t r o n mass : m = 1 ∗

m0;
34 %
35

36 %% Mesh and p o t e n t i a l shape U( x ) :
37 %
38 % s e t the mesh g r id ( i t i s c r ea ted a mesh long L) :
39 space = l i n s p a c e (−L/2 , L/2 , N) ;
40 % Create the p o t e n t i a l shape :
41 U = l i n s p a c e (−L/2 , L/2 , N) ;
42 %
43 % p o t e n t i a l shape generat ion , at most two b a r r i e r s are b u i l t :
44 f o r i =1:N
45 i f ( space ( i ) >= sp0 ) && ( space ( i ) <= sp0+W0) % only i f space ( i ) i s a

po int in the FIRST we l l then U( i ) i s s e t to U0
46 U( i ) = U0 ; % eV
47 e l s e i f ( space ( i ) >= sp1 ) && ( space ( i ) <= sp1+W1) % only i f space ( i )

i s a po int in the FIRST we l l then U( i ) i s s e t to U1
48 U( i ) = U0 ; % eV
49 e l s e U( i ) =0; % eV , otherw i se U( i ) i s i n i t i a l i z e d at zero
50 end
51 end
52

53 %% Hamiltonian operator c o n s t r u c t i o n :
54 % Kinet i c energy operator term :
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55 a = space (2 ) − space (1 ) ; % elementary i n t e r v a l ( l i n s p a c e i s used so each
i n t e r v a l s are a l l equal )

56 t0 = hbar_eV^2/(2∗m∗a ^2) ;
57 %
58 % H diagona l e lements :
59 diag_elements = 2∗ t0 ∗ ones (1 , l ength (U) ) ;
60 diag_elements = diag_elements + U/q ; % here U i s expres sed in J
61 H = diag ( diag_elements ) ;
62 % H upper/ lower diag e lements :
63 up_low_diag_elements = −t0 ∗ ones (1 , l ength (U)−1) ;
64 H = H + diag ( up_low_diag_elements , 1) ;
65 H = H + diag ( up_low_diag_elements , −1) ;
66 %
67

68 %% Eigenvector s and Eigenva lues c a l c u l a t i o n :
69 % Function " e i g " ev a l ua t e s the f i r s t 2N e i g e n v a l u e s and e i g e n v e c t o r s

where N
70 % i s the H dimensione (2Nx2N, with N s e t in input data s e c t i o n ) .
71 % Bounded s t a t e s ( i . e . s t a t e s o f i n t e r e s t in t h i s code /problem )
72 % are then found by s e l e c t i n g the e i g e n v a l u e s ( and correspond ing
73 % e i g e n f u n c t i o n s ) with energy below Emax to be cons ide r ed ! !
74

75 %%%%%%% the maximum between U0 and U1 .
76

77 [ EigenVect , EigenValues ] = e i g (H) ;
78 EigenValues_eV = EigenValues ∗q ; % eV
79 %
80 % copy e i g e n v a l u e s in an s u i t a b l e output data−s t r u c t u r e :
81 Energy_Values = z e r o s (1 , l ength (U) ) ;
82 Energy_Values = diag ( EigenValues_eV ) ;
83 %
84 % Eigens ta t e s s e l e c t i o n : only e i g e n s t a t e s with energy below Umax
85 % decomment i f d e s i r e d to s e t Emax = Umax (max between U0 and U1) : Emax =

Umax;
86 Considered_Energy_Values = f i n d ( Energy_Values < Emax) ;
87

88 %% Remark :
89 % The f o l l o w i n g t h e o r e t i c a l remark i s pr in ted in the command window :
90 str ing_to_be_displayed = s p r i n t f ( ' In t h i s e x e r c i s e the energy o f the

incoming e l e c t r o n should be a r b i t r a r y . \ nNever the l e s s in order to
s i m p l i f y the s o l u t i o n only proper e i g e n s t a t e s o f the space domain are
cons ide r ed . \ nThis means that the space i s cons ide r ed LIMITED ins t ead
o f unl imited , with a t o t a l ex tens i on equal to L\n( that i s the input
domain ) . . . Consequently d i s c r e t i z a t i o n occurs and only wave−f u n c t i o n s
that are proper eigenmodes \ nof the s t r u c t u r e ( that i s long L) are
cons ide r ed . \ nIn a r e a l world p o t e n t i a l s tep / b a r r i e r the space i s
cons ide r ed unbounded and i n f i n i t e to both l e f t and r i g h t s i d e s . \
nConsequently the Hamiltonian spectrum i s cont inue and NOT d i s c r e t e ,
l i k e i t happens here . \nAmong the c a l c u l a t e d ( d i s c r e t e ) e i g e n f u n c t i o n s ,
the p l o t t ed ones are the so−c a l l e d " cons ide r ed " ones , \ n i . e . those

with energy l e s s e r than Emax ( see input parameters ) . \ nThey are anyway
s i g n i f i c a n t o f the main p h y s i c a l i n s i g h t s o f t h i s c l a s s o f problems . \ n
\n ' ) ;
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91 di sp ( str ing_to_be_displayed ) ;
92

93 %% PLOT RESULTS:
94 %
95 % CONSIDERED EIGENVALUES:
96 f i g u r e (1 )
97 hold on
98 g r id on
99 p lo t ( space ∗1e9 , U, ' k ' , ' LineWidth ' , 2) ;

100 f o r i =1: Considered_Energy_Values ( end )
101 EigenValue_to_be_plotted = Energy_Values ( i ) ;
102 EigenPLOT = EigenValue_to_be_plotted ∗ ones (1 ,N) ;
103 p lo t ( space ∗1e9 , EigenPLOT , ' LineWidth ' , 2) ;
104 end
105 x l a b e l ( ' space a x i s x (nm) ' ) ;
106 y l a b e l ( ' Energy (eV) ' ) ;
107 t i t l e ( ' Considered steady s t a t e energy va lue s ' ) ;
108 s e t ( gca , ' f o n t s i z e ' , 16) ;
109 %
110 % NUMBER OF CONSIDERED EIGENVALUES IS PRINTED in command window :
111 str ing_to_be_displayed = s p r i n t f ( 'Number o f cons ide r ed e i g e n v a l u e s : %g . \ n

' , Considered_Energy_Values ( end ) ) ;
112 di sp ( str ing_to_be_displayed ) ;
113 %
114 str ing_to_be_displayed = s p r i n t f ( '

_________________________________________' ) ; % j u s t f o r appearance
reasons

115 di sp ( str ing_to_be_displayed ) ;
116 %
117 % WAVEFUNCTIONS PLOTS:
118 str ing_to_be_displayed = s p r i n t f ( ' Press any key to cont inue ( as many

times as the number o f con f ined e i g e n v a l u e s ) − f i g u r e (2 ) . \ n ' ) ;
119 di sp ( str ing_to_be_displayed ) ;
120 %
121 f i g u r e (2 )
122 a e s t h e t i c _ f a c t o r = 10 ;
123 f o r i =1: Considered_Energy_Values ( end )
124 hold on
125 g r id on
126 x l a b e l ( ' space a x i s x (nm) ' ) ;
127 y l a b e l ( ' \ p s i ( x ) ' ) ;
128 Umax = max(U0 , U1) ;
129 ylim ([−Umax/2 max(Umax, Emax) ] ) ;
130 t i t l e ( ' Considered wave−f u n c t i o n s ' ) ;
131 s e t ( gca , ' f o n t s i z e ' , 16) ;
132 p lo t ( space ∗1e9 , U, 'k−− ' , ' LineWidth ' , 2) ;
133 p lo t ( space ∗1e9 , a e s t h e t i c _ f a c t o r ∗ EigenVect ( : , i ) , ' LineWidth ' , 2) ;
134 l egend_str ing_wel l = s p r i n t f ( ' p o t e n t i a l energy shape (eV) ' ) ;
135 l egend_str ing = s p r i n t f ( ' wavefunct ion %g ' , i ) ;
136 l egend ( legend_str ing_wel l , l egend_str ing , ' Locat ion ' , ' best ' ) ;
137 pause
138 i f ( i ~= Considered_Energy_Values ( end ) )
139 c l f
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140 end
141 end
142 %
143 str ing_to_be_displayed = s p r i n t f ( ' Press any key to cont inue ( as many

times as the number o f con f ined e i g e n v a l u e s ) − f i g u r e (3 ) . \ n ' ) ;
144 di sp ( str ing_to_be_displayed ) ;
145 %
146 f i g u r e (3 )
147 a e s t h e t i c _ f a c t o r = 1 ;
148 hold on
149 g r id on
150 x l a b e l ( ' space−a x i s x (nm) ' ) ;
151 y l a b e l ( ' \ p s i ( x ) ' ) ;
152 t i t l e ( ' Considered wave−f u n c t i o n s ' ) ;
153 s e t ( gca , ' f o n t s i z e ' , 16) ;
154 p lo t ( space ∗1e9 , U, ' k ' , ' LineWidth ' , 2) ;
155 f o r i =1: Considered_Energy_Values ( end )
156 p lo t ( space ∗1e9 , Energy_Values ( i ) + a e s t h e t i c _ f a c t o r ∗ EigenVect ( : , i ) , '

LineWidth ' , 2) ;
157 pause
158 end
159 %
160 str ing_to_be_displayed = s p r i n t f ( ' Press any key to cont inue ( as many

times as the number o f con f ined e i g e n v a l u e s ) − f i g u r e (4 ) . \ n ' ) ;
161 di sp ( str ing_to_be_displayed ) ;
162 %
163 f i g u r e (4 )
164 a e s t h e t i c _ f a c t o r = 400 ;
165 f o r i =1: Considered_Energy_Values ( end )
166 hold on
167 g r id on
168 x l a b e l ( ' space a x i s x (nm) ' ) ;
169 y l a b e l ( ' | \ p s i ( x ) |^2 ' ) ;
170 Umax = max(U0 , U1) ;
171 ylim ([−Umax/2 max(Umax, Emax) ] ) ;
172 t i t l e ( ' Squared modulus o f wave−f u n c t i o n s ' ) ;
173 s e t ( gca , ' f o n t s i z e ' , 16) ;
174 p lo t ( space ∗1e9 , U, 'k−− ' , ' LineWidth ' , 2) ;
175 p lo t ( space ∗1e9 , a e s t h e t i c _ f a c t o r ∗ abs ( EigenVect ( : , i ) ) . ^2 , ' LineWidth ' ,

2) ;
176 l egend_str ing_wel l = s p r i n t f ( ' p o t e n t i a l energy shape (eV) ' ) ;
177 l egend_str ing = s p r i n t f ( ' wavefunct ion %g ' , i ) ;
178 l egend ( legend_str ing_wel l , l egend_str ing , ' Locat ion ' , ' best ' ) ;
179 pause
180 i f ( i ~= Considered_Energy_Values ( end ) )
181 c l f
182 end
183 end
184 %
185 str ing_to_be_displayed = s p r i n t f ( ' Press any key to cont inue ( as many

times as the number o f con f ined e i g e n v a l u e s ) − f i g u r e (5 ) . \ n ' ) ;
186 di sp ( str ing_to_be_displayed ) ;
187 %
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188 f i g u r e (5 )
189 a e s t h e t i c _ f a c t o r = 50 ;
190 hold on
191 g r id on
192 x l a b e l ( ' space a x i s x (nm) ' ) ;
193 y l a b e l ( ' | \ p s i ( x ) |^2 ' ) ;
194 t i t l e ( ' Squared modulus o f wave−f u n c t i o n s ' ) ;
195 s e t ( gca , ' f o n t s i z e ' , 16) ;
196 p lo t ( space ∗1e9 , U, ' k ' , ' LineWidth ' , 2) ;
197 f o r i =1: Considered_Energy_Values ( end )
198 p lo t ( space ∗1e9 , Energy_Values ( i ) + a e s t h e t i c _ f a c t o r ∗ abs ( EigenVect ( : , i

) ) . ^2 , ' LineWidth ' , 2) ;
199 pause
200 end
201 %
202 str ing_to_be_displayed = s p r i n t f ( '

_________________________________________' ) ; % j u s t f o r appearance
reasons

203 di sp ( str ing_to_be_displayed ) ;
204 %
205 %
206 %
207 %
208 str ing_to_be_displayed = s p r i n t f ( ' Execution Terminated . \ n−−>> I f a graph

i s not c l ea r , p l e a s e modify the r e l a t i v e a e s t h e t i c f a c t o r in p l o t
f u n c t i o n s ! =)\n ' ) ;

209 di sp ( str ing_to_be_displayed ) ;
210 %

A16



Appendix B

Additional molecular
electronic structure related
topics

B.1 Hartree approximation and electron correlation
The purpose of this section is to provide an oversimplified quantitative treatment of the
Hartree approximation widely used in Hartree-Fock and Hartree-Fock derived methods
and in the Density Functional Theory (DFT) method. The treatment is not rigorous and
has to be intended as an introduction to these topic to non-expert readers. Essentially
the classical physics is used to convince the non-expert reader of the rationality of the
equations written in sections 3.2 and 3.3. In this section I will follow the approach of [89],
that despite its simplicity is capable of catching the main physical insights. The topics
presented in sections 3.1 and 3.2 are given as known here, the notation will be analogous.

Hartree approximation

Consider a many-body system with Ne electrons, and with a total electron-electron
interaction equal to Uee(Ne). If the average potential energy for the case of a single
electron interacting with another single electron (1 electron - 1 electron interaction) is
called U0, then the total electron-electron interaction energy of a collection of Ne electrons
is proportional to the number of distinct pairs:

Uee(Ne) = U0Ne(Ne − 1)/2 (B.1)

where Ne/2 is the number of distinct pairs of electrons; each pair of electron has an average
interaction energy U0, thus U0Ne/2 is the average interaction energy of the Ne electrons
in the system (in other words each electron has an average interaction energy U0/2 and
there are Ne electrons); and since a single electron in the system interacts with the other
Ne − 1 ones the total interaction energy in the system of Ne electrons is U0Ne(Ne − 1)/2.

B1



Additional molecular electronic structure related topics

Notice that if two electrons are exchanged of state no variation occurs because they are
identical particles.

In general it is possible to have ionization of the system, that is an electron is excited
for some reason (it is provided enough thermal energy -phonon- or it absorb a photon of
enough large energy) and has enough energy to break the chemical bond and “escape” from
the system. This correspond to provide enough energy to an occupied electron state in the
system such that the electron can overcome the vacuum level and be released. This amount
of energy is called ionization potential. In a molecule it corresponds to the difference
between the vacuum level and the highest occupied energy level in the molecule: the
Highest Occupied Molecular Orbital (HOMO). Analogously it is possible for the system to
gain an extra electron. In this case a free available electron state is occupied by a new
electron. In order to make this happening the electron should loose a given amount of
energy, corresponding to the difference between the vacuum level and the energy level
it is going to occupy. This amount of energy is called electron affinity. In a molecule it
corresponds to the difference between the vacuum level and the lowest free energy level in
the molecule: the Lowest Unoccupied Molecular Orbital (LUMO). Figure B.1 summarizes
these concepts.

Figure B.1: IP is the Ionization Potential while EA is the Electron Affinity. The ionization
potential includes the repulsive potential from Ne − 1 electrons while the electron
affinity that of Ne electrons, thus the latter is higher in energy by the single electron
charging energy U0.

By solving exactly the steady state Schrödinger’s equation, one is in principle able to
calculate exactly the energy eigenvalues of the system and consequently the ionization
potential and the electron affinity. Nevertheless as mentioned previously this is possible
only if the number of electrons in the system Ne is very small. If not so an SCF potential
can be considered instead in the Schrödinger’s equation in order to simplify the problem.
Now the question can be how to choose the SCF potential to correctly estimate the
ionization potential and the electron affinity. In the case of the ionization potential the
system that previously has Ne electrons looses one electron, thus it is reasonable to estimate
its SCF potential as (considering also the previous expression for Uee(Ne)):

USCF ionization = Uee(Ne)−Uee(Ne−1) = U0

2 Ne(Ne−1)−U0

2 (Ne−1)(Ne−2) = U0(Ne−1)
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Analogously for the electron affinity it can be choosen a SCF potential given by:

USCF affinity = Uee(Ne + 1)− Uee(Ne) = U0

2 Ne(Ne + 1)− U0

2 Ne(Ne − 1) = U0Ne

In general it is chosen only one SCF potential, because otherwise a new set of single-electron
steady state Schrödinger’s equations is needed for each energy level (in this case two systems
of equations: one for the ionization and the other for the affinity). A reasonable choice
can be the (arithmetic) average betwen the two (indeed the SCF potential is already a
mean field). Thus:

USCF = 1
2 (USCF ionization + USCF affinity) = 1

2 (U0(Ne − 1) + U0Ne) = U0Ne −
U0

2
Notice that this corresponds in taking the derivative w.r.t. Ne of Uee(Ne):

∂

∂Ne
Uee(Ne) = ∂

∂Ne

[1
2U0Ne(Ne − 1)

]
= ∂

∂Ne

[
U0N

2
e

2 − U0Ne

2

]
= U0Ne −

U0

2

This is the general assumption that is made in a general case. Notice that it has sense
since it corresponds to a linearization of the electron-electron interaction term Uee, that
can be seen indeed as a mean field USCF of electron-electron interaction.

Before going on a remark on the nature of U0. One may ask what determines U0.
The answer may be the extent of the electron wave-function. If one electron is smeared
over the surface of a sphere of radius R then the potential of that sphere will be: q

4πε0R
,

so that the energy needed to put another electron on the sphere will be q2

4πε0R
∼ U0.

Well-delocalized wave-functions (large R) have a very small U0, otherwise if R is small
(i.e. the wave-function is highly localized) U0 can be large. Consequently when there are
delocalized wave-functions the difference between the ionization SCF potential and the
affinity SCF potential (and in general the difference between the SCF potentials relative
to different energy levels in the conductor) are smaller, since U0 is smaller. Thus the more
the conductive channel (in this work molecule) orbitals are delocalized, the better is the
approximation:

USCF ∼=
∂

∂Ne
Uee(Ne) (B.2)

since the difference between the SCF potentials relative to different energy levels (ionization
or affinity in the aforementioned example) is lesser. Indeed if U0 is very small and Ne is
very large it is true that: USCF ionization = U0(Ne − 1) ∼ USCF affinity = U0Ne. Notice
that such a delocalization often occurs whenever strong chemical bonds are created between
the molecule and the contact, because the molecular orbitals are subjected to hybridization
with the (metal) contact orbitals (that generally are well delocalized).

Under this hypothesis the distinction between the different SCF potentials for the
different energy levels can be neglected and the previous (first order - i.e. first derivative)
approximation of equation (B.2) can be generalized as follows:

USCF (~r) ∼=
∂

∂[n(~r)]Uee (n(~r)) (B.3)
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This last expression is the one used also in the density functional theory (see later, section
3.5). The meaning of eq. (B.3) is the following: the self consistent potential at any point ~r
is assumed to be equal to the change in the electron-electron interaction energy due to an
infinitesimal change in the number of electrons at the same point.

From classical electrostatics it is possible to get an expression for Uee. From equation
(B.1) if it is assumed Ne enough large that Ne ∼ Ne − 1 (reasonable for large conductors),
one has:

Uee = 1
2U0Ne(Ne − 1) ∼=

1
2U0N

2
e

from which:
Uee = 1

2

∫ −qQn(~r′)
4πε0|~r − ~r′|

d~r′ = 1
2

∫ ∫
q2n(~r)n(~r′)
4πε0|~r − ~r′|

d~r′d~r (B.4)

where VNe =
∫ −qn(~r′)

4πε0|~r−~r′|
d~r′ is the electrostatic potential ofNe electrons, given by integrating

the charge density −qn(~r); Q is the charge due to Ne electrons and it is given by integrating
the charge density −qn(~r) and 1/2 arises from the count on distinct pairs of electrons.
Notice that the double Uee of eq. (B.4) corresponds to the energy (work) that must be
provided to put in the same volume, in which there are Ne electrons (which generate an
electrostatic potential VNe), other Ne electrons (charge Q). Notice also that if Ne = 2 (the
minimum number of electrons in order to have an electron-electron interaction is 2) from
equation (B.1) Uee = U0, and Uee can be again written as:

Uee = 1
2

∫ ∫
q2n(~r)n(~r′)
4πε0|~r − ~r′|

d~r′d~r

where the integrals over the entire volume in which the two electrons are localized give 2,
thus:

Uee = 1
2

∫ ∫
q2n(~r)n(~r′)
4πε0|~r − ~r′|

d~r′d~r = 1
2

2q2

4πε0D
= q2

4πε0D

that is exactly the expression for the energy required to put a (point) charge −q at a
distance D = |~r − ~r′| from the (point) charge −q that gives rise to the potential: −q

4πε0D
.

From equation (B.3) the SCF potential is obtained by differentiating Uee w.r.t. the
electron density n, this is essentially the so called Hartree approximation. Thus from
equation (B.4) one has:

USCF Hartree(~r) =
∫

q2n(~r′)
4πε0|~r − ~r′|

d~r′ (B.5)

This last expression is the SCF potential in the Hartree approximation. Notice that if
Ne is not so big to assume it to be equal to Ne then equation (B.4) can be corrected by
multiplying it by a corrective term (Ne − 1)/Ne, similarly to what done in eq. (3.5). This
is possible since the electrons are identical particles and thus by exchanging them (their
states) the final electron-electron interaction is always the same. In this case the Hartree
SCF potential becomes:

USCF Hartree(~r) = Ne − 1
Ne

∫
q2n(~r′)

4πε0|~r − ~r′|
d~r′
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that indeed corresponds exactly to the expression of eq. (3.5).
The Hartree SCF potential can be seen as the solution of the following Poisson’s

equation (written here directly for the potential energy):

−∇2USCF Hartree(~r) = −q
2n(~r)
ε0

where an homogeneous medium with dielectric permittivity ε0 (vacuum) is assumed. If
another medium should be considered (among the nuclei and electrons of the molecule), a
proper dielectric constant should be considered instead of ε0.

The previous discussion was aimed on convincing non-expert readers of the rationality
of the important equations (B.3), (B.4) and (B.5). Nevertheless the concept here is quite
simple: the Hartree approximation consists in writing the electron-electron interaction by
means of a mean field, i.e. the SCF potential (eq. (B.5)), that is the first order derivative
(i.e. variation - see eq. (B.3)) of the classical electron-electron interaction (eq. (B.4))
derived from classical electrostatics. This approximation is at the basis of the Hartree
method that will be further discussed in section 3.3. The main problem of the mean field
based methods (namely the electron correlation) is presented in the next subsection.

The correlation energy

The problem in the treatment presented so far is that the actual interaction energy is less
than the one predicted in equation (B.4), essentially because electrons can correlate their
motion (around the atomic nuclei composing the molecule) so as to avoid each other. This
correlation comes out naturally in a many-body picture, but it is missed in the mean field
approximation (Hartree approximation) in which the many-body problem is written as
a set of single-electron ones. A simple way to include the aforementioned correlation is
by means of the introduction of a correlation function g in equation (B.4), that can be
rewritten as:

Uee = 1
2

∫ ∫
q2n(~r)n(~r′)[1− g(~r, ~r′)]

4πε0|~r − ~r′|
d~r′d~r (B.6)

The correlation function g accounts for the fact that the probability of finding two electrons
simultaneously iìat ~r and ~r′ is not just proportional to n(~r)n(~r′), but is somewhat reduced
because electrons “try to avoid each other” [89]. The real picture is more complicated
than this one, indeed g is also spin-dependent, but to keep the treatment minimal the
approach of [89] is followed and the spin-dependence is ignored.
By deriving eq. (B.6) w.r.t. n the SCF potential is found to be:

USCF =
∫
q2n(~r′)[1− g(~r, ~r′)]

4πε0|~r − ~r′|
d~r′ =

∫
q2n(~r′)

4πε0|~r − ~r′|
d~r′ −

∫
q2n(~r′)g(~r, ~r′)
4πε0|~r − ~r′|

d~r′ =

= UHartree(~r) + UXC(~r)
(B.7)

The first term in equation (B.7) corresponds to the Hartree SCF potential of eq. (B.5),
while the second term depends on g and is usually called “exchange-correlation” potential.
Thus the effect of the electron correlation is to add a (negative) potential energy term
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UXC(~r) to the Hartree term. Notice that the within the Hartree approximation the
exchange-correlation potential is neglected. Much research effort has gone (and is still
going on) in accurately estimating g.
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Appendix C

NEGF useful calculations

C.1 Fourier transform of Green’s function
First of all notice that the Green’s functions in the energy eigenfunction (energy domain)
representation is diagonal. The Fourier transform of a diagonal matrix can be defined as
the diagonal matrix that has the Fourier transform of the diagonal elements of the original
matrix for elements (in general it is well defined the analytical function of matrix and it is
the analytical function of all its elements - otherwise the functions of matrices are defined
as series expansions). Moreover the Fourier transform of the matrix

[
GR(E)

]
is not trivial

because it requires contour integration on a complex plane since
[
GR(E)

]
presents poles

in energy eigenstates representation (and energy is complex due to iη):

[
GR
]

=


1

E−ε1+iη 0 ...

0 1
E−ε2+iη ...

0 0 ...


A possible simplified treatment is the one of [89]. Here I will follow another way, starting
from the fact that for stable system the Fourier transform is trivially linked with the
Laplacian one. Notice that iη prevents the Green’s functions to go to infinity at E = εα,
thus the system is stable. Then for stable system it is possible to switch between the
unilateral (causal) Laplace transform and the Fourier one with the substitution:

s ↔ jω

where s is the complex variable of Laplace’s transform: s = σ + jω and jω (j is the
imaginary unit) is the Fourier transform variable. The above relation holds if the Fourier
transform is defined with the sign convention typical of engineering problems. Usually
physicists use another sign convention such that (the exponent sign in the Fourier transform
is opposite):

s ↔ −iω
With this correspondence in mind, the (unilateral) Laplace transform pair:

θ(t)e−at L←→ 1
s+ a
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becomes:
θ(t)e−at L←→ 1

s+ a
↔ 1

−iω + a
= 1
−iE~ + a

where θ(t) is the Heaviside function. Thus the diagonal elements of
[
GR(E)

]
are:

1
E − εα + iη

= −i/~
−i/~(E − εα + iη) = −i/~

−iE/~ + iεα/~ + η/~

The numerator is simply a multiplicative constant, the denominator corresponds to the
Laplace/Fourier transform of θ(t)e−at with a = +iεα/~ + η/~, and thus:

− i
~
θ(t)e− i

~ εαte−
η
~ t

corresponds to the Fourier transform of the diagonal elements of
[
GR(E)

]
, from which:

[
GR(t)

]
= − i

~
θ(t)e−

η
~ t

e−
i
~ ε1t 0 ...

0 e−
i
~ ε2t ...

0 0 ...



C.2 Impulse response of time dependent Schrödinger
equation

In this section is provided a guideline for the verification that the diagonal elements of the
time-domain retarded Green’s function

[
GR(t)

]
are a solution for the following equation:(

i~
∂

∂t
− εα

)
GR
α,α(t) = δ(t)

Substituting the generic diagonal element of
[
GR(t)

]
(evaluated in the appendix C.1) into

the previous equation: (
i~
∂

∂t
− εα

)
− i

~
θ(t)e− i

~ εαte−
η
~ t = δ(t)

from which:

→ i~
∂

∂t

[ 1
i~
θ(t)e− i

~ εαte−
η
~ t

]
− εα

1
i~
θ(t)e− i

~ εαte−
η
~ t = δ(t)

Notice that the time derivative should be intended as the distributional derivative, i.e. in
the sense of distributions and not of conventional functions, since the delta-Dirac and the
Heaviside function θ(t) are formally distributions. Remember also that the distributional
derivative of the Heaviside distribution is a delta-Dirac distribution. In the following I will
not adopt the standard formal notation, but I will use a “shortened and dirty” notation.
The final result do not change, please keep in mind what said above:
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→ δ(t)e− i
~ εα0e−

η
~0− i

~
εαθ(t)e−

i
~ εαte−

η
~ t− i

~
ηθ(t)e− i

~ εαte−
η
~ t + εα

i

~
θ(t)e− i

~ εαte−
η
~ t = δ(t)

where in doing the distributional derivative the first term is evaluated in t = 0 and where
in the limit of η → 0 the third term is null, thus:

→ δ(t) = δ(t)

C.3 Some useful relations
In this sections some useful relations are demonstrated, a good treatment in this regard is
in [89].

Review of some useful linear algebra results

Before proceeding a review of some properties and theorems of linear algebra is provided.
In the following sections these results will be very useful to understand the various steps.

1: Two matrices A and B that are simultaneously diagonalizable are always com-
mutative: AB = BA, where simultaneously diagonalizable means that the eigenvector
representation of the first matrix is also an eigenvector representation for the second one.

2: The trace of a square matrix A, indicated with Tr[A], is defined as the sum of its
diagonal elements. Properties:

2a: The trace is invariant with respect to a change of basis.

2b: The trace is a linear mapping: Tr[A + B] = Tr[A] + Tr[B] and cTr[A] = Tr[cA],
with c scalar.

2c: A matrix and its transpose have the same trace: Tr[A] = Tr[AT ].

2d: The matrices in a trace of a product can be switched without changing the result:
Tr[AB] = Tr[BA].

2e: More generally the trace is invariant under cyclic permutations, i.e. : Tr[ABCD] =
Tr[DABC] = Tr[CDAB] = Tr[BCDA]. Instead arbitrary permutations are not
allowed.

2f: The trace of a square matrix equals the sum of the eigenvalues counted with multi-
plicities.

C.3.1 A useful theorem
A theorem states that the Hermitian conjugate (i.e. transpose and complex conjugate)
of the product of two matrices is equal to the the product of their Hermitian conjugates
taken in reverse order: (AB)† = B†A†. For a proof and details see [87].

C3



NEGF useful calculations

C.3.2 Equation 5.38: device density matrix [ρD]
From the definition of density matrix (eqs. (5.28) and (5.29)):

ρD(~r, ~r′) =
∑
α

ψDα(~r)fFD(εα − EF )ψ∗Dα(~r′)

where {ψDα}α are the device eigenstates. The previous expression in matrix form becomes:

[ρD] =
∑
α

fFD(εα − EF ) {ψDα} {ψDα}† =

=
∫
dEfFD(E − EF )

∑
α

δ(E − εα) {ψDα} {ψDα}†

where the definition of delta-Dirac is used:∫ +∞

∞
dEfFD(E − EF )

∑
α

δ(E − εα) =
∑
α

fFD(εα − EF )

Since {ψDα} = GDζ{φα} and {Sα} = ζ{φα} (see equation 5.36), it follows that: {ψDα}† =
{φα}†ζ†G†D, where the theorem of section C.3.1 was used. Thus the density matrix becomes:

[ρD] =
∫
dEfFD(E − EF )GDζ

[∑
α

δ(E − εα) {φα} {φα}†
]
ζ†G†D =

=
∫
dE

2π fFD(E − EF )GDζARζ
†G†D

where eq. (5.32) is used:

AR(E) = 2π
∑
α

{φα} δ(E − εα) {φα}† �

C.3.3 Equation 5.39: A(E) = i
[
G(E)−G†(E)

]
From equation (5.33) the spectral function is:

[A(E)] = 2πδ (E [I]− [H])

Notice that a possible definition for the delta-Dirac distribution is the following:

δη(x) = 1
π

η
η2+x2

∣∣∣
η→0

that is the limit η → 0 of the Lorentzian (or Cauchy) distribution. It follows:

πδ0(x) = πδ(x) = η
η2+x2

∣∣∣
η→0

and : 2πδ(E − εα) = 2η
(E−εα)2+η2

∣∣∣
η→0

Moreover:

i

[ 1
E − εα + iη

− 1
E − εα − iη

]
= i

[ −iη − (+iη)
(E − εα + iη)(E − εα − iη)

]
=

= i
−2iη

(E − εα)2 − (iη)2 = 2η
(E − εα)2 + η2
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In the end:
A(E) = 2πδ (E [I]− [H])

in the energy eigenstate representation is:

A(E) = 2π
∑
α

δ (E − εα)

with : δ (E − εα) = 2η
(E−εα)2+η2

∣∣∣
η→0

= i

[ 1
E − εα + iη

− 1
E − εα − iη

]
→ A(E) = i

[
G(E)−G†(E)

]
and generalizing to whatever representation (a relation holding in eigenstate representation
should also be true in any other representation - see [89]):

A(E) = 2πδ (E [I]− [H]) = i
{

[(E + iη)I −H]−1 − [(E − iη)I −H]−1
}

That corresponds to:

A(E) = A(E) = i
[
G(E)−G†(E)

]
�

C.3.4 Broadening function equation: Γ = i
[
Σ− Σ†

]
= ζARζ

†

The broadening function is defined as the anti-Hermitian part of the self energy:

Γ = i
[
Σ− Σ†

]
and the self energy is (eq (5.36)): Σ = ζGRζ

†. From which:

Γ = i
[
Σ− Σ†

]
= i

[
ζGRζ

† −
(
ζGRζ

†
)†]

=

= iζGRζ
† − iζG†Rζ

† = ζi
[
GR −G†R

]
ζ† = ζARζ

†

where it is used that AR = i
[
GR −G†R

]
(see section C.3.3) and the theorem of section

C.3.1 is used. �

C.3.5 Equation 5.39: AD = GDΓG†D = G†DΓGD

First of all notice that:[
G†D

]−1
− [GD]−1 =

[
EID −HD − Σ†

]−1
− [EID −HD − Σ]−1 = Σ− Σ† = −iΓ

where it is used that the Hermitian conjugate of a sum is the Hermitian conjugate of
all the terms (it is a linear operator), and that EID and HD are Hermitian operators:
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EI†D = EID and H†D = HD. By definition Γ = i
[
Σ− Σ†

]
from which: −iΓ = Σ − Σ†.

Then noticing that:

GD(−iΓ)G†D = GD

[[
G†D

]−1
− [GD]−1

]
G†D = GD

[
G†D

]−1
G†D −GDG

−1
D G†D =

= GD −G†D = AD
i

= −iAD

From which (see section C.3.3):

AD = i
[
GD −G†D

]
= iGD(−iΓ)G†D = iGD

(Γ
i

)
G†D = GDΓG†D

An analogous procedure leads to:

G†D(−iΓ)GD = G†D

[[
G†D

]−1
− [GD]−1

]
GD = G†D

[
G†D

]−1
GD −G†DG

−1
D GD =

= GD −G†D = AD
i

= −iAD

that leads to:
AD = i

[
GD −G†D

]
= G†DΓGD �

C.3.6 Equation 5.40: [Gn] =
[
GDΓG†D

]
fF D = [AD] fF D

Equation (5.40) can be viewed as a definition. Nevertheless from section C.3.2, the density
matrix is:

[ρD] =
∫
dE

2π fFD(E − EF )GDζARζ
†G†D

from section C.3.4 it follows:

[ρD] =
∫
dE

2π fFD(E − EF )GDΓG†D

from sectionC.3.5 it follows:

[ρD] =
∫
dE

2π fFD(E − EF ) [A(E)]

from which:
[ρD] =

∫
dE

2π [Gn(E)]

that corresponds to equation (5.41). �
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C.4 One contact inflow and outflow
The overall “contact + device” time-dependent Schrödinger’s equation in matrix form is
(eq. (5.54)):

i~
∂

∂t
Ψ = ĤΨ ↔ i~

d

dt

{
ψD

ΦRtot

}
=
[
HD ζ
ζ† HR + iη

]{
ψD

ΦRtot

}

where ψD is the wave-function in the device and ΦRtot = ΦR + χ is the wave-function in
the contact. This equation corresponds to the time-dependent version of eq. (5.21) in
which the source term is dropped. Notice that since ψD is a scalar it is not a matter if the
trace is taken or not, thus:

ψ†DψD = Tr
[
ψ†DψD

]
= Tr

[
ψDψ

†
D

]
= ψDψ

†
D

(property 2d - section C.3 - is used).
Its time derivative can be estimated from eq. (5.54), considering that such an equation
can be rewritten as a system of two equations:

i~ d
dtψD = HDψD + ζΦRtot

i~ d
dtΦRtot = ζ†ψD + (HR + iη) ΦRtot

The equation of interest is the first one:

i~
d

dt
ψD = HDψD + ζΦRtot (C.1)

There is theorem stating that the Hermitian conjugate of the time-dependent Schrödinger’s
equation is given by [87]:

[
i~
∂

∂t
ψ = Ĥψ

]†
→ i~

∂

∂t
ψ† = −Ĥψ†

indeed in quantum mechanics the time is a parameter and there is no quantum mechanical
operator associated to it. Thus the time derivative operator is not said to be Hermitian,
and indeed from the above result it is not Hermitian. Instead the Hamiltonian operator is
Hermitian since it represents a physical observable in quantum mechanics (i.e. the total
energy of the system). From equation (C.1) exploiting the above reported theorem one
has:

i~
d

dt
ψ†D = −ψ†DH

†
D − Φ†Rtotζ† = −ψ†DHD − Φ†Rtotζ†

where the theorem C.3.1 is used: (AB)† = B†A†. With these relations in mind, and
remembering that the derivative of a product of two functions is the derivative of the first
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times the second plus the first times the derivative of the second, one gets:

i~
d

dt
|ψD|2 = i~

d

dt

[
ψ†DψD

]
= i~

d

dt

[
Tr
[
ψ†DψD

]]
=

= Tr

[[
i~
dψ†D
dt

]
ψD + ψ†D

[
i~
dψD
dt

]]
=

= Tr
[
−ψ†DHDψD − Φ†Rtotζ†ψD + ψ†DHDψD + ψ†DζΦRtot

]
=

= Tr
[
ψ†DζΦRtot − Φ†Rtotζ†ψD

]

→ d

dt

[
ψ†DψD

]
= 1
i~
Tr
[
ψ†DζΦRtot − Φ†Rtotζ†ψD

]
At this point noticing that the wave-function within the contact ΦRtot is constituted by
superposition of two contributions: ΦRtot = ΦR + χ, where ΦR represents an “incident”
wave and χ a “scattered” wave the previous expression becomes:

d

dt

[
ψ†DψD

]
= 1
i~
Tr
[
ψ†DζΦR + ψ†Dζχ− Φ†Rζ†ψD − χ†ζ†ψD

]
that can be split into two contributions: an inflow from the contact to the channel (involving
the terms with ΦR) and an outflow from the channel to the contact (involving the terms
with χ):

d

dt

[
ψ†DψD

]
= 1
i~
Tr
[
ψ†DζΦR − Φ†Rζ†ψD

]
− 1
i~
Tr
[
χ†ζ†ψD − ψ†Dζχ

]
= Inflow − Outflow

noticing that ψD = GDSR, ψ†D = S†RG
†
D and that SR = ζΦR, S†R = Φ†Rζ† the inflow

becomes:

Inflow = 1
i~
Tr
[
ψ†DζΦR − Φ†Rζ†ψD

]
= 1
i~
Tr
[
S†RG

†
DSR − S

†
RGDSR

]
=

= 1
i~
Tr
[
S†R

[
G†D −GD

]
SR
]

= 1
i~
Tr

[
S†R

AD
(−i)SR

]
= 1

~
Tr
[
S†RADSR

]

in which it is used (eq. (5.39) - section C.3.3): AD = i
[
GD −G†D

]
= −i

[
G†D −GD

]
and

the property: 1
i = −i.

The last expression corresponds to the inflow for a single wave-function/electron in the
channel. The total inflow from the contact to the channel is given by summing over all the
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channel electrons (i.e. occupied states) the previous expression:

Total Inflow =
∑

occupied α

1
~
Tr
[
S†RαADSRα

]
=

= 1
~
Tr

[∑
α

fFD(εα − EF )Φ†Rαζ†ADζΦRα

]
= 1

~
Tr

[∑
α

fFD(εα − EF )ΦRαΦ†Rαζ†ADζ
]

=

= 1
~
Tr

[∫ +∞

−∞
dE

∑
α

fFD(E − EF )δ(E − εα)ΦRαΦ†Rαζ†ADζ
]

=

= 1
~
Tr

[∫ +∞

−∞

dE

2π fFD(E − EF )ARζ†ADζ
]

=

= 1
~
Tr

[∫ +∞

−∞

dE

2π fFD(E − EF )ζARζ†AD
]

= 1
~

∫ +∞

−∞

dE

2π Tr [fFD(E − EF )ΓAD]

where the definition of delta-Dirac is used (see also section C.3.2), the definition of the
isolated reservoir spectral function (eq. (5.32)): AR = 2π

∑
α δ(E − εα)ΦRαΦ†Rα, the

fact that Γ = ζARζ
† (see section C.3.4), and the property 2e (section C.3). Since the

Fermi-Dirac is not a matrix:

Inflow = 1
~

∫ +∞

−∞

dE

2π fFD(E − EF )Tr [ΓAD]

that corresponds to eq. (5.57).
Instead the outflow is:

Outflow = 1
i~
Tr
[
χ†ζ†ψD − ψ†Dζχ

]

noticing that: χ = GRζ
†ψD and χ† = ψ†DζG

†
R, it follows:

Outflow = 1
i~
Tr
[
ψ†DζG

†
Rζ
†ψD − ψ†DζGRζ

†ψD
]

= 1
i~
Tr
[
ψ†Dζ

[
G†R −GR

]
ζ†ψD

]
=

= 1
i~
Tr
[
ψ†Dζ (iAR) ζ†ψD

]
= 1

~
Tr
[
ψ†DΓψD

]

where it is again used eq. (5.39) - section C.3.3: AD = i
[
GD −G†D

]
= −i

[
G†D −GD

]
, the

property: 1
i = −i and Γ = ζARζ

† (see section C.3.4).
This is again an outflow for a single wave-function/electron in the channel. The total
inflow from the contact to the channel is given by summing over all the channel electrons
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(i.e. occupied states) the previous expression:

Total Outflow =
∑

occupied α

1
~
Tr
[
ψ†DαΓψDα

]
=

= 1
~
Tr

[∑
α

fFD(εα − EF )ψDαψ†DαΓ
]

=

= 1
~
Tr

[∑
α

∫ +∞

−∞
dEfFD(E − EF )δ(E − εα)GDζΦRαΦ†Rαζ†G

†
DΓ
]

=

= 1
~
Tr

[∫ +∞

−∞

dE

2π fFD(E − EF )GDζARζ
†G†DΓ

]
=

= 1
~
Tr

[∫ +∞

−∞

dE

2π fFD(E − EF )GDΓG†DΓ
]

= 1
~

∫ +∞

−∞

dE

2π Tr [ΓGn]

where it is used that ψD = GDSR = GDζΦR, the property 2e (section C.3), the definition
of delta-Dirac (see also section C.3.2), the definition of the isolated reservoir spectral func-
tion (eq. (5.32)): AR = 2π

∑
α δ(E − εα)ΦRαΦ†Rα, and the expression for the correlation

function in non-equilibrium: Gn = fFD(E −EF )GDΓG†D (eq. (5.40)). The last expression
corresponds to eq. (5.58).

C.5 Transmission function calculations
Consider a two terminal device, with the source contact (contact 1) and the drain contact
(contact 2). From equation (5.59) it is known that the current at terminal i is given by:

Ii = (−q)
~

∫ +∞

−∞

dE

2π ĩi(E) , with : ĩi(E) = Tr [ΓiAD] fi − Tr [ΓiGn] (C.2)

where fi indicates: fi = fFD(E − EFi).
Notice that in the case of two contacts Γ = Γ1 + Γ2, from which: AD = GDΓG†D =
GD [Γ1 + Γ2]G†D = A1 + A2, and moreover from equation (5.52), the correlation function
is: Gn = [A1] f1 + [A2] f2.In the case of two contacts it is thus possible to rewrite ĩi(E),
for the two contacts, as follows. For contact 1 (property 2b - section C.3 is used):

ĩ1(E) = Tr [Γ1AD] f1 − Tr [Γ1G
n] =

= Tr [Γ1A1] f1 + Tr [Γ1A2] f1 − Tr [Γ1A1] f1 − Tr [Γ1A2] f2 =
= Tr [Γ1A2] f1 − Tr [Γ1A2] f2 = Tr [Γ1A2] (f1 − f2)

Analogously for contact 2:

ĩ2(E) = Tr [Γ2AD] f2 − Tr [Γ2G
n] =

= Tr [Γ2A1] f2 + Tr [Γ2A2] f2 − Tr [Γ2A1] f1 − Tr [Γ2A2] f2 =
= Tr [Γ2A1] f2 − Tr [Γ2A1] f1 = Tr [Γ2A1] (f2 − f1)
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Substituting in equation (C.2), one gets:

I1 = (−q)
h

∫ +∞

−∞
Tr [Γ1A2] (f1 − f2)dE

I2 = (−q)
h

∫ +∞

−∞
Tr [Γ2A1] (f2 − f1)dE

That correspond to equations (5.60) and (5.61), respectively (considering eq. (5.62) for
the transmission functions), in which the 2π is simplified with ~ and h is obtained.

Then, considering that (with AD = GDΓG†D = G†DΓGD - see section C.3.5 and equation
5.39):

Tr [Γ1AD] = Tr
[
Γ1GDΓG†D

]
= Tr

[
ΓG†DΓ1GD

]
= Tr [ΓA1]

(where property 2e section C.3 is used) and subtracting the Tr[Γ1A1] from both sides:
Tr [Γ1AD]− Tr [Γ1A1] = Tr [ΓA1]− Tr [Γ1A1]

→ Tr [Γ1AD]− Tr [Γ1A1] = Tr [Γ1AD − Γ1A1] = Tr [Γ1 [A1 + A2]− Γ1A1] =
= Tr [Γ1A1 + Γ1A2 − Γ1A1] = Tr [Γ1A2]

→ Tr [ΓA1]− Tr [Γ1A1] = Tr [Γ1A1 + Γ2A1 − Γ1A1] =
= Tr [Γ2A1]

where it is used that AD = A1 + A2, and property 2b - section C.3. In conclusion:
Tr [Γ1A2] = Tr [Γ2A1]

In steady state the two terminal currents should be equal (and opposite in sign), and
indeed, since Tr [Γ1A2] = Tr [Γ2A1] they are so:

I1 = (−q)
h

∫ +∞

−∞
Tr [Γ1A2] (f1 − f2)dE = (−q)

h

∫ +∞

−∞
Tr [Γ2A1] (f1 − f2)dE =

= −I2 = −(−q)
h

∫ +∞

−∞
Tr [Γ2A1] (f2 − f1)dE = (−q)

h

∫ +∞

−∞
Tr [Γ2A1] (f1 − f2)dE

where it used: [f1 − f2] = − [f2 − f1].
Finally the total drain to source current can be written as:

IDS = I2 = −I1 =

= (−q)
h

∫ +∞

−∞
T (E) [f2 − f1] dE =

= −(−q)
h

∫ +∞

−∞
T (E) [f1 − f2] dE =

= q

h

∫ +∞

−∞
T (E) [f1 − f2] dE

(C.3)
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NEGF useful calculations

where the minus sign in front of I1 has the following meaning. If the electron fluxes from
contacts to device are defined such that they are incoming positive, that is Net flux =
Inflow − Outflow, it means that the current at source contact is assumed incoming
positive (according to the user convention of sign). Nevertheless the drain to source current
IDS is assumed to be outgoing from the source (and incoming to the drain). Thus a minus
sign is necessary, since: IDS = −I1. Instead for the drain contact the sign convention is
already coherent with the sign definition in IDS .

In conclusion the total drain to source current is:

IDS = q

h

∫ +∞

−∞
T (E) [f1(E)− f2(E)] dE

that corresponds with eq. (5.65); where:

T (E) = Tr [Γ1A2] = Tr [Γ2A1] = Tr
[
Γ1GDΓ2G

†
D

]
= Tr

[
Γ2GDΓ1G

†
D

]
(C.4)

where GD = [EID −HD − Σ]−1 is the device Green’s function (with Σ = Σ1 + Σ2), and
G†D = GA

D is the device advanced Green’s function. Notice that T (E) is called transmission
function or transmission spectrum.
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Appendix D

Chapter 8 - Additional images,
graphs and material

Details are provided directly in the captions.

D.1 Additional images and graphs relative to section
8.1

Figure D.1: Initial geometry of the C60 fullerene ammonia gas sensor, with a single NH3
molecule. The C60-contacts distances were fixed at around 2.7Å, no special
orientation of the C60 was considered. The figure was generated by ATK software
[125], [126] (used for performing the simulations).
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Chapter 8 - Additional images, graphs and material

Figure D.2: Initial geometry of the C60 fullerene ammonia gas sensor, with a single NH3
molecule. van der Waals spheres are shown. Since they are intersected, the
interaction should be strong. The C60-contacts distances were fixed at around
2.7Å, no special orientation of the C60 was considered. The figure was generated
by ATK software [125], [126] (used for performing the simulations).

Figure D.3: Initial geometry of the C60 fullerene ammonia gas sensor, with a single NH3
molecule. The ammonia C60 distance is of about 2.2Å The C60-contacts distances
were fixed at around 2.7Å, no special orientation of the C60 was considered.
The figure was generated by ATK software [125], [126] (used for performing the
simulations).
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D.1 – Additional images and graphs relative to section 8.1

Figure D.4: Initial geometry of the C60 fullerene ammonia gas sensor, with three NH3 molecule.
The C60-contacts distances were fixed at around 2.7Å, no special orientation of
the C60 was considered. The figure was generated by ATK software [125], [126]
(used for performing the simulations).

Figure D.5: Initial geometry of the C60 fullerene ammonia gas sensor, with five NH3 molecule.
The C60-contacts distances were fixed at around 2.7Å, no special orientation of
the C60 was considered. The figure was generated by ATK software [125], [126]
(used for performing the simulations).
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Chapter 8 - Additional images, graphs and material

D.2 Additional images and graphs relative to section
8.2

Figure D.6: Equilibrium DOS per unit energy obtained with various DFT-based method. All
curves are overlapped apart for the DFT-1/2 correction that is different.

Figure D.7: Equilibrium transmission spectrum obtained with various DFT-based method. All
curves are overlapped apart for the DFT-1/2 correction that is different.
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D.3 – MatLab code used for exponential fitting of the transmission spectrum peaks at 1 eV

D.3 MatLab code used for exponential fitting of the
transmission spectrum peaks at 1 eV

1 c l e a r a l l
2 c l o s e a l l
3 c l c
4 % exp f i t t i n g o f the t ransmi s s i on peak @ around 1 eV f o r a ca sua l

o r i e n t e d
5 % C60 f u l l e r e n e in between two contac t s .
6

7 Tx_peaks = [ 2 . 8 2 5 e−6, 0 .03647 , 0 .6774 , 1 . 013 , 1 . 538 , 1 . 6 3 ] . ' ; % 1 eV Tx
peaks

8 d i s t a n c e s =[5 .4 , 4 , 3 . 6 , 3 . 3 , 3 , 2 . 7 ] ' ; %correspond ing d i s t a n c e s
9

10 g = f i t t y p e ( 'A−B∗exp(−C∗x ) ' ) ; % exponent i a l f i t t i n g type
11 f 0 = f i t ( d i s tance s , Tx_peaks , g , ' Star tPo int ' , [ [ ones ( s i z e ( d i s t a n c e s ) ) , −

exp(−d i s t a n c e s ) ] \ Tx_peaks ; 1 ] ) ; %f i t t i n g the po in t s
12 d i s tance s_ in t e rp = l i n s p a c e ( 2 . 7 , 6 , 1 0 0 0 ) ; % smooth x−a x i s d e f i n i t i o n
13

14 % PLOT the r e s u l t :
15 Ang = char (197) ;
16 f i g u r e
17 hold on
18 g r id on
19 p lo t ( d i s tance s , Tx_peaks , ' ∗ ' , d i s tances_inte rp , f 0 ( d i s t ance s_ in t e rp ) , '

LineWidth ' , 3) ;
20 t i t l e ( 'C60 wire s enso r (EHT method ) : i n t e r p o l a t e d t ransmi s s i on peak (@1eV

) in func t i on o f d i s t a n c e ' ) ;
21 lgnd1 = s t r c a t ( " Simulated va lue s " ) ;
22 lgnd2 = s t r c a t ( " Exponent ia l i n t e r p o l a t i n g curve " ) ;
23 l egend ( lgnd1 , lgnd2 , ' l o c a t i o n ' , ' best ' ) ;
24 x s t r i n g = s t r c a t ( ' Distance between the C60 and the contac t s ( ' , Ang , ' ) ' ) ;
25 x l a b e l ( x s t r i n g ) ;
26 y l a b e l ( ' Transmiss ion peak value ' ) ;
27 s e t ( gca , ' f o n t s i z e ' , 16) ;
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Chapter 8 - Additional images, graphs and material

D.4 Additional images and graphs relative to section
8.3

(a)

Figure D.8: Current-voltage (I-V ) characteristics for 2.4Å of distance between the contacts and
the C60 fullerene. The two orientations casual/non-special and with the hexagons
on gold surfaces one are considered.
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D.4 – Additional images and graphs relative to section 8.3

(a)

(b)

Figure D.9: Dependence of current values on the distance between the fullerene and the contacts
for a fixed voltage: VD = 0.4 V. The exponential fitting performs well. Top: linear
scale, bottom: semilogarithm scale.
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Chapter 8 - Additional images, graphs and material

(a)

(b)

Figure D.10: Dependence of current values on the distance between the fullerene and the
contacts for a fixed voltage: VD = 1.6 V. The exponential fitting performs well.
Top: linear scale, bottom: semilogarithm scale.
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D.4 – Additional images and graphs relative to section 8.3

Figure D.11: Absolute variations of current due to the presence of 1, 3, 5 NH3 molecules, for
distances between the contacts and the C60 fullerene of 2.4Å (EHT method).

Figure D.12: Absolute variations of current due to the presence of 1, 3, 5 NH3 molecules, for
distances between the contacts and the C60 fullerene of 3.0Å (EHT method).
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Chapter 8 - Additional images, graphs and material

Figure D.13: Absolute variations of current due to the presence of 1, 3, 5 NH3 molecules, for
distances between the contacts and the C60 fullerene of 3.3Å (EHT method).

Figure D.14: Absolute variations of current due to the presence of 1, 3, 5 NH3 molecules, for
distances between the contacts and the C60 fullerene of 3.6Å (EHT method).
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D.4 – Additional images and graphs relative to section 8.3

Figure D.15: Absolute variations of current due to the presence of 3 NH3 molecules, all the
considered distances between the fullerene and the contacts are compared (EHT
method).

Figure D.16: Absolute variations of current due to the presence of 5 NH3 molecules, all the
considered distances between the fullerene and the contacts are compared (EHT
method).
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Chapter 8 - Additional images, graphs and material

Figure D.17: Percentage variations of current due to the presence of 1 NH3 molecules, all the
considered distances between the fullerene and the contacts are compared (EHT
method).

Figure D.18: Percentage variations of current due to the presence of 1 NH3 molecules, only the
distances 2.4Å (both with the chemisorbed and the casual orientations), 2.7Å
and 3.0Å are compared for clarity (EHT method). All the curves are instead
reported in figure D.17.
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D.4 – Additional images and graphs relative to section 8.3

Figure D.19: Percentage variations of current due to the presence of 3 NH3 molecules, all the
considered distances between the fullerene and the contacts are compared (EHT
method).

Figure D.20: Percentage variations of current due to the presence of 5 NH3 molecules, all the
considered distances between the fullerene and the contacts are compared (EHT
method).
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Chapter 8 - Additional images, graphs and material

Figure D.21: Device current as a function of the applied voltage and the contacts distance. Red
dots are the simulated points, while the surface corresponds to the exponential
interpolation. Purple dots are those below the semi-transparent surface. A
general good agreement is present (EHT method). Voltage up to 0.8V only are
considered.

D.4.1 MatLab code for exponential interpolation with 3D plots

1 %% import ing s imu la t i on data
2 [ . . . . . . . . . . . . . . . . . ]
3 %% Distances array :
4 d i s t a n c e s =[5 .4 , 4 , 3 . 6 , 3 . 3 , 3 , 2 . 7 , 2 . 4 ] ' ; %correspond ing d i s t a n c e s
5

6 %% CURRENT ARRAY:
7 Vd_bias = l i n s p a c e (0 , 2 , 11 ) ;
8

9 % a l l d i s t a n c e s a l l c u r r e n t s merged toge the r
10 Id_a l l = [ IV_C60_11biasEHT_5d4A ( : , 2 ) , IV_C60_11biasEHT_4A ( : , 2 ) ,

IV_C60_11biasEHT_3d6A ( : , 2 ) , . . .
11 IV_C60_11biasEHT_3d3A ( : , 2 ) , IV_C60_11biasEHT_3A ( : , 2 ) ,

IV_C60_11biasEHT ( : , 2 ) , IV_C60_11biasEHT_2d4A ( : , 2 ) ] ;
12

13 %% Exp f i t t i n g o f the cur rent :
14 Npoints_interp = 120 ;
15 DATA_interp = z e r o s (11 , Npoints_interp ) ;
16

17 f o r i =1:11 % number o f b i a s po in t s
18

19 Id = Id_al l ( i , : ) ;
20 Id = Id ' ;
21 g = f i t t y p e ( 'A−B∗exp(−C∗x ) ' ) ; % exponent i a l f i t t i n g type
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D.4 – Additional images and graphs relative to section 8.3

22 f 0 = f i t ( d i s tance s , Id , g , ' Star tPo int ' , [ [ ones ( s i z e ( d i s t a n c e s ) ) , −exp(−
d i s t a n c e s ) ] \ Id ; 1 ] ) ; %f i t t i n g the po int

23 d i s tance s_ in t e rp = l i n s p a c e (2 , 6 , Npoints_interp ) ; % smooth x−a x i s
d e f i n i t i o n

24

25 % PLOT the r e s u l t : (1D p l o t s )
26 Ang = char (197) ;
27 f i g u r e
28 hold on
29 g r id on
30 p lo t ( d i s tance s , Id ∗1e6 , 'O ' , d i s tances_inte rp , f 0 ( d i s t ance s_ in t e rp ) ∗1e6 ,

' LineWidth ' , 2 . 5 ) ;
31 t i t l e _ s t r i n g a z z a = s p r i n t f ( 'C60 wire s enso r (EHT method ) : i n t e r p o l a t e d

I_D value f o r V_D = % V in func t i on o f d i s t a n c e ' , Vd_bias ( i ) ) ;
32 t i t l e ( t i t l e _ s t r i n g a z z a ) ;
33 lgnd1 = s t r c a t ( " Simulated va lue s " ) ;
34 lgnd2 = s t r c a t ( " Exponent ia l i n t e r p o l a t i n g curve " ) ;
35 l egend ( lgnd1 , lgnd2 , ' l o c a t i o n ' , ' best ' ) ;
36 x s t r i n g = s t r c a t ( ' Distance between the C60 and the contac t s ( ' , Ang , ' ) ' )

;
37 x l a b e l ( x s t r i n g ) ;
38 y l a b e l ( ' Drain cur rent va lue I_D (\muA) ' ) ;
39 s e t ( gca , ' f o n t s i z e ' , 16) ;
40

41 DATA_interp( i , : ) = f0 ( d i s t ance s_ in t e rp ) ;
42 end
43

44 % 3D plo t / s u r f a c e p l o t :
45 f i g u r e
46 hold on
47 g r id on
48 s u r f ( Vd_bias , d i s tances_inte rp , 1 e6 . ∗ DATA_interp ' ) ;
49 c o l o r b a r
50 alpha 0 .7
51

52 d i s t a n c e s = d i s tance s ' ;
53 f o r i = 1 :11
54 hold on
55 Vbias_now = ones (1 , 7 ) ∗Vd_bias ( i ) ;
56 Id_now = Id_al l ( i , : ) ;
57 p lo t3 ( Vbias_now , d i s tance s , Id_now∗1e6 , ' o ' , ' Color ' , ' r ' , ' MarkerSize '

, 6 , ' MarkerFaceColor ' , ' r ' ) ;
58 end
59 t i t l e s t r i n g a z z a = s p r i n t f ( " Current va lue s in func t i on o f the contact

d i s t a n c e " ) ;
60 t i t l e ( t i t l e s t r i n g a z z a ) ;
61 y l a b e l s t r i n g a z z a = s t r c a t ( ' Distance between the contac t s and the

f u l l e r e n e ( ' , Ang , ' ) ' ) ;
62 y l a b e l ( y l a b e l s t r i n g a z z a ) ;
63 x l a b e l ( 'V_D (V) ' ) ;
64 z l a b e l ( ' Current (\muA) ' ) ;
65 s e t ( gca , ' f o n t s i z e ' , 16) ;
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D.5 Additional images and graphs relative to section
8.4

Figure D.22: Equilibrium transmission spectrum of the C60 molecular wire with the final sensor
geometry; the DFT and EHT methods are compared.

D.6 Additional images, graphs and material relative
to section 8.5

D.6.1 MatLab code for implementing trapezoidal integration of
equilibrium transmission spectra

1 c l e a r a l l
2 c l o s e a l l
3 c l c
4 %
5

6 %% In t h i s code the comparison between the DFT and EHT equ i l i b r i um
transmi s s i on spec t ra

7 % f o r the f i n a l / d e f i n i t i v e chosen geometry ( hexagons toward Au(111)
f a c e s )

8 % i s performed . The method i s to compare the d i f f e r e n c e ( d e l t a ) in the
9 % transmi s s i on spec t ra between the case in which a molcule o f NH3 i s

10 % present and the case in which i t i sn ' t . The c a s e s : no NH3 molecules , 1
11 % NH3 molecules , 3 NH3 molecules , 5 NH3 molecu le s are cons ide r ed .
12

13 %% Simulated data load ing :
14
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15 Tx_C60_equiDFT = [ −3.000000 e+00 6.948648 e−01
16 −2.985000 e+00 8.874635 e−01
17 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 2.985000 e+00 3.808501 e−01
19 3.000000 e+00 3.009928 e−01 ] ;
20

21 Tx_C60_1NH3_equiDFT = [ −3.000000 e+00 1.144230 e+00
22 −2.985000 e+00 7.631720 e−01
23 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 2.985000 e+00 3.515896 e−01
25 3.000000 e+00 2.581333 e−01 ] ;
26

27 Tx_C60_3NH3_equiDFT = [ −3.000000 e+00 8.109276 e−01
28 −2.985000 e+00 8.434297 e−01
29 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30 2.985000 e+00 4.671696 e−01
31 3.000000 e+00 3.809816 e−01 ] ;
32

33 Tx_C60_5NH3_equiDFT = [ −3.000000 e+00 7.364717 e−01
34 −2.985000 e+00 6.733038 e−01
35 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 2.985000 e+00 5.122041 e−01
37 3.000000 e+00 4.469724 e−01 ] ;
38

39 Tx_C60_equiEHT = [ −3.000000 e+00 3.703120 e−02
40 −2.985000 e+00 7.349435 e−02
41 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 2.985000 e+00 5.252394 e−01
43 3.000000 e+00 3.438951 e−01 ] ;
44

45 Tx_C60_1NH3_equiEHT = [ −3.000000 e+00 3.978667 e−02
46 −2.985000 e+00 3.878050 e−02
47 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48 2.985000 e+00 5.071415 e−01
49 3.000000 e+00 3.419053 e−01 ] ;
50

51 Tx_C60_3NH3_equiEHT = [ −3.000000 e+00 4.864458 e−02
52 −2.985000 e+00 4.444041 e−02
53 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
54 2.985000 e+00 5.011339 e−01
55 3.000000 e+00 3.581258 e−01 ] ;
56

57 Tx_C60_5NH3_equiEHT = [ −3.000000 e+00 5.007842 e−02
58 −2.985000 e+00 4.544048 e−02
59 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60 2.985000 e+00 5.226207 e−01
61 3.000000 e+00 3.864298 e−01 ] ;
62

63 %% COMPARISON OF DELTA T(E) BETWEEN EHT and DFT:
64 % t r a p e z o i d a l i n t e g r a t i o n i s used : https : //www. mathworks . com/ help /matlab/

r e f / trapz . html? s_tid=s r c h t i t l e
65

66 % " f o r " loop i s used to get the var i ous i n t e g r a l s in the var i ous b i a s
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67 % windows −BW− ( in eV) , the s tep i s 0 . 1 eV :
68 BW_step = 0 . 1 ; % eV
69 max_Vds=2; % V , max Voltage value cons ide r ed in the wire ( e . g . 2V)
70 max_BW = 2∗max_Vds ; % eV − i t can be at most 6 ( indeed −3eV< E <+3eV) ; in

the I−V curve i t i s used BW=max_Vds
71 number_of_integrals = max_BW/BW_step ; % t o t a l number o f performed

i n t e g r a l s
72 BW_width = l i n s p a c e (BW_step , max_BW, number_of_integrals ) ; % cons ide r ed

b ia s windows , i t s t a r t s from BW_step
73 % s i n c e i t i s

the f i r s t non n u l l b i a s window value
74 Energy = Tx_C60_equiDFT ( : , 1 ) ; %i t i s always the same s i n c e a l l the data

have 401 po in t s in energy between −3 and +3 eV
75 % output i n t e g r a l s data s t r u c t u r e s are i n i t i a l i z e d :
76 Tx_C60_equiDFT_integrals = z e r o s (1 , number_of_integrals ) ;
77 Tx_C60_1NH3_equiDFT_integrals = z e r o s (1 , number_of_integrals ) ;
78 Tx_C60_3NH3_equiDFT_integrals = z e r o s (1 , number_of_integrals ) ;
79 Tx_C60_5NH3_equiDFT_integrals = z e r o s (1 , number_of_integrals ) ;
80 Tx_C60_equiEHT_integrals = z e r o s (1 , number_of_integrals ) ;
81 Tx_C60_1NH3_equiEHT_integrals = z e r o s (1 , number_of_integrals ) ;
82 Tx_C60_3NH3_equiEHT_integrals = z e r o s (1 , number_of_integrals ) ;
83 Tx_C60_5NH3_equiEHT_integrals = z e r o s (1 , number_of_integrals ) ;
84 % output Delta ( s ee below ) i n t e g r a l s data s t r u c t u r e s are i n i t i a l i z e d :
85 Delta_Tx_C60_1NH3_equiDFT_integrals = z e r o s (1 , number_of_integrals ) ;
86 Delta_Tx_C60_3NH3_equiDFT_integrals = z e r o s (1 , number_of_integrals ) ;
87 Delta_Tx_C60_5NH3_equiDFT_integrals = z e r o s (1 , number_of_integrals ) ;
88 Delta_Tx_C60_1NH3_equiEHT_integrals = z e r o s (1 , number_of_integrals ) ;
89 Delta_Tx_C60_3NH3_equiEHT_integrals = z e r o s (1 , number_of_integrals ) ;
90 Delta_Tx_C60_5NH3_equiEHT_integrals = z e r o s (1 , number_of_integrals ) ;
91

92 f o r i = 1 : number_of_integrals
93 current_BW = BW_width( i ) ;
94 positive_part_of_current_BW = current_BW /2 ;
95 cur rent_indece s_for_integrat ion = f i n d ( abs ( Energy ) <=

positive_part_of_current_BW ) ;
96 % then i n t e g r a l s are performed :
97 X = Energy ( cur rent_indece s_for_integra t ion ) ;
98 %
99 Y = Tx_C60_equiDFT( current_indeces_for_integrat ion , 2 ) ;

100 Tx_C60_equiDFT_integrals ( i ) = trapz (X,Y) ;
101 %
102 Y = Tx_C60_1NH3_equiDFT( current_indeces_for_integrat ion , 2 ) ;
103 Tx_C60_1NH3_equiDFT_integrals ( i ) = trapz (X,Y) ;
104 %
105 Y = Tx_C60_3NH3_equiDFT( current_indeces_for_integrat ion , 2 ) ;
106 Tx_C60_3NH3_equiDFT_integrals ( i ) = trapz (X,Y) ;
107 %
108 Y = Tx_C60_5NH3_equiDFT( current_indeces_for_integrat ion , 2 ) ;
109 Tx_C60_5NH3_equiDFT_integrals ( i ) = trapz (X,Y) ;
110 %
111 Y = Tx_C60_equiEHT( current_indeces_for_integrat ion , 2 ) ;
112 Tx_C60_equiEHT_integrals ( i ) = trapz (X,Y) ;
113 %
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114 Y = Tx_C60_1NH3_equiEHT( current_indeces_for_integrat ion , 2 ) ;
115 Tx_C60_1NH3_equiEHT_integrals ( i ) = trapz (X,Y) ;
116 %
117 Y = Tx_C60_3NH3_equiEHT( current_indeces_for_integrat ion , 2 ) ;
118 Tx_C60_3NH3_equiEHT_integrals ( i ) = trapz (X,Y) ;
119 %
120 Y = Tx_C60_5NH3_equiEHT( current_indeces_for_integrat ion , 2 ) ;
121 Tx_C60_5NH3_equiEHT_integrals ( i ) = trapz (X,Y) ;
122 %
123 % then the d i f f e r e n c e s (DELTA) between the xNH3 c a s e s and the C60

with no
124 % NH3 molecu le s case are eva luated f o r each cons ide r ed BW ( b ia s

window ) :
125 Delta_Tx_C60_1NH3_equiDFT_integrals ( i ) = abs (

Tx_C60_1NH3_equiDFT_integrals ( i ) − Tx_C60_equiDFT_integrals ( i ) ) ;
126 Delta_Tx_C60_3NH3_equiDFT_integrals ( i ) = abs (

Tx_C60_3NH3_equiDFT_integrals ( i ) − Tx_C60_equiDFT_integrals ( i ) ) ;
127 Delta_Tx_C60_5NH3_equiDFT_integrals ( i ) = abs (

Tx_C60_5NH3_equiDFT_integrals ( i ) − Tx_C60_equiDFT_integrals ( i ) ) ;
128 %
129 Delta_Tx_C60_1NH3_equiEHT_integrals ( i ) = abs (

Tx_C60_1NH3_equiEHT_integrals ( i ) − Tx_C60_equiEHT_integrals ( i ) ) ;
130 Delta_Tx_C60_3NH3_equiEHT_integrals ( i ) = abs (

Tx_C60_3NH3_equiEHT_integrals ( i ) − Tx_C60_equiEHT_integrals ( i ) ) ;
131 Delta_Tx_C60_5NH3_equiEHT_integrals ( i ) = abs (

Tx_C60_5NH3_equiEHT_integrals ( i ) − Tx_C60_equiEHT_integrals ( i ) ) ;
132

133 end
134

135 %PLOTs :
136

137 f i g u r e
138 hold on
139 g r id on
140 p lo t (BW_width , Delta_Tx_C60_1NH3_equiDFT_integrals , BW_width ,

Delta_Tx_C60_1NH3_equiEHT_integrals , ' LineWidth ' , 2) ;
141 t i t l e ( 'C60 wire s enso r : DFT vs EHT methods ( i n t e g r a l s d i f f e r e n c e s ) ' ) ;
142 l egend ( ' \ Delta \ i n t T(E) with DFT (1NH3) ' , ' \ Delta \ i n t T(E) with EHT (1

NH3) ' , ' l o c a t i o n ' , ' best ' ) ;
143 x l a b e l ( ' Applied Voltage (V) or Bias window width (eV) − i . e . Domain o f

i n t e g r a t i o n width ( cente red around 0 eV) ' ) ;
144 y l a b e l ( ' \ Delta o f T(E) i n t e g r a l ( average Transmiss ion ) ' ) ;
145 s e t ( gca , ' f o n t s i z e ' , 16) ;
146 % plo t e l l i p s e around the r eg i on i n t e r e s t e d f o r low b ia s ( l e s s that 2V o f

Vds )
147 px = 0 ; % the e l l i p s e s t a r t in the o r i g i n ( i t i s i n s i d e a r e c t a n g l e

s t a r t i n g in o r i g i n : px , py s t a r t i n g bottom l e f t corner )
148 py = 0 ;% the e l l i p s e s t a r t in the o r i g i n ( i t i s i n s i d e a r e c t a n g l e

s t a r t i n g in o r i g i n : px , py s t a r t i n g bottom l e f t corner )
149 dx = 2 ; %s i n c e in the I−V curve i t w i l l be Vds=(0 ,2)V then the max b ia s
150 % window w i l l be 2eV −> r a c t a n g l e width i s 2
151 dy = 0 . 0 5 5 ; % see the graph to choose i t proper ly ! !
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152 r e c t a n g l e ( ' Pos i t i on ' , [ px py dx dy ] , ' Curvature ' , [ 0 . 7 5 , 0 . 7 5 ] ) ; % '−−k ' , '
LineWidth ' , 2) ;

153

154 [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

D.6.2 Graphs for the case of 3 and 5 ammonia molecules

Figure D.23: Integral difference of the final ammonia sensor equilibrium transmission spectra
in the cases of 3 NH3 molecule. The results obtained with the two methods: DFT
(blue curve) and EHT (red/orange curve) are compared. The ellipse is around
the considered range of bias windows, i.e. up to 2V.
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D.6 – Additional images, graphs and material relative to section 8.5

Figure D.24: Integral difference of the final ammonia sensor equilibrium transmission spectra
in the cases of 5 NH3 molecule. The results obtained with the two methods: DFT
(blue curve) and EHT (red/orange curve) are compared. The ellipse is around
the considered range of bias windows, i.e. up to 2V.
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D.7 Additional images and graphs relative to section
8.6

D.7.1 Zoom in of figure 8.32 for VD = 0.2 V and VD = 1.4 V

(a)

(b)

Figure D.25: Zoom-in of the current-voltage characteristics for the final sensor geometry. The
two different ammonia orientations are considered along with various atmosphere
constituents (EHT method). Top (a): curves at VD = 0.2 V; bottom (b): curves
at VD = 1.4 V.

D22



D.7 – Additional images and graphs relative to section 8.6

D.7.2 Sensitivity of the C60 wire to additional pollutants

(a)

(b)

Figure D.26: Top (a): Absolute current variations with sign for methane CH4 and butane
C4H10 (EHT method). Bottom (b): Absolute current variations with sign for
methane CH4 and butane C4H10 along with common atmosphere constituents
(EHT method).
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Figure D.27: Absolute current variations with sign for NO along with other common atmo-
spheric chemical species (EHT method).

Figure D.28: Absolute current variations with sign for NO2 along with other common atmo-
spheric chemical species (EHT method).
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Figure D.29: Absolute current variations with sign for PbCl2 along with other common atmo-
spheric chemical species (EHT method).

Figure D.30: Absolute current variations with sign for PbO along with other common atmo-
spheric chemical species (EHT method).
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Appendix E

Chapter 9 - Additional images,
graphs and material

Details are provided directly in the captions.

E.1 Additional images and graphs relative to section
9.2

Figure E.1: Absolute current variations for various atmospheric gases and for PbSO4 with the
two fullerene orientations: the casual one and the equilibrium chemisorption one,
with hexagons toward gold (EHT method).
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(a)

(b)

Figure E.2: Top (a): Absolute current variations (magnitude) due to lead sulfate single-molecule,
for the different considered distances between the fullerene and contacts. Bottom
(b): Absolute current variations (with sign) due to lead sulfate single-molecule,
for the different considered distances between the fullerene and contacts (EHT
method).
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E.2 Additional images and graphs relative to section
9.4

Figure E.3: Integral difference of the final lead sulfate sensor equilibrium transmission spectra
in the cases of 2 PbSO4 molecule. The results obtained with the two methods:
DFT (blue curve) and EHT (red/orange curve) are compared. The ellipsoid is
around the considered range of bias windows, i.e. up to 2V. The integrals were
performed with trapezoidal numerical method in MatLab, over the bias windows
from 0.1V to 4V with a step of 0.1V.
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E.3 Additional images and graphs relative to section
9.5

E.3.1 Different PbSO4 orientation geometries

Figure E.4: Geometry labeled as “PbSO4” simply. The figure was generated by ATK software
[125], [126] (used for performing the simulations).

Figure E.5: Geometry labeled as PbSO4 “left-right”. It corresponds to a rotation w.r.t. a
vertical rotation axis. The figure was generated by ATK software [125], [126] (used
for performing the simulations).
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Figure E.6: Geometry labeled as PbSO4 “up-down”. It corresponds to a rotation w.r.t. a
rotation axis parallel to the transport direction. The figure was generated by ATK
software [125], [126] (used for performing the simulations).

Figure E.7: Geometry labeled as PbSO4 “SO-down”. The figure was generated by ATK software
[125], [126] (used for performing the simulations).
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Figure E.8: Geometry labeled as PbSO4 “Pb-down”. The figure was generated by ATK software
[125], [126] (used for performing the simulations).

E.4 Additional material relative to section 9.5.4

Table E.1: Maximum absolute deviation between the cubic spline interpolation and the linear
interpolation of the current values in function of the target-fullerene distance, for
the various considered bias points.

VD (V) Maximum deviation (µA)
0.2 2.34
0.4 20.63
0.6 25.24
0.8 22.57
1 9.1
1.2 72.32
1.4 77.69
1.6 69.35
1.8 156.84
2 165.46
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Figure E.9: Maximum absolute deviation between the cubic spline interpolation and the linear
interpolation of the current values in function of the target-fullerene distance, for
the various considered bias points. Notice the chosen bias point at VD = 0.8 V;
it is a good compromise among the possible choices. For VD grater than 1V the
current variations/oscillations are much more marked.

E.5 Additional material relative to section 9.5.5

Figure E.10: Maximum absolute deviation between the cubic spline interpolation and the linear
interpolation of the current values in function of the PbSO4 concentration, for
the various considered bias points. Notice the chosen bias point at VD = 0.8 V; it
is a good compromise among the possible choices.
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Figure E.11: Current values for different PbSO4 concentrations and for VD = 0.8 V. Black
circles: simulated values; blue curve: cubic 3rd order spline interpolation; red/o-
range: quadratic interpolation. The latter is exactly overlapped to the cubic
interpolation thus meaning a perfect agreement and a quadratic sensor response
for VD = 0.8 V.

Figure E.12: Current values for different PbSO4 concentrations and for VD = 0.2 V. Black
circles: simulated values; blue curve: cubic 3rd order spline interpolation; red/o-
range: linear interpolation. Strongly non linear sensor response is present for
VD = 0.2 V.
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Figure E.13: Current values for different PbSO4 concentrations and for VD = 0.4 V. Black cir-
cles: simulated values; blue curve: cubic 3rd order spline interpolation; red/orange:
linear interpolation. The sensor response for VD = 0.4 V is very linear.

Figure E.14: Equilibrium transmission spectra in the case of 2 PbSO4 molecules and in the
case of 2 PbSO4 molecules oriented in opposite directions.

E9



Chapter 9 - Additional images, graphs and material

E.6 Additional material relative to section 9.5.6

Figure E.15: Transmission spectrum with a PbSO4 molecule for a bias VD = 0.8 V. Abscissa
axis: transmission; ordinate axis: energy (eV); εL,R are the two contacts Fermi
levels, and the energy values in between them correspond to the one within the
bias window. The red arrows highlight the three main transmission peaks within
the bias window, at energy 0.04 eV, 0.28 eV and 0.4 eV. The figure was generated
by ATK software [125], [126] (used for performing the simulations).

Figure E.16: Transmission eigenstate (full view) corresponding to the transmission eigenvalue
5.654839e-1 with quantum number QN = 0, transmission peak at energy E =
0.04 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface, the
colors correspond to different phases. The figure was generated by ATK software
[125], [126] (used for performing the simulations).
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Figure E.17: Transmission eigenstate (top view) corresponding to the transmission eigenvalue
5.654839e-1 with quantum number QN = 0, transmission peak at energy E =
0.04 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface
(smaller transmission value w.r.t. the one of figure E.6), the colors correspond to
different phases. The figure was generated by ATK software [125], [126] (used for
performing the simulations).

Figure E.18: Transmission eigenstate (full view) corresponding to the transmission eigenvalue
2.229667e-2 with quantum number QN = 1, transmission peak at energy E =
0.04 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface, the
colors correspond to different phases. The figure was generated by ATK software
[125], [126] (used for performing the simulations).

E11



Chapter 9 - Additional images, graphs and material

Figure E.19: Transmission eigenstate (top view) corresponding to the transmission eigenvalue
2.229667e-2 with quantum number QN = 1, transmission peak at energy E =
0.04 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface
(smaller transmission value w.r.t. the one of figure E.6), the colors correspond to
different phases. The figure was generated by ATK software [125], [126] (used for
performing the simulations).

Figure E.20: Transmission eigenstate (side view) corresponding to the transmission eigenvalue
8.373195e-1 with quantum number QN = 0, transmission peak at energy E =
0.28 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface, the
colors correspond to different phases. The figure was generated by ATK software
[125], [126] (used for performing the simulations).
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Figure E.21: Transmission eigenstate (full view) corresponding to the transmission eigenvalue
2.119902e-1 with quantum number QN = 1, transmission peak at energy E =
0.28 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface, the
colors correspond to different phases. The figure was generated by ATK software
[125], [126] (used for performing the simulations).

Figure E.22: Transmission eigenstate (full view) corresponding to the transmission eigenvalue
6.899972e-1 with quantum number QN = 0, transmission peak at energy E =
0.4 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface, the
colors correspond to different phases. The figure was generated by ATK software
[125], [126] (used for performing the simulations).
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Figure E.23: Transmission eigenstate (side view) corresponding to the transmission eigenvalue
3.125305e-1 with quantum number QN = 1, transmission peak at energy E =
0.4 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface, the
colors correspond to different phases. The figure was generated by ATK software
[125], [126] (used for performing the simulations).

Figure E.24: Transmission eigenstate (full view) corresponding to the transmission eigenvalue
8.513583e-2 with quantum number QN = 2, transmission peak at energy E =
0.4 eV, the geometry is the one with a single PbSO4 molecule and with a bias
voltage VD = 0.8 V. The surface corresponds to an iso-transmission surface, the
colors correspond to different phases. The figure was generated by ATK software
[125], [126] (used for performing the simulations).
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E.6.1 Additional material relative to section 9.5.6: two opposite
oriented PbSO4 molecules

Figure E.25: Transmission eigenstate (top view) corresponding to the transmission eigenvalue
5.594843e-1 with quantum number QN = 0, transmission peak at energy E =
0.04 eV, the geometry is the one with two opposite oriented PbSO4 molecules and
with a bias voltage VD = 0.8 V. The surface corresponds to an iso-transmission
surface, the colors correspond to different phases. The figure was generated by
ATK software [125], [126] (used for performing the simulations).

Figure E.26: Transmission eigenstate (top view) corresponding to the transmission eigenvalue
8.684692e-1 with quantum number QN = 0, transmission peak at energy E =
−0.16 eV, the geometry is the one with two opposite oriented PbSO4 molecules and
with a bias voltage VD = 0.8 V. The surface corresponds to an iso-transmission
surface, the colors correspond to different phases. The figure was generated by
ATK software [125], [126] (used for performing the simulations).
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Figure E.27: Transmission eigenstate (top view) corresponding to the transmission eigenvalue
7.872365e-1 with quantum number QN = 0, transmission peak at energy E =
0.16 eV, the geometry is the one with two opposite oriented PbSO4 molecules and
with a bias voltage VD = 0.8 V. The surface corresponds to an iso-transmission
surface, the colors correspond to different phases. The figure was generated by
ATK software [125], [126] (used for performing the simulations).

Figure E.28: Transmission eigenstate (top view) corresponding to the transmission eigenvalue
6.032937e-2 with quantum number QN = 1, transmission peak at energy E =
0.16 eV, the geometry is the one with two opposite oriented PbSO4 molecules and
with a bias voltage VD = 0.8 V. The surface corresponds to an iso-transmission
surface, the colors correspond to different phases. The figure was generated by
ATK software [125], [126] (used for performing the simulations).
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E.7 Argon transmission eigenstates analysis
In section 8.6.2 it was considered also the sensor sensitivity to argon since it is a common
atmospheric gas, and it was verified that the argon is responsible of large current variations
for large biases. The reason was supposed to be in its high atomic number that is 18,
meaning that it has 18 electrons. It was supposed that a such large number of electrons
leads to a strong (if compared with ammonia and the other considered molecules with
lower atomic number and thus less electrons) polarization charge, that was supposed to be
at the basis of the strong current variation induced in the sensor. This is confirmed in
the analysis carried out in this section. In particular in figure E.29 is shown the MPSH
for the system HOSO level, in a side view (zoomed in), for bias VD = 1.6 V (being a bias
point with large current deviation and sensitivity to argon). It is noticeable that there
is no symmetry of the argon orbitals. The argon atomic number is 18 leading to the
following electronic configuration: 1s2 2s2 2p6 3s2 3p6. Notice that argon is a noble gas
with a complete octet and that in atmosphere it is found as single atoms. The HOSO
and LUSO orbitals, nearby the argon, are thus expected to be somehow derived from the
upper occupied orbitals of argon, i.e. p-type orbitals; and indeed it is recognizable the
typical “8” shaped figure centered at the argon atom (onto the fullerene in the middle). In
the case of the HOSO, evidently, the argon orbitals cooperating in the HOSO formation
are the py ones (vertical “8”). Nevertheless it is expected to have a deformation of them,
due to the steric effect of repulsion of electron clouds. This is again confirmed in figure
E.29, since the upper lobe is longer in y-direction while the lower one is squashed. This
is indeed the result of the electron-electron repulsion, but the point here is that this
geometry induces a (temporary) polarization of the argon atom. The polarization involves
up to 18 electrons, thus originating an electric charge relatively large, in particular with a
slightly positive region nearby the fullerene. This positive region is suppose to somehow
lower the contact-fullerene barriers, and enhancing the transport by attracting electrons
from contacts. Nevertheless, due to the spatial position of the argon, such a transmission
improvement occurs only for sufficiently high biases (in practice for voltages above 1V),
because a certain amount of electric field is needed to overcome the barriers, already
present, between the two contacts and the fullerene. This mechanism can be understood
by looking at the transmission eigenstates in real space. In figure E.30 is reported a view
of the main transmission eigenstate (the one corresponding to the highest transmission
eigenvalue) for energy 0.32 eV, that is the main transmission peak within the bias window,
for an applied bias of 1.6V. It is evident the existence of transmission paths nearby the
argon, and moreover the great transmission is due to the existence of an almost unique
phase coherent path that connects the source and the drain by means of the argon (the
blue path). Actually it is not at all coherent since in few point the phase coherence is
broken, but in such regions the barriers are so small that the electron is transmitted almost
without attenuation. Another important feature is that such transmission eigenchannel
corresponds essentially to transmission through the HOSO level. This is clear when figure
E.30 and E.29 are compared, by noticing that great similarity in the shape and phases
between the two. This similarity is less marked with the LUSO, that is instead reported in
figure E.31, thus clarifying that for such a bias point the transmission occurs mainly thanks
to the HOSO level. For comparison a pair of transmission eigenstates for a lower bias,
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namely 0.4V, for which indeed there is no great current variation w.r.t. the case without
the argon (i.e. C60 alone), are reported in figures E.32 and E.33. It has to be noted that
in such a case the transmission is less evident between the contacts and the fullerene, due
to the presence of the contact-fullerene barriers that cannot be easily overcome for that
bias (with such an applied electric field). In addition phase decoherence occurs between
the lower argon lobe and the fullerene one. These results essentially confirm the intuition
of section 8.6.2, that can be an intuitive explanation for these behaviors, leading also to a
selecting criterion for target molecules, for high sensitivity sensors.

Figure E.29: MPSH (zoomed in) for the HOSO level of the system C60 + Ar (side view). The
considered bias point is 1.6V. The figure was generated by ATK software [125],
[126] (used for performing the simulations).
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Figure E.30: Transmission eigenstate (full view) corresponding to the main transmission eigen-
value with quantum number QN = 0 for the transmission peak at energy
E = 0.32 eV, and with a bias voltage VD = 1.6 V. The surface corresponds
to an iso-transmission surface, the colors correspond to different phases. The
figure was generated by ATK software [125], [126] (used for performing the
simulations).

Figure E.31: MPSH for the LUSO level of the system C60 + Ar (side view). Notice again the
argon orbitals polarization. the considered bias point is 1.6V. The figure was
generated by ATK software [125], [126] (used for performing the simulations).
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Figure E.32: Transmission eigenstate (side view) corresponding to the main transmission
eigenvalue with quantum number QN = 0 for the transmission peak at energy
E = 0.2 eV, and with a bias voltage VD = 0.4 V. The surface corresponds to an
iso-transmission surface, the colors correspond to different phases. The figure was
generated by ATK software [125], [126] (used for performing the simulations).

Figure E.33: Transmission eigenstate (side view) corresponding to the second transmission
eigenvalue with quantum number QN = 1 for the transmission peak at energy
E = 0.2 eV, and with a bias voltage VD = 0.4 V. The surface corresponds to an
iso-transmission surface, the colors correspond to different phases. The figure was
generated by ATK software [125], [126] (used for performing the simulations).
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E.8 Additional images and graphs relative to section
9.9

Figure E.34: Absolute current variations due to the presence of the PbSO4 molecule for the
case of the wire sensor and the transistor-based one.

Figure E.35: Percentage current variations due to the presence of the PbSO4 molecule for the
case of the wire sensor and the transistor-based one.
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Figure E.36: Current-voltage characteristics for 0, 1, and 2 PbSO4 molecules nearby the
conducting channel, in the case of the gated sensor. Notice that a good variation
occurs among them and thus it is expected the sensor to be able to detect also
the concentration.

Figure E.37: Current variations due to 1 and 2 PbSO4 molecules nearby the conducting channel,
in the case of the gated sensor.
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Figure E.38: Sensor current in function of the number of PbSO4 molecules for VD = 0.4 V.
Black circles: simulated data; blue line: spline interpolation; red/orange line:
straight line interpolation.

Figure E.39: Sensor current in function of the number of PbSO4 molecules for VD = 0.8 V.
Black circles: simulated data; blue line: spline interpolation; red/orange line:
straight line interpolation.
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Figure E.40: Sensor current in function of the number of PbSO4 molecules for VD = 0.8 V.
Black circles: simulated data; blue line: spline interpolation; red/orange line:
second order polynomial interpolation.

Figure E.41: Sensor current in function of the number of PbSO4 molecules for VD = 1 V. Black
circles: simulated data; blue line: spline interpolation; red/orange line: straight
line interpolation.
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Figure E.42: Sensor maximum deviation from linearity in function of the applied bias, for
different PbSO4 concentrations. It is the maximum difference between the straight
line interpolating curve and the spline 3rd order interpolating curve. Notice the
low error at 0.8V.

Figure E.43: Sensor current in function of the PbSO4 molecule distance from the sensor
for VD = 0.8 V. Black circles: simulated data; blue line: spline interpolation;
red/orange line: straight line interpolation.
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Figure E.44: Sensor maximum deviation from linearity in function of the applied bias, for
different PbSO4 distances. It is the maximum difference between the straight line
interpolating curve and the spline 3rd order interpolating curve. Notice the low
error at 0.8V.

E.8.1 Sensor response time (gate case): section 9.9.5

Figure E.45: I-V characteristics obtained with ATK and with Huckel-IV 3.0 tool. The ellipse
highlight the chosen bias point, i.e. 0.8V. Notice the different values of the fitting
parameter Vc. For VD = 0.8 V the best agreement is obtained with Vc = 0.625.
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Appendix F

An operative introduction to
the free available tool
Huckel-IV 3.0

In chapter 5, section 5.17 (see in particular section 5.17.2), it was already introduced a
free available MatLab-based tool called Huckel-IV 3.0 and originally developed by prof.
Ferdows Zahid with M. Paulsson, E. Polizzi under the supervision of prof. S. Datta at
Purdue University (Indiana, USA) between 2003 and 2005 [105], [41], [24]. The general
approach, method and algorithm behind this tool were already explained in detail in section
5.17.2. The purpose of this section is to provide an operative description to the usage
of such a tool in the current version I have used during the present work. This version
was modified and used by my colleague Chiara Elfi Spano and I during the workshop
“Innovative systems” a.y. 2018/2019 and 2019/2020. The treatment in this section is
entirely taken from our final report about the aforementioned work. I have decided to
do not modify it in order to make justice to that work and to make clear the separation
between the present work and the previous one. Moreover in the present thesis work I
have used exactly such a version of the tool, so no modifications were needed. The version
of the tool I have used is accessible under request, alternatively the original version of the
tool is accessible on the website www.nanohub.org (checked in 2019, March) or with a
request to prof. Ferdows Zahid [105], [41], [24]. In the following the operative description
of such a tool (in the “our” version), taken from the “Innovative system” workshop final
report is reported.

Once we got access to Huckel-IV 3.0 suite we needed some time in order to make it
working and correctly compiling on today’s computer, since it was developed more than
fifteen years ago exploiting softwares that are nowadays obsolete (such as Fortran 90 or
Hamlet environment). In order to do that we needed to suitably modify the system calls
and perform some other updating operations (indeed even though Huckel-IV is mainly
developed in MatLab it performs system calls to compile and execute Python, Fortran
90 and C language programs). At the end of this phase we got an updated version of
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Huckel-IV able to correctly work on nowadays both Windows and Linux environments.
After that we decided to create a unique MatLab main script, well commented and complete
of explanations and instructions on how to set up all the input parameters, in order to
ease an eventual inexpert user. In the actual version we are using, this is essentially the
only script to be executed from users, and it performs all the operations and needed
routine/system calls. Moreover we wrote a “readme” file with all detailed operative
instructions on how to use the “our” version of Huckel-IV 3.0.
The next phase was to become familiar with the usage of Huckel-IV, and above all to
verify the correctness of operation of the modified tool we had in our hands. In order to
do that we performed many simulations changing all the possible input parameters and we
compared results with the commercial (that we assumed reliable) tool QuantumWise ATK
by Synopsys ®, obtaining consistent results.

Operative description

The aim of this section is to provide and operative description of the way of using the
Huckel-IV tool presented in section 5.17.2. Many of the following material is directly
extracted from the «readme» file we wrote.

The sequence of operations performed by Huckel-IV is briefly summarized in the following:

1. Input or empirical parameters should be set by the user.

2. Isolated molecular energy levels and valence electron number are computed.

3. The molecule is suitably rotated such as it is aligned with y-axis, i.e. transport
direction.

4. Atom indexes id and kd are generated

5. Hamiltonian and overlap matrices of the device plus leads are generated.

6. Coupling and Gamma (CNDO parameters) matrices are generated (isolated device is
considered).

7. Laplace and image potentials are calculated for device only.

8. Surface Green’s function are imported in main script for the selected energy range. If
the energy range is modified, SGF calculations must be performed again separately
(and before running the main script). See the “readme” file and relative scripts for
instructions on how to practically doing it.

9. Charge neutrality and density matrix calculations are performed at equilibrium.

10. Transport (and self-energy) calculations are then performed for the selected bias and
energy ranges.

11. Plots, figures and graphs are then generated and stored in the output folder.
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In order to perform molecular wire and molecular transistor simulations the following steps
should be performed:

1. Generate geometry files and save them into input_data folder. Two input geometry
files should be generated (e.g. starting from .xyz files from ATK, or Avogadro, etc...):

• “device” file (no extension): xyz description of the isolated molecule.
• “isolated” file (no extension): xyz description of the isolated molecule with initial

and ending hydrogen atoms.

For file structures see example files (and remarks below). Notice that the names
should be exactly “device” and “isolated” (without double quotation marks) in order
to make it working correctly. Moreover the transport direction is assumed to be the
y-direction.

2. Set input parameters and paths and run the main MatLab script “MAIN_script.m”.
Instructions are provided directly into the code. Please read all the comments.

3. Outputs: once the computation is completed, output data are available in output_data
folder (suggested path). In particular:

• HS.mat stores the device + leads Hamiltonian and overlap matrices and other
related useful data.

• Hrho.mat stores the Hamiltonian and density matrices at every bias points and
other related useful data.

• IV.mat stores ID(VD) for two terminal system and other related useful data.
• IDV D.mat stores the output characteristic ID(VD) at a given VG (for three

terminal system) and other related useful data.
• IDV G.mat stores the trans-characteristic ID(VG) at a given VD (for three

terminal system) and other related useful data.
• TEV.mat stores transmission spectrum and density of states as a function of

energy and drain bias and other related useful data.
• NEcnl.mat stores the number electrons as a function of chemical potential and

other related useful data.
• In energy_level_outputs folder there is a file Ne that stores the number of

valence electrons for that molecule, and a MatLab figure of isolated molecular
energy levels.

• In figures folder there are the output MatLab graphs.
• V dV gV image.mat stores image and Laplace potential value (output of
laplace3d_solver module).

• id and kd are useful atom indexes to be used for creating some output graphs
(or to perform post processing computations).

• gamma.mat stores the gamma (CNDO parameters) matrix for the molecule.
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• File device and extended_device are modified (rotated) geometry files of the
device without and with gold leads respectively.

Important remarks:

(a) If the energy grid in the main script is modified, it is also necessary to modify
the energy grid in HkSk_SGF_Calculator_main.m script (that is located in
HkSk_SGF_Calculator folder) and then execute the SGF (surface Green’s
Functions) calculator for the two contacts, i.e. execute
HkSk_SGF_Calculator_main.m (further instructions are provided in com-
ments). This operation must be performed before running the main script.

(b) In order to correctly complete calculations the following tools are necessary
(system calls are performed to execute other programs):

• Python 2.7.15rc1 (successive versions are not ensured to work correctly)
• GCC (suggested) compiler (alternatively: other C language compilers - if

not GCC please modify system calls in main script and Elevel.m script)
• g95 Fortran compiler (alternatively: other .f90 compilers, Fortran 90 com-

patibility must be ensured - if not g95 please modify system calls in the
main script)

Be sure that above mentioned tools and programs work correctly from command
line (environment variables etc...). Useful links (updated on April 2019):
https://www.python.org/downloads/release/python-2715rc1/
https://gcc.gnu.org/
https://www.g95.org/

(c) device and isolated file structure:
• 1st column: atomic number of that atomic
• 2nd, 3rd, 4th columns: x, y, z position of that atom (y-direction is transport

direction)
• it is suggested to set up the geometry such that z column is identically zero

(if possible, like e.g. in planar molecules that should be in xy plane only) to
get a symmetric I-V characteristic

Here a list of folders and a brief explanation of main routines used in “our” version of
Huckel-IV is reported. Users simply need to store input geometry files in folder input_data
and get calculation results in output_data folder. For input and output brief description
see above. It follows a very brief description of other folders (and routines):

• energy_level: stores a MatLab function that is able to compute isolated molecular
energy levels at equilibrium. It exploits also huckel.c (that is huckel.exe in win-
dows environment after compilation) and Ne.py programs to evaluate the molecular
Hamiltonian (with EHT method) and number of valence electrons respectively.

• gamma_parameters: stores a MatLab function that is able to compute CNDO pa-
rameters (starting from CNDO database in the same folder) for the considered device.
The result of computation is used for the Poisson’s potential UPoisson evaluation,
during transport calculations.
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• HkSk_SGF_Calculator: stores MatLab functions aimed to calculation of gold
contacts (13 Au atoms each) Hamiltonian and overlap matrices in k-space with a
given number of k-points, and of contacts SGF.

• huckel_hamiltonian: stores all what is needed to evaluate the Hamiltonian (HH)
of the extended device (that is molecule + contact leads) and relative overlap matrix
(S). From HH and S is then possible to get Hd and Sd (of device only). Moreover
function coupling_3au_111.m evaluates the coupling matrices ζ1 and ζ2 between
gold electrodes and molecule.

• index_atoms: stores a python program that is able to evaluate id and kd indices (on
the basis of molecular structure) widely used in transport calculations (for further
detail see the code).

• input_data: already described. It stores the user input data for calculations.

• input_generator: useful MatLab data structure that stores SGF for 9 or 17 k-points.
The ones used during calculations are in the sub-folder contact_input.

• laplace3d_solver: stores all what is needed to solve Laplace’s equation and evaluate
the Laplace and image potentials within the device. Results are stored in suitable
data structures and are used during transport calculation to get the effective Laplace
and image potential contributions.

• output_data: stores the output data produced by Huckel-IV. For a brief description
see above.

• plotting: stores MatLab functions used to produce figures and graphs (that are stored
in output_data/figures folder).

• rotation: stores a MatLab function able to suitably rotate the molecule (used in
preliminary computations to correctly align the molecule with electrodes in transport
direction). If the input files are constructed accordingly to what said above (and in
the “readme” file) this rotation should not be necessary.

• transport: stores the MatLab functions that perform all the transport computations.
The most important MatLab functions are the following:

– Ulaplace.m is used to evaluate the actual Laplace’s potential ULaplace for the
given bias point.

– scf_30.m is aimed in performing the SCF loop presented in section 5.17.2. It
calls poisson_image.m that perform Poisson’s and image (UPoisson and Uimage)
potential calculations (starting from the “gamma matrix” and “image potential”
data structures previously evaluated) and provides the Hamiltonian starting
from the density matrix. It calls also cal_density.m that performs contour
integral of eq. (5.77) to get the density matrix starting from NEGF quantities.
Moreover it calls pulay_mix.m that performs the Pulay’s mixing procedure to
update the density matrix to the new guess.
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– iv.m performs the integration of transmission spectrum to get the current value
for that given bias point. It implements Landauer’s equation (eq. (5.75)).

– TE.m and TDE.m: they perform the transmission spectrum calculations and
the transmission spectrum and density of states calculations, respectively. They
essentially implement the set of equations presented in section 5.16. They are
called within a loop on the energy grid, in a similar manner to what presented
in section 5.17.1.

Main differences between Huckel-IV and QuantumWise ATK

The scope of this section is to highlight the main differences between Huckel-IV 3.0 tool
and the commercial one QuantumWise ATK by Synopsys ®. Indeed in the following we
are going to compare simulations performed with both these softwares, in order to validate
“our” version of Huckel-IV. Even though in QuantumWise ATK there is the possibility to
perform NEGF based transport calculations starting from the EHT Hamiltonian, there
are mainly two differences between Huckel-IV and QuantumWise ATK that must kept in
mind in comparing the results. In particular:

1. In Huckel-IV the charge transfer that leads to Fermi energy alignment when molecular-
metal contacts are created, is considered by means of the fitting parameter Vc, while
in ATK a self-consistent equilibrium calculation is performed to evaluate the relative
positions of Fermi energies.

2. Even if Huckel-IV uses a recursive method to evaluate the SGF and the self-energies
(similar to what explained in section 5.8), this method is different from all the
selectable methods in ATK. As a consequence, since each method will have a different
error or different approximations, very likely the final result will be slightly different.
It is expected that this will imply small differences in positions and broadening of
molecular energy levels in the density of states or in the transmission spectrum (thus
with small consequences also on the current).

Finally notice that even if both the tools use EHT method, it is not said that the starting
semi-empirical potentials are exactly the same, and, more important, it is not said that
the two methods use exactly the same weight to perform the needed linear combinations
for the construction of the Hamiltonian. Indeed several variations are possible, and since
we have no access to the ATK code we cannot know the exact formulae and algorithms
that it employs.

Huckel-IV simulations

In this section we briefly summarize the procedure to be followed in order to perform
molecular wire simulations. The steps are the following:

1. Generate geometry files and save them into input_data folder. Two input geometry
files should be generated (e.g. starting from .xyz files from ATK, or Avogadro, etc...):
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• “device” file (no extension): xyz description of the isolated molecule.

• “isolated” file (no extension): xyz description of the isolated molecule with initial
and ending hydrogen atoms.

For file structures see example files (and remarks below). Notice that the names
should be exactly device and isolated in order to make it working correctly. Notice
that in order to get a symmetric I-V curve the molecule should be centered in its
geometrical center. This task could be difficult if geometry is generated in tools
such as Avogadro, in which e.g. is very easily instead to center it around its mass
center. For small molecule this is a good compromise, for complex geometries the
error is more evident. From a theoretical point of view a possible reason for an
asymmetric I-V characteristic is an asymmetric potential shape in space (especially
in the transport direction). This is obviously related to molecule geometry and to
what mentioned above.

2. Set input parameters and paths and run the main MatLab script. Instructions and
explanations about them are provided directly into the main code MAIN_script.m.
In particular for all the simulations below the parameters reported in table F.1 were
used. Notice that the chosen dl and dr values corresponds to a bonding distance of
2.4Å, the employed values of Vc are reported below, no differences were noticeable if
T would be set to 300K, no gates were used so gx = gz = 0, and grid in expressed
in Å.

3. Outputs: once the computation is completed, output data are available in output_data
folder (suggested path).
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Table F.1: Huckel-IV parameters used for the C60 molecular wire simulations. First column:
parameter. Second column: set value. Third column: brief explanation.

dl 1.8 vertical distance from the left contact in Å
dr 1.8 vertical distance from the right contact in Å
pl 1 row position in the “device” file for the most left atom
pr 60 row position in the “device” file for the most right atom
Vc 0.6; 0.625; 0.65 fitting parameter Vc
T 0 Temperature in K
kp 9 number of k-points considered in SGF calculations
image 1 (if 1 the image correction is activated)
gx 0 number of gates in x-direction (no gates are present)
gz 0 number of gates in z-direction (no gates are present)
tox 0 gate oxide thickness (not used)
eox 0 gate oxide dielectric constant (not used)
grid 0.6 spatial grid step (in Å)
Idv 0 0 means two terminal calculations (molecular wire)
Vmin 0.0 minimum applied voltage in V
Vmax +2.0 maximum applied voltage in V
NV 41 number of bias points between Vmin and Vmax
V 0 for two terminal calculations it must be 0
Emin -14 minimum energy value considered in eV
Emax -5 maximum energy value considered in eV
NE 9001 number of energy grid points between Emin and Emax
pulay_weight 5 Pulay mixing is used, this is the weight
damping 0.25 damping factor
iteration 50 max number of iterations
tolerance 1e-4 convergence tolerance of scf
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Appendix G

Chapter 9 - Molecular
electronic sensor circuit level
parameters and modeling

G.1 LUT-based model: verilogA code
In the following is reported the verilogA code for defining the three terminal sensor by
means of LUT-based model. The data are stored in the .txt file named:
“C60_PbSO4_sensor_ATK.txt” that is reported in the next section.

1 // Veri logA f o r SensorResponseTime , PbSO4_Sensor_LUTdevice , v e r i l o g a
2

3 ` i n c lude " d i s c i p l i n e s . h "
4 ` i n c lude " cons tant s . h "
5

6 module PbSO4_Sensor_LUTdevice (D, S ,N_PbSO4) ;
7

8 // "N_PbSO4" i s a fake input contact , 0 means no PbSO4 molecule , 1 means
that there i s 1 PbSO4 molecule nearby the channel , 2 means that there
are 2 PbSO4 and so on . . .

9 // the LUT data are s imulated in Quantum−Wise ATK and the curves with
d i f f e r e n t "N_PbSO4" are p r e v i o u s l y obta ined in ATK

10

11 input N_PbSO4;
12 e l e c t r i c a l N_PbSO4;
13 // input type " e l e c t r i c a l " i s chosen f o r convenience , to perform e a s i l y

t r a n s i e n t ana ly s e s
14

15 // Drain
16 inout D;
17 e l e c t r i c a l D;
18
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19 // Source
20 inout S ;
21 e l e c t r i c a l S ;
22

23 // Desc r ip t i on :
24 analog
25 begin
26

27 // 3 rd order polynomial s p l i n e i n t e r p o l a t i o n (3L)
28 // Data are s to r ed in C60_PbSO4_sensor_ATK . txt f i l e
29 // f i r s t row i s V(N_PbSO4, S) , second i s V(D, S) and t h i r d i s I (D, S)
30

31 I (D, S) <+ $table_model (V(N_PbSO4, S) , V(D, S) , "C60_PbSO4_sensor_ATK . txt " ,
" 3L , 3L" ) ;

32

33 //1 s t order i n t e r p o l a t i o n i s not used : I (D, S) <+ $table_model (V(G, S) , V(D
, S) , " bio_dati . txt " , " 1 , 1 " ) ;

34

35 end
36 endmodule

G.1.1 LUT data: the “C60_PbSO4_sensor_ATK.txt” file
In this section the content of the “C60_PbSO4_sensor_ATK.txt” file is reported; it defines
the LUT, storing the current values in function of the voltage VDS values and the number
of molecules: N_PbSO4. The first column corresponds to the number of PbSO4 molecules,
i.e. the value of N_PbSO4 variable; the second is the applied VDS , and the third the
current IDS .

1 0.000000 e+000 0.000000 0.000000 e+00
2 0.000000 e+000 0.200000 6.071283 e−06
3 0.000000 e+000 0.400000 6.374918 e−06
4 0.000000 e+000 0.600000 9.715714 e−06
5 0.000000 e+000 0.800000 1.052677 e−05
6 0.000000 e+000 1.000000 1.902070 e−05
7 0.000000 e+000 1.200000 2.277715 e−05
8 0.000000 e+000 1.400000 3.132946 e−05
9 0.000000 e+000 1.600000 3.034601 e−05

10 0.000000 e+000 1.800000 3.197763 e−05
11 0.000000 e+000 2.000000 3.259942 e−05
12 1.000000 e+000 0.000000 0.000000 e+00
13 1.000000 e+000 0.200000 5.019747 e−06
14 1.000000 e+000 0.400000 9.077101 e−06
15 1.000000 e+000 0.600000 1.347075 e−05
16 1.000000 e+000 0.800000 1.357319 e−05
17 1.000000 e+000 1.000000 2.407807 e−05
18 1.000000 e+000 1.200000 2.986192 e−05
19 1.000000 e+000 1.400000 3.690916 e−05
20 1.000000 e+000 1.600000 4.117528 e−05
21 1.000000 e+000 1.800000 3.748752 e−05

G2



G.2 – Device capacitances and “dynamic” resistances calculations

22 1.000000 e+000 2.000000 4.287889 e−05
23 2.000000 e+000 0.000000 0.000000 e+00
24 2.000000 e+000 0.200000 7.966706 e−06
25 2.000000 e+000 0.400000 1.159848 e−05
26 2.000000 e+000 0.600000 1.387970 e−05
27 2.000000 e+000 0.800000 1.580951 e−05
28 2.000000 e+000 1.000000 2.099119 e−05
29 2.000000 e+000 1.200000 2.894659 e−05
30 2.000000 e+000 1.400000 3.206264 e−05
31 2.000000 e+000 1.600000 3.136089 e−05
32 2.000000 e+000 1.800000 3.937469 e−05
33 2.000000 e+000 2.000000 4.172977 e−05

G.2 Device capacitances and “dynamic” resistances
calculations

In this section it is reported the MatLab script used for evaluating the quantum and the
electrostatic capacitances and the “dynamic” resistances of the sensor. In the following
sub-sections the various functions called by the main script are also reported. Details on
the methods and algorithms are directly provided within the codes in the comments.

1 %% The aim o f t h i s s c r i p t i s to prov ide a q u a n t i t a t i v e e s t imat ion o f
molFET

2 % capac i t ance s Cg , Cs , Cd and r e s i s t a n c e s Rg , Rs , Rd .
3

4 % PAY ATTENTION ! ! 1 1
5 % ! ! At the moment the only p o s s i b l e dev i c e s t r u c t u r e s are :
6 % 1) no gate : molecu lar wire : gx=0 and gz=0
7 % 2) a s i n g l e gate molFET : gx=1, gz=0
8 % ! ! At the pre sent t h i s code works only f o r vo l tage d i v i s i o n f a c t o r s
9 % eta =0.5 , thus i f Cs=Cd ( where Cs and Cd are assumed to be the average

10 % source and dra in capac i t ance s ) ! ! !
11

12 c l e a r a l l
13 c l o s e a l l
14 c l c
15

16 % welcome :
17 di sp ( 'Welcome in molFET parameters c a l c u l a t o r program ! ' ) ;
18

19 %% Load data :
20 % F i r s t l y the needed data are loaded , in order to do that the user should
21 % c o r r e c t l y s e t the f o l l o w i n g path :
22

23 % path o f the output_data f o l d e r you want to use (PLEASE SET IT CORRECTLY
! ) :

24 % ( IT SHOULD BE AN OUTPUT CHARACTERISTIC FOR FIXED Vgs i f the gate i s
present , i f a molecu lar wire i s cons ide r ed i t should be an I−V char )

25
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26 % Vc=0.6 eV
27 %output_data_folder = 'C: \ [ . . . ] \C60_dldr1d8_Vc0d6 ' ;
28

29 % Vc=0.625 eV
30 %output_data_folder = 'C: \ [ . . . ] \C60_dldr1d8_Vc0d625 ' ;
31

32 % Vc=0.65 eV
33 output_data_folder = 'C: \ [ . . . ] \C60_dldr1d8_Vc0d65 ' ;
34

35 %%%% NO MORE USER INPUTS %%%%
36

37 % I f no v a r i a t i o n s to output data s to rage are made the f o l l o w i n g paths
are

38 % automat i ca l l y found (DO NOT MODIFY! ) :
39

40 % " Hrho . mat " s t r u c t u r e path :
41 Hrho_path = s t r c a t ( output_data_folder , ' \Hrho . mat ' ) ;
42 % " dev i ce " f i l e path :
43 device_path = s t r c a t ( output_data_folder , ' \ dev i ce ' ) ;
44 % "TEV. mat " s t r u c t u r e path :
45 TEV_path = s t r c a t ( output_data_folder , ' \TEV. mat ' ) ;
46 % "HS. mat " s t r u c t u r e path :
47 HS_path = s t r c a t ( output_data_folder , ' \HS. mat ' ) ;
48 % " id " f i l e path :
49 id_path = s t r c a t ( output_data_folder , ' \ id ' ) ;
50

51 % c o r r e c t data import :
52 di sp ( ' Data are c o r r e c t l y imported from : ' ) ;
53 di sp ( output_data_folder ) ;
54 str ing_to_be_displayed = s p r i n t f ( '− − − − − − − − − − − − − − − −\n ' ) ;
55 di sp ( str ing_to_be_displayed ) ;
56

57 %% Check the dev i c e s t r u c t u r e : molecu lar wire or t r a n s i s t o r
58 [ gate ] = check_if_gate ( Hrho_path ) ;
59 % gate v a r i a b l e i s 1 i f a gate i s pre sent otherwi se ( molecu lar wire ) i t

i s 0
60 % Display i t :
61 i f gate == 0 % molecu lar wire :
62 str ing_to_be_displayed = s p r i n t f ( 'The dev i ce i s a molecu lar wire \n ' ) ;
63 di sp ( str ing_to_be_displayed ) ;
64 e l s e i f gate == 1 % molecu lar t r a n s i s t o r :
65 str ing_to_be_displayed = s p r i n t f ( 'The dev i ce i s a molecu lar

t r a n s i s t o r \n ' ) ;
66 di sp ( str ing_to_be_displayed ) ;
67 e l s e
68 str ing_to_be_displayed = s p r i n t f ( 'The dev i ce i s not r e cogn i z ed ! \ n ' ) ;
69 di sp ( str ing_to_be_displayed ) ;
70 end
71

72 %% Cg gate capac i tance ( assumed to be constant ) :
73

74 % by d e f a u l t in Huckel−IV 3 .0 the molecule i s supposed to be i n s i d e a box
75 % of dimensions 100x100xL ( angstrom ) L=length o f the molecule ,
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76 % so the width W of the gate i s W = box_length = 100 angstrom .
77 % Simulat ion domain dimension (DO NOT MODIFY! ) :
78 box_length = 100 ; % angstrom
79 % gate width in angstrom :
80 W = box_length ; % angstrom
81

82 % i f i t i s a molecu lar wire the gate capac i tance i s not evaluated , i f i t
i s

83 % a molFET with the gate i t i s eva luated :
84

85 i f gate == 1 % only i f a gate i s pre sent the gate capac i tance i s
est imated :

86

87 % The f o l l o w i n g func t i on performs the Cg c a l c u l a t i o n :
88 [ Cg ] = Cg_calculator ( Hrho_path , device_path , W) ;
89

90 % Display i t :
91 str ing_to_be_displayed = s p r i n t f ( 'The e l e c t r o s t a t i c gate capac i tance

r e s u l t e d to be : Cg = %g F ' , Cg) ;
92 di sp ( str ing_to_be_displayed ) ;
93

94 e l s e % otherwise , i f i t i s a wire , Cg i s not c a l c u l a t e d :
95 % Neverthe l e s s , the v a r i a b l e Cg i s anyway de f ined and s e t to zero ,
96 % s i n c e i t w i l l be u s e f u l l a t e r :
97 Cg=0;
98 end
99

100 %% Approximated es t imat i on o f Cs and Cd from p a r a l l e l p lane approximation
:

101

102 % d e t a i l s on the method are provided d i r e c t l y as comments i n s i d e the
103 % func t i on :
104

105 H = W; % contact he ight i s the same o f the width
106

107 [ Cs_approx , Cd_approx ] = Csd_calculatorAPPROX ( Hrho_path , device_path , W,
H) ;

108

109 str ing_to_be_displayed = s p r i n t f ( 'The approximated ( p a r a l l e l p l a t e s )
source and dra in capac i t ance s r e s u l t e d to be : Cs = Cd = %g F ' ,
Cs_approx ) ;

110 di sp ( str ing_to_be_displayed ) ;
111

112 %% Quantum capac i tance in func t i on o f app l i ed Vds ( f i x e d Vgs ) :
113

114 % The f o l l o w i n g func t i on ev a lu a t e s the quantum capac i tance Cq(Vds) in
115 % func t i on o f the app l i ed b i a s Vds , i t i s an approximate e x p r e s s i o n based
116 % on l i n e a r i z e d approximation o f Cd in the cons ide r ed b ia s window .

D e t a i l s
117 % on employed method are in Cq_calulator .m
118

119 [ Vg , Vds , Cq ] = Cq_calculator (TEV_path , Hrho_path ) ;
120
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121 Cq = Cq∗2 ; % SPIN DEGENERACY: DOS=DOS∗2 ! !
122

123 % Since Cq i s eva luated in each Vds b ia s point , the returned array Vds i s
124 % exac t l y the aap l i ed b ia s Vds array ( used in ouput char e s t imat ion ) .
125 % Also Vg i s exac t l y the same used f o r f i n d i n g the cur rent output char .
126

127 % Plot Cq(Vds) : two c a s e s are cons ide r ed in order to c o r r e c t l y s e t up
128 % the t i t l e and l egends :
129 % 1) molecu lar wire : ( gx=0, gz=0) :
130 i f gate == 0 % molecu lar wire , Vg does not e x i s t ( no gate i s pre sent ! ) :
131 f i g u r e
132 hold on
133 g r id on
134 p lo t (Vds , Cq , ' LineWidth ' , 2 . 0 ) ;
135 t i t l e _ s t r i n g = s p r i n t f ( ' Average l i n e a r i z e d quantum capac i tance in

func t i on o f Vds ' ) ;
136 t i t l e ( t i t l e _ s t r i n g ) ;
137 x l a b e l ( 'Vds (V) ' ) ;
138 y l a b e l ( ' Approximated Cq (F) ' ) ;
139 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
140 e l s e i f gate == 1 % molecu lar t r a n s i s t o r , Vg i s f i x e d to a g iven value

s i n c e output char are cons ide r ed :
141 f i g u r e
142 hold on
143 g r id on
144 p lo t (Vds , Cq , ' LineWidth ' , 2 . 0 ) ;
145 t i t l e _ s t r i n g = s p r i n t f ( ' Average l i n e a r i z e d quantum capac i tance in

func t i on o f Vds f o r Vgs = %g V ' , Vg) ;
146 t i t l e ( t i t l e _ s t r i n g ) ;
147 x l a b e l ( 'Vds (V) ' ) ;
148 y l a b e l ( ' Approximated Cq (F) ' ) ;
149 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
150 end
151

152 % Eui l ibr ium Cq(Vds=0) i s now ext rac t ed :
153 equi l ibr ium_index = f i n d ( Vds==0 ) ;
154 Cq_equi = Cq( equi l ibr ium_index ) ;
155

156 %% Ceq_0 equ iva l en t e l e c t r o s t a t i c capac i tance at equ i l i b r i um :
157

158 % Ceq_0 i s the eq u iva l en t e l e c t r o s t a t i c capac i tance o f molFET at
159 % thermodynamic equ i l i b r i um ( i . e . when contac t s and molecule Fermi energy
160 % l e v e l s are a l i gned ) . I t i s the sum of :
161 % > Cg ( IF PRESENT ! ! ) , a l r eady eva luated from MOm p h y s i c a l geometry ,

thus ind ipendent from Vgs
162 % > Cd_0, dra in capac i tance at equ i l i b r i um ( i . e . Vds=0 V) . Indeed i t i s

a
163 % non l i n e a r capac i tance dependent on the app l i ed b ia s .
164 % > Cs_0 , source capac i tance at equ i l i b r i um ( i . e . Vds=0 V) . Indeed i t i s

a
165 % non l i n e a r capac i tance dependent on the app l i ed b ia s .
166 % Notice that i f d l=dr then the e l e c t r o de−molecule coup l ing i s the same

f o r dra in
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167 % and source , thus the assumption Cd=Cs holds , and Ceq_0 = 2∗Cd_0 + Cg .
168 % ( IF THE GATE IS PRESENT, otherw i s e Cg does not e x i s t )
169

170

171 % The f o l l o w i n g func t i on performs the Ceq_0 c a l c u l a t i o n :
172 [ Ceq_0 ] = Ceq_0_calculator ( Hrho_path , Cq_equi ) ;
173

174

175 % Display i t :
176 str ing_to_be_displayed = s p r i n t f ( 'The eq u iva l en t e l e c t r o s t a t i c

capac i tance at equ i l i b r i um r e s u l t e d to be : Ceq_0 = %g F ' , Ceq_0) ;
177 di sp ( str ing_to_be_displayed ) ;
178

179 % equ i l i b r i um dra in capac i tance c a l c u l a t i o n ( the same holds f o r Cs_0) :
180 Cd_0 = (Ceq_0) /2 ;
181 % OR MAYBE: ( only IF the gate i s pre sent )
182 %Cd_0 = (Ceq_0 − Cg) /2 ;
183 % OR MAYBE: ( only IF the gate i s pre sent )
184 %Cd_0 = abs ( (Ceq_0 − Cg) /2 ) ;
185

186 Cs_0 = Cd_0 ; % true i f vo l t age d i v i s i o n f a c t o r eta i s 0 . 5 ( i . e . i f d l=dr
and same contact mate r i a l −and s u r f a c e o r i e n t a t i o n− i s used f o r S and
D)

187

188 % Display i t :
189 str ing_to_be_displayed = s p r i n t f ( 'The e l e c t r o s t a t i c dra in / source

capac i tance at equ i l i b r i um r e s u l t e d to be : Cd_0 = Cs_0 = %g F ' ,
Cd_0) ;

190 di sp ( str ing_to_be_displayed ) ;
191

192 %% Source and Drain Cs , Cd e l e t r o s t a t i c capac i t ance s in func t i on o f
app l i ed Vds ( f i x e d Vgs ) :

193

194 % The f o l l o w i n g func t i on ev a lu a t e s the source and dra in capac i t ance s
195 % Cs(Vds) and Cd(Vds) in func t i on o f the app l i ed b i a s Vds , suppos ing Vgs
196 % f i x e d ( IF a gate i s pre sent ) : thus the v a r i a t i o n s wrt Vgs are not

cons ide r ed and the channel
197 % p o t e n t i a l v a r i a t i o n s due to Vds v a r i a t i o n s are supposed to be g iven by

a
198 % c a p a c i t i v e d i v i d e r : Cd/( Ces+Cq) where Ces=Cs+Cd+Cg . ( IF Cg i s pre sent )
199

200 [ Vg_Csd , Vds_Csd , Cs , Cd ] = Csd_calculator ( Hrho_path , HS_path ,
device_path , id_path , Cd_0, Cs_0 , Cg , Cq) ;

201

202 % Since Cs and Cd are eva luated as d i f f e r e n t i a l capac i t ance s ( e x p l o i t i n g
a

203 % sequence o f smal l Vds v a r i a t i o n s ) they are eva luated in d i f f e r e n t Vds
204 % bia s po in t s : Vds_Cds i s d i f f e r e n t from Vds ! ! !
205 % In p a r t i c u l a r in Vds_Cds there are halfway va lue s o f Vds wrt to Vds

array
206 % ones ! ! Thus in p l o t t i n g Cd and Cs Vds_Csd should be used ! !
207

208 % Plot Cs and Cd : two ca s e s are cons ide r ed in order to c o r r e c t l y s e t up
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209 % the t i t l e and l egends :
210 % 1) molecu lar wire : ( gx=0, gz=0) :
211 i f gate == 0 % molecu lar wire , Vg does not e x i s t ( no gate i s pre sent ! ) :
212 f i g u r e
213 hold on
214 g r id on
215 p lo t (Vds_Csd , Cs , Vds_Csd , Cd, ' LineWidth ' , 2 . 0 ) ;
216 t i t l e _ s t r i n g = s p r i n t f ( ' Source and Drain capac i t ance s in func t i on o f

Vds ' ) ;
217 t i t l e ( t i t l e _ s t r i n g ) ;
218

219 ylim=get ( gca , ' ylim ' ) ;
220 xlim=get ( gca , ' xlim ' ) ;
221 t ex t ( xlim (1) +0.1 , yl im (2) −0.2e−19, ' s i n c e vo l tage d i v i s i o n f a c t o r i s

assumed to be 0 .5 they are equal ' ) ;
222

223 l egend ( 'Cs ' , 'Cd ' ) ;
224 x l a b e l ( 'Vds (V) ' ) ;
225 y l a b e l ( ' Approximated Cs and Cd (F) ' ) ;
226 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
227

228 e l s e i f gate == 1 % molecu lar t r a n s i s t o r , Vg i s f i x e d to a g iven value
s i n c e output char are cons ide r ed :

229

230 f i g u r e
231 hold on
232 g r id on
233 p lo t (Vds_Csd , Cs , Vds_Csd , Cd, ' LineWidth ' , 2 . 0 ) ;
234 t i t l e _ s t r i n g = s p r i n t f ( ' Source and Drain capac i t ance s in func t i on o f

Vds f o r Vgs = %g V ' , Vg_Csd) ;
235 t i t l e ( t i t l e _ s t r i n g ) ;
236

237 ylim=get ( gca , ' ylim ' ) ;
238 xlim=get ( gca , ' xlim ' ) ;
239 t ex t ( xlim (1) +0.1 , yl im (2) −0.2e−19, ' s i n c e vo l tage d i v i s i o n f a c t o r i s

assumed to be 0 .5 they are equal ' ) ;
240

241 l egend ( 'Cs ' , 'Cd ' ) ;
242 x l a b e l ( 'Vds (V) ' ) ;
243 y l a b e l ( ' Approximated Cs and Cd (F) ' ) ;
244 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
245 end
246

247 %% Gate r e s i s t a n c e Rg es t imat i on (ONLY IF THE GATE IS PRESENT ! ! ) :
248

249 i f gate == 1 % ONLY IF A GATE IS PRESENT Rg IS EVALUATED:
250

251 % d e t a i l s on the method are provided d i r e c t l y as comments i n s i d e the
252 % func t i on :
253

254 % choose the d i e l e c t r i c mate r i a l to be used as oxide l a y e r (uncomment
the

255 % d e s i r e d one ) :
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256 oxide= 'ZrO2 ' ;
257 %oxide ='SiO2 ' ;
258

259 % The f o l l o w i n g func t i on performs the Rg c a l c u l a t i o n :
260 [ Rg ] = Rg_calculator ( Hrho_path , device_path , W, oxide ) ;
261

262 % Display i t :
263 str ing_to_be_displayed = s p r i n t f ( 'The approximated gate r e s i s t a n c e

r e s u l t e d to be : Rg = %g ohm ' , Rg) ;
264 di sp ( str ing_to_be_displayed ) ;
265

266 end
267

268 %% Source and Drain Rs , Rd r e s i s t a n c e s in func t i on o f app l i ed Vds ( f i x e d
Vgs ) :

269

270 % The f o l l o w i n g func t i on ev a lu a t e s the source and dra in r e s i s t a n c e s
271 % Rs(Vds) and Rd(Vds) in func t i on o f the app l i ed b ia s Vds , suppos ing Vgs
272 % ( IF pre sent ) f i x e d .
273 % Further d e t a i l s on method are provided d i r e c t l y in the func t i on
274 % code . I t r e tu rn s a l s o the average coup l ing f a c t o r s tauS , tauD ( again in
275 % func t i on o f the app l i ed b i a s ) .
276

277 [ Vgs_fixed , Vds , Rs , Rd, tauS , tauD ] = Rsd_calculator ( Hrho_path , HS_path ,
TEV_path , Cq) ;

278

279 % Plot Rs(Vds ) and Rd(Vds) : two c a s e s are cons ide r ed in order to
c o r r e c t l y s e t up

280 % the t i t l e and l egends :
281 % 1) molecu lar wire : ( gx=0, gz=0) :
282 i f gate == 0 % molecu lar wire , Vg does not e x i s t ( no gate i s pre sent ! ) :
283 f i g u r e
284 hold on
285 g r id on
286 p lo t (Vds , Rs , Vds , Rd, ' LineWidth ' , 2 . 0 ) ;
287 t i t l e _ s t r i n g = s p r i n t f ( ' Source and Drain r e s i s t a n c e s in func t i on o f

Vds ' ) ;
288 t i t l e ( t i t l e _ s t r i n g ) ;
289 l egend ( 'Rs ' , 'Rd ' ) ;
290 x l a b e l ( 'Vds (V) ' ) ;
291 y l a b e l ( ' Approximated average Rs and Rd (\Omega) ' ) ;
292 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
293

294 f i g u r e
295 hold on
296 g r id on
297 p lo t (Vds , tauS , Vds , tauD , ' LineWidth ' , 2 . 0 ) ;
298 t i t l e _ s t r i n g = s p r i n t f ( ' Source and Drain coup l ing f a c t o r s in func t i on

o f Vds ' ) ;
299 t i t l e ( t i t l e _ s t r i n g ) ;
300 l egend ( ' tauS ' , ' tauD ' ) ;
301 x l a b e l ( 'Vds (V) ' ) ;
302 y l a b e l ( ' Approximated average tauS and tauS ( s ) ' ) ;
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303 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
304

305 e l s e i f gate == 1 % molecu lar t r a n s i s t o r , Vg i s f i x e d to a g iven value
s i n c e output char are cons ide r ed :

306

307 f i g u r e
308 hold on
309 g r id on
310 p lo t (Vds , Rs , Vds , Rd, ' LineWidth ' , 2 . 0 ) ;
311 t i t l e _ s t r i n g = s p r i n t f ( ' Source and Drain r e s i s t a n c e s in func t i on o f

Vds f o r Vgs = %g V ' , Vgs_fixed ) ;
312 t i t l e ( t i t l e _ s t r i n g ) ;
313 l egend ( 'Rs ' , 'Rd ' ) ;
314 x l a b e l ( 'Vds (V) ' ) ;
315 y l a b e l ( ' Approximated average Rs and Rd (\Omega) ' ) ;
316 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
317

318 f i g u r e
319 hold on
320 g r id on
321 p lo t (Vds , tauS , Vds , tauD , ' LineWidth ' , 2 . 0 ) ;
322 t i t l e _ s t r i n g = s p r i n t f ( ' Source and Drain coup l ing f a c t o r s in func t i on

o f Vds f o r Vgs = %g V ' , Vgs_fixed ) ;
323 t i t l e ( t i t l e _ s t r i n g ) ;
324 l egend ( ' tauS ' , ' tauD ' ) ;
325 x l a b e l ( 'Vds (V) ' ) ;
326 y l a b e l ( ' Approximated average tauS and tauS ( s ) ' ) ;
327 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
328

329 end
330

331 %% Average Cs , Cd, Rs , Rd, Cq , tauS , tauD , are now eva luated :
332 % the Cs , Cd, Rs , Rd, Cq , tauS , tauD are eva luated in func t i on o f the
333 % app l i ed b i a s Vds , now they are averaged over the cons ide r ed b i a s va lue s

:
334

335 Cq_AV = mean(Cq) ;
336 Cs_AV = mean(Cs ) ;
337 Cd_AV = mean(Cd) ;
338 Rs_AV = mean(Rs) ;
339 Rd_AV = mean(Rd) ;
340 tauS_AV = mean( tauS ) ;
341 tauD_AV = mean( tauD ) ;
342

343 % Display them :
344 str ing_to_be_displayed = s p r i n t f ( ' Averages va lue s : ' ) ;
345 di sp ( str ing_to_be_displayed ) ;
346 str ing_to_be_displayed = s p r i n t f ( 'The averaged ( over b i a s Vds ) Cq i s :

Cq_AV = %g F ' , Cq_AV) ;
347 di sp ( str ing_to_be_displayed ) ;
348 str ing_to_be_displayed = s p r i n t f ( 'The averaged ( over b i a s Vds ) Cs i s :

Cs_AV = %g F ' , Cs_AV) ;
349 di sp ( str ing_to_be_displayed ) ;
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350 str ing_to_be_displayed = s p r i n t f ( 'The averaged ( over b i a s Vds ) Cd i s :
Cd_AV = %g F ' , Cd_AV) ;

351 di sp ( str ing_to_be_displayed ) ;
352 str ing_to_be_displayed = s p r i n t f ( 'The averaged ( over b i a s Vds ) Rs i s :

Rs_AV = %g ohm ' , Rs_AV) ;
353 di sp ( str ing_to_be_displayed ) ;
354 str ing_to_be_displayed = s p r i n t f ( 'The averaged ( over b i a s Vds ) Rd i s :

Rd_AV = %g ohm ' , Rd_AV) ;
355 di sp ( str ing_to_be_displayed ) ;
356 str ing_to_be_displayed = s p r i n t f ( 'The averaged ( over b i a s Vds ) tauS i s :

tauS_AV = %g s ' , tauS_AV) ;
357 di sp ( str ing_to_be_displayed ) ;
358 str ing_to_be_displayed = s p r i n t f ( 'The averaged ( over b i a s Vds ) tauD i s :

tauD_AV = %g s ' , tauD_AV) ;
359 di sp ( str ing_to_be_displayed ) ;
360 str ing_to_be_displayed = s p r i n t f ( '− − − − − − − − − − − − − − − − − − − −

− − − − − − − − − \n ' ) ;
361 di sp ( str ing_to_be_displayed ) ;

G.2.1 Gate capacitance calculation

1 %% This func t i on c a l c u l a t e s the gate capac i tance Cg o f a molFET :
2

3 f unc t i on [ Cg ] = Cg_calculator ( Hrho_path , device_path , W) ;
4

5 % Input Data :
6 load ( Hrho_path ) ; % i t s t o r e s eox , tox , dl , dr
7 xyz=load ( device_path ) ; % i t s t o r e s the geometry o f the molecule
8

9 % in vacuo d i e l e c t r i c pe rmet t i v i ty :
10 eps0 = 8.8542 e−12; % F/m
11

12 % Findind the molecule l ength L :
13 Y=xyz ( : , 3 ) ;
14 Y1=min (Y)−dl ; Y2=max(Y)+dr ;
15 Y=[Y1 ;Y; Y2 ] ; % Y−a x i s i s the t ranspor t a x i s
16 L=Y( end ) − Y(1) ; % ( angstrom ) molecule t o t a l length ,
17 % L i n c l u d e s a l s o anchor ing groups and space from gold contac t s to
18 % anchor ing groups : i t i s the source to dra in t o t a l l ength ( from gold
19 % contact to gold contact ) . L i s in angstrom , but now i t i s converted in

m:
20 L = L∗1e−10; % m, in meters
21

22 % Findind the molecule width Wmol :
23 Z=xyz ( : , 4 ) ; % Z−a x i s i s the t r a n s v e r s e a x i s
24 Wmol= max(Z) − min (Z) ; % ( angstrom ) molecule t o t a l max width
25

26 % t o t a l gate width ( as eva luated in l a p l a c e s o l v e r f o r t r an 90 code ) :
27 Wtot = W + Wmol; % angstrom
28 % Wtot i s converted to m:
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29 Wtot = Wtot∗1e−10; %m, in meters
30

31 % tox i s known in angstrom , so i t i s converted to m:
32 tox = tox ∗1e−10; % m, in meters
33

34 % Gate e l e c t r o d e area in ( squared ) meters :
35 Area = Wtot∗L ; % m^2
36

37 % Gate capac i tance :
38 Cg = ( ( eox∗ eps0 ) / tox ) ∗Area ; % F, i t i s in fa rad
39

40 end

G.2.2 Source and drain electrostatic capacitance calculation, by
means of the parallel plate approximation

1 %% E l e c t r o s t a t i c c a p c i t a n c e s in p a r a l l e l p lane approx ( uniform E l e c t r i c
f i e l d and l i n e a r Utot channel p o t e n t i a l ) :

2

3 % This func t i on implements a s imple e s t imat ion o f the S and D
capac i t ance s

4 % based on the p a r a l l e l p l a t e c a p a c i t o r approximation , presented in Baldo
5 % page 84−85 eqs . 3 .13−3.14 . This approximation ho lds under the

hypotheses :
6 % 1) uniform e l e c t r i c f i e l d i n s i d e the whole channel ( i . e . contant
7 % e l e c t r i c f i e l d in each po int o f the molecule )
8 % and
9 % 2) the contact area much g r e a t e r than the d i s t a n c e between the p l a t e s .

10 % The second hypothes i s i s ( almost ) always t rue i f we assume that the
11 % contact l e a d s (13 gold atoms − added to dev i c e Hamiltonian ) are j u s t a
12 % smal l por t i on o f the e n t i r e contact that has same extens i on o f the
13 % simula t i on domain bos : i . e . 100x100xL angstrom (L=molecule l ength ) ,
14 % lead ing to a contact area o f 100 x100 angstrom . External parameters W,H
15 % are used to i n d i c a t e the S/D contact width and he igth r e s p e c t i v e l y
16 % ( d e f u a l t are 100 angstrom each ) . For coherence with the l a p l a c e s o l v e r
17 % ( f r o t ra n9 0 code ) t o t a l width and he ight Wtot and Htot are found by

adding
18 % molecule dimensions to W,H. The source c a p a c i t i v e e f f e c t i s then
19 % cons ide r ed to be the charge v a r i a t i o n in response to an app l i ed vo l tage
20 % of the f i r s t h a l f o f the molecule , whi l e the dra in one i s cons ide r ed to
21 % invo lve the second h a l f only , thus spac ing between c a p a c i t o r p l a t e s i s
22 % in both c a s e s s imply L/2 (L=molecule l ength ) , and Cs=Cd .
23 % F i n a l l y i t i s supposed to have vacuum d i e l e c t r i c contant i n s i d e the
24 % channel / molecule ( i . e . empty space or a i r between atoms o f the molecule

,
25 % that are ju neg l e c t ed in t h i s e s t imat i on whi le cons ide r ed as puntual
26 % charges −value depending on the atomic number− in the l a p l a c e s o l v e r

that
27 % est imate s the Poisson and image p o t e n t i a l ) .
28
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29 f unc t i on [ Cs , Cd ] = Csd_calculatorAPPROX ( Hrho_path , device_path , W, H) ;
30

31 % Input Data :
32 load ( Hrho_path ) ; % i t s t o r e s eox , tox , dl , dr
33 xyz=load ( device_path ) ; % i t s t o r e s the geometry o f the molecule
34

35 % in vacuo d i e l e c t r i c pe rmet t i v i ty :
36 eps0 = 8.8542 e−12; % F/m
37

38 % Finding the molecule l ength L :
39 Y=xyz ( : , 3 ) ;
40 Y1=min (Y)−dl ; Y2=max(Y)+dr ;
41 Y=[Y1 ;Y; Y2 ] ; % Y−a x i s i s the t ranspor t a x i s
42 L=Y( end ) − Y(1) ; % ( angstrom ) molecule t o t a l length ,
43 % L i n c l u d e s a l s o anchor ing groups and space from gold contac t s to
44 % anchor ing groups : i t i s the source to dra in t o t a l l ength ( from gold
45 % contact to gold contact ) . L i s in angstrom , but now i t i s converted in

m:
46 L = L∗1e−10; % m, in meters
47

48 % Now i t assumed that the Cs i n c l u d e s the c a p a c i t i v e e f f e c t s in the f i r s t
49 % h a l f o f the molecule (d=L/2 , d=d i s t a n c e between the c a p a c i t o r p l a t e s )

and
50 % Cd the second h a l f (d=L/2) :
51 d = L/2 ; % d i s t a n c e between the p l a t e s o f the capac i to r , m
52

53 % Finding the molecule width Wmol :
54 Z=xyz ( : , 4 ) ; % Z−a x i s i s the t r a n s v e r s e a x i s
55 Wmol= max(Z) − min (Z) ; % ( angstrom ) molecule t o t a l max width
56

57 % t o t a l S or D contact width ( as eva luated in l a p l a c e s o l v e r f o r t r a n 90
code ) :

58 Wtot = W + Wmol; % angstrom
59 % Wtot i s converted to m:
60 Wtot = Wtot∗1e−10; %m, in meters
61

62 % Findind the molecule he ight Hmol :
63 X=xyz ( : , 2 ) ; % X−a x i s i s the t r a n s v e r s e ( he ight ) a x i s
64 Hmol= max(Z) − min (Z) ; % ( angstrom ) molecule t o t a l max he ight
65

66 % t o t a l S or D contact he ight ( as eva luated in l a p l a c e s o l v e r f o r t r a n9 0
code ) :

67 Htot = H + Hmol ; % angstrom
68 % Htot i s converted to m:
69 Htot = Htot ∗1e−10; %m, in meters
70

71 % S/D e l e c t r o d e area in ( squared ) meters :
72 Area = Wtot∗Htot ; % m^2
73

74 % S/D capac i tance :
75 Cs = ( ( eps0 ) /d) ∗Area ; % F, i t i s in fa rad
76 Cd = Cs ;
77 end
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G.2.3 Quantum capacitance calculation

1 %% This func t i on c a l c u l a t e s the quantum capac i tance Cq o f a molFET :
2

3 % For each Vds value a quantum capac i tance value i s found , i t i s the
4 % average quantum capac i tance over the cons ide r ed b ia s window , under the
5 % hypothes i s o f having a vo l tage d i v i s i o n f a c t o r equal to 0 . 5 , i . e . equal
6 % source and dra in capac i tances , the returned data s t r u c t u r e Cq i s a

vec to r
7 % that s t o r e average Cq va lue s f o r each Vds value .
8

9 f unc t i on [ Vgs_fixed , Vds , Cq ] = Cq_calculator (TEV_path , Hrho_path ) ;
10

11 % e l e c t r o n charge :
12 q = 1.60217662 e−19; % e l e c t r o n charge , C
13

14 % Input Data :
15 load ( Hrho_path ) ; % i t s t o r e s Ef = equ i l i b r i um Fermi l e v e l
16 load (TEV_path) ; % i t s t o r e s the Vds b ia s and DOS(Vds)
17

18 % conver t ing the p o l a r i t y in order to get the app l i ed vo l tage ( vo l t age
p o l a r i t y convent ion ) :

19 Vds = − f l i p l r ( Vd_bias ) ; % V
20 Vgs_fixed = − Vg ; % V
21

22 % output data s t r u c t u r e a l l o c a t i o n :
23 Cq = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
24

25 % For each b ia s po int
26 f o r bias_point = 1 :NVd % they are cons ide r ed s e q u e n t i a l l y ( convent ion

o f p o t e n t i a l energy as in Vd_bias array ! ! )
27 % −> at the end Rs and Rd are f l i p p e d ! !
28

29 bias_window = Vd_bias ( bias_point ) ; % t h i s i s the b i a s window width in
eV

30 % The b ia s window i s assumed to be centered around equ i l i b r i um Fermi
31 % l e v e l o f contac t s Ef p lus Vc value , i . e . from Datta eq . 7 . 3 . 1 1 p

.174
32 % Cq = q^2∗DOS(E=Ef ) , where Ef=equ i l i b r i um Fermi l e v e l ,
33 % approximated with contact Fermi l e v e l : go ld (111) i s −9.5 eV
34

35 % Contact Fermi Leve l s f o r the cur rent b i a s po int :
36 muS = Ef + ( bias_window . / 2 ) ; % Source Fermi Level
37 muD = Ef − ( bias_window . / 2 ) ; % Drain Fermi Level
38

39 % Minimum between muS and muD:
40 min_bias_window = min (muS, muD) ;
41 % Maximum between muS and muD:
42 max_bias_window = max(muS, muD) ;
43

44 % Cq in t h i s b i a s po int i s then p r o p o r t i o n a l the average o f the DOS
in
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45 % the cons ide r ed b i a s window :
46 considered_E_indeces = f i n d ( min_bias_window <= E & E <=

max_bias_window ) ; % considered_E_indeces s t o r e s the indece s o f
i n t e r e s t

47 % The cons ide r ed DOS ( f o r the average ) in t h i s b i a s window i s :
48 considered_DOS = Dev( considered_E_indeces , b ias_point ) ;
49 % average DOS in the cons ide r ed range (mean i s a r i thmet i c mean) :
50 DOS_av = mean( considered_DOS ) ;
51 % l i n e a r i z e d average Cq ( eq . 7 . 3 . 1 1 p .174 Datta ) :
52 Cq( bias_point ) = q∗DOS_av;
53 % remark : q i s s imply used in above e x p r e s s i o n f o r Cq ( in s t ead o f q

^2)
54 % s i n c e the energy was in eV , thus in Datta p .174 in eq . 7 . 3 . 5 and
55 % 7 . 3 . 6 i t should be simply used q ( i f U i s in j o u l e then U/q i s in

eV)
56 % ins t ead o f q^2 and as consequence a l s o in eq . 7 . 3 . 1 1 i t should be
57 % used simply q .
58

59 end
60

61 % The c a l c u l a t e d Cq array corresponds a c t u a l l y to ( average ) Cq va lue s as
a

62 % func t i on o f the app l i ed p o t e n t i a l energy : Vd_bias was indeed used .
63 % Now i t i s f l i p p e d to make i t cor re spond ing to app l i ed vo l tage in s t ead :
64 % Vds array d e f i n e above ( vo l tage convent ion ) . Thus i t i s s imply f l i p p e d :
65

66 Cq = f l i p l r (Cq) ; % such that Cd(Vds) and not Cq( Vd_bias ) ! !
67

68 % Thus Cq can be p l o t t ed in func t i on o f the returned Vds vo l tage
69

70 end

G.2.4 Equilibrium total electrostatic capacitance calculation

1 %% This func t i on c a l c u l a t e s the equ iva l en t e l e c t r o s t a t i c capac i tance at
equ i l i b r i um of a molFET :

2

3 f unc t i on [ Ceq_0 ] = Ceq_0_calculator ( Hrho_path , Cq_0) ;
4

5 % Input Data :
6 load ( Hrho_path ) ; % i t s t o r e s Vc , Neq , Ne
7

8 q=1.6021773 e−19; % elementary charge [C]
9

10 % MolFET charg ing energy at equ i l i b r i um Uch_0 i s equal to Vc .
11 % Vc i s the d i f f e r e n c e between Fermi l e v e l o f the i s o l a t e d molecule
12 % ( geometry de s c r ibed in ' i s o l a t e d ' f i l e ) and Fermi l e v e l o f the

e l e c t r o d e .
13 % Notice i t i s expres sed in eV .
14 Uch_0 = Vc ; %[ eV ]
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15

16 % deltaN_0 i s the d i f f e r e n c e between the number o f e l e c t r o n s in the the
17 % molecule when the molecu lar junc t i on i s c r ea ted and no b ia s i s app l i ed

(Neq)
18 % and the number o f e l e c t r o n s in the i s o l a t e d molecule (Ne) .
19 deltaN_0 = Ne − Neq ;
20

21 % e l e c t r o s t a t i c equ iva l en t capac i tance at equ i l i b r i um
22 % ( eq . 3 .21 Baldo , with energy expres sed in eV thus simply q should be

used )
23 % Ceq_0 = q∗deltaN_0/Uch_0 ; % F, i t i s in fa rad
24

25 % t o t a l e l e c t r o s t a t i c capac i tance at equ i l i b r i um ( eq . 3 .10 page 84 Baldo )
:

26 Ceq_0_powerm1 = Uch_0/( q∗deltaN_0 ) − 1/Cq_0 ; % Cq_0 i s the ( equ i l i b r i um E
=Ef ) quantum capac i tance , Ceq_0_powerm1 i s the r e v e r s e o f Ceq_0

27 Ceq_0 = abs (Ceq_0_powerm1^−1) ; % F, This i s the equ i l i b r i um
e l e c t r o s t a t i c capac i tance

28

29 end

G.2.5 Source and drain capacitances calculation

1 %% This func t i on c a l c u l a t e s the source and dra in capac i t ance s Cs , Cd o f a
molFET :

2

3 % For each Vds value a Cs , Cd value i s found . Vgs ( IF pre sent ) i s
supposed f ixed , thus

4 % the v a r i a t i o n s wrt Vgs are not cons ide r ed and the channel p o t e n t i a l
5 % v a r i a t i o n s are supposed due to Vds v a r i a t i o n s only .
6 % A simple c a p a c i t i v e d i v i d e r ( i . e . Cd/( Ces+Cq) where Ces=Cs+Cd+Cg) i s
7 % cons ide r ed as p r o p o r t i o n a l i t y f a c t o r between v a r i a t i o n s in the channel
8 % p o t e n t i a l wrt Vds v a r i a t i o n s .
9

10 f unc t i on [ Vgs_fixed , Vds_Csd , Cs , Cd ] = Csd_calculator ( Hrho_path , HS_path
, device_path , id_path , Cd_0, Cs_0 , Cg , Cq) ;

11

12 % e l e c t r o n charge :
13 q = 1.60217662 e−19; % e l e c t r o n charge , C
14

15 % Input Data are loaded :
16 load ( Hrho_path ) ;
17 load (HS_path) ;
18 xyz=load ( device_path ) ; % i t s t o r e s the geometry o f the molecule
19 id=load ( id_path ) ; % load " id " f i l e ( atom indece s )
20

21 Nd=s i z e ( id , 2 ) ; % number o f atoms in the molecule
22

23 % transpor t y−a x i s i s r ecovered from xyz geom f i l e :
24 Y=xyz ( : , 3 ) ; % molecule y−a x i s s e l e c t i o n
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25 Y1=min (Y)−dl ; Y2=max(Y)+dr ;
26 Y=[Y1 ;Y; Y2 ] ; % Y s t o r e s the f u l l y−a x i s from gold S contact to D gold

contact ( i t i n c l u d e s the d i s t a n c e s between gold and s u l f u r atoms )
27

28 % conver t ing the p o l a r i t y in order to get the app l i ed vo l tage ( vo l t age
p o l a r i t y convent ion ) :

29 Vds = − f l i p l r ( Vd_bias ) ; % V
30 Vgs_fixed = − Vg ; % V
31

32 % Average channel p o t e n t i a l data s t r u c t u r e a l l o c a t i o n :
33 Utot_av = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
34

35 % output data s t r u c t u r e s a l l o c a t i o n :
36 Cs = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
37 Cd = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
38 Vds_Csd = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
39

40 % Fir s t , f o r each b ia s point , the t o t a l channel p o t e n t i a l i s r ecovered :
41 % I t i s found in func t i on o f Y and then i t i s s imply averaged over the
42 % whole molecule l ength in order to f i n d the channel average p o t e n t i a l
43 % energy . This i s performed with the f i r s t " f o r " loop .
44

45 % Second , t h i s average value i s then used in eva lua t ing the source and
46 % drain average capac i t ance s in that g iven b ia s po int . Anyway t h i s i s
47 % performed s t a r t i n g from equ i l i b r i um Vds=0 and proceed ing c o n s i d e r i n g
48 % s e q u e n t i a l b i a s po int in order to ensure smal l v a r i a t i o n s wrt prev ious
49 % bia s po int and thus l i n e a r i z e d s s model i s used . This i s performed with
50 % the second " f o r " loop .
51

52 f o r bias_point = 1 :NVd % F i r s t loop on −q∗Vds p o t e n t i a l s
53

54 % The t o t a l channel p o t e n t i a l energy i s r ecovered f o r the cons ide r ed
55 % bia s po int in func t i on o f Y:
56 U=diag (HM( : , : , b ias_point )−Hd) ; % Hamiltonian p o t e n t i a l energy f o r the

cons ide r ed Vds b ia s po int
57 j =1;
58 f o r i =1:Nd
59 Utot ( i )=U( j ) ;
60 i f id ( i )==0
61 j=j +1;
62 end
63 i f id ( i )==1
64 j=j +4;
65 end
66 i f id ( i )==2
67 j=j +9;
68 end
69 end
70 V = Vd_bias ( bias_point ) ; % t h i s i s the p o t e n t i a l energy −q∗Vds

a s s o c i a t e d to the cons ide r ed Vds
71 %Utot =[−0.5∗V Utot 0 .5∗V ] ; % t o t a l channel p o t e n t i a l energy in

func t i on o f Y
72 Utot_av ( bias_point ) = mean( Utot ) ; % ar i thmet i c mean i s performed
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73

74 end
75

76 % Since the Utot_av eva lua t i on i s performed by us ing p o t e n t i a l energy
77 % convent ion f o r s igns , then i t should be f l i p p e d to get i t s e lements in
78 % the c o r r e c t order , a c co rd ing ly with Vds array :
79 Utot_av = f l i p l r ( Utot_av ) ; % i t i s s t i l l a p o t e n t i a l energy ( s i gn +

in s t ead o f −)
80

81 % The index f o r which Vds=0 ( equ i l i b r i um ) i s found and used in
c a l c u l a t i n g

82 % the channel p o t e n t i a l over app l i ed p o t e n t i a l r a t i o :
83 equi_index = f i n d (Vds==0) ;
84 % Since Vds array was a l r eady ordered and adjusted in s i gn to perform the
85 % p o t e n t i a l energy to e l e c t r o s t a t i c p o t e n t i a l convert ion , i t s t o r e s

negat ive Vds
86 % values ( l e s s e r that Vds=0) in i t s l e f t part , and p o s i t i v e Vds va lue s (

g r e a t e r
87 % than Vds=0) in i t s r i g h t part .
88

89 % Limit c a s e s : a . equi_index=1 −> Vds>0 only
90 % b . equi_index=NVd −> Vds<0 only
91

92 % Set−up Vds=0 in to Vds_Csd array at r i g h t index p o s i t i o n :
93 Vds_Csd( equi_index ) = 0 ; % V
94 % Set−up equ i l i b r i um va lues in to Cs and Cd arrays at r i g h t index p o s i t i o n

:
95 Cs( equi_index ) = Cd_0 ; % F
96 Cd( equi_index ) = Cs_0 ; % F
97

98 % Second loop on Vds e l e c t r o s t a t i c p o t e n t i a l s : i t i s s p l i t e t d in to two
loops ,

99 % one on p o s i t i v e and one on negat ive Vds :
100

101 % P o s i t i v e vo l tage va lue s :
102 i f equi_index ~= NVd % i t i s exectued only i f the re are p o s i t i v e Vds

va lue s :
103 f o r bias_point = equi_index : 1 : ( NVd−1)
104 delta_Uch = abs ( Utot_av ( bias_point +1) − Utot_av ( bias_point ) ) ; %

in eV , i t can be cons ide r ed d iv ided by −q thus in v o l t s
105 delta_Vds = abs (Vds( bias_point +1) − Vds( bias_point ) ) ; % in V
106 cap_rat io = delta_Uch/delta_Vds ; % t h i s r a t i o equa l s the

c a p a c i t i v e d i v i d e r : Cd/( Ces+Cq) where Ces=Cs+Cd+Cg
107 % I t i s assumed a vo l tage d i v i s i o n f a c t o r eta =0.5 such that
108 % Cs=Cd
109 % An average quantum capac i tance Cq value ( between the two b ia s
110 % po int s ) i s used f o r the c a l c u l a t i o n :
111 Cq_av = abs (Cq( bias_point +1) − Cq( bias_point ) ) /2 ; % average Cq in

F
112 Cd( bias_point +1) = ( (Cg+Cq_av) ∗ cap_rat io ) /(1−2∗ cap_rat io ) ; % Cd

f o r the cur rent bias_point , in F s i n c e Cg and Cq are in F
113 Cs( bias_point +1) = Cd( bias_point +1) ; % Cs f o r the cur rent

bias_point , in F s i n c e Cg and Cq are in F
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114

115 % F i n a l l y Vds_Csd i s c o r r e c t l y updated us ing halway va lue s o f Vds
array :

116 Vds_Csd( bias_point +1) = (Vds( bias_point ) + Vds( bias_point +1) ) /2 ;
117 end
118 end
119

120 % Negative vo l tage va lue s :
121 i f equi_index ~= 1 % i t i s exectued only i f the re are negat ive Vds va lue s

:
122 f o r bias_point = equi_index :−1:(1+1)
123 delta_Uch = abs ( Utot_av ( bias_point −1) − Utot_av ( bias_point ) ) ; %

in eV , i t can be cons ide r ed d iv ided by −q thus in v o l t s
124 delta_Vds = abs (Vds( bias_point −1) − Vds( bias_point ) ) ; % in V
125 cap_rat io = delta_Uch/delta_Vds ; % t h i s r a t i o equa l s the

c a p a c i t i v e d i v i d e r : Cd/( Ces+Cq) where Ces=Cs+Cd+Cg
126 % I t i s assumed a vo l tage d i v i s i o n f a c t o r eta =0.5 such that
127 % Cs=Cd
128 % An average quantum capac i tance Cq value ( between the two b ia s
129 % po int s ) i s used f o r the c a l c u l a t i o n :
130 Cq_av = abs (Cq( bias_point −1) − Cq( bias_point ) ) /2 ; % average Cq in

F
131 Cd( bias_point −1) = ( (Cg+Cq_av) ∗ cap_rat io ) /(1−2∗ cap_rat io ) ; % Cd

f o r the cur rent bias_point , in F s i n c e Cg and Cq are in F
132 Cs( bias_point −1) = Cd( bias_point −1) ; % Cs f o r the cur rent

bias_point , in F s i n c e Cg and Cq are in F
133

134 % F i n a l l y Vds_Csd i s c o r r e c t l y updated us ing halway va lue s o f Vds
array :

135 Vds_Csd( bias_point −1) = (Vds( bias_point ) + Vds( bias_point −1) ) /2 ;
136 end
137 end
138 end

G.2.6 Gate resistance calculation

1 %% This func t i on e s t imate s the gate r e s i s t a n c e Rg o f a molFET :
2

3 % This func t i on e s t imate s the Rg value o f the Metal−Oxide−Molecule (MOM)
4 % simply eva lua t ing the e l e c t r i c a l r e s i s t a n c e o f the d i e l e c t r i c l a y e r
5 % mater i a l as R=(rho ∗L) /(W∗H) , where rho i s the r e s i s t i v i t y o f the
6 % d i e l e c t r i c mate r i a l chosen as oxide .
7

8

9 f unc t i on [ Rg ] = Rg_calculator ( Hrho_path , device_path , W, oxide ) ;
10

11 % Input Data :
12 load ( Hrho_path ) ; % i t s t o r e s tox , eox
13 xyz=load ( device_path ) ; % i t s t o r e s the geometry o f the molecule
14
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15 i f ( ox ide== 'ZrO2 ' )
16 % ZrO2 r e s i s t i v i t y min , max , avarege va lue s expres sed in Ohm∗m
17 rho_ZrO2_min = 3.16 e3 ;
18 rho_ZrO2_max = 3.16 e10 ;
19 rho_ZrO2_av = (rho_ZrO2_min + rho_ZrO2_max) /2 ;
20 e l s e i f ( ox ide== ' SiO2 ' )
21 % SiO2 r e s i s t i v i t y min , max , avarege va lue s expres sed in Ohm∗m
22 rho_SiO2_min = 1 e15 ;
23 rho_SiO2_max = 1 e19 ;
24 rho_SiO2_av = ( rho_SiO2_min + rho_SiO2_max) /2 ;
25 end
26

27 % Findind the molecule l ength L which corresponds to the width o f the
oxide

28 % cross−s e c t i o n :
29 Y=xyz ( : , 3 ) ;
30 Y1=min (Y)−dl ; Y2=max(Y)+dr ;
31 Y=[Y1 ;Y; Y2 ] ; % Y−a x i s i s the t ranspor t a x i s
32 Lmol= Y( end ) − Y(1) ; % ( angstrom ) molecule t o t a l length ,
33 % L i n c l u d e s a l s o anchor ing groups and space from gold contac t s to
34 % anchor ing groups : i t i s the source to dra in t o t a l l ength ( from gold
35 % contact to gold contact ) . L i s in angstrom , but now i t i s converted in

m:
36 W_oxide = Lmol∗1e−10; % m, in meters
37

38 % Findind the molecule width Wmol which correspond to the he ight o f the
oxide

39 % cross−s e c t i o n :
40 Z=xyz ( : , 4 ) ; % Z−a x i s i s the t r a n s v e r s e a x i s
41 Wmol= max(Z) − min (Z) ; % ( angstrom ) molecule t o t a l max width
42 % t o t a l d i e l e c t r i c l a y e r width ( as eva luated in l a p l a c e s o l v e r f o r t r a n9 0

code ) :
43 Wtot = Wmol + W; % angstrom
44 % Wtot i s converted to m:
45 H_oxide = Wtot∗1e−10; %m, in meters
46

47

48 % d i e l e c t r i c l a y e r area in ( squared ) meters :
49 Area = H_oxide∗W_oxide ; % m^2
50

51 % d i e l e c t r i c mate r i a l l ength i s the oxide t h i c k n e s s s i n c e i t extends
52 % along the d i r e c t i o n through which the current , a lthough very small ,
53 % should f low
54 L_oxide = tox ∗1e−10; %m, in meters
55

56 % Rg approximated es t imat ion :
57 Rg = (rho_ZrO2_min∗L_oxide ) /Area ; % Ohm
58 end
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G.2.7 Source and drain “dynamic” resistances calculation

1 %% Source and Drain a c c e s s r e s i s t a n c e s eva lua t i on :
2

3 % This func t i on eva lua t e s the average Rs(Vds) and Rd(Vds) va lue s f o r each
4 % cons ide r ed Vds b ia s po int . Small v a r i a t i o n s from equ i l i b r i um Vds=0 to
5 % f i r s t b i a s po int ( and so on f o r a l l the sequence o f Vds value ) are
6 % cons idered , thus a l i n e a r i z e d approximate model ( Baldo page 99) i s used

.
7 % Moreover the e s t imat i on i s performed n e g l e c t i n g complete ly the
8 % temperature e f f e c t s , and thus the thermal broadening and Fermi−Dirac
9 % funct i ons , as exp la ined in Baldo p . 9 9 .

10 % The f i r s t performed task i s the e s t imat ion o f average coup l ing f a c t o r s .
11 % For each b ia s po int an average coup l ing f a c t o r tau i s cons ide r ed f o r

both
12 % source and dra in contac t s . This tau_av value i s the average o f coup l ing
13 % f a c t o r s f o r the energy va lue s i n s i d e the cons ide r ed b ia s window Vds ( i .

e .
14 % with e n e r g i e s between ( Ef_equi l ibr ium − muS) and ( Ef_equi l ibr ium + muD)
15 % supposing a vo l tage d i v i s i o n f a c t o r eta =0.5) .
16

17 f unc t i on [ Vgs_fixed , Vds , Rs , Rd, tauS_avVds , tauD_avVds ] =
Rsd_calculator ( Hrho_path , HS_path , TEV_path , Cq) ;

18

19 % e l e c t r o n charge :
20 q = 1.60217662 e−19; % e l e c t r o n charge , C
21

22 % Input Data :
23 load ( Hrho_path ) ; % i t s t o r e s Ef ( equ i l i b r i um Fermi l e v e l o f molecule−

contac t s system ) and the energy array E
24 % and the Vds b ia s array Vd_bias
25 load (HS_path) ; % i t s t o r e s the matr i ce s taoHl , taoHr used to eva luate the

t o t a l coup l ing matr i ce s tauS , tauR
26 % and the over lap matrix o f dev i c e Sd and contact l e a d s Sl

, Sr
27 load (TEV_path) ; % i t s t o r e s the energy va lue s array E
28

29 % conver t ing the p o l a r i t y in order to get the app l i ed vo l tage ( vo l t age
p o l a r i t y convent ion ) :

30 Vds = − f l i p l r ( Vd_bias ) ; % V
31 Vgs_fixed = − Vg ; % V
32

33 % output data s t r u c t u r e s a l l o c a t i o n :
34 tauS_avVds = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
35 tauD_avVds = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
36 Rs = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
37 Rd = z e r o s (1 , NVd) ; % NVd i s the number o f Vds b ia s po in t s
38

39 % For each b ia s po int
40 f o r bias_point = 1 :NVd % they are cons ide r ed s e q u e n t i a l l y ( convent ion o f

p o t e n t i a l energy as in Vd_bias array ! ! )
41 % −> at the end Rs and Rd are f l i p p e d ! !
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42

43 bias_window = Vd_bias ( bias_point ) ; % t h i s i s the b i a s window width in
eV

44 % The b ia s window i s assumed to be centered around equ i l i b r i um Fermi
45 % l e v e l o f contac t s Ef p lus Vc value , i . e . from Datta eq . 7 . 3 . 1 1 p

.174
46 % Cq = q^2∗DOS(E=Ef ) , where Ef=equ i l i b r i um Fermi l e v e l ,
47 % approximated with contact Fermi l e v e l : go ld (111) i s −9.5 eV
48

49 % Contact Fermi Leve l s f o r the cur rent b i a s po int :
50 muS = Ef + ( bias_window . / 2 ) ; % Source Fermi Level
51 muD = Ef − ( bias_window . / 2 ) ; % Drain Fermi Level
52

53 % Minimum and Maximum energy value to be cons ide r ed in t h i s b i a s
po int :

54 Emin = min (muS, muD) ;
55 Emax = max(muS, muD) ;
56

57 % the cons ide r ed b i a s window :
58 considered_E_indeces = f i n d ( Emin <= E & E <= Emax) ; %

considered_E_indeces s t o r e s the indece s o f i n t e r e s t
59

60 % a l l o c a t i o n o f temporary v a r i a b l e s :
61 tauS_avE = z e r o s (1 , l ength ( considered_E_indeces ) ) ; % length (

considered_E_indeces ) i s the number o f cons ide r ed energy po in t s in
t h i s b i a s window

62 tauD_avE = z e r o s (1 , l ength ( considered_E_indeces ) ) ; % length (
considered_E_indeces ) i s the number o f cons ide r ed energy po in t s in
t h i s b i a s window

63

64 f o r energy_point = 1 : l ength ( considered_E_indeces )
65

66 energy_index = considered_E_indeces ( energy_point ) ; % cur rent
index to be used in energy array E

67 energy_value = E( energy_index ) ; % cur rent va lue o f energy
68

69 tauS=(energy_value ∗ Sl )−taoHl ;
70 tauD=(energy_value ∗Sr )−taoHr ;
71

72 % tauS , tauD are the source and dra in coup l ing matr i ce s f o r the
73 % cons ide r ed energy value . They are expres sed in func t i on o f
74 % contact l e a d s over lapp ing matr i ce s Sl , Sr .
75 % taoS , taoD are matr i ce s o f dimension 27xdim where 27 i s the
76 % number o f b a s i s f u n c t i o n s ( i . e . e i g e n v a l u e s / e i g e n s t a t e s )
77 % cons ide r ed f o r the gold FCC (111) 13 atoms contact leads , whi l e
78 % dim i s the number o f b a s i s f u c t i o n s ( i . e . e i g e n v a l u e s /

e i g e n s t a t e s )
79 % cons ide r ed f o r the dev i c e . The dev i ce Hamiltonian e . g . i s o f
80 % dimensione dimxdim whi le the contact l ead Hamiltonian i s o f
81 % dimensione 27x27 . The two coup l ing matr i ce s tau are o f course

o f
82 % dimension 27xdim . For d e s c r i b i n g the contact l e a d s ths are used
83 % 27 energy l e v e l s ( energy e i g e n v a l u e s and thus 27 e i g e n s t a t e s )
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84 % combined toge the r f o l l o w i n g the EHT method . Analogously the
85 % dev i ce employs dim energy l e v e l s ( energy e i g e n v a l u e s and thus
86 % dim e i g e n s t a t e s ) .
87 % For each couple o f contact l ead − molecule / dev i c e s t a t e s the re

i s
88 % a s c a l a r va lue o f tau , thus in t o t a l the re are 27xdim numbers ,
89 % stored with in a molecule .
90

91 % In the f o l l o w i n g the average o f ALL these 27xdim d i f f e r e n t tau
i s

92 % cons idered , i t i s the average tauS_avE or tauD_avE ( f o r the
cur rent energy po int ) :

93 tauS_avE ( energy_point ) = mean( tauS , ' a l l ' ) ;
94 tauD_avE( energy_point ) = mean( tauD , ' a l l ' ) ;
95 end
96

97 % At t h i s po int a f u r t h e r average i s cons ide r ed :
98 % The average tauS_avVds and tauD_avVds f o r the cur rent b i a s po int

are
99 % then eva luated ( they are the average o f a l l tauS_avE and tauD_avE

100 % elements r e s p e c t i v e l y ) :
101 tauS_avVds ( bias_point ) = mean( tauS_avE ) ; % averag ing wrt to energy

va lue s ( i n s i d e the cur rent b i a s window )
102 tauD_avVds ( bias_point ) = mean(tauD_avE) ; % averag ing wrt to energy

va lue s ( i n s i d e the cur rent b i a s window )
103

104 end
105

106 % The c a l c u l a t e d tauS_avVds and tauD_avVds ar rays correspond a c t u a l l y to
107 % ( average ) coup l ing f a c t o r s in func t i on o f the app l i ed p o t e n t i a l energy :
108 % Vd_bias was indeed used .
109 % Now they are f l i p p e d to make them correspond ing to app l i ed vo l tage

in s t ead :
110 % Vds array d e f i n e above ( vo l tage convent ion ) . Thus they are simply

f l i p p e d :
111

112 tauS_avVds = f l i p l r ( tauS_avVds ) ; % such that Cd(Vds) and not Cq( Vd_bias )
! !

113 tauD_avVds = f l i p l r ( tauD_avVds ) ;
114

115 %% Up to now tauS_avVds , tauD_avVds are coup l ing f a c t o r s expres sed in eV ,
i . e . they are e n e r g i e s

116 % indeed they are part o f the t o t a l dev i re−r e s e r v o i r Hamiltonian . Now
they

117 % are converted in coup l ing t imes ( e scap ing r a t e s ) :
118 h_bar = 6.58211928 e−16; % eV∗ s , reduced Plank ' s constant
119

120 tauS_avVds = h_bar . / abs ( tauS_avVds ) ; % s , abso lu t e va lue because o f the
p h y s i c a l meaning o f time i n t e r v a l

121 tauD_avVds = h_bar . / abs ( tauD_avVds ) ; % s , abso lu t e va lue because o f the
p h y s i c a l meaning o f time i n t e r v a l

122

123 % F i n a l l y the Rs(Vds) and Rd(Vds) va lue s f o r the a l l the cons ide r ed b ia s
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124 % point are eva luated ( Baldo p . 9 9 ) :
125 Rs = tauS_avVds . / Cq ; % element−wise d i v i s i o n i s performed
126 Rd = tauD_avVds . / Cq ;
127

128 end

G.3 Sensor time constant and response time estima-
tion

G.3.1 MatLab code for the time constant estimation

1 %% This s c r i p t e s t imate s the time constant ( s tep response ) o f a molecu lar
dev i c e :

2

3 c l e a r a l l
4 c l o s e a l l
5 c l c
6

7 % Once the s i m u l a t i o n s on Cadence Virtuoso are conluded , p l e a s e export
data

8 % in . csv format f i l e ( s i n c e " . matlab " format i s not r ecogn i z ed here ) .
Then

9 % f o l l o w the i n s t r u c t i o n s provided in the command window . . . =)
10

11 DataTable = readtab l e ( 'DATA_Vd_Vs_Ids_simTrans_AV3curves . csv ' ) ;
12 %DataTable = readtab l e ( 'Vd_Vs_Ids_DATA_Vc0d65 . csv ' ) ;
13

14

15 %%%% NO MORE USER' s INPUTS %%%%
16

17 DataNames = DataTable . P r o p e r t i e s . VariableNames ;
18 Data = tab l e2a r ray ( DataTable ) ;
19 DataSize = s i z e ( Data ) ;
20

21 %% Plot data and cho i c e o f curve :
22

23 str ing_to_be_displayed = s p r i n t f ( ' \ nPlots are generated automat i ca l l y . \ n '
) ;

24 di sp ( str ing_to_be_displayed ) ;
25

26 f o r index =1:2: DataSize (2 )
27 f i g u r e
28 hold on
29 g r id on
30 p lo t ( Data ( : , index ) , Data ( : , index +1) , ' LineWidth ' , 2 . 0 ) ;
31 VariableName = char ( DataNames ( index ) ) ;
32 VariableName = VariableName ( 1 : end−1) ;
33 t i t l e _ s t r i n g = s p r i n t f ( ' Imported data : %s ' , VariableName ) ;
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34

35 %XaxisStr ing = s t r i n g ( DataNames ( index ) ) ;
36 %YaxisStr ing = s t r i n g ( DataNames ( index +1) ) ;
37 %t i t l e _ s t r i n g = s p r i n t f ( ' Imported data : %s vs %s ' , XaxisStr ing ,

Yax i sStr ing ) ;
38

39 t i t l e ( t i t l e _ s t r i n g ) ;
40 x l a b e l ( ' time ( s ) ' ) ;
41 y l a b e l ( ' Voltages (V) or Currents (A) ' ) ;
42 s e t ( gca , ' LineWidth ' , 2 . 0 , ' FontSize ' , 1 5 . 0 ) ;
43

44 str ing_to_be_displayed = s p r i n t f ( ' Press "%g " to proceed in time constant
e s t imat ion f o r the "%s " quant i ty . ' , index , VariableName ) ;

45 di sp ( str ing_to_be_displayed ) ;
46 end
47

48 %%%%%%% INPUT INDEX AND PROCEED WITH TIME CONSTANT ESTIMATION:
49

50 index = input ( '>> ' ) ;
51

52 i f ( index > DataSize (2 ) ) % wrong value
53 str ing_to_be_displayed = s p r i n t f ( ' Value "%g " i s NOT al lowed . Please

r e s t a r t . \ n ' , index ) ;
54 di sp ( str ing_to_be_displayed ) ;
55

56 e l s e i f ( rem ( index , 2) == 0) % wrong value , s i n c e introduced index i s even
57 str ing_to_be_displayed = s p r i n t f ( ' Value "%g " i s NOT al lowed . Please

r e s t a r t . \ n ' , index ) ;
58 di sp ( str ing_to_be_displayed ) ;
59

60 e l s e i f ( rem ( index , 2) == 1)
61 VariableName = char ( DataNames ( index ) ) ;
62 VariableName = VariableName ( 1 : end−1) ;
63 str ing_to_be_displayed = s p r i n t f ( 'You have chosen : %s ' , VariableName )

;
64 di sp ( str ing_to_be_displayed ) ;
65 str ing_to_be_displayed = s p r i n t f ( 'Time constant i s now found by means

o f a l i n e a r i n t e r p o l a t i o n . ' ) ;
66 di sp ( str ing_to_be_displayed ) ;
67 str ing_to_be_displayed = s p r i n t f ( 'Now a s u i t a b l e time i n t e r v a l , f o r

exponent i a l t r a n s i e n t l i n e a r i n t e r p o l a t i o n , should be s e l e c t e d . ' ) ;
68 di sp ( str ing_to_be_displayed ) ;
69 str ing_to_be_displayed = s p r i n t f ( ' Please i n s e r t an i n i t i a l time

i n s t a n t f o r i n t e r p o l a t i o n o f t r a n s i e n t : ' ) ;
70 di sp ( str ing_to_be_displayed ) ;
71 In i t i a lT imeTrans = input ( '>> ' ) ;
72 str ing_to_be_displayed = s p r i n t f ( 'Now i n s e r t a f i n a l time i n s t a n t f o r

i n t e r p o l a t i o n o f t r a n s i e n t : ' ) ;
73 di sp ( str ing_to_be_displayed ) ;
74 FinalTimeTrans = input ( '>> ' ) ;
75 str ing_to_be_displayed = s p r i n t f ( 'Now i n s e r t an i n i t i a l time i n s t a n t

f o r i n t e r p o l a t i o n o f regime steady s t a t e r eg i on : ' ) ;
76 di sp ( str ing_to_be_displayed ) ;
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77 In i t i a lT imeSS = input ( '>> ' ) ;
78 str ing_to_be_displayed = s p r i n t f ( 'Now i n s e r t a f i n a l time i n s t a n t f o r

i n t e r p o l a t i o n o f regime steady s t a t e r eg i on : ' ) ;
79 di sp ( str ing_to_be_displayed ) ;
80 FinalTimeSS = input ( '>> ' ) ;
81

82 i f ( FinalTimeTrans < In i t ia lT imeTrans | FinalTimeSS < In i t i a lT imeSS )
% e r r o r

83 str ing_to_be_displayed = s p r i n t f ( ' Input e r r o r : Usual ly a f i n a l time
i n s t a n t should be g r e a t e r than an i n i t i a l one . =) ' ) ;

84 di sp ( str ing_to_be_displayed ) ;
85 e l s e i f ( In i t i a lT imeSS < FinalTimeTrans ) % e r r o r
86 str ing_to_be_displayed = s p r i n t f ( ' Input e r r o r : Usual ly the steady

s t a t e i s ach ieved a f t e r a t r a n s i e n t . =) ' ) ;
87 di sp ( str ing_to_be_displayed ) ;
88 e l s e
89 NewTimeAxis = l i n s p a c e ( Data (1 , index ) , Data ( end , index ) , 10000) ;
90 t imeindex = f i n d ( In i t ia lT imeTrans < Data ( : , index ) & Data ( : , index

) < FinalTimeTrans ) ;
91 % f i r s t order polynomial f i t ( l e a s t−squares i s used ) f o r

exponent i a l t r a n s i e n t :
92 Pexp = p o l y f i t ( Data ( timeindex , index ) , Data ( timeindex , index +1) , 1)

;
93 % Evaluate the f i t t e d polynomial Pexp in the whole time i n t e r v a l :
94 St ra i gh tL ine = po lyva l ( Pexp , NewTimeAxis ) ;
95

96 SSindex = f i n d ( In i t i a lT imeSS < Data ( : , index ) & Data ( : , index ) <
FinalTimeSS ) ;

97 % f i r s t order polynomial f i t ( l e a s t−squares i s used ) f o r SS=
steady s t a t e :

98 Pss = p o l y f i t ( Data ( SSindex , index ) , Data ( SSindex , index +1) , 1) ;
99 % Evaluate the f i t t e d polynomial Pss in the whole time i n t e r v a l :

100 Stra ightLineSS = po lyva l ( Pss , NewTimeAxis ) ;
101

102 %f i n d the i n t e r s e c t i o n po int ( i . e . time constant ) between the
s t r a i g h t l i n e s :

103 e r r o r = abs ( S t ra i gh tL ine − Stra ightLineSS ) ; % e r r o r array
104 minimum_error = min ( e r r o r ) ; % minimum e r r o r corresponds to

i n t e r s t e c t i o n po int
105 TimeConstIndex = f i n d ( e r r o r == minimum_error ) ; % the value f o r

which the e r r o r i s minimum i s the i n t e r s e c t i o n point , i . e . time
constant

106

107 % The found time value i s saved and then d i sp layed :
108 TimeConstant = NewTimeAxis ( TimeConstIndex ) − In i t i a lT imeTrans ; %

given by the d i f f e r e n c e the time value in i n t e r s e c t i o n po int and
t r a n s i e n t i n i t i a l time i n s t a n t

109 str ing_to_be_diplayed = s p r i n t f ( ' \nFound time constant value :
Tconst=%g s ' , TimeConstant ) ;

110 di sp ( str ing_to_be_diplayed ) ;
111 str ing_to_be_diplayed = s p r i n t f ( ' Conventional t r a n s i e n t durat ion :

7∗ Tconst = %g s ' , 7∗ TimeConstant ) ;
112 di sp ( str ing_to_be_diplayed ) ;
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113 str ing_to_be_diplayed = s p r i n t f ( 'Minimum per iod : 2∗7∗ Tconst = 14∗
Tconst = %g s ' , 14∗ TimeConstant ) ;

114 di sp ( str ing_to_be_diplayed ) ;
115 str ing_to_be_diplayed = s p r i n t f ( 'Maximum operat ing f requency :

(14∗ Tconst )^−1 = %g Hz ' , (14∗ TimeConstant )^−1 ) ;
116 di sp ( str ing_to_be_diplayed ) ;
117

118 % Plot :
119 f i g u r e
120 g r id on
121 hold on
122 p lo t ( Data ( : , index ) , Data ( : , index +1) , ' LineWidth ' , 2 . 0 ) ;
123 p lo t ( NewTimeAxis , St ra ightL ine , ' Color ' , [ 0 0 0 ]/255 , ' LineWidth '

, 1 . 2 5 ) ; % black curve
124 p lo t ( NewTimeAxis , Stra ightLineSS , ' Color ' , [ 130 130 130 ]/255 , '

LineWidth ' , 1 . 2 5 ) ; %gray curve
125 p lo t ( NewTimeAxis ( TimeConstIndex ) , S t ra i gh tL ine ( TimeConstIndex ) , '

or ' , ' MarkerSize ' , 10) ; % p lo t the i n t e r s e c t i o n po int
126 VariableName = char ( DataNames ( index ) ) ;
127 VariableName = VariableName ( 1 : end−1) ;
128 t i t l e _ s t r i n g = s p r i n t f ( 'Time constant eva lua t i on : %s ( t ) ' ,

VariableName ) ;
129 t i t l e ( t i t l e _ s t r i n g ) ;
130 x l a b e l ( ' time ( s ) ' ) ;
131 y l a b e l ( ' Voltage (V) or Current (A) ' ) ;
132 %legend ( ' I_{DS}(V_{GS}) ' , ' subthresho ld l i n e a r i n t e r p o l a t i o n ' , '

above th r e sho ld l i n e a r i n t e r p o l a t i o n ' , ' Location ' , ' Best ' ) ;
133 s e t ( gca , ' f o n t s i z e ' , 14) ;
134 end
135

136 e l s e
137 str ing_to_be_displayed = s p r i n t f ( ' Something went wrong during input

a c q u i s i t i o n . P lease r e s t a r t . \ n ' ) ;
138 di sp ( str ing_to_be_displayed ) ;
139

140 end

G.3.2 MatLab output figures for time constant estimations

In this section the figures generated with the MatLab code for the time constant estimation
reported in the previous section are reported. The input data are the Cadence simulated
curves reported and discussed in section 9.8. Such curves are the same plotted in these
figures, in which there are also the interpolating straight lines. The time constant are
determined by means of a graphical approach, the red circles highlight the intersection
points between the exponential interpolating straight line and the time axis (or the steady
state region/value).
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Figure G.1: Drain voltage in function of time for the circuit of figure 9.20. The interpolating
straight lines are also shown, and the red circle highlight their intersection point,
useful to determined graphically the time constant.

Figure G.2: Source voltage in function of time for the circuit of figure 9.20. The interpolating
straight lines are also shown, and the red circle highlight their intersection point,
useful to determined graphically the time constant.
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Figure G.3: Drain current in function of time for the circuit of figure 9.20. The interpolating
straight lines are also shown, and the red circle highlight their intersection point,
useful to determined graphically the time constant.

G.4 MatLab code for the interaction time estimation
In the following is reported a MatLab code for the interaction time estimation and also for
the sensor time constant calculations in the single-pole approximation.

1 c l e a r a l l
2 c l o s e a l l
3 c l c
4 %
5

6 %% Time constant e s t imat ion and v e l o c i t y p a r t i c l e e s t imat ion :
7

8 % constant s :
9

10 M = 303.26 e−3; % kg/mol , l ead s u l f a t e molecu lar mass ( the mass o f one
mole o f l ead s u l f a t e )

11 R = 8.31446261815324 ; % J /( mol∗K) , ( u n i v e r s a l ) gas constant , i t i s : R =
Na∗kB where Na = Avogadro ' s number and kB = Boltzmann ' s constant

12 T = 300 ; % K , temperature in k e l v i n
13

14 % Root Mean Square v e l o c i t y :
15 v_rms = s q r t ( 3∗R∗T/M ) ; % m/ s
16

17 % Most probable ( or mode) speed :
18 v_p = s q r t (2/3) ∗v_rms ; % m/ s
19

20 % Arithmet ic mean or average v e l o c i t y :
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21 v_av = (2/( s q r t ( p i ) ) ) ∗v_p ; % m/ s
22

23 % INTERACTION SPACE:
24 space_of_inte ract ion = 2∗0 .24 e−9; % m , f a c t o r 2 because i t moves c l o s e r

and then i t moves away
25

26 % I n t e r a c t i o n t imes :
27 Time_interact_rms = space_of_interact ion /v_rms ;
28 Time_interact_p = space_of_inte ract ion /v_p ;
29 Time_interact_av = space_of_inte ract ion /v_av ;
30

31 % From other s c r i p t s :
32 Cs_Vc0d65_0d8V = 2.7844 e−21; % F
33 Cd_Vc0d65_0d8V = Cs_Vc0d65_0d8V ;
34 Rd_Vc0d65_0d8V = 1250710; % ohms
35 Rs_Vc0d65_0d8V = 312600; % ohms
36

37 % in s i n g l e po l e approximation ( i . e . non−i n t e r a c t i n g S ,D) :
38 tau_Vc0d65_D = Rd_Vc0d65_0d8V∗Cd_Vc0d65_0d8V ;
39 tau_Vc0d65_S = Rs_Vc0d65_0d8V∗Cs_Vc0d65_0d8V ;
40

41 % DATA OUTPUT & DISPLAY:
42 str ing_to_be_displayed = s p r i n t f ( " The time i n t e r v a l dur ing which the

PbSO4 i n t e r a c t s with the senso r i s est imated to be : " ) ;
43 di sp ( str ing_to_be_displayed ) ;
44 str ing_to_be_displayed = s p r i n t f ( " ( from root mean square v e l o c i t y )

I n t e r a c t i o n time = %g s \n " , Time_interact_rms ) ;
45 di sp ( str ing_to_be_displayed ) ;
46 str ing_to_be_displayed = s p r i n t f ( " ( from most probable v e l o c i t y )

I n t e r a c t i o n time = %g s \n " , Time_interact_p ) ;
47 di sp ( str ing_to_be_displayed ) ;
48 str ing_to_be_displayed = s p r i n t f ( " ( from average v e l o c i t y ) I n t e r a c t i o n

time = %g s \n " , Time_interact_av ) ;
49 di sp ( str ing_to_be_displayed ) ;
50 str ing_to_be_displayed = s p r i n t f ("− − − − − − − " ) ;
51 di sp ( str ing_to_be_displayed ) ;
52 str ing_to_be_displayed = s p r i n t f ( " The time constant o f the source s i d e o f

the sensor , in the s i n g l e po l e approximation , i s est imated to be : " ) ;
53 di sp ( str ing_to_be_displayed ) ;
54 str ing_to_be_displayed = s p r i n t f ( " tau @ Source = %g s \n " , tau_Vc0d65_S ) ;
55 di sp ( str ing_to_be_displayed ) ;
56 str ing_to_be_displayed = s p r i n t f ( " The time constant o f the dra in s i d e o f

the sensor , in the s i n g l e po l e approximation , i s est imated to be : " ) ;
57 di sp ( str ing_to_be_displayed ) ;
58 str ing_to_be_displayed = s p r i n t f ( " tau @ Drain = %g s \n " , tau_Vc0d65_D) ;
59 di sp ( str ing_to_be_displayed ) ;

G.5 LUT-based model (gate case): verilogA code
In the following is reported the verilogA code for defining the foure terminal sensor by
means of LUT-based model, the gate is also considered. The data are stored in the .txt
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file named: “C60_PbSO4_Gate_sensor_ATK.txt” that is reported in the next section.
Within the code the description of the .txt data file is reported; the file is omitted for
brevity.

1

2 // Veri logA f o r SensorResponseTime , PbSO4_Gate_Sensor_LUTdevice , v e r i l o g a
3

4 ` i n c lude " d i s c i p l i n e s . h "
5 ` i n c lude " cons tant s . h "
6

7 module PbSO4_Sensor_LUTdevice (G,D, S ,N_PbSO4) ;
8

9 // "N_PbSO4" i s a fake input contact , 0 means no PbSO4 molecule , 1 means
that there i s 1 PbSO4 molecule nearby the channel , 2 means that there
are 2 PbSO4 and so on . . .

10 // the LUT data are s imulated in Quantum−Wise ATK and the curves with
d i f f e r e n t "N_PbSO4" are p r e v i o u s l y obta ined in ATK

11

12 input N_PbSO4;
13 e l e c t r i c a l N_PbSO4; // input type " e l e c t r i c a l " i s chosen f o r convenience

, to perform e a s i l y t r a n s i e n t ana ly s e s
14

15 input G;
16 e l e c t r i c a l G; // Gate
17

18 inout D;
19 e l e c t r i c a l D; // Drain
20

21 inout S ;
22 e l e c t r i c a l S ; // Source
23

24 analog
25 begin
26

27 // 3 rd order po lynon ia l s p l i n e i n t e r p o l a t i o n // f i r s t row i s V(N_PbSO4, S)
, second i s V(G, S) , t h i r d i s V(D, S) and four th i s I (D, S)

28

29 I (D, S) <+ $table_model (V(N_PbSO4, S) , V(G, S) , V(D, S) , "
C60_PbSO4_Gate_sensor_ATK . txt " , " 3L , 3L" ) ;

30 // I (D, S) <+ $table_model (V(G, S) , V(D, S) , " bio_dati . txt " , " 1 , 1 " ) ;
31

32 end
33

34 endmodule
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Appendix H

Chapter 10 - Additional
images, graphs and material

Details are provided directly in the captions.

Figure H.1: I-V characteristics with and without the NO molecule both in the case of the wire
sensor and in the case of gated one (EHT method).
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Chapter 10 - Additional images, graphs and material

Figure H.2: Current variations in the gate sensor with both the lead sulfate PbSO4 and the
nitric oxide NO, for all the (main) possible orientations of such molecules. Notice
the behavior at 0.8V.

Figure H.3: Sensor maximum deviation from linearity in function of the applied bias, for
different NO concentrations. It is the maximum difference between the straight
line interpolating curve and the spline 3rd order interpolating curve. Notice the
low error at 0.8V.
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Chapter 10 - Additional images, graphs and material

Figure H.4: Current values for different NO concentrations and for VD = 0.8 V. Black circles:
simulated values; blue curve: cubic 3rd order spline interpolation; red/orange:
linear interpolation.

Figure H.5: Current values for different NO distances from the sensor and for VD = 0.8 V.
Black circles: simulated values; blue curve: cubic 3rd order spline interpolation;
red/orange: linear interpolation.
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