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Abstract

This thesis was developed while working at Barcelona Supercomputing Center, a
research center specialized in High Performance Computing and investigation in
many fields, such as cloud computing, bioinformatics, material science and more.

Taking part to European Processor Initiative (EPI) project, the whole thesis
aims to perform the verification process on a Vector Processing Unit (VPU).
The implemented Vector Processing Unit is based on the RISC-V V-Extension,
which is a set of specifications defining the Instructions Set Architecture (ISA)
of a vector core. The V-Extension is currently on develop by the RISC-V foun-
dation. This manuscript will refer to the versions 0.7.1.

The first chapter consist of an introduction of the needed concepts and of the
context in which this thesis is been developed.

Then, in the second chapter, all the techniques used to verify functionally and
formally this VPU are discussed.

All the results, such as found bugs or created material, are displayed in the
third chapter. Moreover, analysing these results, the efficacy of the techniques
used is evaluated. It is shown how formal and functional tools can be used to
find bugs or to better define specification.

In the last chapter, it is possible to conclude that the techniques adopted pro-
duced the expected results showing significant improvements in the verification
effort.
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Chapter 1

Introduction

In this Chapter the RISC-V and V-Extension concepts relevant for this thesis
are presented and discussed together with the verification notions. Furthermore,
an overview on the context of this project is given, explaining the Vector Pro-
cessing Unit (VPU) implemented and then showing the Universal Verification
Methodologies (UVM) adopted.

Firstly, the RISC-V Instruction Set Architecture (ISA) is briefly illustrated,
proceeding with an overview on all the major extensions provided by the RISC-V
foundation. The Concepts section is then closed with some knowledge about the
Verification process and its main tools.

Finally the theory is contextualized by the implemented VPU and on the used
UVM structure. Those allow to better understand the contributions done in this
thesis, contributions that are then explained into the next Chapter.

1.1 Concepts

1.1.1 RISC-V

RISC-V is an open, extensible and free ISA. It was initially only designed to
support computer architecture research and education [1]. The project, began
at the Berkeley University of California in 2010, published the first ISA User
Manual in 2011.

The RISC-V ISA is implemented as a base integer ISA, but it is modular and
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so supports many instruction encodings. This ISA is provided under open source
licenses, and it is gaining a lot of popularity due to its open nature. Mainly there
are two primary base integer variants, RV32I and RV64I, which provide 32-bit
or 64-bit user-level address spaces respectively.

Extensions

RISC-V is designed to have a good customization which is the reason why it is
provided with the possibility to be extended, but the base integer instructions
cannot be redefined. There are two kinds of extensions: standard and non-
standard.

• The standard ones need to be compatible with all the other standards and
they should also aim to be generally useful.

• The non-standard ones can be highly specialized in some task and therefore
they may conflict with other extensions.

For general development, as defined in the specification document [1], some
of the standard extensions are predefined:

• "I" is the base integer extension and contains integer computational in-
structions, integer loads, integer stores, and control-flow instructions. It is
mandatory for all RISC-V implementations.

• "M" is the standard integer multiplication and division extension, it allows
to multiply and divide the values held in the integer registers.

• "A" is the standard atomic instruction extension. It is useful to have atomic
instructions for inter-processor synchronization. In fact, with this extension
is possible to read, modify, and write memory atomically.

• "F" is the standard single-precision floating-point extension. It adds floating-
point registers, single-precision computational instructions, and single-precision
loads and stores.

• "D" is the standard double-precision floating-point extension. Advantageous
when the F extension is not enough, it expands the extension and adds
double-precision computational instructions, loads, and stores.
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• "G" is the denotation for an integer base plus these four standard extensions
(“IMAFD”).

• "V" is the standard Vector Extension. It is designed to add the possibility to
perform vector operations, allowing performance and efficiency. The thesis
will focus only on this extension.

The design philosophy of the RISC-V projects is based on modularity: the
base ISA will not change over time, but new extensions will be available and
new feature will be added. Which is a major feature because of the difficulty
in finding general useful extension beyond the ones already existing. Therefore,
it would not be convenient to constantly add new features to the base ISA and
then have to keep track of that at a later time.

Base instructions

In Figure 1.1 it is possible to see how the base instruction are composed.

Figure 1.1. RISC-V base instruction formats [1]

It is important to notice that RISC-V is a load-store architecture, which means
that only load and store operations can have access to the memory. It is a very
convenient organization, because it reduces the average time-per-operation and
guarantees a good functioning of the pipelined structure.

The instruction also supports signed byte and half word loads, which is very
advantageous when working with signed byte and half word data types.

In Figure 1.2 it is possible to see how the load-store instructions are composed,
and that the LOAD is an I-type op and the STORE is an S-type op.
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Figure 1.2. RISC-V load/store instruction formats [1]

1.1.2 Parallelism, Vectors and the V-Extension

During the last years, the parallel architecture is gaining inertia on the processors
field. This is happening because the real world has parallel behaviour and so the
hardware we use to compute simulations and calculus needs to be likewise [2].

Also, most of the paradigms that led to the decision of using a single core,
are now changing quickly as the technology changes its needs. In fact, as the
technology scales down to the nanometers, the power and the energy consump-
tions are becoming a problem. Also, the cost of a single transistor is significantly
lower.

A solution to the efficiency problem are the VPU (Vector Processing Units)
working with single instruction multiple data (SIMD), in this way it possible
to maintain the binaries easy to program, but very powerful in term of data
computation..

A famous example of a vector architecture is the Cray-1, presented in 1975.
The Cray-1, a load/store architecture, was designed for Supercomputing and
its major feature was to have a scalar mode along the vector one. This was
advantageous because high performances are not always useful.

Time efficiency

As shown in Figure 1.3, with standard multithreading there will often be some
empty thread along with the running ones, causing a loss in the efficiency.
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Figure 1.3. Multithreading Processor Clock Time usage [3]

Indeed the major advantage with the vector computation is the condensation
of the processor usage. So that the usage will not be distributed as for standard
multithreading processors, but it will have full usage for some cycles and none
usage for others [3].
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Figure 1.4. Vector Processor Processor Time usage [3]

It is shown in Figure 1.4 how the processor usage is condensed in some cycles
and then empty for others. That happens because the vector operations need
some clock cycles to start up. So based on the length of the pipeline, there will
be some dead cycles. This means the latency increases, because each operation
adds some dead cycles that need to be waited before a new operation can start.

But, this drawback can be used to increase the efficiency with modern low-
power techniques. In fact, it was shown [4] that the Vector Accelerators, while
improving performances up to 10X, can also improve energy efficiency of 40-50%
on loop kernels and 10-20% on larger program segments. In Figure 1.5 it is
possible to see how a vector needs to wait the previous one to be completed
before starting, and so why the latency increases.
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Figure 1.5. Latency penalty on vector processing units [3]

The design implementation that is been used for the EPI project and so in this
thesis is the V-Extension (V stands for Vector), and it is in current development.
The reference is the V-Extension 0.7.1.

The vector extension adds 32 vector registers, and 5 unprivileged CSRs (vstart,
vxsat, vxrm, vtype, vl) to the base scalar RISC-V ISA [5]. There are also 8 vector
predicate registers (vp0-vp7). The CSRs vectors define the configurations.

Privilege Name Description
URW vstart Vector start position
URW vxsat Fixed-point Saturate Flag
URW vxrm Fixed-Point Rounding Mode
URO vl Vector length
URO vtype Vector data type register

Table 1.1. RISC-V’s CSRs

The datatypes and operations supported by the V-extension change based on
the base scalar ISA [5].

The vector unit must be configured before being used. I.e. the active vector
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length is held in the CSR vl, which can only hold values between 0 and MVL
(Maximum Vector Length parameter) inclusive. The active vector length is
usually written with the setvl instruction.

Vector instructions

Beside the base instructions that we can expect from a Vector Architecture (such
as a move, add, xor and so on) it is also possible to find some useful operations
related to the nature of the vector calculus [5]:

• vectorial load/store: are used to copy data between vector registers and
memory. These instructions can be strided or indexed. The strided ones
index the vector elements referring to a starting element and then adding (or
subtracting) a certain stride to the base address. This kind of load/store
is very fast, in particular in some special cases (as unit-strided or some
optimized power of 2).

The vector elements into the indexed ones are basically pointed with a vector
of indexes, added to a base address. This process does really slows down
the operation but allows to directly select the elements.

• widening/narrowing: these operation are used to increase or decrease the
size of the vector’s contents. In fact, they are very useful when performing
operations that need to increase the result size (as example a multiplication
between to integer at 32 bit needs to have 64 bit to not loose information).
There are also few operations that require the inverse resizing, as for the
narrowing.

• rgather: those are very particular operations which are very advantageous
when manipulating vectors. They allow to index a vector using another
vector as index. Therefore, various patterns are possible. The pseudo code
representing this operation is the following:

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

where y is the starting vector, idx is the index vector and x is the result
vector.
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• reduction: finally, the reduction can perform an operation between a scalar
and a vector and give a scalar as result (an easy example could be to cal-
culate the maximum value between all the value contained in a vector and
one scalar, the result would either be one of the element of the vector or the
scalar).

Finally, all those operations can be masked. The masking is a common oper-
ation when there is branching or when complex patterns emerge. Normally one
bit of the mask represent a whole word or byte into the vector. This bit indicates
if the operation of the instruction should be performed for that specific element
of the vector.

Figure 1.6. 8 bit mask, masking a 64 bit vector

In Figure 1.6 there is an example of an 8-bit vector masking a 64-bit vector.
Each bit of the mask corresponds to 8 bit of the vector.

1.1.3 Verification

As the technology scales down, conflicting requirements for high performance,
low-power and area arise. This lead to a complex design and to elevate the costs.

It is possible to see in Figure 1.7 how the cost for verification increases dras-
tically with the shrinking of the technology node.
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Figure 1.7. The design cost vs the technology node [6]

Verification is responsible to make sure that the design is in track with the
specification. So, if the design complexity increases, the same does its verification
process.

This is of course an issue for the time-to-market. In particular functional
design verification takes 40–50% of the project resources. In other words, in-
creasing the productivity of functional design verification and shorten the design
/ simulate / debug / cover loop is an essential task [6].

Moreover, the compounded complexity grows faster then the compounded
productivity. This gap only means the verification needs to be faster and hence
needs to implement more techniques. It is possible to see a study on the com-
plexity/productivity gap in Figure 1.8
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Figure 1.8. The gap between the complexity and the productivity [6]

This graph shows how the complexity rate is higher than the productivity rate
during the years. This means that it is not possible to reach an equity only by
increasing the number of tests or by adding some more checkers. More advanced
techniques are needed to cope with the growing complexity.

In order to verify an RTL design, its specifications need to be stated as code.
In this thesis all the tools implemented for the verification process are wrote in
SystemVerilog. SystemVerilog is an hardware description language, born as an
evolution of the Verilog language. Some extensions such as Objective-Oriented
Programming elements and specific keywords for verification tools were added
to it. The functionalities of a design can be stated by using the checkers.

Checkers

They are mainly composed by assertions and assumptions, some really powerful
statements used to define the constraints of the DUT’s behaviour.

Assertions and assumptions are syntactically identical, but the first one refers
to the output signals while the second one to the input signals. They are mainly
composed by two parts which are both conditions, even though they act differ-
ently. The first part is a condition to "fire", this means that when the condition
is true the assertion, or assumption, starts checking for the second part [7].
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The second part is another check on some condition, and can reveal the result
of the check. At this point the possible results are True or False.

Both of them can be time consuming, and conditions on the edge are possible.
It is also possible to create properties and sequences and then embed them into
the assertions, in this way it is possible to reuse those parts.

Let’s now see the basic structure of an assertion.

1 property property_1 ;
2 @( posedge clk_i )
3 a |-> b;
4 endproperty : property_1
5
6 assertion_1 : assert property ( disable_iff (rst) property_1 ) else $error ("")

Basically if a is HIGH(’1’) then b is also expected to be HIGH(’1’).
The functionality is expressed into the property, then it is asserted into the

assertion. It could be possible to recall tasks or processes, in this way it is
possible to have more computational capabilities. It can also provide an error
message to better identify the problem during simulations. When the signals into
the disable_iff function are asserted (in the example above it is the rst signal)
the assertion is disabled. This means that the assertion does now need to be
re-fired with a new starting condition.

Functional verification

The functional verification needs to verify whether the functionalities described
into the specifications are met into the design. In order to verify functionally,
the functionalities need to be defined. This is a very important part of the pro-
cess, as this translation is never perfect and often highlights some critical points
into the specs, such as omissions or inaccuracies. The functional verification is
performed using simulations, this means that time is required to simulate the
design behaviour and to check it against its specifications.

In functional verification the assertions and the assumptions are implemented
in the simulation process to verify to correctness of the RTL design.
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Figure 1.9. Assertions and assumptions into an RTL design

In Figure 1.9 it is possible to visualize how assertions and assumptions are used
to verify functionally the RTL design. The assumptions are mainly checking the
inputs and the assertions are mainly checking the outputs. It is possible to notice
that the assertions for a DUT can be considered as assumptions for another one.

Formal verification

The formal verification can be done in different ways: theorem proving, that
tries to prove the equivalence between specifications and design by using mathe-
matical reasoning; equivalence checking, useful when performing optimization to
the design, trying to demonstrate that the various versions are mathematically
equivalent; and model checking, which try to find counter example on the be-
haviour of the design, and, if a counterexample exists, the Formal tool provides
an example of the specific case to demonstrate the falsity. It is performed using
assumptions to assume the design behaviour and then using assertions to test
it.

As already mentioned, the assertions and the assumptions in simulations are
treated equally . This is not true in the formal verification [8]. In order to be
performed, the formal assertions verification only needs to instantiate the RTL
file and the checkers file. Then it uses the assumptions as drivers for the RTL, and
finally it tries to prove wrong the assertions using mathematical simplifications.
Hence, here it is possible to see how the assumptions work differently. If a
property is assumed it can never be proved wrong. Only assertions need to
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be checked. The formal tool, in this project, was only used to perform model
checking. The tool used is provided by Mentor, and it is called Questa Propcheck.
There are different possible outcomes occurring while verifying:

• vacuous proof : the case is vacuously proven when the assertion is always
true given the assumptions. This means probably there is some mistake
into the assumptions or the assertions;

• proof : starting at the initial state, no legal stimulus exists that causes in
the assertion to be violated. It is normally proven in the first 10-100 cycles;

• firing: a counterexample to the assertion exist, this means that there is a
bug in design, or the specifications are not well defined;

• firing with warnings: a counterexample to the assertion exist, but it does
not use primary inputs. This means that there are uncontrolled internal
values that cause a fail;

• inconclusive: the formal analysis timed out before demonstrating the as-
sertion. This could be also meaning the complexity is too high to be elab-
orated with math tools;

In Figure 1.10 are graphically summarized all the possible outcomes previously
exposed. It is shown how the time required to prove an assertion grows expo-
nentially with the depth of the analysis. There are also illustrated the various
"zones" in which the result is produced.
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Figure 1.10. Growing complexity and expected results in formal verification.

Coverage

The whole process of verification does also need to have a direction. Coverage is
employed to do it.

Coverage is very useful and can be performed on functionalities or code:

• functionality: it measures the cover of all the functionalities stated by the
specifications. This approach makes it possible to assure that all the re-
quirements are met. But this also means that there is no information about
unused RTL.

• code: it measures the cover of the RTL code. This means that it is possible
to acknowledge whether there is unused logic and possibly some branch of
the flow. Although, this implies that there is no check about the function-
alities implemented.

The main goal is to take the coverage to 100%. But at the same time it is
easy to fool the coverage, because it depends on how the cases are taken into
account.

In order to use all of these techniques there is the need of a structure to
contain and control them. This structure is designed following the Universal
Verification Methodology (UVM). The UVM is thought to verify circuits

20



Introduction

designs, and it is provided of Object-Oriented Programming elements, in order
to enhance reusability. Later on this Chapter the particular case of this work is
discussed.

1.2 Context
Prior to start, it is important to highlight that the VPU is designed to be the
co-processor of a scalar core named Avispado. This core is under development
by SemiDynamics, which works together with the BSC at the EPI project. In
order to implement and test the VPU a simulator of the Avispado core was used,
it is called Spike. It was initially developed to simulate RISC-V core, but for
this project it was extended to simulate also the Vector-Extension. So, Spike
is simulating both the core and the VPU, to use it as a scoreboard. In Figure
1.11 it is possible to see the interface between Avispado and the VPU for all the
instructions.

Figure 1.11. Avispado-VPU interface
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The instructions are issued with a credit system, whose number corresponds
to the depth of the issue queue of the VPU. All the informations about the
interface are reported into the paper published by SemiDynamics [9]

1.2.1 The VPU

In Figure 1.12 it is possible to find a simplified scheme of the implemented VPU.

Figure 1.12. EPI project’s VPU

It is important to notice that the VPU implemented is a decoupled architec-
ture, this means that two operations can be executed at once only in case they
are not both memory operations nor arithmetic ones.

The main elements composing the VPU are:

• Renaming Unit: the scope of this unit is to remove false dependencies
due to the naming of the registers. This is possible because of the virtual
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memory. The processor only uses logical registers, which in this component
they are mapped to physical registers using the Free Register List (FRL).
Write-to-write dependencies are removed if possible, in order to avoid Data
Hazards.

• Queues: the VPU is a decoupled vector architecture, this means that the
arithmetic instructions and the memory instructions are buffered in differ-
ent queues. In Figure 1.12 it is possible to see how the two queues are
independent in the issue stage. The vector lane is capable of performing
only one arithmetic instruction at time, so the issue queue must wait until
the previous instruction finishes its execution, but simultaneously a mem-
ory instruction can be performed. The whole issue stage is composed by
the queue and the issue logic. The number of entries in the issue queues is
parameterized.

• Memory Units: as mentioned before, the only instructions that can ac-
cess memory are the load and the store operations. There are different
units working on memory instructions: The load management unit, the
store management unit and the index and mask unit. As the name suggest
their core task is respectively to load operations, to store operations and
to mask the operations and provide the indexes. The possible addressing
modes are strided or indexed.

• Vector Lane: the Vector Lane is the core of the VPU. It is composed by
different vector processing lanes. This is a very common technique that
allows to improve performance and scalability. In an ideal multi-lane vector
architecture all the lanes are working simultaneously and thus efficiently,
with the cost of more hardware to control the synchronization.

One of the most important submodules of the Vector Lane is the Vector
Register File (VRF). This is designed with only one read/write port, this
because it is important to limit the area usage, and so to increase the oper-
ating frequency. It is necessary to have a buffer in order to avoid streaming
problems and bubbles inside the pipe.

This solution implies the existence of some cost in terms of latency, due to
the starting of a new instruction. Inside the Vector Lane the Write-Back
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Buffer (WB) and the Load Buffer (LB) are important as well. Those buffers
store the data until the VRF line is complete. There is also the Store Buffer
(SB) which holds the data read from the register file and then sends it to
the Store Unit. Eventually when an instruction is completed the physical
register are freed.

The VPU can be configured with different numbers of lanes from 1 up to 8,
the default value is 8.

• Lane Interconnection: due to the range of the Lanes, which can be any
value between 1 and 8, it is important to have a system capable of syn-
chronizing all of them. There are also some operations which require to use
multiple lanes at once to perform the execution, so an unidirectional ring
intercommunication is implemented between the lanes.

It is also important to point out how the memory is organized in order to
understand how some operations work.

The vectors are distributed into the different lanes. Indeed it is possible to
say the Vector are sliced into the lanes, this means that an efficient organization
is needed in order to understand where to put the right data.

According to the RISC-V V-extension, vector elements can have different
sizes. The parameter that describes the size of an element is the Standard
Element Width (SEW). This is determined by the Control and Status Register
(CSR) named vsew. The maximum supported SEW into the EPI project is 64
bit. Also the maximum VLEN is equal to 16384 bit, so 2kB.

The number of elements a vector registers holds is given by VLEN/SEW,
according to the Table 1.2.1:

SEW ELEMENTS
64 256
32 512
16 1024
8 2048

In Figure 1.13 it is possible to see the structure used for SEW = 64 bit as
examples.
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Figure 1.13. VRF with SEW = 64

Notice that the sub-banks are more than 1 only when the SEW is not equal
to 64.

In Figure 1.14 it is possible to identify the sub-banks as subdivision of a bank.

Figure 1.14. VRF with SEW = 32
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1.2.2 The UVM

As mentioned before, the UVM is the solution to the standardization problem of
the verification. In fact, it is a transaction-level methodology (TLM) designed for
testbench development. It is a class library that facilitates writing configurable
and reusable code [6].

The testbenches created are designed to be reusable, as a result less code and
more production is achieved.

This is mainly obtained with the polymorphism. It means an object can be
used to define a reusable class. Operating with this technique an object can be
used as a super-class and other sub-classes can be created.

It works following an hierarchy method, and every component can only oper-
ate with the components above it. In this way multiple sub-components can be
instantiated.

Generic UVM

In Figure 1.15 it is possible to see an example of a standard UVM.

Figure 1.15. A generic UVM
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Let’s proceed analyzing some elements of a standard UVM and its implemen-
tations in the EPI project.

• Testbench: typically, it instantiates the DUT (Design Under Test) and
the UVM Test Class. Also it is responsible to configure the connections
between them. There are different ways to communicate into an UVM and
in this module is possible to choose them. It is also important to say that
the Testbench instantiates the Test dynamically at run-time, enabling to
compile it once and run many Tests.

• Test: this is the top-level component into an UVM testbench. Typically a
base test class is defined to instantiate the top-level environment and then
it is extended to the specific case.

• Environment: it is a component that defines the environment of a test. It
aims to define all the agents and the scoreboards. The top-level environment
instantiates and configures the reusable verification IP and defines its default
configurations based on the application of the test.

Typically there is a different environment for each interface of the DUT.

• Sequence Item: it is the fundamental lowest denominator object in the
UVM hierarchy. It can also be defined as a transaction and it is the small-
est data transfer that can exist in a UVM. It can include variables and
constraints.

• Sequence: it is generated by the environment using the sequence item. It is
an ordered collection of transactions. Mostly it can impose some constraint
to the variables generated into the sequence item.

• Agent: it is one of the most important components of the UVM. It groups
together all the components that are dealing with the DUT and so a specific
DUT interface. Normally there is a different agent for every interface or
DUT. This allows specific sequencers for specific stimulus. It can also be
active or passive depending on its action on the DUT: if it sends signals to
stimulate the DUT it is considered active, and otherwise passive.

It contains:
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– Driver: it is the component responsible for the communication be-
tween the UVM and the DUT at pinlevel. It receives the sequences
from the sequencer and then converts them into signals, following the
interface protocol. This action is observed by another component, the
(command) monitor.

It can be turned off when the agent is defined as passive. In this way
there is no other component sending signals to the DUT.

– Sequencer: it controls the requests and the responses between the
driver and the sequence item. So it is a controller.

– Monitor: it observes the outputs of the DUT at pinlevel. Then trans-
forms those signals into transactions for the analysis. On a larger stage,
those transactions are very likely then compared with the expected out-
puts. This is normally done in the scoreboard. It can perform internally
also some processing. The signals the monitor is observing could be
monitored into the driver, but this would mean violating the modular-
ity choices for the UVM.

• Scoreboard: it is a checker for the outputs of the DUT. It compares the
transactions obtained by the monitors against a predicted result. There are
different ways to generate a predicted result and so a scoreboard, it often
uses a C/C++ model, but it is possible to use also other languages as well.

It is important to point the UVM works in different phases. It is possible
to macro-divide the process in 3 phases: the build phase: here the components
are constructed from the top, in this phase an important sub-phase is present,
the connect sub-phase: here all the components are connected upwards; the run
phase: in this phase the simulation is ran, and finally the cleanup phase: here
all the results are checked and reported.

In Figure 1.16 it is illustrated a simple scheme representing all the phases.
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Figure 1.16. UVM phases

In the EPI project two different UVM structures were implemented. One to
test all the VPU (and its interface with the scalar core) and another one to test
the submodules. This approach was chosen because it is not always possible to
test all the corner cases with an UVM testing the whole VPU.

Let’s proceed with a brief analysis of those two structures.

Main UVM

The main UVM is interfaced with Avispado and it is composed following the
standard structure. It was mainly used to support the use of a scoreboard
(Spike) and then to implement then some checkers and some coverage controls.
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The majority of the automatic tests are made with this structure, and they
are scripted to run all the night and to produce a valid dataset to then find and
fix the bugs. Those tests are created using random RISC-V vector instructions,
with some constraints that allow the tests to be valid.

Using a simulator for Avispado as input, the driver is a little bit different
from a standard one. Indeed, the input are not controlled at pinlevel but vector
instructions are sent to the core, which will then produce a correct input for the
VPU.

Those instructions are ultimately compared with with the scoreboard and a
result is produced.

Submodules UVM

Another structure was necessary due to the different interface, and so to different
drivers. It is not always trivial to create a driver for a submodule, because the
handshake processes can be very complex, thus it would be possible to introduce
some error in the verification structure.

As an UVM structure is useful when driving an monitoring all the signals
of a module, this technique was used for the Load Management Unit but not
for the Load Buffer. This because the handshake process for the Load Buffer
is complex, and so would have been the UVM, with the possibility to introduce
some errors. The structure of the LMU’s UVM is represented in figure 1.17.
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Figure 1.17. A small UVM for the submodules

It is possible to observe the scoreboard and the coverage are disabled in this
application. In reality a scoreboard was implemented for each of them, but was
handles with a different methodology discussed later on the next Chapter.
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Contributions

2.1 Submodules and Specifications

The main focus of this thesis will be on two important submodules in charge of
the load instructions:

Load Management Unit and Load Buffer.

2.1.1 Load Management Unit

This module is in charge of handling the load operations. It receives cache lines
from Avispado containing the data for the load. Then, the LMU rearranges
the data to distribute it to the vector lanes. The load operation can be strided
or indexed. Since the VPU is able to work out-of-order and with two loads
in parallel, an ID system is necessary, so each instruction comes with an ID. In
particular the load operation comes with the signal seq_id_i. This signal identifies
the load and contains all the determinant informations about it.

The main elements of this submodules are:

• Shifter: it is useful to have the first bit in other position than the MSB or
the LSB position;

• Compactor: it is useful to compact all the valid elements. When the stride
is equal to one the compactor is not used;
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• Aligner: it is in charge to align correctly the elements for the output (lane,
bank and sub-bank).

The main parameters defining this submodule are:

• MEM_DATA_WIDTH: width of the chunk of data received from Avis-
pado. The standard value is 512.

• SEQ_ID_WIDTH: width of the seq_id_i that identifies the data coming
from Avispado. The standard value is 33.

• MAX_NUMBER_ELEMENTS: maximum number of elements that can
be encoded in the chunk of data received (64 when SEW = 8 bit). The
standard value is 64.

• MAVISPADO_LOAD_MASK_WIDTH: Indicates the maximum num-
ber of mask bit that are received with the data. Every bit of the mask
represents a byte into the data. The standard value is 64.

• NUM_LANES: number of lanes. The standard value is 8.

Interface

Signal Description
load_granted_i a load is granted,

it will have a certain sew_i and stride_i
load_granted_sb_id_i the id for the issued load,

can be issued up to 2 loads
indexed_load_granted_i the granted load is indexed
load_sync_end_i indicates if the load is ended
load_sync_end_sb_id_i indicates the load id of the ended load
load_data_valid_i indicates if the data in load_data_i bus is valid
load_data_i data received from Avispado
seq_id_i the sequence id (described below)
mask_valid_i validity of mask_i signal
mask_i mask bit to mask load_data_i
sew_i identifies the size of each vector element
stride_i stride indicated in bytes

Table 2.1. Input signals to the LMU
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Signal Description
load_data_o output data sent to the lanes
load_dvalid_o indicates if the data in load_data_o bus is valid
mask_o mask bit to mask load_data_o

it is needed also for not masked inst.
element_ids_o identifies each element sent in load_data_o
sb_id_o identifies the instruction
vstart_self_o identifies the first valid element

in the chunk of data received in load_data_i
vstart_next_o identifies the last valid element

in the chunk of data received in load_data_i
min_element_id_idx_o index of the first valid

element in elements_ids_o of each lane.

Table 2.2. Output signals to the LMU

In the Tables 2.1 and 2.2 are reported respectively the input and the output
signals of the LMU, together with their description.

Sequence ID

The sequence id ID is necessary as the memory system does not guarantee the in-
order arrival of elements. Hence, this signal contains all the informations needed
to correctly elaborate the data.

The seq_id_i is composed by:

• seq_id_i[4:0] = v_reg, identifies the logical vector register in which the data
should be written;

• seq_id_i[15:5] = el_id, identifies the lowest valid element id contained in
the chunk of data being transmitted;

• seq_id_i[21:16] = el_off, identifies the offset in the chunk of data being
transmitted;

• seq_id_i[28:22] = el_count, identifies the number of valid elements being
transmitted. Masked elements are valid elements;

• seq_id_i[32:29] = sb_id, scoreboard id of the load instruction that re-
quested the data.
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Handshake

The handshake protocol with the different components is as important as the
data manipulation. Following, there is a simple example with the stride value
equal to 1 and offset equal to 0 (meaning that there is no manipulation on the
input data). The procedure for the handshake is the following:

1. Up to 2 load are granted by memory queue with the load_granted_i signal.
The SEW and stride information of the relative instruction are passed;

2. Avispado sends the data and the seq_id_i with its seq_id_i;

3. The next clock cycle, the data is at the output of the LMU towards the
Vector Lane;

4. When a load is finished, another load can be granted.

Figure 2.1. Timing Diagram unit-strided load for the LMU

In Figure 2.1 it is possible to see an example of an unit-strided load. This is
a simple load, and its behaviour is discussed in the following section.

Strided Load

In this case all the valid elements are separated by a constant stride. If the stride
is equal to 1, then it is called unit-strided load. Figure 2.2 shows how the LMU
works in this case. The parameters (defined in the seq_id_i) are defining the
elements to consider.
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Figure 2.2. Strided load handled by the LMU

Indexed Load

It is also possible to load values in an indexed way. By design, it was chosen that
only one valid element at time can be sent, and so el_count needs to be equal
to 1. If the indexed load is requested with many valid elements, the cache line
is sent multiple times with only one valid element each time. In Figure 2.3 it is
possible to see an example of a simple indexed load.

Figure 2.3. Indexed load handled by the LMU
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Masked Load

All the load operations can be masked. This operation does not change the
number of valid elements, but if an elements is masked, at the end of the process
it will not be sent. In Figure 2.4 it is possible to see an example of the simple
strided-load shown before, but this time, with a mask.

Figure 2.4. Strided load, with mask, handled by the LMU

2.1.2 Load Buffer

The second submodule that is mainly in charge of the load operation is the Load
Buffer. Its function is writing the data sent by Avispado to the Vector Register
File. The data can come from different instructions inflight, and the Buffer will
always try to optimize and group the data to write.

The LMU receives full cache lines of 512 bit from Avispado and forwards them
to the corresponding Load Buffer for each lane (64 bit max per lane), depending
on the seq_id_i. The position of the data into the LB will be determined by the
element ID. Up to two loads can be inflight, but their associated cache lines can
arrive out-of-order, although the implementation will be parameterized to accept
N loads in flight.
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Interface

The Load Buffer is connected with a lot of modules. From the Vector Lane it
receives the clock and the reset and communicates if there is a load inflight;
with the LMU it exchanges all the data; from Avispado it knows if the operation
has terminated; the requested handshake is handled with the Memory Queue;
the data goes to the Vector Register File, synchronizing with the internal Finite
State Machine; finally it can commit the result with the Commit Unit.

A simple connection structure is represented in Figure 2.5.

Figure 2.5. Load Buffer’s interfaces

Structure

There is a Load Buffer of each lane and there are three layers to buffer the
elements. The layers are divided by the concept of Element Group. In fact, the
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elements cannot be disposed in every combination, but every element, based on
its element ID, has an exact location (based also on the SEW). The position of
the elements follows the structure of the VRF explained in the first Chapter.

In Figure 2.6 it is possible to see a general connection between the LMU and
the various Load Buffers.

Figure 2.6. Data through the LB

In Figure 2.7 there is an example of the disposition of the elements of 64 bit.
It is also important to say that the number of bits for each element group stays
the same, this means that the number of elements depends on the SEW.
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Figure 2.7. General case for the LB

The Load Buffers are mainly composed of 4 parts:

• Elements: are the values stored into the buffer. The elements are always
512 bit long, so there are 5 elements with SEW = 64, 10 elements with
SEW = 32 and so on;

• Identifier : identifies the elements coming from the young or the old load;

• Valid: identifies if the elements are valid;

• Element Group: identifies the group of elements into the Vector Register
File.

Retry

There are cases in which three buffers are not enough to store all the elements.
It is possible that more than three elements try to occupy the same position and
thus causing a problem. This case is handled with a retry mechanism: one of
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the elements is discarded and a new request is made to Avispado, to notify the
retry. It is important to identify the element to discard when there is a retry,
whether it is a new or an old one.

There are 4 possible cases:

1. if the incoming data comes from the young load and the buffer does only
contain data from the same load, the data with the highest element group
will be discarded;

2. if the incoming data comes from the young load and the buffer contains data
from both the oldest and youngest loads, the incoming data will be discarded;

3. if the incoming data comes from the old load and the buffer only contains
data from the same load, the data with the highest element group will be
discarded;

4. if the incoming data comes from the old load and the buffer contain data
from both the oldest and youngest loads, the data inside the buffer, the one
from the young load will be discarded.

Flow

In Figure 2.8 it is possible to see a simple scheme of the LB’s behaviour.
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Figure 2.8. Working flow of the Load Buffer
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Following the scheme it is possible to understand the main working flow of the
Load Buffer. When the Load Buffer receives a request, it is granted if the number
of loads inflight is less than two. For each request the LB can receive the data,
activating the retry mechanism if necessary, or it can receive a memop_sync_end
and then continue the process to finish the load. During this process it is possible
that fsm_read_en_buf_i is asserted by the internal Finite State Machine of the
Vector Lane, thus the LB can write the data in output.

2.2 Verification Plan

In order to have a better approach with the verification of a design, it is important
to define a Verification Plan. There are many ways to write it. In this specific
case, the Verification Team was working along with the Design Team to produce
better specifications and not only to test the completed design. This means that
the Verification Plan is done following the general rules to have a good value in
future, but it is not entirely defined a priori.

Defining the approach to have does also mean defining the tools that will be
used, in fact, many different of them were created, such as a Test Plan, an UVM
and the checkers.

2.2.1 Test Plan

In order to have a good coverage of the cases, and good simulations to find bugs,
it is very important to have a test plan.

The test plan defines all the different cases to test for a submodule or for the
entire VPU. This means trying to find all the different corner cases stimulating
the DUT. Whenever possible, a good test plan only includes different sets of
stimulus, in this way an easy implementation is possible. But this situation does
not cover all the possible cases. For instance, not every case could be tested in
a submodule of the VPU only modifying the inputs from the scalar core. Which
means that sometimes it is necessary to create some modified settings, to create
the correct environment for the test.

It was created a test plan to stress the load operations. Those are affecting a
lot of submodules of the VPU, but the focus will be on the Load Buffer and on
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the LMU, mainly. Let’s now analyze some of the created tests.

Test on consecutive elements

The first test planned was a simple test about consecutive elements, this means
that all the elements are sent in order. Of course this is a simple case, and it is
thought to test if all the chain to the effective load are working. In fact, it is a
regression test.

The only constraint meant to be in this test is the sequentiality of the elements.
An example is the one reported in Figure 2.9.

Figure 2.9. Sequential inputs from Avispado

Test on random values

The second kind of test to implement is the random test. This will stress the
ability to use different elements ID and different loads at the same time. In
this way all the handling for the positions, calculated based on the load and on
the element ID, is stressed. It was created a special modality to constrain the
randomness to the possible values. This was implemented in the UVM using the
configurations for the sequence.

An example of random inputs from the same load is the one represented in
Figure 2.10.
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Figure 2.10. Random inputs from Avispado

It is also possible to have inputs from two loads, as reported in Figure 2.11.

Figure 2.11. Random inputs from two loads
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Test on splitted elements

A very interesting case is revealed when studying the positions. Let’s take into
account a line of elements sent by the LMU to the Load Buffer. In this case the
SEW needs to be different from 64, so the case will use SEW = 32. The data
sent will be sequential, starting from 65 to 80. In this way it is possible to test if
the output is disposed correctly and so if the Load Buffer for the Lane[0] stores
80-65 as values, in this order.

The situation explained is the one reported in Figure 2.12. It does also show
how the input is splitted in the LB.

Figure 2.12. Input splitted into the LB

For reference let’s analyze the binary used for this specific case.
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1 # define __riscv_xlen 32
2 # include " test_macros .h"
3
4 . globl _start
5 . section .text
6
7 INIT_TEST (e32 , 512)
8
9 la x1 , init_region

10 addi x1 , x1 , 0x3c
11 vle.v v0 , 0( x1)
12
13
14 END_TEST
15
16 # Initializes 4 registers (256 elements of 64 bit each one)
17 # TODO Do a macro that allocates N registers ...
18 RVTEST_DATA (
19 . dword 0 x0000000200000001 , 0 x0000000400000003 ; \
20 . dword 0 x0000000600000005 , 0 x0000000800000007 ; \
21 . dword 0 x0000000A00000009 , 0 x0000000C0000000B ; \
22 . dword 0 x0000000E0000000D , 0 x000000100000000F ; \
23 . dword 0 x0000001200000011 , 0 x0000001400000013 ; \
24 . dword 0 x0000001600000015 , 0 x0000001800000017 ; \
25 . dword 0x...
26 .dw ...

The test is initialized with a macro, defining the SEW = 32 and the size in
bit = 512. Then the data (the one that follows the instructions) is loaded into
a register as address, and is summed an offset of 0x3c, equal to 60 in decimal.
This is the exact value needed to have the first sent element id = 65. As the
number of elements will be 512/32 = 16 the element ids will go from 65 to 80.

Test on retries

The last test typology is about the retry mechanism. This occurs when all
the three lines are filled with an element in the same position, and then a fourth
elements arrives, this means that the Load Buffer does not have another position
for one of the elements, thus one of the elements needs to go back to the sender
and a new request is made.

Considering SEW = 64, there are different versions about this test: it can
be a simple in-order retry with elements 0-40-80-120-... as inputs, it can be
out-of-order as 0-40-120-80-..., or it can be with two different loads.

The easier example is represented in Figure 2.13. 0-40-80 are already filling
the spots where 120 will try to fit. So a retry is needed, discarding 120.
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Figure 2.13. Stimulated retry

The out-of-order example is represented in Figure 2.14. 0-40-120 are already
filling the spots where 80 will try to fit. So a retry is needed, discarding 120,
and taking 80.
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Figure 2.14. Stimulated retry with out-of-order values

2.3 Verification Process

The test executed are just the base for the verification. The tests can only define
some functionalities, but a complete functional verification is required to test
all of them. The normal approach starts with defining some functionalities and
then comparing them to the design. This of course is the crucial part, because
it is not always obvious how a specific case works. Also, there are different ways
to test these functionalities.

2.3.1 Scoreboard

As seen into the test plan, an easy way to test the results is the scoreboard,
thus to have a predicted value and then to compare it against the calculated
one. Before the work of this thesis started, the UVM for the Avispado interface
and a scoreboard for the VPU results were already implemented by the BSC
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verification team. Let’s briefly analyze how the scoreboard works and why it
was useful to develop other tests.

Spike

Spike is a RISC-V ISA Simulator. For this specific project it was extended
to support the vector extension. Spike has two functions, the first one is to
simulate the Avispado core, producing stream of vector instructions and memory
addresses. Those are feed to the VPU using the UVM. The second function is to
produce a result to be compared with the one produced by the VPU. A simple
scheme is represented in Figure 2.15.

Figure 2.15. Simulation path

This kind of tool is very useful because it can give an idea of the general result
and at the same time can give hints about the working condition of the VPU.
Of course it is just a first step, because often it is hard to find a bug only using
the comparison with the final result.

Load Management Unit’s scoreboard

The aim of this thesis was principally based on testing the load operations, so a
scoreboard for the LMU was created.
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Recalling the LMU working model, the module first takes into account the
stride, reversing the data in case of negative stride, then the data is positioned
correctly again, then it is compacted considering the stride, and finally it is
aligned to match with correct ID. In high level it was done using vectors, and
a couple of steps were merged together. It is possible to see below the pseudo
code representing the implementation in this way.

1 x=new[ N_ELEMENTS ][SEW];
2 y=new[ N_ELEMENTS ][SEW];
3
4 // first assignment
5 x[ N_ELEMETS ][SEW] = load_data_i [ N_ELEEMTS *SEW]
6
7 // consider the stride
8 if(stride <0 && ! is_indexed )
9 y[i] = x[-i];

10 else
11 y[i] = x[i];
12
13
14 // from # of bytes to # of elements
15 local_stride = mod( local_stride * 8 / SEW );
16
17 // concatenate the data according to stride
18 x[ N_ELEMENTS -1-i] = y[( N_ELEMENTS -1-i* local_stride - OFFSET )% N_ELEMENTS ];
19
20 // shift the data according to EL_ID
21 k = EL_ID % N_ELEMENTS ;
22
23 y[( N_ELEMENTS -1 -(k+i))% N_ELEMENTS ] = x[( N_ELEMENTS -1-i)]

Also the mask was predicted in a similar way, thus the masking step was then
implemented with a simple check on the mask to have the correct result. In
this way it is possible to have an exact result for the LMU, so when a test fails,
it is always possible to check if the LMU performed correctly with the data it
received in input.

Load Buffer’s scoreboard

For the Load Buffer the behaviour was really complicated, so a simplified version
of a scoreboard was implemented. Hence, it does not work on the correct result
operation-per-operation, because the LB has three layer of deepness and does
always try to optimize the output. So, to implementing all the rules about the
output would mean to create a similar structure with an high risk to create a
bug in the verification model.

The idea was that the data observed as input would eventually become the
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output data, placing in the correct position. This of course is not conflicting
with the concept of retry. In fact, the retry mechanism only delays the data. It
was implemented as an assertion to take advantage of the time correlation.

A pseudo version of this checker is represented below.

1 // Pseudo checker
2 if( lmu_dvalid_load_i ) {
3
4 load_data_o [ get_el_bank (el_id_i , sew_i )* SEW + SEW -1 -: SEW] == data_i ;
5 }
6
7
8 // This function computes the bank of an element
9 function [ BANK_IDX_SZ -1:0] get_el_bank ([ EL_ID_WIDTH -1:0] el_id ,

10 [SEW_WIDTH -1:0] sew );
11
12 case (sew[1:0])
13 SEW64 : get_el_bank =(( el_id / N_LANES )% N_BANKS );
14 SEW32 : get_el_bank =((( el_id > >1)/ N_LANES )% N_BANKS );
15 SEW16 : get_el_bank =((( el_id > >2)/ N_LANES )% N_BANKS );
16 SEW8: get_el_bank =((( el_id > >3)/ N_LANES )% N_BANKS );
17 endcase
18 endfunction

Using the element_id and the corresponding bank (based on the SEW), it
is possible to predict the result for a specific location and compare it with the
calculated one. In this pseudo code the time handling is not very visible, but
the if statement will wait until the result goes as output.
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2.3.2 Checkers

In order to connect the checkers to the whole structure the binding method was
used: basically, when a file containing the checker is created, it is compiled with
a bind option to connect it to an RTL file. In this way the files can be kept
separate and the Design Team and the Verification Team can work together on
different files [10].

vlog $PATH_LB / LoadBuffer .sv -mfcu -cuname $PATH_LBC / LoadBuffer_checker .svh

In the code above the compiling line for the LoadBuffer RTL is reported, with
the binding option recalling the checker, in order to compile it as well. Then,
as the following code illustrates, the bind statement is written into the checker
file. This statement will connect all the in/out ports between the DUT and the
checker.

bind LoadBuffer LoadBuffer_checker bind_LoadBuffer_checker (.*);

Load Management Unit’s assertions

The main focus was on the calculated result and on the handshake with the other
components. All the functionalities to be checked were define in the verification
plan, then a list of assertions was used to produce a good checker. The list of all
the checkers can be found in Appendix.
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name functionality
a_el_count when load_data_valid_i

then seq_id[28 : 22](el_count) ≤ (n_elements−el_offset)
(stride∗8/sew)

a_stride _i stride · 8 can be one of the following ±(sew, 2 · sew, 4 · sew)
with SEW = 2(3+sew) and not indexed load

a_load_granted_i_known when load_granted_i,
not unknown the following : SEW, granted_sb_id

a_load_data_i_known when data_valid_i,
not unknown seq_id_i, load_data_i

a_sb_id_o when load_data_valid_i ,
next clock cycle sb_id_o(t) = seq_id_i[29:32](t-1)

a_load_dvalid_o_known when load_dvalid_o, outputs known
a_dvalid_o after load_data_valid_i,

next clock cycle, load_dvalid_o
a_vstart_o correct v_start_next_o v_start_self_o,

according to load_data_o
a_granted_ids can not be granted 2 loads with the same id at once
a_indexed_instr when the load is an indexed load,

el_count=1 and mask_valid_i = 0
a_load_sync_end_i for every load_granted_i

there is eventually the corresponding load_sync_end_i
a_load_grant_beh when num_load_inflight = 2, load_grant_i = 0
a_load_sync_end_beh when num_load_inflight = 0, load_sync_end_i = 0
a_load_req_sync_end load_sync_end_i cannot be simultanous with load_granted_i
a_el_count_sew_i when stride_i /= (1, 2, 4) · sew_i (in bytes),

el_count has to be = 1
a_sb_correct when load_dvalid_i,

if it is given a sb_id not present in the fifo,
load_dvalid_o will be 0

a_data_o correct load_data_o,
clk cycle after load_dvalid_i (stride/mask/indx)

a_mask_o correct mask_o, according to load_data_o
a_el_ids_o correct element_ids_o
a_min_el_id_idx_o correct min_el_id_idx_o
a_rsn_o when rsn_i load_dvalid_o = 0 and mask_o = ’0
a_rsn_i when rsn_i load_data_valid_i = 0

and load_granted_i = 0

Table 2.3. Assertions on LMU
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As it is possible to see in Table 2.3, there are different assertions possible for a
single submodule. Here they are separated by colour distinguishing the different
"categories". Indeed, the red ones are checking the basic signals behaviour and
the handshakes. An example is a_dvalid_o:

1 property p_dvalid_o ;
2 @( posedge clk_i )
3 load_data_valid_i && sb_correct |-> ##1 load_dvalid_o ;
4 endproperty : p_dvalid_o
5
6
7
8 a_dvalid_o : assert property ( disable iff (! rsn_i || kill_i ) p_dvalid_o )
9 else $error (’LMU did not compute any output ’);

• load_data_valid_i is the input necessary to fire the assertion;

• sb_correct is the result of a task, that calculates if the scoreboard_id is a
valid one;

• | - > is the separation between the firing condition and the checking one.
It is not time consuming (the time consuming version would be | = >), so
the check for the second condition starts immediately;

• ##1 command refers to 1 clock cycle(s) delay;

• load_dvalid_o asserted is the expected output.

The light blue ones are scoreboard-like assertions, indeed are checking the
scoreboard_id, the data in output and also the masks. They use the results of
the tasks to check the values, it is possible to see an example in a_el_ids_owhere
it shown how an assertion uses the result of a task.
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1 // task
2 task compute_ids (int unsigned SEW , int unsigned EL_COUNT ,
3 int unsigned EL_ID , int unsigned N_ELEMENTS );
4
5 int unsigned f_v_e , i, j;
6
7 // f_v_e is the index of the first 11-bit - element
8 // of computed_el_id_o where we have to put an EL_ID
9 f_v_e = EL_ID % N_ELEMENTS ; // find the first valid element

10 f_v_e = f_v_e * SEW / 8 ; // multiply it by the number of bytes per el
11
12 // initialize to 0
13 for(j=0;j< MAX_NUMBER_ELEMENTS ;j++) begin
14 computed_el_id_o [j] = ’0;
15 end
16
17 for(j=0;j< EL_COUNT ;j++) begin
18 for(i=0;i<SEW /8;i++) begin
19 computed_el_id_o [( f_v_e +i+(j*SEW /8))% MAX_NUMBER_ELEMENTS ]
20 = EL_ID +j;
21 end
22 end
23
24 endtask : compute_ids
25
26 // property
27 property p_el_ids_o ;
28 bit [ MAX_NUMBER_ELEMENTS -1:0][ EL_ID_WIDTH -1:0] buffer_ids ;
29 @( posedge clk_i )
30 ( load_data_valid_i && sb_correct , buffer_ids = computed_el_id_o )|->
31 ##1 element_ids_o == buffer_ids ;
32 endproperty : p_el_ids_o
33
34 // assertion
35 a_el_ids_o : assert property ( disable iff (! rsn_i || kill_i ) p_el_ids_o )
36 else $error (’ mismatch in element_ids_o ’);

It is possible to see that the property uses the value computed_el_id_o, a
global variable. It is important to say that the task compute_ids is not called
by the property but from another external process not displayed here. Finally,
the yellow ones are just checking the conditions for the reset and the expected
output.

It is also important to notice that some of those are not assertions, but as-
sumptions. This means that they are conditions on the input and not on the
outputs. There is no difference for the Functional Verification, unlike with For-
mal Verification.
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Load Buffer’s assertions

A similar approach was adopted for the Load Buffer. Having a lot of interfaces
the LB has also a lot of handshakes, and so assertions. For this reason, in the
Table 2.4 are only reported some categories containing all the assertions for an
interface.

name functionality
AVISPADO IF this is the interface with the scalar core
a_mem_sync_end_i if mem_sync_end_i is high,

memop_sb_id_i must be a known value
a_valid_after_sync_end for every memop_sync_end_i (with a valid memop_sb_id_i)

there will be a load_valid_o (with correct load_sb_id_o)
a_memop_sync_end_num if num of memop_sync_end_i = num of load_ack_i +2,

then only memop_sync_end with
a sb_id different from the ones stored

a_load_ack_i_num if the num of load_ack_i is in excess,
we assume this ack is for a different operation

a_unique_request there can not be a request with the same sb_id
of an inflight load

LMU INTERFACE from this interface the LB receive the cache lines
MQ INTERFACE from this interface the load are requested/granted
FSM INTERFACE from this interface comes the enable to write on the VRF
CU INTERFACE to this interface the ids for and ended load are sent
VRF INTERFACE this is the interface to load the data
a_load_inflight load_inflight_o is checked,

it can be 1 when the number of load inflight is 1 or 2 and
it can be 0 otherwise

a_load_ready_o when load_inflight_o = 1 and lmu_dvalid_load_i = 1,
if there is fsm_read_en_lbuf_i,
the next clock cycle there is load_ready_o = 1

a_data_corruption check that each element that enter
will eventually exit in correct position

VL INTERFACE from this interface the clk and the rst are recived

Table 2.4. Assertions on LB

A good example for the handshake is a_mem_sync_end_i. This is an assump-
tion on the inputs, but will be treated as an assertion.
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1 property p_mem_sync_end_i ;
2 @( posedge clk_i )
3 memop_sync_end_i |-> ! $isunknown ( memop_sb_id_i );
4 endproperty : p_mem_sync_end_i
5
6
7 a_mem_sync_end_i : assume property ( disable iff (! rsn_i || kill_i ) p_mem_sync_end_i )
8 else $error (’ unknown memop sd id on memop_sync_end_i asserted ’);

The property is using the system function $isunknown, this function returns
if the value passed is unknown (’X ’ or ’Z ’). So basically when memop_sync_end_i
is asserted, the value of its scoreboard id must be known.

Then a_data_corruption is the scoreboard like discussed before, and finally
there are the reset’s ones. The assertions are reported into the Appendix.

2.3.3 Drivers

The other tool used to test the submodules is the Driver. It is a file that defines
the stimuli and their order. A very specific order of signals defines an operation.
It is then possible to create the situation in which the DUT will work as ex-
pected. It is important to notice that the driver is enabled only when the UVM
is configured as ACTIVE.

Load Management Unit

This is the only submodule on which was developed a driver, due to the reduced
complexity. In fact, the driver can be very complex when different handshakes
are present.

In the next page it is possible to see one of the operations implemented into
the driver, as example.
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1 if( command .op == gnt_op ) begin
2 // randomizations
3 SEW = command . sew_i ;
4 SEW = (2**(3+ SEW ))/8; // in number of bytes , for the stride in bytes
5 randomize ( command . stride_i )
6 with { command . stride_i inside {1* SEW ,2* SEW ,4* SEW , -1*SEW , -2*SEW , -4*SEW ,
7 command .n*SEW };};
8
9 randomize ( command . load_granted_sb_id_i )

10 with {!( command . load_granted_sb_id_i inside
11 {fifo[0].sb_id , fifo[1]. sb_id });};
12
13 // check how many inflight load
14 if ( !fifo[0].done && !fifo[1].done ) begin
15 @( posedge lmu_if . clk_i ) ;
16 lmu_if . load_data_valid_i = 0;
17 lmu_if . load_sync_end_i =1;
18 lmu_if . load_sync_end_sb_id_i =fifo[ command . which_load ]. sb_id ;
19 fifo[ command . which_load ].done = 1;
20 end
21
22 // driving
23 @( posedge lmu_if . clk_i );
24 lmu_if . load_sync_end_i =0;
25 lmu_if . load_sync_end_sb_id_i = ’0;
26 @( posedge lmu_if . clk_i );
27 lmu_if . load_sync_end_i =0;
28 lmu_if . load_sync_end_sb_id_i = ’0;
29 lmu_if .op = gnt_op ;
30 lmu_if . rsn_i = 1’b1;
31 lmu_if . kill_i = 1’b0;
32 lmu_if . load_granted_i = 1;
33 lmu_if . indexed_load_granted_i = command . indexed_load_granted_i ;
34 lmu_if . load_granted_sb_id_i = command . load_granted_sb_id_i ;
35 lmu_if . load_data_valid_i = 0;
36 lmu_if . load_data_i = ’0;
37 lmu_if . seq_id_i = ’0;
38 lmu_if . mask_valid_i = 1’b0;
39 lmu_if . mask_i = ’0;
40 lmu_if . sew_i = command . sew_i ;
41 lmu_if . stride_i = command . stride_i ;
42 // update the fifo
43 if ( fifo[1].done ) begin
44 fifo[1].SEW = command . sew_i ;
45 fifo[1]. STRIDE = command . stride_i ;
46 fifo[1]. sb_id = command . load_granted_sb_id_i ;
47 fifo[1]. is_indexed = command . indexed_load_granted_i ;
48 fifo[1].done = 0;
49 end
50 else if( fifo[0].done ) begin
51 fifo[0].SEW = command . sew_i ;
52 fifo[0]. STRIDE = command . stride_i ;
53 fifo[0]. sb_id = command . load_granted_sb_id_i ;
54 fifo[0]. is_indexed = command . indexed_load_granted_i ;
55 fifo[0].done = 0;
56 end
57 @( posedge lmu_if . clk_i );
58 lmu_if . load_granted_i = 0;
59 -> lmu_if . new_input ;
60 end
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The operation implemented is the granting of a load request. The code is
mainly divided in three parts:

• the first one makes some randomization for the data while it checks if the
driver is following the assumptions about the inputs (in this case on the
loads inflight);

• the second part is the driving part, all the inputs are well defined, and also
some clock cycles need to be waited sometimes. All the value assigned with
command have been randomized, but constrained to valid values;

• the third part is just the updating of an internal FIFO, useful to be in sync
with the LMU and to not fail the assumptions.

Let’s now move on to the results of the functional and formal analysis.
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Results and Considerations

In this chapter the results and the material created during all the work of this
thesis are discussed. It is important to highlight that the results are not the only
parameter defining whether a good verification work was done or not. In fact,
building the infrastructure and create documentation are important tasks that
every verification engineer will eventually do. Even if these tasks are not always
directly correlated to some found bug, they will produce results in long term.

3.1 Found Bugs
The thesis was developed while the design and the specifications were still in
progress and so unstable. To synchronize all the work it was used the GitLab
structure, creating issues and discussing the problems. A well defined issue was
then assigned to a design engineer to fix it.

The majority of the bugs were found on the Load Management Unit. Let’s
now analyze some of them.

Indexed load bug

This issue was found using the Formal tools and trying to define better specifi-
cations for the Load Management Unit.

The problem was the following: The LMU used the sequence_id, in particular
the el_count field, to identify if the load was strided or indexed. In particular,
el_count contains the number of valid elements being loaded; when this value

61



Results and Considerations

was el_count = 1 the load was considered as indexed. The issue was occurring
because the indexed load should have ignored the stride value, but this was not
the case. In fact, the load would not have ignored the stride, as every operation
was actually considered as a strided one.

The best solution for this problem was to create a new signal, is_indexed, to
identify an indexed load. The stride will be always ignored when this signal is
asserted, and the value of el_count must be equal to 1.

Load id bug

This issue regards the load ids. When a load was finished, the load_sync_end_i
signal was sent to the LMU to notify the operation was concluded. It was
sent without an identifier to understand which of the two possible loads was
finished, so a FIFO was used to end them in order. This was an issue because
the loads should have the possibility to end out-of-order, so a new signal was
created: load_sync_end_sb_id_i. This signal is the id that identifies the load to
be finished. This issue was found analyzing the specifications to create the Test
Plan.

Out-of-order load bug

This issue regards the out-of-order loads. In the Load Management Unit there
is a FIFO handling the load ids for the two possible inflight loads. The FIFO
was freed of an element only when another one was put as input. But it could
have been happened that an already inflight load was into the FIFO, i.e. with
id = 1, and another load with the same id, issued. Having the same id, the
configurations for the second load would have been overwritten.

This issue was found analyzing the result of two consecutive loads, with same
id, but one was strided and another one was indexed. The second load was not
considered as indexed, failing the condition that says that el_count = 1. This
was the case of a typical bug finding flow: first, a big test fails during a load.
Then, it is examined using the assertions on the load modules. Exploring the
waveform is then possible to find the bug.
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After kill bug

This bug is related to the validity of the output of the LMU. When there is
a kill, the entire instruction needs to be killed. But, it could be possible to
receive valid data for a killed load. This happens because the kill mechanism
needs some time to stop the operation. The LMU should ignore the input from a
killed instruction, but it did not happen in this case. Indeed, the validity of the
data in output was assumed every time the data was valid in input. This caused
the simulation to timeout on the next instruction. This was happening because
the kill was not issued correctly, so the starting point for the next instruction
was not clean.

This issue can represent a valid example of why the formality on the assertions
in very important. Consider the following code:

1 property p_dvalid_o ;
2 @( posedge clk_i )
3 load_data_valid_i && sb_correct |-> ##1 load_dvalid_o ;
4 endproperty : p_dvalid_o
5
6 a_dvalid_o : assert property ( disable iff (! rsn_i || kill_i ) p_dvalid_o )
7 else $error (’LMU did not compute any output ’);

In this case, the assertion is testing if there is load_dvalid_o when the input is
valid. But it does not test if load_dvalid_o has always a valid load_data_valid_i a
clock cycle before. The property as reported is not able to spot the error in this
issue, but knowing where the problem is, it is possible to use the correctness of
this assertion to understand the bug.

Two loads bug

This issue was spotted both in the LMU and in the LB. The modules received
two loads with the same id. This led to an assumption error, as every load has
an unique id. In reality the problem was not in the Load Management Unit nor
in the Load Buffer, but in the memory queue. In fact, this modules is the one
supposed to hand the ids for each load. This issue was found very late in the
verification process because was depending on a trigger enabled by the kill.

For reference in Figure 3.1 there is the interface of a simulation, in particular
on the waveforms. It is possible to see two loads issue with the same id.
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Figure 3.1. Two loads issued with the same id

3.2 Material Created
Beside than the found bugs, during the thesis, some material has been created.
In particular regarding the structure to handle the test of the submodules.

UVM

A complete UVM was created, to drive and test the Load Management Unit. It
may have different tests with different sequences and so different constraints.

1 class lmu_constrained_test extends lmu_random_test ;
2 ‘uvm_component_utils ( load_management_unit_constrained_test )
3
4 function void build_phase ( uvm_phase phase );
5 lmu_sequence_item :: type_id ::
6 set_type_override ( lmu_constrained_sequence_item :: get_type ());
7 super . build_phase ( phase );
8 endfunction
9

10 function new( string name , uvm_component parent );
11 super .new(name , parent );
12 endfunction : new
13
14
15 endclass : lmu_constrained_test

In this code the base_test is extended and then it is overridden into the build_phase
the sequence_item.

1 class lmu_constrained_sequence_item extends lmu_sequence_item ;
2 ‘uvm_object_utils ( lmu_constrained_sequence_item )
3
4 constraint few_rst {op dist{ rsn_op :=1, gnt_op :=5, load_op :=9, kill_op : =2};}
5
6 function new( string name = "");
7 super .new(name );
8 endfunction : new
9

10 endclass : lmu_constrained_sequence_item
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In the sequence new constraints are applied. In this case the probability for the
operation are defined. This kind of structure is very reusable and expandable,
furthermore, during the whole verification process it can be improved.

Specifications

Some documentation was created on missing specifications. This work required
a looped check on the behaviour obtained by the RTL design. The specifications
and the design were still being developed, this does also mean that the docu-
mentation should have been updated. But this was not always the case, so a
constant check (helped by the formal tool) helped in maintaining the documen-
tation correct.

Verification plan

Some parts of the verification plan were already created when the work of this
thesis started. However, a lot of changes were upcoming when starting the
creation of the checkers, so important modifications were done to the verification
plan. The assertion reported into the Appendix are following the verification plan
implemented.

Test plan

The test plan for the loads was entirely created during the work of this thesis.
First, it required some confidence with the load operation, then it was possible
to update the simple cases and fill it with interesting corner cases. In order to
give validity to the test plan it was important to create an easy way to run those
tests. For that reason some configurable modalities were set.

Modalities

The last contribution was to create the modalities for the implemented tests.
These modalities are the way to stimulate the VPU modifying some settings
into the UVM. This allows to order the data in specific ways or to force some
mechanism inside the VPU. In the code below it is possible to see a couple of
them.
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1 //(for elegance there is also a subtraction in case of overflow ,
2 // in order to start from the smallest index possible ).
3 // The range_id is NOT getting smaller as the overflow occurs ,
4 // because we do not want to cause more retries , so we put the index fixed to 0
5
6 else if ( m_cfg . seq_id_mode == RETRY_ID ) begin
7 if( loop_ooo [ load_index ] <= 3 & loop_ooo [ load_index ] > 0) begin
8 range_id [ load_index ] = c_lines_per_group -1 ;
9 seq_id_index [ load_index ] = ( seq_id_index [ load_index ] +

10 range_id [ load_index ])%( inflight_loads [ load_index ]. seq_ids .size ());
11
12 end
13 else seq_id_index [ load_index ] = 0;
14 loop_ooo [ load_index ] += 1;
15
16 end
17
18
19 // Here we want to stimulate 0 -40 -120 -80 id seq ,
20 // so we choose the correct cycle value and manipulated the range .
21 // then the cycle after the range returns to be 4 and stale .
22
23 else if ( m_cfg . seq_id_mode == RETRY_OOO_ID ) begin
24 if( loop_ooo [ load_index ] == 0) begin
25 range_ooo_id [ load_index ] = c_lines_per_group - 1;
26 seq_id_index [ load_index ] = 0;
27
28 end else begin
29 if( loop_ooo [ load_index ] == 3)
30 range_ooo_id [ load_index ] = 2* range_ooo_id [ load_index ] + 1;
31 if( loop_ooo [ load_index ] == 4)
32 range_ooo_id [ load_index ] = -( c_lines_per_group );
33 if( loop_ooo [ load_index ] == 5)
34 range_ooo_id [ load_index ] = c_lines_per_group -1;
35 seq_id_index [ load_index ] = ( seq_id_index [ load_index ] +
36 range_ooo_id [ load_index ])%( inflight_loads [ load_index ]. seq_ids .size ());
37 if( loop_ooo [ load_index ] > 5)
38 seq_id_index [ load_index ] = 0;
39 end
40 loop_ooo [ load_index ] += 1;
41 end

It is possible to see the handling of the element id sent by Avispado. In this
case the order of the ids is manipulated, however, this will not cause an error
as the final result will be the same. In this way it is possible to stimulate the
retry mechanism sending all the elements for the same position into the Load
Buffer. There is also another version for the out-of-order retry. Those modalities
can be configured for each test, and so randomized. In this way, they can be
implemented in the automatic tests.
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3.3 Considerations

During the first couple of months of work, we have better defined the specifi-
cations and developed the tools to test the design. The results were still poor,
because the verification effort is slow in the first phases, when the tools are not
stable nor complete. A nightly testing method was already being created by the
BSC Verification Team, using the servers to run up to 50 long simulations per
night. The number of instructions was variable and depended on the complex-
ity. When the tools, such as assertions and assumptions, were ready, they were
implemented into the night run system. This allowed to ensure the assumptions
validity and to test the design against the assertions. Some results were coming
up, but it was still not enough. The assertions and assumptions were tested using
formal tools. A scoreboard was implemented for the LMU and scoreboard-like
assertions were implemented for the LB. This helped a lot, because a general
result for the submodule was then available. This meant that it was easier to
discriminate whether the problem was in the logic part or into the interface one.

A relevant part of the bugs found during the period of this thesis was dis-
covered using directly the checkers. The 40% of the total load-related problems
were spotted with the contribution of this work. Almost the 80% of those errors
were found using assertions, the rest of them studying and formally testing the
specifications. Considering only the Load Management Unit, up to the 56% of
the errors were spotted using the UVM structure, the assertions and the spec-
ification review. About 45% of the bugs were found only using checkers. The
expected value was about the 35% [11]. In this case the number was higher
because of the scoreboard implemented as an assertion.

In Figure 3.2 it is represented the distribution of the errors found by the
Verification Team, the Design Team and the personal contribution.
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Figure 3.2. Found bugs

All the bugs found can be grouped in three categories: Synthesis, these are
problems related to unconnected wires uninstantiated logic; Waveform and spec-
ifications analysis, these are all the bugs found simply analyzing the waveform
or the specifications, tracing back the error, starting from a wrong result of the
VPU; the Checkers, in this category there are all the bugs directly found using
assertions and assumptions.

As displayed, not all the "checkers" errors were found using the tools created in
this work, because some of them were spotted using assertions on the interfaces
developed by the Verification Team.
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Conclusions

4.1 Conclusions

This thesis has shown all the efforts to verify the behaviour of some DUTs, in
particular for the load operations.

Analyzing the results obtained with the Load Management Unit, it is pos-
sible to understand why it is crucial to have a good Verification Plan. It was
used to test all the specifications and in this way to test their robustness. A
detailed Verification Plan enables to find some bugs in many different cases and,
moreover, it was helping defining an high level model, in order to eventually
create a scoreboard. In particular when the design is simple the usage of the
scoreboard becomes very useful. In this thesis the scoreboard was created for
the LMU but not for the LB, otherwise it would have required a verification
process on the scoreboard itself. Scoreboard-like assertions were then created to
test the results. However, these assertions are not testing the difficult cases, so
it is very hard for them to find an hidden bug. But it is still possible to improve
them, creating a complete scoreboard. In fact, all the code created, was created
following the philosophy of re-usability and modularity. When performing some
long random tests, some blind spots were still present, because the randomness
needs a lot of time to reach all the corner cases. That is the reason why a Test
Plan was necessary, as well as its capability to define the design behaviour in
difficult cases.
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The Formal tool has been used with the sole purpose of assuring the assump-
tions and the assertions were formulate correctly. Even though it was too early
to apply different usage of this tool in this thesis, it is important to mention that
there is the chance to use it for other aims, such as an optimization of the model
using mathematical equivalence.

As a final consideration an estimation on the bugs found was done: ~40% of
the load related problems were spotted with the work done in this thesis. In partic-
ular, up to the 55% of the errors on the Load Management Unit were spotted using
the UVM structure, the assertions and the specification review. This confirms
the importance of advanced techniques for the verification process. Moreover, all
the tools created are still in use in the current development of the EPI project.
This will allow further discoveries on bugs and missing specifications.

4.2 Future developments
Regarding the verification process, there is still some space for future develop-
ments. In particular the next steps would be to complete the Verification Plan
and add assertions and assumptions for all the submodules. It would also be
useful to have a scoreboard for each submodule and to complete the one for the
Load Buffer. Formal verification could also be used to test all the VPU and
then optimize the design in order to have less logic and so less errors. Finally, it
would be more productive to implement more coverage controls. This will allow
to better guide the process and to avoid blind spots.

Considering the project in its entirety, it is now important to catch up with the
specifications that are being updated by RISC-V. In this way it will be possible
to provide an innovative VPU.
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Appendix A

Appendix

A.1 Checkers

A.1.1 Load Buffer

1 // ‘define FORMAL // please comment this when performing the Functional
Verification

2

3 import EPI_pkg ::*;
4

5 localparam TADDR_WIDTH_LOC = 8;
6 localparam BANK_IDX_SZ = ( N_BANKS == 1) ?1: $clog2 ( N_BANKS );
7 localparam MAX_LB_DELAY = $;
8

9 bind LoadBuffer LoadBuffer_checker bind_LoadBuffer_checker (.*);
10

11

12

13 module LoadBuffer_checker
14 (
15 input clk_i ,
16 input rsn_i ,
17 input load_req_i ,
18 input [SB_WIDTH -1:0] load_sb_id_i , // IT IS

POSSIBLE THAT WE HAVE TO MANAGE TWO LOADS IN PARALLEL
19 input load_masked_i ,
20 input [SEW_WIDTH -2:0] load_sew_i ,
21 input lmu_dvalid_load_i ,
22 input [ DATA_PATH_WIDTH -1:0] lmu_data_i ,
23 input [ MASK_BANK_WORD -1:0] lmu_enable_i ,
24 input [SB_WIDTH -1:0] lmu_sb_id_i , //

sb_id corresponding to the data received in lmu_dvalid_load_i
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25 input [ $clog2 ( MASK_BANK_WORD ) -1:0] lmu_min_el_id_i ,
// element_id corresponding to the data received in

lmu_dvalid_load_i
26 input [ MASK_BANK_WORD -1:0][ EL_ID_WIDTH -1:0] lmu_el_id_i , //

element_id corresponding to the data received in lmu_dvalid_load_i
27 input fsm_read_en_lbuf_i ,

// this signal comes from main FSM WB state (in order to be able to
read data from the buffers in MEM state )

28 input fsm_mem_write_en_i , //
this signal indicates that we ’re in FSM MEM state so we can write

in the VRF
29 input [ VADDR_WIDTH -1:0] load_addr_i ,
30 input [1:0][ TADDR_WIDTH_LOC -1:0] load_addr_trans_i ,
31 input memop_sync_end_i ,
32 input [SB_WIDTH -1:0] memop_sb_id_i , // sb_id

of the memop_sync_end , identifies which load operation is
finishing !

33 input load_write_en_rf_o , //
write enable to the register file

34 input load_gnt_o ,
35 input load_valid_o ,

// indicates that the load operation was completed
successfully

36 input [SB_WIDTH -1:0] load_sb_id_o ,
37 input [ VADDR_WIDTH -1:0] load_valid_addr_o ,
38 input load_masked_o ,
39 input load_ready_o ,
40 input reg [ N_BANKS * DATA_PATH_WIDTH -1:0] load_data_o ,
41 input reg [N_BANKS -1:0][ MASK_BANK_WORD -1:0] load_data_en_o , // TODO

TBD the final interface
42 input [ VADDR_WIDTH -1:0] load_addr_o ,
43 input load_inflight_o ,
44 input [1:0][ TADDR_WIDTH_LOC -1:0] load_addr_trans_o ,
45 input kill_i ,
46 input load_ack_i ,
47 input [SB_WIDTH -1:0] load_ack_sb_id_i ,
48 input [ CSR_VLEN_START -1:0] vstart_self_i ,
49 input [ CSR_VLEN_START -1:0] vstart_next_i ,
50 input reg [ CSR_VLEN_START -1:0] vstart_self_o ,
51 input reg [ CSR_VLEN_START -1:0] vstart_next_o ,
52 input reg retry_self_o ,
53 input reg retry_next_o ,
54 input reg [SB_WIDTH -1:0] retry_sb_id_o
55 );
56

57 // ////////////////////////////////////////////////////
58 // ////////////////// variables ///////////////////////
59 // ////////////////////////////////////////////////////
60 typedef struct {
61 bit [SB_WIDTH -1:0] sb_id ;
62 bit done;
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63 bit [SEW_WIDTH -2:0] sew;
64 bit asked_for_retry ;
65 bit now_granted ;
66 } granted_load ;
67

68

69 granted_load fifo[1:0];
70 int num_gnt ;
71 int num_load_completed ;
72 int num_ended ;
73 bit [SB_WIDTH -1:0] sb_id0 ;
74 bit [SB_WIDTH -1:0] sb_id1 ;
75 bit ng_0;
76 bit ng_1;
77 bit done0 ;
78 bit done1 ;
79

80

81 // ////////////////////////////////////////////////////
82 // /////////////////// processes ////////////////////////
83 // ////////////////////////////////////////////////////
84

85 always_comb begin
86 assign ng_0 = fifo[0]. now_granted ;
87 assign ng_1 = fifo[1]. now_granted ;
88 assign sb_id0 = fifo[0]. sb_id ;
89 assign sb_id1 = fifo[1]. sb_id ;
90 assign done0 = fifo[0].done;
91 assign done1 = fifo[1].done;
92 end
93

94 initial begin
95 fifo[0].done = 1;
96 fifo[0]. sb_id = 20; // we have to initialize it to a value that cannot

be in input , to avoid to read the wrong SEW and STRIDE from the
wrong fifo cell

97 fifo[0].sew = 0;
98 fifo[0]. asked_for_retry = 0;
99 fifo[0]. now_granted = 0;

100 fifo[1].done = 1;
101 fifo[1]. sb_id = 20;
102 fifo[1].sew = 0;
103 fifo[1]. asked_for_retry = 0;
104 fifo[1]. now_granted = 0;
105 end
106

107

108

109 // for each load_gnt_o there is a fell( load_req_i )
110 always @( negedge clk_i or negedge rsn_i ) begin
111

78



Appendix

112 if ( ! rsn_i || kill_i ) begin
113 num_gnt = 0;
114 num_load_completed = 0;
115 num_ended = 0;
116 fifo[0].done = 1;
117 fifo[0]. sb_id = 20;
118 fifo[0].sew = 0;
119 fifo[0]. asked_for_retry = 0;
120 fifo[0]. now_granted = 0;
121 fifo[1].done = 1;
122 fifo[1]. sb_id = 20;
123 fifo[1].sew = 0;
124 fifo[1]. asked_for_retry = 0;
125 fifo[1]. now_granted = 0;
126 end
127 else begin
128 fifo[0]. now_granted = 0;
129 fifo[1]. now_granted = 0;
130 if ( load_gnt_o ) begin
131 if ( fifo[0].done ) begin
132 fifo[0]. sb_id = load_sb_id_i ;
133 fifo[0].done = 0;
134 fifo[0].sew = load_sew_i ;
135 fifo[0]. asked_for_retry = 0;
136 fifo[0]. now_granted = 1;
137 end
138 else if ( fifo[1].done ) begin
139 fifo[1]. sb_id = load_sb_id_i ;
140 fifo[1].done = 0;
141 fifo[1].sew = load_sew_i ;
142 fifo[1]. asked_for_retry = 0;
143 fifo[1]. now_granted = 1;
144 end
145 end
146 if ( load_ack_i ) begin
147 if ( (fifo[0]. sb_id == load_ack_sb_id_i ) && !fifo[0].

done ) begin
148 fifo[0].done = 1;
149 num_gnt = num_gnt - 1 ;
150 num_load_completed = num_load_completed - 1 ;
151 num_ended = num_ended - 1 ;
152 end
153 else if ( (fifo[1]. sb_id == load_ack_sb_id_i ) && !fifo[

1].done ) begin
154 fifo[1].done = 1;
155 num_gnt = num_gnt - 1 ;
156 num_load_completed = num_load_completed - 1 ;
157 num_ended = num_ended - 1 ;
158 end
159 end
160 if ( retry_self_o || retry_next_o ) begin
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161 if ( (fifo[0]. sb_id == retry_sb_id_o ) && !fifo[0].done
) begin

162 fifo[0]. asked_for_retry = 1;
163 end
164 else if ( (fifo[1]. sb_id == retry_sb_id_o ) && !fifo[1].

done ) begin
165 fifo[1]. asked_for_retry = 1;
166 end
167 end
168

169 num_gnt = num_gnt + load_gnt_o ;
170 num_load_completed = num_load_completed + load_valid_o ;
171 if ( memop_sync_end_i && ( ( ( memop_sb_id_i == fifo[0]. sb_id ) &&

!fifo[0].done ) | ( ( memop_sb_id_i == fifo[1]. sb_id ) && !fifo
[1].done ) ) ) begin

172 num_ended = num_ended + 1 ;
173 end
174

175 end
176

177 end
178

179

180

181 // ////////////////////////////////////////////////////
182 // /////////////////// properties ///////////////////////
183 // ////////////////////////////////////////////////////
184

185 ‘ifdef FORMAL
186

187 // vp0 .0.0
188 property p_load_req_i_sync ;
189 @( negedge clk_i )
190 1 |=> @( posedge clk_i ) $stable ( load_req_i );
191 endproperty : p_load_req_i_sync
192

193 // vp 0.0.1
194 property p_memop_sync_end_i_sync ;
195 @( negedge clk_i )
196 1 |=> @( posedge clk_i ) $stable ( memop_sync_end_i );
197 endproperty : p_memop_sync_end_i_sync
198

199 // vp0 .0.2
200 property p_load_ack_i_sync ;
201 @( negedge clk_i )
202 1 |=> @( posedge clk_i ) $stable ( load_ack_i );
203 endproperty : p_load_ack_i_sync
204

205 ‘endif
206

207 // AVISPADO IF ///////////////////
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208 // vp 1.0.1
209 property p_mem_sync_end_i ;
210 @( posedge clk_i )
211 memop_sync_end_i |-> ! $isunknown ( memop_sb_id_i );
212 endproperty : p_mem_sync_end_i
213

214 // vp 1.0.2
215 property p_valid_after_sync_end ;
216 bit [SB_WIDTH -1 : 0] valid_id ;
217 @( posedge clk_i )
218 ( memop_sync_end_i && ( (( memop_sb_id_i == fifo[0]. sb_id ) && !fifo[0].

done) || (( memop_sb_id_i == fifo[1]. sb_id ) && !fifo[1].done)) ) ##0
(1, valid_id = memop_sb_id_i ) |-> ##[1:$] load_valid_o && (
load_sb_id_o == valid_id );

219 endproperty : p_valid_after_sync_end
220

221 // vp 1.0.3
222 property p_memop_sync_end_num ;
223 @( negedge clk_i )
224 num_ended == 2 |-> ##1 ! memop_sync_end_i || ( memop_sync_end_i && ( ( (

memop_sb_id_i != fifo[0]. sb_id ) || ( ( memop_sb_id_i == fifo[0]. sb_id )
&& fifo[0].done ) )&& ( ( memop_sb_id_i != fifo[1]. sb_id ) || ( (
memop_sb_id_i == fifo[1]. sb_id ) && fifo[1].done) ) ) ) ;// implement
the memory to store the ids plz

225 endproperty : p_memop_sync_end_num
226

227 // vp 1.0.4
228 property p_load_ack_i_num ;
229 @( posedge clk_i )
230 num_ended == 0 |-> ! load_ack_i || ( load_ack_i && ( ( ( load_ack_sb_id_i

!= fifo[0]. sb_id ) || ( ( load_ack_sb_id_i == fifo[0]. sb_id ) && fifo[0].
done ) )&& ( ( load_ack_sb_id_i != fifo[1]. sb_id ) || ( (
load_ack_sb_id_i == fifo[1]. sb_id ) && fifo[1].done) ) ) ) ;//
implement the memory to store the ids plz

231 endproperty : p_load_ack_i_num
232

233 // vp 1.0.5
234 property p_unique_request ;
235 @( posedge clk_i )
236 load_req_i |-> ( ( load_sb_id_i != fifo[0]. sb_id ) || ( ( load_sb_id_i == fifo

[0]. sb_id ) && (fifo[0]. now_granted || fifo[0].done) ) ) && ( (
load_sb_id_i != fifo[1]. sb_id ) || (( load_sb_id_i == fifo[1]. sb_id ) && (
fifo[1]. now_granted || fifo[1].done) ) ) ;

237 endproperty : p_unique_request
238

239 // LMU IF ////////////////////////
240 // vp 1.1.1
241 property p_lmu_valid_load_i ;
242 @( posedge clk_i )
243 lmu_dvalid_load_i |->
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244 ! $isunknown ( load_req_i ) && ! $isunknown ( load_sb_id_i ) && ! $isunknown (
load_masked_i ) && ! $isunknown ( load_sew_i ) && ! $isunknown (
lmu_dvalid_load_i ) && ! $isunknown ( lmu_enable_i ) && ! $isunknown (
lmu_sb_id_i ) && ! $isunknown ( lmu_min_el_id_i ) && ! $isunknown (
lmu_el_id_i ) && ! $isunknown ( fsm_read_en_lbuf_i ) && ! $isunknown (
fsm_mem_write_en_i ) && ! $isunknown ( load_addr_i ) && ! $isunknown (
load_addr_trans_i ) && ! $isunknown ( memop_sync_end_i ) && ! $isunknown (
memop_sb_id_i ) && ! $isunknown ( load_ack_i ) && ! $isunknown (
load_ack_sb_id_i ) && ! $isunknown ( vstart_self_i ) && ! $isunknown (
vstart_next_i );

245

246 endproperty : p_lmu_valid_load_i
247

248 // vp 1.1.2
249 property p_enable_coherence ;
250 int sew;
251 @( posedge clk_i )
252 ( lmu_dvalid_load_i , sew= load_sew_i ) |-> is_coherent ( lmu_enable_i ,sew);
253 endproperty : p_enable_coherence
254

255

256 // MQ IF /////////////////////////
257 // vp 1.2.1
258 property p_load_request_i ;
259 @( posedge clk_i )
260 load_req_i |-> ! $isunknown ( load_sb_id_i ) && ! $isunknown ( load_masked_i )

&& ! $isunknown ( load_sew_i ) && ! $isunknown ( load_addr_i ) && !
$isunknown ( load_addr_trans_i ) && ! $isunknown ( lmu_min_el_id_i ) && !
$isunknown ( lmu_el_id_i );

261 endproperty : p_load_request_i
262

263 // vp 1.2.2
264 property p_req_after_gnt ;
265 @( posedge clk_i )
266 $fell ( load_req_i ) |-> $fell ( load_gnt_o );
267 endproperty : p_req_after_gnt
268

269 // vp 1.2.3
270 property p_gnt_after_req ;
271 @( posedge clk_i )
272 $rose ( load_req_i ) |-> $rose ( load_req_i )[=1] ##0 load_gnt_o ;
273 endproperty : p_gnt_after_req
274

275

276 // vp 1.2.4
277 property p_gnt_beh ;
278 @( posedge clk_i )
279 load_gnt_o |-> ##1 (! load_gnt_o ) || ( load_gnt_o && num_gnt == 1) ; // (!

load_gnt_o || num_gnt == 1) ;// or ##1 ! load_gnt_o ;
280 endproperty : p_gnt_beh
281
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282 // vp 1.2.5
283 property p_num_gnt ;
284 @( posedge clk_i )
285 load_gnt_o || load_ack_i |-> num_gnt < 3 ;
286 endproperty : p_num_gnt
287

288

289

290 // vp 1.2.6
291 property p_num_req_end ;
292 @( posedge clk_i )
293 ( num_gnt == 0) |-> ! load_ack_i || ( load_ack_i && ( load_ack_sb_id_i !=

fifo[0]. sb_id || ( load_ack_sb_id_i == fifo[0]. sb_id && fifo[0].done)
) && ( load_ack_sb_id_i != fifo[1]. sb_id || ( load_ack_sb_id_i == fifo[
1]. sb_id && fifo[1].done) ) ) ;

294 endproperty : p_num_req_end
295

296 // FSM IF ////////////////////////
297 // vp 1.3.1
298 property p_read_write_en ;
299 @( posedge clk_i )
300 fsm_read_en_lbuf_i || fsm_mem_write_en_i |-> !( fsm_read_en_lbuf_i &&

fsm_mem_write_en_i );
301 endproperty : p_read_write_en
302

303 // vp 1.3.2
304 property p_write_after_read ;
305 @( posedge clk_i )
306 fsm_read_en_lbuf_i ##1 load_ready_o |-> fsm_mem_write_en_i ;
307 endproperty : p_write_after_read
308

309

310 // CU IF /////////////////////////
311 // vp 1.4.1
312 property p_cu_ack ;
313 bit [SB_WIDTH -1:0] ID;
314 @( posedge clk_i )
315 load_valid_o ##0 (1, ID = load_sb_id_o ) |-> ##[1:$] load_ack_i && (

load_ack_sb_id_i == ID);
316 endproperty : p_cu_ack
317

318 // vp 1.4.2
319 property p_cu_ack_num ;
320 @( posedge clk_i )
321 load_valid_o || load_ack_i |-> num_load_completed < 3 ;
322 endproperty : p_cu_ack_num
323

324

325 // vp 1.4.3
326 property p_num_load_completed ;
327 @( posedge clk_i )
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328 ( num_load_completed == 0) |-> ! load_ack_i || ( load_ack_i && (
load_ack_sb_id_i != fifo[0]. sb_id || ( load_ack_sb_id_i == fifo[0]. sb_id

&& fifo[0].done) ) && ( load_ack_sb_id_i != fifo[1]. sb_id || (
load_ack_sb_id_i == fifo[1]. sb_id && fifo[1].done) ) ) ;

329 endproperty : p_num_load_completed
330

331

332 // VRF IF ////////////////////////
333 // vp 1.5.1
334 property p_output_data_known ;
335 @( posedge clk_i )
336 load_write_en_rf_o |-> ! $isunknown ( load_addr_o ) && ! $isunknown (

load_addr_trans_o ) && ! $isunknown ( load_data_o ) && ! $isunknown (
load_data_en_o );

337 endproperty : p_output_data_known
338

339 // vp 1.5.2
340 property p_write_en_rf ;
341 @( posedge clk_i )
342 fsm_mem_write_en_i && load_ready_o |-> load_write_en_rf_o ;
343 endproperty : p_write_en_rf
344

345 // vp 1.5.3
346 property p_load_valid_addr ;
347 bit [ VADDR_WIDTH -1:0] load_addr ;
348 @( posedge clk_i )
349 ( $rose ( load_req_i ), load_addr = load_addr_i ) |-> ##[1:$] $rose (

load_valid_o ) && load_valid_addr_o == load_addr ;
350 endproperty : p_load_valid_addr
351

352

353

354 // VL IF ////////////////////////
355 // vp 1.6.1
356 property p_load_inflight_o ;
357 @( negedge clk_i )
358 $rose ( load_inflight_o ) || $fell ( load_inflight_o ) |-> ( load_inflight_o

&& num_gnt >0) || (! load_inflight_o && num_gnt ==0);
359 endproperty : p_load_inflight_o
360

361 // vp 1.6.2
362 property p_load_ready_o ;
363 @( posedge clk_i )
364 load_inflight_o && lmu_dvalid_load_i |-> ##[0:$] fsm_read_en_lbuf_i

##1 load_ready_o ;
365 endproperty : p_load_ready_o
366

367 // vp 1.6.3
368 // vp 1.6.3.0
369 property p_data_corruption_64 ;
370 logic [ DATA_PATH_WIDTH -1:0] data_i ;
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371 logic [SEW_WIDTH -2:0] sew_i ;
372 logic [ EL_ID_WIDTH -1:0] el_id_i ;
373 logic [ MASK_BANK_WORD -1:0] enable_i ;
374 logic [SB_WIDTH -1:0] sb_id_i ;
375

376 @( posedge clk_i )
377

378 ( lmu_dvalid_load_i , data_i = lmu_data_i , sb_id_i = lmu_sb_id_i ,
el_id_i = lmu_el_id_i [0], enable_i = lmu_enable_i ) ##0

379 (( lmu_sb_id_i == fifo[0]. sb_id && !fifo[0].done , sew_i = fifo[0
].sew) or ( lmu_sb_id_i == fifo[1]. sb_id && !fifo[1].done ,
sew_i = fifo[1].sew)) ##0

380 sew_i == 2’b11
381 |-> first_match ( (1) [*0:$] ##0 ( ( load_write_en_rf_o && (

load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 63 -: 64] ==
data_i )) ||

382 ! enable_i [0] ||
383 ( load_ack_i && ( sb_id_i == load_ack_sb_id_i )) ||
384 ( ( lmu_sb_id_i == fifo[0]. sb_id && fifo[0]. asked_for_retry && !

fifo[0].done) ||
385 ( lmu_sb_id_i == fifo[1]. sb_id && fifo[1]. asked_for_retry && !

fifo[1].done) )))
386 |-> !( load_ack_i && ( sb_id_i == load_ack_sb_id_i ));
387 endproperty : p_data_corruption_64
388

389

390

391 // vp 1.6.3.1
392 property p_data_corruption_32 (i_32);
393 logic [ DATA_PATH_WIDTH -1:0] data_i ;
394 logic [SEW_WIDTH -2:0] sew_i ;
395 logic [ MASK_BANK_WORD -1:0][ EL_ID_WIDTH -1:0] el_id_i ;
396 logic [ MASK_BANK_WORD -1:0] enable_i ;
397 logic [SB_WIDTH -1:0] sb_id_i ;
398

399 @( posedge clk_i )
400

401 ( lmu_dvalid_load_i , data_i = lmu_data_i , sb_id_i = lmu_sb_id_i ,
el_id_i = lmu_el_id_i [i_32 *4], enable_i = lmu_enable_i )

##0
402 ((( lmu_sb_id_i == fifo[0]. sb_id ) && (fifo[0].done == 0) , sew_i

= fifo[0].sew) or (( lmu_sb_id_i == fifo[1]. sb_id ) && (fifo[
1].done == 0) , sew_i = fifo[1].sew)) ##0

403 sew_i == 2’b10
404 |-> first_match ( (1) [*0:$] ##0 ( ( load_write_en_rf_o && ( (

load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 63 -: 32] ==
data_i [i_32 *32 + 31 -: 32]) ||

405 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 31 -: 32] ==
data_i [i_32 *32 + 31 -: 32]) )) ||

406 ! enable_i [i_32 *4] ||
407 ( load_ack_i && ( sb_id_i == load_ack_sb_id_i )) ||
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408 ( ( lmu_sb_id_i == fifo[0]. sb_id && fifo[0]. asked_for_retry && !
fifo[0].done) ||

409 ( lmu_sb_id_i == fifo[1]. sb_id && fifo[1]. asked_for_retry && !
fifo[1].done) )))

410 |-> !( load_ack_i && ( sb_id_i == load_ack_sb_id_i ));
411

412 endproperty : p_data_corruption_32
413

414 // vp 1.6.3.2
415 property p_data_corruption_16 (i_16);
416 logic [ DATA_PATH_WIDTH -1:0] data_i ;
417 logic [SEW_WIDTH -2:0] sew_i ;
418 logic [ MASK_BANK_WORD -1:0][ EL_ID_WIDTH -1:0] el_id_i ;
419 logic [ MASK_BANK_WORD -1:0] enable_i ;
420 logic [SB_WIDTH -1:0] sb_id_i ;
421

422 @( posedge clk_i )
423

424 ( lmu_dvalid_load_i , data_i = lmu_data_i , sb_id_i = lmu_sb_id_i ,
el_id_i = lmu_el_id_i [i_16 *2], enable_i = lmu_enable_i )

##0
425 ((( lmu_sb_id_i == fifo[0]. sb_id ) && (fifo[0].done == 0) , sew_i

= fifo[0].sew) or (( lmu_sb_id_i == fifo[1]. sb_id ) && (fifo[
1].done == 0) , sew_i = fifo[1].sew)) ##0

426 sew_i == 2’b01
427 |-> first_match ( (1) [*0:$] ##0 ( ( load_write_en_rf_o && (

( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 63 -: 16
] == data_i [i_16 *16 + 15 -: 16]) ||

428 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 47 -: 16] ==
data_i [i_16 *16 + 15 -: 16]) ||

429 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 31 -: 16] ==
data_i [i_16 *16 + 15 -: 16]) ||

430 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 15 -: 16] ==
data_i [i_16 *16 + 15 -: 16]) ) ) ||

431 ! enable_i [i_16 *2] ||
432 ( load_ack_i && ( sb_id_i == load_ack_sb_id_i )) ||
433 ( ( lmu_sb_id_i == fifo[0]. sb_id && fifo[0]. asked_for_retry && !

fifo[0].done) ||
434 ( lmu_sb_id_i == fifo[1]. sb_id && fifo[1]. asked_for_retry && !

fifo[1].done)))
435 |-> !( load_ack_i && ( sb_id_i == load_ack_sb_id_i ));
436

437 endproperty : p_data_corruption_16
438

439 // vp 1.6.3.3
440 property p_data_corruption_8 (i_8);
441 logic [ DATA_PATH_WIDTH -1:0] data_i ;
442 logic [SEW_WIDTH -2:0] sew_i ;
443 logic [ MASK_BANK_WORD -1:0][ EL_ID_WIDTH -1:0] el_id_i ;
444 logic [ MASK_BANK_WORD -1:0] enable_i ;
445 logic [SB_WIDTH -1:0] sb_id_i ;
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446

447 @( posedge clk_i )
448

449 ( lmu_dvalid_load_i , data_i = lmu_data_i , sb_id_i = lmu_sb_id_i ,
el_id_i = lmu_el_id_i [i_8], enable_i = lmu_enable_i ) ##0

450 ((( lmu_sb_id_i == fifo[0]. sb_id ) && (fifo[0].done == 0) , sew_i
= fifo[0].sew) or (( lmu_sb_id_i == fifo[1]. sb_id ) && (fifo[
1].done == 0) , sew_i = fifo[1].sew)) ##0

451 sew_i == 2’b00
452 |-> first_match ( (1) [*0:$] ##0 ( ( load_write_en_rf_o && (

( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 63 -: 8]
== data_i [i_8 *8 + 7 -: 8]) ||

453 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 55 -: 8] ==
data_i [i_8 *8 + 7 -: 8]) ||

454 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 47 -: 8] ==
data_i [i_8 *8 + 7 -: 8]) ||

455 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 39 -: 8] ==
data_i [i_8 *8 + 7 -: 8]) ||

456 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 31 -: 8] ==
data_i [i_8 *8 + 7 -: 8]) ||

457 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 23 -: 8] ==
data_i [i_8 *8 + 7 -: 8]) ||

458 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 15 -: 8] ==
data_i [i_8 *8 + 7 -: 8]) ||

459 ( load_data_o [ get_el_bank (el_id_i , sew_i )*64 + 7 -: 8] ==
data_i [i_8 *8 + 7 -: 8]) ) ) ||

460 ! enable_i [i_8] ||
461 ( load_ack_i && ( sb_id_i == load_ack_sb_id_i )) ||
462 ( ( lmu_sb_id_i == fifo[0]. sb_id && fifo[0]. asked_for_retry && !

fifo[0].done) ||
463 ( lmu_sb_id_i == fifo[1]. sb_id && fifo[1]. asked_for_retry && !

fifo[1].done) )))
464 |-> !( load_ack_i && ( sb_id_i == load_ack_sb_id_i ));
465

466

467 endproperty : p_data_corruption_8
468

469

470

471 // RSN IF ///////////////////////
472 // vp 1.7.1
473 property p_rsn_output ;
474 @( posedge clk_i )
475 ! rsn_i |-> ! load_write_en_rf_o && ! load_gnt_o && ! load_valid_o && !

load_inflight_o && retry_self_o == ’0 && retry_next_o == ’0;
476 endproperty : p_rsn_output
477

478 // vp 1.7.2
479 property p_rsn_input ;
480 @( posedge clk_i )
481 ! rsn_i |-> lmu_enable_i == ’0 && ! load_req_i && ! fsm_read_en_lbuf_i ;
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482 endproperty : p_rsn_input
483

484 // vp 1.7.3
485 property p_kill_input ;
486 @( posedge clk_i )
487 kill_i |-> ! load_req_i ;
488 endproperty : p_kill_input
489

490

491

492 // /////////////////////////////////////////////////////
493 // ///////////////// assert & assume /////////////////////
494 // /////////////////////////////////////////////////////
495

496 // FORMAL ASSUMPTION //////////////
497

498 ‘ifdef FORMAL
499

500 // vp 0.0.0
501 a_load_req_i_sync : assume property ( disable iff (! rsn_i ||

kill_i ) p_load_req_i_sync ) else $error (" load_req_i changed on the
negedge ");

502

503 // vp 0.0.1
504 a_memop_sync_end_i_sync : assume property ( disable iff (! rsn_i ||

kill_i ) p_memop_sync_end_i_sync ) else $error (" load_req_i changed
on the negedge ");

505

506 // vp 0.0.2
507 a_load_ack_i_sync : assume property ( disable iff (! rsn_i ||

kill_i ) p_load_ack_i_sync ) else $error (" load_req_i changed on the
negedge ");

508

509 ‘endif
510

511 // AVISPADO IF ///////////////////
512 // vp 1.0.1
513 a_mem_sync_end_i : assume property ( disable iff (! rsn_i || kill_i )

p_mem_sync_end_i ) else $error (" unknown memop scoreboard id on
memop_sync_end_i asserted ");

514

515 // vp 1.0.2
516 a_valid_after_sync_end : assert property ( disable iff (! rsn_i || kill_i )

p_valid_after_sync_end ) else $error ("no load_valid after a sync_end ");
517

518

519 // vp 1.0.3
520 a_memop_sync_end_num : assume property ( disable iff (! rsn_i || kill_i )

p_memop_sync_end_num ) else $error ("too much memop_sync_end ");
521

522

88



Appendix

523 // vp 1.0.4
524 a_load_ack_i_num : assume property ( disable iff (! rsn_i || kill_i )

p_load_ack_i_num ) else $error ("too much memop_sync_end ");
525

526 // vp 1.0.5
527 a_unique_request : assume property ( disable iff (! rsn_i || kill_i )

p_unique_request ) else $error (" requested an already issued load");
528

529 // LMU IF ////////////////////////
530 // vp 1.1.1
531 a_lmu_valid_load_i : assume property ( disable iff (! rsn_i || kill_i )

p_lmu_valid_load_i ) else $error (" unknown input on mem_dvalid_load_i
asserted ");

532

533 // vp 1.1.2
534 a_enable_coherence : assume property ( disable iff (! rsn_i || kill_i )

p_enable_coherence ) else $error (" wrong lmu_enable_i to LB");
535

536 // MQ IF /////////////////////////
537 // vp 1.2.1
538 a_load_request_i : assume property ( disable iff (! rsn_i || kill_i )

p_load_request_i ) else $error (" unknown load_inputs on load_req_i asserted "
);

539

540 // vp 1.2.2
541 a_req_after_gnt : assume property ( disable iff (! rsn_i || kill_i )

p_req_after_gnt ) else $error ("req was 1 after a gnt");
542

543 // vp 1.2.3
544 a_gnt_after_req : assert property ( disable iff (! rsn_i || kill_i )

p_gnt_after_req ) else $error ("no gnt after a req");
545

546 // vp 1.2.4
547 a_gnt_beh : assert property ( disable iff (! rsn_i || kill_i )

p_gnt_beh ) else $error ("gnt lasted more than 1 clock cycle ");
548

549 // vp 1.2.5
550 a_num_gnt : assert property ( disable iff (! rsn_i || kill_i )

p_num_gnt ) else $error ("a load_gnt_o was asserted with no enought requests
");

551

552 // vp 1.2.6
553 a_num_req_end : assume property ( disable iff (! rsn_i || kill_i )

p_num_req_end ) else $error ("too many mem_sync_ends or too many load_req_i "
);

554

555

556 // FSM IF ////////////////////////
557 // vp 1.3.1
558 a_read_write_en : assume property ( disable iff (! rsn_i || kill_i )

p_read_write_en ) else $error ("read and write enables at the same time");
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559

560 // vp 1.3.2
561 a_write_after_read : assume property ( disable iff (! rsn_i || kill_i )

p_write_after_read ) else $error ("no write after a read");
562

563

564 // CU IF /////////////////////////
565 // vp 1.4.1
566 a_cu_ack : assume property ( disable iff (! rsn_i || kill_i )

p_cu_ack ) else $error (" wrong handshake of load_valid with load_ack ");
567

568 // vp 1.4.2
569 a_cu_ack_num : assert property ( disable iff (! rsn_i || kill_i )

p_cu_ack_num ) else $error (" load_ack without a load_valid_o ");
570

571 // vp 1.4.3
572 a_num_load_completed : assume property ( disable iff (! rsn_i || kill_i )

p_num_load_completed ) else $error ("to many load_ack_i ");
573

574 // VRF IF ////////////////////////
575 // vp 1.5.1
576 a_output_data_known : assert property ( disable iff (! rsn_i || kill_i )

p_output_data_known ) else $error (" unknown outputs on load_write_en_rf_o ");
577

578 // vp 1.5.2
579 a_write_en_rf : assert property ( disable iff (! rsn_i || kill_i )

p_write_en_rf ) else $error (" load_write_en_rf_o when a valid load_write was
possible ");

580

581 // vp 1.5.3
582 a_load_valid_addr : assert property ( disable iff (! rsn_i || kill_i )

p_load_valid_addr ) else $error ("load addr is not matching ");
583

584

585 // VL IF ////////////////////////
586 // vp 1.6.1
587 a_load_inflight_o : assert property ( disable iff (! rsn_i || kill_i )

p_load_inflight_o ) else $error (" wrong load_inflight_o ");
588

589 // vp 1.6.2
590 a_load_ready_o : assert property ( disable iff (! rsn_i || kill_i )

p_load_ready_o ) else $error (" ready_o = 0 when a data was into the buffer
during the write ");

591

592 // vp 1.6.3
593 generate
594 // 1.6.3.0
595 a_data_corruption_64 : assert property ( disable iff (! rsn_i || kill_i )

p_data_corruption_64 ) else $error (" data_i didn ’t pass trought the
LB");

596
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597 // 1.6.3.1
598 for ( genvar i_32 = 0; i_32 < 2; i_32 ++)
599 a_data_corruption_32 : assert property ( disable iff (! rsn_i ||

kill_i ) p_data_corruption_32 (i_32)) else $error (" data_i
didn ’t pass trought the LB");

600 // 1.6.3.2
601 for ( genvar i_16 = 0; i_16 < 4; i_16 ++)
602 a_data_corruption_16 : assert property ( disable iff (! rsn_i ||

kill_i ) p_data_corruption_16 (i_16)) else $error (" data_i
didn ’t pass trought the LB");

603 // 1.6.3.3
604 for ( genvar i_8 = 0; i_8 < 8; i_8 ++)
605 a_data_corruption_8 : assert property ( disable iff (! rsn_i ||

kill_i ) p_data_corruption_8 (i_8)) else $error (" data_i didn
’t pass trought the LB");

606

607 endgenerate
608

609 // RSN IF ///////////////////////
610 // vp 1.7.1
611 a_rsn_output : assert property ( p_rsn_output ) else $error ("

wrong outputs on reset ");
612

613 // vp 1.7.2
614 a_rsn_input : assume property ( p_rsn_input ) else $error ("

wrong inputs on reset ");
615

616 // vp 1.7.3
617 a_kill_input : assume property ( p_kill_input ) else $error ("

wrong inputs on kill");
618

619

620

621 // /////////////////////////////////////////////////////
622 // ///////////////////// tasks /////////////////////////
623 // /////////////////////////////////////////////////////
624

625

626 // This function computes the bank of an element
627 function [ BANK_IDX_SZ -1:0] get_el_bank ([ EL_ID_WIDTH -1:0] el_id , [SEW_WIDTH -1:0]

sew);
628 case (sew[1:0])
629 SEW64 : get_el_bank =(( el_id / N_LANES )% N_BANKS ); // 0, 1 ... 7 go to bank

0, 8 to 15 to bank 1 ... until 40 -47 that go again to bank 0, etc.
630 SEW32 : get_el_bank =((( el_id > >1)/ N_LANES )% N_BANKS ); // 0 to 15 go to

bank 0, 16 to 31 to bank 1 ... until 80 -95 that go again to bank 0,
etc.

631 SEW16 : get_el_bank =((( el_id > >2)/ N_LANES )% N_BANKS ); // 0 to 31 go to
bank 0, 32 to 63 to bank 1 ... until 160 -191 that go again to bank
0, etc.
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632 SEW8: get_el_bank =((( el_id > >3)/ N_LANES )% N_BANKS ); // 0 to 63 go to
bank 0, 64 to 128 to bank 1 ... until 320 -383 that go again to bank

0, etc.
633 endcase
634 endfunction
635

636 // This function checks the coherence of lmu_enable_i
637 function bit is_coherent ([ MASK_BANK_WORD -1:0] lmu_enable_i , [SEW_WIDTH -1:0] sew

);
638 is_coherent = 0;
639 case (sew[1:0])
640 SEW64 : if( ( lmu_enable_i == ’0) || ( lmu_enable_i == ’1) ) is_coherent =

1;
641 SEW32 : if ( ( ( lmu_enable_i [3:0] == ’0) || ( lmu_enable_i [3:0] == ’1) )

&& ( ( lmu_enable_i [7:4] == ’0) || ( lmu_enable_i [7:4] == ’1) ) )
is_coherent = 1;

642

643 SEW16 : if ( ( ( lmu_enable_i [1:0] == ’0) || ( lmu_enable_i [1:0] == ’1) )
&& ( ( lmu_enable_i [3:2] == ’0) || ( lmu_enable_i [3:2] == ’1) ) && (
( lmu_enable_i [5:4] == ’0) || ( lmu_enable_i [5:4] == ’1) ) && ( (

lmu_enable_i [7:6] == ’0) || ( lmu_enable_i [7:6] == ’1) ) )
is_coherent = 1;

644 SEW8: is_coherent =1;
645 endcase
646 endfunction
647

648

649

650

651

652

653 endmodule : LoadBuffer_checker

A.1.2 Load Management Unit
1 ‘define FUNCTIONAL // comment this when doing formal verification , ( Quest CDC

does not support task)
2

3 import EPI_pkg ::*;
4

5 bind load_management_unit load_management_unit_checker #(
6 . MEM_DATA_WIDTH ( MEM_DATA_WIDTH ),
7 . SEQ_ID_WIDTH ( SEQ_ID_WIDTH ),
8 . MAX_NUMBER_ELEMENTS ( MAX_NUMBER_ELEMENTS ),
9 . AVISPADO_LOAD_MASK_WIDTH ( AVISPADO_LOAD_MASK_WIDTH ),

10 . NUM_LANES ( NUM_LANES )) bind_load_management_unit_checker (.*);
11

12

13

14 module load_management_unit_checker
15 #(
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16 parameter MEM_DATA_WIDTH = 512 ,
17 parameter SEQ_ID_WIDTH = 33,
18 parameter MAX_NUMBER_ELEMENTS = 64,
19 parameter AVISPADO_LOAD_MASK_WIDTH = 64,
20 parameter NUM_LANES = 8
21 )(
22 input clk_i ,
23 input rsn_i ,
24 input kill_i ,
25 input load_granted_i ,
26 input [SB_WIDTH -1:0]

load_granted_sb_id_i ,
27 input

indexed_load_granted_i ,
28 input load_sync_end_i

,
29 input [SB_WIDTH -1:0]

load_sync_end_sb_id_i ,
30 input

load_data_valid_i ,
31 input [ MEM_DATA_WIDTH -1:0] load_data_i ,
32 input [ SEQ_ID_WIDTH -1:0] seq_id_i ,
33 input mask_valid_i ,
34 input [ AVISPADO_LOAD_MASK_WIDTH -1:0] mask_i ,
35 input [SEW_WIDTH -2:0] sew_i , //

SEW (00:8 - 01:16 - 10:32 - 11:64)
36 input signed [ XREG_WIDTH -1:0] stride_i , //

stride in bytes
37 input [ MEM_DATA_WIDTH -1:0] load_data_o ,
38 input load_dvalid_o ,
39 input [ AVISPADO_LOAD_MASK_WIDTH -1:0] mask_o ,
40 input [ MAX_NUMBER_ELEMENTS -1:0] [ EL_ID_WIDTH -1:0] element_ids_o ,
41 input [SB_WIDTH -1:0] sb_id_o ,
42 input [ CSR_VLEN_START -1:0] vstart_self_o ,
43 input [ CSR_VLEN_START -1:0] vstart_next_o ,
44 input [NUM_LANES -1:0][ $clog2 ( MASK_BANK_WORD ) -1:0]

min_element_id_idx_o
45 );
46

47 // ////////////////////////////////////////////////////
48 // ////////////////// variables ///////////////////////
49 // ////////////////////////////////////////////////////
50

51 typedef struct {
52 longint signed STRIDE ;
53 int unsigned SEW;
54 int unsigned sb_id ;
55 bit is_indexed ;
56 bit done;
57 } granted_load ;
58
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59

60 granted_load fifo[1:0];
61 bit is_indexed ;
62 bit sb_correct ;
63 int unsigned SEW;
64 longint signed STRIDE ;
65 int unsigned EL_COUNT ;
66 int unsigned OFFSET ;
67 int unsigned EL_ID ;
68 int unsigned N_ELEMENTS ;
69 int unsigned num_load_inflight ;
70

71 bit [ MEM_DATA_WIDTH -1:0] computed_data_o ;
72 bit [ MEM_DATA_WIDTH -1:0] x_display0 ;
73 bit [ MEM_DATA_WIDTH -1:0] x_display1 ;
74 bit [ MEM_DATA_WIDTH -1:0] x_display2 ;
75 bit [ AVISPADO_LOAD_MASK_WIDTH -1:0] m_result ;
76 bit [ MAX_NUMBER_ELEMENTS -1:0][ EL_ID_WIDTH -1:0] computed_el_id_o ;
77 bit [NUM_LANES -1:0][ $clog2 ( MASK_BANK_WORD ) -1:0] c_min_element_id_idx ;
78 bit [NUM_LANES -1:0][ $clog2 ( MASK_BANK_WORD ) -1:0] c_min_element_id_idx_1 ;
79 bit [NUM_LANES -1:0][ $clog2 ( MASK_BANK_WORD ) -1:0] c_min_element_id_idx_2 ;
80 bit [NUM_LANES -1:0][ $clog2 ( MASK_BANK_WORD ) -1:0] c_min_element_id_idx_3 ;
81 bit [ MEM_DATA_WIDTH -1:0] big_mask ;
82 bit [ AVISPADO_LOAD_MASK_WIDTH -1:0] valid_bytes ;
83 bit [NUM_LANES -1:0] valid_mins ;
84

85 // ////////////////////////////////////////////////////
86 // /////////////////// processes ////////////////////////
87 // ////////////////////////////////////////////////////
88

89

90 initial begin
91 sb_correct = 1;
92 computed_data_o = ’0;
93 fifo[0]. sb_id = 20; // we have to initialize it to a value that cannot

be in input , to avoid to read the wrong SEW and STRIDE from the
wrong fifo cell

94 fifo[1]. sb_id = 20;
95 fifo[1].done = 1;
96 fifo[0].done = 1;
97 num_load_inflight = 0;
98 end
99

100

101 // sew and stride fifo
102 always @( negedge clk_i )
103 begin
104 if ( ! rsn_i || kill_i ) begin
105 fifo[1].SEW = ’0;
106 fifo[1]. STRIDE = ’0 ;
107 fifo[1]. sb_id = 20 ;
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108 fifo[1].done = 1;
109 fifo[0].SEW = ’0;
110 fifo[0]. STRIDE = ’0;
111 fifo[0]. sb_id = 20;
112 fifo[0].done = 1;
113 end
114

115 if ( load_sync_end_i ) begin
116 if ( load_sync_end_sb_id_i == fifo[1]. sb_id ) begin
117 fifo[1].done = 1;
118 end
119 if ( load_sync_end_sb_id_i == fifo[0]. sb_id ) begin
120 fifo[0].done = 1;
121 end
122 end
123

124 if ( load_granted_i ) begin
125 if ( fifo[1].done ) begin
126 fifo[1].SEW = sew_i ;
127 fifo[1]. STRIDE = stride_i ;
128 fifo[1]. sb_id = load_granted_sb_id_i ;
129 fifo[1]. is_indexed = indexed_load_granted_i ;
130 fifo[1].done = 0;
131 end
132 else if( fifo[0].done ) begin
133 fifo[0].SEW = sew_i ;
134 fifo[0]. STRIDE = stride_i ;
135 fifo[0]. sb_id = load_granted_sb_id_i ;
136 fifo[0]. is_indexed = indexed_load_granted_i ;
137 fifo[0].done = 0;
138 end
139 end
140

141 // check number of load_inflight
142 if ( ! rsn_i || kill_i ) begin
143 num_load_inflight = 0;
144 end
145 else begin
146 num_load_inflight = num_load_inflight + load_granted_i - (

load_sync_end_i && ( ( load_sync_end_sb_id_i == fifo[0].
sb_id ) | ( load_sync_end_sb_id_i == fifo[1]. sb_id ) ) );

147 end
148

149 ‘ifdef FUNCTIONAL
150

151 // sb_id check and start computing data
152 if ( load_data_valid_i ) begin
153 check_sb_correct ();
154 end
155

156
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157 // big_mask calculation
158 if ( load_dvalid_o ) begin
159 compute_big_mask_o ();
160 end
161

162 ‘endif
163

164 end
165

166

167

168

169 // ////////////////////////////////////////////////////
170 // /////////////////// properties ///////////////////////
171 // ////////////////////////////////////////////////////
172

173

174 // 1.0.1 vp
175 property p_el_count ;
176 int SEW0 , SEW1 , OFFSET ;
177 longint signed STRIDE0 , STRIDE1 ;
178 @( posedge clk_i )
179

180 ( load_data_valid_i && sb_correct ,
181 OFFSET = seq_id_i [21:16],
182 SEW0 = 2**(3+ fifo[0].SEW),
183 STRIDE0 = (fifo[0]. STRIDE > 0) ? fifo[0]. STRIDE : -fifo[0].STRIDE ,
184 SEW1 = 2**(3+ fifo[1].SEW),
185 STRIDE1 = (fifo[1]. STRIDE > 0) ? fifo[1]. STRIDE : -fifo[1]. STRIDE
186 )
187 |->
188 ( ( seq_id_i [32:29] == fifo[0]. sb_id ) && ( seq_id_i [28:22] <= (

MEM_DATA_WIDTH /( STRIDE0 *8) - OFFSET *SEW0 /( STRIDE0 *8)) ) ) or
189 ( ( seq_id_i [32:29] == fifo[1]. sb_id ) && ( seq_id_i [28:22] <= (

MEM_DATA_WIDTH /( STRIDE1 *8) - OFFSET *SEW1 /( STRIDE1 *8)) ) ) or
190 ( seq_id_i [28:22] == 1 ) ;
191 endproperty : p_el_count
192

193

194 // 1.0.2 vp
195 property p_stride_i ;
196 int SEW0 , SEW1;
197 longint signed STRIDE0 , STRIDE1 ;
198 @( posedge clk_i )
199 ( load_data_valid_i &&
200 ( ( ( seq_id_i [32:29] == fifo[0]. sb_id ) && !fifo[0]. is_indexed && !fifo[

0].done) ||
201 ( ( seq_id_i [32:29] == fifo[1]. sb_id ) && !fifo[1]. is_indexed && !fifo[

1].done) ),
202 SEW0 = (2**(3+ fifo[0].SEW))/8,
203 SEW1 = (2**(3+ fifo[1].SEW))/8,
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204 STRIDE0 = (fifo[0]. STRIDE > 0) ? fifo[0]. STRIDE : -fifo[0].STRIDE ,
205 STRIDE1 = (fifo[1]. STRIDE > 0) ? fifo[1]. STRIDE : -fifo[1]. STRIDE
206 )
207 |->
208 ( ( ( seq_id_i [32:29] == fifo[0]. sb_id ) && !fifo[0].done) && !( STRIDE0 %

SEW0) ) ||
209 ( ( ( seq_id_i [32:29] == fifo[1]. sb_id ) && !fifo[1].done) && !( STRIDE1 %

SEW1) );
210 endproperty : p_stride_i
211

212

213 // 1.0.3 vp
214 property p_load_granted_i_known ;
215 @( posedge clk_i )
216 load_granted_i |-> ! $isunknown ( sew_i ) && ! $isunknown (

load_granted_sb_id_i ) ;
217 endproperty : p_load_granted_i_known
218

219 // 1.0.4 vp
220 property p_load_data_i_known ;
221 @( posedge clk_i )
222 load_data_valid_i |-> ! $isunknown ( load_data_i ) && ! $isunknown ( seq_id_i )

&& ! $isunknown ( mask_valid_i ) && ! $isunknown ( mask_i ) ;
223 endproperty : p_load_data_i_known
224

225 // 1.0.5 vp
226 property p_sb_id_o ;
227 int sb ;
228 @( posedge clk_i )
229 ( load_data_valid_i && sb_correct , sb= seq_id_i [32:29]) |-> ##1 sb_id_o

== sb;
230 endproperty : p_sb_id_o
231

232 // 1.0.6 vp
233 property p_load_dvalid_known ;
234 @( posedge clk_i )
235 load_dvalid_o |-> ! $isunknown ( load_data_o ) && ! $isunknown ( mask_o )

&& ! $isunknown ( element_ids_o ) && ! $isunknown ( vstart_self_o ) && !
$isunknown ( vstart_next_o ) && !
$isunknown ( min_element_id_idx_o );

236 endproperty : p_load_dvalid_known
237

238 // 1.0.7 vp
239 property p_dvalid_o ;
240 @( posedge clk_i )
241 load_data_valid_i && sb_correct |-> ##1 load_dvalid_o ;
242 endproperty : p_dvalid_o
243

244 // 1.0.8 vp
245 property p_vstart_o ;
246 int unsigned count , id;
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247 @( negedge clk_i )
248 ( load_data_valid_i , count = seq_id_i [28:22], id= seq_id_i [15:5])|-> ##1

( ( vstart_self_o == id) && ( vstart_next_o == count + id) );
249 endproperty : p_vstart_o
250

251 // 1.0.9 vp
252 property p_granted_ids ;
253 @( negedge clk_i )
254 load_granted_i |-> ( ( load_granted_sb_id_i != fifo[0]. sb_id && !fifo[0

].done ) || fifo[0].done ) && ( ( load_granted_sb_id_i != fifo[1].
sb_id && !fifo[1].done ) || fifo[1].done );

255 endproperty : p_granted_ids
256

257 // 1.0.10 vp
258 property p_indexed_instr ;
259 @( posedge clk_i )
260 load_data_valid_i && ( ( ( seq_id_i [32:29] == fifo[0]. sb_id ) && fifo[0].

is_indexed ) || ( ( seq_id_i [32:29] == fifo[1]. sb_id ) && fifo[1].
is_indexed ) ) |-> seq_id_i [28:22]==1 ;

261 endproperty : p_indexed_instr
262

263 // 1.0.11 vp
264 property p_load_sync_end_i ;
265 bit [SB_WIDTH -1:0] sb_id_granted ;
266 int counter ;
267 @( posedge clk_i )
268 ( load_granted_i , sb_id_granted = load_granted_sb_id_i , counter = 3 )

|-> ##[1:$] load_sync_end_i && sb_id_granted ==
load_sync_end_sb_id_i ;

269 endproperty : p_load_sync_end_i
270

271 // 1.0.12 vp
272 property p_load_grant_beh ;
273 @( posedge clk_i )
274 num_load_inflight == 2 |-> ##1 ! load_granted_i ;
275 endproperty : p_load_grant_beh
276

277

278 // 1.0.13 vp
279 property p_load_sync_end_beh ;
280 @( posedge clk_i )
281 num_load_inflight == 0 |-> ##1 ! load_sync_end_i || ( load_sync_end_i &&

( load_sync_end_sb_id_i != fifo[0]. sb_id || ( load_sync_end_sb_id_i ==
fifo[0]. sb_id && fifo[0].done) ) && ( load_sync_end_sb_id_i != fifo[1]
. sb_id || ( load_sync_end_sb_id_i == fifo[1]. sb_id && fifo[1].done) )
);

282 endproperty : p_load_sync_end_beh
283

284 // 1.0.14 vp
285 property p_load_req_sync_end ;
286 @( posedge clk_i )
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287 load_granted_i |-> ! load_sync_end_i || ( load_sync_end_i &&
load_sync_end_sb_id_i != load_granted_sb_id_i );

288 endproperty : p_load_req_sync_end
289

290 // 1.0.15 vp
291 property p_el_count_sew_i ;
292 int SEW0 , SEW1 , OFFSET ;
293 longint signed STRIDE0 , STRIDE1 ;
294 @( posedge clk_i )
295 ( load_data_valid_i && sb_correct ,
296 OFFSET = seq_id_i [21:16],
297 SEW0 = (2**(3+ fifo[0].SEW))/8,
298 STRIDE0 = (fifo[0]. STRIDE > 0) ? fifo[0]. STRIDE : -fifo[0].STRIDE ,
299 SEW1 = (2**(3+ fifo[1].SEW))/8,
300 STRIDE1 = (fifo[1]. STRIDE > 0) ? fifo[1]. STRIDE : -fifo[1]. STRIDE
301 ) ##0
302 ( ( seq_id_i [32:29]== fifo[0]. sb_id ) && !fifo[0]. is_indexed && !fifo[0].

done && ( STRIDE0 != SEW0 && STRIDE0 !=2* SEW0 && STRIDE0 !=3* SEW0 &&
STRIDE0 !=4* SEW0 ) ||

303 ( seq_id_i [32:29]== fifo[1]. sb_id ) && !fifo[1]. is_indexed && !fifo[1].
done && ( STRIDE1 != SEW1 && STRIDE1 !=2* SEW1 && STRIDE1 !=3* SEW1 &&
STRIDE1 !=4* SEW1 ) )

304 |->
305 ( seq_id_i [28:22] == 1 ) ;
306 endproperty : p_el_count_sew_i
307

308 ‘ifdef FUNCTIONAL
309 // 1.1.1 vp
310 property p_sb_correct ;
311 @( posedge clk_i )
312 load_data_valid_i && ! sb_correct |-> ##1 ! load_dvalid_o ;
313 endproperty : p_sb_correct
314

315 // 1.1.2 vp
316 property p_data_o ;
317 bit [ MEM_DATA_WIDTH -1:0] data_out ;
318 @( posedge clk_i )
319 ( load_data_valid_i && sb_correct , data_out = computed_data_o )

|-> ##1 ( load_data_o & big_mask ) == ( data_out & big_mask );
320 endproperty : p_data_o
321

322 // 1.1.3 vp
323 property p_mask_o ;
324 bit [ MEM_DATA_WIDTH -1:0] mask_out ;
325 @( posedge clk_i )
326 ( load_data_valid_i && sb_correct , mask_out = m_result )|-> ##1

mask_o == mask_out ;
327 endproperty : p_mask_o
328

329 // 1.1.4 vp
330 property p_el_ids_o ;
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331 bit [ MAX_NUMBER_ELEMENTS -1:0][ EL_ID_WIDTH -1:0] buffer_ids ;
332 @( posedge clk_i )
333 ( load_data_valid_i && sb_correct , buffer_ids =

computed_el_id_o )|-> ##1 element_ids_o == buffer_ids ;
334 endproperty : p_el_ids_o
335

336 // 1.1.5 vp
337 property p_min_element_id_idx_o ;
338 bit [NUM_LANES -1:0][ $clog2 ( MASK_BANK_WORD ) -1:0]

b_min_ids , b_min_ids_1 , b_min_ids_2 , b_min_ids_3 ;
339 bit [NUM_LANES -1:0] b_valid_mins ;
340 int SEW0 , SEW1;
341 bit [3:0] sb_id ;
342 @( posedge clk_i )
343 ( load_data_valid_i && sb_correct , b_min_ids =

c_min_element_id_idx , b_min_ids_1 = c_min_element_id_idx_1 ,
b_min_ids_2 = c_min_element_id_idx_2 , b_min_ids_3 =

c_min_element_id_idx_3 , SEW0 = fifo[0].SEW , SEW1 = fifo[1].
SEW , sb_id = seq_id_i [32:29], b_valid_mins = valid_mins )|-> ##1

344 ( sb_id == fifo[0]. sb_id && SEW0 ==3 ) || ( sb_id == fifo[1]. sb_id && SEW1 ==3 )
|| (

345 ( ( min_element_id_idx_o [0]== b_min_ids [0] || min_element_id_idx_o [0]==
b_min_ids_1 [0] || min_element_id_idx_o [0]== b_min_ids_2 [0] ||
min_element_id_idx_o [0]== b_min_ids_3 [0] ) || ! b_valid_mins [0] ) &&

346 ( ( min_element_id_idx_o [1]== b_min_ids [1] || min_element_id_idx_o [1]==
b_min_ids_1 [1] || min_element_id_idx_o [1]== b_min_ids_2 [1] ||
min_element_id_idx_o [1]== b_min_ids_3 [1] ) || ! b_valid_mins [1] ) &&

347 ( ( min_element_id_idx_o [2]== b_min_ids [2] || min_element_id_idx_o [2]==
b_min_ids_1 [2] || min_element_id_idx_o [2]== b_min_ids_2 [2] ||
min_element_id_idx_o [2]== b_min_ids_3 [2] ) || ! b_valid_mins [2] ) &&

348 ( ( min_element_id_idx_o [3]== b_min_ids [3] || min_element_id_idx_o [3]==
b_min_ids_1 [3] || min_element_id_idx_o [3]== b_min_ids_2 [3] ||
min_element_id_idx_o [3]== b_min_ids_3 [3] ) || ! b_valid_mins [3] ) &&

349 ( ( min_element_id_idx_o [4]== b_min_ids [4] || min_element_id_idx_o [4]==
b_min_ids_1 [4] || min_element_id_idx_o [4]== b_min_ids_2 [4] ||
min_element_id_idx_o [4]== b_min_ids_3 [4] ) || ! b_valid_mins [4] ) &&

350 ( ( min_element_id_idx_o [5]== b_min_ids [5] || min_element_id_idx_o [5]==
b_min_ids_1 [5] || min_element_id_idx_o [5]== b_min_ids_2 [5] ||
min_element_id_idx_o [5]== b_min_ids_3 [5] ) || ! b_valid_mins [5] ) &&

351 ( ( min_element_id_idx_o [6]== b_min_ids [6] || min_element_id_idx_o [6]==
b_min_ids_1 [6] || min_element_id_idx_o [6]== b_min_ids_2 [6] ||
min_element_id_idx_o [6]== b_min_ids_3 [6] ) || ! b_valid_mins [6] ) &&

352 ( ( min_element_id_idx_o [7]== b_min_ids [7] || min_element_id_idx_o [7]==
b_min_ids_1 [7] || min_element_id_idx_o [7]== b_min_ids_2 [7] ||
min_element_id_idx_o [7]== b_min_ids_3 [7] ) || ! b_valid_mins [7] )

353 ) ;
354 endproperty : p_min_element_id_idx_o
355

356 ‘endif
357

358 // 1.2.1 vp
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359 property p_rsn_o ;
360 @( posedge clk_i )
361 ! rsn_i |-> ##1 ! load_dvalid_o && mask_o == ’0;
362 endproperty : p_rsn_o
363

364 // 1.2.2 vp
365 property p_rsn_i ;
366 @( posedge clk_i )
367 ! rsn_i |-> ! load_data_valid_i && ! load_granted_i ;
368 endproperty : p_rsn_i
369

370

371 // /////////////////////////////////////////////////////
372 // ///////////////// assert & assume /////////////////////
373 // /////////////////////////////////////////////////////
374

375 // 1.0.1 vp
376 a_el_count : assume property ( disable iff (! rsn_i || kill_i )

p_el_count ) else $error (" Avispado sent a EL_COUNT greater than allowed ");
377

378 // 1.0.2 vp
379 a_stride_i : assume property ( disable iff (! rsn_i || kill_i )

p_stride_i ) else $error (" Avispado sent an invalide stride ");
380

381 // 1.0.3 vp
382 a_load_granted_i_known : assume property ( disable iff (! rsn_i || kill_i )

p_load_granted_i_known ) else $error ("MQ sent unknown sew or sb_id ");
383

384 // 1.0.4 vp
385 a_load_data_i_known : assume property ( disable iff (! rsn_i || kill_i )

p_load_data_i_known ) else $error ("MQ sent unknown sew or sb_id ");
386

387 // 1.0.5 vp
388 a_sb_id_o : assert property ( disable iff (! rsn_i || kill_i )

p_sb_id_o ) else $error (" wrong sb_id in output ");
389

390 // 1.0.6 vp
391 a_load_dvalid_known : assert property ( disable iff (! rsn_i || kill_i )

p_load_dvalid_known ) else $error ("an LMU output is unknown ");
392

393 // 1.0.7 vp
394 a_dvalid_o : assert property ( disable iff (! rsn_i || kill_i )

p_dvalid_o ) else $error ("LMU did not compute any output ");
395

396 // 1.0.8 vp
397 a_vstart_o : assert property ( disable iff (! rsn_i || kill_i )

p_vstart_o ) else $error (" wrong vstart_ *");
398

399 // 1.0.9 vp
400 a_granted_ids : assume property ( disable iff (! rsn_i || kill_i )

p_granted_ids ) else $error (" unallowed sb_id_i to the LMU");
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401

402 // 1.0.10 vp
403 a_indexed_instr : assume property ( disable iff (! rsn_i || kill_i )

p_indexed_instr ) else $error (" issued an indexed with el_count !=1 or with
mask");

404

405 // 1.0.11 vp
406 a_load_sync_end_i : assume property ( disable iff (! rsn_i || kill_i )

p_load_sync_end_i ) else $error ("it didn ’t arrive a load_sync_end_i that was
supposed to");

407

408 // 1.0.12 vp
409 a_load_grant_beh : assume property ( disable iff (! rsn_i || kill_i )

p_load_grant_beh ) else $error (" issued 3 load_granted_i to the LMU without
load_sync_end ");

410

411 // 1.0.13 vp
412 a_load_sync_end_beh : assume property ( disable iff (! rsn_i || kill_i )

p_load_sync_end_beh ) else $error (" ended a load not actually issued ");
413

414 // 1.0.14 vp
415 a_load_req_sync_end : assume property ( disable iff (! rsn_i || kill_i )

p_load_req_sync_end ) else $error (" issued a new instruction simultaneously
with a sync_end ");

416

417 // 1.0.15 vp
418 a_el_count_sew_i : assume property ( disable iff (! rsn_i || kill_i )

p_el_count_sew_i ) else $error (" Avispado sent a EL_COUNT !=1 with a stride
!=+ -1/2/3/4* sew");

419

420

421 ‘ifdef FUNCTIONAL
422

423 // 1.1.1 vp
424 a_sb_correct : assert property ( disable iff (! rsn_i ||

kill_i ) p_sb_correct ) else $error ("LMU sent a output as dvalid_o =
1, for a non - valid load");

425

426 // 1.1.2 vp
427 a_data_o : assert property ( disable iff (! rsn_i ||

kill_i ) p_data_o ) else $error (" wrong load_data_o ");
428

429 // 1.1.3 vp
430 a_mask_o : assert property ( disable iff (! rsn_i ||

kill_i ) p_mask_o ) else $error (" wrong mask_o ");
431

432 // 1.1.4 vp
433 a_el_ids_o : assert property ( disable iff (! rsn_i ||

kill_i ) p_el_ids_o ) else $error (" mismatch in element_ids_o ");
434

435 // 1.1.5 vp
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436 a_min_element_id_idx_o : assert property ( disable iff (! rsn_i ||
kill_i ) p_min_element_id_idx_o ) else $error (" wrong
min_element_id_idx_o ");

437

438 ‘endif
439

440 // 1.2.1 vp
441 a_rsn_o : assert property ( p_rsn_o ) else $error ("

rsn did not work");
442

443 // 1.2.2 vp
444 a_rsn_i : assume property ( p_rsn_i ) else $error ("

rsn input ");
445

446 // /////////////////////////////////////////////////////
447 // ///////////////////// tasks /////////////////////////
448 // /////////////////////////////////////////////////////
449 ‘ifdef FUNCTIONAL
450

451 task check_sb_correct ();
452

453

454 if ( seq_id_i [32:29] == fifo[0]. sb_id && !fifo[0].done ) begin
455 SEW = 2**(3+ fifo[0].SEW) ;
456 STRIDE = fifo[0]. STRIDE ;
457 is_indexed = fifo[0]. is_indexed ;
458 sb_correct = 1;
459 end
460 else if ( seq_id_i [32:29] == fifo[1]. sb_id && !fifo[1].done )

begin
461 SEW = 2**(3+ fifo[1].SEW) ;
462 STRIDE = fifo[1]. STRIDE ;
463 is_indexed = fifo[1]. is_indexed ;
464 sb_correct = 1;
465 end
466 else begin
467 sb_correct = 0;
468 end
469 if ( sb_correct ) begin
470 EL_COUNT = seq_id_i [28:22];
471 OFFSET = seq_id_i [21:16];
472 EL_ID = seq_id_i [15:5];
473 N_ELEMENTS = MEM_DATA_WIDTH /SEW;
474

475 compute_data_o (SEW ,STRIDE ,EL_COUNT ,OFFSET ,EL_ID ,
N_ELEMENTS , is_indexed );

476 compute_mask_o (SEW ,EL_COUNT ,EL_ID , N_ELEMENTS );
477 compute_ids (SEW ,EL_COUNT ,EL_ID , N_ELEMENTS );
478 compute_c_min_element_id_idx (SEW ,EL_COUNT ,EL_ID ,

N_ELEMENTS );
479
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480 end
481

482

483 endtask : check_sb_correct
484

485 task compute_data_o (int unsigned SEW , longint signed STRIDE , int
unsigned EL_COUNT , int unsigned OFFSET , int unsigned EL_ID , int
unsigned N_ELEMENTS , bit is_indexed );

486 bit x[][];
487 bit y[][];
488 int unsigned j;
489 int unsigned k;
490 longint signed local_stride ;
491

492 local_stride = STRIDE ;
493

494 // step zero: sample the input , one byte at a time (
SystemVerilog requires a constant width )

495 x=new[ N_ELEMENTS ];
496 y=new[ N_ELEMENTS ];
497

498 foreach (x[i]) begin
499 x[i]=new[SEW];
500 y[i]=new[SEW];
501 end
502

503

504 for(k=0; k < N_ELEMENTS ; k++) begin
505 for(j=0;j < SEW; j++) begin
506 x[ N_ELEMENTS -1-k][SEW -j -1] = load_data_i [k*SEW+

j];
507 end
508 end
509

510 x_display0 = {>>{x}}; // debug signal
511

512 // first step: take the stride into account
513

514 if (! is_indexed && local_stride <0) begin
515 foreach (x[i]) begin // if it ’s strided with negative

stride , reverse the input
516 y[ N_ELEMENTS -1-i]=x[i];
517 end
518 end
519 else if ( is_indexed || (! is_indexed && local_stride >=0) ) begin
520 foreach (x[i]) begin // if it ’s indexed or strided with

positive stride , do nothing
521 y[i]=x[i];
522 end
523 end
524
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525 x_display1 = {>>{y}}; // debug signal
526

527 if ( local_stride <0) local_stride = ( -1 ) * local_stride ;
528 local_stride = local_stride * 8 / SEW; // normalize from #of

bytes to # of elements
529

530

531 // second step: concatenate the data according to stride
532 // mask is not taken into account as there is no reason to out

the output bits to 0: what we compare are the two outputs
in AND with the mask_o

533 // initialize x to 0
534 for(j=0;j< N_ELEMENTS ;j++) begin
535 for(k=0;k<SEW;k++) begin
536 x[j][k] = 0;
537 end
538 end
539

540

541 for (j=0; j< EL_COUNT ; j++) begin
542 x[( N_ELEMENTS -1-j)] = y[( N_ELEMENTS -1-j*

local_stride - OFFSET )% N_ELEMENTS ];
543 end
544

545 x_display2 = {>>{x}}; // debug signal
546

547 // third step: shift the data according to EL_ID
548 k = EL_ID % N_ELEMENTS ;
549 for (j=0; j< N_ELEMENTS ; j++) begin
550 y[( N_ELEMENTS -1 -(k+j))% N_ELEMENTS ] = x[( N_ELEMENTS -1-j)

]; // "% n_elements " automatically manages the
underflow

551 end
552

553 /* we do the iterazion on all y to clean it from the old values
computed in step 1, otherwise we could do it on only

EL_COUNT but with a further previous initialization to 0*/
554

555 computed_data_o = {>>{y}};
556

557

558 endtask : compute_data_o
559

560

561 task compute_mask_o (int unsigned SEW , int unsigned EL_COUNT , int
unsigned EL_ID , int unsigned N_ELEMENTS );

562

563 bit m_op [][];
564 int unsigned m, n, k;
565

566 m_op = new[ N_ELEMENTS ];
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567

568 foreach (m_op[k])
569 m_op[k] = new[ AVISPADO_LOAD_MASK_WIDTH / N_ELEMENTS ];
570

571 // init to 0
572 for(m = 0; m < N_ELEMENTS ; m++) begin
573 for(n = 0; n < AVISPADO_LOAD_MASK_WIDTH / N_ELEMENTS ; n

++)
574 m_op[m][n] = 1’b0;
575 end
576

577 // assignment valid values to 1
578 k = 0;
579 for(m = EL_ID ; m < ( EL_ID + EL_COUNT ); m++) begin
580 if ( ! mask_valid_i || ( mask_valid_i && mask_i [k]) )

begin
581 for(n = 0; n < AVISPADO_LOAD_MASK_WIDTH /

N_ELEMENTS ; n++) begin
582 m_op[ N_ELEMENTS -1 -(m%( N_ELEMENTS ))][n]

= 1’b1;
583 end
584 end
585 k++;
586 end
587

588 m_result = {>>{ m_op }};
589

590 endtask : compute_mask_o
591

592

593 task compute_ids (int unsigned SEW , int unsigned EL_COUNT , int unsigned
EL_ID , int unsigned N_ELEMENTS );

594

595 int unsigned f_v_e , i, j;
596

597 // f_v_e is the index of the first 11-bit - element of
computed_el_id_o where we have to put an EL_ID

598 f_v_e = EL_ID % N_ELEMENTS ; // find the first valid element
599 f_v_e = f_v_e * SEW / 8 ; // multiply it by the pace ( number of

bytes per element )
600

601 // initialize to 0
602 for(j=0;j< MAX_NUMBER_ELEMENTS ;j++) begin
603 computed_el_id_o [j] = ’0;
604 end
605

606 for(j=0;j< EL_COUNT ;j++) begin
607 for(i=0;i<SEW /8;i++) begin
608 computed_el_id_o [( f_v_e + i + (j*SEW /8))%

MAX_NUMBER_ELEMENTS ] = EL_ID + j;
609 end
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610 end
611

612 endtask : compute_ids
613

614

615 task compute_big_mask_o ();
616 int j, k;
617 bit bm[][];
618

619

620 bm=new[ MEM_DATA_WIDTH /8];
621

622 foreach (bm[i]) begin
623 bm[i]=new[8];
624 end
625

626 // init to 0
627 for(k=0; k < MEM_DATA_WIDTH /8; k++) begin
628 for(j=0;j < 8; j++) begin
629 bm[k][j] = 0;
630 end
631 end
632

633

634 // generate the mask at 512 bit
635 for(k=0; k < MEM_DATA_WIDTH /8; k++) begin
636 if( mask_o [k]) begin
637 for(j=0; j < 8; j++) begin
638 bm[ MEM_DATA_WIDTH /8 -k -1][j] = 1;
639 end
640 end
641 end
642

643 big_mask = {>>{bm }};
644

645 endtask : compute_big_mask_o
646

647

648 task compute_c_min_element_id_idx (int unsigned SEW , int unsigned
EL_COUNT , int unsigned EL_ID , int unsigned N_ELEMENTS );

649

650 bit m_op [][];
651 int unsigned m, n, k, min_el_id , f_v_e ;
652 int j,i;
653

654 // computing the mask , as if the instruction was not masked
655 f_v_e = EL_ID % N_ELEMENTS ; // find the first valid element
656 f_v_e = f_v_e * SEW / 8 ; // multiply it by the pace ( number of

bytes per element )
657

658 for(j=0;j< MAX_NUMBER_ELEMENTS ;j++) begin // initialize to 0
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659 valid_bytes [j] = ’0;
660 end
661

662 for(j=0;j< EL_COUNT ;j++) begin // put to 1 the valid bits
663 for(i=0;i<SEW /8;i++) begin
664 valid_bytes [( f_v_e + i + (j*SEW /8))%

MAX_NUMBER_ELEMENTS ] = 1’b1;
665 end
666 end
667

668 // computing min_el_id_idx
669 foreach ( valid_mins [i]) valid_mins [i]=0;
670 foreach ( c_min_element_id_idx [i]) c_min_element_id_idx [i]=0;
671

672 for(j=0;j< N_LANES ;j++) begin
673 c_min_element_id_idx [j]=0;
674 min_el_id = 2057;
675 for(i=0;i <8;i++) begin
676 if( valid_bytes [j*8+i]) begin
677 if ( computed_el_id_o [j*8+i]<min_el_id )

begin
678 min_el_id = computed_el_id_o [j*8+

i];
679 c_min_element_id_idx [j]=i;
680 end
681 valid_mins [j]=1;
682 end
683 end
684 end
685

686

687 if(SEW ==32) begin
688 for(j=0;j <8;j++) begin
689 c_min_element_id_idx_1 [j]= c_min_element_id_idx [

j]+1;
690 c_min_element_id_idx_2 [j]= c_min_element_id_idx [

j]+2;
691 c_min_element_id_idx_3 [j]= c_min_element_id_idx [

j]+3;
692 end
693 end
694

695 if(SEW ==16) begin
696 for(j=0;j <8;j++) begin
697 c_min_element_id_idx_1 [j]= c_min_element_id_idx [

j]+1;
698 c_min_element_id_idx_2 [j]= c_min_element_id_idx [

j];
699 c_min_element_id_idx_3 [j]= c_min_element_id_idx [

j]+1;
700 end
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701 end
702

703 if(SEW ==8) begin
704 for(j=0;j <8;j++) begin
705 c_min_element_id_idx_1 [j]= c_min_element_id_idx [

j];
706 c_min_element_id_idx_2 [j]= c_min_element_id_idx [

j];
707 c_min_element_id_idx_3 [j]= c_min_element_id_idx [

j];
708 end
709 end
710

711 endtask : compute_c_min_element_id_idx
712

713 ‘endif
714

715 endmodule : load_management_unit_checker
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