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SUMMARY

The continuous technology development both in the field of simulations and neural networks

is making Autonomous Driving (AD) more and more appealing for researchers. In order to make

the AD a reality that would change our lives on a daily routine basis, the work is divided into

two main branches: computer vision and control algorithms improvement.

Improving computer vision means making more reliable techniques such as object detection,

image segmentation, etc. On the other hand in order to improve control algorithms, which

already are very reliable, the idea is to include some parallel computation into their loop for

the management of unforeseen events.

The ultimate goal of the research community is to improve the safety of the autonomous

vehicles so that they can overcome the already very high safety of human drivers.

ix



CHAPTER 1

INTRODUCTION

Autonomous Driving has got very popular in the latest years. As a matter of fact a common

saying among expert engineers about AD is: ”The question is not if it is going to happen, but

when it is going to happen?”. There are many goals that the AD wants to achieve; first of all

solving common issues as traffic delays and collisions caused by human lack of attention. On the

other hand AD would represent a real revolution in fields like Shipping, Public Transportation,

Emergency Transportation and others.

1.1 Motivations

The reason why this work has started is safety. As a matter of fact in order to make possible

the life-changing revolution of making AD real on a daily basis, the vehicles must be as safe

as possible. Moreover, they have to be safer than a human driver, otherwise they would not

represent an upgrade in people’s lives. The basic idea that lies under this thesis is that a general

human driver is often able to avoid collisions and crashes because of his/her experience, which

allows to anticipate other drivers’ bad actions on the streets. The concept of ”anticipation” is

exactly what it is exploited in the work; using some of the sensors available for the installation

on a vehicle, we want to acquire perception data which are processed by a Neural Network so

that they can be given in a smart way to the control system of the vehicle.
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In parallel, we would like to use those perception data propagating them in a probabilistic

way so that a probabilistic prediction of the future instants is computed. Based on this knowl-

edge some emergency procedures would intervene in the case of bad scenarios occurrences in

the prediction.

This procedure which has been briefly explained above is coming from the concept of ”mon-

itoring” [1]. In particular the idea of being able to predict the future steps producing synthetic

sensor data and propagating them is what in Figure 1 is called belief propagation. Looking at

Figure 1 it is possible to give some definitions to better understand the motivations lying under

this work:

• Safety Automaton (P): represents all the safety specifications.

• Cyber-Physical System: (A): it includes the mechanical part, which can be the vehicle,

and the software used for the control of such car.

• Product Automaton (B = A×P ): it rapresents all the actions computed by A respecting

P

• Belief Propagation: this is the part which really involves the monitoring concept. It means

being able to monitor if some of the possible actions performed by A are not respecting the

constraints imposed by P. This concept is what we want to achieve with the reproduction

of sensor data and with their propagation through the perceptions system.
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One last important aspect to highlight regards the surrounding environment: we will include

in the Cyber-Physical System the model for the acquisition and processing of the data which is

what we call Perception System through which the knowledge of the environment is acquired.

Figure 1: Scheme of the monitoring process with all the needed elements
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1.2 Contributions

The principal contributions that I brought to this work, and that are explained along the

dissertation are:

• Setting up the CARLA environment exploiting the Scenario-Runner and all the needed

features.

• Creating a Probabilistic Model for the Leading Vehicle’s Behavior useful for the data

acquisition.

• Creating the Perception Model

• Developing the Vehicle Model (LSTM and FSM)

• Construct the all Prediction and Propagation framework

1.3 Thesis Structure

• Chapter 2: in this chapter a general overview on the state of the art regarding the AD

research field is presented. Particular attention is focused on the concept of ”Behavior

prediction”, giving also a brief overview of some of the existing techniques related to this

subject.

• Chapter 3: here is presented the CARLA simulator, which is used as the base ground for

the experiment. Being an open source simulator, CARLA gave us the possibility to exploit

some features that already were created, and this is why here there is the identification

of what was taken unchanged from the CARLA repository on Github, what was modified

and what was created from scratch.
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• Chapter 4: this chapter is dedicated to the detailed explanation of the two fundamental

elements on top of which the thesis is built: controller and perception system. A little bit

of background is presented and their specific functionalities in this work are explained

• Chapter 5: the development of the prediction system required to think and build several

models. They are here presented and explained one by one.

• Chapter 6: the final simulation is presented and all the necessary comparison to evaluate

the results are made.

Related to the thesis structure it is also crucial to explain that the thesis can be divided

into two parts:

1. BUILDING THE INFRASTRUCTURE: this is the part were we had to understand how

CARLA and Scenario-Runner work. We had to understand how to control the ego vehi-

cle, how to exploit sensors and how to manage the readings of the sensors through the

perception system. Chapters 3 and 4 are explaining this piece in details.

2. BUILD THE BELIEF PROPAGATION BLOCK: this is the core of the thesis and it

represents the biggest contribution. Here we want to design the model of vehicles (ego

vehicle and leading vehicle) as well as exploit the model for the perception in order to

perform the belief propagation. These aspects are treated in Chapters 5 and 6.



CHAPTER 2

PREVIOUS WORK

2.1 Autonomous Driving Overview

The Autonomous Driving Challenge is demanding under many aspects, but in order to bring

it to its full potential, and make it be the center of the revolution it is supposed to represent in

everybody’s lives, the concept of safety must be eviscerated under all points of view. Besides

the ethical problem of ”who is responsible?” in case of an accident makes the task even more

essential.

According to SAE International ([2]) it is possible to divide the self-driving cars into ”five

levels of autonomy” to which sometimes it is possible to add the Level 0.

• Level 0: this is not a proper level, mainly because the autonomy here is practically absent,

and the driver is in full control of the vehicle; however there are some alert signal that

can make the human driver aware of possible dangerous occurrences.

• Level 1: this is the first authentic level. It includes all the cases where the control of

the vehicle is shared by the human driver and the autonomous system. A good example

of such a situation are all the ADAS such as the Adaptive Cruise Control, where the

autonomy regulates the throttle and the brake in order to control the speed variation,

and the human driver is in charged of the steering wheel.

6
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• Level 2: at this stage the autonomy is starting to prevail on the driver. As a matter of

fact here the control system operates on throttle, brake and steering wheel, however the

human driver has to be ready to intervene if the system is about to fail. This is the reason

why many systems that are catalogued in this level require the constant attention of the

driver, as for example they need him/her to keep the hands on the steering wheel in order

to work.

• Level 3: this stage marks the complete autonomy of the system. As a consequence the

human driver here can perform other tasks while the car is driving. However he/her still

has the possibility to intervene and moreover there still are some tasks (usually specified)

which must be computed by the driver in order for the system to keep working properly

• Level 4: the system can take full control and the driver intervention is minimal. All the

systems able to operate at this level are allowed to do so only in selected zones named

”geofenced areas”.

• Level 5: no human intervention is required at all.

In Figure 2 is presented a generic scheme of a self driving vehicle ([3]) which is particularly

useful because it communicates the importance of the perception system that an autonomous

car has to have. As a matter of fact it is of primary interest to equip the vehicle with the

sensors needed for the perception and interaction with the surrounding world. Among the

many devices that a vehicle might have to improve its performance, there are some of them

which are essential, such as:
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Figure 2: General scheme of a self-driving car.
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• LIDAR: this is a system that exploits lasers signals and is able to create a 3D map of the

environment.

• CAMERA: usually these are high-resolution cameras which can recognize colors even in

conditions of low visibility; this is a very useful peculiarity because it allows, for example,

to determine which is the state of a traffic light.

• RADAR: it has a function which is very similar to the LIDAR’s one, except that it uses

wavelengths instead of lasers. Exploited mainly because of its robustness and reliability

also in bad weather conditions (rain, fog, etc.).

2.2 Behavior Prediction

The perception system of the autonomous vehicle has many margins for improvement, but

what would make the car a lot safer is the concept of anticipation. This idea is strongly related

to the way human drivers behave: we usually tend to base our decisions and actions on the

possible behavior of other traffic participants. Of course we can do this because of our large

experience on the road, but a similar concept can be implemented on an autonomous system.

Following the work related to the prediction of the behavior of vehicles and pedestrians are

presented.

2.2.1 Related Work

There are many studies in the field of autonomous driving which are focused on the ”Be-

havior Prediction” theme. Following are reported some of those studies which, in one way or

another, helped developing a clearer shape of this work. Koschi at al. 2017 ([4]) came up with
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an idea for ensuring safety of a vehicle considering all the possible behaviors of the other traffic

participants. Given that the traffic participants respect the limits imposed by the scenario,

they can compute which will be the area that it can occupy, and therefore the safe trajectory of

the autonomous car can be found as a consequence. They also offer a tool box named SPOT.

As the authors of [4] state, they can guarantee the safety of the ego vehicle but they are also

considering in all the situations all the possible actions of the traffic participants, also the least

possible ones. This can make the drive style very unusual and possibly too conservative.

Gindele et al. 2010 ([5]), Chandra et al. 2019 ([6]) and Hu et al. 2018 ([7]) on the other

hand were more oriented on the path that we wanted to take. As a matter of fact [6] adopts

a tracking-by-detection paradigm, which is performed in two steps. The first step is the object

detection which is used for the extraction of features for each road-agent. The second step

consists in the prediction of the next state (velocity and position) of the agents using some

kind of motion model. Finally, the work presented by [5] and [7] are exploiting the basic idea

of giving probabilities to the actions of the other participants. [5] uses an approach based

on a Dynamic Bayesian Network, while [7] proposes a Semantic-based Intention and Motion

Prediction (SIMP) method, based on the exploitation of Mixture Density Networks, and in

particular of the Gaussian Mixture Model (GMM).



CHAPTER 3

SIMULATION ENVIRONMENT

3.1 CARLA

Training and testing an algorithm implementing any kind of autonomous task in the physical

world can be very hard, mainly for cost and security reasons. In order to overcome this obstacle

the simulation environments are used. CARLA, which is an acronym standing for ”Car Learning

to Act” ([8]), is an open source urban simulation environment. It is designed over the Unreal

Engine 4 (UE4) platform which guarantees a good physic design of the vehicles. The fact that

it reproduces an urban driving condition is particularly interesting because it allows to create

critical scenarios over which design and test some innovative algorithms.

CARLA simulates the interactions between an agent and a whole world around it which is

both static and dynamic. As a matter of fact the maps are always representations of cities, with

buildings, sidewalks, intersections, traffic lights, signals, etc. Besides they can be populated by

other agents such as vehicles (cars, motorcycles), pedestrians and bicycles. Each of the dynamic

agents can be controlled so that it follows the road without invading the other lanes, respecting

signals and speed limits and trying not to collide with any other moving agent. All these

scenarios can be implemented thanks to the fact that CARLA is thought to be a client-server

system, where the server renders the scene that is given by the client. The client API is

11



12

implemented in Python and through it is possible to design and control an own agent which

will simulate the autonomous vehicle (Figure 3).

Figure 3: Server-Client communication through Python API.

Because of the autonomy concept it is important to distinguish between what the ego agent

is allowed to know and what should be captured by looking at the surrounding environment.

It is indeed possible to extract a lot of information such as position, velocity and acceleration

about all the agents in the scene, but we must keep in mind that every algorithm should be able

to work also on the real world, and therefore it is mandatory to acquire the knowledge of the

set in some other way than the software itself. This is the reason why a multitude of sensors is

implemented; they can be included in the simulation by being attached to the ego vehicle, and
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they return a set of data that can be used in the development of the algorithm. Examples of

CARLA sensor are:

• RGB Camera

• Depth Camera

• LIDAR

• IMU

• Radar: this is widely used in this work.

3.1.1 Scenario Runner

Among the many features of the simulator the Scenario Runner repository was found to be

particularly useful because it was setting a very good base ground for the creation of a specific

situation on which develop the work. In fact after exploring its features it appeared that it was

giving us the chance to exploit some common scenarios such as ”Following a Leading Vehicle”.

This is particularly interesting because it allows to define the behavior of the other agent(s)

by using a pytree sequence and make it run on a specified map at a particular location, while

the user is allowed to control the ego vehicle from his/her keyboard by running the ”manual

control” file. The two separated files communicate once the Unreal Engine editor is open and

the scenario is supposed to end successfully if the user makes the ego vehicle behave as it should,

or unsuccessfully if the user takes too much time to control the vehicle.

As it is shown in Figure 4 the interface of the manual control is particularly well configured,

as it also gives a HUD section with a lot of useful information; it is indeed possible to monitor
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Figure 4: Interface with the pygame window. It is evident how on the left there are a lot useful
information such as: throttle value, brake value, steering angle, distance from the leading
vehicle, etc.

essential values such as position and speed of the ego vehicle, throttle and brake percentage,

steering angle, distance from the leading vehicle, as well as the occurrence of bad events such

as collisions. In addition the presence of the keyboard interface gives the user the possibility to

easily modify some general aspects; it is for example possible to change the state of the sensors

toggling them into inactive if they were active and vice versa. Moreover there is the possibility

to change, for example, the weather conditions. Many of them are implemented in CARLA,

reproducing sunny, light rainy, heavy rainy days as well as different position of the sun creating
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sunrises, sunsets or making the sun be low on the horizon line in front of the driver and reducing

therefore the visibility (Figure 5 displays some of the possible choices).

Figure 5: Four examples of weather conditions, moving clockwise from top left we have: after
rain (it is not rainy but the road is wet), clear sunny day, sunset, heavily rainy.



CHAPTER 4

CONTROLLER AND PERCEPTION SYSTEM

The pillar onto which is developed this all work is to improve the safety of an autonomous

vehicle by anticipating the possible behavior of the other traffic participants, and in the case

of bad outcome prediction such as a collision, arising an emergency behavior of the controlled

vehicle to avoid the fulfillment of that specific outcome.

In order to do so the ego vehicle must be equipped with sensors that give sequences of data

to be used by a controller, and obviously a controller itself. The scenario which is used to

developed the algorithm is a ”Following Leading Vehicle” task on a straight road; the task has

to be successfully completed by the ego vehicle in complete autonomy. As a consequence we

had to develop:

• Controller

• Perception System

• Prediction System

16
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4.1 Controller

Before proceeding with the explanation of the implementation of the controller it is crucial

to underline the fact that it is a base element which of course needs to be designed in order

for the all experiment to work, but also that the design of such a controller is not the core of

the thesis meaning that we want a reasonable implementation which however can sometimes

be faulty so that we can concentrate on the development of the monitoring part.

Distance

distance > Dmax

Normal 
Cruise 
Control

Adaptive 
Cruise 
Control

YES NO

Figure 6: Top view of how the controller of our car is working
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As long as the goal is the fully self-driving car, and given the specific scenario in which

we operate, a good idea seemed to use a Cruise Control algorithm. This however just gives a

target speed to the vehicle, that once reached, will not change because CC does not allow to

modify the target speed depending on the external conditions. As a consequence we opted for

the implementation of an Adaptive Cruise Control with the features specified by Shakouri et

al. (2011) in [9]. This means that the ACC will operate in two different modes (Figure 6):

• Cruise Control Mode: if the distance between the ego vehicle and the leading vehicle is

greater than a fixed distance. This means that if the vehicle has a reasonable amount of

free road ahead of itself it can behave as there were no other traffic participants.

• Adaptive Cruise Control Mode: also addressable as ”distance tracking mode”, if the

distance between the two vehicles is lower than the fixed value. In such a case the velocity

of the leading vehicle is given to the controller which uses it as the target speed for the

ego vehicle.

The controller that was adopted to implement such a behavior was a PID (Proportional-

Integral-Derivative) controller, essentially because of two reasons. The first one is of course

linked to its functionalities; in fact the PID controller, as suggested by the name, is a three-

term controller ([10]) which is often used for ACC systems because it continuously calculates the

error e(t) computing the difference between the desired setpoint (SP) and the current measured

process variable (PV); it consequently updates its output signal u(t) based on the proportional,

integral and derivative terms.
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Figure 7: This is the block scheme of a PID controller. r(t) is in this scheme the desired setpoint
SP; the process variable PV is here denoted as y(t). The error e(t) is computed thanks to the
feedback loop.

As it is further understandable looking at Figure 7 the output of the controller is computed

considering the contribution of the three terms which are suitably associated to their gain

factors: Kp, Ki and Kd. Below a brief explanation of each term is presented.

• Proportional: this term is linked to the difference e(t) = SP − PV by the constant gain

Kp. If the controller only has the proportional term the steady state error does not go

to zero (Figure 8). Besides tuning the proportional gain to a high value leads to a great

change in the proportional term for a given error which makes the controller very sensible

but also unstable.

• Integral: this is the term which represents the sum over time of the past errors which is

multiplied by the constant Ki. It is responsible of making the system reach the set point
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Figure 8: From left to right: (a) controller response when changing Kp; (b) controller response
when changing Ki, (c) controller response when changing Kd.

faster while reducing the steady state error (Figure 8). However if the value of Ki is too

high it could lead to a greater overshoot.

• Derivative: this terms computes the derivative of the error and multiplies it by the con-

stant Kd. Tuning the Kd parameter it is possible to make the controller faster without

changing the maximum overshoot (Figure 8).

The overall mathematical equation representing the input-output relation of the PID con-

troller is:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
(4.1)
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The effects of tuning the PID parameters are shown in Figure 8. There are several techniques

that can be exploited in order to tune the PID controller, however it must be said that the

second reason which led to the choice of this controller is strongly related to the tuning aspect.

As a matter of fact in CARLA the PID controller is used for controlling the agents in the

various scenarios and is already designed and tuned. They use two associated PID controllers:

• Later PID controller: which controls the steering angle

• Longitudinal PID controller: which controls the velocity of the vehicle

Recalling that the goal here is to have an implementation of an ACC, we took into account

only the Longitudinal Controller and we modified it in order to make it suitable for our task.

As a matter of fact the control output u(t) in the CARLA implementation is passed as the

throttle value which is bounded between 0 and 1 (0% - 100%). Nevertheless to let the ego

vehicle behave in complete autonomy we must be able to suddenly decrease its speed when the

distance from the leading vehicle is less than the set value and the latter is strongly decreasing

in speed for whatever reason, and of course we must also be able to stop the car if the one in

the front is still. To achieve this result the output of the controller is modified so that it is now

bounded between -1 and 1 and its value is exploited as follows:

• if u(t) == 0 both throttle and brake are set to zero

• if u(t) > 0 throttle is set to the u(t) and brake is set to zero

• if u(t) < 0 throttle is set to zero while brake is set to
∣∣u(t)

∣∣
The code related to the implementation of the controller is reported in Appendix G.
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4.2 Perception System

In order to give to the PID controller the velocity of the leading vehicle as the target speed

to be used as set point, it is obviously mandatory to be able to get its value ”looking” at

the environment around our self-driving car. Responsible for accomplishing this task is the

Perception System. It is built over the following principal elements:

• Sensors: the original Scenario Runner file was again modified, this time by adding the

radar as a new sensor to be used in the simulation. The choice of exploiting the radar is

explicable considering the two following reasons:

1. The application of this work is mainly urban and as a consequence considering an

average radar (as it is doable in CARLA), without necessarily distinguish between

long range radar and short range radar ([11]), is going to be fine as the distances

between vehicles will never be too large.

2. Using a radar instead of a Camera for example guarantees robustness against bad

weather, as a matter of fact the perception of a camera can be altered by rain

and even completely canceled in presence of thick fog. On the contrary the radar

perception being based on wavelengths is robust to atmospheric conditions. To

further remark this concept, the data acquired for the training and testing of the

Classification Neural Network are taken switching among the weather conditions

allowed by CARLA.
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The CARLA implementation of the radar (reported in Appendix H) is very intuitive as

it prints on the simulation all the detected points with different colors: red if they are

moving towards the radar, white if they are still with respect to the radar and blue if

they are moving away from the radar. An example of this implementation is reported in

Figure 9.

Figure 9: Radar detected points: red if moving towards the radar; white if still with respect to
the radar; blue if moving away from the radar.

• Classification Neural Network: once the radar readings are available we must be able to

use them properly, in particular we have to recognize which of the detected points are

belonging to the leading vehicle, which are belonging to the background and if there is

any other dynamic object in the scene. It has to be said that the radar returns a list of

points, where each of them has four values representing its velocity, altitude, azimuth and

depth all with respect to the radar. In order to do so we developed a simple NN with
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the purpose of giving it a single point and getting as the output the classification of that

point. In order to improve the efficiency of the network and also to make the relationship

between the input and what the network had to learn to provide the correct output, we

decided to give as input an 8x1 array made by the point to be classified (4x1) and the

current state of the ego vehicle in that exact moment. This current state is evidently also

a 4x1 array whose elements represent: the velocity of the car and its position given in the

three Cartesian coordinates.

Figure 10: Structure of the Classification Neural Network. As it appears it is a Feed Forward

Fully Connected Neural Network.
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As it appears from Figure 10 the neural network was developed using the Neural Network

Toolbox on MATLAB, and it was trained with the ”trainrp” algorithm using the Nvidia

GPU.

The training algorithm ”trainrp” stands for Resilient Backpropagation and it is used

especially when the activation functions of the multi-layer NN are the ones defined as

”squashing”; these functions are addressed in such a way because they take an infinite

input range and give a finite output range. They are usually sigmoid and hyperbolic

tangent functions. In our network is indeed used the MATLAB activation function tansig

which is the equivalent of the common tanh, but has a different implementation which

makes it better for computational reasons. The choice of the activation function was

forced by the network purposes as the output should be 1 for classifying points belonging

to leading vehicle, 0 for background points and -1 for other dynamic points. Consequently

the choice of the training algorithm was somehow forced, and as it turns out it was also

the right one because it brings to the best network performance.

The necessity of coming up with the Resilient Backpropagation when using ”squashing”

activation functions comes from the fact that if using a usual steepest descent algorithm,

the gradient can be very small in magnitude and therefore cause a small change when

weights and biases are updated even if those are far from their optimal values ([12]). For

such a reason only the sign of the derivative is taken into account and the magnitude has

no place at all. In fact the weights and biases are increased of a certain amount named δinc

whenever the derivative has the same sign for two successive iterations; on the contrary
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they are decreased by the quantity δdec if the sign of the derivative oscillates; finally the

update amount remains the same if the derivative is null. Moreover the weights and biases

can change of a lower quantity if the sign of the derivative keeps oscillating, and they can

change of a greater amount if the sign keeps remaining the same for several iterations.

The NN was tested and the accuracy was computed considering some kind of threshold:

– if output < −0.5 the classification is considered as -1 which means dynamic point

– if −0.5 < output < 0.5 the classification is considered to be 0, therefore background

– if output > 0.5 the classification is considered to be 1, and so leading vehicle

In such a way the overall accuracy of the Classification Neural Network is 99.2620%,

which is a very satisfying result, achieved with a training dataset composed by 137445

samples, and a test dataset of 24255 samples (about 15% of the all set), which usually is

a reliable way to divide the available data. The specific code related to the all design of

the Classifier are presented in Appendix A.

• Hierarchical Algorithm: once we got to this point we were able to manage the readings

of the radar sensor and classify them into three different lists by use of the Classification

Network. We therefore obviously concentrated on the leading vehicle list because the

ultimate goal remains to give to the PID controller the right information about velocity

and distance of the leading vehicle. It seems reasonable to consider that the point of the

leading vehicle which is of more importance for us is the closest one. As a consequence
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given the leading vehicle list we choose among all the points the one with the lower value

of distance and from it we take all the information that generalize the leading vehicle.

Running the simulation using the algorithm developed up to this point gives us as a feedback

a couple of aspects:

1. The simulation is basically working: the self driving car starts, respects all the constraints,

follows the leading vehicle adapting its speed and eventually it often stops without crash-

ing into the still vehicle in front.

2. The ego vehicle often stops: this means that randomly the overall outcome of the simula-

tion can be positive or negative. This is due to the fact that all the vehicles and agents are

implemented in CARLA following a realistic model (PhysX Vehicles) which makes them

behave slightly differently depending on small factors, like delays in the engine response

etc. These are responsible for differences in the reached velocities and in the distances

causing therefore some conditions under which the response of the controller is not good

enough and brings the autonomous car to collide in the leading one.

This outcome is actually a good one because it shows that the algorithm is working, but

also that there is margin for improvement to be hopefully brought by the introduction of the

Prediction System.



CHAPTER 5

PREDICTION SYSTEM

The Prediction System required to come up with several ideas from scratch and therefore a

whole chapter is dedicated to it. The following models and behavior had to be thought of and

generated:

• Leading Vehicle Random Behavior Model

• Vehicle Model for Next State computation

• Probabilistic Prediction of leading vehicle’s Next Mode using a Finite State Machine

• Neural Network for Synthetic Radar Reading Reproduction

The reasons why all these models had to be developed are basically two. The first one is

that the leading vehicle behavior must be implemented in such a way that some actions occur

with a reasonable probability; this means that the probability of suddenly stopping must be

present but also very low, as well as the chances of accelerating or decelerating which have to

reproduce a common behavior of a vehicle in the real world. The second reason is that the final

Prediction Neural Network that we want to create, takes as input the following data (some we

already have, others have to be computed):

1. Current Radar reading

2. Ego Vehicle Current State

28
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3. Ego Vehicle Next State

4. Leading Vehicle Current State

5. Leading Vehicle Next State
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PREDICTION FUNCTION WORKFLOW REPRESENTATION
Current Radar  

Readings Ego Current State Leading 
Current State 

Vehicle Model

Ego Next State

FSM

Leading Next State
FF Prediction Network

Controller

Perception

Synthetic Radar Image

Leading vehicle current state

Current Control

Next Control

Figure 11: Loop for the prediction and propagation part. It highlights all the needed models

and also all the information that will be given to the final neural network for the synthetic

radar reading reproduction.
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5.1 Leading Vehicle Random Behavior Model

This is a very simple model which has been thought in order to implement the behavior of

the leading vehicle in the most randomized way, keeping however its plausibility. The leading

car has indeed to have a predominant behavior alongside with others which should occur with

a much lower probability.

In order to accomplish such goal the simple symmetry properties of the Standard Normal

curve have been exploited, using a random variable as the ”decision maker”. The variable

(named behavior variable) is in fact initialized to be random under the Standard Normal curve,

and then the all possible behaviors are associated to the probability of that variable to assume

a determined value. The pseudo codes reporting the algorithm implementation are presented

in Appendix I. Following the plots reporting how the velocity of the leading vehicle is varying

depending on the different behaviors are reported (Figure 12).
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Figure 12: All the possible leading vehicle’s velocity profiles depending on the different behaviors
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5.2 Vehicle Model for Next State computation

One of the requisites needed to give as an input to the final Prediction Network is indeed

the Next State of the ego vehicle, which means its next velocity and position when the CARLA

simulator has computed a whole control iteration. At this point we know the current velocity

and position of our self-driving car, and we also know the values of throttle and brake which

are produced from the PID controller. As a consequence we have to be able to recreate the

dynamic model of the vehicle so that the following relationship is respected:

x(t+ 1) = f(x(t), u(t)) (5.1)

where x(t) is the current state, u(t) is the throttle, brake information.

In order to achieve this result the problem has been divided into two parts which can be

represented by Equation 5.2 and Equation 5.3:

v(t+ 1) = fv(v(t), u(t)) (5.2)

pos(t+ 1) =
1

2

∆v

∆t
(∆t)2 + v(t)∆t+ pos(t) (5.3)

Doing so allows us to concentrate on the computation of the next velocity v(t+ 1) and once

we know this value we can use it to compute the next position simply by using the kinematic

equation reported in Equation 5.3. It is important to underline that in our case ∆t is the time

needed by CARLA for going through a whole iteration.
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5.2.1 LSTM for Velocity Prediction

Based on the information we have up to this point, and obviously on the needs related to

what the function f(v(t), u(t)) in Equation 5.2 must fulfill, the best way to proceed seems to be

by exploiting Recurrent Neural Networks, and in particular Long Short-Term Memory (LSTM)

Networks. This decision if mainly the result of the fact that in order to develop a model able

to reproduce Equation 5.2 we should have considered the complete model of a car in a very

detailed manner, including the following pieces:

• Engine Model: needed to map the throttle value into the fuel/air flow going into the

engine itself, producing a variation on the rpm.

• Transmission Model: the rpm of the engine are giving different torque values depending

on the gear the car is currently driving at. Besides the automatic transmission (present

in our CARLA vehicle) was complicating the relationship even more.

• Body of the Car Model: the four wheels had to be taken into account of course, alongside

with the all friction forces depending on the specific type of car, in order to obtain a value

of acceleration usable for our purposes.

Instead of going through this process it has been decided to use a LSTM Network which fits

incredibly well for our purpose. As a matter of fact LSTMs are able to learn how a dynamic

system behaves and mostly they are originally designed for managing sequences and time series

data, which are exactly the kind of data set we have to deal with.
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LSTMs are a kind of RNN developed to solve the vanishing gradient and exploding gradient

problem which basically are the reasons why normal RNN cannot remember Long-Term De-

pendencies and therefore why they do not work as expected in theory. LSTM on the contrary

can handle such information.

Figure 13: Left:Architecture of a LSTM Layer; Right: diagram highlighting the dependencies
between gates, input, hidden state and cell state.

In Figure 13 two diagrams of the structure of the LSTM are are presented (from [13] and

[14]). Looking at the picture we can see that there are three inputs:

1. ct−1: Cell State at previous time step

2. ht−1: Hidden state at previous time step
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3. xt: Input at current time step

The Cell State is where the memory of the LSTM is kept, the Hidden State is the output

of the LSTM at time t and is also given back as an input with a feedback. Besides we can see

four gates which are, looking at the picture, from left to right: forget gate, cell candidate, input

gate, output gate. At last there are of course the weights and biases of the trained network

which are:

W =



Wi

Wf

Wg

Wo


, R =



Ri

Rf

Rg

Ro


, b =



bi

bf

bg

bo


,

and are equally divided to perform all the multiplications needed for computing the next Hidden

State and Cell State as stated below:

it = sigmoid(Wixt +Riht−1 + bi) (5.4)

ft = sigmoid(Wfxt +Rfht−1 + bf ) (5.5)

gt = tanh(Wgxt +Rght−1 + bg) (5.6)

ot = sigmoid(Woxt +Roht−1 + bo) (5.7)

From Equation 5.4 to Equation 5.7 is reported how the output of each gate of the LSTM

is computed. Considering now these four outputs and indicating with ⊗ the element wise
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multiplication between matrices and vectors, it is possible to compute the Cell State and Hidden

State at time step t, as it is reported in Equation 5.8 and Equation 5.9:

ct = ft ⊗ ct−1 + it ⊗ gt (5.8)

ht = ot ⊗ tanh(ct) (5.9)

Looking at the set of equations above it is clear how the memory of the previous valuable

information keeps running inside the LSTM and is therefore understandable how it can predict

the output xt+1 given the input xt of a time series data set.

As a consequence of this reasoning our own network has been developed, again as in the

first case of the Classification Network, on MATLAB. The data set on which the training and

testing are performed is acquired directly from CARLA; the sequence is given to the network

without its last value for the input, while it is given without its first value as the expected

output to be used for the supervised learning. In such a way the correspondence t → t + 1

is maintained. Several simulations are carried out and a set of 1872 input-output pairs are

acquired, where 90% of them are used for training and 10% for testing. The input is given by:

input =


vt

throttlet

braket


,

while the output is just the value vt+1.
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Figure 14: Left: unfiltered velocity data set; Right: filtered velocity data set.

At this point a problem in the velocity data set was detected: it was indeed full of spikes,

given probably by a bug in the CARLA acquisition method which were making the signal very

noisy and as a consequence the prediction was not as good as expected. As it can be seen in

Figure 14 the data were filtered using a 10th order median filter (such high order of the filter

is due to the very noisy data available), which means that each value of the data set v(k) was

considered with respect to the values down to v(k − 5) and up to v(k + 4); in such a way a

neighbourhood for each value v(k) is created, and the value is replaced with the mean value of

that neighbourhood.

The whole network structure however is not just the LSTM, but on the contrary can be

divided into the following layers:



39

Figure 15: Structure of the all network: lstm plus feedforward network

• Sequence Input Layer: this is just the layer that takes the input and sets how many

features are in fact given; in our case three features as stated in input above.

• LSTM Layer: this is where the recursive LSTM architecture is. In our case the number of

hidden unites is 200. which means that the Hidden State and Cell State are 200x1 arrays.

• Fully Connected Layer (50 neurons): this is the classical fully connected layer which maps

the 200x1 Hidden State array into a 50x1 vector.

• Fully Connected Layer (1 neuron): as long as we want to predict just the value of the

velocity we need a scalar as an output and therefore we use this layer.

• Regression Layer: output layer computing the RMSE of the network.

The network is trained with such a structure for 500 epochs using Adaptive Moment Es-

timation Optimizer (Adam); the training process and the result obtained on the testing are

shown in Figure 16 and Figure 17 respectively.

The obtained result is very satisfying as long as the predicted value is very close to the

expected value for the whole test set (187) samples; as a matter of fact the accuracy computed
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Figure 16: Training Process of the overall LSTM network. The value of RMSE and loss are
computed for all the 500 epochs.

considering a prediction to be right with just 1m/s of margin is 99.4652%. This value is

furthermore supported by the bottom graph in Figure 17 as we can see how just one value is

slightly outside of the 1m/s boundary.

At this point we have successfully modelled the relationship expressed in Equation 5.2 and

we just have to compute the variation in the velocity between two consecutive time steps as:

∆v = vt+1 − vt (5.10)
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Figure 17: The picture shows the comparison between the value predicted by the network and
the expected value. As it can be seen, the result is very good as the shapes of the two series
are very similar and besides their difference is never higher than 1.5 m

s .

and plug ∆v into Equation 5.3 to have the next position. Finally, the next state of the ego car

is computed, and it is given by:

ego next state =



vt+1

xt+1

yt+1

zt+1


The code developed for training and testing the network is reported in Appendix B.
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5.3 Probabilistic Prediction of leading vehicle’s Next Mode using a Finite State

Machine

In the previous section the whole process for predicting the next state of our self-driving car

is shown and explained. It is therefore clear that now it is mandatory to find a way to compute

the next state also for the leading vehicle. We have to remember that for time step t we have the

current state of the ego vehicle and the radar reading that if processed (classification network)

can give us the notion of relative velocity and position of the leading vehicle with respect to

the ego car. We therefore need these set of information also for the prediction part.

The behavior of the leading vehicle, as explained in section 5.1 is implemented in a random

way, and obviously this piece of information must not be known by the autonomous car system.

Given the circumstances the problem is: how to be able to know how the car in front of us

will behave in the future? To solve this issue a probabilistic approach is chosen and a Finite

State Machine (FSM) is implemented. As usual throughout this all work we tried to take into

account the most plausible driving actions and transitions (Figure 18) to somehow reproduce

what would happen in real life on the road. The actions that we believe are a good base for

make this as realistic as possible are:

• Normal Driving

• Stop

• Decelerating

• Accelerating
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Figure 18: Finite State Machine Diagram: it shows all the modes with all the possible transitions
associated with their probability. If a transition is not shown it means that its probability is
null.

• Distract Right: as long as we are considering a vehicle proceeding in front of us on a

straight road, we must take into account also the possibility of a bad driver steering and

eventually invading the opposite lane or hit the sidewalk

• Distract Left: same concept as above.
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As a consequence for the computation of the next state of the leading vehicle we proceeded

in the following way:

1. Based on the knowledge of the ego vehicle state and on the selected point of the radar

reading we can compute the velocity of the leading vehicle as :

leading vehicle velocity = relative velocity + ego vehicle velocity

.

2. The same concept can be applied for the position as:

leading vehicle position = relative position+ ego vehicle position

.

3. Once we have the state (velocity + position) of the leading vehicle we can compute its

current mode, meaning which is the FSM mode in which the vehicle is. In order to do so

the velocity and the azimuth value are compared with their value at time step t− 1.

4. Now having the current mode we can use it to be passed to the FSM (implemented

with the idea of a switch-case structure) which will give us the next mode of the vehicle,

meaning that we will have the knowledge of what the action of the leading car will be.

A specific variation in the velocity ∆v (and variation in the azimuth for Distract Left

and Distract Right mode) is associated for each transition. In order to choose this value,
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which is arbitrary and can be easily tuned, it has been considered that given that the

∆t between two consecutive time steps is of 1s, and that the maximum speed reached in

the simulation is about 45km/h because we are considering a urban scenario. The final

choices were:

• Normal Driving → ∆v = 0m/s

• Accelerating → ∆v = 0.5m/s

• Decelerating → ∆v = −0.5m/s

• Stop → ∆v = −current velocity

• Distract Right → ∆azimuth = 1

• Distract Left → ∆azimuth = −1

In such a way becomes very easy to compute the next state of the leading car knowing

its current state and how its velocity and azimuth are changing using the usual kinematic

equations. Once the next state is computed it is also possible to get to know which will be the

next relative velocity and distance between the two vehicles simply by subtracting the two next

states. The code presenting the implementation of the FSM is reported in Appendix J.
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5.4 Neural Network for Synthetic Radar Reading Reproduction

As it is stated at the beginning of this chapter, the final goal is being able to create the

complete radar reading, which is a 75x4 matrix, using a neural network. The inputs of the

network should be: current radar reading, ego vehicle current state, ego vehicle next state,

leading vehicle current state and leading vehicle next state; it is therefore clear that once got

to this point we developed all the necessary models needed for having all the inputs, and it is

possible to proceed with the network. The network chosen and designed in this case is a Feed

Forward Neural Network, designed in MATLAB, composed by 5 layers as shown in Figure 19.

Figure 19: Structure of the Prediction Neural Network. As it is visible it is a Feed Forward
network with 5 layers.

The input layer of the network is 79x4 matrix (75x4 is the current radar reading and the

four states have 4x1 dimension), which is vectorized to be a 316x1 array; the output wants to

be the radar reading corresponding to the next step of the simulation and must be a 300x1
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(which is nothing but the vectorization of the 75x4 expected matrix). Given this mandatory

features for the network, the structure is designed in order to try to reproduce the encoding-

decoding behavior. As a matter of fact the layers respectively made of the following number

of neurons: 300, 75, 4, 75, 300. The idea laying behind such a choice is to try to encode the

input extracting the most relevant feature and then decode that information to reconstruct

the whole radar reading. The activation functions are hyperbolic tangents for all the layers

in order to extract the important information without letting the output value explode, and a

linear activation function for the output layer, because the values must represent velocities and

positions and cannot be flatten between boundaries. The training algorithm is ”trainrp” which

is the same one used for the Classifier.

The network is trained on 2075 samples and tested on 230. The accuracy is computed again

considering an output value to be right if its difference with the expected value was less than

one. In such a way the average accuracy on the 230 test samples is of 63.1565%. The accuracy

is referred as ”average” because of course the network has to predict 300 values for each of the

test inputs and it was not constant for each of them, reaching peaks of 84.34% and downs of

52%. The code related to the design of this network is presented in Appendix C.

The accuracy here is not great, as generally speaking 63% is not a good result for a network.

However it has to be considered the fact that here for each input the network is trying to predict

a huge number of values and has therefore a lot more sources of error. In addition to this we

must say that what really matters about the output is: how does it behave in the loop of the
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simulation? Obviously to find it out, we are going to include it in the process and see what we

get.



CHAPTER 6

FINAL SIMULATION

Figure 20: In our work the CARLA simulation is considered to be the reality and it is the main

timeline. On top of it for each time steps N predictions propagating the future for ∆t seconds

can be computed and among them some should be close to the real one.

49
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The ultimate goal of this work is to put all the pieces together in order to perform a

simulation able to recreate the flowing of real life conditions. For such a reason we are going to

consider the CARLA simulation as if it were reality, on top of which all the computations and

predictions are made (Figure 20). The CARLA settings are changed so that the interval between

two consecutive displayed images is of 1s and for each reading of the sensors, in particular of

the radar, the following actions are performed:

1. The Radar Reading goes through the Classifier. Besides the ego vehicle current state is

computed.

2. The points classified as belonging to the leading vehicle are selected and among them the

one with the lower value of distance is taken into account (leading vehicle current state).

This is because that is the point of the leading car that the autonomous vehicle is going

to hit in case of a collision.

3. With the selected point the knowledge of relative velocity between the vehicles and their

relative distance is acquired. The relative velocity is crucial for the computation of the

leading vehicle velocity.

4. Velocity and distance values are given to the control part which depending on the second

decides to act as normal Cruise Control or as Adaptive Cruise Control, in which case the

first is used as reference velocity in the PID controller. From this step come throttle and

brake values.
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5. The current radar reading, ego and leading vehicle current states are passed to the Pre-

diction Function which computes the next states for both vehicle as well as the next radar

image as explained in the previous chapter. The function can than be included in a loop

so that the predicted values can be considered to be the current ones and the prediction

can be propagated N steps ahead.

The process explained above is nothing but the general workflow of the simulation which

explains which actions are taken and when. Figure 21 reports a diagram useful for the visual-

ization of such a sequence of operations.
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Figure 21: Flowchart representing the general workflow of the Final Simulation.

In this specific case we thought it would have been good enough to propagate the prediction

for 10 steps. This is indeed what it is implemented in the code, where the 10 steps propagation is

performed for each time step t. What could be checked to understand how well this system works
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is the correspondence between the computed next relative velocity and distance throughout the

FSM and through the processing of the Synthetic Radar Image. As a matter of fact they should

be correlated and if the models are good enough they should be close as long as the first one is

given to the final Feed Forward Network as an input.

6.1 First Comparison

In order to see how our all system performed, some simulations are run and for a specific

instant the 10 steps ahead prediction is saved and plotted so that the comparison between

FSM and synthetic radar reading can be displayed. Five predictions for the same time steps

are reported; they are all different because they depend on the probabilistic behavior of the

FSM. In Figure 22 the distance comparison for all the five of them is reported. This is a

very explanatory image; as a matter of fact the prediction coming from the Neural Network

reproduction of the radar image is not too far from the one computed by the FSM. However

between time steps 20 and 30 (which means in the middle of the third prediction), the FSM is

telling us that there will be a crash. The distance becomes indeed negative, which means that

the ego vehicle is overcoming the leading car, but this is not possible considering the scenario

settings, leaving us with the only possible conclusion of a predicted collision. Unfortunately

our synthetic image reproduction system is pretty disappointing here because it is completely

missing the prediction of the crash.

In order to improve a little bit this result we can try to make the FSM model less aggressive,

reducing the variation in the velocity in case of a stopping condition to ∆v = −current velocity
2 ,
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and developing an analytical model able to create a radar reading from the FSM prediction

value.

Figure 22: Comparison between the distance evolution predicted by the Finite State Machine
and by the Synthetic Radar Image generation. Five predictions of 10 steps each are reported.
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6.2 Second Comparison - Analytical Model

The idea lying behind this modification is that we can have a simple analytical model which

is not going to take into account the randomness of the radar, but which however will be very

consistent with the FSM prediction, so that it can be used as backup if the Neural Network

prediction is completely off. The basic reasoning upon which this model is built is:

• Background points will remain background, and in doing so the new values associated to

them will be just the negative next velocity of the ego vehicle

• Leading vehicle points will remain leading vehicle points; this means that it is possible to

assign to them the state coming from the FSM.

The addition of this analytical model changes a little bit the workflow of the simulation

which is reported in Figure 23. The result that we got after this changes were made to the

system is shown in Figure 24. It is very good to notice a couple of things here regarding the

last mentioned picture above:

• The Analytical Model output is perfectly coincident with the FSM prediction. This is

very good because it means that it can be used with a very high reliability

• The crash that again is predicted here by the FSM is actually happening in the main

timeline of CARLA. As a matter of fact according to the FSM the collision is going to

happen at time instants 3, 4 and 5. As it is visible in the sequence of images reported in

Figure 25 the crash is actually happening at the fifth step.
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Figure 23: Modified workflow when the Analytical Model is taken into account. This flowchart

is simplified with respect to the one shown in Figure 15. This is because what really has to

be highlighted here is the comparison between Analytical Model and Synthetic Radar Image

Estimation.
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Figure 24: Comparison between FSM prediction, Analytical Model and Neural Network pre-

diction. As it appears from the picture the Analytical model output is coincident with the FSM

prediction.
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Figure 25: Collision Sequence.
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It must be underlined how as it was for Figure 22, also for Figure 24 the neural network

prediction is pretty poor in the sense that is completely missing the collision predicted by the

FSM. As long as the aim of this work is to develop a monitoring system being able to predict

the possible faults of the controller by reproducing the radar images, some new strategies have

to be found.

The first possible cause of such a behavior of the network could be that in the data set the

number of crashes was very low; this is why the idea to improve the performances could be to

retrain the network using this time a data set full of crashes.

6.3 Third Comparison - Retraining the Network

Considering that the Feed Forward Network used for the prediction of the next radar reading

has to be retrained with a data set including a large number of collisions, the behavior of the

ego vehicle is set so that for each simulation a crash occurs. Doing so we have to be aware

of the fact that we do not want the network to be able to detect just one specific crash, and

therefore we have to add some variance to the simulations in terms of velocity of the leading

car and the point where it has to stop which, given the settings, would also be the point where

the vehicles will collide. The data are acquired running the following simulations:

1. Stopping from v = 15m
s at 120m from the next intersection

2. Stopping from v = 15m
s at 130m from the next intersection

3. Stopping from v = 15m
s at 110m from the next intersection

4. Stopping from v = 16m
s at 115m from the next intersection
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5. Stopping from v = 15.5m
s at 125m from the next intersection

6. Stopping from v = 16.5m
s at 135m from the next intersection

7. Stopping from v = 15m
s at 165m from the next intersection

This new set of data is composed by 1077 samples. The network is trained with the exact same

training options as before (look at Section 5.4). The new average accuracy is slightly better

than before as it reaches 65.3178%.

The network is subsequently included again in the simulation and the leading vehicle be-

havior is left so that a crash occurs.

As Figure 26 shows, the retraining procedure brought really good effects to our network.

Both the velocity and distance estimated by the network are following what the FSM is pre-

dicting, and in particular we can see in the top picture how the network is actually predicting

the collision. The second thing that can be observed looking at Figure 26 is that the collision

predicted by the network seems to be much lighter than the one predicted by the finite state

machine. This however is not necessarily a bad thing, because we have to remember that the

model associated to the FSM is still somehow aggressive and probably the Synthetic Radar

Reading Estimation is closer to the real evolving of the states. This speculation is confirmed

in a sense by looking at the simulation itself where the entity of the impact and the value of

velocity at the collision instant reported on the HUD seem to confirm our belief.

In Appendix D and Appendix E the code for the prediction function and for the overall

control loop are respectively reported.
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Figure 26: Top Picture: comparison in the distances between FSM, Analytical and Synthetic
Reading Estimation; Down Picture: comparison in the velocity between FSM, Analytical and
Synthetic Reading Estimation.



CHAPTER 7

CONCLUSION

This work provided a way to monitor what could be a possible dangerous situation in the

future. In such a way it is possible to act in advance and overcome the fault of the controller

exploited by the autonomous system. In doing so we are giving a good way to improve the

safety of the vehicle alongside with driving style which is close to the human one, and especially

which is not too conservative in all the scenarios.

7.1 Contributions

In order to properly resume what has been done regarding this thesis the following list is

reporting the main personal contributions:

• The Carla environment was set up and successfully exploited taking advantage of some

of the features and of the Scenario-Runner

• The behavior of the leading vehicle has been implemented in a probabilistic way allowing

to acquire the several data sets needed for all the networks training.

• The all Perception System was developed, processing the Radar readings with the Clas-

sification Neural Network.

• The models both for ego vehicle (LSTM) and leading vehicle (FSM) are though and

implemented.

• The Prediction and Propagation framework for the Belief Propagation is created

62
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• The final result is satisfactory as it is possible to predict a possible crash in advance (5

seconds) and therefore increasing the safety of the vehicle.

7.2 Future Work

Obtaining a satisfying result is telling us that monitoring and performing Belief Propagation

is an efficient way for the safety increase, and as a consequence there are some upgrades that

can make this idea work even better:

• Training the Network for the Synthetic Radar Reading reproduction with a more diverse

data set able to include more crashes as well as normal driving situations would probably

increase the performance.

• The FSM could be studied more in details so that both the transitions and the assignments

of the variations of velocity and azimuth can be made more humanly relatable.

• The Perception System could be enlarged including other sensors such as Cameras and

LIDARs

• The scenario can be expanded to a more complex one considering more traffic participants

(both vehicles and pedestrians).
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Appendix A

CLASSIFICATION NEURAL NETWORK RELATED CODE

The first code is used for the processing of the data for training and testing the network.

1 clear all

2 close all

3 clc

4

5 %import of the radar detetction files

6 location_radar_detection = ’/media/disk3/cvrl/home/carla/scenario_runner/

save_file/radar_reading_for_classifier ’;

7 ttds_radar_detetction = tabularTextDatastore(location_radar_detection ,’

FileExtensions ’,{’.txt’});

8 ttds_radar_detetction.TreatAsMissing = ’NA’;

9 ttds_radar_detetction.MissingValue = 0;

10 ttds_radar_detetction.ReadSize = ’file’;

11 ttds_radar_detetction.VariableNames = {’Vel’,’Alt’,’Azi’,’Dep’};

12

13 %import of files with the expected output information

14 location_output = ’/media/disk3/cvrl/home/carla/scenario_runner/save_file/

relative_vel_file ’;

15 ttds_out = tabularTextDatastore(location_output ,’FileExtensions ’,{’.txt’});

16 ttds_out.TreatAsMissing = ’NA’;

17 ttds_out.MissingValue = 0;
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Appendix A (continued)

18 ttds_out.ReadSize = ’file’;

19 ttds_out.VariableNames = {’Output ’};

20

21 %import the files with ego current state

22 location_ego_cs = ’/media/disk3/cvrl/home/carla/scenario_runner/save_file/

ego_current_state_classifier ’;

23 ttds_ego_cs = tabularTextDatastore(location_ego_cs ,’FileExtensions ’,{’.txt’});

24 ttds_ego_cs.TreatAsMissing = ’NA’;

25 ttds_ego_cs.MissingValue = 0;

26 ttds_ego_cs.ReadSize = ’file’;

27 ttds_ego_cs.VariableNames = {’Ego_CS ’};

28

29 %just a quick checking of the length

30 if length(ttds_radar_detetction.Files) == length(ttds_out.Files) &&...

31 length(ttds_radar_detetction.Files) == length(ttds_ego_cs.Files)

32 N1 = length(ttds_out.Files);

33 end

34

35 %the following loop reads the radar detection files and the expected

36 %outputs files which are aquired with simulations performed with clear

37 %sunny weather and creates the inputs and the targets

38 for i = 1:N1

39 file_radar_detection = read(ttds_radar_detetction);

40 file_out = read(ttds_out);

41 file_ego_cs = read(ttds_ego_cs);

42
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Appendix A (continued)

43 radar_detection_mtx = file_radar_detection {:,:};

44 out_mtx = file_out {:,:};

45 ego_cs_mtx = file_ego_cs {:,:};

46

47 %if the detected points are less than 75 (which is the maximum) we set

48 %all the remaining lines to zero so that the input size will always be

49 %of the same dimension

50 if length(radar_detection_mtx) < 75

51 radar_detection_mtx(length(radar_detection_mtx)+1:75 ,:) = zeros(75-

length(radar_detection_mtx) ,4);

52 end

53

54 for n = 1:75

55 if abs(radar_detection_mtx(n,1)-out_mtx (1)) < 1

56 %lead_vehicle_point

57 label_mtx(n,:) = 1;

58 elseif abs(radar_detection_mtx(n,1)-out_mtx (2)) <= 1 || sum(

radar_detection_mtx(n,:) == zeros (1,4)) == 4

59 %background poitn

60 label_mtx(n,:) = 0;

61 else

62 %other active element point

63 label_mtx(n,:) = -1;

64 end

65 end

66
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Appendix A (continued)

67 %input and target and label

68 x(:,i) = reshape(radar_detection_mtx ’,[],1);

69 target(:,i) = out_mtx (1);

70 label(:,i) = label_mtx;

71 ego_current_state (:,i) = ego_cs_mtx;

72 end

73

74 %%

75 [rows_x , columns_x] = size(x);

76 [rows_label , columns_label] = size(label);

77

78 for ind_columns = 1: columns_x

79 intermediate_input_mtx = reshape(x(:, ind_columns) ,[4,75]);

80 intermediate_label_mtx = label(:, ind_columns)’; %this becomes 1x75

81 intermediate_ego_cs_mtx = ego_current_state (:, ind_columns).*ones (4,75);

82 intermediate_input_classifier = [intermediate_input_mtx;

intermediate_ego_cs_mtx ];

83 if ind_columns ==1

84 input_classifier = intermediate_input_classifier;

85 label_classifier = intermediate_label_mtx;

86 else

87 input_classifier = [input_classifier intermediate_input_classifier ];

88 label_classifier = [label_classifier intermediate_label_mtx ];

89 end

90 end

91
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Appendix A (continued)

92 save input_classifier

93 save label_classifier

The second code is the actual one used for the training and testing of the network.

1 clear all

2 close all

3 clc

4

5 load input_classifier

6 load label_classifier

7

8 rng(’default ’); %in order to guarantee repetability

9

10 %%

11 N_tot = size(input_classifier ,2);

12 N_train = fix(( N_tot *85) /100);%8500;

13 N_test = N_tot -N_train;

14

15 x_train = input_classifier (:,1: N_train);

16 label_train = label_classifier (:,1: N_train);

17 x_test = input_classifier (:,N_train +1: N_train+N_test);

18 label_test = label_classifier (:,N_train +1: N_train+N_test);

19

20 %%

21 classifier_net = feedforwardnet ([300]);

22
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Appendix A (continued)

23 classifier_net.performParam.regularization = 0.1; %regulariration for the mse

24 classifier_net.performParam.normalization = ’none’;

25 classifier_net = init(classifier_net); %initialization of weights and biases

26

27 classifier_net.divideFcn = ’dividerand ’;

28 classifier_net.divideParam.trainRatio = 0.9;

29 classifier_net.divideParam.valRatio = 0.1;

30 classifier_net.divideParam.testRatio = 0;

31

32 classifier_net.trainFcn = ’trainrp ’;

33 classifier_net.trainParam.epochs = 10000;

34

35 classifier_net.inputs {1}. processFcns ={’mapminmax ’,’fixunknowns ’};

36 classifier_net.outputs {2}. processFcns ={};

37

38 classifier_net.layers {1}. transferFcn = ’tansig ’;

39 classifier_net.layers {2}. transferFcn = ’tansig ’;

40

41 classifier_net = train(classifier_net , x_train , label_train ,’useGPU ’, ’yes’,’

showResources ’,’yes’);

42 y_train = classifier_net(x_train , ’useGPU ’, ’yes’,’showResources ’,’yes’);

43 perf = perform(classifier_net , label_train , y_train);

44

45 y_test = classifier_net(x_test ,’useGPU ’, ’yes’,’showResources ’,’yes’);

46 save classifier_net;

47
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Appendix A (continued)

48 %%

49 right_class = 0;

50 for i = 1: N_test

51 diff = abs(y_test(i) - label_test(i));

52 if diff < 0.5

53 right_class = right_class + 1;

54 end

55 end

56

57 classifier_accuracy_test = (right_class/N_test)*100;
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Appendix B

LSTM NEURAL NETWORK FOR EGO VEHICLE VELOCITY

PREDICTION RELATED CODE

Again here the first code is for the processing of the data

1 clear all

2 close all

3 clc

4

5 %import of the throttle and brake values

6 location_sim1 = ’/media/disk3/cvrl/home/carla/scenario_runner/save_file/

input_for_forecasting_2 ’;

7 ttds_sim1 = tabularTextDatastore(location_sim1 ,’FileExtensions ’,{’.txt’});

8 ttds_sim1.TreatAsMissing = ’NA’;

9 ttds_sim1.MissingValue = 0;

10 ttds_sim1.ReadSize = ’file’;

11 ttds_sim1.VariableNames = {’IN’};

12

13 N1 = length(ttds_sim1.Files);

14

15 %the following loop reads the radar detection files and the expected

16 %outputs files which are aquired with simulations performed with clear

17 %sunny weather and creates the inputs and the targets

18 for i = 1:N1



73

Appendix B (continued)

19 file_throttle_brake = read(ttds_sim1);

20

21 throttle_brake_mtx = file_throttle_brake {:,:};

22

23 throttle_brake_current_state_input (:,i) = throttle_brake_mtx;

24 end

25

26 figure (1);

27 plot(throttle_brake_current_state_input (1,:));

28 title(’Unfiltered v data set’);

29

30 throttle_brake_current_state_input (1,:) = medfilt1(

throttle_brake_current_state_input (1,:) ,10);

31 figure (2);

32 plot(throttle_brake_current_state_input (1,:));

33 title(’Filtered v data set’);

The second code is the actual implementation of the Network

1 clear all

2 close all

3 clc

4

5 load throttle_brake_current_state_input

6 rng(’default ’);

7

8 data = throttle_brake_current_state_input (:,1:end);
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Appendix B (continued)

9

10 numTimeStepsTrain = floor (0.9* size(data ,2));

11

12 dataTrain = data (:,1: numTimeStepsTrain +1);

13 dataTest = data(:, numTimeStepsTrain +1:end);

14

15 mu = mean(dataTrain ,2);

16 sig = std(dataTrain ,0,2);

17

18 dataTrainStandardized = (dataTrain - mu) ./ sig;

19 %%

20

21 XTrain = dataTrainStandardized (:,1:end -1);

22 YTrain = dataTrainStandardized (1,2:end);

23

24 numFeatures = size(XTrain ,1);

25 numResponses = size(YTrain ,1);

26 numHiddenUnits = 200;

27

28 layers = [ ...

29 sequenceInputLayer(numFeatures ,’Normalization ’,’none’, ’

NormalizationDimension ’, ’auto’)

30 lstmLayer(numHiddenUnits ,’OutputMode ’,’sequence ’)

31 fullyConnectedLayer (50)

32 fullyConnectedLayer(numResponses)

33 regressionLayer ];
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Appendix B (continued)

34

35 miniBatchSize = 20;

36 options = trainingOptions(’adam’, ...

37 ’MaxEpochs ’ ,500, ...

38 ’GradientThreshold ’,1, ...

39 ’InitialLearnRate ’ ,0.005, ...

40 ’LearnRateSchedule ’,’piecewise ’, ...

41 ’LearnRateDropPeriod ’ ,125, ...

42 ’LearnRateDropFactor ’ ,0.2, ...

43 ’ResetInputNormalization ’, false ,...

44 ’Verbose ’,0, ...

45 ’Shuffle ’,’never ’ ,...

46 ’Plots ’,’training -progress ’);

47

48 lstm_forecasting = trainNetwork(XTrain ,YTrain ,layers ,options);

49 save lstm_forecasting;

50 %%

51 %standardize the training data using the same parameters as the training

52 %data

53

54 dataTestStandardized = (dataTest - mu) ./ sig;

55 XTest = dataTestStandardized (:,1:end -1);

56

57 lstm_forecasting = predictAndUpdateState(lstm_forecasting ,XTrain);

58

59 YPred = [];
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Appendix B (continued)

60 numTimeStepsTest = size(XTest ,2);

61 for i = 1: numTimeStepsTest

62 [lstm_forecasting ,YPred(:,i)] = predictAndUpdateState(lstm_forecasting ,

XTest(:,i),’ExecutionEnvironment ’,’cpu’ ,...

63 ’MiniBatchSize ’ ,1)

;

64 end

65

66 YPred = sig(1).* YPred + mu(1);

67 YTest = dataTest (1,2:end);

68

69 right_pred = 0;

70 diff = abs(YPred -YTest);

71 for j = 1:size(diff ,2)

72 if diff(:,j) < 1

73 right_pred = right_pred + 1;

74 end

75 end

76

77 accuracy_test = (right_pred/length(diff))*100;

78

79 for k = 1:size(YTest ,1)

80 figure(k);

81 subplot (2,1,1)

82 plot(YTest(k,:),’b’);

83 hold on;
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Appendix B (continued)

84 plot(YPred(k,:),’r’);

85 legend(’Expected ’,’Predicted ’);

86 title(’Comparison Between Expected and Predicted Vel’);

87

88 subplot (2,1,2)

89 stem(YPred(k,:)-YTest(k,:));

90 title(’VelPred -VelExpected ’);

91 end
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Appendix C

FEED FORWARD PREDICTION NEURAL NETWORK FOR

SYNTHTIC RADAR READING REPRODUCTION RELATED CODE

As usual this first piece of code is related to the processing of the data

1 clear all

2 close all

3 clc

4

5 %import of the current radar detetction files

6 location_radar_detection = ’/media/disk3/cvrl/home/carla/scenario_runner/

save_file/input_for_final_prediction_net/radar_reading ’;

7 ttds_radar_detetction = tabularTextDatastore(location_radar_detection ,’

FileExtensions ’,{’.txt’});

8 ttds_radar_detetction.TreatAsMissing = ’NA’;

9 ttds_radar_detetction.MissingValue = 0;

10 ttds_radar_detetction.ReadSize = ’file’;

11 ttds_radar_detetction.VariableNames = {’Vel’,’Alt’,’Azi’,’Dep’};

12

13 %import of the ego vehicle current state

14 location_ego_current_state = ’/media/disk3/cvrl/home/carla/scenario_runner/

save_file/input_for_final_prediction_net/ego_current_state ’;

15 ttds_ego_current_state = tabularTextDatastore(location_ego_current_state ,’

FileExtensions ’,{’.txt’});
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Appendix C (continued)

16 ttds_ego_current_state.TreatAsMissing = ’NA’;

17 ttds_ego_current_state.MissingValue = 0;

18 ttds_ego_current_state.ReadSize = ’file’;

19 ttds_ego_current_state.VariableNames = {’ego_current ’};

20

21 %import of the ego next state

22 location_ego_next_state = ’/media/disk3/cvrl/home/carla/scenario_runner/

save_file/input_for_final_prediction_net/ego_next_state ’;

23 ttds_ego_next_state = tabularTextDatastore(location_ego_next_state ,’

FileExtensions ’,{’.txt’});

24 ttds_ego_next_state.TreatAsMissing = ’NA’;

25 ttds_ego_next_state.MissingValue = 0;

26 ttds_ego_next_state.ReadSize = ’file’;

27 ttds_ego_next_state.VariableNames = {’ego_next ’};

28

29 %import of the leading current state

30 location_leading_current_state = ’/media/disk3/cvrl/home/carla/scenario_runner/

save_file/input_for_final_prediction_net/leading_current_state ’;

31 ttds_leading_current_state = tabularTextDatastore(

location_leading_current_state ,’FileExtensions ’,{’.txt’});

32 ttds_leading_current_state.TreatAsMissing = ’NA’;

33 ttds_leading_current_state.MissingValue = 0;

34 ttds_leading_current_state.ReadSize = ’file’;

35 ttds_leading_current_state.VariableNames = {’leading_current ’};

36

37 %import of the leading next state
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Appendix C (continued)

38 location_leading_next_state = ’/media/disk3/cvrl/home/carla/scenario_runner/

save_file/input_for_final_prediction_net/leading_next_state ’;

39 ttds_leading_next_state = tabularTextDatastore(location_leading_next_state ,’

FileExtensions ’,{’.txt’});

40 ttds_leading_next_state.TreatAsMissing = ’NA’;

41 ttds_leading_next_state.MissingValue = 0;

42 ttds_leading_next_state.ReadSize = ’file’;

43 ttds_leading_next_state.VariableNames = {’leading_next ’};

44

45 if length(ttds_radar_detetction.Files) == length(ttds_ego_current_state.Files)

&& ...

46 length(ttds_radar_detetction.Files) == length(ttds_ego_next_state.Files

) && ...

47 length(ttds_radar_detetction.Files) == length(

ttds_leading_current_state.Files) && ...

48 length(ttds_radar_detetction.Files) == length(ttds_leading_next_state.

Files)

49 N_files = length(ttds_radar_detetction.Files);

50 end

51

52 for i = 1: N_files

53 file_radara_readings = read(ttds_radar_detetction);

54 file_ego_current_state = read(ttds_ego_current_state);

55 file_ego_next_state = read(ttds_ego_next_state);

56 file_leading_current_state = read(ttds_leading_current_state);

57 file_leading_next_state = read(ttds_leading_next_state);
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58

59 radar_readings_mtx = file_radara_readings {:,:};

60 ego_current_state_mtx = file_ego_current_state {: ,:};

61 ego_next_state_mtx = file_ego_next_state {:,:};

62 leading_current_state_mtx = file_leading_current_state {: ,:};

63 leading_next_state_mtx = file_leading_next_state {:,:};

64

65 radar_readings (:,i) = reshape(radar_readings_mtx ’,[],1);

66 ego_current_state (:,i) = ego_current_state_mtx;

67 ego_next_state (:,i) = ego_next_state_mtx;

68 leading_current_state (:,i) = leading_current_state_mtx;

69 leading_next_state (:,i) = leading_next_state_mtx;

70 end

71

72 save radar_readings

73 save ego_current_state

74 save ego_next_state

75 save leading_current_state

76 save leading_next_state

The following code is on the other hand regarding the actual implementation of the network.

1 clear all

2 close all

3 clc

4

5 rng(’default ’); %guaranteeing reproducibility
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6

7 load radar_readings

8 load ego_current_state

9 load ego_next_state

10 load leading_current_state

11 load leading_next_state

12

13 data = [radar_readings; ego_current_state; ego_next_state;

leading_current_state; leading_next_state ];

14

15 numTimeStepsTrain = floor (0.9* size(data ,2));

16

17 dataTrain = data (:,1: numTimeStepsTrain +1);

18 dataTest = data(:, numTimeStepsTrain +1:end);

19

20 XTrain = dataTrain (:,1:end -1);

21 YTrain = dataTrain (1:300 ,2: end);

22

23 XTest = dataTest (:,1:end -1);

24 YTest = dataTest (1:300 ,2: end);

25

26 prediction_net = feedforwardnet ([ 300 75 4 75 ]);

27

28 prediction_net.performParam.regularization = 0.01; %regulariration for the mse

29 prediction_net.performParam.normalization = ’standard ’;

30
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31 prediction_net = init(prediction_net); %initialization of weights and biases

32

33 prediction_net.divideFcn = ’divideint ’;

34 prediction_net.trainFcn = ’trainrp ’;

35 prediction_net.trainParam.epochs = 1000;

36 prediction_net.trainParam.max_fail = 10;

37

38 prediction_net.divideParam.trainRatio = 0.9;

39 prediction_net.divideParam.valRatio = 0.1;

40 prediction_net.divideParam.testRatio = 0;

41

42 prediction_net = train(prediction_net , XTrain , YTrain , ’useGPU ’, ’yes’,’

showResources ’,’yes’);

43 out_train = prediction_net(XTrain ,’useGPU ’, ’yes’,’showResources ’,’yes’ );

44 perf = perform(prediction_net , YTrain , out_train);

45

46 YPred = prediction_net(XTest ,’useGPU ’, ’yes’,’showResources ’,’yes’ );

47 save prediction_net;

48

49 right_pred = zeros(size(YPred ,1),size(YPred ,2));

50 diff = abs(YPred -YTest);

51 for j = 1:size(diff ,2)

52 for k = 1:size(diff ,1)

53 if diff(k,j) < 2

54 right_pred(j) = right_pred(j) + 1;

55 end
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56 end

57 accuracy_test(j) = (right_pred(j)/size(diff ,1))*100;

58 end

59

60 accuracy_mean_on_test = mean(accuracy_test);
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PREDICTION FUNCTION RELATED CODE

1 class PredictionClass(object):

2

3 def __init__(self , vehicle , world):

4

5 self._vehicle = vehicle

6 self._world = world

7 self._PID_control = PIDLongitudinalController(self._vehicle , K_P=1.0,

K_D=0.0, K_I=0.0, dt =0.03)

8 self._control = carla.VehicleControl ()

9

10 def run_prediction(self , ego_vehicle_current_state ,

leading_vehicle_current_state , current_radar_reading , percepted_vel_list ,

leading_vehicle_current_mode , DeltaT):

11

12 global hidden

13 global cell

14 normal_cruise_velocity = 45.0

15 ego_next_state_list = []

16 leading_next_state_list = []

17 leading_vehicle_next_mode_list = []

18 max_distance = 6
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19 ego_pos = self._vehicle.get_location ()

20 v = self._vehicle.get_velocity ()

21 v_ms = int(1 * math.sqrt(v.x**2 + v.y**2 + v.z**2))

22

23 # CONTROL PART NEEDED FOR HAVING THE CONTROL OUTPUT WHICH LEADS TO

THE ACCELERATION

24 leading_vehicle_relative_velocity = leading_vehicle_current_state [0]

25 leading_vehicle_azimuth = leading_vehicle_current_state [2]

26 leading_vehicle_distance = leading_vehicle_current_state [3]

27

28 leading_vehicle_velocity = v_ms + leading_vehicle_relative_velocity

29

30 if leading_vehicle_distance > max_distance:

31 self._control.throttle = self._PID_control.run_step(

normal_cruise_velocity)

32 self._control.brake = 0.0

33 elif leading_vehicle_distance < max_distance:

34 if (leading_vehicle_velocity *3.6) >= 1.0:

35 front_vehicle_vel = int(leading_vehicle_velocity *3.6)

36 if self._PID_control.run_step(front_vehicle_vel) == 0.0:

37 # if the output is zero no action inrequired

38 self._control.throttle = self._PID_control.run_step(

front_vehicle_vel)

39 self._control.brake = self._PID_control.run_step(

front_vehicle_vel)

40 elif self._PID_control.run_step(front_vehicle_vel) > 0:
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41 # if the output is > 0 the car needs to speed up so the

throttle is controlled while the brake is kept to zero

42 self._control.throttle = self._PID_control.run_step(

front_vehicle_vel)

43 self._control.brake = 0.0

44 elif self._PID_control.run_step(front_vehicle_vel) < 0:

45 # if the output is < 0 the car needs to slow down so the

brake is controlled while the throttle is kept to zero

46 self._control.throttle = 0.0

47 self._control.brake = abs(self._PID_control.run_step(

front_vehicle_vel))

48 elif 0.0 <= (leading_vehicle_velocity *3.6) < 1.0:

49 front_vehicle_vel = 0.0

50 self._control.throttle = 0.0

51 self._control.brake = abs(self._PID_control.run_step(

front_vehicle_vel))

52 # EGO VEHICLE KINEMATIC MODEL

53 input_to_lstm_net = [v_ms , self._control.throttle , self._control.

brake]

54

55 update_lstm , ego_next_vel = RCNN.complete_lstm_network(

input_to_lstm_net , input_weight , recurrent_weight , bias_lstm , hidden , cell ,

mean_value , standard_dev , weight_fc1 , bias_fc1 , weight_fc2 , bias_fc2)

56

57 update_lstm = list(update_lstm)

58 hidden = update_lstm [0]
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59 cell = update_lstm [1]

60

61 ego_next_pos_x = 0.5*(( ego_next_vel -v_ms))*( DeltaT) + v_ms*DeltaT +

ego_pos.x

62 ego_next_pos_y = ego_pos.y

63 ego_next_pos_z = ego_pos.z

64 ego_next_state = [ego_next_vel , ego_next_pos_x , ego_next_pos_y ,

ego_next_pos_z]

65

66 ego_next_state_list.append(ego_next_state)

67

68 # predicting next mode of the leading vehicle using the Finite State

Machine

69 leading_vehicle_next_mode = FiniteStateMachine.current_mode_checker(

leading_vehicle_current_mode)

70 leading_vehicle_next_mode_list.append(leading_vehicle_next_mode)

71 # here I am associating to each next mode a defined velocity

variation , whihc should be a plausibla one. Given this variation I can

compute leading vehicle next velocity and thanks to it using the kinematic

eqautions I can compute the next distance between ego vehicle and leading

vehicle.

72 DeltaV = 0

73 DeltaAzimuth = 0

74 if leading_vehicle_next_mode == ’Normal Driving ’:

75 DeltaV = 0

76 elif leading_vehicle_next_mode == ’Accelerating ’:
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77 DeltaV = 0.5

78 elif leading_vehicle_next_mode == ’Decelerating ’:

79 DeltaV = -0.5

80 elif leading_vehicle_next_mode == ’Stop’:

81 DeltaV = -(leading_vehicle_velocity /2)

82 elif leading_vehicle_next_mode == ’Distract R’:

83 DeltaAzimuth = 1

84 elif leading_vehicle_next_mode == ’Distract L’:

85 DeltaAzimuth = -1

86

87 leading_next_vel = leading_vehicle_velocity + DeltaV

88 leading_next_altitude = leading_vehicle_current_state [1]

89 leading_next_azimuth = leading_vehicle_azimuth + DeltaAzimuth

90

91 leading_pos = ego_pos.x + leading_vehicle_distance

92 leading_next_pos = 0.5* DeltaV*DeltaT + leading_vehicle_velocity*

DeltaT + leading_pos

93

94 leading_next_distance = leading_next_pos - ego_next_pos_x

95 leading_next_relative_vel = leading_next_vel - ego_next_vel

96

97 leading_next_state = [leading_next_relative_vel ,

leading_next_altitude , leading_next_azimuth , leading_next_distance]

98

99 leading_next_state_list.append(leading_next_state)

100
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101 # HERE I WANT TO TEST THE NETWORK THAT PREDICTS THE NEXT RADAR

READING

102 input_prediction_net = np.append(current_radar_reading , np.array(

ego_vehicle_current_state).reshape (1,4), axis =0)

103 input_prediction_net = np.append(input_prediction_net , np.array(

ego_next_state).reshape (1,4), axis =0)

104 input_prediction_net = np.append(input_prediction_net , np.array(

leading_vehicle_current_state).reshape (1,4), axis =0)

105 input_prediction_net = np.append(input_prediction_net , np.array(

leading_next_state).reshape (1,4), axis =0)

106

107 next_radar_reading = FFNeuralNet.prediction_radar_reading_network(

input_prediction_net , input_ymax_pred , input_ymin_pred , input_xmax_pred ,

input_xmin_pred , weight1 , bias1 , weight2 , bias2 , weight3 , bias3 , weight4 ,

bias4 , weight5 , bias5 , output_ymax_pred , output_ymin_pred , output_xmax_pred ,

output_xmin_pred)

108

109 predicion_net_lead_vehicle_state = PredictionClass(self._vehicle ,

self._world).run_propagation(next_radar_reading , ego_next_state)

110

111 analytical_lead_vehicle_state = PredictionClass(self._vehicle , self.

_world).analytical_model(ego_vehicle_current_state ,

leading_vehicle_current_state , current_radar_reading , ego_next_state ,

leading_next_state)

112
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113 return [ego_next_state , leading_next_state , next_radar_reading ,

leading_vehicle_next_mode , predicion_net_lead_vehicle_state ,

analytical_lead_vehicle_state]

114

115 def run_propagation(self ,next_radar_reading , ego_next_state):

116

117 setted_ego_vel = 45.0

118 max_d = 6

119 leading_vehicle_points_list = []

120 background_points_list = []

121 active_point_list = []

122 v = self._vehicle.get_velocity ()

123 v_ms = int(1 * math.sqrt(v.x**2 + v.y**2 + v.z**2))

124

125 for row in next_radar_reading:

126 classification_input = np.append(row[:,None], np.array(

ego_next_state).reshape (-1,1), axis =0)

127 classifier = FFNeuralNet.classification_network(

classification_input ,input_ymax_class , input_ymin_class , input_xmax_class ,

input_xmin_class , input_w_mtx_class , input_b_vec_class , layer1_w_mtx_class ,

layer1_b_vec_class)

128

129 if -0.5 < classifier < 0.5:

130 background_points_list.append(row)

131 elif 0.5 < classifier < 1:

132 leading_vehicle_points_list.append(row)
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133 elif -1 < classifier < -0.5:

134 active_point_list.append(row)

135

136 if len(leading_vehicle_points_list) != 0:

137 cnt = 0

138 for row in leading_vehicle_points_list:

139 dist = row [3]

140 if cnt == 0:

141 min_dist = row[3]

142 relative_vel = row [0]

143 azimuth = row [2]

144 leading_vehicle_current_state = row

145 else:

146 if dist < min_dist and dist != 0:

147 min_dist = dist

148 relative_vel = row [0]

149 azimuth = row [2]

150 leading_vehicle_current_state = row

151 cnt = cnt + 1

152 return leading_vehicle_current_state

153

154 def analytical_model(self , ego_vehicle_current_state ,

leading_vehicle_current_state , current_radar_reading , ego_vehicle_next_state

, leading_next_state):

155

156 leading_vehicle_points_list = []
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157 background_points_list = []

158 active_point_list = []

159 analytical_radar_reading = []

160 next_background_points = []

161 next_leading_vehicle_points = []

162

163 for row in current_radar_reading:

164 classification_input = np.concatenate ((row ,

ego_vehicle_current_state), axis =0)

165 classifier = FFNeuralNet.classification_network(

classification_input ,input_ymax_class , input_ymin_class , input_xmax_class ,

input_xmin_class , input_w_mtx_class , input_b_vec_class , layer1_w_mtx_class ,

layer1_b_vec_class)

166

167 if -0.5 < classifier < 0.5:

168 background_points_list.append(row)

169 new_vel = -ego_vehicle_next_state [0]

170 new_alt = ego_vehicle_current_state [1]

171 new_azi = ego_vehicle_current_state [2]

172 new_dist = ego_vehicle_current_state [3]

173 new_row = [new_vel , new_alt , new_azi , new_dist]

174 next_background_points.append(new_row)

175 analytical_radar_reading.append(new_row)

176 elif 0.5 < classifier < 1:

177 leading_vehicle_points_list.append(row)

178 new_row = leading_next_state
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179 next_leading_vehicle_points.append(new_row)

180 analytical_radar_reading.append(new_row)

181 elif -1 < classifier < -0.5:

182 active_point_list.append(row)

183

184 if len(next_leading_vehicle_points) != 0:

185 cnt = 0

186 for row in next_leading_vehicle_points:

187 dist = row [3]

188 if cnt == 0:

189 min_dist = row[3]

190 relative_vel = row [0]

191 azimuth = row [2]

192 analytical_lead_vehicle_state = row

193 else:

194 if dist < min_dist and dist != 0:

195 min_dist = dist

196 relative_vel = row [0]

197 azimuth = row [2]

198 analytical_lead_vehicle_state = row

199 cnt = cnt + 1

200 return analytical_lead_vehicle_state
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OVERALL CONTROL LOOP RELATED CODE

1 def _parse_PID_control_NNperception(self , world):

2

3 max_d = 6 # this is the maximum distance between ego vehicle and lead

vehicle in meters

4 setted_ego_vel = 45.0 # this is the maximum velocity of the ego vehicle

to be kept by it if the distance is greater than the max_d setted above

5 global points

6 global starting_flag

7 global percepted_vel_list

8 global loop_cnt

9 global reference_time

10 global mode_changing_counter

11 global leading_vehicle_mode_list

12 global save_image_index

13 global even_numbers_list

14 global start_time

15 global DeltaT

16 global time_list

17 global simulation_start_time

18 global actual_trigger_time

19 front_vehicle_vel = 0.0
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20 v = world.vehicle.get_velocity () # current vel of ego vehicle in m/ms

21 kmh = int (3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)) # current vel of

ego vehicle in km/h

22 t = world.vehicle.get_transform ()

23 vehicles = world.world.get_actors ().filter(’vehicle .*’) # list of

vehicles in the simulation

24 distance = lambda l: math.sqrt((l.x - t.location.x)**2 + (l.y - t.

location.y)**2 + (l.z - t.location.z)**2) # method to compute the distance

between other vehicle and ego vehicle

25 mutal_d_form_vehcile = [( distance(x.get_location ()), x) for x in

vehicles if x.id != world.vehicle.id] # distance between ego vehcile and

leading vehicle

26 self._PID_control = PIDLongitudinalController(world.vehicle , K_P=1.0,

K_D=0.0, K_I=0.0, dt =0.03)

27

28 v_ego_ms = kmh /3.6

29 ego_pos = world.vehicle.get_location ()

30 input_for_forecasting_list = [v_ego_ms]

31

32 ego_current_state = [v_ego_ms , ego_pos.x, ego_pos.y, ego_pos.z]

33

34 #with the following method I am making all the input matrices to be 75x4

otherwise they could have a lower number of rows depending on the points

detected from the radar

35 points_mtx = np.array(points)

36 if len(points_mtx) < 75:
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37 new_rows = 75-len(points_mtx)

38 append_mtx = np.zeros((new_rows ,4), dtype=np.float)

39 points_mtx = np.append(points_mtx , append_mtx , axis =0) # this is the

75x4 current radar reading

40

41 #current_radar_reading = points_mtx.flatten(’F’).reshape(-1, 1) #here I

am flattening the points matrix and making it a column vector that can be

feed as the input to the network

42

43 # here I use the classification neural network because I want to

classify the current radar readings into points belonging to the leading

vehicle and points belonging to the background. If the output of the network

is 0 => the point belongs to the background , while if the output is 1 =>

the points belongs to the leading vehicle.

44 background_points_list = []

45 leading_vehicle_points_list = []

46 active_point_list = []

47 for row in points_mtx:

48 classification_input = np.concatenate ((row , ego_current_state),

axis =0)

49 classifier = FFNeuralNet.classification_network(

classification_input ,input_ymax_class , input_ymin_class , input_xmax_class ,

input_xmin_class , input_w_mtx_class , input_b_vec_class , layer1_w_mtx_class ,

layer1_b_vec_class)

50

51 if -0.5 < classifier < 0.5:
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52 background_points_list.append(row)

53 elif 0.5 < classifier < 1:

54 leading_vehicle_points_list.append(row)

55 elif -1 < classifier < -0.5:

56 active_point_list.append(row)

57

58 # Following there is the control part. First of all I consider only the points

that are classified as "leading vehicle ". Besides I choose among those

points the one that has the minor distance , because in theory is the fist

one my ego vehicle will touch in case of a crash. I take from that point the

distance and the relative velocity and I use them in the control.

59 # First of all I make a starting process which will make the simulation start

and will bring the ego vehicle close enough to the leading vehicle , making

the ego vehicle reach a velocity between 10 and 12 km/h. Besides when the

distance is bigger that a setted value "max_d" the ego vehicle responds to a

normal cruise control at a setted velocity , while is the distance is lower

than max_d an adaptive cruise control comes in, and the ego vehicle tries to

reach the velocity of the leading vehicle which is return from the radar

readings. Besides cheking if the previous values of velocity are somehow

similar to the current value I am trying to get rid of possible misreadings

and misclassifications.

60

61 throttle_brake_list = []

62 acceleration_list = []

63

64 if len(leading_vehicle_points_list) != 0:
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65 cnt = 0

66 for row in leading_vehicle_points_list:

67 dist = row [3]

68 if cnt == 0:

69 min_dist = row[3]

70 relative_vel = row [0]

71 azimuth = row [2]

72 leading_vehicle_current_state = row

73 else:

74 if dist < min_dist and dist != 0:

75 min_dist = dist

76 relative_vel = row [0]

77 azimuth = row [2]

78 leading_vehicle_current_state = row

79 cnt = cnt + 1

80

81 absolute_vel = 3.6*( relative_vel + v_ego_ms) #kmh

82

83 distance_list.append(min_dist)

84 percepted_vel_list.append(absolute_vel)

85 loop_cnt = loop_cnt + 1

86

87 # FSM FOR NEXT MODE (PROBABILISTIC MODEL OF LEADING VEHICLE)

88 # Before proceeding with the control part I need to establish which

is the current mode of the leading vehicle among: Normal Driving ,

Accelerating , Decelerating , Stop , Distract Left and Distract Right. In order



100

Appendix E (continued)

to do I am going to compare the absolute velocity at this instant with the

absolute velocity in the previous instant.

89 if len(percepted_vel_list) == 1:

90 leading_vehicle_current_mode = "Accelerating"

91 leading_vehicle_mode_list.append(leading_vehicle_current_mode)

92 reference_time = time.time()

93 Tmin_list.append (2)

94 mode_changing_counter = 0

95 elif (time.time() - reference_time) >= Tmin_list[

mode_changing_counter ]:

96 if percepted_vel_list[loop_cnt -1]- percepted_vel_list[loop_cnt -2]

< -1:

97 leading_vehicle_current_mode = "Decelerating"

98 leading_vehicle_mode_list.append(leading_vehicle_current_mode)

99 reference_time = time.time()

100 Tmin_list.append (2)

101 mode_changing_counter = mode_changing_counter + 1

102 elif percepted_vel_list[loop_cnt -1]- percepted_vel_list[loop_cnt

-2] > 1:

103 leading_vehicle_current_mode = "Accelerating"

104 leading_vehicle_mode_list.append(leading_vehicle_current_mode)

105 reference_time = time.time()

106 Tmin_list.append (2)

107 mode_changing_counter = mode_changing_counter + 1

108 elif -0.5 < percepted_vel_list[loop_cnt -1] < 0.5:

109 leading_vehicle_current_mode = "Stop"
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110 leading_vehicle_mode_list.append(leading_vehicle_current_mode)

111 reference_time = time.time()

112 Tmin_list.append (1)

113 mode_changing_counter = mode_changing_counter + 1

114 elif leading_vehicle_current_state [2] > 1:

115 leading_vehicle_current_mode = "Distract R"

116 leading_vehicle_mode_list.append(leading_vehicle_current_mode)

117 reference_time = time.time()

118 Tmin_list.append (1)

119 mode_changing_counter = mode_changing_counter + 1

120 elif leading_vehicle_current_state [2] < -1:

121 leading_vehicle_current_mude = "Distract L"

122 leading_vehicle_mode_list.append(leading_vehicle_current_mode)

123 reference_time = time.time()

124 Tmin_list.append (1)

125 mode_changing_counter = mode_changing_counter + 1

126 else:

127 leading_vehicle_current_mode = "Normal Driving"

128 leading_vehicle_mode_list.append(leading_vehicle_current_mode)

129 reference_time = time.time()

130 Tmin_list.append (3)

131 mode_changing_counter = mode_changing_counter + 1

132 elif (time.time() - reference_time) < Tmin_list[

mode_changing_counter ]:

133 leading_vehicle_current_mode = leading_vehicle_mode_list[loop_cnt

-2]
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134 leading_vehicle_mode_list.append(leading_vehicle_current_mode)

135

136 # here I am checking how much time it takes to execute one iteration

of the all function "Keyboard Control"

137 spot = time.time()

138 time_list.append(spot)

139 if len(time_list) > 1:

140 delta_t_execution = time_list[loop_cnt -1] - time_list[loop_cnt -2]

141 else:

142 delta_t_execution = time_list[loop_cnt -1] - simulation_start_time

143

144 new_ego_state_list = []

145 new_leading_state_list = []

146 estimated_leading_state_list = []

147 analytical_lead_state_list = []

148 prediction_trigger_time = time.time()

149 if 75.0 <= (prediction_trigger_time -simulation_start_time) <= 76.5:

150 actual_trigger_time = time.time()

151 for n in range (10):

152 if n == 0:

153 ego_next_state , leading_next_state , next_radar_reading ,

new_mode , estimated_leading_vehicle_netx_state ,

analytical_lead_vehicle_state = PredictionClass(world.vehicle , world).

run_prediction(ego_current_state , leading_vehicle_current_state , points_mtx ,

percepted_vel_list , leading_vehicle_current_mode , delta_t_execution)

154 new_ego_state = ego_next_state
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155 new_leading_state = leading_next_state

156 new_radar_reading = next_radar_reading

157 new_ego_state_list.append(new_ego_state)

158 new_leading_state_list.append(new_leading_state)

159 estimated_leading_state_list.append(

estimated_leading_vehicle_netx_state)

160 analytical_lead_state_list.append(

analytical_lead_vehicle_state)

161 print(’Saving at’, ego_pos.x)

162 else:

163 if estimated_leading_vehicle_netx_state is None:

164 new_ego_state , new_leading_state , new_radar_reading ,

new_mode , estimated_leading_vehicle_netx_state ,

analytical_lead_vehicle_state = PredictionClass(world.vehicle , world).

run_prediction(new_ego_state , new_leading_state , new_radar_reading ,

percepted_vel_list , new_mode , delta_t_execution)

165 new_ego_state_list.append(new_ego_state)

166 new_leading_state_list.append(new_leading_state)

167 estimated_leading_state_list.append(

estimated_leading_vehicle_netx_state)

168 analytical_lead_state_list.append(

analytical_lead_vehicle_state)

169 else:

170 new_ego_state , new_leading_state , new_radar_reading ,

new_mode , estimated_leading_vehicle_netx_state ,

analytical_lead_vehicle_state = PredictionClass(world.vehicle , world).
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run_prediction(new_ego_state , estimated_leading_vehicle_netx_state ,

new_radar_reading , percepted_vel_list , new_mode , delta_t_execution)

171 new_ego_state_list.append(new_ego_state)

172 new_leading_state_list.append(new_leading_state)

173 estimated_leading_state_list.append(

estimated_leading_vehicle_netx_state)

174 analytical_lead_state_list.append(

analytical_lead_vehicle_state)

175 print(’Saving at’, ego_pos.x)

176

177 if len(new_ego_state_list) != 0:

178 new_index = len(os.listdir(’/media/disk3/cvrl/home/carla/

scenario_runner/save_file/testing_prediction_net/predicted_states/sim2/

ego_states ’))

179 points_file = open("/media/disk3/cvrl/home/carla/

scenario_runner/save_file/testing_prediction_net/predicted_states/sim2/

ego_states/ego_prop%s.txt" % new_index , "w")

180 for row in new_ego_state_list:

181 np.savetxt(points_file , [row])

182 points_file.close ()

183 new_index = len(os.listdir(’/media/disk3/cvrl/home/carla/

scenario_runner/save_file/testing_prediction_net/predicted_states/sim2/

leading_states ’))

184 points_file = open("/media/disk3/cvrl/home/carla/

scenario_runner/save_file/testing_prediction_net/predicted_states/sim2/

leading_states/leading_prop%s.txt" % new_index , "w")
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185 for row in new_leading_state_list:

186 np.savetxt(points_file , [row])

187 points_file.close ()

188 new_index = len(os.listdir(’/media/disk3/cvrl/home/carla/

scenario_runner/save_file/testing_prediction_net/predicted_states/sim2/

estimated_lead_states ’))

189 points_file = open("/media/disk3/cvrl/home/carla/

scenario_runner/save_file/testing_prediction_net/predicted_states/sim2/

estimated_lead_states/leading_prop%s.txt" % new_index , "w")

190 for row in estimated_leading_state_list:

191 np.savetxt(points_file , [row])

192 points_file.close ()

193 new_index = len(os.listdir(’/media/disk3/cvrl/home/carla/

scenario_runner/save_file/testing_prediction_net/predicted_states/sim2/

analytical_lead_state ’))

194 points_file = open("/media/disk3/cvrl/home/carla/

scenario_runner/save_file/testing_prediction_net/predicted_states/sim2/

analytical_lead_state/leading_prop%s.txt" % new_index , "w")

195 for row in analytical_lead_state_list:

196 np.savetxt(points_file , [row])

197 points_file.close ()

198

199 else:

200 for n in range (10):

201 if n == 0:
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202 ego_next_state , leading_next_state , next_radar_reading ,

new_mode , estimated_leading_vehicle_netx_state ,

analytical_lead_vehicle_state = PredictionClass(world.vehicle , world).

run_prediction(ego_current_state , leading_vehicle_current_state , points_mtx ,

percepted_vel_list , leading_vehicle_current_mode , delta_t_execution)

203 new_ego_state = ego_next_state

204 new_leading_state = leading_next_state

205 new_radar_reading = next_radar_reading

206 new_ego_state_list.append(new_ego_state)

207 new_leading_state_list.append(new_leading_state)

208 estimated_leading_state_list.append(

estimated_leading_vehicle_netx_state)

209 analytical_lead_state_list.append(

analytical_lead_vehicle_state)

210

211 else:

212 if estimated_leading_vehicle_netx_state is None:

213 new_ego_state , new_leading_state , new_radar_reading ,

new_mode , estimated_leading_vehicle_netx_state ,

analytical_lead_vehicle_state = PredictionClass(world.vehicle , world).

run_prediction(new_ego_state , new_leading_state , new_radar_reading ,

percepted_vel_list , new_mode , delta_t_execution)

214 new_ego_state_list.append(new_ego_state)

215 new_leading_state_list.append(new_leading_state)

216 estimated_leading_state_list.append(

estimated_leading_vehicle_netx_state)
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217 analytical_lead_state_list.append(

analytical_lead_vehicle_state)

218 else:

219 new_ego_state , new_leading_state , new_radar_reading ,

new_mode , estimated_leading_vehicle_netx_state ,

analytical_lead_vehicle_state = PredictionClass(world.vehicle , world).

run_prediction(new_ego_state , estimated_leading_vehicle_netx_state ,

new_radar_reading , percepted_vel_list , new_mode , delta_t_execution)

220 new_ego_state_list.append(new_ego_state)

221 new_leading_state_list.append(new_leading_state)

222 estimated_leading_state_list.append(

estimated_leading_vehicle_netx_state)

223 analytical_lead_state_list.append(

analytical_lead_vehicle_state)

224

225 # Here starts the real control loop. in which the PID controller is

taken into account and where we are switching between normal cruise control

to adaptive cruise control

226 if (kmh <= 1 and starting_flag == 0):

227 self._control.throttle = self._PID_control.run_step(

setted_ego_vel)

228 self._control.brake = 0.0

229 if kmh > 0.2:

230 starting_flag = 1

231 else:

232 if min_dist > max_d:
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233 self._control.throttle = np.clip(self._PID_control.run_step(

setted_ego_vel), 0.0, 1.0)

234 self._control.brake = 0.0

235 elif min_dist < max_d:

236 if absolute_vel >= 1.0:

237 front_vehicle_vel = absolute_vel

238 if self._PID_control.run_step(front_vehicle_vel) == 0.0:

239 # if the output is zero no action inrequired

240 self._control.throttle = self._PID_control.run_step(

front_vehicle_vel)

241 self._control.brake = self._PID_control.run_step(

front_vehicle_vel)

242 elif self._PID_control.run_step(front_vehicle_vel) > 0:

243 # if the output is > 0 the car needs to speed up so

the throttle is controlled while the brake is kept to zero

244 self._control.throttle = self._PID_control.run_step(

front_vehicle_vel)

245 self._control.brake = 0.0

246 elif self._PID_control.run_step(front_vehicle_vel) < 0:

247 # if the output is < 0 the car needs to slow down so

the brake is controlled while the throttle is kept to zero

248 self._control.throttle = 0.0

249 self._control.brake = abs(self._PID_control.run_step(

front_vehicle_vel))

250 elif 0.0 <= absolute_vel < 1.0:

251 front_vehicle_vel = 0.0
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252 self._control.throttle = 0.0

253 self._control.brake = abs(self._PID_control.run_step(

front_vehicle_vel))
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HOW TO RUN CARLA AND SCENARIO-RUNNER

This Appendix is explaining how to reproduce the simulation that I created for this work.

1. Open the first tab in the terminal. Go to the CARLA folder and run:

./CarlaUE4.sh

2. Open a second tab in the terminal. Go to the Scenario-Runner folder and run:

python3 scenario runner.py −−scenario MyScenario2 1 −−reloadWorld

Pay attention to the fact that if any other scenario wants to be run, it is simply necessary

to change the MyScenario2 1 into whatever is desired. This is the file that sets the

scenario settings and controls the other actors behaviors.

3. Open a third tab in the terminal. Again in Scenario-Runner folder run:

python3 PID control class pred.py

This is the file that controls the ego vehicle. There are others and any of them can be

modified.
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IMPLEMENTATION OF PID LONGITUDINAL CONTROLLER IN

PYTHON

1 class PIDLongitudinalController(object):

2 """

3 PIDLongitudinalController implements longitudinal control using a PID.

4 """

5

6 def __init__(self , vehicle , K_P=1.0, K_D=0.0, K_I=0.0, dt =0.03):

7 """

8 :param vehicle: actor to apply to local planner logic onto

9 :param K_P: Proportional term

10 :param K_D: Differential term

11 :param K_I: Integral term

12 :param dt: time differential in seconds

13 """

14 self._vehicle = vehicle

15 self._K_P = K_P

16 self._K_D = K_D

17 self._K_I = K_I

18 self._dt = dt

19 self._e_buffer = deque(maxlen =30)

20
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21 def run_step(self , target_speed , debug=False):

22 """

23 Execute one step of longitudinal control to reach a given target speed.

24 :param target_speed: target speed in Km/h

25 :return: throttle/brake control in the range [-1, 1]

26 """

27 current_speed = get_speed(self._vehicle)

28

29 if debug:

30 print(’Current speed = {}’.format(current_speed))

31

32 return self._pid_control(target_speed , current_speed)

33

34 def _pid_control(self , target_speed , current_speed):

35 """

36 Estimate the throttle/brake of the vehicle based on the PID equations

37 :param target_speed: target speed in Km/h

38 :param current_speed: current speed of the vehicle in Km/h

39 :return: throttle control in the range [0, 1]

40 :return: brake control in the range [-1, 0]. When applying the brake

remember to consider

41 the absolute value so that the brake is in [0, 1] as expected in Carla

control

42 """

43 _e = (target_speed - current_speed)

44 self._e_buffer.append(_e)
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45

46 if len(self._e_buffer) >= 2:

47 _de = (self._e_buffer [-1] - self._e_buffer [-2]) / self._dt

48 _ie = sum(self._e_buffer) * self._dt

49 else:

50 _de = 0.0

51 _ie = 0.0

52 # the return function has been modified so that it returns value

between -1 and 1. In such a way if the output is > 0 the throttle is going

to be controlled , while if it is < 0 the brake is going to be controlled

53 return np.clip((self._K_P * _e) + (self._K_D * _de / self._dt) + (self.

_K_I * _ie * self._dt), -1.0, 1.0)

Listing G.1: Longitudinal PID Controller.

It is notable how the function returned at the last line of the code above is exactly the

expression reported in Equation 4.1
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IMPLEMENTATION OF THE RADAR IN PYTHON

1 class RadarSensor(object):

2 def __init__(self , parent_actor , hud):

3 self.sensor = None

4 self._parent = parent_actor

5 self.velocity_range = 7.5 # m/s

6 radar_world = self._parent.get_world ()

7 self.debug = radar_world.debug

8 bp = radar_world.get_blueprint_library ().find(’sensor.other.radar ’)

9 bp.set_attribute(’horizontal_fov ’, str (35))# original str (35)

10 bp.set_attribute(’vertical_fov ’, str (20))# original str (20)

11 self.sensor = radar_world.spawn_actor(

12 bp ,

13 carla.Transform(

14 carla.Location(x=2.8, z=1), # original z=1.0

15 carla.Rotation(pitch =0.6)), # original pitch=5

16 attach_to=self._parent)

17 # We need a weak reference to self to avoid circular reference.

18 weak_self = weakref.ref(self)

19 self.sensor.listen(lambda radar_data: RadarSensor._Radar_callback(

weak_self , radar_data))

20
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21 def toggle_radar(self):

22 if self.sensor is None:

23 self.radar_sensor = RadarSensor(self.player)

24 #self.radar_sensor = RadarSensor(display)

25 elif self.sensor is not None:

26 self.sensor.destroy ()

27 self.sensor = None

28

29 @staticmethod

30 def _Radar_callback(weak_self , radar_data):

31 global points

32 self = weak_self ()

33 if not self:

34 return

35 # To get a numpy [[vel , altitude , azimuth , depth ],...[,,,]]:

36 points = np.frombuffer(radar_data.raw_data , dtype=np.dtype(’f4’))

37 points = np.reshape(points , (len(radar_data), 4))

38

39 current_rot = radar_data.transform.rotation

40 for detect in radar_data:

41 azi = math.degrees(detect.azimuth)

42 alt = math.degrees(detect.altitude)

43 # The 0.25 adjusts a bit the distance so the dots can

44 # be properly seen

45 fw_vec = carla.Vector3D(x=detect.depth - 0.25)

46 carla.Transform(
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47 carla.Location (),

48 carla.Rotation(

49 pitch=current_rot.pitch + alt ,

50 yaw=current_rot.yaw + azi ,

51 roll=current_rot.roll)).transform(fw_vec)

52

53 def clamp(min_v , max_v , value):

54 return max(min_v , min(value , max_v))

55

56 norm_velocity = detect.velocity / self.velocity_range

57 #range[-1, 1]

58 r = int(clamp (0.0, 1.0, 1.0 - norm_velocity) * 255.0)

59 g = int(clamp (0.0, 1.0, 1.0 - abs(norm_velocity)) * 255.0)

60 b = int(abs(clamp(- 1.0, 0.0, - 1.0 - norm_velocity)) * 255.0)

61 self.debug.draw_point(

62 radar_data.transform.location + fw_vec ,

63 size =0.075 ,

64 life_time =0.06 ,

65 persistent_lines=False

66

Listing H.1: Radar Implementation in CARLA.
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LEADING VEHICLE RANDOM BEHAVIOR IMPLEMENTATION

Algorithm 1: Leading Vehicle Random Behavior Pseudo Code

1 behavior variable = np.random.randn()
2 q995 = 2.575 (1% probability)
3 q990 = 2.325 (1% probability)
4 q980 = 2.055 (2% probability)
5 q970 = 1.882 (2% probability)
6 q960 = 1.751 (2% probability)
7 q950 = 1.645 (2% probability)
8 q940 = 1.554 (2% probability)
9 q930 = 1.476 (2% probability)

10 if behavior variable < −q995 or behavior variable > q995 then
11 Starting
12 Reaching v1 = 11m/s (39.6km/h)
13 Suddenly stopping at 120m from the intersection (middle of the simulation)

14 else if behavior variable < −q990 or behavior variable > q990 then
15 Starting
16 Reaching v5 = 8m/s (28.8km/h)
17 Suddenly stopping at 120m from the intersection (middle of the simulation)

18 else if behavior variable < −q980 or behavior variable > q980 then
19 Starting
20 Reaching v1 = 11m/s (39.6km/h)
21 Accelerating from v1 to v2 = 11.5m/s (41.6km/h) at 120m from the intersection

(middle of the simulation)
22 Keeping v2 until the car stops at the next intersection



118

Appendix I (continued)

Algorithm 2: Leading Vehicle Random Behavior Pseudo Code - Continue(1)

1 else if behavior variable < −q970 or behavior variable > q970 then
2 Starting
3 Reaching v1 = 11m/s (39.6km/h)
4 Braking from v1 to v3 = 10.5m/s (37.8km/h) at 120m from the intersection

(middle of the simulation)
5 Keeping v3 until the car stops at the next intersection

6 else if behavior variable < −q960 or behavior variable > q960 then
7 Starting
8 Reaching v5 = 8m/s (28.8km/h)
9 Accelerating from v5 to v6 = 9m/s (32.4km/h) at 120m from the intersection

(middle of the simulation)
10 Keeping v6 until the car stops at the next intersection

11 else if behavior variable < −q950 or behavior variable > q950 then
12 Starting
13 Reaching v5 = 8m/s (28.8km/h)
14 Braking from v5 to v7 = 7m/s (25.2km/h) at 120m from the intersection (middle of

the simulation)
15 Keeping v7 until the car stops at the next intersection

16 else if behavior variable < −q940 or behavior variable > q940 then
17 Starting
18 Reaching v1 = 11m/s (39.6km/h)
19 Steering to the right keeping v1 at 120m from the intersection (middle of the

simulation)
20 Keeping v1 until the car stops at the next intersection
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Algorithm 3: Leading Vehicle Random Behavior Pseudo Code - Continue(2)

1 else if behavior variable < −q960 or behavior variable > q960 then
2 Starting
3 Reaching v1 = 11m/s (39.6km/h)
4 Steering to the left keeping v1 at 120m from the intersection (middle of the

simulation)
5 Keeping v1 until the car stops at the next intersection

6 else
7 Starting
8 Reaching v0 = 10m/s (36km/h) and keeping v0 until the car stops at the next

intersection
9 end

The whole code is here omitted because it is pretty intuitive but also very long, and is

therefore replaced with the correspondent pseudo code.
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FSM IMPLEMENTATION CODE

1

2 class FiniteStateMachine(object):

3

4 def transition_from_normal_driving(transition_variable):

5 p_stop = 2.323

6 p_dr = 1.881

7 p_dl = 1.64

8 p_acc = 1.28

9 p_dec = 1.035

10 if transition_variable < -p_stop or transition_variable > p_stop:

11 next_mode = ’Stop’

12 elif transition_variable < -p_dr or transition_variable > p_dr:

13 next_mode = ’Distract R’

14 elif transition_variable < -p_dl or transition_variable > p_dl:

15 next_mode = ’Distract L’

16 elif transition_variable < -p_acc or transition_variable > p_acc:

17 next_mode = ’Accelerating ’

18 elif transition_variable < -p_dec or transition_variable > p_dec:

19 next_mode = ’Decelerating ’

20 else:

21 next_mode = ’Normal Driving ’
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22 return next_mode

23

24 def transition_from_accelerating(transition_variable):

25 p_dr = 1.96

26 p_dl = 1.64

27 p_acc = 1.03

28 if transition_variable < -p_dr or transition_variable > p_dr:

29 next_mode = ’Distract R’

30 elif transition_variable < -p_dl or transition_variable > p_dl:

31 next_mode = ’Distract L’

32 elif transition_variable < -p_acc or transition_variable > p_acc:

33 next_mode = ’Accelerating ’

34 else:

35 next_mode = ’Normal Driving ’

36 return next_mode

37

38 def transition_from_decelerating(transition_variable):

39 p_stop = 1.64

40 p_dec = 1.03

41 if transition_variable < -p_stop or transition_variable > p_stop:

42 next_mode = ’Stop’

43 elif transition_variable < -p_dec or transition_variable > p_dec:

44 next_mode = ’Decelerating ’

45 else:

46 next_mode = ’Normal Driving ’

47 return next_mode
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48

49 def transition_from_stop(transition_variable):

50 p_stop = 1.03

51 if transition_variable < -p_stop or transition_variable > p_stop:

52 next_mode = ’Stop’

53 else:

54 next_mode = ’Normal Driving ’

55 return next_mode

56

57 def transition_from_distract_left(transition_variable):

58 p_dec = 1.64

59 p_dl = 1.03

60 if transition_variable < -p_dec or transition_variable > p_dec:

61 next_mode = "Decelerating"

62 elif transition_variable < -p_dl or transition_variable > p_dl:

63 next_mode = "Distract L"

64 else:

65 next_mode = ’Normal Driving ’

66 return next_mode

67

68 def transition_from_distract_right(transition_variable):

69 p_dec = 1.64

70 p_dr = 1.03

71 if transition_variable < -p_dec or transition_variable > p_dec:

72 next_mode = "Decelerating"

73 elif transition_variable < -p_dr or transition_variable > p_dr:
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74 next_mode = "Distract R"

75 else:

76 next_mode = ’Normal Driving ’

77 return next_mode

78

79 def current_mode_checker(string):

80 switcher = {

81 "Normal Driving": FiniteStateMachine.

transition_from_normal_driving(np.random.randn(1, 1)),

82 "Accelerating": FiniteStateMachine.transition_from_accelerating(np

.random.randn(1, 1)),

83 "Decelerating": FiniteStateMachine.transition_from_decelerating(np

.random.randn(1, 1)),

84 "Stop": FiniteStateMachine.transition_from_stop(np.random.randn(1,

1)),

85 "Distract L": FiniteStateMachine.transition_from_distract_left(np.

random.randn(1, 1)),

86 "Distract R": FiniteStateMachine.transition_from_distract_right(np

.random.randn(1, 1)),

87 }

88 return switcher.get(string , "nothing")

Listing J.1: Python implementation of the FSM with the reproduction of a simple switch-case

structure.
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