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Abstracts
English

Photolithography is a major process used extensively as a manufacturing process, for instance
in the fabrication of integrated circuits. For such a process, one needs to develop photomasks,
with a certain robustness to parasitic effects like diffraction, being a consequence of the ever-
shrinking race in the semiconductor industry. With the applications of such circuits being always
more complex and numerous, the customers are becoming more and more adamant concerning the
quality of the products, whereas the technologies become more and more difficult to control. Such
limitations need to be addressed to improve the reliability by using different approaches.

This thesis presents a process flow using a physics-based approach to model the generation of
photolithographic masks using Machine Learning algorithms.

First, an introduction chapter presents the context of the project, then a second chapter exposes
the theory and the important parameters and techniques behind the two concepts of photolithog-
raphy and Machine Learning. In the third chapter we propose and detail a modelling and its
implementation. Finally, in the fourth chapter, the realisation of the process flow is detailed with
the results of the developed scripts, be it in the preparation of the EDA data, in the development
of the main algorithm, as well as the implementation of the physics-based model we proposed
earlier ; improvements to come are then highlighted as to improve the overall results.

Keywords: Photolithography, EDA, GDSII, Inverse Lithography, Optics, OPC, Defocus, Ma-
chine Learning, Gradient Descent, Neural Networks, Convolutional Neural Networks, VAE, GAN,
TensorFlow, Python.

Français
La photolithographie est un procédé majeur largement utilisé dans la fabrication de circuits

intégrés. Pour un tel procédé, il faut développer des photomasques, avec une certaine robustesse
aux effets parasites comme la diffraction, étant une conséquence de la course sans cesse à la minia-
turisation dans l’industrie des semi-conducteurs. Les applications de tels circuits étant toujours
plus complexes et nombreuses, les clients deviennent de plus en plus exigeants quant à la qualité
des produits, tandis que les technologies deviennent de plus en plus difficiles à contrôler. Ces
limitations doivent être adressées pour améliorer la fiabilité en utilisant différentes approches.

Ce rapport présente un processus utilisant une approche basée sur la physique pour modéliser la
génération de masques photolithographiques à l’aide d’algorithmes d’apprentissage automatique.

D’abord, un chapitre d’introduction présente le contexte du projet, puis un deuxième chapitre
expose la théorie, les paramètres et techniques importantes derrière les deux concepts de pho-
tolithographie et d’apprentissage automatique. Dans le troisième chapitre, nous proposons et
détaillons une modélisation et sa mise en œuvre. Enfin, dans le quatrième chapitre, la réalisation
du processus est détaillée avec les résultats des scripts développés, que ce soit dans la préparation
des données de design, dans le développement de l’algorithme principal, ainsi que la mise en œuvre
du modèle basé sur les équations d’optique que nous avons proposé plus tôt; les améliorations à
venir sont ensuite mises en évidence afin d’améliorer les résultats globaux.

Mots-clés: Photolithographie, EDA, GDSII, Lithographie inversée, Optique, OPC, Defocus,
Machine Learning, Gradient Descent, Neural Networks, Réseaux de neurones convolutifs, VAE,
GAN, TensorFlow, Python.
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Italiano
La fotolitografia è un processo importante ampiamente utilizzato nella fabbricazione di circuiti

integrati. Per un tale processo, è necessario sviluppare fotomik, con una certa solidità agli effetti
parassiti come la diffrazione, essendo una conseguenza della corsa sempre più ridotta nel settore
dei semiconduttori. Con le applicazioni di tali circuiti sempre più complesse e numerose, i clienti
stanno diventando sempre più irremovibili riguardo alla qualità dei prodotti, mentre le tecnologie
diventano sempre più difficili da controllare. Tali limitazioni devono essere affrontate per migliorare
l’affidabilità utilizzando approcci diversi.

Questa tesi presenta un flusso di processo che utilizza un approccio basato sulla fisica per
modellare la generazione di maschere fotolitografiche utilizzando algoritmi di Machine Learning.

Innanzitutto, un capitolo introduttivo presenta il contesto del progetto, quindi un secondo
capitolo espone la teoria e gli importanti parametri e tecniche alla base dei due concetti di fotoli-
tografia e Machine Learning. Nel terzo capitolo proponiamo e dettagliamo una modellizzazione e
la sua implementazione. Infine, nel quarto capitolo, la realizzazione del flusso di processo è det-
tagliata con i risultati degli script sviluppati, sia nella preparazione dei dati EDA, nello sviluppo
dell’algoritmo principale, sia nell’implementazione della fisica- modello basato che abbiamo pro-
posto in precedenza; i miglioramenti a venire verranno quindi evidenziati per migliorare i risultati
complessivi.

Parole chiave: Fotolitografia, EDA, GDSII, Litografia inversa, Ottica, OPC, Defocus, Ap-
prendimento automatico, Discesa a gradiente, Reti neurali, Reti neurali convoluzionali, VAE, GAN,
TensorFlow, Python.

3



Contents
Acknowledgements 1

Abstracts 2

Introduction 6
Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
State of the art and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Theory 8
1.1 Photolithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Scaling challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Machine Learning for photolithography . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Generative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Modelling 22
2.1 Inverse lithography technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Developed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Defocus Robustness and Assist features addition . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Flow for OPC improvements with Machine learning . . . . . . . . . . . . . . 26
2.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Realisation of the project 28
3.1 Preparation due to the lithographic process . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Size and Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Design Rule Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Pre-processing and computational power . . . . . . . . . . . . . . . . . . . . 31

3.3 Testing and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Building the algorithm for simple patterns . . . . . . . . . . . . . . . . . . . 34
3.3.2 Adaptation to our design layouts . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Conclusion 44

4



Appendixes 45
Project organisation and unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Python code samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Specific details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5



Introduction

Company

My master thesis was carried out over a period of 22 weeks in the Research and Development
department of STMicroelectronics. During this placement I was supervised by Pascal Urard, a
System Design Director.

STMicroelectronics is a French-Italian multinational electronics and semiconductor manufac-
turer. It belongs to the world’s largest semiconductor companies and is a leading Integrated De-
vice Manufacturer delivering solutions that are key to Smart Driving and the Internet of Things.
Around 7,800 people are working in R&D and product design, but the company also owns 18,500
patents, 9,600 patent families and around 590 new patent filings as of 2019. STMicroelectronics’
creation dates back to 1987 by the merger of two government-owned semiconductor companies:
SGS Microelettronica (Società Generale Semiconduttori) of Italy and Thomson Semiconducteurs,
the semiconductor arm of France’s Thomson.

Unlike many other semiconductor companies, STMicroelectronics owns and operates its own
semiconductor wafer fabs maintains a strong commitment to innovation, and draws on a rich pool of
chip-manufacturing technologies, including advanced FD-SOI (Fully Depleted Silicon-on-Insulator)
CMOS (Complementary Metal Oxide Semiconductor), differentiated Imaging technologies, RF-SOI
(RF Silicon-On-Insulator), Bi-CMOS, BCD (Bipolar, CMOS, DMOS), Silicon Carbide, VIPower,
and MEMS technologies. ST is a multinational company, the revenue of which is approximately 10
Billion USD in 2019, and its principal wafer fabs are located in Agrate Brianza and Catania (Italy),
Crolles, Rousset, and Tours (France), and in Singapore. These are complemented by assembly-
and-test facilities located in China, Malaysia, Malta, Morocco, the Philippines, and Singapore.

During this internship I was part of a research team the focus of which was the implemen-
tation of Machine Learning for the upcoming technologies and the improvement of the current
manufacturing processes.

Motivation

For my master thesis, I wanted to work on a project linked to manufacturing processes as I was
always interested in working in this very field, although I developed a rising interest in the field
of Machine Learning, as it is becoming a major asset to master on the job market. I was also
expecting from this last internship in my education to improve my overall skills in the world of
research and on the other hand to develop new skills that could be useful for my future. That is
why when Mr. Urard presented this master thesis opportunity by directly contacting me, I knew
that this project would completely fulfil my expectations as it deals with a technology that has
both fields (manufacturing and AI) intertwined, so that the achievement of the project relies on
multidisciplinary skills ranging from understanding Electronics Design through the use of modern
design tools to AI design and implementation but also through physics modeling and simulations.
Furthermore, I had already heard that STMicroelectronics offers a stimulating work environment
where internship students are well supervised and completely part of the team which reinforced
my motivation. I believe the fact that my curriculum in the NANOTECH courses would unfold
itself to be significant in solving the problem by linking multiple skills such as understanding
designers, using computing tools as Python, but also having studied manufacturing processes such
as photolithography or etching is something which really made the difference for this internship,
especially in my choice and enjoyment when working on it.
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State of the art and objectives

Most devices developed by STMicroelectronics use many manufacturing processes when they are
fabricated, such as photolithography and those are a crucial step to be improved. For this purpose,
the company is investing more and more into research groups working with new modern tools, such
as Machine Learning to develop a new approach and optimise such costly processes.

My missions were then to understand the needs within the company using my Nanotech engi-
neering skills, to propose solutions with a flow to improve the lithographic process using Machine
Learning, and to implement such a flow. This model will be used to:

- Improve the time required to develop a photomask, thus the yield of the company for future
products to be manufactured.

- Develop knowledge of a Physics-based use of Deep Learning algorithms within the company.
My internship was then divided in three steps:
- Learn about Machine Learning techniques and methods to enrich our problem with it.
- Understand the limitations of the current photolithography process within the Optical Prox-

imity Correction department to propose a physics modelling of the process.
- Implement the modelling and get to work with EDA software to end up with a process flow

adapted to the company’s tools, using both physics equations and Machine Learning on layout
designs.
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1 Theory

1.1 Photolithography

Here we will describe the photolithographic process, its main parameters and the techniques used
to overcome the difficulties.

1.1.1 Generalities

In the semiconductor industry, a major process step in the manufacturing of circuits is the transfer
of a design onto a substrate. Such a procedure can be realised using different methods and we will
hereby stoop upon a process called photolithography, which is extensively used, sometimes several
hundreds of times within a single chip manufacturing process flow.

This process works by illuminating a resist on a substrate through a mask, followed by etching
the resist to obtain the desired image on the substrate as shown on the Figure 1.

Figure 1: Representation of a typical photolithography system

This process is of critical importance as it conditions the fidelity of the transferred features
and thus the proper functioning of the circuit. Light is sent from a source, the main parameter of
which we will consider is the wavelength λ.
Light then goes through a condenser lens aiming at focusing the light on the mask. The mask
itself is in our case a quartz square of 15cm×15cm produced using electron beam lithography itself,
containing the design information. Light is diffracted onto an objective lens or projector and is
thereby refocused on the resist lying on the silicon wafer. The important parameters with λ are the
numerical aperture N.A, the Mask function M(x, y) and the light intensity on the resist I(x, y),
about which we will give more details later.
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1.1.2 Scaling challenges

Due to diffraction effects, interference, processes and scaling of technology, some corrupt patterns
can be transferred from the mask to the resist if no correction or tricks are empoloyed to prevent
them. If we call d0 the smallest significant distance of the design’s features, also called resolution
or pitch, and λ the wavelenght of the source, we can consider to have major problems when :

d0 ≈
λ

2

This is especially true for today’s processes which go down to less than 10 nm for d0 and
the wavelength used are of 25 nm. Within the company, the wavelength used for most processes
nowadays is 193 nm due to tricks as we will see in this part. Let us explain in a bit of further
depth why the resolution appears to be limited.

Resolution limitations
The resolution is mainly limited by three direct parameters as depicted on the Figure 2 : λ, the

numerical aperture N.A and the angle of the mth order of diffraction θm. We have the following
equation for diffraction :

sin(θm) = m
λ

d0
(1)

The Rayleigh equation for the resolution is :

Rpitch = kmpitch
λ

N.A
(2)

with Rpitch the smallest “half pitch” that can be printed, kmpitch a constant value which depends
on the technology used, typically kmpitch = 0.28.

Figure 2: Lithographic process with large features
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What happens when a mask has features too small and no modifications were made in the
parameters can be represented on the Figure 3 : we lose details due to larger order of diffraction
not being included in our Numerical Aperture.

Figure 3: Lithographic process with imperfect parameters

Resolution Enhancement Techniques
In order to prevent and correct such phænomena, different techniques have been developed, to

play with the main parameters, such as using light of shorter wavelength, Off-Axis Illumination,
PSM (Phase Shift Masking) or OPC (Optical Proximity Correction) and others. These are called
Resolution Enhancement Techniques, and their goal is to minimise Rpitch by including as many
diffraction orders as possible in the focused image after the lens.

• Wavelength modification has been used in the past decades until reaching deep ultraviolet
(DUV) light from excimer lasers with wavelengths of 248 and 193 nm. The advantage can
be depicted as follow on the Figure 4.

Figure 4: Lithographic process with wavelength shrinking
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Decreasing the wavelength allows to reduce the spacing between the diffraction orders, or to
shrink θm, allowing to have more details about the signal, thus a better resolution within the
lens.

• Numerical Aperture modification is also a way to retrieve higher diffraction order as depicted
on Figure 5. Increasing N.A allows the process to include more diffraction orders, even though
they are widely separated because of the tight patterns on the mask. Therefore more details
are printed on the resist, thus a higher resolution.

Figure 5: Lithographic process with Numerical Aperture modification

• In order to change the resolution is to directly change θm by adding an input angle, a
technique also known as off-axis source. The Figure 6 represents this technique.

Figure 6: Lithographic process with Numerical Aperture modification
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We can see that more orders are included thanks to this technique shifting the location of
the original order. The source used to allow such an illumination is a circular source, which
leads to the final technique : the choice of the source.

• The choice of the type of source also plays a role in the diffraction, directly having a significant
impact on the angle θm viewed in 3D. Some examples of sources can be seen on the Figure
7, showing how changes in the sources allow for a better resolution.

Figure 7: Comparison of the contrast obtained when using different source shapes as a function of
Rpitch

• Last but not least, the parameter kmpitch linked to process parameters can be played with in
order to reduce Rpitch. It was a big deal at STMicroelectronics in the past years. Reducing it
allowed to bring new technology nodes, at the cost of more complex imaging and the increase
in proximity effects. OPC, which we will detail a little bit further or phase-shifting masks
are examples of innovations leading to a reduction of kmpitch.

Figure 8: Evolution of Rpitch through the years as a the parameter kmpitch evolved
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Optical Proximity Correction
Let’s focus on OPC as we were working with the OPC department and our project is well-

enshrined in improving and optimising their routine.

Figure 9: Depiction of the OPC results compared to non-OPC

As depicted on the Figure 9, the principle of OPC is to correct the shape of the design on
the mask, so that it prints correctly in spite of the aforementioned parasitic effects. For instance,
an approach can be to compensate the second and further orders of diffraction by adding or
removing serifs, or little squares attached to the patterns, the size of which doesn’t allow them
to be imprinted in the substrate, but bringing some completion to the imprinted design. Those
are directly sticked to the main shape of the design and should not be mistaken with SRAF s, or
Sub-resolution Assist Features.

These features (SRAF) are actually extra additions of materials which will not be printed,
being located away from the patterns and shapes. They most usually take the shape of thin lines
outside the core-polygon we wish to imprint. Here is an example of an OPC strategy including
SRAF addition on Figure 10.

Figure 10: Illustration of SRAF strategy in OPC
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1.2 Machine Learning for photolithography

In this section, we will present the notations used in Machine Learning, different methods used
and high-end algorithms to generate new data using Deep Learning.

1.2.1 Generalities

A Machine Learning (ML) algorithm aims at learning without being explicitly programmed, by
using different kinds of learning methods and steps. Most of what is explained here follows the
lecture of A. Ng at Stanford University.

We can define some notations here to illustrate such algorithms: Let us call the Xi, the features
or input variables of the algorithm, the number of which is n ∈ N, and Y the target or output
variable.

Let us be a training set

{(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))},

with m ∈ N the size of the training set, x(i) the feature vector of example i, and y(i) the target of
example i. The number of features is the size of vector x(i) and is therefore n. So we have

x(i) =


X

(i)
1

X
(i)
2

...

X
(i)
n


For instance, if we had access to 1500 photomasks, one mask being our x(i), each with 50

features (like the number of shapes being the feature k, the size of the smallest features, or any
characteristics) and the associated manufacturability being y(i), a Boolean : 1 if the photomask can
be created by the manufacturers or 0 otherwise, we would then have for mask i: m = 1500, n = 50,
X

(i)
k = 28, and y(i) = 1 for a manufacturable mask

The notation (i) is important as it indicates a training example, which is given data and not
data we wish to guess, find or compute.

Let us have a function h called hypothesis. This function is the link between the Xi and Y we
wish to model, with parameters θi. It is only by learning the right θi that our function h will be
optimal as to find Y given a vector x. For instance if we assume a linear relationship between Y
and x, we take our h as a linear regression, we will have

h(x) =
n∑
i=1

θiXi,

and we only need to find the right θi to model this correctly. Therefore the θi will be the variables
our algorithm needs to learn to minimise its own error, and h needs to be chosen wisely.

If we take the example of our 1500 photomasks, and we imagine our features to be the size of
all the shapes on the mask, we could imagine an hypothesis being h(x) =

∏n
i=1H(Xi − θi), where

H is the Heaviside step function so that if a feature is smaller than a certain threshold being its
intrinsic parameter θ, the mask will not be manufacturable thus h(x) = 0.

In order to do so, we try to minimise the cost function with the best θ, being :

14



J(θ) =
1

2

m∑
i=1

[h(x(i))− y(i)]2,

We can also decide to maximise the log-likelihood using the best θ, which is the same for our
problem, the log-likelihood being a probabilistic tool with the same gradient as the cost function,
for which we assume a probability distribution beforehand giving Pθ(y

(i)|x(i)), similarly to our
assumption of h. We usually assume the distribution to be Gaussian with a mean of h(x):

l(θ) = log(L(θ)) = log

(
m∏
i=1

Pθ(y
(i)|x(i))

)
To update our θ, we usually use a method called Gradient Descent when our cost functions or

log-likelihood are differentiable, which consists in having:

θ := θ + α∇θl(θ),

with α ∈ R the speed of the descent, or learning rate. For the cost function approach, we just need
to replace l(θ) with J(θ) We will see later that α can also be a function of the time if we want an
adaptive (thus time-dependant) learning rate.

In the case of our 1500 photomasks example and modelling, it would not be wise to use a gradient
descent , because the Heaviside step function we used isn’t differentiable. Using Dichotomy could
be a better approach to find the right θi.

Now, let us stoop upon different learning categories.

Learning Categories
Here we will describe three types of learning, which on this day are the most widely used.

• Supervised learning: this consists in giving a learning algorithm training data, composed of
both inputs and desired outputs. Therefore, such a method allows the algorithm to learn a
function to be used to predict the output associated with inputs one might want to feed it
with.

For instance, giving a huge number of photomasks and their manufacturability as an input to
feed an algorithm so that it can classify photomasks in the future would be supervised learning.

• Unsupervised learning: this is a kind of learning in which the algorithm has to learn hidden
features between the data based on unlabelled data. It is mainly used when we don’t know
the features and want to find density distributions of the inputs. Most of our work here is
based on unsupervised training, as we don’t know the exact output we wish to get in the end
and our input data is unlabelled.

For instance, giving a huge number of photomasks to an algorithm for it to learn their features
and be able to generate new photomasks would be unsupervised learning, for we don’t give
any output to the algorithm.

15



• Reinforcement learning: this is an approach on how to teach an algorithm using the notion
of cumulative reward. It does not need a training set based on paired input and outputs,
and is trying to optimise itself by classifying its decisions as good or bad, thus leading to a
higher or lower reward in the end, therefore learning a behaviour to adopt.

Supervised regression methods
In order to understand regression based on a simple example, let us explore regression based

on supervised learning.
A regression problem, just like ours, is a problem in which we wish to model the relationship

between the inputs and the outputs, as opposed to classification where we wish to classify data,
that is to say to determine which label is associated to a given input.

Different regression methods exist, and we can here present some of them in supervised learning
as examples. Depending on the domain of our output, that is to say y ∈ R or y ∈ {0; 1} for instance,
we have different regression methods.

For y ∈ R, we could use a Gaussian modeling and use a least-square method.
For y ∈ {0; 1}, we could use a Bernoulli modeling and solve it using a logistic regression (also

called sigmoid).

In our example developed in the Generalities section where we wish to classify the manufactura-
bility of 1500 photomasks, we were facing a similar situation with y ∈ {0; 1}, in which we decided
to use a Heaviside step function instead of a sigmoid. We usually use a sigmoid because of its
differentiable properties as opposed to Heaviside.

For y ∈ {1; k}, k ∈ N∗, we could use a multinomial modeling, and use the so-called softmax
regression.

Actually, all of those modeling are part of the same family: they are special cases of the
Exponential Family Distributions, and their difference lies in the choice of three parameters.

We will not step into the details of the calculations, however those modellings are usual and
well-known, so that it can be useful to try to model a problem using an Exponential Family
Distribution.

Now, some models have been developed and can be a bit detailed in here, although the math-
ematical theory behind them is quite solid and complex: Support vector machines and Neural
Networks.

Support Vector Machines and Neural Networks are two Deep Learning methods widely used in
the last thirty years for a handful of applications, and they mostly rely on our increased capability
at performing complex calculations and handling huge quantities of data. This is why they belong
to the Deep Learning sub-category within Machine Learning, for the number of parameters is
particularly big, usually around several million parameters to optimise.

They allowed a fundamental shift in our society from using machine learning to solve classic
problems to the burst of applications using deep learning for complex modelling. The main differ-
ence is the features extraction, which was manual or deterministic in classical Machine Learning,
and became part of the learning in Deep learning and became automated within the algorithm.

This implies that we no longer need to find the features in the data before giving them to our
algorithm, but it will detect them automatically, and even detect hidden features we could very
hardly model by ourselves.
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Support Vector Machines
A Support Vector Machine is a model which aims at separating data linearly into categories

depending on its features. It constructs hyperplanes in the space of data, aiming at maximising
the margin between the data, as to optimise the boundary between the different categories.

Here is a Figure showing the principle of a SVM on a two parameters:

Figure 11: Example of optimal margin classifier on a two features X1 and X2 with H3 being the
optimal classifier and H1 and H2 being non-optimal solutions

Using a mathematical trick in affine spaces also known as the kernel trick, it allows non-linear
separation if we decide to increase the dimension of the space we are working in, until it achieves
to linearise the boundaries between the data.

This means that data which doesn’t seem to be linearly separable in a dimension k can neces-
sarily be in dimension l, with k < l ≤ +∞

Therefore once trained, a SVM is able to classify data or to generate new data by taking
parameters within the right boundaries, even though its features are not linearly separable. We
will not enter the calculations and mathematical details of a SVM, nevertheless the main advantages
of such a method over neural networks is that they have a strong founding theory, they reach the
global optimum generally better, they have no issue for choosing a proper number of parameters,
are less prone to overfitting, as we will see that was an issue with neural networks, they also
need less memory to store the predictive model, and they provide more readable results and a
geometrical interpretation.

We will now see that neural networks are another method, which provides advantages over
SVM, although it mainly depends on the given problem and the dataset at disposal.
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Neural Networks
Neural networks are a model based on mathematical entities called neurons. They are basically

a simple linear function, with weighted inputs, and single output. They also present an added non-
linearity which is called activation function, such as a threshold (sigmoid, Heaviside, tanh...).

When connecting layers of similar neurons, one can model non-linear models by adjusting the
weight of these interconnected neurons: this will then model a more complex function which can
take a very large number of inputs.

During the training phase of such models, we add a back-propagation function, which aims
at adjusting the weight using different methods, also called optimisers. This can be a gradient
descent, but other algorithms also exist, such as the Adam optimiser widely used with Google
TensorFlow’s package for being an extension to stochastic gradient descent specifically designed to
train Deep Learning methods.

Deep Learning is often a synonym of neural networks, for the many layers of neurons make
the modelling of the learning quite difficult, despite working in many cases to represent models by
extracting the features by themselves.

The interconnection between these neurons and the function each of them is designed to perform
forms different types of layers. Famous layers include Dense layers, where every neurons are
interconnected, or Convolution layers, which perform convolutions on data, as we can see in the
Appendix about convolution, but many others exist or can be created for different purposes.
Convolution layers have four main parameters, being their dimension or filter, their kernel or
stride, the padding being a way to fix edge issues, and the activation function.

Let us give a small example of an activation function we had to use extensively in this very
project : maxpooling. The maxpool function aims at reducing the dimension of a dataset, by
discretising it in the way of taking the maximum out of a group of data. This is a simple non-linear
operation which is widely used as to detect the important features of a dataset when performing
hidden features detection.

Neural networks are particularly useful as a brute force algorithm when trying to optimise a
model we cannot simply model otherwise, and needs a huge amount of data to be correctly trained.

The pros of such a model are that it provides really good results in terms of modelling, and
are more accurate with the number of data used to train them, however they are hard to con-
verge, and require a lot of computational power because of their elevated number of parameters to
simultaneously optimise.

Choices
In the end, we decided to use Neural Networks for our problem, due to several factors such as

the amount of data we actually possess, the ease of use of such a method with Python’s libraries,
and the global trend of this new decade.

We used the theory aforementioned to better understand the essence of Machine Learning, as
to make the best choices, therefore the use of a VAE-GAN with Convolution Neural Networks, and
not a SVM, whereas the regression used is a least-square model as we will see in the Modelling
section.

However the question of using SVM versus Neural Networks is fundamental in the way of
solving our problem, thus the paragraph on SVM in order to show that our problem could be
solved in numerous ways and we had to choose and adapt to what suited the best.
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1.2.2 Generative methods

In order to generate images from a model, several tools and algorithms can be used. In our very
problematic, two tools seemed to fit with the requirements and the recent trend : VAEs and GANs.

Variational Auto-Encoders

• Generalities

A Variational Auto-Encoder as defined for the first time in [8], also benempt VAE, is a
combination of neural networks, the idea of which can be explained by the will of encoding
data to a reduced latent space, and decoding it afterwards in order to get the data back.

It can be seen as a lossy compression of data, in which the encoder and the decoder (both
neural networks) learn to minimise the loss of the compression and the accuracy of the
decompression by learning the features within the data, and being able to re-generate it.

Depending on the rules defined in the loss function, a VAE can be trained to modify pre-
existing pictures by encoding the original picture, and decoding it by minimising the loss by
comparing the decoded picture to a different picture, thus switching from the original data
to consciously modified data. A famous example is turning horses on a picture to zebras and
vice-versa, or any translation algorithm as explained in [6], both of which are cyclic in their
loss. Indeed, the transformation is in fact reversible, and should work both ways. We call
the loss a consistency loss, for we perform a cyclic loss calculation translating from A to B
then from B to A’ as to obtain the same A in A’. This type of loss is particularly useful when
we don’t have a way to directly retrieve A from B or to know if the B we have is correct.

The specificity of a VAE is the variational part, as opposed to a regular auto-encoder. As
a matter of fact, instead of encoding or compressing the data by reducing its dimension and
learning to map the features to a discrete space, that is to say turning a vector into a single
point, a Variational Auto-Encoder will map it to a continuous probabilistic space. To come
back to the latter analogy, the vector would be turned into two values, being a mean and a
standard deviation.

The decoder just has to take a realisation or sample within the proposed distribution in order
to do its job as in a classic Auto-Encoder. When decoding, a Gaussian noise will be then
added in order to train the decoder for more robustness to noise and various realisations,
therefore achieving greater accuracy in encoding and decoding the data, as well as aiming at
more diversity in the generated data.

Here the given pattern is a handwritten digit we could want to print through the lithography
process, and the decoder learns to recreate it from a low dimensional representation created
by realising events using the means and standard deviations encoded.
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Figure 12: Variational Auto-Encoder’s simplified functioning on the MNIST database

• Construction

A Variational Auto-Encoder is typically made of two convolutional networks, one being the
encoder and the other the decoder. The strategy is to reduce the dimensions of the data
by using convolution layers on it within the encoder, and rescale it in the decoder using
transposed convolutions.

A convolution layer is a neural network structure which performs convolutions (or cross-
correlation to be more accurate) on a dataset with a convolution kernel, whereas a transposed
convolution layer performs an opposite operation, which allows for extrapolation of the data
according to the activation function we choose.

In-between convolutional layers, other types of layers can be added, such as Dense layers to
perform rotations, scaling, and translations of our data, or Input Layers to prepare the input
data into the convolutional layers.

The more convolutional layers are added, the more parameters there are to evaluate and train,
the more the risk of overfitting is high (which means adapting our model to our dataset only
and not to any situation), the higher our accuracy in terms of control and the slower the
training time.
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Generative Adversarial Networks
This structure is made of two distinct blocks, one being a generating block, and the other a

discriminating block.
The generative part must generate some data, while the discriminative part must help the

generator to generate the right data by classifying the generated outputs as fake or real. By
training together, this helps the generator converge to accurate results up to the point where one
cannot distinguish between inputs from the training set and generated data.

The generative part can be typically made of a VAE, which is trained on real data as to be
able to reconstruct data correctly as pre-learning. After a while, we can remove its encoder and
only input some low-dimensional noise, which the decoder will interpret as something encoded,
and try to decode as faithfully as possible : this leads to the generation of new data according to
specific distributions such as the faces shown on the Figure 13, where the networks learned the
distribution of parameters making a face on high-resolution pictures.

Figure 13: Samples of high-resolution generated faces with a well-trained GAN by Nvidia [7]

We understand that the discriminator after the training has to be confused, as not able to
recognise a generated output from one in the dataset, so basically returning a probability of 0.5
for the two aforementioned categories.

Interestingly, the generator can also be used as a tool to extract features or as a translator,
which is mostly the case in our very problematic.

Indeed, not removing the encoder allows to learn how to encode a certain image, so to reduce
its dimensions but to keep its main features, and to decode such features in another space. If
one thinks of a French-English translator application, we could have sentence in French. Reducing
its dimensions may allow to get rid of the syntax, but keep the idea behind the sentence, while
decoding it could be seen as rewriting the features of the very sentence with English flourishes.

Some Neural Networks applications such as the StyleGAN [7] even allow to distinguish between
the different features or styles, as to decode an image with the ones we wish to apply to it. It
allows the mixing of different styles as well, by extracting the features of different images, and
choosing between each feature to add when decoding as a single image. It can be seen as an image
translation here, but even more like an image dissection and recombination.

As for the loss several methods can be employed. When there is no way to know if the
generated data is what we really wanted, as in some cases of unsupervised learning, and the goal
is to transform an object into another through a reversible process, for instance turning horses to
zebra or zebra to horses [12] [15], a consistency loss can be used as well.
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2 Modelling
We will now present the modelling we used to represent Inverse Lithography, the strategy we chose
to implement such a modelling, then we will present the flow used for the Assist Features (SRAF)
and defocus robustness problematic, and how we decided to implement it.

2.1 Inverse lithography technique

The very first objective is to generate a mask by taking into account the physical equations and
parameters as to shortcut the OPC process and improve the yield and timing in the company. This
way, we can save resources and get rid of the OPC limitations with another approach. In order to
do so, we focused on performing ILT, or Inverse Lithography Technique. This is a rigorous way of
modelling lithography as an inverse optimisation problem, as to determine the mask shapes which
deliver the desired on-wafer results. A lot of work has been done in the past in this very field,
such as [1], and the method we use here takes advantage of the pre-accomplished work with the
calculation power unveiled by today’s technology.

2.1.1 Developed model

In order to model our problem, we chose to follow the approach of recent papers, while having
major changes in the main algorithm, which we will discuss in the next section. Most recent
papers decide to model the lithographic process by splitting it in two problems, the first one being
the modeling of the aerial image we produce after the mask, and the second one being the resist
model, or behaviour of the resist’s chemical alteration. The aerial image model relies on Hopkins’
diffraction theory [5], and a lecture from CalTech on Point Spread Functions, so that we can link
our three main parameters by stating that

I(x, y) = |hλ,N.A(x, y) ~M(x, y)|2, (3)

with I being the light intensity of the aerial image at a certain location, M is the Mask function
which is a Matrix of 0s and 1s corresponding to the mask having a hole at a certain location or not.
Here, ~ is the convolution operator and h is the point-spread function (modelling the diffraction
and other effects through the holes of the mask). It is an Airy pattern modelling the influence of
each point in space on the centre of the figure. If we consider no obscuration on the source, it is
given by:

h(r) =
J1(2πrN.A/λ)

πrN.A/λ
(4)

Here, J1 is the first-order Bessel function of the first kind, and r is the distance from the centre of
h : r(x, y) =

√
(x− x0)2 + (y − y0)2 and (x0, y0) is the location of the center of h, so the centre

of the convolution kernel. We can see that the physical parameters λ and N.A are present here in
the representation of the diffraction through h.

The resist filtering model is also usually taken as a sigmoid of the light intensity arriving
on the photoresist submitted to a threshold as we can see in [13], [2], [10], for the sigmoid is a
continuous function and derivable, the gradient of which is more easily calculated than a hard
Heaviside function. Indeed, the light arriving is only sufficiently absorbed when it is superior to a
certain value, so it is filtered. It is to be noted that we could choose a constant threshold anyway,
or a variable one using other functions, but a sigmoid is particularly relevant in the context of
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machine learning, it is adjustable, and its derivative simple enough to be calculated quite fast by
the algorithm. Therefore we have the final image Z(I):

Z(I) = sig(I− tr) =
1

1 + exp[−a(I− tr)]
, (5)

with tr being the threshold of the photoresist, so the intensity which is considered as enough for
the photoresisted to be imprinted. The parameter a controls the steepness of the sigmoid.

Now, the goal of our algorithm and our project is to find M, knowing that we know which
Z(I) we want : the target layout is called Z̃. This is an inverse optimisation problem, which we
will at first try to solve using an algorithm called gradient descent, the theory of which we have
enlightened in the previous section. In order to do so, we need to minimise a variable, and the one
we choose here is the norm of the difference between Z̃ and Z:

F = ‖Z̃− Z‖2
2
, (6)

‖.‖2 is called the l2-norm, it represents the square root of the sum of the term-by-term com-
ponents of the matrix of the squared difference between Z̃ and Z here, so this seems pretty logical
to wish to minimise it, as to generate the desired layout in the end. We take it squared as to
remove the square root, and we use this particular norm as to stay in a Hilbertian space where
convolutions, Fourier transforms and more tools are well defined. As to find the optimal mask M,
we can update it iteratively by using gradient descent, which gives :

Mn+1 = Mn − α.∇F, (7)

with n the step in the algorithm and α the speed of the descent.
We then have to calculate the gradient of F. This calculation is very much difficult, so that we

will rather take the results from the aforementioned paper [2], that is to say :

∇F = −2a.̊h~ [(Z̃− Z)� (Z)� (1− Z)� (h~M)], (8)

Here, h̊ is the rotation of matrix h by 180◦ in both directions, � is the element-by-element
multiplication, and 1 is a matrix of 1.

To conclude, here is the computational basis for our algorithm based on a physical model of
lithography.
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2.1.2 Implementation

As to implement this method, we chose a generative approach using neural networks. This requires
several stages as depicted on Figure 14, as well as major customisations of a classic GAN algorithm.

Figure 14: Schematic of the ILT algorithm

Generative networks
We chose to use a Variational Auto-Encoder as in the very papers [8] [14] [13], in order to

generate masks from a given design. The input, as in the straight yellow pattern on Figure 14
takes designs of 4 µm2 from the layout. It is then encoded as aforementioned, in order to be
decoded as a mask.

This is the major trick allowing us to generate ILT masks: as the encoder learns the features
of what being a "target" is, the decoder learns to map these features as to generate a mask. This
could be achieved without the use of a simulator, but the company already had one in order to
compare the original target with the target being the result of lithography using the mask our
decoder generated. We will see later that their simulator also had many advantages over the loss
function from the model.

As of so, several loss functions can be used to ensure the fidelity of the design, such as the one
described is our developed model if we forget the simulator, which we could optimise to ensure our
algorithm takes the process and physics into account. However simpler loss functions can also be
used as a first step, if we manage to calculate Z in another way.

Simulator
This stage is key to succeed in our endeavour, for it allows us to simulate the lithographic

process, thus knowing if the generated mask is of any value. Our loss function would allow not to
have a simulator because it would simulate itself, however the team decided to use their own
tools, as they might be more suitable to their technology. Moreover they were already configured
as to check the manufacturability of our masks, which our loss didn’t explicitly take into account.
Therefore a simpler loss could be used using the result of the simulator. We will nonetheless see
in the last section of this report, that the team came back to using the physics-based loss as an
improvement over calling an external simulator.
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The simulator we addressed is a script using Mentor’s Calibre software in order to visualise
the outcome of our mask. It is a DRC written script (Design Rules Check), which we adapted for
several purposes as we will see in Section 3. It allows us to generate lithographic patterns on the
resist, as to compare the initial design and the one simulated with the mask.

It can also simulate defocus, and we configured it as to choose which layers we included in the
simulation.

An important detail about the simulator is that it allows us to know what the best result on-
resist would be from a given design. Therefore we used it as well in the loss-function to generate
and compare the best-case target, which we will call the rounded target, with the simulated design.

Discriminating network
This part is there to ensure the mask we created does not only "work" when simulated, but is

also manufacturable. This means that the mask we generated has to respect some criteria, which
the discriminator learns to map by training using both regular ILT masks, and some generated by
our generative network.

This allows our generative network to try to please the discriminator up to the point when the
discriminator cannot recognise which masks are generated, and which are real. It is important to
notice that the discriminator is only viable for STMicroelectronics owns a huge amount of data of
ILT they created for years, therefore making the training feasible.

We can now see that every variable found in equation (8) is determined and the only real
unknown is M: Z is simulated from the generated mask and Z̃ is given by the company and
calculated by the simulator ; h̊ is calculated from the Bessel function, λ, and N.A. and from Z.

If we were to use the loss from the modelling, we would then only need the layout giving Z̃,
because Z would be calculated within the loss itself, therefore the simulator would only be used
to prepare the data, that is to day calculate Z̃.
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2.2 Defocus Robustness and Assist features addition

After the theorising of ILT, we figured out that such a complete process could be very demanding
in terms of realisation time so we kept it to address different and smaller problems. One of the
improvements one can think of when they are doing OPC is defocus robustness, which means
creating a mask, the target design of which doesn’t change much even though the illumination
is subject to a defocus. We chose to focus on this very issue, by generating assist features with
Machine learning.

2.2.1 Flow for OPC improvements with Machine learning

The goal is then to add SRAF s to a pre-optimised mask. Indeed, after the mask is submitted to
OPC, the SRAF addition step takes half the time of it, and is not as accurate as one could wish.

Therefore, it would be useful to use the aforementioned method as to add correct SRAF and
thus improving the overall quality of the mask. The addition of SRAF is also a way to tackle the
defocus problem, as those features are particularly useful in compensating the spatial orders of
diffraction on the resist.

The whole concept relies on taking a previously-generated mask by the OPC team, and adding
better SRAFs as an extra layer to merge on the layout.

For this a simple modification of the latter algorithm is required as we can see on the Figure 15,
a flow schematic developed by the team working on the project, highlighting the main functions
we needed to create or optimise and take into account.

Figure 15: Schematic of the flow for OPC with Machine Learning
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This Figure will be better explained later in the Realisation section, however several differences
with the previous ILT flow can be highlighted. After taking a pre-processed mask as an input, that
is to say a mask for which we already applied OPC algorithms, the Machine learning algorithm
learns to add the SRAFs at the right places, and the loss function we use is a simple l2-norm
without any physical properties, between the desired design (ideal target on the Figure 15) and
the simulated one.

It is important to notice that the same loss as before could be used, that is to say the one
derived from Hopkins’ Diffraction model [5], however the algorithm should then be configured as
not to modify the pre-existing mask, for we don’t want to touch any pattern but the SRAFs.

For this, it is therefore important to separate the layers and to superimpose them when simu-
lating the photolithography process.

The main project took the path of improving the OPC process with the SRAF generation for
defocus robustness, for it was a quick-win for the company. Using physics and Machine Learning,
this is considered as a first step and a guinea pig to test the efficiency of such methods, hopefully
leading to more funding and investments in this very field in the future. This is particularly true
as this would at first, if successful, allow to ease the work of the OPC team, improve the yield
by reducing the processing time, and convince the company to a shift towards Machine Learning
based on smart understandings of the physics processes such as photolithography.

Therefore, instead of jumping into ILT directly, it seemed more convenient to work on the
defocus improvement using SRAF generated by model-based Machine Learning.

2.2.2 Implementation

In order to do so, we take the same algorithm as before, although the VAE is trained with mask
inputs as mentioned earlier. The desired design is also used as to perform the loss function, but
the interesting part is when it comes to the training.

It is important to train the whole algorithm by using different pictures of defocused designs, so
that the defocus robustness criterion is respected. Therefore, we developed a DRC script allowing
the simulation step to be done with several defocus values ranging from -50 nm to +50 nm, as will
be shown on Figure 28 later.

The simulator would then simulate according to a random model it chose amongst the different
focus values, thus having our network optimising its generation almost independently from a slight
focus variation.

This was crucial to succeed having the algorithm performing what it was meant to, however
one has to keep in mind that the defocus values have to stay in a low range as a matter of trust in
the company’s technology, but also to have efficient masks at a 0 nm defocus value : one does not
want the masks to be average everywhere, but to be optimised as much as possible independently
from the focus variability.
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3 Realisation of the project
Once the theory and the goals were clearly defined, it was time to engage the realisation part,
which proved itself to be extremely challenging, due to numerous limitations. In the end, the
project involved at least four people working on different parts of the realisation, and the whole
algorithm is not finished as of yet. Here we will see three main steps :

- how we prepared the data due to the challenges of working on a manufacturing problem,
- how we constructed our dataset and how we chose to run the whole flow,
- the steps of realisation and testing.
In the latter, we will present how we ran a well-known algorithm, the steps to adapt it for our

very problematic, the different results we obtained when changing parameters and their influence,
the realisation of the previous modelling part, and the improvements of which one can think for
the rest of the project.

3.1 Preparation due to the lithographic process

First of all, the preparation of the algorithm was a huge part, and this is the section upon which
we will focus here. We used Python 3.7.4, TensorFlow 2.1, and Mentor’s Calibre v2019.4_36.18.

3.1.1 Format

Here is the main format issue needing preparation : the file format of the data linked to the
photolithography software was the very first limitation we encountered was the format of the data.
Indeed, the software used to create the dataset and perform simulations being Mentor’s Calibre,
we needed GDSII conversion to express our data as layout designs and masks. Indeed this software
uses the GDSII file format, which is a binary vectorial format describing the layout with keywords
to indicate the shapes, coordinates and the layer.

Here is an example of an ASCII-converted GDSII layout file, which we converted in order to
better understand how the design layouts were encoded by Mentor’s Calibre. We can clearly see
that the file description uses keywords such as "TEXT" or "LAYER" with coordinates for the
software to reconstruct later, which explains why we cannot directly generate the masks in this
very format, albeit it would be another problem.

Figure 16: Sample of ASCII-GDSII layout file
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However the Machine learning algorithm using convolutions and matrix operations, it was wiser
to perform the whole project using images, as an automated generation of GDSII using machine
learning would be a different problem. After testing several formats on huge pictures, we retained
the PNG format for its ease of use in Python modules such as TensorFlow, its limited final size
and its lossless compression ensuring to keep the pixel accuracy we needed, against JPG, BMP
and SVG.

In the end, the algorithm we created is format-independent, meaning that it performs the same
for any format we would use in the future, by automatically converting any photolithography
picture into a binary file loaded into the RAM. As a matter of facts, these very pictures were to be
stored in a database, the architecture of which had been developed by previous interns, and the
more savings the better for us. It is to be noted that we stored the images locally on a Hard Disk
Drive of 350 GB, in order to perform tests and didn’t include the final database yet.

Therefore, we also had to develop a python script allowing to convert a GDSII file into a PNG
file. For this, we used the library gdsCAD at first from Python, we adapted the source code to run
with Python 3, for it only existed for Python 2. Afterwards, we customised some functions to get
it return only the layers we was interested in, and save them keeping the accuracy we wanted, in
our case being 5 nm per pixel. We can see here on the Figure 17 a direct comparison of the GDSII
files and the picture we created.

Figure 17: Comparison of GDSII and PNG result

Another intern had previously worked on a new representation of GDSII files by compressing
them by a factor 36.000. Using known specificities of the GDSII format, as well as a Peano’s
curve, he managed to encode pixels in a complex, yet space-saving way. His representation could
be used as well in our algorithms, for it respected the shapes and accuracy we wanted, nonetheless
it was not used for now but could be envisioned as an improvement as seen in the Improvements
section. An open-source module called Nazca-design also allows the reverse conversion from PNG
to GDSII, as to re-enter the mask generated into the simulator, and it was eventually used for
the two conversions, leading the team to develop their own module based on it to have their own
interpretation of GDSII files in Python.
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3.1.2 Size and Layers

An important parameter which had to be taken into account was the data itself. Due to the
lithographic process limitations such as the diffraction, a change in the mask on a given location
can have an impact on the shapes of the whole design we wish to imprint. However as a matter of
simplification, we considered only the ambit to be 0.5 µm, based on the OPC department’s sensible
experience and criteria.

Therefore that is why we chose the size of the crops to be 4 µm2, with an overlap every 1 µm
for the impact of the mask on one of those crops would barely affect the design generated by other
crops with this method. In order to realise this, we developed a python script generating the right
number of Design rules check or DRC files and reading them with Mentor’s Calibre.

This strategy was based on a big design of 12 mm× 12 mm, for which the GDSII file took up
to 20 GB. Therefore, it would’ve been madness to try and run the algorithm on such huge layouts,
which is the reason why we had to create small crops of the design, for both the training and the
inference purposes.

Another issue we faced was the parting of the GDSII files into layers, which is an easy way
for designers in their additive strategy to separate functions between blocks of the design. For
instance some layers may be indicative text or different materials such as metal or polycrystalline
silicon. However all of these layers should not appear on the pictures we generate, for we were
working on the metal only, so that we filtered the layers in the same python script as to generate
several pictures, particularly a picture of the mask after OPC, and a picture of the target design.
We also had to keep a layer called BBOX which allows the software to know the size of the overall
design, by being the background of the picture. This was mostly important as to reconstruct the
GDSII file later with the right size.

3.1.3 Design Rule Checks

As of working closely with the OPC department; we had access to several limitations due to the
manufacturability of the generated mask. Those limitations were at the SRAFs level, and mostly
consisted of minimal distances in design patterns. Indeed the SRAF should not be present on the
final layout, thus we needed to make sure the rules were respected. Therefore we developed a DRC
script allowing us to know which parts were manufacturable or not, so that we could correct our
algorithm with it later.

We based our work on a script developed by the OPC team, so that we could change the criteria
according to the rules we had. Our script included all the minimal distances between the cells on a
layout, which we customised according to the technology we were using. Depending on the shape
of the cell, distances could be different. A summary of the different parameters we had to take
into account can be found in the Appendix section.

This script can be launched using Mentor’s Calibre, and returns a list of the different problems
we may have on the generated mask, which would make the manufacturing of such lithography
masks impossible.
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3.2 Construction

3.2.1 Data preparation

We then had to crop the main GDSII file into thousands of smaller files, being an important step
was then to turn the raw data into an understandable dataset. This was done under Google’s
Tensorflow package, and took quite a while before being successful.

Indeed it required to plunge into the functions in order shuffle the data, assign it to the right
label, take buffers from the dataset, so that we would not overload the memory with several
thousands of images.

Due to physical limitations, we had to take an overlap between the pictures into account as
previously mentioned, meaning that the active region on a simulated layout is only the size of two
times the ambit, therefore our crops should overlap each other as we wish to reconstruct the mask
after we created all the crops of the final mask. This led us to change most of the scripts as to be
able to retrieve the continuity between the masks, therefore removing part of the shuffling when
creating the dataset, but rather shuffling in regions on the main target.

We then had to binarise the data as to obtain black and white pictures only. For this, we created
a function turning the colourful image we had into a black and white, binary picture. We used a a
lightness optimisation way of doing it, which led us to having accurate black and white pictures,
that is to say turning each array of 3 channels for each pixel into (max(RGB) + min(RGB))/2,
and then imposing a threshold of 0.9 so that any value below this threshold would become a 0,
and the others would be 1. The Listing 2 in the Appendix shows the lines of code we used for this,
with image_count being the number of images, train_ds being the training set.

3.2.2 Pre-processing and computational power

An important line one can see in Listing 1 is the reshape line :
1 train_images = train_images.reshape(train_images.shape[0], 128,128, 1).astype(’

float32 ’) #reshaping}

This command is crucial as to enter our algorithm with data being in the right shape for the
Input Layer. This line often led to crashes when we tested with different outputs, for example
with bigger images (256x256), we had to add a maxpool operation as to reduce the dimension of
the data, or the GPU would overload thus leading to a crash. Indeed, this line creates a tensor of
the right shape for the training batch, and in our case, it was more than 4 GB to load into the
VRAM.

Therefore we had to optimise the execution of the algorithm. We had already optimised the
size of the dataset, by storing them as GDSII and PNG files instead of raw data on the Hard
Drive, however Deep Learning requires a lot of parallel computing for the model we used consisted
of around 1 Billion parameters.

Here is an example on Figure 18 of a model the team developed with larger images when
testing different architectures for the Encoder, where we can clearly see the required maxpool
layers preventing the model from crashing, as well as the Variational part with the mean and
standard deviation in the end of the encoder :
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Figure 18: Variational AutoEncoder model example for 480x640 images

To run such models, we had to use a GPU, which was a Quadro P3000 running on the company’s
internal computing farm. In order to do this, we had to write a specific command to run our script
on the computing farm, and we had to force the execution on the GPU, despite its availability
being limited as many people within the company wanted to access it at the very same time.
Nevertheless, once the GPU was under our control, it allowed us to save an enormous amount
of time when executing for two reasons.

• The GPU could load the data faster within its 6GB VRAM than on the computer the team
was using, and the computing farm allowed for more than 16GB of additional RAM to
be used. The parallel computing using the GPU took advantage of its numerous CUDA
cores, allowing for faster computing, especially as neural networks don’t require difficult
calculations, but mostly a lot of simple operations in parallel.
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• The main bottleneck within our flow was the use of Mentor’s Calibre software, which we had
to call in order to simulate the target design using the mask we should have generated. This
software could only be started on the computing farm, for it is located there, therefore it
was wiser to launch everything in there to save up more space, rather than having to call for
it for every training example within our algorithm. This was also the reason why the team
decided to switch back to the ILT loss, for it allowed us not to require Calibre, although this
was done in the very end of our internship, therefore it is detailed in the very end of this
report.

To sum up the improvements we obtained by choosing to use the GPU for the Machine Learning
itself, compared to using the CPU we had locally, our epoch duration decreased from more than 5
minutes, to less than 2 seconds, making the testing phase extremely efficient.
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3.3 Testing and results

After understanding the issues at stake in this very project, after modelling several solutions
and clarifying the whole project, then came the time of realisation and in particular the testing
phase. At first it seemed pretty logical to play around with some pre-existing algorithms in order
to understand the practical aspects of the realisation, and then to adapt it to our lithographic
patterns. In the realisation, we mostly used the MNIST database of handwritten digits, before
changing it to our layouts in the very end.

3.3.1 Building the algorithm for simple patterns

We followed and recreated a MNIST tutorial algorithm using a Variational Auto-Encoder at first,
as the problematic was very similar to ours, that is to say reproduce binary patterns using a mere
VAE. This VAE also has the peculiarity of classifying the data using 10 classes, each for a different
digit, which is something we want to remove later as our patterns may be of any shapes and kinds.

This algorithm was made in several steps as will be faithfully described here. The code itself
is public and can be found on Google Tensorflow’s website under the CVAE section:

• All the necessary modules are imported, including Tensorflow, or NumPy.

• The dataset is loaded directly from the website, as 8-bit and organised arrays. Those arrays
are actually multi-dimensional tensors.

• It is then reshaped as to be clear on the separation between data and labels, and binarised
as to end up being binary.

• The main parameters like the batch size are initialised, and the training and testing sets are
randomly defined amongst the whole dataset.

• The Variational Auto-Encoder is defined as a class containing several functions.

The pictures being 28x28 pixels big, the Encoder has an Input layer of this size, followed by
two convolution layers, the data is then flattened, which means reshaped into a smaller size,
dimension-wise, and it gets through a Dense layer before being returned. This ensures the
encoded data is fully linked to a number of neurons equal to the latent dimension we wish
to have.

Then the Decoder is defined as an Input layer of the latent dimension, connected with a Dense
Layer. It is then reshaped into a 7x7 tensor in order to get through two transposed convo-
lution layers making it 28x28 again. It finally gets through a third transposed convolution
layer of dimension 1, as to deliver the final output.

• Several functions are then defined, such as encoding, decoding using the previous class with
the calculation of the mean and standard deviation.

• The loss function is then defined, as well as the computation of gradients.

• The "main" part of the code is then written as to create a VAE, train and test it, show
results and save them as pictures.

After having set the whole environment, and running this code using the company’s available
GPUs, it ended up working, with a loss function as shown on Figure 19.
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Figure 19: Evolution of the Loss Function of the VAE for MNIST digits generation

It is clear the code isn’t perfect, for the convergence doesn’t reach anywhere near zero but
rather -90 starting from -300, however the pictures we ended up getting looked quite satisfying.
Here is a short evolution of the pictures we got from random noise as input through the decoder at
different epochs. With a bit more training examples, and perhaps an optimised neural structure,
we may get even better recognisable digits, which is why the team is currently working on building
a new structure as shown on Figure 18, as to compare with this one.

(a) Epoch 0 (b) Epoch 5 (c) Epoch 10 (d) Epoch 60 (e) Epoch 100

Figure 20: Evolution of the generated images with the MNIST VAE

After this was done, we wanted to adapt this algorithm to run with our own data being local
pictures of a different and bigger dimension. We downloaded a public MNIST dataset of 15,000
128x128 pixels PNG pictures, stored them locally sorted by digit.

In order to do so, we had to implement a way of importing local pictures, treat them as to be
workable, that is to say becoming a dataset in a format our algorithm could deal with. Then we
had to adapt the main structure of the VAE itself, so by adding layers as an input of the encoder
and as an output to the decoder. Following this we had to make it run on our GPUs, although
bigger dataset and bigger networks meant more memory required and longer epochs.
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3.3.2 Adaptation to our design layouts

The first difficulty was to adapt the algorithm to the size of the pictures. We had to add some lines
of code, which we will further detail below, for we tried numerous customisations of the parameters
to get something working in the end. We did not change the latent dimension, for the information
contained in the new pictures was the same as the one in the 28x28 pixels images, that is to say a
binary drawing of a pattern on a plain background. We concluded that a latent dimension of 50
neurons was enough to encode such a picture, after the tutorial, independently of its size.

Here is a picture of what happens at epoch 20 when we tried to reduce this dimension from 50
to 10 on Figure 21 as a mere test : we can see that the learning rate is quite slow and the encoding
is so lossy that the decoder cannot recreate the pictures faithfully enough, albeit it makes them
extremely pixelated despite the pictures being 128x128 in size:

Figure 21: Image generated by the VAE with a latent dimension of 10 at epoch 20

To fix this, we got inspired by the paper [4] and [15] amongst others for the architecture, so
that we added more convolution layers with larger filters, as well as more transposed convolution
filters. We had the idea of setting a threshold in the last transposed convolution layer, so that we
added an activation function of the form of an hyperbolic tangent. In the papers, they stated that
the tanh function is generally preferable over a sigmoid, for its gradient is steeper and optimisation
is easier with it.

In the following results, it is unnecessary to show the loss function evolution for it is sensibly
the same as the one with the MNIST tutorial, except that the scale is increased. However the
last result is the one with the lowest ELBO, being around -345, whereas others couldn’t get closer
than -850. ELBO here means evidence lower bound, and it is basically the result of the loss
function, so the value the norm of which we try to minimise. It is logical to have higher ELBO for
higher dimension pictures, as we increase the number of parameters, so that the error probability
is higher. However it may not be visually noticeable.

At first, we tried to add many convolution layers ; here is a picture of the result with 3 more
convolution layers in between, with dimension 64, 128 and 256 (also called filters) in the encoder,
and two more transposed convolution layers of dimension 256 and 128.

The logic behind this approach was to adapt simply the algorithm to bigger pictures, however
it didn’t work much for we happened to figure out the information contained in the pictures was
the same, although their size had increased. This led to overfitting as we can see on the picture
here, that is to say trying to add too much information, and in the end having something trying
to be too accurate, therefore looking like going through too many filters.
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Figure 22: Image generated by the VAE with 128x128 pictures with too many filters

We can still make out the patterns of the digits, however it is not a satisfactory result, so we
decided to remove some convolution layers, therefore adapting the reduction of dimensions within
the encoder.

We tried to reduce the kernel dimension as well, but it led to an important loss of information,
therefore we obtained images looking like this one when we changed the convolution kernel size
parameter to 2 instead of 3 for all layers.

Figure 23: Image generated by the VAE with 128x128 pictures with an important loss of informa-
tion

We had additional problems, for with low dimension pictures, the loss allowed to distinguish
between dark patterns on blank backgrounds and opposite, however at higher dimensions, an
occurrence of two different configurations led to the network being confused. This means that
the decoder could not decide whether to create the patterns as white or black on the opposite
background, so that in the end, it decided to have completely black or completely dark pictures.
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This can be seen mathematically as trying to globally reduce two loss functions, without ever
converging and never obtaining satisfying results. Here is an example of the first epoch of our
algorithm, in which we also reduced the dataset as to only have the digits 3 and 6 available as to
decrease the training time as well.

Figure 24: Image generated by the VAE with 128x128 pictures in the first epoch

Here we can clearly see the top right image being a dark digit on a blank background, leading
to bad results in the end, such as those on Figure 23.

To fix this problem, we forced the algorithm to restart if any occurrence like this appeared
at the very first epoch, as a way to force the convergence of the model. In the end, we finally
obtained an almost working VAE where we can see it finally converges to something which looks like
handwritten digits. The parameters we used were only 4 convolution and 3 transposed convolution
layers, with a tanh activation function in the end of the Dense layer in the decoder. We didn’t
change the dimension of the main layers, except the input and output layers to take larger pictures
and return larger pictures as well.

Figure 25: Image generated by the VAE with 128x128 pictures with an ELBO of -345
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We didn’t have the time to add the discriminator, which we had written in Python, for it
required to completely change the training steps. Indeed the generator and the discriminator
need to be trained alternatively, and the training must be carefully set as not to have one of the
network training faster than the other, thus losing balance. Therefore, as an effort to to have
something running fast we did not add it, all the more so as the whole team wondered if the
discriminator would add anything relevant. Indeed, the VAE by itself with a physics-based loss
function could work without a discriminator, so we decided not to add one at first and see it as a
future improvement if needed.

After we had something somehow-working, it was important to set up a complete chain of
commands, so that other interns and the team could keep working on improving our work.

In the end, we managed to have a fully functional chain of commands, which could do the
following from a simple huge OPC pre-processed GDSII file:

• Import the GDSII file and crop it into smaller GDSII files, taking physics-based overlap into
account.

• Convert each crop into a database object, including having a picture per layer in the GDSII
file. Here is a Figure showing an example of our work based on a crop we generated. As we
can see, all layers are stored within the same GDSII file and we can extract them as PNG
files for training.

Figure 26: Different layers for the same GDSII file : target, target with OPC, SRAF layer and
OPC+SRAF for simulation
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• Simulate the real target based on a crop (for the lithographic process cannot physically
produce the right design) and add it to the objects.

Figure 27: Rounded target simulation based on the target

• Import those objects into a Machine Learning preparation algorithm, by pre-processing the
data and turning it into a dataset.

• Run a GAN made with a VAE on those objects and generate images of the mask with SRAFs.
The algorithm can run on the dedicated computing servers of the company, having either a
GPU or CPUs for us to test with.

• Have different loss functions to choose from a physics-based loss with a simple model, or a
pixel-based loss using proprietary software.

• Convert the generated image back into a GDSII file, as to differentiate between the patterns
and the SRAFs.

• Simulate the photolithography process with the newly generated mask with a variable and
customisable focus value, and check the mask manufacturability if necessary, as to know if
what we generated is physically relevant.

Figure 28: Different defocus values simulated by the simulator, with each colour corresponding to
a different focus value

Actually the VAE-GAN which ran in the end was not completely finished for it could not really
adapt to any size, as we had only tested with 128x128 pictures, and the whole architecture of it is
dependent on its size, as aforementioned. The results first run with 200x200 images can be seen
in The Improvements section as Figure 31.
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Loss Function for Physics Modelling
Another code we realised, which was an important work to take into account, is the loss

function. We created a Python script allowing the calculation of the loss function we modelled
earlier for the ILT.

As we can see on Listing 1, we created a function physicsloss calculating both the loss function
and its gradient, however this was not used as of yet as we previously mentioned Mentor’s Calibre
was more suitable on the short run.

However as we will see in the Improvements section, this work is a milestone for what is going
to happen next, because it suggests an alternative way of modelling lithography without being
limited by proprietary software and external system calls. We managed to test the code on simple
images, as we didn’t have the dataset ready when we finished writing it, and we changed the focus
of the project.

We took a Numerical Aperture of 1.35 with a wavelength of 193 nm, as transmitted by the
OPC department, we took the parameters for the sigmoid being a threshold of 0.7 as the OPC
department told me it was realistic, and a steepness of 10 because we were then able to differentiate
between most values and it was quite steep, although not looking like a Heaviside step function.
We also wanted to map the Bessel cardinal coefficients to check the impact of the ambit, therefore
we plotted a figure of the absolute value of the coefficients on space with a threshold at 1/150 of
the maximum of intensity, and obtained Figure 29.

Figure 29: Plot of the impact of each point in space on the central point with a 1/150 threshold

We can see on this Figure that an ambit of around 500nm is acceptable as each pixel represents
10 nm as I’ve set them, and if we consider as negligible the impact of objects with coefficients
below 1/150 of the maximum intensity. In reality, the central circle contains 86% of the whole
intensity, so that we can reduce the size of the kernel to the two primary circles to take two orders
of diffraction into account. It also confirms our implementation of Hopkin’s theory [5], with those
coefficient having an Airy pattern shape, which once convolved with our patterns indeed gives us
diffraction patterns. This Figure is a binarised version of our convolution kernel.
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(a) Mask example (b) Resist simulation Z(I) (c) Loss function calculation

Figure 30: Physics-based simulation of the ILT within the loss function : 1 pixel = 10 nm

After running our code on small pictures of 500 nm x 500 nm, we obtained a loss function of
around 2500 for mask patterns being the exact opposite of the target, whereas it fell to less than 1
with small images being exactly the same. On bigger pictures of 4 microns squared being all white
or all dark, the loss was of 25000 for completely opposite pictures. However when we tried to add
patterns, we could see the diffraction patterns when using the aforementioned wavelength or even
bigger ones. On the Figure 30 we can see the diffraction effect, and the target was the same as
the mask therefore a loss of 4979, a high number as we keep it squared. We can now see that we
managed to shortcut the use of Mentor’s Calibre, by developing our own model which could then
be optimised using the VAE-GAN.

We then managed to include our loss function in the team’s VAE, where it showed significant
improvements in the running time. However the structure of the VAE being still messy, we didn’t
manage to observe significant results of robust masks being created.

In the very last week, we ran simulations of more patterns to validate our model and show the
effects of diffraction on bigger and more interesting images, however we didn’t have the time to
include them here, so that we will add them to the presentation. These are things we can develop
in the next section about the improvements which are to be made.
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3.4 Improvements

After realising the first step of such a project some serious improvements can come to our mind
Create own database with progressive difficult of patterns for training.

- The first one may be within the structure of the VAE-GAN : First of all, we didn’t have time
to add the discriminator, however it could be a real asset as to make the network converge better
and faster, although it would require to review the training as to obtain a balance between the
two blocks : the generator (VAE) and the discriminator. Our network started to converge in the
very end of the internship (the last week), and here is a picture of the first images we managed to
obtain, using our strategy of VAE with slightly bigger pictures (200x200 pixels for 4 µm2).

Figure 31: Input (top), output (bottom) of the first complete VAE run at epoch 2

Although those images are taken at the 2nd epoch, which is very early, we can see that the
features extraction of the encoder and the stochastic reconstruction of the decoder are quite faithful
to the main features, thus the proposed improvements.

- Saving space in the database could another improvement axis. Indeed we stored GDSII files
and their associated generated PNGs per layer, however we could probably encode the pictures as
a single PNG file with each layer on a different channel bits. However this would limit us with
4 layers as a maximum, for PNG pictures are encoded with 4 colour channels. This would also
require us to change our way of extracting the data into the algorithm, especially when forming
the dataset. We could also use the structure which was created by the previous intern, as to have
a real database with objects easily recognisable and accessible, and the GDSII compression.

- Another improvement would be to take advantage of the company’s budget in high-end
components as to run the algorithms with Scalable Link Interface GPUs, as to make calculations
faster. Indeed the company plans on investing on new GPUs in the computing farm being Nvidia
Quadro RTX P6000 graphics cards, allowing for far more powerful calculation power available than
the P3000 we used.

- That would also be true for the loss function we calculated, which takes around 5 seconds to
be computed, given the size of convolution kernels on the pictures. Including the ILT equations
we developed could be more efficient by converting the whole code into Numpy arrays, rather than
simple Python lists. This wasn’t done yet as our loss was not extensively used at first, and is still
at the stage of an experiment.
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Conclusion
The objective of this internship was to develop an industrial process flow as to optimise the
photomask generation.

After an introduction chapter, the theoretical background was presented in the second chapter,
photolithography challenges, parameters, as well as Machine Learning knowledge up to advanced
generative algorithms were presented.

In the third chapter, the model we used for two sub-problematics is explained, as well as how
we decided to implement it.

In the fourth chapter, we considered the whole process flow from the very beginning with the
GDSII file till the end with the Machine Learning algorithm. All the steps in between we created
were detailed, taking into account the Lithography limitations, the Machine Learning requirements,
the results of the testing of such algorithms on simple datasets, their adaptation to our problematic,
as well as the implementation of the physics-based loss function.

In the frame of this work, we developed a reproducible and well-detailed process flow which
takes layout designs as an Input, and outputs a photomask generated using both AI and physics
equations.

This result although not perfect nor completely finished as of yet and still subject to improve-
ments encourages me to work in similar fields later, with the combination of microelectronics-
related domains and AI-related tools. This would probably lead me to take example on my
supervisor P. Urard who switched from a technical job to project management but still being fully
involved on high-tech research projects.
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Appendixes

Project organisation and unfolding

The research group was formed of Mr. Urard as the lead Director, and a handful of interns working
on different subjects. During this project, I realised in the beginning of December that it would
be difficult to have a running flow in the end of my internship because of a lack of time. Indeed,
I was the only one working on this project for 4 months, and before I arrived, no real idea of the
flow, nor scripts which could help me had been done.

I also had to set up the whole UNIX environment to run different software such as Calibre or
TensorFlow, which is a long procedure of more than 1 week within the company. Then I had to
create by myself a Variational Auto Encoder, turn it into a GAN, and I had no knowledge at first
of those tools. So that, I decided to try my best to have a whole flow running, developing DRC
scripts to process the data, I also suggested the whole flow, worked on the theoretical part, and
implemented it.

Then in mid-December, the project changed to the defocus robustness problematic, with the
new strategy being to add SRAF, as it seemed simpler and a better path for the company. I
therefore had to create new scripts, focus on new problems (such as the one of layers), and when a
second intern and a colleague arrived in mid-February, I could delegate some of the tasks, especially
with the DRC scripts, as to focus on more testing and assembling the flow with them.

To conclude, this project really had two phases, both of them blending together in the very
end of my internship, and it required multidisciplinary skills to be achieved, although a lot of
improvements are still to be done.
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Figure 32: GANTT diagram of the project
46



Glossary

• AI : Artificial Intelligence (generally refers to Deep Learning applications).

• CUDA : Compute Unified Device Architecture, used to take advantage of multiple cores on
a Graphics Processing Unit.

• DRC : Design Rules Check : a set of rules for a desifgn to be manufacturable AND a file
format to run script within Mentor’s Calibre.

• DUV : Deep Ultra Violet (around 13.5 nm).

• EDA : Electronic design automation.

• ELBO : Evidence lower bound (value of the loss function at a given epoch).

• GAN : Generative Adversarial Network : Deep Learning model to generate data, detailed in
the first Chapter.

• GDSII : A vectorial file format for layouts.

• GPU : Graphics Processing Unit.

• ILT : Inverse Lithography Techniques, the goal being to generate a "perfect" mask given a
design.

• MNIST : Modified National Institute of Standards and Technology, which is a large database
of handwritten digits that is commonly used for training various image processing systems.

• NA : Numerical Aperture, a dimensionless number that characterises the range of angles over
which the system can accept or emit light.

• OPC : Optical Proximity Correction, which is a set of methods trying to simplify ILT by
iterative rules.

• PNG : Portable Network Graphics, an image file format with a lossless compression.

• PSM : Phase-shift mask, to improve the contrast of the on-resist design after exposure.

• PSF : Point Spread Function, which describes the response of an imaging system to a point
source or point object.

• RAM : Random Access Memory, where is stored our data when running the algorithm.

• SRAF: Sub-Resolution Assist Features, or added "bars" on the mask to improve the contrast
and a focus robustness to the mask.

• SVG : Scalable Vector Graphics, a vectorial image format with a lossless compression.

• SVM : Support Vector Machine, an algorithm to extract features of data and find hyperplanes
separating those features. It is detailed in the Chapter 1, and allows for data generation.

• VAE : Variational Auto Encoder, a Stochastic Deep Learning model to encode and decode
data, allowing for features extraction and generation of data. It is described in the Chapter
1.

47



Cost analysis

The achievement of my master thesis relies on several costs:
- My salary and a percentage of the salary of all the engineers working partially on the project

should be considered.
- The software licenses (Calibre, Microsoft Office, IEEE documents): This cost also is not easy

to evaluate as the same licenses are used by several engineers, and the prices are not always given
within the company.

- The special hardware to which I had access such as the computer, the GPU, and the computing
farm.

- The advantages over the food and other activities funded by the Company’s Committee.
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Python code samples

1 # -*- coding: utf -8 -*-
2 import numpy as np ; import sys ; np.set_printoptions(threshold=sys.maxsize) ;

import math
3 #bessel function of order 1
4 from scipy.special import jv ; import matplotlib.pyplot as plt ; order = 1 ;

resolution = 10*10** -9
5 def Besselcardinal(order ,x):
6 if x==0:
7 return 0.5
8 return 2*jv(order , x)/(x)
9

10 def convolution(arrbig ,arrsmall ,i,j):
11 #definition of the convolution operation with an image and a smaller kernel
12 convo =0.0
13 for a in range(0,len(arrsmall)):
14 for b in range (0, len(arrsmall)):
15 if i+int(len(arrsmall)/2)-a>=0 and j+int(len(arrsmall)/2)-b>=0 and (i+

int(len(arrsmall)/2)-a)< len (arrbig) and (j+int(len(arrsmall)/2)-b)< len (
arrbig):

16 convo+= arrbig[i+int(len(arrsmall)/2)-a][j+int(len(arrsmall)/2)-b]*
arrsmall[a][b]

17 return convo
18

19 def physicsloss(a, lambd , thresh , na , mask , target ,resolution):
20 #initialisation
21 Z= [[0 for j in range(len(mask))] for i in range(len(mask))] ; fl= [[0 for j

in range(len(mask))] for i in range(len(mask))] ; convolved= [[0 for j in
range(len(mask))] for i in range(len(mask))] ; arr2= [[0 for j in range(len
(mask))] for i in range(len(mask))] ; grad= [[0 for j in range(len(mask))]
for i in range(len(mask))] ; I = [[0 for j in range(len(mask))] for i in

range(len(mask))]
22 #size of the convolution kernel , fixed at 15 for the example
23 #lengh = int(len(mask)/4)*2 ; #widh = int(len(mask)/4)*2
24 lengh = 15 ; widh = 15
25 h=[[0 for j in range(lengh)] for i in range(widh)]
26 #common variable
27 var1 = 2*math.pi*na/lambd
28 #We loop on all the elements of bessel cardinal kernel to calculate it
29 for i in range(0,lengh):
30 for j in range(0,widh):
31 #distance from center of mask
32 r=math.sqrt((i-(lengh -1)/2)**2 +(j-(widh -1)/2) **2)*resolution
33 #bessel function + point spread
34 h[i][j]= Besselcardinal (1,r*var1)
35

36 for i in range(0,len(mask)):
37 for j in range(0,len(mask[i])):
38 #convolution between h and mask
39 convolved[i][j] = convolution(mask ,h,i,j)
40 #light intensity as defined
41 I[i][j] = abs(convolved[i][j])**2
42 #resist model added to the intensity
43 Z[i][j]= 1/(1 + np.exp(-a*(I[i][j]-thresh)))
44 #l2 norm
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45 fl[i][j]= (target[i][j] - Z[i][j])**2
46 #useful for calculation of gradient
47 arr2[i][j]= (target[i][j] - Z[i][j]) * Z[i][j] *(1 - Z[i][j]) * convolved

[i][j]
48 for i in range(0,len(mask)):
49 for j in range(0,len(mask[i])):
50 #gradient matrix calculation
51 grad[i][j]=-2*a*convolution(arr2 ,np.rot90(np.array(h) ,2).tolist (),i,j)
52 #loss calculation
53 loss = np.sum(np.array(fl))
54 return (loss)
55

56 #testing and setting parameters
57 s=50 ; a, lambd , thresh , na, mask , target = 10, (193*10** -9) , 0.8, 1.35, [[0]*s

]*s ,[[0]*s]*s
58

59 print("loss =",physicsloss(a, lambd , thresh , na , mask , target ,resolution))
60

61 #print the map of Bessel cardinal coefficients
62

63 def besselmap(resolution ,size ,na,lambd , thr):
64 #function to show the map of Bessel cardinal coefficients
65 h =[[0 for j in range(size)] for i in range(size)]
66 var1 = 2*math.pi*na/lambd
67 for i in range(0,len(h)):
68 for j in range(0,len(h[i])):
69 r = math.sqrt((i-(len(h) -1)/2) **2 +(j-(len(h) -1)/2) **2)*resolution
70 h[i][j]= int ((1+ abs(Besselcardinal (1,r*var1))-thr))
71 return np.array(h)
72

73 print("\n\nbessel map =");
74 plt.imshow(besselmap (10*10** -9 ,110 ,na,lambd , 1/150)); plt.show()

Listing 1: Python code for model-based ILT
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1 def prepare_for_training(ds, cache=True ,
2 shuffle_buffer_size =1000):
3 if cache:
4 if isinstance(cache , str):
5 ds = ds.cache(cache)
6 else:
7 ds = ds.cache()
8 ds = ds.shuffle(buffer_size=shuffle_buffer_size)
9 ds = ds.repeat ()

10 ds = ds.batch(image_count)
11 ds = ds.prefetch(buffer_size=AUTOTUNE)
12 return ds
13

14 train_ds = prepare_for_training(labeled_ds)
15 image_batch , label_batch = next(iter(train_ds))
16 train_images = image_batch.numpy()
17 train_images =( train_images.max(axis =3)+train_images.min(axis =3)

)/2 #GreyScale Conversion
18 train_images = train_images.reshape(train_images.shape[0], 128,
19 128, 1).astype(’float32 ’) #reshaping
20

21 #Binarisation
22 train_images[train_images >= .9] = 1.
23 train_images[train_images < .9] = 0.
24

Listing 2: Python code for pre-processing
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Specific details

Convolution
Here is an illustration of how the convolution (or cross correlation) in different part of the

project works, be it in the physics-based loss function, or inside convolution layers.
The filter is also called kernel, and it is the small array which allows the convolution to take

place and therefore emphasise (or not) the surroundings of the source pixel, depending on the
kernel construction.

In the case of our physics-based model, we chose a 15x15 kernel with the coefficients of the
Bessel cardinal function as defined in the body of the report.

We can also mathematically write it as :

R~ k(i, j) =
n∑
a=1

n∑
b=1

R(i− a+
⌊n

2

⌋
, j − b+

⌊n
2

⌋
)× k(a, b), (9)

with R our initial image, k our kernel of dimension n× n and (i, j) the coordinate of the pixel
we want to compute (the source pixel).

Figure 33: Convolution Layer summary
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Manufacturability Rules (DRC)

Figure 34: Manufacturability rules 1
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Figure 35: Manufacturability rules 2
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Figure 36: Manufacturability rules 3

Figure 37: Manufacturability rules 4
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DRC code sample for manufacturability check
Here is an extract of the code, and the parameters we had to manually set up in order to be

able to check if a given mask is manufacturable. The complete code for this is exactly 1115 lines
of commands, so that we will only give the definition of some of variables here and an example of
a zone check. This is only useful to show what a DRC script looks like and the work we had to
deal with to remotely control Mentor’s Calibre.

1 // #################################################################
2 // ###### VARIABLE DEFINITION #####
3 // #################################################################
4 // script parameters
5 //###################################################################
6 VARIABLE precision_gds 1000
7 VARIABLE dbu 1.0 / precision_gds
8 VARIABLE number 29
9

10 // MDRC Variables
11 //###################################################################
12 VARIABLE Min_width_CD_MDRC 0.048
13 VARIABLE Min_space_MDRC 0.03
14 VARIABLE Min_width_corner_to_corner_outer_MDRC 0.036
15 VARIABLE Min_space_corner_to_corner_outer_MDRC 0.022
16 VARIABLE Min_projecting_length_MDRC 0.005
17 VARIABLE Min_projecting_adjustment_MDRC 0.022
18 VARIABLE Min_projecting_length_1_MDRC 0.068
19 VARIABLE Min_projecting_adjustment_1_MDRC 0.025
20 VARIABLE Min_projecting_width_length_MDRC 0.032
21 VARIABLE Min_projecting_width_adjustment_MDRC 0.036
22 VARIABLE Min_projecting_width_length_1_MDRC 0.056
23 VARIABLE Min_projecting_width_adjustment_1_MDRC 0.042
24 VARIABLE Max_shared_joining_length_MDRC -0.001
25

26 [...]
27

28 // ##################################################################
29 // #####// 5.1 MIN_SPACE_CHECK_ZONE_DEF
30 // ##################################################################
31 MIN_SPACE_MDRC = EXTERNAL MDRC_CHECK < Min_space_MDRC

OPPOSITE PROJECTING > 0.003
32 MIN_SPACE_REGION_MDRC = EXTERNAL MDRC_CHECK < Min_space_MDRC

OPPOSITE PROJECTING > 0.003 REGION
33 // Region for defect view
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