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1 Introduction
Neuromorphic computing circuits are one of the hot topics on the 21th century. The

neuromorphic family subject to this study has a behavior very close to classical neural

network used for deep learning. They are being subject to a lot of research since the

past decade for their ability to apply the dot product operation in a energy, time and

space efficient analogical manner [2, 3]. The main advantage of neuromorphic architecture

is to save the journey of data between the memory and computing part of the system.

Thus in-memory computing system often appears as a solution for embedded application

that requires low power consumption and high integration density [4]. Those systems can

be both trained ex-situ or in-situ. The in-situ trainning can provide large speed-energy

efficiency for the training while adapting itself to hardware imperfections but raises more

technical issues that are yet to be solved [5, 6]. The training ex-situ is usefull for at the

edge computing as the training has to be done only once then can be transferred on all

the inference hardware. Here resistive random-access memory (RRAM) technologies are

a key component of the system, they are related to the synapses weight of the neural

network. Their device to device, cycle to cycle variability and retention time as well as the

implied weight discretization directly deteriorate the computation. An implementation

principle where the neural neural synaptic weight and bias are embedded with a pair of

conductance has been chosen [1]. Several experimental datas concerning RRAMs electrical

characterisation were available in the CEA-LETI laboratory. From those starting points

the internship consisted to simulate neural networks built with those RRAM technologies

and this implementation strategy. However several choice concerning the neuromorphic

circuit topology, type and also RRAM programming strategy are possible. The aim

of the study is thus to design several neural network and modify them so that they

simulate the performance they would have if they were implemented on an RRAM based

inference hardware. By this mean, investigate the trade off between RRAM programming

energy cost, circuit size and prediction accuracy depending on the application and its

requirement. The Neurals Networks of this report are fully connected and used for the

MNIST and heart beat disease classification task. For the second application, the question

of prediction uncertainty is also asked. Firstly a description of the neural network used and

the expiremental data at disposal is provided in order to understand the rest of the study.
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Then the simulation strategy developped during this internship is described. Finally the

results are presented and analyse in order to draw a conclusion and the perspectives of

this experiment.
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2 Background

2.1 Insights

Figure 2.1: Working principle of weight implementation by conductance.The vertices
V i represent the neurons, their outputs are voltages, the weights Wi characterize the
synapses that connect them. The output of V 3 is define by both the activation function f
and the dot product of the weight and previous output neurons vectors. G+ and G� are
two resistives memories, W= G+ - G� represent the weight of the synapse. The current
V 1.W1 + V 2W2 is the input of a specific circuit, the output of the whole system is a
voltage V 3 = f(V.g).[1]

The whole part of this report has only the aim to present the working principle of the

neural networks considered from the device to theoretical point of view. This presentation

is needed to understand the way experimental data are used in the simulation and what the

result means. Classical neural networks are made by neurons Vi interconnected by synapses

with a certain weight wi. The output of the neuron V3 is determined by both what is called

an activation function f and the dot product of the previous vector of neurons and the

weights of their respective synapses. This dot product or multiply accumulate operation

can be physically implemented by Kirchoff’s laws where the weights are embodied by the

conductance and neuron value by a voltage [7, 8, 9]. Since in software model the weights

can be positive or negative, the quantity considered is the subtraction between a pair of
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conductance following the idea presented in the paper [1]. Then a specific circuit will

convert the current V.g into a voltage in a way that match the activation function desired.

In this study the conductance used are RRAM devices, those non volatile memories are

well suited for in memory application due to their scalability and compatibility with the

CMOS process flow [8]. The RRAM working principle shown on figure 2.2 is based on

filamentary conduction, an oxygen vacancies filament can allow a device to be in go from

LCS to HCS [7]. One insteresting properpety is that the HCS can be tuned into separable

state that allows a multi level programation [8]. However that last property is limitated

by the stochasticity intrasic to RRAM and its finite conductance range. The figure 2.1 is

made to summarize this subsection, and to get the idea of how the simplest neural network

can be implemented. Now that the physical principles has been shown to build neural

network in an analogical manner, the bottom up presentation strategy will continues to

finish this background part. Since the deterministic neural network are more classical

they will be presented at first.

Figure 2.2: Physical explanation of filamentary resistive memories, the white dots
represent the filament formed by oxigen vacancies that allows the resistance to be in HCS

2.2 Deterministic Neural Network

Deterministic neural network (DNN) are directly related to what was presented in the

previous part. The weights of synapses and bias are represented by scalars (32 bit float
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in the built TensorF low model). Several architecture are possible to connect neurons

and synapses, the study here focused on the more basic one, the fully connected neural

network. The easier way to understand the principle is to take an example. In the figure

2.3 the neural network architecture used for MNIST application is represented. In the

MNIST database are represented handwritten digit on a 28x28 pixel image. The Input

layer is thus composed of 784 inputs and the outputlayer of 10 outputs corresponding to

the label. The output with the greater value represent the choice of the circuit, if outputi
is the greater outputs the circuit is predicting that the digit (i-1) is represented by the

image. During the training of the DNN the two essential parts are the loss function and

the optimizer. Several images with a known label are feed to the circuit, the loss function

measures how far from the optimal output the circuit is. The optimal output being a

1 on the neuron corresponding to the label and 0 everywhere else. The the optimizer

will adjust the value of all the synapses to minimizes the lossfunction using the gradient

descent. The operation is done as much as needed to find a proper setting to the synapses.

The loss function used in this study is Categorical cross entropy and the optimizer ADAM.

ADAM optimiser is one of the most famous gradient based optimization and present the

advantages of needing very little tunning of hyperparameters [10]. To conclude this part

a deterministic neural network is a function with as much parameter as bias and synapses.

The training consist to find the best function inside the space function. The space has a

finite number of dimension, the next neural network does not present this particularity

theoretically.

2.3 Bayesian Neural Network

Bayesian Neural Network (BNN) are a probabilistic interpretation of DNN. The synapses

of the neural network became distribution instead of scalar (see figure 2.4). They have

shown several advantages compared to DNN for over fitting issues [11] and gives more

information concerning the uncertainty of the prediction [12]. Their name came from the

famous mathematician due to the use of Bayesian probability theory. For the classical

neural network given training datas xi and their label yi, the training consist of finding a

function f define by the weight value of the synapses and bias of the network such that

f(x) = y. Here the idea is a bit more sophisticated, first we define what is called a prior

distribution p(f). Which means that a prior belief of the distributions has to be chosen for
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Figure 2.3: Architecture of the MNIST classifier

each bias and synapses. In our study those prior distributions were following a normal law

with a mean value equal to zero. Their standard deviation were hyperparameters that

influence the quality of the training. The aim of the algorithm implemented in PyMC3 are

then to find an estimation of the posterior distribution p(f |x, y) given training data xi

and their label yi. Knowing this estimation, composed of several scalar for each bias and

synapses representing a distribution, each new input data will give an output distribution.

One can notice that by defining the number of scalars used to represent the distribution,

the space of function has again a finite number of dimension. The output with the greater

mean value is the prediction of the circuit. The algorithm used in our model is called

NUTS it is an optimisation of the famous MCMC algorithm, it has been shown to be good

choice considering the tradoff between efficiency and user friendliness [13]. At each step

of the MCMC sampling, a new distribution is proposed and depending on its likelihood

and its resemblance to our prior belief, the new distribution is either accepted or rejected

[1]. The mathematics behind those algorithm are complicated, only the main ideas were

investigated since the using of the algorithm does not requires a deep understanding. This

bottom up presentation should have provides an global understanding of the theoretical

object that are manipulated in this report and how they can be built. The next part
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will focus on the experimental datas that were provided by the laboratory which are the

building blocks of this work.

Figure 2.4: Architecture of the Bayesian neural network
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in two different ways, one that gives a linear separation between the bins and one that

is optimized in terms of programming energy consumption. The last one is done by

optimising the separation between the bins and their authorised width depending of the

controlability of the conductance. In other words this methods authorised more degrees

of freedom to the distributions so that the devices properties can be better dealt with.

Following this strategy the number of iteration needed to have separated bins is smaller.

The less iterations means the shorter the time of programming and the lower the energy

consumption. The algorithms were applied to the array to produced different number

of level inside the programmable window. One specificity compared to [8] is that the

RESET state (first narrow bin at the left of each plot) is also used. This state allows to

get better zeros for the weights and gives one more states easily separable from the others.

To each states correspond a compliance current. One of the main part of this study was

to assert the efficiency of those different programming concerning the accuracy of neural

network using RRAM to implemment synapses. As well as the effect of the conductance

distribution time dependency. The following part explain the transition between the initial

brut data and the accuracy result, which is the heart of the simulation strategy.
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Appendixe

.1 Gantt diagram

.2 Cost evaluation

The remuneration provided by the CEA was 1511€ per month (counting all taxes) thus

9066€ in 6 month . Added to that 767€ as a bonus. Due to the lockdown the plan of the

internship was modified and the only material I needed was the computer and the data

provided by the CEA-LETI. However, all the simulations have been fully calibrated thanks

to the RRAM arrays fabricated and tested at Leti in the framework of other projects.

The cost for one RRAM lots is about 150keuros.


