

Ecole nationale
supérieure de physique,
électronique, matériaux

Phelma
Bât. Grenoble INP - Minatec
3 Parvis Louis Néel - CS 50257
F-38016 Grenoble Cedex 01

Tél +33 (0)4 56 52 91 00
Fax +33 (0)4 56 52 91 03

http://phelma.grenoble-inp.fr

Youssef BENDOU

MNIS master
2020

Mercury Mission Systems International, Lancy, Geneva

FPGA Dynamic Function eXchange

from 02/03/2020 to 28/08/2020

Confidentiality : no

Under the supervision of:

- Christian RUPPERT, christian.ruppert@ch.mrcy.com
Present at the defense : yes

- Lorena ANGHEL, lorena.anghel@grenoble-inp.fr

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 1/70

Acknowledgement
I would like to express my special thanks and gratitude to some people who, by their experience and

guidance, made my internship a great learning experience in my journey to become an engineer:

• Mr Christian Ruppert, Manager at MMSI, my tutor, for his very valuable help and guidance through

this project.

• Mr Pierrick Hascoet, Software engineer at MMSI, for his help with the software part of this project.

• Mrs Winnie Wong, FPGA project manager at MMSI, for her valuable advice on how to approach my

work.

• Special thanks also to the rest of the FPGA team and the MMSI employees who could always make

time to answer my questions and show me the way when needed.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 2/70

Table of Contents
ACKNOWLEDGEMENT ... 1

TABLE OF CONTENTS ... 2

FIGURES .. 4

TABLES .. 5

GLOSSARY ... 6

ABSTRACT ... 7

1.1. ENGLISH ... 7
1.2. FRENCH .. 7
1.3. ITALIAN .. 7

INTRODUCTION... 8

2. MERCURY MISSION SYSTEMS INTERNATIONAL[MMSI] ... 9

2.1. FACTS AT A GLANCE .. 9
2.2. MARKETS .. 9

3. FPGA DYNAMIC FUNCTION EXCHANGE ... 10

3.1. FPGA REPROGRAMMING ... 10
3.2. DYNAMIC FUNCTION EXCHANGE (DFX) .. 11
3.3. APPLICATIONS .. 11

4. DFX EXAMPLE DESIGN ... 13

4.1. ENVIRONMENT .. 13
4.2. CLOCK DISTRIBUTION ... 14
4.3. RESET DISTRIBUTION ... 14
4.4. DFX CONTROLLER IP ... 15

4.4.1. Role ... 15
4.4.2. Interface signals .. 15
4.4.1. Detailed description .. 16

4.5. SEM CONTROLLER IP .. 18
4.5.1. Role ... 18
4.5.2. Interface signals .. 18
4.5.3. Detailed description .. 20

4.6. AXI BRIDGE FOR PCIE IP .. 22
4.6.1. Role ... 22
4.6.2. Interface signals .. 22
4.6.3. Detailed description .. 23

4.7. AXI INTERCONNECT IP ... 24
4.7.1. Role ... 24
4.7.2. Interface signals .. 24
4.7.3. Detailed description .. 25

4.8. BUS INTERFACE .. 26
4.8.1. Role ... 26
4.8.2. Interface signals .. 26
4.8.3. Detailed description .. 27

4.9. ARBITER ... 32
4.9.1. Role ... 32

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 3/70

4.9.2. Detailed description .. 32
4.10. RECONFIGURABLE MODULE COUNTER ... 33

4.10.1. Role ... 33
4.10.2. Interface signals .. 33
4.10.3. Detailed description .. 33

4.11. AXI TO APB BRIDGE IP .. 34
4.11.1. Role ... 34
4.11.2. Interface signals .. 34
4.11.3. Detailed description .. 34

4.12. DECOUPLER IP ... 35
4.12.1. Role ... 35
4.12.2. Interface signals .. 35

5. DFX FLOW ... 36

5.1. DIFFERENCES FROM A CLASSICAL FLOW ... 36
5.2. DFX FLOW[DFXT] ... 36

6. MIGRATION FROM ULTRASCALE TO ULTRASCALE+ ... 45

6.1. SEM CONTROLLER CHANGES .. 45
6.2. DFX CONTROLLER CHANGES ... 45
6.3. CONSTRAINTS FILE .. 45

CONCLUSION .. 46

ANNEX .. 47

6.1. ANNEX 1. C++ SOFTWARE TO LAUNCH A DFX DESIGN ... 47
6.2. ANNEX 2. TCL SCRIPT TO LAUNCH THE DFX FLOW .. 59

REFERENCES .. 69

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 4/70

Figures
FIGURE 1. XILINX KINTEX ULTRASCALE FPGA .. 8
FIGURE 2. DYNAMIC FUNCTION EXCHANGE PRINCIPLE [DFXUG] ... 11
FIGURE 3. NETWORKED MULTIPORT INTERFACE WITHOUT AND WITH PARTIAL RECONFIGURATION [DFXUG] .. 12
FIGURE 4. PACKET PROCESSOR [DFXUG] ... 12
FIGURE 5. DFX DESIGN BLOCK DIAGRAM ... 13
FIGURE 6. KCU105 BOARD [KCU105EK].. 14
FIGURE 7. CLOCK DISTRIBUTION DIAGRAM .. 14
FIGURE 8. RESET DISTRIBUTION DIAGRAM ... 15
FIGURE 9. DFX CONTROLLER SIGNALS[DFXCPG] ... 15
FIGURE 10. DFX CONTROLLER IP CONFIGURATION[DFXCPG] .. 17
FIGURE 11. SEM CONTROLLER INTERFACE SIGNALS DIAGRAM[SEMCPG] ... 18
FIGURE 12. CONFIGURATION OF THE SEM IP[SEMCPG] .. 21
FIGURE 13. AXI BRIDGE FOR PCIE SIGNALS[AXIPCIPG] .. 22
FIGURE 14. AXI BRIDGE FOR PCIE CONFIGURATION[AXIPCIPG]... 23
FIGURE 15. AXI INTERCONNECT SIGNALS[AXIPG] .. 24
FIGURE 16. SLAVE AND MASTER INTERFACES CONNECTIONS TO DIFFERENT FPGA BLOCKS .. 25
FIGURE 17. BUS INTERFACE SIGNALS .. 26
FIGURE 18. STATUS REGISTER BIT BY BIT ... 28
FIGURE 19. COMMAND CODE REGISTER BIT BY BIT .. 29
FIGURE 20. COMPLEMENTARY COMMAND CODE REGISTER ... 30
FIGURE 21. CORRECTION COUNT REGISTER .. 31
FIGURE 22. HEARTBEAT COUNTER REGISTER .. 31
FIGURE 23. FINITE STATE MACHINE OF THE ARBITER .. 32
FIGURE 24. AXI TO APB BRIDGE SIGNALS[AXIAPBPG] .. 34
FIGURE 25. DECOUPLER IP SIGNALS[DFXDPG] ... 35
FIGURE 26. PBLOCK POSITION IN THE IMPLEMENTED DEVICE ... 39

file:///C:/Users/Youss/OneDrive/Bureau/Report%20Phelma/Report_Phelma.docx%23_Toc49705422
file:///C:/Users/Youss/OneDrive/Bureau/Report%20Phelma/Report_Phelma.docx%23_Toc49705424
file:///C:/Users/Youss/OneDrive/Bureau/Report%20Phelma/Report_Phelma.docx%23_Toc49705426
file:///C:/Users/Youss/OneDrive/Bureau/Report%20Phelma/Report_Phelma.docx%23_Toc49705427
file:///C:/Users/Youss/OneDrive/Bureau/Report%20Phelma/Report_Phelma.docx%23_Toc49705429
file:///C:/Users/Youss/OneDrive/Bureau/Report%20Phelma/Report_Phelma.docx%23_Toc49705435

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 5/70

Tables
TABLE 1. DFX CONTROLLER INPUT/OUTPUT PORTS [DFXCPG] ... 16
TABLE 2. INTERFACE SIGNALS OF THE SEM CONTROLLER[SEMCPG] .. 19
TABLE 3. AXI BRIDGE FOR PCIE INPUT/OUTPUT PORTS DESCRIPTION[AXIPCIPG] ... 22
TABLE 4 – AXI INTERCONNECT INPUT/OUTPUT PORTS DESCRIPTION[AXIPG] ... 24
TABLE 5 –BUS INTERFACE INPUT/OUTPUT PORTS DESCRIPTION .. 26
TABLE 6. LIST OF THE REGISTERS .. 27
TABLE 7. LIST OF THE BITS FOR THE STATUS REGISTER .. 29
TABLE 8. LIST OF THE BITS FOR THE COMMAND CODE REGISTER ... 30
TABLE 9. LIST OF THE BITS OF THE COMPLEMENTARY COMMAND CODE REGISTER .. 30
TABLE 10. LIST OF THE BITS OF THE CORRECTION COUNTER REGISTER .. 31
TABLE 11. LIST OF THE BITS OF THE HEARTBEAT COUNTER REGISTER ... 31
TABLE 12 – COUNTER INPUT/OUTPUT PORTS... 33
TABLE 13 – AXI TO APB BRIDGE INPUT/OUTPUT PORTS[AXIAPBPG] ... 34
TABLE 14 – ARBITER INPUT/OUTPUT PORTS[DFXDPG] ... 35

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 6/70

Glossary
AXI Advanced eXtensible Interface
CPU Central Processing Unit
ECC Error Correcting Code
FPGA Field Programmable Gate Array
DFX Dynamic Function eXchange
ID Identifier
MMSI Mercury Mission System Intl
PCIe Peripheral Component Interconnect Express
PLL Phase Locked Loop
VHDL Very High Speed Integrated Circuit Hardware Description Language
PRC Partial Reconfiguration Controller
SEM Single Error Mitigation
APB Advanced Peripheral Bus
ICAP Internal Configuration Access Port
DRC Design Rule Checks
OOC Out of Context
SSI Stacked Silicon Interconnect
SLR Super Logic Region
MSB Most Significant Bit
LSB Least significant Bit
TCL Tool Command Language
GUI Graphic User Interface
RTL Register Transfer Level
C++ Programming language
ASIC Application Specific Integrated Circuit
IP Intellectual Property
VSM Virtual Socket Manager
HDL Hardware Description Language
RP Reconfigurable Partition
RM Reconfigurable Module
IEEE Institute of Electrical and Electronics Engineers

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 7/70

Abstract

1.1. English

FPGAs are electrical circuits that can be reprogrammed in-field to suit the user’s needs and

implement whatever digital functionality wanted. This programmability feature is however constrained by

the fact that the design implemented in it needs to be shutdown each time before. DFX is an upgrade of

this feature that enables the user to do it dynamically and on specific partitions of the FPGA. This opens

the door to many applications and enables reductions of size and cost to implement a design in an FPGA.

1.2. French

Les FPGA sont des circuits électriques qui peuvent être reprogrammés pour répondre aux besoins

de l’utilisateur et mettre en œuvre toutes les fonctionnalités numériques souhaitées. Cette fonction de

programmabilité est cependant limitée par le fait que le design qui y est implémentée doit être arrêté à

chaque fois auparavant. DFX est une mise à niveau de cette fonctionnalité qui permet à l'utilisateur de le

faire de manière dynamique et sur des partitions spécifiques du FPGA. Cela permets de nombreuses

applications et facilite la réduction de la taille et le coût de mise en œuvre d'une conception dans un

FPGA.

1.3. Italian

Gli FPGA sono circuiti elettrici che possono essere riprogrammati sul campo per soddisfare le

esigenze dell'utente e implementare qualsiasi funzionalità digitale desiderata. Questa caratteristica di

programmabilità è tuttavia limitata dal fatto che il progetto in esso implementato deve essere chiuso ogni

volta prima. DFX è un aggiornamento di questa funzione che consente all'utente di farlo dinamicamente e

su partizioni specifiche dell'FPGA. Questo apre la porta a molte applicazioni e consente riduzioni di

dimensioni e costi per implementare un progetto in un FPGA.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 8/70

Introduction
FPGA is an acronym for Field Programmable Gate Array and it is a device that contains a significant

number of transistors and other electrical components in a way that it can be programmed to implement

whatever digital functionality is needed by the user. This reprogramming feature makes these FPGA devices

very appealing but the constraint is that every time the circuit needs to be reprogrammed, the whole design

implemented in it has to be shut down and reset to implement the new functionality. The goal of this

internship project is to examine the possibility of doing this in a partial and dynamic way, which means

reprogramming only some partitions of the FPGA on the fly without disturbing the other partitions in their

jobs.

Figure 1. Xilinx Kintex UltraScale FPGA

Mercury Mission Systems International is a company involved in the market of defense and aerospace

electronics. I was placed as an intern in the FPGA team, which is a team whose mission is to deal with the

design aspect of projects. During this time, I had the chance to work on a complete design by myself from

writing RTL code to bitstream generation for the programming of the FPGA and verifying the feasibility of

this dynamic partial reconfiguration feature. I also did some software programming using the C++

programming language. Spending 6 months within this team has given me the chance to work under the

supervision of experienced designers and managers, it was a great opportunity to learn and to get a grasp

of a design engineer’s work environment.

This report contains a first section about the company MMSI and its industrial context, then three

sections about my work within the company to furthermore describe the assignments I had and the results

I achieved.

The goal of this internship project was to make a DFX example design with a single event error mitigation

feature from scratch, generate corresponding files that will serve to program the FPGA with the design

wanted. Make a small C++ software that will program a CPU to do some read and write commands that will

control the different blocks in the FPGA to perform a DFX operation. The aim of all of this is to prove DFX

technology’s feasibility to a client of Mercury Systems. I also had to write some documentation for the client

to explain my work.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 9/70

2. Mercury Mission Systems International[MMSI]
Mercury Mission Systems International (MMSI) is based in Geneva, Switzerland, and is specialized in the

design, manufacturing and maintenance follow-up of computers, more specifically complex safety avionics

and defense computers. It is part of Mercury Systems, an American leading commercial provider of secure

sensors and mission processing subsystems.

2.1. Facts at a Glance

• Mercury Systems was founded in 1981.

• Mercury’s solutions power a wide variety of critical defense and intelligence programs

• Mercury Systems is based in Andover, Massachusetts

• Mercury Mission Systems International is based in Geneva, Switzerland

• It counts approximately 1900 employees worldwide

• Fiscal year 2020 revenue: $796.6M

2.2. Markets

Defense and commercial electronics:

• Radars

• Electronic warfare and signal intelligence

• Command, Control, Communications, Computers, Intelligence, Surveillance,

Reconnaissance(C4ISR)

• Sonar

• Missiles and munitions

• Mission computing & avionics

https://www.mrcy.com/company-overview/facts-at-a-glance/

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 10/70

3. FPGA Dynamic Function eXchange
FPGAs provide the ability to program and reprogram a circuit in-field to suit the user’s needs. Dynamic

function exchange takes this feature one step further, by enabling the user to do it partially if needed, and

on the fly.

3.1. FPGA reprogramming

Field Programmable Gate Arrays contain a huge number of electrical components and routing resources

that enables it to have this reprogrammable feature. To reprogram it, the most important thing is a file,

called the bit file or bitstream, which contains a series of 0 and 1 binary elements that, once sent to the

internal configuration memory of the FPGA, will set the functionality of the different blocks inside.

To generate this bit file, there is a whole flow to follow:

• RTL writing

This is done using hardware description languages (HDL), which are coding languages that will serve to

describe the functionality of the circuit to be programmed into the FPGA. This internship project was coded

using VHDL, a hardware description language standardized by the IEEE.

• RTL elaboration

Tools exist to do RTL elaboration, which is basically reading and understanding the HDL coding and

translating it into a circuit with blocks but with no optimization, just a complete translation of the code into

a schematic for the circuit. For this internship project, Vivado Design Suite from Xilinx was used all along for

all of the flow.

• Synthesis

The synthesizer will then use advanced and complex algorithms to optimize the circuit elaborated and

look for shortcuts that will simplify the circuit but keep the same functionality. A netlist will be generated

which is a list of all the resources and connections needed to implement this design.

• Implementation

The implementation phase is where the tool will try to virtually place the different blocks of the design

in the FPGA and assign which resources of the FPGA and which routing paths will be used to implement the

design. There are also some optimization algorithms used in this step. After this, all of the placements and

routings needed to make the design work are well known and chosen.

• Bitstream generation

The bitstream generation phase is where the tool will translate the implementation results into the

famous file, the bit file, that contains information on which resources will be used and which connection

routes will be chosen to implement the design inside the FPGA. This bit file is then loaded in the FPGA to

start its job.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 11/70

3.2. Dynamic Function eXchange (DFX)

DFX is the ability to reprogram partitions of an FPGA dynamically. After a full bit file configures the

FPGA and gets it up and running, partial bit files need to be loaded to change the functionality of specific

blocks without compromising other blocks that are outside the scope of this dynamic programmability.

Figure 2. Dynamic function exchange principle [DFXUG]

The gray area represents static logic implemented in the FPGA, and the black area labeled Reconfig

Block “A” represents reconfigurable logic that can be replaced with different partial bit files depending on

the need. The black area is called a reconfigurable partition (RP), the partial bit files are called reconfigurable

modules (RM).

 It is a very practical feature since it enables the reduction of the size of an FPGA required to

implement a function, leading to consequent reductions in cost and power consumption of a circuit. It

enables some flexibility in the choice of algorithms and functions needed and it is also an efficient way to

deliver updates to deployed systems.

3.3. Applications

• Networked multiport interface

The ports at the client’s side of this interface can support many protocols for interfacing but it is

impossible to predict which protocol is needed so the designer is forced to have all the possible port

interfaces and multiplex the inputs and outputs to be sure that all the possible protocols are treated.

Using DFX technology, port interfaces can be made as reconfigurable modules and interchanged every

time depending on the type of protocol used. This is considerably better in terms of size since the designer

doesn’t need to implement all the different possible port interfaces in the FPGA, and the multiplexing

elements would no longer be needed.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug909-vivado-partial-reconfiguration.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 12/70

• Dynamically reconfigurable packet processor

It is possible for a packet processor to change its processing functionalities.

Packets that the packet processor receives have headers, these headers could contain partial bit files

that will be used to dynamically reconfigure a co-processor, thus changing the processing functionalities.

Figure 4. Packet processor [DFXUG]

Figure 3. Networked multiport interface without and with partial reconfiguration [DFXUG]

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug909-vivado-partial-reconfiguration.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 13/70

4. DFX example design
The example design that is targeted will include two controllers that are Xilinx IPs, a controller that

manages the dynamic reconfiguration and a controller that is almost constantly scanning the internal

configuration of the FPGA to look for errors. Both these controllers are the heart of this design and both of

them need access to the internal configuration of the FPGA to do their respective jobs. An internal

configuration access port (ICAP) is present in the design for this purpose.

A PCIe connection ensures communication between the controllers and an external CPU. This CPU will

be programmed to send read and write requests on some internal registers of the two controllers, through

this PCIe connection, to command them into doing the job needed by the user.

The reconfigurable partition is a counter that will be loaded by either a count up or a count down

function. The rest of the blocks are a mix of IPs and RTL I coded myself to help the main modules

communicate with each other. This includes an AXI interconnect, an AXI to APB bridge, an APB bus interface,

an arbiter and a DFX decoupler.

4.1. Environment

The work environment is an important part of this design since there are differences that need to

be taken into account depending on the type of FPGA used.

The software used for all of the flow is the Vivado Design Suite 2019.1 from Xilinx. It is a software

that includes all necessary tools to make an FPGA design from RTL writing to bitstream uploading.

The FPGA used is a Kintex UltraScale FPGA, a Xilinx product that comes with the board KCU105.

AXI bridge for

PCIe

AXI
Bus interface

SEM controller

AXI to

APB

DFX controller

Arbiter

ICAP

Counter (reconfigurable

partition)

Decoupler

FPGA configuration management island

Internal configuration

access

Figure 5. DFX design block diagram

SEM support wrapper

To CPU

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 14/70

Figure 6. KCU105 board [KCU105EK]

4.2. Clock distribution

Two external clocks are used for this design, the first one is a 100 MHz PCIe differential reference

clock that is exclusively generated on the KCU105 board by the PCIe edge connector for the PCIe connection

in the FPGA, and the second one is a 300 MHz system clock, also generated on the board, to clock the rest

of the design. The AXI_clk is a clock generated by the AXI bridge for PCIe IP exclusively for AXI interfaces

that are connected to it.

4.3. Reset distribution

An external reset generated on the board by the PCIe edge connector is used to reset the AXI bridge

for PCIe IP. An axi_aresetn is generated by the same IP to reset the AXI interfaces that are connected to it.

The rest of the blocks use a reset that is generated locally in the FPGA.

Utility

buffer
AXI bridge for PCIe AXI

PRC SEM

controller

Bus

interface

AXI to

APB
Differential PLL

PCIE_REFCLK_P

PCIE_REFCLK_N

SYS_CLK_300_P

SYS_CLK_300_N

PCIE_refclk
AXI_clk to

S00/ M00/

M03

S01/M01/

M02

Reconfigurable

module

DFX Decoupler

Arbiter

ICAP

Figure 7. Clock distribution diagram

clk

https://www.xilinx.com/products/boards-and-kits/kcu105.html

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 15/70

4.4. DFX controller IP

4.4.1. Role

The purpose of this Xilinx IP is to handle DFX operations in the most efficient way. It has a slave

interface that is used to access its internal configuration registers, a master interface that is responsible for

the fetching of the partial bitstreams from an external CPU memory through the PCIe connection, and an

ICAP interface which contains the signals that will help to send the fetched partial bitstreams into the

internal configuration of the FPGA to target the reconfigurable partition and change its functionality. It is

mainly made of virtual socket managers (VSM), each one of these is managing one reconfigurable partition

which can have many reconfigurable modules. In this design there is only one partition and two modules

so only one VSM is needed.

4.4.2. Interface signals

Figure 9. DFX controller signals[DFXCPG]

Figure 8. Reset distribution diagram

AXI bridge for PCIe AXI

PRC SEM

controller

Bus

interface

AXI to

APB
System

processor reset
CLK_out

PCIE_PERSTN

AXI

aresetn to

S00/ M00/

M03

S01/M01/

M02

Reconfigurable

module

Decoupler
Arbiter

areset_n

VSM_rst

https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 16/70

This table describes the interface signals of this IP. Signals that are present in the diagram but not in

the table are not used for this design and can be put to a constant value if it is an input or left open if it is

an output.

Table 1. DFX controller input/output ports [DFXCPG]

Port Direction Description

clk Input Master clock for the controller.

icap_clk Input Must be the same clock that is attached to the ICAP primitive

reset Input Reset signal for the controller

s_axi_reg Interface
AXI slave interface of the controller. This is the interface that permits access to
the internal configuration registers of this controller.

icap_reset
Input Synchronous reset signal used to reset the ICAP interface logic. Needs to be

synchronous to icap_clk.

vsm_VS_0_rm_shutdown_ack Input
Handshake signals with the reconfigurable logic.

vsm_VS_0_rm_shutdown_req Output

ICAP
Interface ICAP interface that contains all the signals that need to be connected to the

ICAP primitive.

icap_arbiter
Interface Arbiter interface that contains the signals needed to arbitrate the access of this

controller to the ICAP primitive.

m_axi_mem
Interface Master interface that is connected to the slave interface of the PCIe bridge,

passing through the AXI interconnect first.

vsm_VS_0_rm_decouple
Output Signal asserted by the controller when a decoupling operation is needed prior to

executing DFX.

vsm_VS_0_rm_reset Output Reset signal intended to reset the reconfigurable logic.

4.4.1. Detailed description

This IP is the core of this design, since it is the one responsible for all DFX operations and their

management. The better this controller is configured in a way that is adapted to the design, the better the

DFX operations work. Since the controller is charged with replacing partial bit files that are already

implemented in the FPGA, with new ones that it has to fetch, it must know the sizes of these partial bit files,

and the addresses at which it can fetch them from the CPU external memory.

It has a master interface that is responsible for the fetching operations of the partial bit files, this

master interface is connected to a slave interface in the PCIe bridge through the AXI interconnect. It also

has a slave interface that enables the access to different control registers and bitstream information

registers. These two interfaces are the most important ones for DFX operations.

The IP can be instantiated directly using the Vivado IP catalog and can be configured to function

properly:

https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 17/70

This configuration can change depending on the number of reconfigurable partitions and modules wanted.

In this design there is only one reconfigurable partition and two reconfigurable modules that can fill this

partition, so only one virtual socket manager is needed. If it wasn’t the case, one virtual socket manager

should be added for each reconfigurable partition using the buttons in the configuration interface. Then

reconfigurable modules can be added too.

Each virtual socket manager can be configured and each reconfigurable module too. For each

reconfigurable module, the controller needs to know the address and size of the corresponding partial

bitstream and clearing bitstream (no clearing bitstream for UltraScale+ devices). All these parameters can

nevertheless be modified after the design runs with the help of the slave AXI-Lite interface of this controller,

which permits access to the internal configuration registers of the controller, where the user can write new

values.

Once all necessary configurations are made, there exists a register that can be written with a certain

value to launch a dynamic reconfiguration. This value depends on the number of VSMs and reconfigurable

modules present in the design, but each reconfigurable module of each VSM is indexed to a precise value

that once written to this register, called the SWTRIGGER register, will launch an instruction for the controller

to go through the PCIe connection and fetch the corresponding partial bitstream from the external CPU

memory.

Figure 10. DFX controller IP configuration[DFXCPG]

https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 18/70

4.5. SEM controller IP

4.5.1. Role

The purpose of this IP is to scan for, detect, and correct errors in the FPGA configuration. To do this,

it needs two primitives which are the Frame ECC primitive, that serves for the calculation of some golden

error correction code values, and the ICAP primitive, which is the internal configuration access port. This

controller is commanded through a command interface, it also has a status interface to keep track of its

state at the moment of reading the signals, and some other interfaces that serve for the access to the ICAP

or the arbitration of this access if needed.

4.5.2. Interface signals

Figure 11. SEM controller interface signals diagram[SEMCPG]

This table describes the interface signals of this IP. Signals that are present in the diagram but not in

the table are not used for this design and can be put to a constant value if it is an input or left open if it is

an output.

https://www.xilinx.com/support/documentation/ip_documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 19/70

Table 2. Interface signals of the SEM controller[SEMCPG]

Interface Port Dir Description

Master clock interface clk Input Main clock for the SEM controller.

Status interface
status_heartbeat

Output The heartbeat signal is active and toggles every time a
frame is read when status_observation, status_detect_only,

or status_diagnostic_scan are active.

status_initialization Output This signal is active during controller initialization.

status_observation
Output This signal is active during controller observation of bit

upsets, it remains active after error detection while the
controller queries the hardware for information.

status_correction
Output This signal is active during controller correction of an error

or during a transition through this state if correction is
disabled.

status_classification
Output This signal is active during controller classification of an

error or during transition through this state if error
classification is disabled.

status_injection
Output This signal is active during error injection. When the error is

injected it returns inactive.

status_detect_only
Output This signal is active when the controller is in a detect only

state. When the scan is interrupted because of an error that
was found, it returns inactive

status_diagnostic_scan
Output This signal is active during controller diagnostic scan of the

entire configuration of the FPGA. Once it finishes scanning,
the signal returns inactive.

status_uncorrectable
Output The controller sets this signal prior to exiting the correction

state to reflect the nature of a found error.

status_essential
Output This signal is an error classification signal. It is set by the

controller prior to exiting the error classification state to
reflect whether the error occurred on an essential bit.

Command interface
command_busy

Output This signal indicates whether the SEM controller is ready to
process a command. command_strobe should only be

asserted when command_busy is low.

command_code

Input This signal is used to command the SEM controller. The
value on this signal is captured at the same time when

command_strobe is sampled active. For UltraScale devices,
the width of this signal is 40 bits.

command_strobe
Input This signal needs to be pulsed synchronously to the clock

when command_busy is low and a valid command_code
signal is ready to be presented.

ICAP arbitration interface
cap_gnt

Input This signal is to be asserted by an arbiter to tell the
controller that it can start sending and receiving data from

the ICAP.

cap_req
Output This signal is to be asserted by the controller to request for

ICAP access.

cap_rel
Input This signal needs to be asserted by an arbiter to tell the

controller that some other block is requesting access to the
ICAP.

ICAP interface icap_i Output Drives the data input of the ICAP.

icap_o Input Is driven by the data output of the ICAP.

https://www.xilinx.com/support/documentation/ip_documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 20/70

icap_clk Input Clock for the ICAP interface.

icap_csib Output Drives the CSIB input of the ICAP.

icap_rdwrb Output Drives the RDWRB input of the ICAP.

icap_prdone Input Is driven by the PRDONE output of the ICAP.

icap_prerror Input Is driven by the PRERROR output of the ICAP.

icap_avail Input Is driven by the AVAIL output of the ICAP.

Frame ECC interface Frame ECC interface Interface Interface that connects to the Frame ECC primitive.

4.5.3. Detailed description

This module implements the Xilinx single error mitigation controller. The controller scans the internal

configuration of the FPGA looking for errors to report and correct. To do this, it needs access to this internal

configuration and this is achieved through the ICAP. There is however an arbiter in the way to the FPGA’s

internal configuration, because the DFX controller needs access to it too. The SEM controller sends and

receives data using 32-bit wide signals in and out. It also has an arbitration interface, a status interface, and

a command interface.

The command interface has a command_code signal that is 40 bits wide, this signal is used to send

instructions to the controller depending on the 4 MSBs, the 36 remaining bits are only used when in error

injection mode and they serve to describe the error to be injected. However, this functionality is not used

in this design as it is outside of the scope of DFX.

• MSBs = 1110: Directed state change to the Idle State.

• MSBs = 1100: Directed state change to the Error Injection State.

• MSBs = 1010: Directed state change to the Observation State.

• MSBs = 1111: Directed state change to the Detect Only State.

• MSBs = 1101: Directed state change to the Diagnostic Scan State.

• MSBs = 1011: Directed state change to do a Software Reset.

The status interface contains a number of signals that can be read to check the status of the

controller at that moment and see if it is doing the job it is expected to do.

The SEM controller IP can be instantiated using the Vivado IP catalog and here is the configuration

used for this design:

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 21/70

Figure 12. Configuration of the SEM IP[SEMCPG]

The mode has been chosen here to be Mitigation Only because the purpose of this design is to

demonstrate Dynamic Function eXchange on an UltraScale device and this feature is totally independent

from it, but it can be modified according to the needs of the user using the Vivado interface dedicated for

IP configuration.

https://www.xilinx.com/support/documentation/ip_documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 22/70

4.6. AXI bridge for PCIe IP

4.6.1. Role

The purpose of this IP is to connect the FPGA to an external CPU using a PCI express connection. This

enables the CPU to arrange read and write transactions to be able to control all of the needed operations

to run dynamic reconfiguration and manage the error correction operations.

4.6.2. Interface signals

Figure 13. AXI bridge for PCIe signals[AXIPCIPG]

This table describes the interface signals of this IP. Signals that are present in the diagram but not in

the table are not used for this design and can be put to a constant value if it is an input or left open if it is

an output.

Table 3. AXI bridge for PCIe input/output ports description[AXIPCIPG]

Port Dir Description

M_AXI Interface Master AXI interface connected on the slave interface of the AXI interconnect.

S_AXI_CTL Interface Slave AXI interface meant for controlling and configuring the PCIe bridge.

S_AXI Interface Slave AXI interface connected to a master interface on the PRC.

axi_aclk Output Clock generated by the PCIe bridge meant to drive the clocks of the AXI interfaces.

axi_aresetn Output Active low reset generated by the PCIe bridge meant for the AXI interfaces.

axi_ctl_aresetn
Output Active low reset generated by the PCIe bridge meant for the AXI interface that is

connected to S_AXI_CTL.

sys_rst_n Output PCIe reset generated by the PCIe edge connector itself.

sys_clk_gt Output PCIe reference clock

refclk Output PCIe reference clock.

https://www.xilinx.com/support/documentation/ip_documentation/axi_pcie3/v3_0/pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_pcie3/v3_0/pg194-axi-bridge-pcie-gen3.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 23/70

4.6.3. Detailed description

The PCI express bridge enables a PC to communicate with the FPGA to enable operations with the

goal of controlling the different blocks in it. Its important interfaces are the S_AXI_CTL interface, which

serves to configure this block by accessing its internal configuration registers, the S_AXI interface which is

a slave interface to be driven by the master interface of the DFX controller for the purpose of fetching partial

bit files, and the M_AXI interface which is a master interface driving a slave interface of the AXI interconnect.

It can be directly instantiated using the Vivado IP catalog but it needs to be configured. Here is the

configuration that was used for this design:

Figure 14. AXI bridge for PCIe configuration[AXIPCIPG]

PCIe BARs are important to be correctly configured to ensure a proper address translation operation

for successful read/write operations.

https://www.xilinx.com/support/documentation/ip_documentation/axi_pcie3/v3_0/pg194-axi-bridge-pcie-gen3.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 24/70

4.7. AXI interconnect IP

4.7.1. Role

The purpose of this IP is to distribute read and write operations depending on the address signal, since

the transactions coming from the CPU can address different blocks, an interconnect bus is needed to

determine which block inside the FPGA was meant to receive the transaction, and this is the role of this IP.

4.7.2. Interface signals

Figure 15. AXI interconnect signals[AXIPG]

Table 4 – AXI interconnect input/output ports description[AXIPG]

Port Dir Description

ACLK Input Main clock of the AXI interconnect.

ARESETN Input Main reset of the AXI interconnect.

S00_ACLK Input Clock for the S00 slave AXI interface.

S00_ARESETN Input Reset for the S00 slave AXI interface.

S01_ACLK Input Clock for the S01 slave AXI interface.

S01_ARESETN Input Reset for the S01 slave AXI interface.

M00_ACLK Input Clock for the M00 master AXI interface.

M00_ARESETN Input Reset for the M00 master AXI interface.

M01_ACLK Input Clock for the M01 master AXI interface.

M01_ARESETN Input Reset for the M01 master AXI interface.

M02_ACLK Input Clock for the M02 master AXI interface.

M02_ARESETN Input Reset for the M02 master AXI interface.

https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 25/70

M03_ACLK Input Clock for the M03 master AXI interface.

M03_ARESETN Input Reset for the M03 master AXI interface.

S00_AXI Interface Slave interface connected to the master interface of the PCIe bridge.

S01_AXI Interface Slave interface connected to the master interface of the PRC

M00_AXI Interface Master interface connected to the S_AXI_CTL interface of the PCIe bridge.

M01_AXI Interface Master interface connected to a slave interface of the PRC.

M02_AXI Interface Master interface connected to the slave interface of the AXI to APB bridge.

M03_AXI Interface Master interface connected to the slave PCI control interface on the PCIe bridge

4.7.3. Detailed description

An AXI interconnect enables communication between masters and slaves following the AXI protocol.

In this design, it enables read and write operations from the PCIe bridge to three different slaves, and the

other way around from the DFX controller to the PCIe connection.

In this design there are 2 AXI slave interfaces and 4 AXI master interfaces connected as in the figure:

An address mapping is set in the Vivado interface to ensure each block has its proper address

window; this address window needs to be sufficiently large to include all of the registers of the different

blocks. It is an IP that can be directly instantiated from the Vivado IP catalog.

AXI AXI bridge for PCIe

AXI to APB bridge

DFX controller

S_00

S_01

M_02

M_03

M_01

M_00

M_00

S_00

S_00

Figure 16. Slave and master interfaces connections to different FPGA blocks

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 26/70

4.8. Bus interface

4.8.1. Role

The purpose of this module is to arrange read and write operations on the interfaces of the SEM

controller using APB protocol. This is a block that was made using VHDL RTL writing and an APB protocol

was chosen because it is much simpler than the AXI protocol, and an AXI to APB bridge is used for this

reason.

4.8.2. Interface signals

Figure 17. Bus interface signals

Table 5 –Bus interface input/output ports description

Port Dir Description

clk Input Clock of the register interface

reset_n Input synchronous reset

p_addr Input 16-bit address signal

p_wdata Input 32 bits write data signal

p_wstrb
Input Write strobe signal. In this design this signal should always be set to “1111” else

the register interface returns an error.

p_sel Input Selection signal driven to 1 by the APB bus when a transfer is required

p_rw Input Driven by the APB bus to a 1 for write transactions and to a 0 for read transactions

p_enable Input Driven by the APB bus to a 1 when the second cycle has started for an APB transfer

sem_status_heartbeat Input
(See signal description of the SEM controller section)

sem_status_initialization Input

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 27/70

sem_status_observation Input

sem_status_correction Input

sem_status_classification Input

sem_status_injection Input

sem_status_detect_only Input

sem_status_diagnostic_scan Input

sem_status_uncorrectable Input

sem_status_essential Input

sem_command_busy Input

sem_command_code Output

sem_command_strobe Output

p_rdata Output 32 bit read data signal

p_ready
Output Ready signal that indicates when the slave is finishing up a transaction. Can be

used to extend a transfer if needed by keeping this signal low.

p_error
Output Error signal that indicates that the slave has encountered an error during a

transfer and thus couldn’t complete it.

4.8.3. Detailed description

The SEM IP has an interface that provides information about its current state and the job it is

performing at that instant, called the status interface, along with another interface that makes it possible

for the user to send commands to the IP, called the command interface. Both these interfaces are connected

to the design presented here in a way that makes it possible for the user to retrieve or send data in an APB

protocol compatible way.

Table 6. List of the registers

Register Address Width Type Description

Status interface 0x0000 32 bits Read only 11 status signals in read only mode. To
gather information about the status of

the SEM controller and its current state.

Command code 0x0004 32 bits Write only Register to send the command signal to
the SEM controller. The command signal

is 40 bits wide.(44 in Ultrascale +)
This register contains the 32 most

significant bits of the command_code
signal

Complementary
command code

0x0008 32 bits Write only This register contains the 8 LSB of the
command_code signal

Status correction
counter

0x000C 32 bits Read only This register contains a count up of the
number of times the signal

status_correction has toggled since the
last reading.

Status heartbeat
counter

0x0010 32 bits Read only This register contains a count up of the
number of times the signal

status_heartbeat has risen since the last
reading.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 28/70

• Status register (SR)

The status register is used to read status signals of the SEM controller. These signals are an indicator

of the state of the controller and are important to the managing CPU.

31 10 9 8 7 6 5 4 3 2 1 0

Figure 18. Status register bit by bit

Status heartbeat signal

status initialization signal

status observation signal

status correction signal

status classification signal

status injection signal

status detect only signal

status diagnostic scan signal

status essential signal

status uncorrectable signal

Command busy signal

Reserved

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 29/70

Table 7. List of the bits for the status register

Register
Bits

Name Access type Reset value Description

31-11 Reserved N.A 0 Reserved bits.

10 status heartbeat Read 0 Signal active when the controller is in the
observation, detection or diagnostic scan

states.

9 status initialization Read 0 Read 1 when the controller is in the
initialization state. Which occurs one time

after the design begins to work.

8 status observation Read 0 Read 1 as long as the controller is
observing bit upsets to check for errors.

7 status correction Read 0 Read 1 when the controller is correcting
an error.

6 status classification Read 0 Read 1 when the controller is classifying
errors.

5 status injection Read 0 Read 1 during controller injection of an
error.

4 status detect only Read 0 Read 1 as long as the controller is in the
detect only state.

3 status diagnostic scan Read 0 Read 1 when the controller is executing a
diagnostic scan.

2 status essential Read 0 Before exiting the classification state, the
controller sets this signal to 1 if the error

detected occurred on an essential bit.

1 status uncorrectable Read 0 Before exiting the correction state, the
controller sets this signal to 1 if the error

detected is uncorrectable.

0 Command busy Read ? Read 1 when the controller is busy and
should not be presented with a

command_code signal.

• Command code register (CCR)

The command code register is used to send the command code signal to the controller. The command

code signal is 40 bits wide; this register takes care of the 32 first MSBs of the command code signal and the

CCCR takes care of the 8 remaining LSBs.

31 30 29 28 27 0

Figure 19. Command code register bit by bit

command_code [39 down to 8]

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 30/70

Table 8. List of the bits for the command code register

Register
Bits

Name Access type Reset
value

Description

31-28 4 MSBs of
command_code

Write 0000 The 4 MSBs of the 40-bit wide command_code signal.
These 4 bits are the only bits that can command the

controller to transition into the following states:

• 1110 for the Idle state, but only valid when
in Observation and Detect only states

• 1100 for the Error Injection state, but only
valid when in Idle state

• 1010 for the Observation state, but only
valid when Idle state

• 1111 for the Detect only state, but only
valid when in Idle state

• 1101 for Diagnostic scan state, but only
valid when in Idle state

• 1011 for a Software reset, but only valid
when in Idle state

27-0 Command_code[35-8] Write “0” The command_code signal is 40 bit wide. The first 4
MSBs are what decide of the controller state. The rest of

the 40 bits are useful in case when the controller is in
error injection state.

• Complementary command code register (CCCR)

The CCCR register is a complementary register used to complement the CCR on the 8 LSBs of the

command_code signal. It is only relevant when the SEM controller is in error injection mode.

31 30 29 28 27 26 25 24 23 0

Figure 20. Complementary command code register

Table 9. List of the bits of the complementary command code register

Bits Name Access type Reset
value

Description

31-24 The 8 LSBs of the
command_code signal

Write 0 Complementary to the other bits from the CCR when in
error injection state.

23-0 Reserved N.A 0 Reserved.

command_code [7 down to 0] Reserved

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 31/70

• Correction counter register (CoCR)

The correction counter register is a register that stores the calculated value of the number of times the

signal status_correction has risen. This register is reinitialized to 0 after each reading operation if the signal

status_correction doesn’t experience a rising transition during the read process. Else the counter

reinitializes to 1.

31 0

Figure 21. Correction count register

Table 10. List of the bits of the correction counter register

Bits Name Access type Reset value Description

31-0 32-bit signal
indicating the

number of times
status_correction

has risen.

Read 0

Integer number indicating the number of times
status_correction has risen from 0 to 1. Every
time this value is incremented by one means
that the SEM controller has gone through the

correction state.

• Heartbeat counter register (HCR)

The heartbeat counter register is a register that stores the calculated value of the number of times the

signal status_heartbeat has risen. This register is reinitialized to 0 after each reading operation if the signal

status_heartbeat doesn’t experience a rising transition during the read process. Else the counter

reinitializes to 1.

31 0

Figure 22. Heartbeat counter register

Table 11. List of the bits of the heartbeat counter register

Bits Name Access type Reset value Description

31-0 32 bit signal
indicating the

number of times
status_heartbeat

has risen.

Read 0

Integer number indicating the number of times
status_heartbeat has risen from 0 to 1. This
signals keeps rising and falling as long as the

controller is working.

Number of rising edges of the signal status_correction

Number of rising edges of the signal status_heartbeat

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 32/70

4.9. Arbiter

4.9.1. Role

The presence of the two controllers that need access to the ICAP to do their job implies the necessity

of an arbiter to orchestrate control over the port. Both these controllers already dispose of grant, request

and release signals whose purpose is to help the arbiter in the management of access. This arbiter is a non-

trivial multiplexing and demultiplexing element.

4.9.2. Detailed description

The finite state machine of the arbiter looks like this:

Figure 23. Finite state machine of the arbiter

By default, pushing a reset gives the access to the SEM controller. This controller is prioritized over

the DFX controller because of the simple fact that it needs constant access to the internal configuration of

the FPGA to look for errors, meanwhile the DFX controller only needs access when a dynamic

reconfiguration needs to be performed.

When the arbiter is in one of the two states giving access to one module, the other module can issue

a request to acquire the access to the ICAP. The arbiter will then examine the state of the module that

already has access, if it finishes its work, the arbiter will switch to the other state giving access to the second

module.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 33/70

4.10. Reconfigurable module counter

4.10.1. Role

This module is the one that will be loaded either with a count up function or a count down function

depending on the trigger sent to the DFX controller. The output of this counter is connected to a series of

user LEDs in the KCU105 board to have a better observation of the modules when interchanged.

4.10.2. Interface signals

Table 12 – Counter input/output ports

Port Dir Description

clk Input Clock signal.

reset_n Input Synchronous reset signal.

LEDs Input Output signal of the counter that is going to be mapped to the LEDs.

vsm_VS_0_rm_shutdown_req
_0

Output Handshake request signal coming from the PRC.

vsm_VS_0_rm_shutdown_ack
_0

Output
Handshake acknowledge signal delivered to the PRC.

4.10.3. Detailed description

This module is a counter that performs either a count-up or a count-down function depending on the

reconfigurable module that is loaded in the reconfigurable partition by the PRC. It’s a 32-bit counter but

only the 8 MSBs are mapped to user LEDs on the KCU105 board. This is because the clock frequency used

to run this counter is around 100 MHz and it is impossible to detect changes on a LED that switches this fast

with a human eye. Connecting only the 8 MSBs to the LEDs makes it much easier to see what is happening

because the MSBs flip in a much slower way.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 34/70

4.11. AXI to APB bridge IP

4.11.1. Role

The purpose of this IP is to convert the AXI protocol to an APB protocol that will then be used for

interfacing with the APB bus interface of the SEM controller.

4.11.2. Interface signals

Figure 24. AXI to APB bridge signals[AXIAPBPG]

Table 13 – AXI to APB bridge input/output ports[AXIAPBPG]

Port Dir Description

s_axi_aclk Input Clock for the AXI slave interface.

s_axi_aresetn Input Reset for the AXI slave interface.

AXI4_LITE Interface AXI slave interface driven by the AXI interconnect master interface.

APB_M Interface APB master interface driving the bus interface.

4.11.3. Detailed description

Since the PCIe bridge here is intended for use with an AXI interconnect and since the bus interface

designed for the SEM controller uses an APB protocol, an AXI to APB bridge is needed to convert

communication operations between these two protocols. It is an IP that can be instantiated directly using

the Vivado IP catalog.

https://www.xilinx.com/support/documentation/ip_documentation/axi_apb_bridge/v3_0/pg073-axi-apb-bridge.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_apb_bridge/v3_0/pg073-axi-apb-bridge.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 35/70

4.12. Decoupler IP

4.12.1. Role

The purpose of this module is to isolate reconfigurable partitions from static logic in order to protect

the static logic from the toggling that occurs in the interface signals between reconfigurable logic and static

logic when a DFX operation is on the run.

4.12.2. Interface signals

Figure 25. Decoupler IP signals[DFXDPG]

Table 14 – Arbiter input/output ports[DFXDPG]

Port Dir Description

s_intf_0_RST Input
Reset signal intended for the reconfigurable logic coming from the PRC.

rp_intf_0_RST Output

s_clock_CLK Input
Clock intended to clock the reconfigurable logic.

rp_clock_CLK Output

s_LEDs_DATA Output
Output of the counter intended to be mapped to the 8 user LEDs on the board.

rp_LEDs_DATA Input

decouple Input Input signal driven by the PRC to execute the decoupling function.

decouple_status Output Output signal that indicates the decoupling status.

https://www.xilinx.com/support/documentation/ip_documentation/dfx_decoupler/v1_0/pg375-dfx-decoupler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dfx_decoupler/v1_0/pg375-dfx-decoupler.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 36/70

5. DFX flow
The deliveries expected by the client include an example DFX design but also a complete description of

the flow necessary to generate the bit files and a description of how to load these bit files dynamically. The

client also expects some instructions on how to migrate this design from an UltraScale FPGA to an

UltraScale+ FPGA. In this context, I made a Vivado project directory called DFX/, where all the IPs and coded

RTL logic presented earlier is present and linked together to make the full design. Another project directory,

called DFX_KCU105_count/ was also made, and this one contains folders arranged in a tree structure that

I imagined myself accompanied with a script that starts with a synthesized checkpoint of the static logic

from the DFX Vivado project, and VHDL files or the two reconfigurable modules to implement all of the DFX

flow and generate the final bitstreams needed.

5.1. Differences from a classical flow

A classical flow and a DFX flow are somewhat the same but still have some differences one from

another. The classical flow consists of elaboration, synthesis, implementation then bit file generation. So

does the DFX flow but with slight differences.

The first difference is, for a DFX project we need not only one full bit file to configure the whole

FPGA but one principal bit file and some partial bit files that will serve for the partial dynamic

reconfiguration of the reconfigurable partitions, so what is required of this flow at the end is several bit files

(in our case three).

The second difference is that since the reconfigurable partitions will be loaded with different

reconfigurable modules, this flow will save the static place & route results with an empty black box for the

reconfigurable partitions. Then synthesized checkpoints of reconfigurable modules will be added to the

project each time and new place & route operations will be made for each configuration (static logic +

reconfigurable modules one by one).

The third main difference is a directive for the implementation tool. This tool needs to be told that

no optimization is permitted between the boundaries of reconfigurable partitions, simply because these

partitions need to always have exactly the same interfaces and signals that connect them to their neighbors.

This is done with the use of Pblocks.

5.2. DFX flow[DFXT]

• Arranging the design

Before starting the DFX flow, the design can be adapted to the user’s needs. To do this, there is a Vivado

project folder called DFX that can be opened with the help of the Vivado software. This project contains all

the sources and IPs necessary to implement the static logic and it is the project to be modified for

adaptability with the user’s needs. A synthesis is then necessary and a checkpoint saving when the synthesis

is done. To write a checkpoint either graphically navigate to File > Checkpoint > Write or use the command

write_checkpoint.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug947-vivado-partial-reconfiguration-tutorial.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 37/70

Once this is done, this checkpoint file should be placed in the

DFX_KCU105_count/synthesized_checkpoints/top/project directory.

The reconfigurable modules are synthesized separately to do an out of context synthesis. The

corresponding VHDL files for these modules are placed in the directory DFX_KCU105_count/sources/ .

• Synthesizing the design

Since the need at the end is to have three bit files: one bit file for the static logic, and two partial bit files

for the reconfigurable modules that will fill the empty slot in the reconfigurable partition, the first thing that

needs to be done is a synthesis of three designs. One synthesis of all the static logic instantiating an empty

module containing just the input output ports of the counter, so that the tool will acknowledge the

existence of a counter module without knowing its internal functionality, this will issue a critical warning in

the Vivado messages slot but it can be ignored. Then an out-of-context synthesis of each reconfigurable

module separately. The out of context synthesis type is necessary here because otherwise Vivado will

consider the counter modules as finalized designs and will insert some elements such as clock buffers that

will make the place and route of the full design hard since the Pblock that will be created will then need to

include clock buffers even if it is not necessary, this may even cause the place and route operation to not

converge.

To do all of this first open Vivado in TCL or GUI mode, then navigate into the DFX_KCU105_count project

directory.

Then set some variables that will help issuing commands needed.

 set part “xcku040-ffva1156-2-e”

 set board “kcu105”

Create an in_memory project using the command:

 create_project -in_memory -part $part

Then add the reconfigurable module file and set it as the top of the design suing the commands:

 add_files ./sources/count_up.vhd

 set_property top count [current_fileset]

The next step is to do an out of context synthesis, write a checkpoint of the synthesized design and

close the project:

 synth_design -mode out_of_context

 write_checkpoint ./synthesized_checkpoints/RM_count_up/checkpoint_count_up.dcp

 close_project

The same process needs to be repeated for the second reconfigurable module:

 create_project -in_memory -part $part

add_files ./sources/count_down.vhd

set_property top count [current_fileset]

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 38/70

synth_design -mode out_of_context

write_checkpoint ./synthesized_checkpoints/RM_count_down/checkpoint_count_down.dcp

close_project

After all of this is executed correctly, you can find the three synthesized checkpoints by navigating to

the directory DFX_KCU105_count and going into the directory ./synthesized_checkpoints/.

• Assembling and implementing the design

Now that the synthesized checkpoints are done, the design can be assembled.

Create an in-memory design by issuing the following command

 create_project -in_memory -part $part

Load the static design :

 add_files ./synthesized_checkpoints/top/checkpoint_top.dcp

This command calls for the synthesized design checkpoint of the static logic that was just created in

the previous section.

Load the top-level design constraints by issuing these commands :

 add_files ./constraints/KCU_cnstrn.xdc

 set_property USED_IN {implementation} [get_files ./constraints/KCU_cnstrn.xdc]

Load the first synthesized checkpoint for the count function (the count up function is chosen here

but the count down is viable too) :

 add_files ./synthesized_checkpoints/RM_count_up/checkpoint_count_up.dcp

set_property SCOPED_TO_CELLS {inst_count} [get_files ./synthesized_checkpoints/

RM_count_up/checkpoint_count_up.dcp]

Then link the entire design together using the command:

 link_design -mode default -reconfig_partitions {inst_count} -part $part -top fpga_top

Now a full configuration is loaded, with static and reconfigurable logic. All that is left to do for this

section is to save a checkpoint for this design by issuing the following command:

 write_checkpoint ./synthesized_checkpoints/linked_design/top_link_up.dcp

• Building the design floorplan

This can either be done graphically, using a cursor and the Vivado interface, or by issuing commands.

To do it graphically:

Select the inst_count instance in the Netlist pane and right click on it, select Floorplanning > Draw

Pblock, then draw a box on the X0Y4 clock region.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 39/70

Figure 26. Pblock position in the implemented device

Run partial reconfiguration Design Rule Checks by selecting Reports > Report DRC. Make sure Partial

Reconfiguration is checked and remove all others to focus this report exclusively on PR DRCs.

No DRC errors should be reported at this point. If so they must be fixed before moving forward.

Or else issue these commands instead:

create_pblock pblock_inst_count

resize_pblock pblock_inst_count -add {SLICE_X3Y257:SLICE_X19Y285 DSP48E2_X0Y104:DSP48E2_X2Y113

RAMB18_X0Y104:RAMB18_X1Y113 RAMB36_X0Y52:RAMB36_X1Y56}

add_cells_to_pblock pblock_inst_count [get_cells [list inst_count]] -clear_locs

create_drc_ruledeck ruledeck_1

 add_drc_checks -ruledeck ruledeck_1 [get_drc_checks {HDPRA-62 HDPRA-60 HDPRA-58 HDPRA-57 HDPRA-56 HDPRA-

55 HDPRA-54 HDPRA-53 HDPRA-52 HDPRA-51 HDPRA-21 HDPR-43 HDPR-20 HDPR-88 HDPR-41 HDPR-30 HDPR-96 HDPR-95

HDPR-94 HDPR-93 HDPR-92 HDPR-91 HDPR-90 HDPR-87 HDPR-86 HDPR-85 HDPR-84 HDPR-83 HDPR-74 HDPR-73 HDPR-72

HDPR-71 HDPR-70 HDPR-69 HDPR-68 HDPR-67 HDPR-66 HDPR-65 HDPR-64 HDPR-63 HDPR-62 HDPR-61 HDPR-60 HDPR-59

HDPR-58 HDPR-57 HDPR-54 HDPR-50 HDPR-49 HDPR-48 HDPR-47 HDPR-46 HDPR-44 HDPR-42 HDPR-38 HDPR-37 HDPR-35

HDPR-34 HDPR-33 HDPR-32 HDPR-29 HDPR-28 HDPR-25 HDPR-23 HDPR-22 HDPR-18 HDPR-17 HDPR-16 HDPR-14 HDPR-13

HDPR-12 HDPR-11 HDPR-6 HDPR-5 HDPR-4 HDPR-3 HDPR-2 HDPR-1}]

report_drc -name drc_1 -ruledecks {ruledeck_1}

delete_drc_ruledeck ruledeck_1

If the add_drc_checks commands seems too long, it can either be copied and pasted or replaced by

manual commands using the Vivado interface as shown earlier.

Save these Pblocks and associated properties:

 write_xdc ./constraints/top_all.xdc

• Implementing the first configuration

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 40/70

Here, the goal is to place and route the static portion of the design without omitting the presence of the

reconfigurable partition.

First, issue the following commands:

 opt_design

 place_design

 route_design

Save the full design checkpoint

 write_checkpoint -force implemented_checkpoints/config_count_up/top_routed.dcp

 report_utilization -file reports/config_count_up/top_utilization.rpt

report_timing_summary -file reports/config_count_up/top_timing_summary.rpt

Save a checkpoint for the reconfigurable module :

write_checkpoint -force -cell inst_count implemented_checkpoints/config_count_up/ count_up_routed.dcp

At this point of the flow, a fully implemented DFX design is generated from which full and partial

bitstreams can be created. The static portion of this configuration is going to be the same for all

configurations, so to isolate it, issue the following commands to remove the reconfigurable logic:

 update_design -cell inst_count -black_box

Now inst_count should appear in the Netlist pane as empty.

Issue the following command to lock down all placement and routing :

 lock_design -level routing

This locks the entire design consisting of the static logic and a black box instead of the reconfigurable

logic.

Issue the following command to save a checkpoint of the static implemented logic:

 write_checkpoint -force checkpoints/static_route_design.dcp

Now close this design before moving on to the next step:

 close_project

• Implementing the second configuration

First, create a new in memory design :

 create_project -in_memory -part $part

Then load the static design checkpoint that was just created in the last steps of the previous section :

 add_files ./checkpoints/static_route_design.dcp

Load the second reconfigurable module that is in this case the count down function module :

 add_files ./synthesized_checkpoints/RM_count_down/checkpoint_count_down.dcp

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 41/70

set_property SCOPED_TO_CELLS {inst_count} [get_files ./synthesized_checkpoints/

RM_count_down/checkpoint_count_down.dcp]

Link the entire design together using the command :

 link_design -mode default -reconfig_partitions {inst_count} -part $part -top fpga_top

Optimize, place, and route the design :

 opt_design

place_design

 route_design

Save the resulting design and report files :

 write_checkpoint -force implemented_checkpoints/config_count_down/top_routed.dcp

 report_utilization -file reports/config_count_down/top_utilization.rpt

report_timing_summary -file reports/config_count_down/top_timing_summary.rpt

Save a checkpoint for the reconfigurable module :

write_checkpoint -force -cell inst_count implemented_checkpoints/config_count_down/ count_down_routed.dcp

Now the only thing left to do before generating the bitstreams is to run a pr_verify to check the

place & route status of the two implemented configurations and verify if they are exactly the same, which

they should be.

pr_verify implemented_checkpoints/config_count_up/top_routed.dcp

implemented_checkpoints/config_count_down/top_routed.dcp

Close the project.

 close_project

• Generating bitstreams

Now that the configurations have been verified, bitstreams can be generated.

First, open the first configuration checkpoint into memory:

 open_checkpoint implemented_checkpoints/config_count_up/top_routed.dcp

then generate full and partial bitstreams for this configuration using this command :

 write_bitstream -force -bin_file bitstreams/config_count_up/config_up

As a result, some bitstreams are generated (no clearing bitstreams if it’s an Ultrascale+ device) :

• config_up.bit

This is a power-up full configuration bitstream that will program all of the FPGA with a count up function.

• config_up_pblock_inst_count_partial.bin

This is the partial bitstream for the count up module.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 42/70

• config_up_pblock_inst_count_partial_clear.bin

This is the clearing bitstream for the count up module.

In Ultrascale devices, the reconfigurable partition needs to be loaded with a clearing bitstream before

charging the actual bitstream that is going to implement the right functionality.

The other files generated can be omitted as they are not relevant for what is coming next. The partial

bit files needed here are the ones with the .bin extension because there is a step coming that will format

these partial bit files to bin_for_icap files. This is a special format that is needed to perform DFX operations

correctly.

To do this, issue the following commands :

source [get_property REPOSITORY [get_ipdefs *prc:1.3]]/xilinx/prc_v1_3/tcl/api.tcl

prc_v1_3::format_bin_for_icap -i ./bitstreams/config_count_up/config_up_pblock_inst_count_partial.bin

prc_v1_3::format_bin_for_icap -I ./bitstreams/config_count_up/config_up_pblock_inst_count_partial_clear.bin

NB: The syntax of these commands can change depending on the version of Vivado used. For versions newer

than 2019.1. Details are in the document [DFXPG] p.66.

Two files are generated after these commands :

• config_up_pblock_inst_count_partial.bin.bin_for_icap

• config_up_pblock_inst_count_partial_clear.bin.bin_for_icap

These are the two formatted partial bit files that will be fetched by the PRC to be sent to the icap and

reprogram the FPGA dynamically. Close the project to continue.

close_project

Now the same thing needs to be done for the second configuration:

open_checkpoint implemented_checkpoints/config_count_down/top_routed.dcp

 write_bitstream -force -bin_file bitstreams/config_count_down/config_down

Three bitstreams are generated again

• config_down.bit

This is a power-up full configuration bitstream that will program all of the FPGA with a count down

function.

• config_down_pblock_inst_count_partial.bin

This is the partial bitstream for the count down module.

• config_down_pblock_inst_count_partial_clear.bin

This is the clearing bitstream for the count down module.

Just like earlier:

source [get_property REPOSITORY [get_ipdefs *prc:1.3]]/xilinx/prc_v1_3/tcl/api.tcl

https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 43/70

prc_v1_3::format_bin_for_icap -i ./bitstreams/config_count_down/config_down_pblock_inst_count_partial.bin

prc_v1_3::format_bin_for_icap -I ./bitstreams/config_count_down/config_down_pblock_inst_count_partial_clear.bin

Two files are generated after these commands :

• config_down_pblock_inst_count_partial.bin.bin_for_icap

• config_down_pblock_inst_count_partial_clear.bin.bin_for_icap

Now let’s generate a full bitstream with grey boxes and blanking bitstreams for the reconfigurable

modules. The blanking bitstreams can be used to erase an existing configuration to save power and reduce

the power consumption. Blanking bitstreams and clearing bitstreams are not the same thing.

 open_checkpoint checkpoints/static_route_design.dcp

 update_design -cell inst_count -buffer_ports

 place_design

 route_design

 write_checkpoint -force implemented_checkpoints/config_grey_box/config_grey_box.dcp

 write_bitstream -force -bin_file bitstreams/config_grey_box/config_grey_box

source [get_property REPOSITORY [get_ipdefs *prc:1.3]]/xilinx/prc_v1_3/tcl/api.tcl

prc_v1_3::format_bin_for_icap -i ./bitstreams/config_grey_box/config_grey_box_pblock_inst_count_partial.bin

prc_v1_3::format_bin_for_icap -i ./bitstreams/config_grey_box/config_grey_box_pblock_inst_count_partial_clear.bin

 close_project

• Partially reconfiguring the FPGA

Now that the necessary bitstreams, full and partial, have been generated, Everything is ready to perform

a DFX operation.

First, load the FPGA with a full configuration bit file, for example the count_up bit file, so that the design

is up and running. The SEM controller automatically performs a system reset and goes into observation

mode. Then load the partial bitstreams and clearing bitstreams into DMA buffers in the CPU memory using

the load_module.sh script.

Now, three main steps need to be done:

• Put the SEM controller in the idle state

• Configure the PRC registers and send a trigger

• Command the SEM controller to do a software reset

Since the reconfigurable partition will be loaded with a new reconfigurable module, the SEM needs to

be deactivated so that it doesn’t detect the change of modules as an error.

Then the PRC registers need to be configured correctly before launching a trigger, this mainly concerns

the registers holding the sized and addresses of the necessary partial bitstreams to load the new

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 44/70

reconfigurable module, this registers can be accessed in read and write mode as long as the virtual socket

manager is in the shutdown state. Then the virtual socket manager needs to be commanded out of the

shutdown state by writing a 1 to the control register. The next step is to send the trigger corresponding to

the reconfigurable module that is wanted to be loaded. After a few milliseconds, the new module is loaded.

At last, the SEM controller is commanded to perform a software reset. Since the module has changed,

a software reset is needed to recalculate the ECC values and perform error mitigation correctly.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 45/70

6. Migration from UltraScale to UltraScale+
The previous design was demonstrated to successfully work on a Kintex UltraScale FPGA, but it can also

work on an UltraScale+ FPGA, with some changes however. These changes include:

• Signals and interfaces for the SEM controller

• Bitstreams needed to do a DFX operation

• Constraints file

6.1. SEM controller changes

One small change is regarding the command_code signal that commands the behavior of the SEM

controller, and the fecc_far signal that connects to the Frame ECC primitive. In an UltraScale device, the

command_code signal is 40 bits wide, but in an UltraScale+ device it is 44 bits wide. The 4 added bits are

related to error injection. A description of how error injection works is provided in the Xilinx Product Guide

for the SEM controller [SEMPG]. For the fecc_far signal, the width is 26 but 27 for UltraScale+ devices.

This means that migrating from UltraScale to UltraScale+ implicates some changes at the RTL level.

For the bus interface, the significant bits in the complementary code register would have to be changed and

extended by four. The command_code signal that links the bus interface with the SEM controller too as well

as the fecc_far signal.

In SSI UltraScale+ devices, there is a status_heartbeat signal for each SLR region. There is one SEM

controller and one ICAP in total but one Frame ECC for each SLR. Which means that the connectivity would

have to be adapted to this specific case, at the RTL level.

6.2. DFX controller changes

The DFX controller also needs to be adapted when migrating from an UltraScale device to an

UltraScale+ device. The difference is that in UltraScale devices, before charging a partial bitstream to load

a module, the controller needs to load a clearing bitstream corresponding to that partial bitstream. This

clearing bitstream sets the partition for a proper loading of the new reconfigurable module, it is also placed

in the CPU memory and is fetched by the controller, meaning that it also has an address at which it is put in

the CPU memory and a size that need to be fed to the controller in order to fetch this clearing bitstream

properly. Meanwhile this isn’t the case for UltraScale+ devices, for which clearing bitstreams don’t exist.

6.3. Constraints file

The constraints file used for this design is specific to the KCU105 board for a Kintex UltraScale FPGA.

Upgrading to an UltraScale+ would require a new constraints file because of the fact that IO names would

change and the mapping of these pins with the FPGA signals would have to be modified.

https://www.xilinx.com/support/documentation/ip_documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 46/70

Conclusion
To conclude, DFX technology’s feasibility was demonstrated on a KCU105 board, using different IPs

and coded RTL logic that were subject to all of the DFX flow from RTL elaboration and synthesis to bitstream

generation. This last step generates a full bitstream to first run the FPGA and then partial bitstreams that

will need to be placed in the CPU external memory that it totally outside the KCU105 board, these partial

bitstreams will then be fetched by the DFX controller through the PCIe connection when it is commanded

to do so by writing triggers to the internal configuration registers of this controller. When fetched, these

bitstreams are delivered to the reconfigurable partition through the ICAP.

The result in this design is seeing the user LEDs on the board change from performing a count up

shifting to a count down shifting. For the count down function, the MSBs and LSBs of the LEDs inputs and

the outputs of the counter were inverted, just to switch the position of the fast-switching bits so that the

loading of a new reconfigurable module is more visible to the human eye.

This internship was an excellent opportunity to grasp the importance and greatness behind the roles

of a digital design engineer. It has permitted me to understand the challenges that a design engineer can

face during his work on a project and enabled me to learn some new good design habits.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 47/70

Annex

6.1. Annex 1. C++ software to launch a DFX design

#include "pci_bar.h"

#include <unistd.h>

#include <string.h>

#define PCI_BASE_ADDR 0x00000000

#define BRIDGE_INFO (PCI_BASE_ADDR + 0x130)

#define BRIDGE_STATUS (PCI_BASE_ADDR + 0x134)

#define BUS_LOCATION_REG (PCI_BASE_ADDR + 0x140)

#define PHY_STATUS_REG (PCI_BASE_ADDR + 0x144)

#define PCICTL_BASE_ADDR 0x00000000 //Offset address for the PCI control interface

#define SEM_BASE_ADDR 0x00001000 //Offset address for the SEM bus interface

#define PRC_BASE_ADDR 0x00002000 //Offset address for the PRC configuration interface

#define SPCI_BASE_ADDR 0x04000000 //Offset address for the slave interface of the PCI

// Defining the addresses of the PRC registers

#define PRC_CTL_STAT_REG (PRC_BASE_ADDR + 0x000) // Address for the control and status

register

#define SWTRIGGER_REG (PRC_BASE_ADDR + 0x004) // Address for the SW_TRIGGER register

#define TRIGGER0_REG (PRC_BASE_ADDR + 0x040) // Address for the TRIGGER0 register

#define TRIGGER1_REG (PRC_BASE_ADDR + 0x044) // Address for the TRIGGER1 register

#define RM_BS_INDEX0_REG (PRC_BASE_ADDR + 0x080) // Address for the bitstream index

register for RM 0

#define RM_CTL0_REG (PRC_BASE_ADDR + 0X084) // Address for the control

information register of RM 0

#define RM_BS_INDEX1_REG (PRC_BASE_ADDR + 0x088) // Address for the bitstream index

register for RM 1

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 48/70

#define RM_CTL1_REG (PRC_BASE_ADDR + 0X08C) // Address for the control

information register of RM 1

#define BS_ID0_REG (PRC_BASE_ADDR + 0x0C0) // Address for the partial bitstream identifier

register for RM 0

#define ADDRESS_PBS_UP_REG (PRC_BASE_ADDR + 0x0C4) // Address for the partial bitstream

address register for RM 0

#define SIZE_PBS_UP_REG (PRC_BASE_ADDR + 0x0C8) // Address for the partial bitstream size

register for RM 0

#define BS_ID1_REG (PRC_BASE_ADDR + 0x0D0) // Address for the clearing bitstream identifier

register for RM 0

#define ADDRESS_CBS_UP_REG (PRC_BASE_ADDR + 0x0D4) // Address for the clearing bistream

address register for RM 0

#define SIZE_CBS_UP_REG (PRC_BASE_ADDR + 0x0D8) // Address for the clearing bitstream size

register for RM 0

#define BS_ID2_REG (PRC_BASE_ADDR + 0x0E0) // Address for the partial bitstream identifier

register for RM 1

#define ADDRESS_PBS_DOWN_REG (PRC_BASE_ADDR + 0x0E4) // Address for the partial bitstream

address register for RM 1

#define SIZE_PBS_DOWN_REG (PRC_BASE_ADDR + 0x0E8) // Address for the partial bitstream

size register for RM 1

#define BS_ID3_REG (PRC_BASE_ADDR + 0x0F0) // Address for the clearing bitstream identifier

register for RM 1

#define ADDRESS_CBS_DOWN_REG (PRC_BASE_ADDR + 0x0F4) // Address for the clearing bistream

address register for RM 1

#define SIZE_CBS_DOWN_REG (PRC_BASE_ADDR + 0x0F8) // Address for the clearing bitstream

size register for RM 1

// Defining the addresses of the SEM registers

#define STATUS_REG (SEM_BASE_ADDR + 0x000) // Address of the SEM status register

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 49/70

#define CMDCODE_REG (SEM_BASE_ADDR + 0x004) // Address of the command code register

#define CCMDCODE_REG (SEM_BASE_ADDR + 0x008) // Address of the complementary command

code register

#define CoCR_REG (SEM_BASE_ADDR + 0x00C) // Address of the correction counter register

#define HCR_REG (SEM_BASE_ADDR + 0x010) // Address of the heartbeat counter register

// Defining the addresses of the PCI registers needed to set the AXI BAR

#define AXIBARU (PCICTL_BASE_ADDR + 0x208) // Address of the register that holds

the upper 32 bits of the 64 bit AXI to PCI BAR

#define AXIBARL (PCICTL_BASE_ADDR + 0x20C) // Address of the register that holds

the lower 32 bits of the 64 bit AXI to PCI BAR

// Defining bits for write command

#define ACT_VSM_BIT 0x1 // bit to activate the virtual socket manager of the PRC

#define SHTDWN_VSM_BIT 0x0 // bit to shutdown the virtual socket manager of the PRC

#define RM0TRIG_BIT 0x0 // bit to send TRIGGER0

#define RM1TRIG_BIT 0x1 // bit to send TRIGGER1

//Defining constants

#define IDLE_CMD 0xE0000000 // Command to put the SEM controller in the idle state

#define ERROR_INJ_CMD 0xC0000000 // Command to put the SEM controller in the error injection

state

#define OBSV_CMD 0xA0000000 // Command to put the SEM controller in the observation state

#define DET_ONLY_CMD 0xF0000000 // Command to put the SEM controller in the detect only

state

#define DIAG_SCAN_CMD 0xD0000000 // Command to put the SEM controller in the diagnostic scan

state

#define SOFT_RESET_CMD 0xB0000000 // Command to do a software reset of the SEM controller

#define PBSRM0_SIZE 0x000C41DC

#define CBSRM0_SIZE 0x0000AE38

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 50/70

#define PBSRM1_SIZE 0x000C41DC

#define CBSRM1_SIZE 0x0000AE38

#define ZERO 0x00000000

#define FCU_BASE_ADDR 0x00011000

#define FPGA_PCI_VENDOR_ID 0x10F6

#define FPGA_PCI_DEVICE_ID 0x8177

#define MAX_BUFFERS 32

#define SIZE_WINDOW 0x00FFFFFF

pci_bar* bar0;

struct dma_buffer {

 char name[1024];

 uint64_t start;

 uint64_t end;

 uint64_t size;

};

struct image_fmt {

 uint16_t width;

 uint16_t height;

 uint16_t bits;

};

struct dma_buffer bufs[MAX_BUFFERS] = {0};

int32_t dump_buffer_to_file(struct dma_buffer *dma_buf) {

 int fd, f, bytes = 0;

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 51/70

 int r = 0;

 char filename[1024];

 char devname[1024];

 unsigned char *tmp;

 int pg_size = getpagesize();

 sprintf(filename, "%s.bin", dma_buf->name);

 sprintf(devname, "/dev/%s", dma_buf->name);

 if ((tmp = (unsigned char *) malloc(pg_size)) == NULL) {

 printf("Error: %s malloc() failed: %s\n", __func__, strerror(errno));

 return -1;

 }

 if ((f = open(filename, (O_RDWR | O_CREAT | O_TRUNC), (S_IRUSR | S_IWUSR))) == -1) {

 printf("Error: %s open(%s)\n", __func__, strerror(errno));

 free(tmp);

 return -1;

 }

 if ((fd = open (devname, O_RDWR | O_SYNC)) == -1) {

 printf("Error: %s open failed : %s\n", __func__, strerror(errno));

 goto failed;

 }

 printf("dump: %s to %s ... ", devname, filename);

 while ((bytes = read(fd, tmp, pg_size))) {

 r = write(f, tmp, bytes);

 if (r < 0) {

 printf("Error: %s write failed : %s\n", __func__, strerror(errno));

 break;

 }

 }

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 52/70

 printf("%s\n", (r < 0) ? "failed" : "done");

 close(fd);

failed:

 close(f);

 if (tmp)

 free(tmp);

 return 0;

}

uint64_t get_dma_buffer_addr(int buffer_id) {

 char attr[1024];

 uint64_t phys_addr = 0;

 int fd;

 if (buffer_id >= MAX_BUFFERS)

 return 0;

 sprintf(attr, "/sys/class/udmabuf/udmabuf%d/phys_addr", buffer_id);

 if ((fd = open(attr, O_RDONLY)) != -1) {

 read(fd, attr, 1024);

 sscanf(attr, "0x%016lx", &phys_addr);

 close(fd);

 }

 return phys_addr;

}

uint64_t get_dma_buffer_size(int buffer_id) {

 char attr[1024];

 uint64_t size = 0;

 int fd;

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 53/70

 if (buffer_id >= MAX_BUFFERS)

 return 0;

 sprintf(attr, "/sys/class/udmabuf/udmabuf%d/size", buffer_id);

 if ((fd = open(attr, O_RDONLY)) != -1) {

 read(fd, attr, 1024);

 sscanf(attr, "%d", &size);

 close(fd);

 }

 return size;

}

int setup_dma_buffers(void) {

 int i, buffers;

 uint64_t addr = 0;

 for (i = 0, buffers = 0; i < MAX_BUFFERS; i++) {

 if ((addr = get_dma_buffer_addr(i))) {

 sprintf(bufs[buffers].name, "udmabuf%d", i);

 bufs[buffers].start = addr;

 bufs[buffers].size = get_dma_buffer_size(i);

 bufs[buffers].end = bufs[buffers].start + bufs[buffers].size;

 buffers++;

 }

 }

 return buffers;

}

void dump_dma_buffer_addr(int buffers) {

 int i;

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 54/70

 for (i = 0; i < buffers; i++) {

 printf("dma_buf[%d]: %s start: 0x%lx ; end: 0x%lx (length: %d)\n",

 i, bufs[i].name, bufs[i].start, bufs[i].end, bufs[i].size);

 }

 return;

}

int

main(int argc, char* argv[])

{

 int i;

 int sw_buffers;

 uint32_t data = 0;

 /* setup DMA buffers */

 sw_buffers = setup_dma_buffers();

 if (sw_buffers == 0) {

 printf("No DMA buffer available.\n");

 printf("Please load module:\n");

 exit(1);

 }

 /*Calculating the addresses to be fed to the PRC registers to ensure a proper fetching of the right

bitstreams*/

 uint32_t dmabuff_addr[sw_buffers];

 for (i = 0; i < sw_buffers; i++) {

 dmabuff_addr[i] = (bufs[i].start & SIZE_WINDOW) + SPCI_BASE_ADDR;

 }

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 55/70

 /*

 dmabuff_addr[i] is the AXI address as seen from the DMA in the PRC

 bufs[i].start is the PCI address as seen from the CPU side

 SIZE_WINDOW is the size of the window allocated in the AXI interconnect for access to the

PCIe bridge slave interface

 SPCI_BASE_ADDR is the offset address for the slave interface of the PCIe bridge slave

interface as configured in the AXI

 This operation is a calculation of the address that needs to be fed to the PRC DMA in order

to fetch the correct bitstreams needed. Address translation is about removing and adding offsets

 so the first operation should be taking the bufs[i].start address and removing the offset that

does not coincide with the bits needed to represent the full address window.

 This is equivalent to performing a logic & with the size of the window. The addition is

straightforward.

 */

 printf("\nTotal allocated DMA buffers: %d\n", sw_buffers);

 if (sw_buffers) {

 dump_dma_buffer_addr(sw_buffers);

 }

 /*Setting up the PCI bar*/

 bar0 = new pci_bar(FPGA_PCI_VENDOR_ID,FPGA_PCI_DEVICE_ID,0);

 /*Dummy read to verifiy if the PCIe is enabled*/

 bar0->pci_read(PRC_CTL_STAT_REG, &data);

 /*Enabling the PCI in case it was forgotten*/

 if (data == 0xFFFFFFFF) {

 printf("Please enable PCIe slot:\n");

 printf("using this command : setpci -d %04x:%04x COMMAND=0x06\n",

 FPGA_PCI_VENDOR_ID, FPGA_PCI_DEVICE_ID);

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 56/70

 exit(1);

 }

 /*Commanding the SEM to an idle state*/

 printf("\nReading SEM status\n");

 bar0->pci_read(STATUS_REG, &data);

 printf("Writing a Command to the SEM controller \n");

 bar0->pci_write(CCMDCODE_REG,(uint32_t) ZERO); // Writing in the

complementary command code register is only relevant when in error injection mode

 bar0->pci_write(CMDCODE_REG,(uint32_t) IDLE_CMD); // Writing the command that will

force the SEM controller to go into an idle state

 printf("Reading SEM status\n");

 bar0->pci_read(STATUS_REG, &data);

 /*Setting the AXI BAR in the PCI control register to ensure proper address translation operations*/

 printf("\nWriting and reading the AXIBAR\n");

 bar0->pci_write(AXIBARU,(uint32_t)0x00000008); //Writing in this register sets the

upper 32 bits of the 64-bit address signal that serves as the AXI BAR

 bar0->pci_write(AXIBARL,(uint32_t)0x1f000000); //Writing in this register sets the

lower 32 remaining bits

 bar0->pci_read(AXIBARU, &data);

 bar0->pci_read(AXIBARL, &data);

 /*Configuring the control registers of the PRC to set up DFX operations*/

 printf("\nWriting and reading the bitstream addresses and sizes\n");

 bar0->pci_write(PRC_CTL_STAT_REG,(uint32_t)SHTDWN_VSM_BIT); //Writing a 0 in this

register puts the virtual socket manager in shutdown mode

 bar0->pci_write(ADDRESS_PBS_UP_REG,dmabuff_addr[0]); //Writing the address of

the partial bitstream for the count up module

 bar0->pci_write(SIZE_PBS_UP_REG,(uint32_t)PBSRM0_SIZE); //Writing the size of the

partial bitstream for the count up module

 bar0->pci_write(ADDRESS_CBS_UP_REG,dmabuff_addr[1]); //Writing the address of

the clearing bistream for the count up module

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 57/70

 bar0->pci_write(SIZE_CBS_UP_REG,(uint32_t)CBSRM0_SIZE); //Writing the size of the

clearing bitstream for the count up module

 bar0->pci_write(ADDRESS_PBS_DOWN_REG,dmabuff_addr[2]); //Writing the address of

the partial bitstream for the count down module

 bar0->pci_write(SIZE_PBS_DOWN_REG,(uint32_t)PBSRM1_SIZE); //Writing the size of the partial

bitstream for the count down module

 bar0->pci_write(ADDRESS_CBS_DOWN_REG,dmabuff_addr[3]); //Writing the address of

the clearing bitstream for the count down module

 bar0->pci_write(SIZE_CBS_DOWN_REG,(uint32_t)CBSRM1_SIZE); //Writing the size of the clearing

bitstream for the count down module

 bar0->pci_read(BS_ID0_REG, &data);

 bar0->pci_read(BS_ID1_REG, &data);

 bar0->pci_read(BS_ID2_REG, &data);

 bar0->pci_read(BS_ID3_REG, &data);

 printf("\nReading the PRC state\n");

 bar0->pci_read(PRC_CTL_STAT_REG, &data); //Reading to check if the virtual

socket manager is in shutdown state

 printf("\nReading the trigger registers,trigger 0 then trigger 1\n");

 bar0->pci_read(TRIGGER0_REG, &data); // This register holds the ID of

the reconfigurable module that will be loaded if trigger0 is sent

 bar0->pci_read(TRIGGER1_REG, &data); // This register holds the ID of

the reconfigurable module that will be loaded if trigger1 is sent

 printf("\nReading the reconfigurable module information registers\n");

 bar0->pci_read(RM_BS_INDEX0_REG, &data); // This register holds the ID of

the bitstream and the clearing bitstream for the first reconfigurable module

 bar0->pci_read(RM_BS_INDEX1_REG, &data); // This register holds the ID of

the bitstream and the clearing bitstream for the second reconfigurable module

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 58/70

 /*Setting up the PRC to launch a trigger*/

 printf("\nWriting to get the PRC out of the shutdown\n");

 bar0->pci_write(PRC_CTL_STAT_REG,(uint32_t)ACT_VSM_BIT); // Writing a 1 in this register gets

the virtual socket manager out of the shutdown state

 bar0->pci_read(PRC_CTL_STAT_REG, &data); // Reading this register to check

if the virtual socket manager got out of the shutdown state

 printf("\nWriting the trigger\n");

 bar0->pci_write(SWTRIGGER_REG,(uint32_t)RM1TRIG_BIT); // Writing a 1 in this

register loads the count down module, writing a 0 loads the count up module

 bar0->pci_read(SWTRIGGER_REG, &data); // Reading this register identifies

the trigger that is sent, if the bit number 32 is high it means that a trigger is pending

 do{

 bar0->pci_read(PRC_CTL_STAT_REG, &data);

 }while((data & 0xf) != 0x7); // this loop enables the tracking of the

status of the controller until it finishes loading a reconfigurable module

 /*Commanding the SEM to do a software reset*/ /*Reminder: it is necessary to do a software reset

after a DFX operation so that the SEM controller can work properly(Check the Conceptual design doc)*/

 printf("\nWriting a Command to the SEM controller \n");

 bar0->pci_write(CCMDCODE_REG,(uint32_t)ZERO);

 bar0->pci_write(CMDCODE_REG,(uint32_t)SOFT_RESET_CMD); // Writing this command

forces the SEM controller to perform a software reset

 printf("Reading SEM status\n");

 bar0->pci_read(STATUS_REG, &data);

 usleep(100000);

 printf("\nReading SEM status\n");

 bar0->pci_read(STATUS_REG, &data);

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 59/70

 /*Dumping the contents of the dma buffers to binary files*/

 for (int buf = 0; buf < sw_buffers; buf++) {

 /* dump buffer to binary file */

 dump_buffer_to_file(&bufs[buf]);

 }

 delete bar0;

 return 0;

}

6.2. Annex 2. TCL script to launch the DFX flow

DFX flow script

##################### Setting of the board and part variables

set part "xcku040-ffva1156-2-e" ;# Setting the right FPGA device.

set board "kcu105" ;# Setting the board.

##################### Synthesizing the count up reconfigurable module

create_project -in_memory -part $part ;# Creation of an in-memory project.

add_files ./sources/count_up.vhd ;# Adding the VHDL file for the count up module into the project.

set_property top count [current_fileset] ;# Setting the top file for this project, it is necessary to do a

synthesis.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 60/70

synth_design -mode out_of_context ;# Doing an out of context synthesis of the module. It is absolutely

necessary that the type of this synthesis would be an out of context synthesis.

write_checkpoint ./synthesized_checkpoints/RM_count_up/checkpoint_count_up.dcp ;# Writing a

checkpoint to save the synthesized module.

close_project

##################### Synthesizing the count down reconfigurable module

create_project -in_memory -part $part

add_files ./sources/count_down.vhd

set_property top count [current_fileset]

synth_design -mode out_of_context

write_checkpoint ./synthesized_checkpoints/RM_count_down/checkpoint_count_down.dcp

close_project

##################### Adding the files necessary for the first configuration

#####################################

create_project -in_memory -part $part

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 61/70

add_files ./synthesized_checkpoints/top/checkpoint_top.dcp ;# Adding the synthesized checkpoint of the

static top logic.

add_files ./constraints/KCU_cnstrn.xdc ;# Adding the constraints file.

set_property USED_IN {implementation} [get_files ./constraints/KCU_cnstrn.xdc]

add_files ./synthesized_checkpoints/RM_count_up/checkpoint_count_up.dcp ;# Adding the synthesized

checkpoint of the count up module.

set_property SCOPED_TO_CELLS {inst_count} [get_files

./synthesized_checkpoints/RM_count_up/checkpoint_count_up.dcp] ;# The SCOPED_TO_CELLS property

makes sure that this module is assigned to the proper instance in the top file.

link_design -mode default -reconfig_partitions {inst_count} -part $part -top fpga_top ;# This command links

the whole design together.

write_checkpoint ./synthesized_checkpoints/linked_design/top_link_up.dcp

##################### Creating a pblock to define the reconfigurable region

#####################################

create_pblock pblock_inst_count ;# Creation of the pblock.

resize_pblock pblock_inst_count -add {SLICE_X3Y257:SLICE_X19Y285 DSP48E2_X0Y104:DSP48E2_X2Y113

RAMB18_X0Y104:RAMB18_X1Y113 RAMB36_X0Y52:RAMB36_X1Y56} ;# Resizing the pblock.

add_cells_to_pblock pblock_inst_count [get_cells [list inst_count]] -clear_locs ;# Linking the pblock to the

inst_count instance.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 62/70

##################### Design rule checks focused on partial reconfiguration

#####################################

create_drc_ruledeck ruledeck_1

add_drc_checks -ruledeck ruledeck_1 [get_drc_checks {HDPRA-62 HDPRA-60 HDPRA-58 HDPRA-57 HDPRA-

56 HDPRA-55 HDPRA-54 HDPRA-53 HDPRA-52 HDPRA-51 HDPRA-21 HDPR-43 HDPR-20 HDPR-88 HDPR-41

HDPR-30 HDPR-96 HDPR-95 HDPR-94 HDPR-93 HDPR-92 HDPR-91 HDPR-90 HDPR-87 HDPR-86 HDPR-85

HDPR-84 HDPR-83 HDPR-74 HDPR-73 HDPR-72 HDPR-71 HDPR-70 HDPR-69 HDPR-68 HDPR-67 HDPR-66

HDPR-65 HDPR-64 HDPR-63 HDPR-62 HDPR-61 HDPR-60 HDPR-59 HDPR-58 HDPR-57 HDPR-54 HDPR-50

HDPR-49 HDPR-48 HDPR-47 HDPR-46 HDPR-44 HDPR-42 HDPR-38 HDPR-37 HDPR-35 HDPR-34 HDPR-33

HDPR-32 HDPR-29 HDPR-28 HDPR-25 HDPR-23 HDPR-22 HDPR-18 HDPR-17 HDPR-16 HDPR-14 HDPR-13

HDPR-12 HDPR-11 HDPR-6 HDPR-5 HDPR-4 HDPR-3 HDPR-2 HDPR-1}]

report_drc -name drc_1 -ruledecks {ruledeck_1}

delete_drc_ruledeck ruledeck_1

##################### Writing all of the constraints generated up until now

#####################################

write_xdc ./constraints/top_all.xdc ;# This command writes out all of the constraints into one file.

##################### Implementation of the first configuration

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 63/70

opt_design

place_design

route_design

##################### Creation of implemented checkpoints and reports

write_checkpoint -force implemented_checkpoints/config_count_up/top_routed.dcp

report_utilization -file reports/config_count_up/top_utilization.rpt

report_timing_summary -file reports/config_count_up/top_timing_summary.rpt

write_checkpoint -force -cell inst_count

implemented_checkpoints/config_count_up/count_up_routed.dcp

##################### Clearing the implementation of the reconfigurable partition

###############################

update_design -cell inst_count -black_box ;# This command clears the inst_count instance and removes the

implementation results associated to it.

lock_design -level routing ;# This command locks the actual routing results to make sure it is not changed

in the future.

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 64/70

write_checkpoint -force checkpoints/static_route_design.dcp ;# Saving the placing and routing results of

the static top design.

close_project

##################### Adding the files of the second configuration

create_project -in_memory -part $part

add_files ./checkpoints/static_route_design.dcp ;# this command adds the checkpoint saved earlier of the

static placed and routed design.

add_files ./synthesized_checkpoints/RM_count_down/checkpoint_count_down.dcp

set_property SCOPED_TO_CELLS {inst_count} [get_files

./synthesized_checkpoints/RM_count_down/checkpoint_count_down.dcp]

link_design -mode default -reconfig_partitions {inst_count} -part $part -top fpga_top

##################### Implementation of the second configuration

opt_design

place_design

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 65/70

route_design

##################### Writing checkpoints and reports

write_checkpoint -force implemented_checkpoints/config_count_down/top_routed.dcp

report_utilization -file reports/config_count_down/top_utilization.rpt

report_timing_summary -file reports/config_count_down/top_timing_summary.rpt

write_checkpoint -force -cell inst_count

implemented_checkpoints/config_count_down/count_down_routed.dcp

##################### Verification of the static routing results of the two configurations

######################

pr_verify implemented_checkpoints/config_count_up/top_routed.dcp

implemented_checkpoints/config_count_down/top_routed.dcp ;# This command reports the conformity

of the two static place and route results of the two configurations, which should be exactly the same.

close_project

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 66/70

##################### Bitstream generation for the count up configuration

#######################################

open_checkpoint implemented_checkpoints/config_count_up/top_routed.dcp

write_bitstream -force -bin_file bitstreams/config_count_up/config_up ;# This command writes a bin file

for the top design and a partial bitstream along with its clearing bitstream for the reconfigurable partition.

#write_debug_probes -force -file bitstreams/config_count_up/config_up.ltx ;# This command would be

useful if you have debug probes in your design, if not you can leave it commented.

source [get_property REPOSITORY [get_ipdefs *prc:1.3]]/xilinx/prc_v1_3/tcl/api.tcl ;# This command

allows for transition into the PRC API mode where you can issue tcl commands to interact with the PRC

post-implementation.

prc_v1_3::format_bin_for_icap -bs 1 -i

./bitstreams/config_count_up/config_up_pblock_inst_count_partial.bin ;# This command formats a partial

bitstream to be recognizable by an ICAP primitive.

prc_v1_3::format_bin_for_icap -bs 1 -i

./bitstreams/config_count_up/config_up_pblock_inst_count_partial_clear.bin ;# This command formats a

partial bitstream to be recognizable by an ICAP primitive.

close_project

##################### Bitstream generation for the count down configuration

#####################################

open_checkpoint implemented_checkpoints/config_count_down/top_routed.dcp

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 67/70

write_bitstream -force -bin_file bitstreams/config_count_down/config_down

source [get_property REPOSITORY [get_ipdefs *prc:1.3]]/xilinx/prc_v1_3/tcl/api.tcl

prc_v1_3::format_bin_for_icap -bs 1 -i

./bitstreams/config_count_down/config_down_pblock_inst_count_partial.bin

prc_v1_3::format_bin_for_icap -bs 1 -i

./bitstreams/config_count_down/config_down_pblock_inst_count_partial_clear.bin

close_project

##################### Bitstream generation for the grey box configuration

#######################################

open_checkpoint checkpoints/static_route_design.dcp

update_design -cell inst_count -buffer_ports

place_design

route_design

write_checkpoint -force implemented_checkpoints/config_grey_box/config_grey_box.dcp

write_bitstream -force -bin_file bitstreams/config_grey_box/config_grey_box

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 68/70

source [get_property REPOSITORY [get_ipdefs *prc:1.3]]/xilinx/prc_v1_3/tcl/api.tcl

prc_v1_3::format_bin_for_icap -bs 1 -i

./bitstreams/config_grey_box/config_grey_box_pblock_inst_count_partial.bin

prc_v1_3::format_bin_for_icap -bs 1 -i

./bitstreams/config_grey_box/config_grey_box_pblock_inst_count_partial_clear.bin

close_project

 FPGA DYNAMIC FUNCTION EXCHANGE Page: 69/70

References
Reference Title

[DFXCPG] Dynamic Function eXchange controller v1.0 LogiCORE IP Product Guide

Reference : https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-
dfx-controller.pdf

[SEMCPG] Ultrascale Architecture Soft Error Mitigation Controller v3.1 LogiCORE IP Product Guide
Reference : https://www.xilinx.com/support/documentation/ip_documentation/sem_ultra/v3_1/pg187-
ultrascale-sem.pdf

[AXIPG] AXI Interconnect v2.1 LogiCORE IP Product Guide
Reference :
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-
interconnect.pdf

[AXIPCIPG] AXI bridge for PCI Express Gen3 Subsystem v3.0 Product Guide
Reference : https://www.xilinx.com/support/documentation/ip_documentation/axi_pcie3/v3_0/pg194-axi-
bridge-pcie-gen3.pdf

[DFXDPG] Dynamic Function eXchange Decoupler v1.0 LogiCORE IP Product Guide
Reference : https://www.xilinx.com/support/documentation/ip_documentation/dfx_decoupler/v1_0/pg375-
dfx-decoupler.pdf

[AXIAPBPG] AXI to APB bridge v3.0 LogiCORE IP Product Guide
Reference :
https://www.xilinx.com/support/documentation/ip_documentation/axi_apb_bridge/v3_0/pg073-axi-apb-
bridge.pdf

[DFXT] Vivado Design Suite Tutorial Dynamic Function eXchange
Reference : https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug947-vivado-
partial-reconfiguration-tutorial.pdf

[APBP] AMBA 3 APB protocol v1.0 specification
Reference : http://web.eecs.umich.edu/~prabal/teaching/eecs373-f12/readings/ARM_AMBA3_APB.pdf

[DFXUG] Vivado Design Suite User Guide Dynamic Function eXchange
Reference : https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug909-vivado-
partial-reconfiguration.pdf

[KCU105UG] KCU105 board user guide
Reference : https://www.xilinx.com/support/documentation/boards_and_kits/kcu105/ug917-kcu105-eval-
bd.pdf

[KCU105EK] KCU105 board evaluation kit
Reference: https://www.xilinx.com/products/boards-and-kits/kcu105.html

[MMSI] Mercury Systems Website
Reference: https://www.mrcy.com/company-overview/facts-at-a-glance/

https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_pcie3/v3_0/pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_pcie3/v3_0/pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dfx_decoupler/v1_0/pg375-dfx-decoupler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dfx_decoupler/v1_0/pg375-dfx-decoupler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_apb_bridge/v3_0/pg073-axi-apb-bridge.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_apb_bridge/v3_0/pg073-axi-apb-bridge.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug947-vivado-partial-reconfiguration-tutorial.pdf
http://web.eecs.umich.edu/~prabal/teaching/eecs373-f12/readings/ARM_AMBA3_APB.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kcu105/ug917-kcu105-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kcu105/ug917-kcu105-eval-bd.pdf

