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Chapter 1

Introduction

In recent years, robotics has spread to many areas with various types of applications
and is increasingly present both in everyday life and in the companies. At the
beginning, robots were used only in factories for the execution of repetitive jobs and
tasks to replace human operators, today instead thanks to technological evolution
and artificial intelligence they are able to interact with people, helping and sup-
porting them in daily life [1]. In fact, they are widely used in the form of household
appliances, tools and collaborative assistants and assume different appearances
depending on the task and the field of application [1]. In addition to their use in
almost all sectors nowadays, they are increasingly present in companies and industry
in the form of manipulators, mobile robots and mobile manipulators thanks to
their characteristics of versatility, adaptability and accuracy in the execution of the
tasks. Within the industries, robots are widely used as programmable manipulators
to perform well-defined tasks such as the handling of parts and materials, assembly
of mechanical/electronic parts, welding, painting or cutting [2]. In addition to the
common manipulators, automated guided vehicles (AGVs) and mobile robots are
also very popular within automation processes. The automated guided vehicles
allow the movement of pieces from one area to another within the environment
following pre-established paths. Mobile robots, on the other hand, represent an
evolution of AGVs thanks to their ability to move autonomously both in static
and dynamic environments with or without the presence of obstacles. The AGVs
execute the automatic transport from one area to another by means of a cable guide
or of a laser guide based on laser sources and reflectors inside the environment in
such a way as to follow predetermined paths [3]; on the contrary, mobile robots
are completely autonomous and all sensors and devices are integrated on board.
In general they are equipped with laser sensors, cameras and proximity/distance
sensors in order to acquire information on the surrounding environment and execute
the algorithms that determine the movement based on different localization and
navigation techniques. Today, AGVs are widely used but are less flexible than
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the mobile robots because it is necessary to introduce changes and infrastructures
within the environment in which they operate [3].

Today, however, the concept of Industry 4.0 is increasingly common. Industry
4.0 is based on the concept of having fully automated systems that are composed
of interconnected machines and robotic systems that interact with each other
by exchanging information and performing diagnostic and maintenance functions
[4][5]. The goal therefore is to have totally independent industries and production
plants (smart factories) in order to independently identify critical issues within the
production process and adopt the best strategies. Furthermore, in these types of
automated systems it is possible to adapt the production to individual customers in
such a way as to create different products that satisfy the different characteristics
and needs of the customer [5][6]. Another feature of industry 4.0 is that of having
production plants with the lowest possible energy consumption thanks to the use
of efficient and intelligent control systems that allow to reduce waste [6].

The goal of this project was to create an autonomous system that manages the
communication between an anthropomorphic robot and an autonomous guided
vehicle (AGV) in order to perform the coordinated movement of both the robots
and execute a specific pick and place task. The integration of anthropomorphic
robots with an autonomous guided vehicle is very close to the concept of Industry
4.0 with the goal to create a system with an independent communication between
several devices without the presence of human beings. The anthropomorphic robot
considered in the system is the robot e.DO. e.DO is a modular educational robot
developed by Comau S.p.A composed by six joints and a spherical wrist. It is
equipped with a raspberry pi controller based on ROS that manages the motion
with an open source control logic. Comau provides also a very easy to use Android
application that allows the users to connect to the robot and executes the desired
trajectory, and a lot of resources to support the users in developing their projects.
The e.DO robot was designed as an educational robot for teaching robotics and
programming and for performing small automated tasks defined by users. In this
thesis, however, its integration with other external electronic devices and other
robotic systems within the same environment has been studied. Since the AGV
was not available during the development of the project it has been performed
only a gazebo simulation of the entire system with a differential drive mobile robot
as collaborative assistant for e.DO in order to have a complete proof of concept.
The task considered in this project consists of releasing an object grasped by e.DO
inside one of the two boxes positioned on the base of the AGV, which represent
two different containers for the objects. In particular, to coordinate the movement
between the two robots, a camera and a laser rangefinder have been used. The
camera was exploited in order to correct the trajectory of the AGV and to identify
the point where to release the object, while the laser scanner has been used to
measure the AGV distance from e.DO and to check its position. The whole system
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is managed by an external raspberry pi controller that communicates with the robot
and with the autonomous guided vehicle. In this way it is possible to manage more
electrical devices on the same platform in order to move the robotic arm combined
with the AGV. In particular it has been developed a specific ROS package, which
runs on the raspberry pi controller, that manages the two robots and synchronizes
all the movements in order to accomplish the task. The package developed in fact
allows to interact with the ROS package edo_core provided by Comau which runs
on the e.DO raspberry and with the Autonomous Guided Vehicle. The thesis work
was developed in collaboration with Comau S.p.A.

The second chapter of the thesis is a background chapter, where the main
topics covered in the thesis work are presented. The main concepts of robotics are
explained considering both the position kinematics and the differential kinematics
of a manipulator and a brief introduction to mobile robots is provided. In addition,
the characteristics and the different types of sensors used in robotic systems
were illustrated with particular reference to vision sensors and the various visual
servoing techniques. The third chapter describes the robot e.DO from its software
and hardware structure point of view and shows the study of the position direct
kinematics and the relative singularities. The fourth chapter instead describes
the whole project development process. Starting from a general description of
the system, the communication methods adopted to interact with the robots are
illustrated, as well as the different approaches adopted for the execution of the task
and the techniques used for the vision system. Finally, the development of the ROS
package is described, highlighting the software features of which it is composed.
The fifth chapter describes the simulation of the system in Gazebo. In particular,
it describes how the Gazebo simulation environment works, the definition of the
models of the two robots for the simulation and the main concepts of the Moveit
platform used for trajectory planning. At the end the simulation of the system and
the obtained results are shown. The sixth chapter shows the real implementation
of the developed package on the external raspberry pi, in particular the results of
the experimental tests obtained by testing the part of the architecture related to
the movement of e.DO. Finally, the last chapter proposes possible future extensions
of the developed work and some possible improvements.
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Chapter 2

Background

2.1 Robotics
A robot is a machine that interacts with the surrounding environment by performing
various actions. It can be seen as a system composed of a mechanical structure that
includes mechanical arms, tools and/or wheels and mechanisms capable of moving
the whole physical structure such as motors [2]. In addition, a robot or a robotic
system is also equipped with some sensors that allow to obtain information both
on the status of the robot and on the external environment in order to regulate its
movement. The robot control system manages the execution of all robot actions in
order to perform predefined tasks. Robots are classified into two main categories:

• Manipulators

• Mobile Robots

A manipulator is a particular type of robot whose mechanical structure is made
of a chain of rigid or flexible bodies called links connected by devices called joints
that allow the movement of the manipulator. The mechanical structure is an open
kinematic chain if the chain of links that connects the ends is unique, otherwise it
is a close kinematic chain [2]. There are two types of joints:

1. revolute joint

2. prismatic joint

The revolute joint allows a rotational movement with respect to the two links
while the prismatic one determines a translation. Each joint corresponds to a
degree of freedom in an open kinematic chain. The working space of the robot is
defined by the set of points in the space that the robot can reach with the end
effector. A manipulator consists of an arm and a wrist. The manipulator arm is
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made of the first three links of the mechanical structure which allow the positioning
of the end effector in the space, while the wrist is formed by the last links which
allow to define the orientation too [2]. In particular, there are different types of
manipulators depending on the type of joints of the arm. In this thesis work the
category of anthropomorphic manipulators has been considered. In fact, in these
robots the arm is composed of three revolute joints in which the axis of the first
one is perpendicular to the axes of the other two. For the wrist, on the other hand,
the typical structure is the spherical one with three revolute joints whose axes
intersect at one point [2].

2.1.1 Pose of a rigid body
The pose of a rigid body in the space is defined by the position and the orientation
with respect to a reference frame. Considering the fixed reference frame O-xyz and
the reference frame O’-x’y’z’ integral with the rigid body shown in Figure 2.1:

Figure 2.1: Position and orientation of a rigid body [2]

The position is defined by: oÍ = o
Í
xx+ o

Í
yy + o

Í
zz [2]

o
Í =

o
Í
x

o
Í
y

o
Í
z

 (2.1)
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while the orientation is defined by expressing the versors of the reference frame
O’-x’y’z’ with respect to the reference frame O-xyz:

x
Í = x

Í

xx+ x
Í

yy + x
Í

zz

y
Í = y

Í

xx+ y
Í

yy + y
Í

zz

z
Í = z

Í

xx+ z
Í

yy + z
Í

zz

(2.2)

In general, given a fixed reference frame O-xyz and a reference frame O’-x’y’z’
rotated with respect to O-xyz, it is possible to obtain the rotation matrix R:

R =

x
Í
x y

Í
x z

Í
x

x
Í
y y

Í
y z

Í
y

x
Í
z y

Í
z z

Í
z

 (2.3)

The rotation matrix represents the rotation around the origin of the two reference
frame until they overlap [2]. Moreover, thanks to the rotation matrix it is also
possible to transform the coordinates of a point P between the two reference frames
that have the same origin [2]. Given the points p in O-xyz and p’ in O’-x’y’z’:

p =

px

py

pz

 , pÍ =

p
Í
x

pÍ
y

pÍ
z

 (2.4)

p = RpÍ (2.5)

The main property of a rotation matrix is that it is an orthonormal matrix
(and hence its transpose is equal to the inverse). The product of multiple rotation
matrices represents the concatenation of multiple rotations. The product is defined
by the post-multiplication of the rotation matrices if the individual rotations are
defined with respect to the previous one [2]:

R = R1R2RN (2.6)

while it is defined by the pre-multiplication if the single rotations refer to the initial
reference frame:

R = RNR2R1 (2.7)
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Given a fixed reference frame O0 and a mobile reference frame Ol defined by a
translation vector o0

1 and by a rotation R0
1 with respect to O0 as shown in Figure

2.2:

Figure 2.2: Fixed and mobile reference frames [2]

given p0 and p1 the vectors with respect to the point P in the two reference frames
and p̃0 and p̃1 the corresponding homogeneous coordinates:

p̃0 =


p0

x

p0
y

p0
z

1

 , p̃1 =


p1

x

p1
y

p1
z

1

 (2.8)

it is possible to define the overall transformation matrix T which describes the
roto-translation of the local reference with respect to the fixed reference frame [2]:

T 0
1 =

C
R0

1 o0
1

0T 1

D
(2.9)

p̃0 = T 0
1 p̃

1 (2.10)
Compared to a rotation matrix, the transformation matrix T is not orthonormal

and its inverse is defined by [2]:

(T 0
1 )−1 = T 1

0 =
C
R1

0 −R1
0o

0
1

0T 1

D
(2.11)

p̃1 = T 1
0 p̃

0 (2.12)
Furthermore, the same properties seen before for the rotation matrices are valid
for the composition of multiple transformation matrices.
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2.1.2 Positions Kinematics
The posture of the manipulator depends on the position and orientation of the
links of the kinematic chain and is therefore determined by the vector of the joint
variables q:

q =

 q1
q2
qN

 (2.13)

The goal of the direct kinematics is to determine the position and orientation of
the end-effector in the space respect to the position of the joints of the robot. In
fact, by solving the direct kinematic it is possible to obtain the transformation
matrix T 0

p (q). Given R0 the reference frame fixed on the base of the robot and Rp

the reference frame related to the end-effector, the transformation matrix T 0
p (q)

represents Rp into the fixed reference frame R0 [2].

T 0
p (q) =

C
R0

p(q) t0p(q)
0T 1

D
(2.14)

where R0
p(q) is the rotational matrix of Rp respect to R0 and t0p(q) is the vector

that represents the position of the origin of Rp respect to R0.
By defining Rp considering the directions of interest:

T 0
p (q) =

C
n0

p(q) s0
p(q) a0

p(q) t0p(q)
0 0 0 1

D
(2.15)

with a0
p(q), s0

p(q) and n0
p(q) representing the versors k, j and i respectively.

Position and orientation of the end-effector can be also described in a more
simple way by the vector p in the operational space [2]:

p =



x1
x2
x3
α1
α2
α3


(2.16)

with the position vector x =
è
x1x2x3

é
and the vector α =

è
α1α2α3

é
with the

parameters (angles) that define the orientation.
The transformation matrix T 0

p (q) is obtained by the product of the transformation
matrices between the single reference frames associated to each link of the robot.
Considering a robot with six degrees of freedom and neglecting the end-effector,
there are six links and hence six reference frames:

T 0
6 (q) = T 0

1 (q1) · T 1
2 (q2) · T 2

3 (q3) · T 3
4 (q3) · T 4

5 (q5) · T 5
6 (q6) (2.17)
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The Denavit-Hartenberg conventions allow to define the single local reference frames
and to compute the transformation matrices thanks to the DH parameters: di, θi,
ai, αi and xi, Fig. 2.3. The parameters define position and orientation of all the
reference frames with respect to the previous one. The parameters ai and αi are
constant and depend on the physical links while one of the other two is variable,
depending on the type of the joint. If the robot is composed by all revolute joints
the variable parameter is θi [2].

Conventions

Given a robot with n joints, n+1 local reference frames Ri associated with each
arm are defined. The joint gi then connects the arm bi−1 with the arm bi.

Figure 2.3: DH Conventions and parameters [2]

For the definition of the reference frame Ri are defined the following rules [2]:

• The axis zi corresponds to the movement axis of the joint gi+1

• The origin of the reference frame is defined at the intersection of zi with the
common normal of the axes zi−1 and zi

• xi is defined along the common normal of the axes zi−1 and zi

• The axis yi completes the base using the right hand rule

For the reference frame R0 the origin and the x axis are chosen arbitrarily.
Instead for the reference frame Rn, the axis xn is normal to the axis zn−1 while the
origin and the axis zn are not defined in a unique way [2]. Furthermore, for the
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definition of the DH parameters, it is defined an intermediate reference system RiÍ

whose origin OiÍ is positioned at the intersection point of zi−1 with the common
normal between the axes zi−1 and zi. The axis ziÍ is defined as the axis zi−1 while
xiÍ is defined as xi [2]. Then the DH parameters are defined [2]:

• di: It is represented by the coordinate of OiÍ along the axis zi−1

• θi: It represents the angle relative to the rotation around the axis ziÍ which
causes xi−1 to coincide with xi

• ai: It is defined by the distance between Oi and OiÍ

• αi: It represents the angle relative to the rotation around the axis xi which
leads zi−1 to coincide with zi

.
The final transformation between the two reference frames Ri and Ri−1 is

obtained by the composition of two transformation matrices [2]. The matrix T i−1
iÍ

which describes the rototranslation of RiÍ with respect to Ri−1:

T i−1
iÍ =


cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di

0 0 0 1

 (2.18)

and the matrix T iÍ
i which describes the rototranslation of Ri with respect to RiÍ :

T iÍ

i =


1 0 0 ai

0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

 (2.19)

The final transformation matrix between Ri and Ri−1 is then:

T i−1
i (qi) = T i−1

iÍ T iÍ

i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 (2.20)

with qi = θi

The workspace is given by the region of the points in the space that the center
of the end-effector reference frame can reach. It is given by the set of data points
of the position vector x = x(q) with qi,m <= qi <= qi,M (min and max values of
the joints). The inverse kinematics, instead, has the aim of determining the joint
variables qi corresponding to a certain position in the space of the end-effector [2].

p, T 0
p (q) → q (2.21)
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2.1.3 Differential kinematics
Differential kinematics concerns the relationship between the velocity of the joints
and the velocity of the end-effector. In particular, there are two types of velocity
of the end-effector in the operational space [2]:

1. geometric velocity

2. analytical velocity

The geometric velocity is described by the vector v ∈ R6:

v =
C
ẋT

ωT

D
(2.22)

The vector v defines the linear velocity ẋ and the angular velocity ω of the end-
effector. The analytical velocity is defined by the vector ṗ ∈ R6:

ṗ =
C
ẋ
α̇T

D
(2.23)

α̇T is the time-derivative of the vector α of the angles used to represent the end-
effector orientation. The two velocity vectors are related to the velocities of the
joints through the relations [2]:

v = Jg(q)q̇
ṗ = Ja(q)q̇

(2.24)

given:

1. q̇: vector of the joints velocities

2. Jg(q) ∈ Rn
6 : geometric Jacobian

3. Ja(q) ∈ Rn
6 : analytical Jacobian
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The geometric Jacobian is defined by [2]:

Jg(q) =
C
JL,1 JL,2 JL,3 JL,4 JL,5 JL,6
JA,1 JA,2 JA,3 JA,4 JA,5 JA,6

D
(2.25)

with:

• JL,i: defines the influence of the i-th joint on the end effector linear velocity

• JA,i: defines the influence of the i-th joint on the end effector angular velocity

The analytic Jacobian, instead, is obtained directly by computing the derivative
with respect to time of the position vector p defined before in 2.16.

Singularities

The configurations of the manipulator for which the geometric Jacobian is not
full rank are called singular configurations. These kinematics singularities can be
obtained by solving the equation: det(Jg(qs)) = 0 → qs [2]. In these points some
cartesian velocities cannot be obtained and the velocities at the joints can result in
zero cartesian velocities. Furthermore, small velocities of the end-effector can be
associated to large joint speeds in a neighborhood of a singular configuration [2].
Considering a manipulator with six degrees of freedom and with a spherical wrist,
the geometric Jacobian can be also written as:

Jg(q) =
C
J11 J12
J21 J22

D
(2.26)

with Jij ∈ R3,3

By fixing the origin of the end-effector reference frame in the intersection of the
wrist axes, it’s obtained the decoupling of the singularities of the arm and of the
wrist:

J12 =
è
0 0 0

é
(2.27)

det(Jg) = det(J11)det(J22) (2.28)

The arm singolarities are obtained by solving the equation det(J11) = 0 while
solving det(J22) = 0 are obtained the wrist singolarities.
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2.1.4 Introduction to Mobile Robots
A mobile robot has the characteristic of moving independently in the surrounding
environment in which it is located. The environment can include different obstacles
which can be fixed/mobile and can be known or not. In order to move autonomously
in the space, a mobile robot is equipped with a power supply system without
cables (such as batteries), a control system that can be integrated or remote and
various sensors/actuators that allow to acquire information and perform movements.
The control system of the mobile robot typically consists of an embedded system
integrated on the base that executes the control algorithms that allow the movement
thanks to the information provided by the sensors. A mobile robot can be described
as a rigid body composed by a locomotion system that allows the movement in
the space. There are two main types of locomotion systems: the wheeled robots,
characterized by a system of wheels, and the legged robots, characterized by a series
of rigid bodies connected by joints that allow the movement [2]. The locomotion
system based on wheels is the most used. In particular, there are different types of
wheels [2]:

• Fixed: characterized by an horizontal rotation axis passing through the center
and orthogonal to the plane of the wheel.

• Steering: characterized by an additional vertical rotation axis passing through
the center with respect to the fixed ones, in order to change the orientation.

• Caster: they are similar to the steering wheels but the vertical axis doesn’t
pass through the center in order to maintain the direction of the motion.

• Omnidirectional: they are fixed wheels characterized by the presence of rollers
on the final part whose rotation axis is inclined with respect to the wheel.

In general, regardless of the type of wheel, they can be active or passive and
depending on how they are combined there are different types of kinematic structures
[2]:

• Differential drive vehicle: it is equipped with two fixed active wheels charac-
terized by the same rotation axis and a passive central caster wheel.

• Synchronized traction vehicle: it is equipped with three steering wheels having
the same orientation which are actuated by two motors, one for the traction
and one for the orientation.

• Tricycle: it consists of two axes: a rear axis with two fixed wheels and a front
axis with a steering wheel. The traction is determined by the two fixed wheels
while the motor that drives the front wheel defines the orientation.
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• Automobile: it is similar to the tricycle with the difference that the front axis
consists of two steering wheels.

Figure 2.4 shows the structure of a differential drive vehicle.

Figure 2.4: Differential drive vehicle [2]

2.2 Sensors and visual servoing
Sensors represent a fundamental part for a robot and for robotic systems in general
as thanks to them it is possible to acquire different types of information necessary
to perform the tasks of the robot. In particular, there are two macro categories of
sensors [2]:

• proprioceptive sensors: they allow to acquire information on the status of the
robot by measuring quantities such as position and speed of the joints.

• heteroceptive sensors: they allow to acquire information on the surrounding
environment.

The main characteristics of a sensor are [2]: the resolution, represented by the
maximum variation of the input that does not provide a variation of the output,
and the accuracy which is determined by the correlation of the values acquired by
the sensor with respect to a standard. Other features are repeatability, stability,
error/offset and noise [2]. The most important proprioceptive sensors are the
position sensors (encoder, resolver) and the velocity sensors (such as the dynamo).
For the category of heteroceptive sensors, on the other hand, there are force sensors
that allow to measure the force applied to a body (such as the strain gauge),
proximity/distance sensors used mostly by mobile robots for the detection of
obstacles (infrared, ultrasound and laser) and vision sensors.
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Vision sensors

Vision sensors are essential for mobile robots to acquire information on the sur-
rounding environment but are also used in industrial robotics to acquire geometric
information in the environment in which the robot operates [2]. The vision system
can consist of one or more cameras. If the system is composed by more cameras, it
is possible to obtain some information which allows to determine the 3D character-
istics of the object [2]. Considering a vision system with a single camera, there are
two types of configuration [2]:

1. fixed configuration - camera-to-hand: the camera is positioned on a fixed base
and therefore has always the same field of view.

2. mobile configuration - camera-in-hand: the camera is positioned on the robot
and the field of view changes according to the movement performed.

The main disadvantage of the fixed configuration is that the robot could position
itself between the camera and the object of interest during movement while in the
mobile configuration the accuracy is very variable due to the changes of the field of
view [2]. In particular, there are two main techniques that exploit the information
provided by the vision system to coordinate the movement of the robot [2]:

• Look-and-move technique: it consists of trajectory planning based on visual
information.

• Visual Servoing: defines the control action on the basis of an error defined
between the desired pose and the current one both in the space of the images
and through a 3D reconstruction.

Visual servoing approaches

Visual servoing approaches are grouped into two categories [2]:

1. PBVS (Position based visual servoing): based on the reconstruction of the
3D pose of the object starting from the visual information. A cartesian error
is generated with respect to the desired pose and the robot is guided with a
cartesian controller. Multiple cameras are used to have 3D information or only
one camera is employed but knowing the 3D information of the object [2][7].

2. IBVS (Image based visual servoing): the error is calculated directly from
the features extracted from the 2D plane of the image and it is performed a
movement in order to see the features in the desired position in the image. It
is mainly used with a single camera positioned on the wrist. Since the error is
expressed in the image plane it is necessary to associate the changes of the
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extracted features with incremental changes of the velocity of the robot. This
relationship is approximated with the interaction matrix (Image Jacobian)
which depends on the camera parameters and on the calculated features [2][7].

2.3 ROS - Robot Operating System
ROS is a software framework, a collection of tools and libraries, that allows to design
robotics software applications. It provides the standard services of an operating
system and different functionalities such as hardware abstraction, device drivers,
communication between processes over multiple machines and tools for testing [8][9].
The most important feature of ROS is how the applications run and communicate
each others, allowing to build complex system with an abstraction of the hardware
below. In particular, ROS allows to create packages containing programs, called
nodes, and provides a way to connect a network of nodes with a central node
master [10][8]. The master node manages all the ROS nodes connected to the

Figure 2.5: ROS nodes and master

network allowing parallel execution and different types of communication so that
the nodes can exchange messages with each other, Fig. 2.5. All the nodes connect
to the master before to run in order to register the information on the types of the
messages they publish and subscribe. Then the master provides all the information
to perform the connection and the communication with other nodes which publish
and subscribe to the same messages. The nodes can be run on multiple devices and
can communicate in different ways. The communication protocol used in a ROS is
TCPROS, which is based on the standard TCP/IP sockets [11]. The Parameter
Server is part of the master node and allows to store all the data with a defined
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key in a central location accessible by the nodes [11].
ROS is based on the concept of code reuse allowing sharing and collaborations.

It has been designed in order to be easy to integrate with other robot software
frameworks and to be easy to test. However it only runs on Unix systems. ROS
is language independent and the ROS framework is easy to implement with the
programming languages Python and C++, thanks to the use of the “roscpp” and
“rospy” libraries. In particular it means that all the nodes can be written in any
language, and so for example it is possible to have two nodes written with two
different programming languages that communicates with each other, thanks to
the ROS communication layer which is below the “language level”. The ROS
nodes are grouped into packages and stacks, many of which are available on a
github repository, Fig. 2.6. The package contains ROS nodes, messages, services,
configuration files and dependent libraries, while a stack contains one or more
packages. The package manifest provides information about the package such
as name, version, description, license information, dependencies, and other meta
information. Instead, the metapackages are particular kinds of packages which
represent a group of related other packages [11].

Figure 2.6: ROS packages

ROS provides three main communication tools [10]:
1. Topics: It allows to send message streams between nodes.

2. Services: It allows to create a synchronous client/server communication be-
tween nodes.
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3. Actions: It provides an asynchronous client/server architecture based on
topics.

The main way to create the network is to define publisher/subscriber connections
with other nodes which communicate through different types of messages belonging
to different topics, Fig. 2.7. There are some standard messages provided by the
core packages, but they can be defined by the users [8]. The topic is the name
of a specific stream of messages. So different nodes communicate with each other
by publishing/subscribing messages of topics. There may be multiple publishers
and subscribers to a specific topic. The topic messages are data structures that
may also contain a header field which gives the timestamp and the frame of
reference. However, in a distributed system with request/reply interactions, the
publish/subscribe model based on topics is not the best way to communicate. For
this reason the request/reply interaction is performed via services which are based
on two type of messages: one message for a request and one for a reply. Then one
node offers a service with a specific name and a client sends a request message and
waits for a reply [11].

Figure 2.7: ROS publishers/subscribers

ROS main commands

• roscore: The command starts running the master node, the ROS parameter
server and the Rosout logging node.

• rosrun: It allows to run a node, with the syntax "rosrun <package><executable>".
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• rosnode: It shows the information about the current nodes, including publi-
cations, subscriptions and connections. It allows also to kill a running node
with the syntax "rosnode kill node".

• rostopic: The command allows to obtain information about topics and also to
publish messages with the syntax "rostopic pub topic message".

Example of a python publisher

[12]

1 import rospy
2 from std_msgs .msg import S t r ing
3 de f t a l k e r ( ) :
4 pub = rospy . Pub l i sher ( ’ cha t t e r ’ , Str ing , queue_size=10)
5 rospy . in it_node ( ’ t a l k e r ’ , anonymous=True )
6 r a t e = rospy . Rate (10) # 10hz
7 whi le not rospy . is_shutdown ( ) :
8 he l l o_s t r = " h e l l o world %s " % rospy . get_time ( )
9 rospy . l o g i n f o ( h e l l o_s t r )

10 pub . pub l i sh ( h e l l o_s t r )
11 r a t e . s l e e p ( )
12 i f __name__ == ’__main__ ’ :
13 t ry :
14 t a l k e r ( )
15 except rospy . ROSInterruptException :
16 pass

The function rospy.init_node() allows to initialize the node receiving in input
its name. The function rospy.Publisher("chatter", String, queue_size=10) defines
that the node publishes to the topic "chatter" with messages of type String while
the function rate = rospy.Rate(10) creates a Rate object in order to loop at desired
rate, in this case 10 times per second. In the while loop is checked the flag returned
by the function rospy.is_shutdown() which states if the node should exit or not,
and it is published a new message with the function pub.publish(hello_str). At the
end of the loop there is a call to the function rospy.sleep() which allows to maintain
the desired rate defined before [12].
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Example of a python subscriber

[12]

1 #!/ usr /bin /env python
2 import rospy
3 from std_msgs .msg import S t r ing
4

5 de f c a l l b a ck ( data ) :
6 rospy . l o g i n f o ( rospy . ge t_ca l l e r_ id ( ) + " I heard %s " , data . data )
7

8 de f l i s t e n e r ( ) :
9

10 rospy . in it_node ( ’ l i s t e n e r ’ , anonymous=True )
11 rospy . Subsc r ibe r ( " cha t t e r " , Str ing , c a l l b a ck )
12 rospy . sp in ( )
13

14 i f __name__ == ’__main__ ’ :
15 l i s t e n e r ( )

The function rospy.Subscriber("chatter", String, callback) allows the node to sub-
scribe to the topic “chatter” specifying the callback that must be invoked each
time a new message is received [12]. The function rospy.spin(), instead, allows to
keep the node running until the node is stopped. Moreover, compared with the
roscpp library, the callback functions have their own threads [12].
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e.DO

3.1 Overview
e.DO is a modular educational robot developed by Comau S.p.A. The robot is
a manipulator composed by six joints, more in details it is an anthropomorphic
manipulator with spherical wrist. Inside the base, e.DO contains a raspberry pi
controller with ROS installed that manages the motion with an open-source control
logic. Thanks to the possibility to add some instruments on the sixth axis such us
grippers or pens it’s possible to make e.DO execute different tasks like simple pick
and place movements to handle automated activities [13][14].

Figure 3.1: e.DO description [13]

The embedded controller Raspberry pi is based on Raspbian Jessie O.S. and
has inside the ROS Kinetic Kame. The USB RosSerial allows the communication
between the raspberry pi and all the joints on the robotic arm, that are considered
as independent nodes from the ROS point of view. Moreover there is also the
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possibility to communicate with external devices with the USBs, WiFi and Ethernet
interfaces in order to connect and control the robot throught the PC or remote
app/tablet and execute the desidered trajectory, Fig. 3.1.

3.2 Software Architecture
The architecture of the e.DO controller is showed in Figure 3.2.

Figure 3.2: e.DO software architecture [13]

Inside the robotic arm there is a CAN network that allows the communications
between all the joints, that are independent ROS nodes, and the raspberry pi. The
six joints are equipped with print circuit boards with ChibiOS/RT (GPL3) and
KebiOS that runs the applications.

The raspberry pi runs different ROS nodes which subscribes/publishes messages
on different topics. The most important are: ROS e.DO Algorithm that manages the
planning of the motion through the proper algorithm “ORL”, ROS State Machine
that manages the state of the robot in terms of positions and others variables
related to the joints, and the ROS Bridge that manages the communication with
the App. e.DO Algorithm, once subscribed to topics related to movement requests
of the robot coming from external devices, publishes messages for the joints with a
frequency of 10 ms that contain the correct values in terms of position, velocity
and accelerations. This is possible thanks to the ORL library inside the kernel that
provides the translation between positions of the joints and current/acceleration
values to provide. The six joints that are subscribed to the specific topic, check
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with a rate of 1ms if a new message is available thank to a microinterpolator and
provide the values of current and acceleration to the actuators with a PID control.

3.3 Hardware Description
e.DO is a modular robot that is available in different version and configurations
[15]. There are two types of joints: three big joints corresponding to the first three
axes (Ax1 Ax2 Ax3) and three small joints for the lasts three axes (Ax4 Ax5 Ax6),
each of these with a separate board, motor and an encoder sensor. Each axis
also has the ability to rotate in both the directions [15]. The maximum payload
supported by the robot is 1kg and it can apply a torque of 4N/m. For this reason,
the robot is suitable for very simple pick and place movements and for automatic
activities, e.g. sorting. The motion units of the six axes are composed of DC
motors and a print circuit board with ChibiOS/RT (GPL3) for the control logic.
Each unit is equipped with an integrated memory and the control is autonomous
and independent from the others and can be configured in function of the goal.
The motion units are differentiated into three big motion units with max speed of
38 deg/s and a static torque of 17.9Nm and three small motion units with max
speed of 56 deg/s and static torque of 2.75Nm [15]. The hexagonal base structure
holds the integrated raspberry pi with the sd memory card that stores the e.DO
control logic. It is also equipped with an external USB port, one RJ45 Ethernet
port, a DSub-9 Serial port that allows to connect with external devices and with
an universal external power source with 12V power adapter [15]. There is also an
external emergency stop button for emergency cases. Inside the robotic arm the
CAN network connects and allows the communication between all the joints and
the raspberry pi [13][16]. Tables 3.1 and 3.2 show the technical specifications and
the motion units characteristics provided by Comau.
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Specifications Value
Number of axis 6
Max payload 1 Kg
Max reach 478 mm
Axis 1 +/-180° (38°/sec)
Axis 2 +/-113° (38°/sec)
Axis 3 +/-113° (38°/sec)
Axis 4 +/-180° (56°/sec)
Axis 5 +/-104° (56°/sec)
Axis 6 +/-2700° (56°/sec)

Total weight 11,1 Kg
Robot arm weight 5,4 Kg
Structure material Ixef 1022

Table 3.1: Technical specifications provided by Comau [16] [17]

Specifications Big Small
Max Speed [deg/s] 38 56
Static Torque [Nm] 17.9 2.75
Max Torque [Nm] 20 3.16

Tilting Moment [Nm] 20 4.7
Weight [Kg] 0.88 0.42
Lenght [Mm] 114 90
Diameter [Mm] 85 70

Table 3.2: Motion units specifications provided by Comau [16] [17]
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3.3.1 e.DO gripper
The considered end effector is a gripper with two fingers that is installed on the
wrist of the robot and connected to the CAN network as the other motion units,
Fig. 3.3. The presence of the prismatic joint allows a linear movement, to open and
close the two fingers. Figures 3.4 and 3.5 show the gripper when it is open/closed
with the relative measurements in mm. The technical specifications are shown in
Table 3.3.

Figure 3.3: Gripper [18]

Figure 3.4: Gripper open (mm)
[19]

Figure 3.5: Gripper closed
(mm) [19]
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Description Feature
Type 2-finger Gripper
Weight 200 g
Stroke With neoprene fingertip cover 77 mm
Payload 400 g

Opening/closing maximum speed 80 mm/s
Clamping force <65 N
On-board sensors Encoder
Comau Part No. CR82442100

Table 3.3: Technical specifications provided by Comau [15]

3.4 e.DO ROS Workspace
The e.DO ROS workspace is composed by a source folder that contains the source
code of the catkin packages, the build folder that is the space for build all the
packages in the source space and finally the development folder for the built target.
The source folder contains two packages:

• edo_core _msg

• edo_core _pkg
edo_core _msg is the package that contains all the ROS messages associated

to the ROS topics, while edo_core _pkg is the package developed by Comau
that contains all the ROS nodes that allow to control the motion of e.DO and to
manage the communication with external devices, like the Android application.
The edo_core _pkg is composed by the config folder that contains the different
configurations of e.DO, a launch folder for the launch file that sets all the parameters
when the system is started, the CMakeList file, the include folder and the source
folder that contains the C++ source code of all the ROS nodes that runs on the
raspberry. As mentioned before, the most important nodes are: "edo_algorithms",
"edo_state_machine", "edo_bridge" and "edo_recovery".

e.DO Algorithm is the main node that controls the motion of e.DO and manages
the main functionalities that are: calibration, feedback signal, errors notification
and communication with the State Machine node, Fig. 3.6. Particularly important
is the calibration of the robot; in fact, at each startup e.DO needs to calibrate all
the joints in order to set the initial reference of the encoders. The calibration can
be performed by the users with the Android app and is the first operation that is
done when starting up the application.

The most important function of e.DO Algorithm is to manage the move requests
from the users in order to move the robot according to a defined target point in
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Figure 3.6: e.DO ROS nodes and communications [13]

the space or respect to a specific joints position. In particular, e.DO Algorithm
subscribes to the topic "bridge_move" and receives messages of the type "MoveCom-
mand" that represent movement requests sent by the users through the Android
app or from other control nodes. The messages are analyzed and transmitted to the
"ORL" library, the private Comau library that contains the kinematics algorithms
that allows to control e.DO providing the positions of the joints with respect to
a specific target point and the current/acceleration values for the motors. Then,
after the translation from the library, e.DO Algorithm publishes messages for the
joints with a frequency of 10 ms with the correct values of position, velocity and
accelerations to achieve. The structure of the MoveCommand message is defined
in the package edo_core _msg and is composed of different fields that are showed
in Tables 3.4 - 3.7:
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Type Description
uint18 move_command
uint18 move_type
uint18 override
uint18 delay
uint18 remote_tool
uint18 cartesian linear speed
Point target
Point via
Frame tool
Frame frame

Table 3.4: MoveCommand message structure

Type Description
uint18 data_type

CartesianPose cartesian_data
uint64 joint_mask
float32[] joints_data

Table 3.5: Point message structure

Type Description
float32[] [x,y,z,a,e,r]
string config_flag

Table 3.6: CartesianPose message structure

Type Description
float32[] [x,y,z,a,e,r]

Table 3.7: Frame message structure

The move_command field can be of different types and depending on the
action request can be "MOVE", "JOG", "CANCEL" or "PAUSE". The type MOVE
represents a request of a movement to a target position starting from the current
one. The type JOG increments one of the values of the joints, CANCEL terminates
the execution of the current action, and PAUSE stops the execution of the action.
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The field move_type, instead, specifies the type of movement to perform. There
are three types of movements that can be performed:

• JOINT: Linear movement in the joint space to the target position

• LINEAR: Linear movement in the cartesian space to the target position

• CIRCULAR: Type of movement of the last release of the package that allows
to perform a circular movement

The field Target is a message of type Point and represents the target joint values or
the target cartesian position to reach. In the Via Point field it is possible to specify
an intermediate point during the motion before reaching the target. The Override,
instead, is a percentage value that represents the velocity of the joints during the
movement, with the value 100 associated to the maximum velocity of the motors.
By analyzing the structure of the Point message, the data_type can be JOINT if
it is performed a movement in the joint space or CARTESIAN if in the cartesian
space. In the first case the target position is a vector of joint angular positions
while in the second case is a vector that contains the cartesian coordinates and the
pose of the end-effector. The joint_mask defines how many and which joints to
move during the movement. Each joint is associated to a binary value that can be
1 if the joint is activated or 0 if not. Then, the final binary number is converted
into the corresponding integer number [20].
In Tables 3.8 and 3.9 are showed the codes associated to each field in the messages.

Type Code
MoveCommand:

JOGMOVE 74
JOGSTOP 83
MOVE 77
PAUSE 80
CANCEL 67

MoveType:
JOINT 74
LINEAR 76

CIRCULAR 67

Table 3.8: MoveCommand and MoveType codes

The State Machine node manages the state of the robot and communicates with
e.DO Algorithm, while the ROS Bridge node manages the communication with the
App and external devices. e.DO Recovery, instead, allows to record all the data
relative to the movements performed, such us position, velocity and current of the
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Type Code
DataType:

JOINT 74
CARTESIAN 80
MaskType:

JOINT_MASK6 63
JOINT_MASK7 127

JOINT_MASK_EXT 64

Table 3.9: DataType and MaskType codes

motors, and to store them in a txt file on the raspberry internal memory [20]. The
State Machine node subscribes to the topic bridge_move and publishes messages
on the topics machine_move and machine_state. In fact, each time a new message
is received on the topic bridge_move, the node updates and publishes its status
on the topic machine_state and transmits the message to e.DO Algorithm on the
topic machine_move [20]. The possible states of e.DO are:

• INIT: e.Do initial state when powered on

• NOT CALIBRATE/CALIBRATE: States before and after the calibration
procedure

• MOVE: When the message received is a Move

• JOG: When the message received is Jog

• ERROR: When an internal error occurs

• BRAKED: When a critical fault occurs and the motors are powered off

• COMMAND: When a new message is received
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The codes associated to each state are showed in Table 3.10.

Type Code
INIT 0

NOT CALIBRATE/CALIBRATE 1-2
MOVE 3
JOG 4

ERROR 5
BRAKED 6

COMMAND -

Table 3.10: e.DO States

3.5 e.DO Kinematics
e.DO belongs to the category of anthropomorphic robots with a spherical type
wrist structure, Fig. 3.7. It is composed by six joints, hence 6 degrees of freedom,
where the first three belong to the arm and the lasts to the wrist. The workspace
is a portion of the sphere of large dimension and it is a very typical structure used
in the industries because allows to make easily many types of movements [2].

Figure 3.7: Anthropomorphic arm with spherical wrist [2]
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n ai(mm) αi(rad) di(mm) θi(rad)
1 0 π/2 0 θ1
2 210.50 0 0 θ2
3 0 π/2 0 θ3
4 0 −π/2 268.00 θ4
5 0 π/2 0 θ5
6 0 0 174.50 θ6

Table 3.11: DH Parameters

Considering the DH parameters in Table 3.11, the transformation matrices for
the arm are:

T 0
1 (q1) =


cos q1 0 − sin q1 0
sin q1 0 − cos q1 0

0 1 0 0
0 0 0 1

 (3.1)

T 1
2 (q2) =


cos q2 − sin q2 0 a2 cos q2
sin q2 cos q2 0 a2 sin q2

0 0 1 0
0 0 0 1

 (3.2)

T 2
3 (q3) =


cos q3 − sin q3 0 a3 cos q3
sin q3 cos q3 0 a3 sin q3

0 0 1 0
0 0 0 1

 (3.3)

while for the wrist:

T 3
4 (q4) =


cos q4 0 − sin q4 0
sin q4 0 − cos q4 0

0 −1 0 0
0 0 0 1

 (3.4)

T 4
5 (q5) =


cos q5 0 sin q5 0
sin q5 0 − cos q5 0

0 1 0 0
0 0 0 1

 (3.5)
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T 5
6 (q6) =


cos q6 − sin q6 0 0
sin q6 cos q6 0 0

0 0 1 d6
0 0 0 1

 (3.6)

Considering the previous transformation matrices and the DH parameters in
Table 3.11, it is obtained the final transformation that determines the position and
orientation of the last reference frame of the 6th link respect to the base reference
frame:

T 0
6 (q) =

C
R0

6(q) t06(q)
0T 1

D
=

C
n0

6(q) s0
6(q) a0

6(q) t0
6(q)

0 0 0 1

D
(3.7)

with:

t0
6 =

a2c1c2 + d4c1s23 + d6(c1(c23c4s5 + s23c5) + s1s4s5)
a2s1c2 + d4s1s23 + d6(s1(c23c4s5 + s23c5)− c1s4s5)

a2s2 − d4c23 + d6(s23c4s5 − c23c5)

 (3.8)

n0
6 =

c1(c23(c4c5c6 − s4s6)− s23s5c6) + s1(s4c5c6 + c4s6)
s1(c23(c4c5c6 − s4s6)− s23s5c6)− c1(s4c5c6 + c4s6)

s23(c4c5c6 − s4s6) + c23s5c6

 (3.9)

s0
6 =

c1(−c23(c4c5s6 + s4c6) + s23s5s6) + s1(−s4c5s6 + c4c6)
s1(−c23(c4c5s6 + s4c6) + s23s5s6)− c1(−s4c5s6 + c4c6)

−s23(c4c5s6 + s4c6)− c23s5s6

 (3.10)

a0
6 =

c1(c23c4s5 + s23c5) + s1s4s5
s1(c23c4s5 + s23c5)− c1s4s5

s23c4s5 − c23c5

 (3.11)
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3.5.1 Singolarities
Considering the geometric Jacobian:

Jg(q) =
C
J11 J12
J21 J22

D
(3.12)

with Jij ∈ R3,3

and fixing the origin of the end-effector reference frame in the intersection of the
wrist axes, it’s obtained the decoupling of the singularities of the arm and wrist:

J12 =
è
0 0 0

é
(3.13)

det(Jg) = det(J11)det(J22) (3.14)

By solving the equation det(J11) = 0 are obtained the arm singularities while
solving det(J22) = 0 are obtained the wrist singolarities:

• Wrist singularities: q5 = 0, π

• Arm singularities: q3 = 0, π (elbow singularity) and (a2c2 + a3c23) = 0

with :
J22 =

è
z3 z4 z5

é
(3.15)

J11 =

−s1(a2c2 + a3c23) −c1(a2s2 + a3s23) −a3c1s23
c1(a2c2 + a3c23) −s1(a2s2 + a3s23) −a3s1s23

0 a2c2 + a3c23 a3c23

 (3.16)
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Project development

4.1 System description
The considered pick and place task consists of releasing an object grasped by e.DO
in a double box positioned on the base of the AGV. The two boxes on the base
represent two containers associated to correctly processed pieces and production
wastes. Each box is associated to a specific color that is defined by the user in the
configuration step. The object to be released in the correct box is a small ball which
can be easily grasped and released by the gripper in a possible real implementation,
while for the gazebo simulation are considered both a small ball and a coke can,
which are object standard models already available in the environment. In order to
coordinate the movement between the two robots and improve the accuracy on the
release position, it has been used a camera sensor. For the real implementation the
camera is connected directly to the external raspberry pi controller, while for the
Gazebo simulation it has been used a gazebo plugin that simulates the behaviour
of the camera and that publishes the images with a fixed rate. In particular, the
camera has the dual purpose of correcting the trajectory of the AGV and allowing
the identification of the point where to release the object (ball/coke can) in the
double box with different colors. In the gazebo simulation it has been used also a
laser scan sensor to measure the AGV distance from e.DO and hence to check if
the AGV is positioned correctly in the target release zone. With the aim of having
the best field of vision both to recognize the AGV and to coordinate the release of
the piece in the right box, two types of position for the camera have been analyzed:

1. Camera positioned on the wrist of e.DO

2. Camera positioned on the e.DO base or in front of the two robots

By positioning the camera on the base of e.DO or in front of the robots so that
the gripper and the AGV are visible in the camera’s field of view, it is possible to
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recognize if the AGV has arrived in the release zone and also to coordinate the
release movement on the correct box. On the contrary, positioning the camera
on the wrist it is possible only to coordinate the movement by sliding the e.DO
wrist on the boxes, but it is more difficult to recognize the AGV. For this reason,
in this case the introduction of the laser sensor is required. Figure 4.1 provides a
description of the overall system:

Figure 4.1: System description and connections

The external raspberry pi represents the core of the system. It runs Ubuntu
Mate 18.04.2 O.S. with ROS Melodic installed in the base version. The ROS
package inside the workspace manages all the movements to perform in order to
accomplish the task. The raspberry pi is connected to the camera sensor through
the USB cable while an ethernet connection allows the communication with the
raspberry pi embedded in the base of e.DO. The communication with the AGV
takes place via a Wifi connection where both the raspberry and the AGV are
connected.

For the gazebo simulation, however, the raspberry has not been used because
the simulation of the entire system is very heavy from the computational point
of view and requires more performing resources. For this reason, the system was
simulated on another much more performing machine which allowed to test all the
functionality of the ROS package in a simulated environment. Figure 4.2 describes
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the system in the Gazebo environment.

Figure 4.2: System in the Gazebo world

4.2 Communication with e.DO
With the goal to integrate the robot e.DO with external devices, two different
types of communication between the raspberry pi controller and the raspberry pi
embedded in the e.DO base have been analyzed:

1. Communication with ROS

2. Comunication with Python ROS Bridge library

The first type of communication is based on ROS and consists on running ROS on
multiple machines in order to obtain a unique autonomous system with different
ROS nodes on the different machines that communicate each other as running on
the same machine. The second way to communicate is based on the “roslibpy“
library, that is a python library that allows to interact with the ROS framework.
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4.2.1 Communication with ROS
This first way to communicate is based on creating a ROS communication between
the devices, with one device that run the ROS master and the others that connect
to the master in the network [21]. In this case the raspberry pi inside e.DO runs
the ROS master and all the remote nodes on the external raspberry connect to the
master through an ethernet cable between the two raspberry pi.
The first step is to connect the two raspberry to the same local network and get
the ip addresses. Then it is necessary to check if they have the same version of
ROS installed or versions that are compatible in terms of type of messages and
dependencies. The last step is to edit a bashrc file to indicate the ip address of the
computer running the ROS master and the ip address of the local computer [21].

1 #!/ bin /bash
2 source /home/ raspber ry /catkin_ws/ deve l / setup . bash
3 sudo i f c o n f i g eth0 1 0 . 4 2 . 0 . 1 0
4 export ROS_MASTER_URI=http : / / 1 0 . 4 2 . 0 . 4 9 : 1 1 3 1 1
5 export ROS_IP=10 .42 .0 .10
6 s l e e p 5
7 rosrun edo_core_pkg edo_agv_node
8 s l e e p 2
9 wait

The previous configuration script that runs on the raspberry pi controller,
sequentially:

1. Set the local ethernet ip address to 10.42.0.10

2. Set the ip address of the ROS master, in this case it is the master that runs
on e.DO

3. Set the local Ros ip address

4. Run the node “edo_agv_node” on the current raspberry pi

The edo_agv_node in this case is a node that reads the state of the robot e.DO
and prints the messages of the topic “machine_state” on the current console.

38



Project development

4.2.2 Comunication with Python ROS Bridge library
The Python ROS Bridge library allows to create python programs that are able to
interact with the ROS framework. The library is based on WebSockets in order to
connect to the rosbridge and provides the main ROS functionalities and different
services such us publishing, subscribing, service calls and actionlib [22]. Moreover,
it doesn’t require a ROS environment and provides the possibility to write python
programs in different platforms other than Linux [22].

The next functions in the python code allow to connect with the ROS framework:

1 c l i e n t = ro s l i bpy . Ros ( host=’ 1 0 . 4 2 . 0 . 4 9 ’ , port=9090)
2 c l i e n t . run ( )

In particular, the first function creates a connection with ROS that runs on the
computer with the local ip address “10.42.0.49”, that is the ip address of the ROS
master. The second one starts the connection with a call to the function run() that
starts the event loop in the background [23].

Also for this type of communication it has been used an ethernet cable to connect
the external raspberry pi, that runs the python program, and the robot e.DO that
runs the ROS master and the other nodes of the edo_core _package.
As an example, the following part of a python program starts a ROS node and
publishes messages in a while loop based on the value of a flag variable. The message
is “MovementCommand” of the topic “bridge_move”. The move_joint() function
publishes a new “MovementCommand” message on the topic “bridge_move” with
a particular position of the joints.
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1 c l i e n t = ro s l i bpy . Ros ( host=’ 1 0 . 4 2 . 0 . 4 9 ’ , port=9090) # Cable
2 #c l i e n t = ro s l i bpy . Ros ( host = ’192 .168 . 12 . 1 ’ , port=9090) # Wi−Fi
3 MovementCommand = ro s l i bpy . Topic ( c l i e n t , ’ /bridge_move ’ , ’

edo_core_msgs/MovementCommand ’ )
4 l i s t e n e r= ro s l i bpy . Topic ( c l i e n t , ’ machine_state ’ , ’ edo_core_msgs/

MachineState ’ )
5 c l i e n t . run ( )
6 command = {}
7 command_template = { # Standard Command Template
8 "move_command" : 0 ,
9 "move_type " : 0 ,

10 " ovr " : 0 ,
11 " de lay " : 0 ,
12 " remote_tool " : 0 ,
13 " ca r t e s i an_l inear_speed " : 0 . 0 ,
14 " t a r g e t " : {
15 " data_type " : 0 ,
16 " cartes ian_data " : { " x " : 0 . 0 , " y " : 0 . 0 , " z " : 0 . 0 , " a " : 0 . 0 , " e

" : 0 . 0 , " r " : 0 . 0 , " c on f i g_ f l a g s " : ’ ’ } ,
17 " joints_mask " : 0 ,
18 " jo int s_data " : [ 0 ] } ,
19 " v ia " : {
20 " data_type " : 0 ,
21 " cartes ian_data " : { " x " : 0 . 0 , " y " : 0 . 0 , " z " : 0 . 0 , " a " : 0 . 0 , " e

" : 0 . 0 , " r " : 0 . 0 , " c on f i g_ f l a g s " : ’ ’ } ,
22 " joints_mask " : 0 ,
23 " jo int s_data " : [ 0 ] } ,
24 " t o o l " : { " x " : 0 . 0 , " y " : 0 . 0 , " z " : 0 . 0 , " a " : 0 . 0 , " e " : 0 . 0 , " r " :

0 . 0} ,
25 " frame " : { " x " : 0 . 0 , " y " : 0 . 0 , " z " : 0 . 0 , " a " : 0 . 0 , " e " : 0 . 0 , " r " :

0 .0}}
26 de f move_joint ( ovr=30, j 1 =0.0 , j 2 =0.0 , j 3 =0.0 , j 4 =0.0 , j 5 =0.0 , j 6

=0.0 , j 7 =0.0) :
27 command = command_template
28 command [ ’move_command ’ ] = MoveCommand .EXE_MOVE. value
29 command [ ’move_type ’ ] = MoveType . JOINT. value
30 command [ ’ ovr ’ ] = ovr
31 command [ ’ t a r g e t ’ ] [ ’ data_type ’ ] = DataType .E_MOVE_POINT_JOINT.

value
32 command [ ’ t a r g e t ’ ] [ ’ joints_mask ’ ] = MaskType .JOINT_MASK7. va lue
33 command [ ’ t a r g e t ’ ] [ ’ j o int s_data ’ ] = [ j1 , j2 , j3 , j4 , j5 , j6 , j 7 ]
34 MovementCommand . pub l i sh ( r o s l i bpy . Message (command) )
35 whi le (1 ) :
36 i f ( f l a g ) :
37 move_joint ( 1 0 0 , 4 0 . 0 , 0 . 0 , 3 5 . 0 , 2 0 . 0 , 9 0 . 0 , 9 0 . 0 , 0 . 0 )
38 e l s e :
39 move_joint ( 1 0 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 )
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4.3 Autonomous Guided Vehicle
Since the AGV was not available during the development phase it has been
performed a gazebo simulation with a differential drive mobile robot that interacts
with the robot e.DO. The mobile robot has been created developing the URDF
file that describes and contains the model of the robot for the simulation in the
Gazebo world. The model has been created in such a way to be similar to the
common Pioneer 3-DX mobile robot, Fig. 4.3. The Pioneer 3-DX is a small
differential drive mobile robot that is widely used in research laboratories or for
indoor environment. The robot is equipped in the standard version with a front
sonar, one battery, encoder sensors for the wheel and with an on board micro
controller. The characteristics of the robot that make it very popular are: versatility,
reliability and durability. For this reason is the preferred platform for advanced
intelligent robotics [24].

Figure 4.3: Pioneer 3-DX [24]
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As it is possible to see in Figure 4.4, the mobile robot built in Gazebo is
equipped with two boxes positioned on the base and that represents the two
containers associated with correctly processed pieces and production wastes.

Figure 4.4: Mobile Robot in Gazebo
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4.4 Task assumptions
During the development phase some assumptions have been made. First of all, when
the system starts, the AGV reaches e.DO in a known release zone and positions
itself in lateral position at a predefined point in the space so that the two boxes
on the base are clearly visible from the camera. Moreover, the movement of the
AGV is managed and planned separately from the system. The second assumption
is that e.DO starts the movement from a known joint configuration called "INIT
position" and the object is already kept by the gripper. For this reason, it is
possible to identify two main areas and three points in space that allow to define
the Point-to-Point movements of e.DO from one area to another in order to release
the piece in the right AGV box. The points and the zones are shown in Table 4.1.
The e.DO zone is the area where the robot e.DO is located when it is ready to

Zone Point
e.DO zone Init point
Release zone e.DO target point

AGV target point

Table 4.1: Zones and points of the workspace

release the object, while the Release zone is the area inside the workspace of e.DO
that the AGV reaches when the system starts. The Init point is the point in the
space of the e.DO zone that corresponds to the initial position of the end-effector
before the start of the movement. The AGV target point is the position in the
space where the AGV is positioned as soon as it arrives in the release area. The
pose of the AGV has the same orientation with respect to the camera so that the
AGV and the boxes are perfectly visible when it arrives and position itself in a
lateral position. The e.DO target point instead is the first point in which e.DO
starts to move from the Init point when the system starts. This point refers to the
point of the space belonging to the Release zone positioned above the boxes and in
the center of the AGV.
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4.5 State machine
The state machine shown in Figure 4.5 describes at a high level the evolution of the
system, starting from checking the status of the two robots up to the completion
of the task.

Figure 4.5: System state machine

The states are:

• INIT: It is the initial state of the system in which it waits for the two robots to
be ready to perform the task. In other words, it waits until e.DO has grabbed
the piece to be released and is ready in the Init position and the AGV is ready
to move to the release zone.

• 1: State in which e.DO is ready while the AGV is not-ready yet. The system
waits until the AGV is ready.

• 2: State in which the AGV is ready to move to the release zone while e.DO is
still moving. The system waits e.DO until it is ready in the Init position with
the object kept by the gripper.

• 3: State in which both e.DO and the AGV are ready to execute the task.
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• 4: In this state the AGV is moving and the system waits until it reaches the
target position in the Release zone.

• 5: State in which the AGV is arrived in the target point and it has been
recognized from the vision system.

• 6: It is the final state in which e.DO is moving to perform the task. The
system waits until the task is completed and the object has been released in
the box.

4.6 Activity and path planning
The main task of e.DO is to take pieces and put them inside one of the two boxes
positioned on the base of the AGV. For the thesis work, only the piece release
operation is considered. The piece release operation can be divided into a series of
elementary moves that allow to complete the task. In particular, it is possible to
identify three elementary moves:

1. Move the gripper with the piece inside towards the e.DO target point in the
space corresponding to the center of the AGV above the boxes.

2. Move the gripper above the correct target box

3. Open the gripper and drop the piece into the box

The three moves are performed consecutively in an orderly manner and define
the whole path that the robot must follow. The first move is associated with
a path in the joint space that corresponds to a linear PTP movement from the
Init initial configuration of e.DO Q0 to the final configuration Qf corresponding
to the e.DO target point in space, Fig. 4.6. For this type of path, it has been
chosen a movement in the joint space in order to avoid any kinematic singularities
being the longest path of the task. Furthermore, this movement in the joint space
doesn’t allow to assign a particular path of the end effector and the resulting
cartesian movement is of a non-linear type. For the second move it is necessary to
consider the physical constraints determined from the shape of the boxes during
the motion. In order to avoid collisions, the move is associated with a path in the
cartesian space that corresponds to a linear PTP movement between the e.DO
target point and the point in the space above the target box, Fig. 4.7. Since
the e.DO target point is referred to the center of the AGV above the boxes, it is
possible to identify a linear movement along the longitudinal axis above the boxes

45



Project development

Figure 4.6: Joints movement

Figure 4.7: Cartesian movement

where the gripper moves until it reaches the right box. The trajectory related to
the two moves was not planned but the Comau library was directly exploited. The
library allows the generation of the trajectory both with planning in the joint space
and in the cartesian space. In particular, by publishing a MovementCommand
message on the topic /bridge_move, it is possible to move e.DO in the space both
with a linear movement in the joint space and with a linear cartesian movement
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of the gripper. When planning the trajectory in the operational space, starting
from the planned trajectory p(t) it is necessary to calculate the corresponding
samples of position, velocity and acceleration of the joints through the inverse
kinematics. The Comau library allows this calculation directly through an inverse
kinematics function implemented in the cartesian movement. So the first move is
associated to a MovementCommand type message in the joint space that contains
the references of the joints with respect to the target e.DO point, while the second
move is associated to a MovementCommand message corresponding to a cartesian
movement of the gripper with respect to the coordinates of the target box, Fig. 4.8.

Figure 4.8: Comau movements
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4.7 Gripper positioning exploiting visual infor-
mation from the camera

Once the gripper is ready and positioned in the e.DO target point right above the
boxes of the AGV, a cartesian linear movement is executed along a straight line
between the e.DO target point and the point in the space above the target box.
For this purpose the camera allows to coordinate the movement of the gripper
through the identification of the point in the space above the target box in which
the object can be safely released. In order to do that, image processing operations
are performed thanks to which it is possible to detect the position of the target box
and/or the position of the e.DO gripper in the image 2D plane. Depending on the
type of the camera configuration and on the image processing techniques, different
strategies have been adopted. The implemented strategies exploit the information
extracted from the 2D image in order to move and position the gripper on the
target box, thanks to the functions provided by the Comau library, as mentioned
before.

4.7.1 Camera-to-hand configuration
Considering the camera-to-hand configuration, it has been implemented an image-
based visual servoing strategy (IBVS) that use the cartesian type MovementCom-
mand message of the topic /bridge_move in order to move the gripper in the
direction of the target box. In this configuration the camera is positioned on the
base of e.DO or it is arranged sideways in front of the two robots in such a way
that the gripper and the boxes on the AGV are clearly visible when the AGV is
located in lateral position. In particular, three approaches with three different
type of image processing techniques have been evaluated. The image processing
techniques differ in the operations that allow the detection of the gripper and/or
the object to release. Given the image provided by the camera, the first approach
is based on the real time detection of the gripper and the target box. Instead, the
other two approaches are based on the detection of the target box and the object
to be released instead of the gripper. This choice is justified by the fact that the
position of the object in the image provides a reliable information on the current
position of the gripper and above all, it makes the identification process much
easier since the geometry of the gripper is complex and therefore complicated to
identify. Regardless of the type of approach used, when the target box and the
gripper/or the object have been identified, the pixel coordinates in the image plane
are calculated. Finally, it is computed the error between the two pixel coordinates
on the width dimension of the camera that is used for the control action. In fact,
based on the errors computed in the image processing phase, the control action
increments the position of the gripper with a cartesian movement until the camera
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sees the gripper ready to release the object on the top of the correct box. Figure 4.9
describes the general control scheme and Figure 4.10 shows the image processing
steps:

Figure 4.9: Camera-to-hand general control scheme

Figure 4.10: Image processing steps
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4.7.2 Camera-in-hand configuration
Considering the camera-in-hand configuration, instead, the same IBVS approach
is used but with the camera located on the wrist. More in details, the camera is
positioned below the wrist of e.DO in such a way to see the boxes of the AGV under
the current position of the gripper. In this case the image processing functions are
based only on the identification of the target box. Once the target box has been
identified, the pixel coordinates in the image plane and the error with respect to
the center of the camera are calculated. Then, the control action increments the
position of the gripper with a cartesian movement until the target box is positioned
at the center of the camera. The control scheme and the image-processing steps
are described in Figures 4.11 and 4.12:

Figure 4.11: Camera-in-hand general control scheme

50



Project development

Figure 4.12: Image processing steps
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4.8 Edo-AGV_Integration ROS Package
A specific ROS package has been developed which implements all the functionalities
of the system. The ROS package contains different nodes and a finite state machine
that manages all the nodes and the evolution of the system. In developing the
package and writing the code, a modular approach was used in order to have
a structured environment divided into independent modules that can be easily
reused and/or modified for future developments. In particular, the developed
structure includes a management code associated to each robot that manages its
communication and movements and a code that manages the state of the entire
system. The code was written as modular and generic as possible, thanks to the
use of global variables and generic parameters which are defined and set during the
configuration phase. Python was chosen as the programming language in writing
the different nodes as it is an interpreted language and very simple to use. Its use
simplified the development phase by reducing the complexity of the code and the
time required for the testing phase, since it was not necessary to recompile the
nodes after each change. Therefore the package consists of three main nodes and a
state machine that manages the entire system:

• State Machine node

• e.DO Manager node

• AGV Manager node

• System state node

The package directory contains:

1. src folder : containing all the python nodes of the system

2. param folder : containing the configuration file with all the parameters for
the nodes

3. launch folder : containing a launch file that launches the nodes and registers
the parameters of the configuration file to the ROS parameter server

4. package.xml file
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The complete representation of the workspace is described in Figure 4.13.
In order to recognize the AGV when it arrives and is positioned in front of the

Figure 4.13: ROS workspace

camera, the node find_object_2d_node.py of the ROS package find _object _2d
was used. This node allows to recognize objects in the image provided by the camera
that have been previously saved in a learning phase. The usb_camera_node.py
is a ROS node that allows to interface to the usb camera connected to the rasp-
berry and publishes the captured images as Image messages of the sensor_msgs
library. Since the AGV was not available during the development phase, the
node agv_sim_node.py was created which allows to simulate the actions and the
movements of the AGV during the gazebo simulation. As it is possible to see
in Figure 4.13, the agv_manager _node subscribes also to the topic /laser_scan
that is the topic used by the laser plugin in the gazebo simulation. Thanks to the
information provided by the laser it is possible to measure the AGV distance from
e.DO and to check if the AGV is correctly positioned.
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4.8.1 Smach State Machine
The SMACH ROS package was used for the implementation of the state machine;
such a package provides various tools and efficient structures for the implementation
of a robust state machine that integrates very well with the ROS environment.
Thanks to the use of this package, a more complex finite state machine has
been implemented than the one in Figure 4.5. The state machine allows the
synchronization of the two robots and manages all the movements and the actions
that must be performed to complete the task. It is composed of different states in
which different actions are performed, starting from waiting for the two robots until
they are ready and until the execution of all the operations necessary to complete
the task. The implemented state machine is described in Figure 4.14 thanks to the
use of the smach_viewer package. The package allows to displays the smach state
machine that is running on the system.
The states are:

1. INIT: Initial state of the system which monitors the topic /system_state.
When it receives the message "Ready", the state changes to SYS_READY.

2. SYS_READY: In this state both e.DO and the AGV are ready to perform
the task. The state monitors the topic /task and waits for an external "Start"
message before to start the task. Then the state changes to WAIT_AGV.

3. WAIT_AGV: This state waits the AGV until it reaches the target position in
the Release zone and is recognized from the vision system. The state monitors
the topic /agv_detected and it changes when the message "True" is received,
meaning that the AGV has been recognized.

4. WAIT_AGV_TARGET_POS: In this state the AGV has been detected and
its position is corrected. The state waits until the AGV is correctly positioned
in a lateral position with respect to the center of the camera, in order to let
the boxes clearly visible. When a "Ready" message on the topic /agv_position
is received, the state changes to AGV_READY.

5. AGV_READY: This state starts the movement of e.DO toward its target
position with the AGV ready and positioned correctly in the target point. The
state publishes the message "move_to_target" on the topic /edo_movement
in order to start the movement.

6. WAIT_EDO_TARGET_POS: The state monitors the topic /edo_position
and waits for a "Ready" message from the edo manager node meaning that the
movement has been completed and e.DO has reached the e.DO target point.
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7. EDO_TARGET_POS: The state starts the movement of the gripper on
the correct box by publishing the message "move_gripper" on the topic
/edo_movement.

8. WAIT_GRIPPER: The state monitors the topic /edo_position until it receives
the message "Ready" meaning that the movement has been completed and the
gripper is positioned on the target box.

9. GRIPPER_READY: The state starts the release movement on the target box
by publishing the message "release_object" on the topic /edo_movement.

10. WAIT_RELEASE: The state monitors the topic /edo_position and waits
for a "Ready" message published by the edo manager when the movement is
complete and the object has been released.

11. END_TASK: It is the final state, indicating that the task is completed. The
state publishes the message "Task_completed" on the topic /task for the
manager nodes of the two robots. Then e.DO returns in the INIT position
and the AGV starts to move to the Initial zone.
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Figure 4.14: Smach state machine

4.8.2 System state node
The System state node manages the state of the system as a whole considering
the state of the single robots. In particular, the node subscribes to the topic
/machine_state and /agv_state and publishes the overall state of the system on
the topic /system_state. /machine_state is the topic on which e.DO publishes its
state while the AGV publishes the state on the topic /agv_move. In particular,
when a MachineState message is received on the topic /machine_state, the code
associated with the current state of e.DO is interpreted as in Table 3.10, while
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the AGV publishes its state with a String message on the topic /agv_state. So,
considering the current state of both the robots, the node publishes with a rate of 10
Hz the overall state of the system with a String message on the topic /system_state.
The possible messages are shown in Table 4.2:

State of the system
System _Ready

Not-ready
Agv _movement
Edo _movement
System _error
System _busy

Table 4.2: System states

4.8.3 Edo Manager node
Edo manager is the ROS node that manages communication with e.DO and controls
its movements during the execution of the task, Fig. 4.15. The communication
between the node and e.DO occurs mainly through two topics made available by
the edo_core_package package:

• /machine_state

• /bridge_move

/machine_state is the topic on which e.DO publishes its state and is therefore used
to determine the current state of e.DO and synchronize the various movements
during the task. /bridge_move instead, is the topic used to send movement requests
to e.DO both in the joint space and in the cartesian space.
The communication with the state machine takes place via three main topics: /task,
/edo_position and /edo_movement.
The state machine sends movement requests to the e.DO manager node via the
topic /edo_movement, while the topic /edo_position is used by the node to signal
the completion of the movement to the state machine. The topic /task instead is
the topic in which the state machine sends the message "Task_complete" to signal
to the node that the task is complete and e.DO can return to the Init position.
Therefore, the node subscribes to the topics: /edo_movement, /machine_state,
/task and publishes messages on the topics /edo_position and /bridge_move.
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Figure 4.15: Edo manager

In particular, the state machine sends the movement requests to the node with
different types of String messages on the topic /edo_movement which are:

• move_to_target

• move_gripper

• release_object

Then the callback function of the topic /edo_movement interprets and manages each
move request by invoking the functions that allows to perform the movement. move
_to_target is the request related to the movement of the gripper towards the e.DO
target point, move_gripper refers to the movement of the gripper on the target box
exploiting the information of the camera, while release_object represents the request
of the piece release operation when the gripper is correctly positioned on the target
box. As previously mentioned in sections 4.6 and 4.7, the move_to_target and
release_object requests are associated with a MovementCommand message in the
joint space, while the move_gripper request is relative to the execution of a cartesian
movement using the camera information with cartesian type MovementCommand
messages. In order to do that, the Edo Manager node subscribes to the topic
/camera/image_raw related to the camera images published by the camera_node,
and controls the positioning of the gripper.
The callback of the topic /camera/image_raw, in fact, implements the different
strategies discussed in section 4.7 considering both the camera configurations and
the different image-processing techniques. In particular, the OpenCV library was
used, which is one of the most famous libraries employed in vision systems and
represents the state of the art for image processing. Each frame is then processed
to identify the gripper or the object and the target box according to the used
strategy. Considering the camera-to-hand configuration, different transformations
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are applied to the image that allow to identify the gripper/object and the target
box. In general, regardless of the type of the object to be identified, an approach
similar to the one described in [25] has been implemented. For that purpose
the following transformations and functions provided by the OpenCV library are
applied sequentially [26]:

1. cvtColor() [27]: Method used to convert the captured image to another scale
of colors, in this case from BGR (blue, green, red) to HSV (hue, saturation,
value).

2. inRange() [27]: Method that allows to filter the colors in the image between a
min and max threshold that corresponds to the object.

3. findContours() [28]: Method used to find contours in the filtered image.

4. contourArea() [29]: Method used to calculate the area of the contours and
therefore to verify if the area of the contour is in the range specified of the
object.

5. moments() [29]: Method used to get the coordinates of the contour.

For the first approach, the transformation chain is used to identify the gripper
and the target box. The same transformations have been used for the second
approach with the difference that the position of the gripper is estimated by
identifying the object enclosed. Then the transformations are used in order to allow
the identification of the object enclosed in the gripper and the target box. Finally,
the last approach uses the chain of transformations for the identification of the
target box while using a cascade classifier [30] for the detection of the object to be
released. In particular the function detectMultiscale() [31] of the OpenCV library
is used allowing to recognize objects in the image that are previously defined in the
configuration of the classifier. Once the objects are identified in the frame, the error
between the found coordinates is calculated and a cartesian movement is applied to
align the gripper to the box. On the other hand, considering the camera-in-hand
configuration, the transformation chain is applied only to identify the target box
and the error is calculated between the found coordinates and the center of the box.
Then a cartesian movement of the gripper is performed so that the box is centered
inside the camera. Therefore, once the error has been calculated, regardless of the
type of approach, a cartesian MovementCommand message is published on the
topic /bridge_move as in section 4.7.

When the requested movement has been completed, a "Ready" message is
published on the topic /edo_position to inform the state machine. For this purpose
the node controls the completion of the movement through the callback of the
topic /machine_state, which is suitably activated. In fact, when a MachineState
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message is received, the node monitors the transition from the Ready state to the
Move state and until it returns to the Ready state, where the completion message
is published.

4.8.4 AGV Manager node
The AGV manager node is the ROS node that manages the communication with
the AGV and controls its movements. The main functions of the node are:

• Recognition of the AGV when it arrives in the Release zone

• Correction of the AGV position with respect to the camera

The node subscribes to the topics /objects, /camera/image_raw, /task, /laser_scan
and publishes instead on the topics /agv_move, /agv_detected, /agv_position.
The arrival of the AGV in the Release zone and its positioning in front of the
camera are recognized thanks to the information published by the find_object_2d
node on the topic /objects. In fact, the find_object_2d node performs a real
time recognition of the AGV in the image provided by the camera and publishes
with a fixed rate the code of the recognized object (in this case the AGV) and its
coordinates inside the image. The AGV Manager node then, using the information
published on the topic /objects, checks it that the AGV has been recognized and
monitors its position within the image until the coordinates become constant. This
means that the AGV has reached the target point; the message "True" is then
published on the topic /agv_detected to inform the state machine. Furthermore,
when the AGV is recognized and for the duration of the position monitoring,
the node checks the AGV distance from the camera thanks to the information
published by the laser. If the distance constraint associated with the target point
is not respected, an error message is published on the topic /agv_move. When the
AGV has been identified and reported to the state machine, the node performs the
correction of the position to let the AGV be positioned in the center of the camera
with the boxes clearly visible. The correction of the position is implemented in
the callback associated with the camera topic /camera/image_raw. The current
position of the AGV in the frame is estimated with the position of the wheel,
which is identified using the functions provided by the OpenCV library used in
subsection 4.8.3. Then, once the position has been identified, the error is calculated
with respect to the center of the camera on the width dimension and a message is
published on the topic /agv_move containing the information on the movement
to be performed. This message will be managed by the ROS node on the AGV
responsible for the motion of the robot. When the positioning at the center of the
camera is completed, a "Ready" message is published on the topic /agv_detected to
inform the state machine. Finally, when the message "Task_completed" is received
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on the topic /task, the node forwards the message to the management node on the
AGV by publishing the message "complete" on the topic /agv_move.

4.9 Other packages and Libraries
During the development phase different ROS package have been used:

• edo_core _package

• SMACH

• opencv _vision

• find_object _2d _

edo_core _package is the package provided by Comau that controls the motion
of e.DO (see section 3.4). The SMACH package contains a ROS-independent
Python library to build hierarchical state machines [32]. The package allows to
design complex state machines with maintainable and modular code [32]. Moreover,
thanks to the easy python syntax it allows fast prototyping [32]. opencv _vision is a
package that allows to interface ROS with OpenCV [33] providing a wrapper of the
OpenCV library for ROS. It provides the package cv_bridge that allows to convert
the ROS Image messages to OpenCV images and the package image_geometry
that contains a set of methods to interpret the images geometry [33]. Finally, the
package find_object _2d _allows to use the "Find-Object" application in ROS.
The application detects the objects from the images captured by the camera and
publishes messages on a ROS topic with id and position of the object in the image
[34][35].
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Gazebo simulation

5.1 Introduction

The entire system has been simulated in Gazebo with a differential drive mobile
robot as collaborative assistant for e.DO. The simulation made it possible to test all
the functionalities of the ROS package in a simulated environment. Gazebo is a very
popular 3D simulator that allows to create robots and testing control algorithms for
robotic systems in a very realistic scenario for both indoor and outdoor environments
[36]. Gazebo is based on OGRE (Open Source Graphics Rendering Engines) for the
graphics, to offer a very realistic rendering for environments [36]. It also provides
a lot of sensors such as 2D/3D cameras, lasers and contact/force sensors and
several plugins that allow to simulate movements. It provides a model editor for
creating robots in the SDF format (Simulation Description Format) and a series of
robot models already available for the simulation [36]. The integration with the
ROS framework takes place thanks to the ROS packages gazebo_ros_pkgs, which
provide an interface for the simulation in Gazebo using the services made available
by ROS. These packages also allow to use the URDF format as if it were SDF with
only the addition of some elements within the XML file [37]. The URDF (Unified
Robotic Description Format) is an XML file format used in ROS to describe all
elements of a robot, specifying its dynamic and kinematic properties [38]. More
in details, the robot is described with a tree structure where the nodes, called
’links’, are the rigid parts of the robot and the connections between them are the
joints. Of particular importance is the Xacro file, which is an XML file format
that is based on functions called macros that simplify the creation of the robot
description thanks to a structured text for the URDF file. To view an URDF file
in Gazebo it is necessary to make some changes to the file by introducing different
tags associated with the links and joints of the robot in order to be compatible
with the simulation environment and equivalent respect to the SDF file. The main
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difference is that the basic URDF file only describes the kinematic and dynamic
characteristics of the robot while the SDF file provides a complete description of
both the robot and its pose within the environment. In particular, in order to
simulate the robot in Gazebo, it is necessary to make the following changes to the
URDF file [38]:

• Configuration of the inertia element within each link

• Introduction of the gazebo element for each joint

• Introduction of the gazebo element for each link

• Introduction of the gazebo element for the robot element

• Introduction of the world link to attach the robot to the world

There are several ways to start gazebo and then load the generated robot model
within the simulation environment [39]. The method used is based on ROS and in
particular on the roslaunch command, which is the main tool used to launch ROS
nodes. It starts Gazebo, open a world model and spawn the e.DO robot into the
simulated environment storing URDF files in ROS packages [39].

5.2 e.DO simulation
The model already available on the Comau github repository [40] has been used to
simulate e.DO. In particular, the package eDO_description [41] was used, which
is a fork of the official package released by Comau [42] that contains the official
URDF model of e.DO. The package consists of several files including the launch file
for uploading the model to the ROS parameter server, the mesh files and a series of
xacro files that generate the URDF model: The edo.urdf.xacro file is the main file
that includes all the macros and the URDF model contained in the edo.xacro file.
In particular, the edo.xacro file and the macros utilities.xacro and materials.xacro
contain all the characteristics of the robot in terms of dynamic and kinematic
properties and describe the graphic and physical aspects. edo.gazebo.xacro contains
all the elements and the tags needed for the simulation and to get the robot
URDF properly working in Gazebo. The transmission.xacro file, instead, allows to
control the joints of the robot specifying the controller and the hardware interfaces.
The edo_gazebo package of the github repository [43] was used for the Gazebo
simulation. The package contains the launch files to simulate e.DO in Gazebo with
or without gripper based on the package mentioned above [41] and the yaml files
for configuring the controllers that allow the movement. For the motion planning
into the simulated environment, the Moveit [44] platform was used, not having
the Comau library available. In particular, the packages eDO_moveit [45] and
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edo_gripper_moveit [46] available on the github repository [47] were used, which
allow to plan and execute the trajectory of the robot and the gripper using the
planning provided by Moveit. Moreover, the edo_gazebo package mentioned before
has been specifically configured to be used with Moveit jointly with the package
eDO_moveit [45]/edo_gripper_moveit [46], by providing the controllers and yaml
files that allow to perform the planned trajectory.

5.2.1 MoveIt
Moveit is an open-source platform for the creation and manipulation of different
types of robots. It allows to plan the trajectory in the environment with a collision
control to avoid obstacles [44]. It allows to solve the inverse/direct kinematics
and to perform joint trajectories with different types of controllers and hardwarte
interfaces. It also integrates very well with Gazebo and ROS control in order to
have a complete development platform [44]. The Rviz Motion Planning plugin
allows to perform an interactive trajectory planning by dragging the end effector
to the desired position and to view the planned trajectory in the space. MoveIt
setup assistant [48] is the main tool of MoveIt that allows to initialize and configure
the robot in order to plan and execute the desired trajectories. It provides a
graphical user interface for configuring the robot for use with MoveIt. Starting
from the URDF file, it generates the SRDF (Semantic Robot Description Format)
file and other configuration files for use with the MoveIt pipeline [48]. In the
configuration step it is possible to specify the virtual/fixed joints, planning groups,
fixed poses of the robot and the informations of the sensors used for the 3D
perception. Furthermore, at the end of the configuration phase, it is possible to
choose to automatically generate the compatible robot model for the simulation in
Gazebo and to define different types of controllers belonging to the ROS control
[49] package to simulate the controllers for the joints. move_group is the main
ROS node of MoveIt which provides a set of ROS actions and services for the users
[50], Fig. 5.1. Moveit provides three ways to access the services and features offered
by the move_group node [50]:

1. move_group_interface package to interface to the node in C++

2. moveit_commander package to iterface with python

3. Rviz Motion Planning plugin with the GUI

The move_group node is configured through the ROS parameter server where it
obtains the URDF model of the robot, the SRDF file created through the Moveit
Setup Assistant and other information that includes joint limits, kinematics, motion
planning and perception [50]. In general, the move_group node communicates via
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Figure 5.1: MoveIt move_group [50]

ROS topics and actions, obtaining information on the current state of the robot and
other general information and sending commands to the controllers through the
FollowJointTrajectoryAction interface, that is a ROS action interface [50]. MoveIt
uses and communicates with various motion planners through a plugin interface
based on a ROS Action/Service provided by the move_group node. The default
motion planners for move_group are based on OMPL (Open Motion Planning
Library) [51]. The motion plan requests ask to the motion planner to move the
robot to a defined target pose or to a different position of the joints. Then the
move_group node generates the desired trajectory in order to move the robot [50].

5.2.2 Movement Control
The ros_control package [49] and the gazebo_ros_control plugin [52] that simulates
the controllers of the ros_control package [49] are used to simulate the controllers
that actuate the joints in Gazebo. The plugin is set inside the file edo.gazebo.xacro
and its purpose is to parse the transmission tags associated with each joint of the
transmission.xacro file and to load the hardware interfaces and controller manager
[52]. The launch file of the edo_gazebo package starts the controllers and loads
the yaml file to the parameter server which contains all the PID gains and the
controllers setting associated with the hardware interfaces.
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In particular, two different types of controllers have been analyzed and used to
actuate the e.DO joints and perform the task:

1. position_controllers/JointTrajectoryController

2. position_controllers/JointPositionController

The first type of controller is already provided in the edo_gazebo package and
is used as a single controller for all the joints that performs the trajectories planned
with MoveIt. This type of controller is associated with the hardware interface
"hardware_interface/PositionJointInterface". The second type of controller was
used to create a position controller associated with each joint which allows to
change its position. The joint position controllers, associated with the hardware
interface "PositionJointInterface", receive a goal position and move each of the
joints. For the movement of the gripper, on the other hand, the controllers
position_controllers/JointPositionControllers made available by the edo_gazebo
package have been used, which are associated respectively to the four joints:
left/right finger and left/right base. Finally, the edo_gazebo package also defines
a controller of type joint_state_controller associated with the hardware interface
"JointStateInterface" and that publishes the joint states of the arm.

In relation to the two types of controllers used to actuate the joints, two
approaches have been adopted for the execution of the trajectory described in
section 4.6. The first approach is based on the use of the first type of controller
for the execution of the trajectory generated by MoveIt both for the movement
of e.DO towards the e.DO target point and for the positioning of the gripper on
the target box. In order to do that, the python package moveit_commander [53]
was used to interface with the ROS node move_group of MoveIt provided by the
packages eDO_moveit and edo_gripper_moveit. The python package allows to
plan and execute the trajectory both in the joint space and in the cartesian space.
Therefore, exploiting the functions provided by the package and considering that
e.DO is in the initial configuration before to execute the task, it was performed a
joints movement with respect to the e.DO target point and a cartesian movement
towards the target box above the AGV. The second approach is based instead
on the use of the position controllers associated to the different joints. In this
case, MoveIt was not used for planning the trajectory, but a reference position
was directly assigned to the various joints. Therefore, for the first movement, the
position of the joints relative to the e.DO configuration in the e.DO target point was
assigned, while the cartesian movement on the target box was approximated by the
movement of the first joint until the gripper is positioned on the target box. This
approach is justified by the fact that the size of the boxes is very small compared
to e.DO, thus making the resulting movement of the gripper almost cartesian. So
the edo_manager node described in 4.8.3 has been modified in order to have both
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the commands that allow movement within the simulation environment and the
commands of the package edo_for the real movement.

5.3 AGV simulation
For the simulation of the AGV, the URDF model of the differential drive mobile
robot has been created following the indications described in [54]. The built URDF
model is contained in a xacro file which contains also all the tags required for
the simulation in Gazebo. For the construction of the boxes positioned above the
robot, the model editor made available by Gazebo has been used. Considering the
structure of the mobile robot described in the URDF model, the boxes have been
built in the editing environment and subsequently converted into links connected
later to the URDF model. The differential_drive_controller plugin was used to
allow the movement within the simulated environment, Fig. 5.2. The differential
drive plugin is a model plugin that provides a basic controller for differential drive
robots in Gazebo [55]. The plugin subscribes to the topic /cmd_vel where it
receives messages of type Twist and publishes location information on the topic
/odom. The plugin drives the robot model according to the velocities of the Twist
messages received and as the robot moves, it publishes odometry information to
the topic /odom [55]. To move the robot, a specific python script has been

Figure 5.2: Differential drive plugin [55]

developed that controls the mobile robot in order to go to the desired position in
correspondence of the AGV target point.
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5.4 Simulation of the task
A camera and a laser sensor have been introduced into the simulated environment.
The camera has been positioned on the base of e.DO, while the laser sensor has
been placed on the ground near e.DO in order to check if there are objects near the
robot, and hence to check if the AGV has arrived or not thanks to the information
provided by the camera. Then the camera is used to recognize the AGV and to
coordinate the release movement, while the laser sensor is used to measure the
distance of the AGV from e.DO in order to check if the AGV is positioned correctly
in the target Release Zone. Therefore, to introduce the camera and the laser sensor,
two extra links have been created into the environment, associated to the plugins
provided by Gazebo [55] for the simulation of sensors:

• camera controller plugin

• gazebo_ros_head_hokuyo_controller plugin

The camera controller plugin provides a ROS interface for the simulation of
the RGB camera by publishing the CameraInfo and Image ROS messages of the
sensor_msgs package [55]. As shown in Figure 5.3, when setting the plugin it is
possible to specify the update rate of the images, the dimension of the camera
frame, the format and the ROS topics where the images and the camera info are
published. The gazebo_ros_head_hokuyo_controller plugin simulates the laser
range sensor by broadcasting LaserScan messages of the package sensor_msgs [55].
In the plugin setting described in Figure 5.4 are specified all the properties of the
sensor, such us resolution, min/max angles, ranges and the ROS topic where the
plugin publishes the information provided by the laser.

In addition, in order to perform the task inside the simulated environment it
has been used the gazebo_grasp_plugin available on the github repository [56].
The plugin allows to grab/drop objects with the gripper in order to avoid strange
behaviors of the robot or that the object may slip off the robot hand [57]. In
particular, the plugin fixes the object to grab to the gripper in order to avoid
problems with physics engines of Gazebo [57]. The object is grasped as soon as two
opposing forces are applied by the gripper links on the object, making the object
fixed to the robot hand. As soon as the gripper opens or the two forces are no
more applied, the object is detached again [57].

5.4.1 Configuration phase
Before to simulate the system and test the functionalities of the Edo-AGV_Integration
package developed, it is necessary to perform an initial configuration phase to set
up and initialize the system. In particular, the configuration phase consists of the
following steps:
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Figure 5.3: Camera plugin [55]

1. Definition of the Release zone and of the known e.DO target point and AGV
target point

2. Definition of the reference values for the object detection functions

3. Setting of the find_object_2d recognition node to recognize the AGV

In order to define the e.DO target and AGV target points, the Rviz Motion
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Figure 5.4: Laser plugin [55]

Planning plugin made available by MoveIt was directly exploited. Then, by moving
the gripper within the environment provided by the graphical interface, it is possible
to determine the e.DO target point within the workspace, so that it can be reached
by e.DO avoiding singularity points. Consequently, the AGV target point has been
defined and the camera has been positioned in order to have the same orientation
of the AGV when it is in lateral position. For the definition of the reference values
for the object detection functions and to set up the find_object_2d node, the
release scene was recreated by positioning the AGV in front of the camera at the
AGV target point. In particular, it has been created a python script that exploits
the OpenCV functions described in subsection 4.8.3 in order to identify the range
of colors and the area of the object to be identified within the image provided
by the camera. Then, the reference values used by the edo_manager node to
identify the object to be released and the target box have been set. The graphical
interface provided by the application was used instead to set the find_object_2d
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node, in order to capture the image in which the AGV is present and extract its
characteristics. Then, an initial learning phase was performed in order to recognize
the characteristics of the AGV in the image provided by the camera during the
recognition phase, Fig. 5.5.

Figure 5.5: Learning phase of the Find Object application [35][34]
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5.5 Results

In the simulation tests, only the configuration of the camera on the base was
considered, using the first two object detection approaches based on the functions
provided by the OpenCV library, as described in subsection 4.8.3, being the
considered object a simple small ball. In fact, the latest approach which is based
on the use of a cascade classifier [30] for the detection of the object, was designed
to recognize objects with more complex characteristics that require the use of deep
learning techniques for their identification and the use of neural networks for their
recognition within the image. Regarding the final position of the AGV within the
Release zone, a pose described by a rotation of -90 degrees around the axis z and
by a translation of about 70 cm relative to the x axis with respect to the e.DO
reference frame was supposed.

In Figures 5.6 - 5.11, the system states during the simulation are shown. In
particular, Fig. 5.6 and Fig. 5.7 describe the arrival of the AGV in the Release
zone, before and after the correction of the position at the center of the camera.
Fig. 5.8 and Fig. 5.9, instead, show the positioning of the gripper at the e.DO
target point and on the target box. After the movement of the gripper on the
target box, the object is released and e.DO returns to the Init position, Fig. 5.10
and Fig. 5.11.

Figure 5.6: AGV arrived in the Release Zone Figure 5.7: AGV correctly po-
sitioned
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Figure 5.8: e.DO positioned at the
e.DO target point

Figure 5.9: Gripper positioned on
the target box

Figure 5.10: Object released in
the target box

Figure 5.11: e.DO in Init position after
the completion of the task

73



Gazebo simulation

5.5.1 Joint Position Controllers

Object Detection

Figure 5.12 shows the identification of the object and the target box while Figure
5.13 describes the evolution over time of the error using the position controllers.
In particular, using a frame rate of 2 frames per second and a fixed increment
of 1 cm, the error decreases and converges quickly to the value of 10/15 pixel.
Using the topics provided by Gazebo, the position signals of all the joints and the
end-effector/object coordinates have been saved during the execution of the task,
Fig. 5.15 - 5.20, Fig. 5.14.

Figure 5.12: Object and target box detection (simulation)
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Figure 5.13: Error in the 2D image plane with object detection (simulation)

Figure 5.14: End effector and Object paths with object detection
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Figure 5.15: Joint 1 - object detection

Figure 5.16: Joint 2 - object detection

Figure 5.17: Joint 3 - object detection
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Figure 5.18: Joint 4 - object detection

Figure 5.19: Joint 5 - object detection

Figure 5.20: Joint 6 - object detection

As can be seen in Figures 5.15 - 5.20, the joint position signals are characterized
by a constant initial and final part and a linear intermediate part associated to
the variation of the position until the value associated to the e.DO target point is
reached.
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Gripper Detection

Using the gripper detection approach, Figure 5.21 shows the identification of the
gripper and the target box, while the error is shown in Figure 5.21. Using the
same frame rate and increment value, the error has the same time evolution and
converges to the same value of the object detection approach. Figure 5.23 shows
the end-effector/object paths and Figures 5.24 -5.29 show the joint position signals.
From the charts, it is possible to see that the position signals of the joints have the
same time evolution as before.

Figure 5.21: Gripper and target box detection (simulation)
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Figure 5.22: Error in the 2D image plane with gripper detection (simulation)

Figure 5.23: End effector and Object paths with gripper detection
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Figure 5.24: Joint 1 - gripper detection

Figure 5.25: Joint 2 - gripper detection

Figure 5.26: Joint 3 - gripper detection
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Figure 5.27: Joint 4 - gripper detection

Figure 5.28: Joint 5 - gripper detection

Figure 5.29: Joint 6 - gripper detection
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5.5.2 MoveIt - Joint Trajectory Controller

Trajectory with Gripper Detection approach

Figure 5.30 describes the time evolution of the error using the joint trajectory
controller for the execution of the trajectory planned by MoveIt. Also in this case,
a frame rate of 2 frames per second and a cartesian increment of 1 cm have been
used. In particular, the error has a much smoother time evolution and decreases
more slowly until to reach the final value of about 20 pixel. Figure 5.31 shows the
end-effector path during the execution of the task and Figures 5.32 - 5.37 show the
position signals of the joints.

Figure 5.30: Error in the 2D image plane with gripper detection (MoveIt)
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Figure 5.31: End effector path with gripper detection (MoveIt)

Figure 5.32: Joint 1 - MoveIt

Figure 5.33: Joint 2 - MoveIt
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Figure 5.34: Joint 3 - MoveIt

Figure 5.35: Joint 4 - MoveIt

Figure 5.36: Joint 5 - MoveIt
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Figure 5.37: Joint 6 - MoveIt

As can be seen from the charts shown in Figures 5.32 - 5.37, the joint position
signals have a much smoother time evolution with respect to the signals obtained
using the position controllers associated to each joint.
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Experimental Tests

The part of the architecture related to the movement of e.DO has been experimen-
tally tested, as well as the release of the piece inside the box using the USB camera
connected to the raspberry. The raspberry pi runs Ubuntu Mate 18.04.2 O.S. with
ROS Melodic installed in the base version. It is connected to the camera sensor
through the USB cable, while the ethernet connection allows the communication
with the e.DO raspberry pi. The camera used for the project is the Logitech C270
HD webcam (Fig. 6.1). The camera has a full HD 720p screen at 30 frames per
second; it allows to capture very clear and defined images and it is also equipped
with a microphone for audio recording with noise reduction. The technical specifi-
cations are shown in Table 6.1. The system was tested with the camera-to-hand
configuration and with the object detection approach. In order to do that, two
boxes (yellow/blue) of dimension 17x14x12 cm and a small ball were used (Fig.
6.2 and Fig. 6.3). The ball has been used because it is both easy to grasp and to
identify using the vision system.

Before testing the ROS package on e.DO, the same initial configuration phase of
the simulation in Gazebo was performed, and the same release scene was recreated.
As in the Gazebo simulation, the following transformation matrix T was assumed
to be known, which determines the pose of the AGV (in this case the boxes) with
respect to the e.DO reference frame inside the Release zone:

T =


0 1 0 70
−1 0 0 0
0 0 1 0
0 0 0 1

 (6.1)

The matrix defines a rotation of -90 degrees around the z axis and a translation
of about 70 cm relative to the x axis with respect to the e.DO reference frame.
For the definition of the known points, the e.DO Android application was used to
move the gripper towards such points and save the values according to the position
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of the boxes. To define the reference values of the object detection functions,
the python script was executed to identify the color range and the area of the
object (target box/ ball) within the image provided by the camera. Finally, the
calculated values have been used to set the reference values of the ROS node that
manages the movement of e.DO. Since only the part of the architecture related
to the movement of e.DO (eDO Manager ROS node) has been tested, it was not
necessary to configure the ROS node find_object_2d to recognize the AGV.

Figure 6.1: Logitech c270 [58]

Specification Value
Max Resolution 720p/30fps

Focus type fixed
Integrate microphone mono

FoV 60°
USB Cable 1,5 m

Table 6.1: Technical specification [58]
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Figure 6.2: AGV Boxes

Figure 6.3: Ball

88



Experimental Tests

Figure 6.4 shows the system in the real implementation with the external
raspberry pi connected to e.DO with the ethernet cable e to the camera with the
USB cable.

Figure 6.4: System in the real implementation

6.1 Results
A series of preliminary experimental tests have been performed in order to find
the best values for the camera frame rate and for the value of the fixed increment
associated to the cartesian movement on the box. After such tests, it was found
that the best pair of values is 2 frames per second with a fixed increment of 0.35mm,
in order to have a frame rate that matches the movement of e.DO. However, the
resulting movement turned out to be a bit jerky both by setting the "fast" and
"medium" speed during the cartesian movement. For this reason, an additional
ROS node has been created and added to the package, which monitors the e.DO
topic /machine_state in order to republish the camera images only when e.DO
has completed its movement. Then, using the created ROS node, the resulting
movement of the gripper was found to be approximately linear with different fixed
increment values. In this case, a fixed increment of 0.1 mm proved to be the most
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suitable value. Using the topic /usb_joint_state, the position signals of all the
joints have been saved during the execution of the task. The values represent the
measurements of the encoders of the six joints and are shown in Figures 6.7 - 6.12.

Figure 6.5: Object and target box detection

Figure 6.6: Error in the 2D image plane
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Figure 6.5 shows the ball and the target box detection, whereas Figure 6.6
shows the variation of the error during the positioning of the gripper on the target
box. As it is possible to see in Figure 6.6, the error converges much more slowly
compared to the Gazebo simulation, until it reaches the final value of about 20
pixel. This could be due to the fact that e.DO performs the cartesian movement
with a fixed increment of 0.1 mm and a "medium" speed corresponding to 50% of
the motors speed, and the e.DO manager node and the image-processing functions
are executed on the external raspberry connected to e.DO with the ethernet cable.
Despite this, the error converges to almost the same value reached in simulation,
which represents the acceptable limit threshold.

Figure 6.7: e.DO Joint 1

Figure 6.8: e.DO Joint2
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Figure 6.9: e.DO Joint 3

Figure 6.10: e.DO Joint 4
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Figure 6.11: e.DO Joint 5

Figure 6.12: e.DO Joint 6

From the plots shown in Figures 6.7 - 6.12, it is possible to notice that the joint
position signals are characterized by a constant final part equal to the initial one.
This is due to the fact that the data acquisition process has been extended until
the return of e.DO in the Init initial configuration.

Figure 6.13 shows the gripper positioned in the e.DO target point, while Figure
6.14 shows the ball released in the target box when the task is completed.
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Figure 6.13: e.DO gripper positioned at the e.DO target point

Figure 6.14: Task completed - Ball released
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Figure 6.15, finally shows the usage of the raspberry resources during the
execution of the ROS package. In particular, it is possible to see that the package
(the Edo manager node) uses about 50% of the CPU and about 60% of memory.
This can be a good result considering that the image-processing operations are
very computationally expensive.

Figure 6.15: Raspberry resources usage
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Conclusions

In this thesis work, it has been created a system that is able to manage the
communication between two robots and coordinate their movement to perform a
specific task. In order to do that, the ROS Edo-AGV_integration package was
developed, capable of interacting with the robots and managing their movements.
The developed package is executed by an external raspberry pi, which represents
the heart of the system and capable of connecting to both the robots. The thesis
work was developed following different phases. In the first phase, the different
strategies for integrating anthropomorphic robots with an autonomous guided
vehicle and other devices have been analyzed. The second phase was focused on the
study of possible ways to communicate with the robot and on the implementation
of a program that manages the communication between the external raspberry
pi and e.DO. Then, the possible strategies to adopt for the vision system have
been analyzed, considering different configurations for the camera. The third phase
involved the development of the ROS package Edo-AGV_integration aimed at
managing the synchronization between the two robots and executing the release
task, according to the given specifications. The subsequent phase focused on the
simulation of the system in the Gazebo environment. First the different ways to
simulate the two robots have been studied and then all the necessary changes
inside the software architecture of the package have been done, in order to test
all the functionalities of the package into the simulated environment. The final
part involved the real implementation of the developed package on the external
raspberry pi. In particular, the part of the architecture related to the movement of
e.DO has been tested, as well as the release of the piece inside the box using the
USB camera connected to the raspberry.

The developed package allows to interact with the ROS package edo_core
provided by Comau, which runs on the e.DO raspberry, and with the Autonomous
Guided Vehicle. Regarding the vision system, with the camera-to-hand configura-
tion the strategies implemented have obtained good results both in the Gazebo
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simulation and in the real implementation, and approximately converge to the
same error in the positioning of the gripper. One of the main limitations of the
system is represented by the fact that the release zone and the pose of the AGV
inside the release zone are known to the system, and are set as parameters in the
configuration phase. Some possible improvements and future developments of the
system may concern:

• the technique used to recognize the AGV

• the extension of the vision system functionalities

• the planning of the AGV/mobile robot movement

• the creation of an interactive application for the system configuration

For the recognition of the AGV, the ROS package find_object_2d has been used
that, thanks to a preliminary learning phase, is able to recognize objects within
the frames captured by the camera. The use of the find_object_2d package can
be replaced by implementing a detection technique similar to the one implemented
for the recognition of the target box and for the gripper, exploiting the functions
provided by the OpenCV library. Otherwise, if the structure of the AGV is not
known or may vary, it is possible to use deep learning techniques in which, thanks
to the training of neural networks, it is possible to recognize different types of AGVs
within the images of the camera. In this case, it is necessary to provide an initial
learning dataset containing the images of different types of AGV, and once the
training is completed, the saved network can be used for the real time recognition.
This type of approach can be very interesting and flexible if it is necessary to
recognize different types of AGV that can interact with e.DO, and therefore adopt
different strategies depending on the type of AGV recognized. Regarding the
execution of the release task inside the target box, two configurations for the
camera have been adopted and different image-based approaches able to identify
the target box and the gripper/object have been implemented. A possible extension
might be to adopt a position-based approach able to determine the pose of the
target box, and then move e.DO according to the cartesian error, or to use a look
and move technique able to calculate the coordinates of the box and move e.DO to
that point. For example, it is possible to use the visp_tracker package [59] which
allows to track the object by providing the coordinates in the space with respect
to the camera, knowing a priori the 3D model and the initial pose. Finally, other
possible future developments might be to extend the functionalities of the system
in order to manage and plan the movement of the AGV, or to create an application
for the users with a graphic interface, that allows to define all the parameters of
the system. For example, it is possible to define the known target points with
respect to e.DO and the AGV, the type of control/detection to be performed and
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the characteristics of the AGV. In this way it possible to simplify the preliminary
configuration phase before running the system.

98



Bibliography

[1] url: https://mostre.museogalileo.it/nexus/inex.php?c[]=49103.
[2] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics, Modelling,

Planning and Control. Springer, 2009.
[3] url: https://www.logisticaefficiente.it/adept/magazzino/automaz

ione/differenza-fra-agv-e-robot-mobile.html.
[4] url: https://semplicecome.it/innovazione-robotica-applicazioni-

nella-vita-quotidiana/.
[5] url: https://www.economyup.it/innovazione/cos-e-l-industria-40-

e-perche-e-importante-saperla-affrontare/.
[6] url: https://www.innexhub.it/industrie-4-0-che-cose/.
[7] Chaiyapol Kulpate, Raman Paranjape, and Mehran Mehrandezh. «Precise

3D Positioning of a Robotic Arm Using a Single Camera and a Flat Mirror».
In: International Journal of Optomechatronics, 2:3 (2008), pp. 205–232.

[8] url: https://www.toptal.com/robotics/introduction- to- robot-
operating-system.

[9] url: http://wiki.ros.org/ROS/Introduction.
[10] url: https://roboticsbackend.com/what-is-ros/.
[11] url: http://wiki.ros.org/ROS/Concepts.
[12] url: http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscrib

er%28python%29.
[13] Comau. url: https://edo.cloud/the-robot/.
[14] Stefano Pesce. «Simulation and advanced control of a professional manipula-

tor». MA thesis. Politecnico di Torino, 2018.
[15] Comau. e.DO User Manual. 2019. url: https://edo.cloud/wp-content/

uploads/2019/06/eDO-UserManual_en.pdf.
[16] Comau. url: https://edo.cloud/edo-robot/.

99

https://mostre.museogalileo.it/nexus/inex.php?c[]=49103
https://www.logisticaefficiente.it/adept/magazzino/automazione/differenza-fra-agv-e-robot-mobile.html
https://www.logisticaefficiente.it/adept/magazzino/automazione/differenza-fra-agv-e-robot-mobile.html
https://semplicecome.it/innovazione-robotica-applicazioni-nella-vita-quotidiana/
https://semplicecome.it/innovazione-robotica-applicazioni-nella-vita-quotidiana/
https://www.economyup.it/innovazione/cos-e-l-industria-40-e-perche-e-importante-saperla-affrontare/
https://www.economyup.it/innovazione/cos-e-l-industria-40-e-perche-e-importante-saperla-affrontare/
https://www.innexhub.it/industrie-4-0-che-cose/
https://www.toptal.com/robotics/introduction-to-robot-operating-system
https://www.toptal.com/robotics/introduction-to-robot-operating-system
http://wiki.ros.org/ROS/Introduction
https://roboticsbackend.com/what-is-ros/
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
https://edo.cloud/the-robot/
https://edo.cloud/wp-content/uploads/2019/06/eDO-UserManual_en.pdf
https://edo.cloud/wp-content/uploads/2019/06/eDO-UserManual_en.pdf
https://edo.cloud/edo-robot/


BIBLIOGRAPHY

[17] Comau. e.DO 6 Axes Technical Sheet. 2017. url: https://edo.cloud/wp-
content/uploads/2017/10/edo-6-axes-technical-sheet.pdf.

[18] Comau. url: https://edo.cloud/extensions/.
[19] Comau. e.DO Service Manual. 2019. url: https://edo.cloud/wp-content/

uploads/2019/06/eDO-ServiceManual_en.pdf.
[20] Pietro Castelli. «Integration of anthropomorphic robots with high precision

instrumentation». MA thesis. Politecnico di Torino, 2019.
[21] url: https://roboticsknowledgebase.com/wiki/networking/ros-dist

ributed/.
[22] url: https://roslibpy.readthedocs.io/en/latest/readme.html#main-

features.
[23] url: https://roslibpy.readthedocs.io/en/latest/examples.html.
[24] url: https://www.generationrobots.com/media/Pioneer3DX- P3DX-

RevA.pdf.
[25] Rafael Custodio Cejas and Italo Guedes A. Silva. «Image processing tasks ap-

plied to robot vision system and path discovery(March2016)». In: ASEE2016
Northeast Section Conference. University of Bridgeport, Bridgeport, Connecti-
cut 06604, USA, 2016.

[26] url: https://docs.opencv.org/master/d2/d96/tutorial_py_table_
of_contents_imgproc.html.

[27] url: https://docs.opencv.org/master/df/d9d/tutorial_py_colorspa
ces.html.

[28] url: https://docs.opencv.org/master/d4/d73/tutorial_py_contours_
begin.html.

[29] url: https://docs.opencv.org/master/dd/d49/tutorial_py_contour_
features.html.

[30] url: https : / / docs . opencv . org / 3 . 4 / db / d28 / tutorial _ cascade _
classifier.html.

[31] url: https://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClass
ifier.html#details.

[32] url: http://wiki.ros.org/smach.
[33] url: http://wiki.ros.org/vision_opencv.
[34] Labbé, M. Find-Object. http://introlab.github.io/find-object. 2011.
[35] url: http://wiki.ros.org/find_object_2d.
[36] url: http://gazebosim.org/.

100

https://edo.cloud/wp-content/uploads/2017/10/edo-6-axes-technical-sheet.pdf
https://edo.cloud/wp-content/uploads/2017/10/edo-6-axes-technical-sheet.pdf
https://edo.cloud/extensions/
https://edo.cloud/wp-content/uploads/2019/06/eDO-ServiceManual_en.pdf
https://edo.cloud/wp-content/uploads/2019/06/eDO-ServiceManual_en.pdf
https://roboticsknowledgebase.com/wiki/networking/ros-distributed/
https://roboticsknowledgebase.com/wiki/networking/ros-distributed/
https://roslibpy.readthedocs.io/en/latest/readme.html#main-features
https://roslibpy.readthedocs.io/en/latest/readme.html#main-features
https://roslibpy.readthedocs.io/en/latest/examples.html
https://www.generationrobots.com/media/Pioneer3DX-P3DX-RevA.pdf
https://www.generationrobots.com/media/Pioneer3DX-P3DX-RevA.pdf
https://docs.opencv.org/master/d2/d96/tutorial_py_table_of_contents_imgproc.html
https://docs.opencv.org/master/d2/d96/tutorial_py_table_of_contents_imgproc.html
https://docs.opencv.org/master/df/d9d/tutorial_py_colorspaces.html
https://docs.opencv.org/master/df/d9d/tutorial_py_colorspaces.html
https://docs.opencv.org/master/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/master/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/master/dd/d49/tutorial_py_contour_features.html
https://docs.opencv.org/master/dd/d49/tutorial_py_contour_features.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClassifier.html#details
https://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClassifier.html#details
http://wiki.ros.org/smach
http://wiki.ros.org/vision_opencv
http://introlab.github.io/find-object
http://wiki.ros.org/find_object_2d
http://gazebosim.org/


BIBLIOGRAPHY

[37] url: http://gazebosim.org/tutorials?tut=ros_overview&cat=connec
t_ros.

[38] url: http://gazebosim.org/tutorials?tut=ros_urdf&cat=connect_
ros.

[39] url: http : / / gazebosim . org / tutorials ? tut = ros _ roslaunch & cat =
connect_ros.

[40] url: https://github.com/Comau.
[41] url: https://github.com/Pro/eDO_description/tree/master/urdf.
[42] url: https://github.com/Comau/eDO_description.
[43] url: https://github.com/Pro/edo_gazebo.
[44] Ioan A. Sucan and Sachin Chitta. "MoveIt". url: https://moveit.ros.org/.
[45] url: https://github.com/Pro/eDO_moveit.
[46] url: https://github.com/Pro/edo_gripper_moveit.
[47] url: https://github.com/Pro.
[48] url: http://docs.ros.org/melodic/api/moveit_tutorials/html/doc/

setup_assistant/setup_assistant_tutorial.html.
[49] url: https://wiki.ros.org/ros_control.
[50] url: https://moveit.ros.org/documentation/concepts/.
[51] url: https://ompl.kavrakilab.org/.
[52] url: http://gazebosim.org/tutorials?tut=ros_control&cat=connect_

ros.
[53] url: https://ros-planning.github.io/moveit_tutorials/doc/move_

group_python_interface/move_group_python_interface_tutorial.
html.

[54] url: https://www.theconstructsim.com/ros-projects-exploring-ros-
using-2-wheeled-robot-part-1/#part1.

[55] url: http : / / gazebosim . org / tutorials ? tut = ros _ gzplugins & cat =
connect_ros.

[56] url: https://github.com/JenniferBuehler/gazebo-pkgs.
[57] url: https://github.com/JenniferBuehler/gazebo-pkgs/wiki/The-

Gazebo-grasp-fix-plugin.
[58] url: https://www.logitech.com/it- it/product/hd- webcam- c270#

specification-tabular.
[59] url: http://wiki.ros.org/visp_tracker.

101

http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_urdf&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_urdf&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_roslaunch&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_roslaunch&cat=connect_ros
https://github.com/Comau
https://github.com/Pro/eDO_description/tree/master/urdf
https://github.com/Comau/eDO_description
https://github.com/Pro/edo_gazebo
https://moveit.ros.org/
https://github.com/Pro/eDO_moveit
https://github.com/Pro/edo_gripper_moveit
https://github.com/Pro
http://docs.ros.org/melodic/api/moveit_tutorials/html/doc/setup_assistant/setup_assistant_tutorial.html
http://docs.ros.org/melodic/api/moveit_tutorials/html/doc/setup_assistant/setup_assistant_tutorial.html
https://wiki.ros.org/ros_control
https://moveit.ros.org/documentation/concepts/
https://ompl.kavrakilab.org/
http://gazebosim.org/tutorials?tut=ros_control&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_control&cat=connect_ros
https://ros-planning.github.io/moveit_tutorials/doc/move_group_python_interface/move_group_python_interface_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/move_group_python_interface/move_group_python_interface_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/move_group_python_interface/move_group_python_interface_tutorial.html
https://www.theconstructsim.com/ros-projects-exploring-ros-using-2-wheeled-robot-part-1/#part1
https://www.theconstructsim.com/ros-projects-exploring-ros-using-2-wheeled-robot-part-1/#part1
http://gazebosim.org/tutorials?tut=ros_gzplugins&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_gzplugins&cat=connect_ros
https://github.com/JenniferBuehler/gazebo-pkgs
https://github.com/JenniferBuehler/gazebo-pkgs/wiki/The-Gazebo-grasp-fix-plugin
https://github.com/JenniferBuehler/gazebo-pkgs/wiki/The-Gazebo-grasp-fix-plugin
https://www.logitech.com/it-it/product/hd-webcam-c270#specification-tabular
https://www.logitech.com/it-it/product/hd-webcam-c270#specification-tabular
http://wiki.ros.org/visp_tracker

	List of Tables
	List of Figures
	Introduction
	Background
	Robotics
	Pose of a rigid body
	Positions Kinematics
	Differential kinematics
	Introduction to Mobile Robots

	Sensors and visual servoing
	ROS - Robot Operating System

	e.DO
	Overview
	Software Architecture
	Hardware Description
	e.DO gripper

	e.DO ROS Workspace
	e.DO Kinematics
	Singolarities


	Project development
	System description
	Communication with e.DO
	Communication with ROS
	Comunication with Python ROS Bridge library 

	Autonomous Guided Vehicle
	Task assumptions
	State machine
	Activity and path planning
	Gripper positioning exploiting visual information from the camera
	Camera-to-hand configuration
	Camera-in-hand configuration

	Edo-AGV_Integration ROS Package
	Smach State Machine
	System state node
	Edo Manager node
	AGV Manager node

	Other packages and Libraries

	Gazebo simulation
	Introduction
	e.DO simulation
	MoveIt
	Movement Control

	AGV simulation
	Simulation of the task
	Configuration phase

	Results
	Joint Position Controllers
	MoveIt - Joint Trajectory Controller


	Experimental Tests
	Results

	Conclusions
	Bibliography

