
POLITECNICO DI TORINO

Master Degree in Mechatronic Engineering

Master Degree Thesis

Artificial Intelligence and Computer
Vision Techniques for Human-Robot

Interaction
Three different applications to Universal Robots collaborative robots

Advisor
Prof. Marina Indri

Candidate
Alice Maritato

Corporate supervisor
Universal Robots
Eng. Paolo Bassetti

October 2020

Abstract

The aim of this thesis is to investigate techniques to improve the interaction between humans
and collaborative robots (i.e. robots which share the workplace with humans without barrier
and without exposing the human to risks) exploiting Artificial Intelligence and Computer Vision
techniques.

To highlight the effectiveness and the potential of Computer Vision (CV) applied to Robotics
and to analyze how the Human-Robot Interaction might be powered leveraging the CV exper-
tise, three cases of study, set in three different contexts, are developed for the UR5 cobot
(developed by Universal Robots) and the required algorithms are developed using state-of-the-
art methods. The first is set in a television studio where the television presenter moves in the
studio and the robotic arm follows him using a face-tracking algorithm. The second is set in
an industrial context where an operator has to process workpieces which are numbered from
1 to 5. The operator is able to select the workpiece to be processed using gestures, and the
camera-equipped robot responds accordingly. The third is set in a hospital: a patient is in its
bed and, unable to move, he can communicate with the robot with gestures and ask for drugs,
water or telephone.

These cases of study are simulated in the Polyscope simulation environment, the propri-
etary software of Universal Robots, and RoboDK which is a universal environment for robot
simulation. The computer code required for CV and AI tasks, which is developed in Python
using the OpenCV library, is thoroughly analyzed in this work, as well as the state-of-the art
models that were exploited and the related theory.

Acknowledgements

First of all, I would like to express my sincere gratitude to the people who provided me guidance
during the months in which I worked on my Master Thesis. I would like to thank my supervisor
Marina Indri for her willingness and for the thoughtful feedback and comments. I am also
thankful to Universal Robots and, in particular, Paolo Bassetti and Andrea Macheda, for the
challenging meetings and conversations, for giving me new ideas, for offering different viewpoints
and for the passion which they inspired me.

3

Contents

List of Tables 6

List of Figures 7

1 Introduction and state of the art 11

2 Introduction to Robotics and to the Universal Robots world 15
2.1 Robotics preliminary concepts . 15

2.1.1 Robot Mechanical Structure . 15
2.1.2 Robots Kinematics . 16

2.2 Cobots . 19
2.3 Human Robot Interaction . 19
2.4 Universal Robots . 20

2.4.1 Universal Robots grippers - Robotiq 2F-85 27
2.4.2 Universal Robots communication interfaces 28

3 Tools overview 31
3.1 Simulation Environments . 31

3.1.1 Polyscope . 31
3.1.2 RoboDK . 32

3.2 OpenCV . 33

4 Computer Vision techniques 35
4.1 The taxonomy of Computer Vision . 35
4.2 Digital images representation . 37

4.2.1 Gray-scale images . 37
4.2.2 Color images and color spaces . 37
4.2.3 The YCbCr color space . 38

4.3 Image processing techniques . 39
4.3.1 Thresholding . 39
4.3.2 Filtering and the Gaussian Blur . 39
4.3.3 Morphological transformations . 40
4.3.4 Identifying Contours . 41

4.4 Object Recognition and Detection . 42
4.4.1 Image Recognition with Neural Networks 42
4.4.2 Object Detection . 45
4.4.3 Characterizing shapes with Convex Hulls 46

5 Cases of study 49
5.1 UR arm tracks the face of the user - Television application 49

5.1.1 Algorithm overview . 49

4

5.1.2 Face tracking . 49
5.1.3 RTDE and data exchange . 53
5.1.4 Computation of TCP movements . 53
5.1.5 Robot program . 58

5.2 Gesture recognition algorithm . 59
5.2.1 Algorithm overview . 59
5.2.2 Hand detection algorithm . 61
5.2.3 Gesture recognition . 62

5.3 Gesture recognition in an industrial context . 71
5.3.1 RTDE and data exchange . 71
5.3.2 Five number gesture recognition . 71
5.3.3 Polyscope and RoboDK . 76

5.4 Gesture recognition in an hospital . 77
5.4.1 RTDE and data exchange . 77
5.4.2 Three guidance gestures recognition . 79
5.4.3 Polyscope and RoboDK . 81

6 Conclusion 83

Bibliography 85

5

List of Tables

2.1 Different types of HRI based on the space and time parameters. Source:[48] . . . 20
2.2 Comparison table of features of different types of Universal Robots arms. Source:[2] 21
2.3 Technical specifications of UR5. Source:[2] . 23
2.4 List of Denavit–Hartenberg parameters of UR5. 24
2.5 Comparison table of features of most common used UR interfaces. Source:[2] . . 29
5.1 RTDE Recipies with names and types of data to synchronize 53
5.2 Recipes with names and types of data to synchronize 73
5.3 Recipes with names and types of data to synchronize 77

6

List of Figures

2.1 Robot manipulator. Source:[47]. 15
2.2 Mobile robot. Source:[47].

. 15
2.3 Two-link open-chain planar arm. Source:[47]. 16
2.4 Four-link closed-chain planar arm. Source:[47]. 16
2.5 Workspace of an anthropomorphic manipulator. Source:[47]. 17
2.6 Four different models of Universal Robots arms 21
2.7 Universal Robot joints representation. Source:[50] 22
2.8 UR5 working area, side view. Source:[2]. 23
2.9 UR5 technical drawing. Source:[2]. 23
2.10 Denavit–Hartenberg parameters of Universal Robots arms. Source:[21] 24
2.11 Technical drawing of Robotic 2F-85. Source:[45]. 27
2.12 Different types of interfaces of UR. Source: [2] 28
3.1 The Polyscope programming and simulation environment 32
3.2 RoboDK simulation environment with imported 3D objects. 33
4.1 Taxonomy of Computer Vision fields. Source: [49]. 36
4.2 A gray-scale image with pixel intensity values for a small portion of it. Source: [35]. 37
4.3 Decomposition of an image into its RGB channels. Source: [35]. 38
4.4 Decomposition of an image into its YCrCb channels. Source: [54]. 39
4.5 Example of thresholding on an image. Source: [35] 40
4.6 Example of Gaussian blur on an image with increasingly large standard devia-

tion. Source: [41]. 40
4.7 Example of opening operation on a binary image. Source: [35]. 41
4.8 Another example of opening operation on a binary image. Source: [51]. 41
4.9 A regression neural network in its simplest form, with a two-dimensional input, a

three-dimensional output and only one hidden layer. The bias terms are colored
in yellow. Source: [16] . 42

4.10 Some of the most popular activation functions. Source: [16] 43
4.11 A classification neural network. Source: [16] . 44
4.12 Scheme illustrating the convolution on an image. Source: [36] 44
4.13 Example of a CNN architecture, with several convolution and pooling layers.

Source: [36] . 45
4.14 Difference between object classification and detection. Source: [25] 45
4.15 High-level scheme of the R-CNN architecture. Source: [18] 46
4.16 High-level scheme of the SSD CNN architecture. Source: [33] 46
4.17 Illustration of the convex hull and convexity defects of a contour. Source: [11]. . 47
5.1 Flow chart of the algorithm used to control the robotic arm movement according

with the movement performed by an user in the room using a face detection
algorithm. On the left, the Polyscope algorithm is shown, on the right, the
Python algorithm running on the PC. 50

5.2 Face-detection at the initial time instant. 52

7

5.3 Initial robot pose.
. 52

5.4 Face-detection few instants after the first time instant. 52
5.5 Robot pose few instants after the first time instant. 52
5.6 Face-detection few instants later. 52
5.7 Robot pose few instants later.

. 52
5.8 Sketch of the pinhole camera. Source: [26] . 55
5.9 Sketch of the pinhole camera model. Source: [26] 55
5.10 Pinhole camera model with a point P(X,Y,Z) according to the camera coordinate

system. Source: [52] . 56
5.11 Flow chart of the algorithm which Polyscope runs 58
5.12 Flow chart of the PC algorithm for gesture recognition 60
5.13 Hand and face recognition using the webcam frame 61
5.14 Original frame region of interest in BGR color space 62
5.15 YCrCb color space transformation of the original frame 62
5.16 Y channel of YCrCb color space. 63
5.17 Cr channel of YCrCb color space. 63
5.18 Cb channel of YCrCb color space. 63
5.19 Gaussian blur filter applied to the Cr channel of the YCrCb frame. 63
5.20 Thresholding technique to separate the hand from the background. 64
5.21 Opening morphological transformations. 64
5.22 Contour drawing. 66
5.23 Contours center drawing. 66
5.24 Representation of start, farthest and end points.

. 68
5.25 Representation of the distance to farthest point with respect to the convex hull. 68
5.26 Convex hull and convexity defects drawing. 68
5.27 Law of cosines representation. Source:[55] . 69
5.28 Representation of the points of a triple. 69
5.29 Representation of the angle between two vectors. 70
5.30 Representation hand with the detected fingers. 71
5.31 Flow chart of the algorithm for the case of study n.2. From left to right, the PC,

robot and RoboDK programs. 72
5.32 Gesture ’One’. 73
5.33 Recognition of gesture ’One’. 73
5.34 Gesture ’Two’. 74
5.35 Recognition of gesture ’Two’. 74
5.36 Gesture ’Three’. 74
5.37 Recognition of gesture ’Three’. 74
5.38 Gesture ’Four’. 76
5.39 Recognition of gesture ’Four’. 76
5.40 Gesture ’Five’. 76
5.41 Recognition of gesture ’Five’. 76
5.42 Simulation of the third case of study in RoboDK. 77
5.43 Flow chart of the algorithm for the case of study n.3. From left to right, the PC,

robot and RoboDK programs. 78
5.44 Gesture ’Telephone’.

. 80
5.45 Recognition of gesture ’Telephone’. 80

8

5.46 Gesture ’Medicine’.
. 80

5.47 Recognition of gesture ’Medicine’. 80
5.48 Gesture ’Drink’. 80
5.49 Recognition of gesture ’Drink’. 80
5.50 Simulation of the third case of study in RoboDK. 81

9

10

Chapter 1

Introduction and state of the art

Human-Robot Interaction is a wide and multidisciplinary field which stems from the need for
better integration between robots and humans. Nowadays, due to their intrinsic advantages over
humans, robots are ubiquitous in an increasingly large number of fields, such as manufacturing,
medical industry, search and rescue operations, space exploration, and more.

The many advantages of robots include their preciseness, efficiency, high payload and ex-
pendability in hazardous situations. However, robots also have their drawbacks: traditionally,
they have been unable to respond to unexpected situations and for this reason they are also
potentially dangerous for humans that may invade their workspace without all due precautions.
This has limited their seamless integration in manufacturing processes as well as their usage in
more domestic environments, where they would have to interact with common people rather
than trained operators.

In fact, robots have been traditionally designed to work in their own workspace in the
absence of humans, and safety sensors and physical barriers are then used to ensure that
humans do not interfere with their operation. In these situations, communication is therefore
limited to dedicated interfaces to be typically used by skilled operators.

However, robots have become sophisticated enough to theoretically enable their usage in
direct collaboration with humans: this particular kind of robots is often refereed to as collabo-
rative robots or cobots. Differently from regular robots, which are confined to specific tasks to
be executed in a dedicated environment, cobots are able to effectively and safely work together
with humans in a shared environment.

The applications of cobots are manyfold: for example, they have opened the door to unex-
plored applications in medicine, such as teleoperations with surgical robots, in dangerous search
and rescue operations. Coming to simpler scenarios, cobots might help patients in hospitals
improving their life and making them more independent, or again it can help to film a news
report in dangerous situations, such as an epidemic.

The industrial partner of this thesis work, Universal Robots, is among the companies that is
actively developing collaborative robots. In particular, instead of focusing on large industries
only, it works with small and medium industries as well as non-industrial (such as science and
research) entities to develop solutions which can help them through the integration of cobots
in human-friendly work environments.

The interaction between robots and humans might happen in different ways, according with
the location (sharing or not the same workplace) and the timing (simultaneous or successive
processes) in which robots and humans interact.

In recent years, the increasing diffusion of cobots has fueled interest for HRI, capturing the
interest of researchers of many different fields. Among these fields, Artificial Intelligence (AI)
and Computer Vision (CV) can give an important contribution to improve and to explore the
possible applications of Human-Robot Interaction making it smarter. In an industrial context,

11

1 – Introduction and state of the art

the flow of processes may increase in efficiency and may be optimized if an operator wants to
communicate with robots through gestures the action to perform instead of button-pushing
to run a certain program on the teach pendent of the robot. Nowadays, face detection and
gestures recognition are two research fields which are deeply studied. Currently AI algorithms
allow to detect faces in images or video regardless skin color, lighting conditions and head pose.
The face detection is the first step to perform more complex operations such as face tracking
or face recognition. Moreover, gesture recognition allows the user to interact with a certain
devices or robots without touching any part of them.

The application of face tracking and gesture recognition algorithms to improve the inter-
action between humans and collaborative robots is an interesting and active research topic
as it enables new ways to communicate with robots which were typically precluded to them.
For example, the authors in [9] developed a solution which combines face tracking and gesture
recognition techniques. Face detection is constantly performed, while gesture recognition is
only performed if both a face and a hand which can be associated to that face are detected.
Thus, the robot is not only able to receive inputs from an operator trough gestures, but it is also
able to discriminate between the operator and simple by-passers. Several image segmentation
phases are used to discriminate skin regions from the other objects in the frame. Then, the
image is encoded using Haar-like features [32], which are then used to perform recognition with
a machine learning algorithm called Adaboost [15].

An example of traditional image processing techniques for gesture recognition can be found
in [34]. The authors designed a gesture recognition algorithm which controls the robot navi-
gation using four dynamic gestures (’Go Right’, ’Go Left’, ’Go Forward’, ’Go Backwards’) and
two static gesture (’Stop’ and ’Turn around’). To test the effectiveness of this gesture recog-
nition algorithm, movement which the robot has to perform is Graphical User Interface on a
computer.

Another interesting application is presented in [6]. The authors used face recognition and
a hand detector to develop a robotic puppet which is able to play games which are designed to
improve social interaction skills in autistic children.

In [42] the authors investigated how to control the motion of a camera using face tracking.
The system they developed is able to follow a face maintaining it in the center of the camera
frame. They used the Viola-Jones algorithm, which is one of the most popular face detection
algorithms [28].

In [20], the authors studied the interaction between humans and the robot Aibo, a robotic
dog developed by Sony. To send data to the robot the TCP/IP wireless network was used.
To recognize the gestures, the BGR frame is converted in YIQ and then the classification is
performed by the subspace method which allows perform a fast classification of images extracting
only the most numerous property of each class. Gestures such as ’One’, ’Two’, ’Three’, ’Two
Hand’ corresponds to actions to perform by the robot such as stand up, walk forward or
backward and to sit the robotic dog.

The aim of this work is to explore some relevant concepts in which mixing HRI and CV
might generate interesting outcomes helping a television presenter, the operator of an industry
or the patient of a hospital. The following three cases of study are analyzed:

• Face-tracking in a television studio: the presenter moves around in the television
studio and the robot arm, provided by camera, follows his movement and focuses on
him. In particular, the movement of the robot is simulated in Polyscope, while a personal
computer (PC) runs a code written in Python which acquires the video stream from the PC
webcam, detects the face through a face-detection algorithm, computes the displacement
which the robotic arm has to perform and the pose that the end-effector of the robot
has to reach. Then, it sends data to the simulated robot using the Real-Time Data
Exchange interface, an interface developed by Universal Robots which allows real-time

12

1 – Introduction and state of the art

communication between robots and external interfaces.

• Gesture recognition in an industrial context: the workplace consists in an input
station, a workbench in which the operator can process the workpieces and an output
station. At first, all workpieces are in the input station. Workpieces are numbered. The
operator performs a gesture, which is the mimic of a number and which corresponds to the
piece which he has to process, in front of the camera. The robot recognizes the gesture,
grabs the correspondent piece and brings it to the operator. When the operator has
finished to process the piece, the robot carries the workpiece to the output station. The
movement of the robot is simulated on both Polyscope and RoboDK, which provides a
richer simulation environment, also enabling the simulation of the grabbing and dropping
operations of the end-effector. The webcam of the PC is used to capture the video stream
used for the gesture recognition which is performed on the same PC through a Python
script. The code performs hand detection followed by the application of several Computer
Vision Techniques which allow to obtain the Convex Hull, the Convexity Defects and the
Center of the Contours characterizing the shape of the hand. Based on these elements,
gesture recognition is performed.

• Gesture recognition in a hospital: A patient, unable to move, is in the bed. Around
him, there are a medicine cabinet on which a package of medicine is located and a bedside
table on which there are a mobile phone and a glass of water. The patient performs a
gesture in front of a camera and the robot grabs the object which corresponds to the
gesture, brings it to the patient and places it on the tray on the bed. The gesture
recognition and the simulation environment used are the same as for the second case of
study.

The contents of this thesis are structured as follows. Chapter 2 introduces some basic
concepts about robot kinematics, a technical description of the UR5 robotic arm, and com-
munication interfaces that are relevant for this thesis. Chapter 3 illustrates some tools that
were used in this work, such as the Polyscope and RoboDK simulation environments and the
OpenCV computer vision library. Chapter 4 presents theoretical aspects of the computer vision
and artificial intelligence techniques that were used to develop the applications of Chapter 5.
Finally, Chapter 5 details the programs developed for each of the cases of study developed for
this thesis.

13

14

Chapter 2

Introduction to Robotics and to the
Universal Robots world

In this chapter, some preliminary information about robots is presented. First, some ba-
sic nomenclature for robots is given and the mathematics that describes robot position and
movements is introduced. Then, other concepts associated to Robotics, such as cobots and
human-robot interaction are explained. Finally, a brief overview about Universal Robots and
an analysis of the UR5 robot arm are presented.

2.1 Robotics preliminary concepts
In this section the key aspects of robot mechanical structure and robot kinematics are analyzed
in order to provide the reader all the concepts which will be referred to in this work.

2.1.1 Robot Mechanical Structure
Robots can be classified according to the features of their base:

• Robot manipulators: they have a fixed base, as Figure 2.1 shows;

• Mobile robots: they have a mobile base, as Figure 2.2 shows.

Figure 2.1: Robot manipulator.
Source:[47].

Figure 2.2: Mobile robot. Source:[47].

15

2 – Introduction to Robotics and to the Universal Robots world

Robot Manipulators

The mechanical structure of a robot manipulator is composed by links, which are rigid bodies
interconnected by articulations called joints. The end effector is a device which allows the
robot to interact with its environment and to perform a given task. It consists of a gripper or
tools for cutting, drilling, welding, etc. [47]. Robot manipulators can have two different types
of structure:

• Open kinematic chain: the kinematic chain is open if there is only one sequence which
connects the robot links, as Figure 2.3 shows;

• Closed kinematic chains: the kinematic chain is closed if the link sequence forms a
loop, as Figure 2.4 shows.

Figure 2.3: Two-link open-chain planar
arm. Source:[47].

Figure 2.4: Four-link closed-chain planar
arm. Source:[47].

The number of degrees of freedom, or DOFs, should be sufficient and properly distributed
along the mechanical structure, in such a way that the robot is able to perform a given task.
If the number of degrees of freedom is higher than the task variables needed to accomplish a
task, the manipulator is defined as kinematically redundant.

The space in the environment which is reachable by the end-effector is called workspace and
it is influenced by the manipulator structure as well as the mechanical joint limits. An example
of workspace is shown in Figure 2.5.

2.1.2 Robots Kinematics
In this section, some basic aspects of the robot kinematics are recalled, such as what is a
pose, the difference between tool and joint space and inverse kinematics. All these topics are
preparatory to understanding the next chapters.

Pose

Knowing the position and the orientation of the end-effector is fundamental to manipulate an
object in space. Given a reference frame (RF) the position of a rigid body in the 3D space with
respect to this reference frame can be described by position and orientation [47]. The formal
definition of pose is [7]:

p(t) def==

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(t)
p2(t)
p3(t)
p4(t)
p5(t)
p6(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)
x3(t)
α1(t)
α2(t)
α3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
x(t)
α(t)

]
(2.1)

16

2.1 – Robotics preliminary concepts

Figure 2.5: Workspace of an anthropomorphic manipulator. Source:[47].

The x vector defines the position, while the α vector describes the orientation.

Translations

The term rigid motion indicates the displacement of a rigid body. This displacement of a rigid
body in 3D space is the composition of a rigid translation along a line and a rotation along an
axis parallel to this line.

Given a vector v = [v1 v2 v3]T , the rigid translation along a specified direction given by the
vector t = [t1 t2 t3]T is described by the operator Trasl(v, t) [7]:

Trasl(v, t) ≡ vt def==

⎡⎢⎣v1 + t1
v2 + t2
v3 + t3

⎤⎥⎦ = v + t (2.2)

Rotations

Given a square matrix R and a generic vector v = [v1 v2 v3]T , the rotation is described by the
operator Rot(v,R) [7]:

Rot(v,R) = Rv (2.3)

To make more than one rotation, each of which is represented by a matrix Rot(ui,θi) = Ri−1
i

with respect the the reference frame obtained from the previous rotation, the total rotation is
given by:

Rot(u1,θ1)Rot(u2,θ2) · · ·Rot(uN ,θN) = Rot(u,θ) (2.4)

where θ is not the sum of the single angles and u is the unit vector. The matrix which represents
the global rotation will be:

Rot(u,θ) ↔ R0
N

def== R0
1R

1
2 · · ·RN−1

N (2.5)

17

2 – Introduction to Robotics and to the Universal Robots world

Operational and joint space

The position and the orientation of the end-effector can be described by the vector xe which is
defined in the operational space (or tool space), which is the space where the manipulator task
is specified.

xe =
[
pe

ψe

]
(2.6)

where pe is the end-effector position and ψe its orientation.
The joint space (or configuration space) describes the space in which the vector q of the

joint variable is defined [47]:

q =

⎡⎢⎢⎣
q1
...
qn

⎤⎥⎥⎦ (2.7)

Homogeneous coordinates

Homogeneous coordinates, or perspective coordinates, allow to use a unique operator for trans-
lations and rotations. Given a point P in 3D space, the homogeneous translation vector ṽ is
defined as [7]:

ṽ def==

⎡⎢⎢⎢⎣
λp1
λp2
λp3
λ

⎤⎥⎥⎥⎦ = λ

⎡⎢⎢⎢⎣
p1
p2
p3
1

⎤⎥⎥⎥⎦ (2.8)

where λ is a scale factor. Generally, λ is set to 1 according to the representation adopted to
study the roto-translations of a rigid body in a 3D space, thus obtaining:

ṽ def==

⎡⎢⎢⎢⎣
p1
p2
p3
1

⎤⎥⎥⎥⎦ (2.9)

A roto-translation can be represented by a homogeneous matrix:

T 0
m

def==
[
R0

m t0m
0T 1

]
(2.10)

where R0
m represents the rotation, t0m represents the translation and 0T def== [0 0 0].

The homogeneous transformation matrix of a pure rotation transformation is:

T (R) ≡ TR
def==

[
R 0
0T 1

]
(2.11)

The homogeneous transformation matrix of a pure translation transformation is:

T (t) ≡ Tt
def==

[
I t
0T 1

]
(2.12)

18

2.2 – Cobots

where I is the identity matrix.
To correctly perform a roto-translation transformation which is the composition of transla-

tions and rotations, some rules have to be followed: calling T (i) the matrix obtained after the
i displacement, at first i has to be set to zero (i = 0) and T (0) = T . According to the type of
reference frame:

• If the roto-translation T i for i = 1, ..., n is defined with respect to the fixed reference
frame: T (i) = T i T (i− 1)

• If the roto-translation T i for i = 1, ..., n is defined with respect to the mobile reference
frame: T (i) = T (i− 1) T i

2.2 Cobots
In 1997 the term cobot appeared for the first time in a United States patent. Two professors of
the Northwestern University, James E. Colgate and Michael A. Peshkin, described its features
in this way: "In place of the actuators that move conventional robots, however, cobots use vari-
able transmission elements whose transmission ratio is adjustable under computer control via
small servomotors. Cobots thus need few if any powerful, and potentially dangerous, actuators.
Instead, cobots guide, redirect, or steer motions that originate with the person. A method is also
disclosed for using the cobot’s ability to redirect and steer motion in order to provide physical
guidance for the person, and for any payload being moved by the person and the cobot. Virtual
surfaces, virtual potential fields, and other guidance schemes may be defined in software and
brought into physical effect by the cobot" [10].

Nowaday, a collaborative robot, or cobot, is a a robot which can operate in collaboration
with a human operator. Since cobot and humans share the workspace or they are in close
proximity, to constrain and guide the motion virtual surfaces are set up to guarantee the safety
of humans [39].

In 2004, the first cobot on the market, LBR 3, was realized by KUKA. In 2008, Universal
Robots, realized its firts cobot, UR5. After that, in 2012 Rethink Robotics launched to market
its cobot Baxter and in 2015 both FANUC and ABB realized its first cobot.

Given the increasing diffusion of cobots on the market, in 2016 the International Orga-
nization for Standardization (ISO) made regulations about them. In particular, "ISO/TS
15066:2016 specifies safety requirements for collaborative industrial robot systems and the work
environment and supplements the requirements and guidance on collaborative industrial robot
operation given in ISO 10218-1 and ISO 10218-2; it applies to industrial robot systems as de-
scribed in ISO 10218-1 and ISO 10218-2. It does not apply to non-industrial robots, although
the safety principles presented can be useful to other areas of robotics" [14].

2.3 Human Robot Interaction
Since the 1940s, when Isaac Asimov coined the term robotics, a recurrent question arose about
the relationship between humans and robots [5]. Human Robot Interaction, or HRI, studies
how design and evaluate robotic systems which are used by or with humans. The interaction
between humans and robots requires that a communication happens. This communication
is influenced by proximity between robot and human [19]. Considering the proximity, three
categories of interaction can be defined:

• Remote HRI: human and robot are physically in remote places. This type of operation,
called tele-operation, could involve dangerous or scenarios which are not accessible to
humans;

19

2 – Introduction to Robotics and to the Universal Robots world

• Co-located HRI: human and robot are in a shared space and they interact without a
physical contact;

• Physical HRI: human and robot are in a shared space and they interact with a physical
contact [30].

The types of human robot interaction most commonly used is the co-located HRI. In fact, it
can be used in a wide range of operations. For example, robots can perceive the presence of
humans, map the movement of a human, recognize speech through sensors. In this case, based
on whether the workspace is shared or not and on the timing, i.e the presence at the same time
of the human which works and a robot which moves [48]. As Table 2.1 shows, four types of
operation might be distinguished:

• No interaction: the operator and the robot do not work in the same workspace in the
same time;

• Coexistance: the operator and the robot work simultaneously, but they do not share
the workspace;

• Cooperation: the operator and the robot work sharing the same workspace, but not at
the same time;

• Collaboration: the operator and the robot work sharing the same workspace at the
same time.

Application Different
workspace

Shared
workspace

Sequential
processing No interaction Cooperation

Simultaneous
processing Coexistence Collaboration

Table 2.1: Different types of HRI based on the space and time parameters. Source:[48]

The HRI is used in many fields of application: in an industrial context, such as a manu-
facturing plant, collaboration between humans and robots can use the capabilities of both to
optimize the production chain, for example exploiting the preciseness and the ability to move
heavy objects of robots [23]. However, HRI can give benefits also in health care, for example
in the rehabilitation domain or in the care of patients [37]. HRI is also used in autonomous
guidance and space exploration.

2.4 Universal Robots
Universal Robots was founded in 2005 at Odense (Denmark) by three engineers, Esben Øster-
gaard, Kasper Støy, and Kristian Kassow, who believed that the robotic market needed to
become accessible also to small and medium sized businesses.

In fact, Universal Robot produces collaborative robot arms which can be used in a wide
variety of applications. Thanks to six degrees of freedom, flexibility and easy integration into
production environment, they are used in countless industries such as automotive, electronics
and pharma.

20

2.4 – Universal Robots

Features UR3 UR5 UR10 UR16
Reach 500 mm 850 mm 1300 mm 900 mm

Payload 3 kg 5 kg 10 kg 16 kg
Footprint �128 mm �149 mm �190 mm �190 mm

Weight 11.2 kg 20.6 kg 33.5 kg 31.1 kg

Table 2.2: Comparison table of features of different types of Universal Robots arms. Source:[2]

Figure 2.6: Four different models of Universal Robots arms

According to payload, as Table 2.2 shows, four different types of robotic arms (see Figure 2.6)
are offered [2].

In Table 2.2, robotic arms are compared considering the following features:

• Reach: it is the distance between the center of the base of the robot and the point in
which the robotic arm reaches its fullest extension;

• Payload: it is the maximum weight which the robotic arm can move;

• Footprint: it is the space occupied by the base of the robotic arm;

• Weight: it is the weight of the robotic arm.

Analyzing in depth the UR arm structure, it is a 6 axis robot arm and all the 6 axis can
rotate by 360 degrees. The six joints, which are shown in Figure 2.7, are:

• Base: it is the joint between the platform to which the robot is attached and other
components of the robot;

• Shoulder: it is the second axis of the robot and it is called in this way because it performs
the same movement of the human shoulder;

• Elbow: it is the third axis of the robot and the name is due to the similarity with the
movement performed by the human elbow;

• Wrist 1: it performs a bending;

21

2 – Introduction to Robotics and to the Universal Robots world

• Wrist 2: it performs a rotation;

• Wrist 3: it performs a rotation of the end effector.

Figure 2.7: Universal Robot joints representation. Source:[50]

Universal Robots is made flexible and competitive with respect to other company thank
to UR+ which is a set of components and application kits compatible with UR arms. An
example of components which could be integrated into robotic arm are vision systems, such as
2D and 3D cameras, different types of grippers (vacuum, electric, pneumatic), specific process
end-effector able to weld, sand or dispense and software tools, such as simulators [2].

UR5

The UR5 is the robotic arm chosen for the three cases of study developed for this thesis due its
size, which makes it particularly convenient (see Figure 2.9). As written before, the maximum
payload is 5 kg although this value decreases with increasing distance between the end-effector
and the robot center of gravity. The reachable workspace extends 850 mm from the base joint,
as Figure 2.8 shows. The materials the robot is made of are aluminium and polypropylene. The
control box is equipped with 16 digital input, 16 digital output, 2 analog input and 2 analog
output ports. The tool is also equipped with 2 digital input, 2 digital output and 2 analog
ports.

A complete overview technical specification about UR5 is in the Table 2.3.

Direct kinematics of UR5

Direct kinematics deals with the computing of end-effector pose as a function of the joint
variables [47]. In an open-chain manipulator as UR5, which is constituted by 6 joints and 7
links, calling Link 0 the link which is fixed to the ground, the coordinate transformation which
describes the position and the orientation of frame 6 with respect to frame 0 is:

T 0
6 (q) = A0

1(q1)A1
2(q2)A2

3(q3)A3
4(q4)A4

5(q5)A5
6(q6) (2.13)

where q is the vector of joint variables. To compute the direct kinematics equation, the Denavit-
Hartenberg convention is generally used to define the relative position and orientation of two
consecutive links. The Denavit-Hartenberg parameters suggests from UR website are shown in
the Figure 2.10 listed in the Table 2.4.

22

2.4 – Universal Robots

Figure 2.8: UR5 working area, side view.
Source:[2].

Figure 2.9: UR5 technical drawing.
Source:[2].

Weight 20.7 kg
Maximum payload 5 kg

Reach 850 mm
Joint ranges ±360°

Speed Joints: max 180°/s
System update

frequency 500 Hz

Force Torque Sensor
Accuracy 4 N

Pose Repeatability ± 0.03 according to ISO
9283

Footprint �149 mm
Control Box Size (W ×

H × D)
460 mm × 449 mm × 254

mm

Table 2.3: Technical specifications of UR5. Source:[2]

The meanings of the Denavit–Hartenberg parameters are the following:

• ai : is the distance between Oi and Oi′ ;

• di : is the coordinate of Oi′ along zi−1;

• αi : is the angle between axes zi−1 and zi about xi which is positive in counter-clockwise;

23

2 – Introduction to Robotics and to the Universal Robots world

Figure 2.10: Denavit–Hartenberg parameters of Universal Robots arms. Source:[21]

Joints/Pa-
rameters θ [rad] a [m] d [m] α [rad]

Joint 0 – 0 – 0
Joint 1 θ1 0 d1 π/2
Joint 2 θ2 a2 0 0
Joint 3 θ3 a3 0 0
Joint 4 θ4 0 d4 π/ 2
Joint 5 θ5 0 d5 -π /2
Joint 6 θ6 – d6 –

Table 2.4: List of Denavit–Hartenberg parameters of UR5.

• θi : is the angle between axes xi−1 and xi about zi which is positive in counter-clockwise;

Chosen the Denavit–Hartenberg parameters, using the Denavit–Hartenberg convention al-
lows to construct the direct kinematic function concatenating the individual coordinate trans-
formations whose generalization is written in the following equation:

Ai−1
i (qi) = Ai−1

i′ Ai′

i =

⎡⎢⎢⎢⎣
cθi

−sθi
cαi

sθi
sαi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di

0 0 0 1

⎤⎥⎥⎥⎦ (2.14)

Thus, solving the equation 2.13 it is possible to find the solution of the direct kinematic problem

24

2.4 – Universal Robots

[21]:

T 0
6 (q) =

⎡⎢⎢⎢⎣
nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤⎥⎥⎥⎦ (2.15)

where

nx = c6(s1s5 + ((c1c234 − s1s234)c5)/2 + ((c1c234 + s1s234)c5)/2 − s6((s1c234 + c1s234)
−(s1c234 − c1s234)))/2 (2.16)

ny = c6(((s1c234 + c1s234)c5)/2 − c1s5 + ((s1c234 − c1s234)c5)/2) + s6((c1c234 − s1s234)/2
−(c1c234 − s1s234)/2) (2.17)

nz = (s234c6 + c234s6)/2 + s234c5c6 − (s234c6 − c234s6)/2 (2.18)

ox = −(c6((s1c234 + c1s234) − (s1c234 − c1s234)))/2 − s6(s1s5 + ((c1c234 − s1s234)c5)/2
+((c1c234 + s1s234)c5)/2) (2.19)

oy = c6((c1c234 − s1s234)/2 − (c1c234 + s1s234)/2) − s6(((s1c234 + c1s234)c5)/2 − c1s5

+((s1c234 − c1s234)c5)/2) (2.20)

(c234c6 + s234s6)/2 + (c234c6 − s234s6)/2 − s234c5s6 (2.21)

ax = c5s1 − ((c1c234 − s1s234)s5)/2 − ((c1c234 + s1s234)s5)/2 (2.22)

ay = −c1c5 − ((s1c234 + c1s234)s5)/2 + ((c1s234 − s1c234)s5)/2 (2.23)

az = (c234c5 − s234s5)/2 − (c234c5 + s234s5)/2 (2.24)

px = −(d5(s1c234 − c1s234))/2 + (d5(s1c234 + c1s234))/2 + d4s1 − (d6(c1c234 − s1s234)s5)/5
−(d6(c1c234 + s1s234)s5)/2 + a2c1c2 + d6c5s1 + a3c1c2c3 − a3c1s2s3

(2.25)

py = −(d5(c1c234 − s1s234))/2 + (d5(c1c234 + s1s234))/2 − d4c1 − (d6(s1c234 + c1s234)s5)/2
−(d6(s1c234 − c1s234)s5)/2 − d6c1c5 + a2c2s1 + a3c2c3s1 − a3s1s2s3

(2.26)

pz = d1 +(d6(c234c5 −s234s5))/2+a3(s2c3 +c2s3)+a2s2 − (d6(c234c5 +s234s5))/2−d5c234 (2.27)

25

2 – Introduction to Robotics and to the Universal Robots world

Inverse kinematics of UR5

The determination of the joint variables which corresponds to a given pose of the end-effector is
called inverse kinematic problem. Solving this problem is fundamental to transform the motion
assigned to the end-effector in the operational space into the corresponding joint space motions
and thus solving this problem allows execution of the desired displacement of the end-effector
[47]. Thus, computing the inverse kinematic of a UR5 robotic arm means computing the joint
angles [θ1, θ2, θ3, θ4, θ5, θ6] which satisfy equation 2.28.

The desired transformation matrix referred to the reference frame 6 can be also written as
[52]:

T 0
6 (q) =

⎡⎢⎢⎢⎣
n6x o6x a6x p6x
n6y o6y a6y p6y
n6z o6z a6z p6z
0 0 0 1

⎤⎥⎥⎥⎦ =
[
R6 p6
0 1

]
(2.28)

Considering the transformation between frame 1 and 5 [21]:

(A0
1)−1 T 0

6 (A5
6)−1 = A1

2 A
2
3 A

3
4 A

4
5 (2.29)

where T 0
6 describes the desired position and orientation of the end-effector link.

As the Figure 2.10 shows, p5 can be determined by moving p5 along z axis of a distance
−d6.

p5 =

⎡⎢⎣p5x

p5y

p5z

⎤⎥⎦ = p6 − d6

⎡⎢⎣a5x

a5y

a5z

⎤⎥⎦ (2.30)

Knowing p5, θ1 can be computed as:

θ1 = atan2(p5y, p5x) ± cos−1 d4√
p2

5x + p2
5y

+ π

2 (2.31)

The two solutions of the equation 2.31 correspond to the left and right position of the shoulder.
Knowing θ1, θ5 and θ6 are determined as:

θ5 = ±cos−1
(
p6xsθ1 − p6ycθ1 − d4

d6

)
(2.32)

θ6 = atan2
(

−o6xsθ1 + o6ycθ1

sθ5
,
n6xsθ1 − n6ycθ1

sθ5

)
(2.33)

The other 3 joints can be treated as a classical 3 links planar arm, where the reference frame
2 represent the base and reference frame 4 represents the end-effector.

Knowing θ1, the homogeneous transformation matrix between the reference frame 0 and 1
can be written according to equation 2.14:

T 0
1 =

⎡⎢⎢⎢⎣
cθi

−sθi
cαi

sθi
sαi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di

0 0 0 1

⎤⎥⎥⎥⎦ =
[
R1 p1
0 1

]
(2.34)

The reference system 3 cannot be defined yet due to the unknown joint angles between the
base and the end-effector of the three links planar arm.

Since θ5 and θ6 are known, it is possible compute the homogeneous transformation matrix
between frames 4 and 6:

T 0
4 = T 0

6 (T 4
6)−1 =

[
R4 p4
0 1

]
(2.35)

26

2.4 – Universal Robots

Knowing the position vector p4, it is possible compute p3 by moving along the reference
system 4 along the y axis by −d4:

p3 =

⎡⎢⎣p3x

p3y

p3z

⎤⎥⎦ = p4 − d4

⎡⎢⎣o6x

o6y

o6z

⎤⎥⎦ (2.36)

Since all the remaining position vectors are known, the joint angles θ2, θ3 and θ4 can be
computed according to the following equation [47]:

θ3 = ±cos−1
(
p2

4x + p2
4y − a2

2 − a2
3

2a2a3

)
(2.37)

θ2 = atan2(p4y, p4y) ± cos−1

⎛⎝p2
4x + p2

4y − a2
2 − a2

3

2a2
√
p2

4x + p2
4y

⎞⎠ (2.38)

θ4 = ψ − θ2 − θ3 (2.39)

where ψ is the angle between joint 4 and the x2 axis. According to the sign of θ3, the elbow
can be in up or down posture.

2.4.1 Universal Robots grippers - Robotiq 2F-85
As written before, Universal Robot provides a framework, called UR+, which includes different
kinds of grippers compatible with UR arms. The gripper chosen for the second and third
case of study is 2F-85 of Robotiq. The 2F stays for 2 Finger and 85 is referred to the finger
opening dimension, which is 85 mm, as Figure 2.11 shows. It is suitable for different kinds
of application, such as material handling, machine tending, assembly and quality inspection.
It allows to pick, place and handle a large range of objects of varying sizes and shapes. This
gripper is particularly suited for the last two cases of study since it has five points of contact
with an object and it can adapt to the shape of the object they grasp [45].

Figure 2.11: Technical drawing of Robotic 2F-85. Source:[45].

27

2 – Introduction to Robotics and to the Universal Robots world

2.4.2 Universal Robots communication interfaces
Communication between Universal Robots arms and external devices can take place using
different types of communication interfaces, as Figure 2.12 shows:

• Primary/Secondary interfaces: in the primary interface the controller sends robot
state data and additional messages and receives URScript commands, while in the sec-
ondary interface the controller transmits only robot state data and receives URScript
commands. In both interfaces, URScript commands have an update rate of 10 Hz;

• Real-time interfaces: the controller transmits the robot state data and receives URScript
commands with an update rate of 500 Hz;

• Dashboard server: using a TCP/IP socket, an Universal Robots arm can be controlled
remotely sending to the GUI simple commands, such as load, play, pause and stop a robot
program and receive feedback about the state of the robot;

• Socket communication: data can be transferred between robot and external devices
through TCP/IP protocol. In this type of communication, the robot is the client and the
external device is the server;

• XML-RPC: it is a Remote Procedure Call method which transfers data using XML. The
controller can call methods and functions on a server or remote program and it receives
structured data. URScript cannot perform this type of calculation, but this interface is
available for common programming languages such as Python, C, C++ and Java;

• Real-Time Data Exchange (RTDE): it synchronizes external applications with the
UR controller using a TCP/IP connection. It allows the interaction with fieldbus drivers,
the manipulation of input and output of the robot and the plot of the robot status [2].

Figure 2.12: Different types of interfaces of UR. Source: [2]

The main features of each type of interface are summarized in the Table 2.5.

Real-Time Data Exchange - RTDE

In this thesis, the interface selected for all three cases of study developed in this thesis is the
Real-Time Data Exchange, since this type of interface is robust for real-time applications and
it does not break any real-time properties of the controller. A significant advantage of using
this interface is that the synchronization is configurable: for example, the output might consist
in tool, joint status or general purpose output register and the input might consists in general
purpose input register or D/A outputs. Using RTDE, the client is responsible for the setup of

28

2.4 – Universal Robots

Features/
Interfaces

Primary
interface

Secondary
interface

Real-time
interface XML-RPC RTDE

Port
number 30001/30011 30002/30012 30003/30013

Not used
occupied or
frequently
used port

30004

Frequency 10 Hz 10 Hz 500 Hz – 500 Hz

Transmit
Robot state

data and
messages

Robot state
data

Robot state
data

Call methods
and

functions

Diverse
types of data

Receive URScript
commands

URScript
commands

URScript
commands

Structured
data

Diverse
types of data

Table 2.5: Comparison table of features of most common used UR interfaces. Source:[2]

the variables to be synchronized. To implement the RTDE client different languages can be
used. In this case Python is chosen, since Universal Robots provides a RTDE client library
implemented using this programming language [2].

To implement this kind of interface, in the main program it is necessary to specify:

• Robot host: it is the IP address to connect to;

• Port number: as previously mentioned, for RTDE the port is 30004 by default;

• A command to read the configuration file: a configuration file is an xml file which
contains the recipes. A recipe is the definition of a synchronization data package and
contains the name of the variable to synchronize and their types (integer, float, boolean);

• Start data synchronization: if no problem occurs, the connections is established;

• Control loop: after the starting of the synchronization loop, the RTDE sends the client
the requested data in the same order it was requested by the client.

29

30

Chapter 3

Tools overview

This chapter is intended as an overview of both the simulation environments and the library
used to implement the computer vision algorithms required for the applications developed in
this thesis.

3.1 Simulation Environments
Simulators play a fundamental role in testing in an efficient and quick way the behavior of robots
in various working conditions. Offline simulators allow to design in a proper way robotized
stations, while online simulators allow to have a feedback between the software and the robot.
Two main types of simulators exist:

• Proprietary software: it is provided by the robot manufacturers and it is used for
programming and testing robots offline in a 3D environment. Motion trajectory and
control programs are created using programming languages which are compatible with
programming languages of real robots.

• Universal programs: they are programs for simulating and analyzing the behavior of
the robot in a certain environment. They allow to compare the performances of different
robots in the same environment. The programming language is a standard programming
language, such as Python, Matlab, C, depending on the simulation software. The program
can be compiled and translated to basic robot programming languages [27].

3.1.1 Polyscope
Polyscope is a graphic programming environment provided by Universal Robots which allows the
user to program the robot using the teach pendent of the robot or a computer (see Figure 3.1).
The teach pendent is a hand-held device which the operator can use to write a program in a
quick and easy manner and to send the program to the robot. Using Polyscope on a computer
allows to simulate the behavior of the robot to test it or to run directly the program on the
robot, without using a teach pendent. Polyscope simplifies the work of the operator who can use
this easy graphical programming language instead of programming the robot using URScript,
the proprietary programming language of Universal Robots.

Polyscope allows the user to program the robot setting a "before start" sequence, waypoints
and home position and performing different types of movement. In particular, three different
types of movements might be set:

• MoveJ: it performs a linear movement in joint-space. This move allows to reach speeds
higher than the other two movements;

31

3 – Tools overview

• MoveL: it performs a linear movement in tool-space. Generally, it is used in pick and
place applications when the robot approaches the object to pick and when the robot drops
the object and moves away.

• MoveP: it performs a process movement. It is a blend of circular and linear movement.
The movement happens at constant speed.

Polyscope enables to program basic flow control capabilities such as if statements, loops
and threads.

Figure 3.1: The Polyscope programming and simulation environment

In Polyscope it is also possible to add URCaps, which are accessories and hardware that are
useful to the robot to perform a given task. In this way, actions such as opening and closing
the gripper can be added directly in this graphical programming environment.

Moreover, Polyscope allows to set the desired safety configuration such as defining a safety
area and setting a safety mode choosing between the three following options:

• Reduce mode: the movement of the robot is slower when a person is nearby it;

• Safeguard stop and continue: the robot stops when a person is nearby it;

• Safeguard stop and reset: the robot stops when a person is nearby it and it is resumed
pressing the restart button.

3.1.2 RoboDK
RoboDK is a simulator for industrial robots and offline programming born in 2015 from a spin-
off company of ETS University Montreal (Canada). Nowadays, its library consists of over 500
robot arms and tens of different types of grippers and end-effector.

It allows to simulate and to offline program robots in an easier manner, without learning the
proprietary programming language of the robot and with the capability of exporting programs
to the robot.

32

3.2 – OpenCV

It is also possible to import 3D objects in different formats such as STL, STEP, IGES,
WRML, 3DS or OBJ. In this way, the behavior of the robot is simulated in a realistic environ-
ment (see Figure 3.2).

Robot positions can be saved as targets. Two types of target exist: a cartesian target defines
the position of the tool with respect to a coordinate system, while a joint target defines the
position of the robot given robot joint values. A target can also be created on a surface: this
type of target is useful for applications such as inspection and painting [44].

Another interesting feature of RoboDK is the possibility to add a Python script and perform
actions such as closing or opening a gripper, attaching and detaching objects.

Figure 3.2: RoboDK simulation environment with imported 3D objects.

3.2 OpenCV
OpenCV is an open source computer vision library. It is written in C and C++ and has
interfaces for Python, Matlab, Java and others programming languages. It is mainly aimed
at real-time computer vision. The OpenCV developers’ goal is to provide the user with a
simple computer vision infrastructure with which the user can quickly realize sophisticated
computer vision applications. Since the importance of machine learning in several computer
vision applications, OpenCV provides also a general-purpose machine learning library focused
on clustering and statistical pattern recognition.

The idea beyond OpenCV was born from an Intel researcher who, while visiting some
prestigious university groups, such as the MIT Media Labs, noticed that an open computer
vision infrastructure was internally developed and the code passed from student to student
and, in this way, each new student had a good infrastructure from which he could start to
develop his own computer vision application. Thus, with the aid of Intel’s Performance Library
Team, OpenCV codes and algorithms started to be implemented [8].

Several applications can be performed using the OpenCV library, such as face and object
recognition, automated surveillance and inspection, driver-less car and robot control, medical
image analysis. The main functionalities of OpenCV consists in image and video processing and
display, feature detection, machine learning and clustering. In Chapter 4 the theory beyond
several computer vision function available on OpenCV is analyzed.

33

34

Chapter 4

Computer Vision techniques

Computer Vision is a term used to refer to the science and technology of extracting relevant
data from digital images or videos, as well as the large number of techniques and algorithms
developed to achieve this.

Computer Vision encompasses a wide variety of sub-fields, each with its own objective,
which may or may not be related to each other.

In this chapter, a rough taxonomy of the various sub-fields of Computer Vision is presented
at first. Then, after identifying those that are relevant for the applications developed for
this thesis, the theory behind the techniques that were used for the applications presented in
Chapter 5 is outlined.

4.1 The taxonomy of Computer Vision
The applications of Computer Vision are manyfold. Some of the tasks that are currently widely
used in industrial and user applications include:

• Object recognition: classify an image among a set of pre-defined classes or labels.

• Object identification: determine whether a specific object is present in an image, and
where.

• Object detection: determine if any object belonging to a set of pre-defined classes is
present in an image and localize it/them.

• Object segmentation: partition an image into its separate objects.

Often, these tasks are achieved with the integration of Machine Learning (ML) and Deep
Learning techniques, such as Convolutional Neural Networks (CNN). These allow to extract
information from images at a level of abstractions there was previously not possible. Despite
their drawbacks, such as the requirement for an appropriate training phase with large amount
of input data, their unmatched performance has proven to be key to enable performing the
high-level tasks previously listed in practical applications.

However, one notable weakness of AI techniques is that they are extremely sensitive to the
quality of the input data. In practical terms, if the image that is fed to the ML model (such
as a CNN) does not have a structure that is adequately close to the images that were used to
train it, the model output will strongly differ from what we would expect. This concept is very
popular in the AI world by the catchphrase "Garbage in, garbage out".

Therefore, a great deal of effort is put in pre-processing the images that are acquired by
the acquisition system (e.g. a camera) so that they are easy to process with any ML model,

35

4 – Computer Vision techniques

Figure 4.1: Taxonomy of Computer Vision fields. Source: [49].

allowing it to provide a meaningful output. These pre-processing techniques, such as image
filtering and segmentation, are also encompassed in the family of Computer Vision techniques.

An interesting and clear classification of the various fields that are included in Computer
Vision can be found in [49] and is schematized in Figure 4.1.

The remaining part of this chapter deals with the theory and techniques that are relevant
for the applications developed in this thesis. First, Section 4.2 introduces the way in which
digital images are represented. Then, Section 4.3 illustrates some image processing techniques,
such as thresholding (which is used to achieve image segmentation), filtering, and morphologi-
cal transformations. Finally, Section 4.4 deals with the techniques used for object detection. In
particular, Section 4.4.1 and 4.4.2 introduce the use of deep learning models for object recog-
nition and detection, while Section 4.4.3 illustrates the use of geometrical features that were

36

4.2 – Digital images representation

used to finally achieve gesture recognition.

4.2 Digital images representation
4.2.1 Gray-scale images
In general, cameras acquire images by using image sensors which are able to measure the amount
of incident light during a certain exposure time [35]. Each sensor captures the information that
define a pixel and the image itself is made of a rectangular array of pixels (see Figure 4.2).

Figure 4.2: A gray-scale image with pixel intensity values for a small portion of it. Source: [35].

This information is then digitized for each sensor, usually as an 8-bit value, which means
that 256 different levels of light intensity can be represented. The intensity of each pixel is
visualized as a shade of gray, with the highest value (255) being associated to pure white and
the lowest (0) to pure black.

4.2.2 Color images and color spaces
To capture color as well as light intensity, cameras acquire color images by using three sensors
for each pixel, which measure the amount of red, green and blue light [35]. This reflects the
way in which humans build the concept of color.

The human eye contains a large number of photoreceptors called cones, which are divided
in three type each of which is sensible to a particular wavelength range, and our brain con-
structs the colors we perceive based on the intensities sensed by our cones. These three ranges
correspond to what we call the three additive primary colors (red, green and blue).

Therefore, color images produced by digital cameras are composed by pixels each of which is
characterized by three color intensities (the RGB values). Typically, each color value is stored
in an 8-bit value, which means that 256 shades of each color can be represented.

Therefore, a digital image can be represented by splitting it into three different images, each
representing the intensity of the associated color (or more generally channel), as can be seen
in Figure 4.3.

37

4 – Computer Vision techniques

Figure 4.3: Decomposition of an image into its RGB channels. Source: [35].

4.2.3 The YCbCr color space
Although RGB is the primary color space for encoding digital images, several other color
spaces are used in image processing, such as HSV or YCbCr. YCbCr is a color space that has
historically been used for video transmission, but has recently proven useful in other applications
as well. The first channel, Y, stands for luminance, while the other two are the blue-difference
and red-difference chroma components. The chroma or chrominance channels are directly
related to the intensity differences B−Y (blue-luminance difference) and R−Y (red-luminance
difference).

For the purposes of the applications presented in this thesis, the most interesting aspect of
YCrCb is that is effectively separates the luminance from the chromatic aspect of the color of
the image. This makes it quite useful for skin recognition.

In fact, illumination conditions strongly influence object recognition tasks where the skin
color is relevant, for instance face or hand recognition. For this reason, it can be useful to adopt
the YCrCb color space and only consider the two chromatic channels [31].

38

4.3 – Image processing techniques

Figure 4.4: Decomposition of an image into its YCrCb channels. Source: [54].

4.3 Image processing techniques
4.3.1 Thresholding
Thresholding is a simple operation that attempts to separate an object from its background.
As such, it can be used to achieve image segmentation.

Thresholding is the most common point processing operations. Point processing operations,
as opposed to neighborhood operations, are simply operations that operate pixel-wise, and the
pixels of the resulting image are not affected by the values of the neighboring pixels.

The process of thresholding converts a gray-scale image to a binary image, where all of the
pixels’ intensities become either 0 (black) if they are below or 255 (white) if they are over a
certain threshold (see Figure 4.5). In mathematical terms [49]:

g(x, y) =

⎧⎨⎩0 if f(x, y) ≤ t

255 if f(x, y) > t
(4.1)

where f is the original image, g is the thresholded image, and t is the threshold.
The threshold can be either set manually or with some selection algorithm such as Otsu’s

algorithm, which attempts to minimize the weighted within-class variance of the white and
black classes [56].

4.3.2 Filtering and the Gaussian Blur
The Gaussian Blur is a popular blurring (or smoothing) filter used to filter out noise from the
image.

In short, applying a filter to an image means that the intensity of each pixel of the resulting
image is given by a weighted sum of the intensities of pixels of the original image in a surrounding

39

4 – Computer Vision techniques

Figure 4.5: Example of thresholding on an image. Source: [35]

area (see Figure 4.6). More formally, filtering is a convolution operation between the original
image and the filter [41].

Edge detection algorithms perform poorly with almost any real-life images, as they are un-
able to differentiate the edges that are most relevant from other non-interesting discontinuities.
Sharp variations in intensity caused by noise can lead the edge detection algorithm to identify
edges where there should be none. Similarly, thresholding noisy images is often ineffective in
differentiating objects from their background.

For this reason, the image must be smoothed to suppress as much noise as possible.

Figure 4.6: Example of Gaussian blur on an image with increasingly large standard deviation.
Source: [41].

Gaussian Blur uses a Gaussian function as a filter. The formula for the two-dimensional
Gaussian function is [41]:

f(x, y) = 1
2πσe

− x2+y2

2σ2 . (4.2)

where x and y are the pixel coordinates, and σ is the standard deviation of the Gaussian. In
practice, using a Gaussian filter means that nearer pixels will weight more in determining the
result of the intensity of the pixels of the resulting image.

4.3.3 Morphological transformations
Morphological transformations mainly act on the image shape and can further reduce noise.
Similar to filtering, they are neighborhood operators which apply a kernel or structuring element
to the original image [35]. This kernel is basically a binary matrix, where the ones are typically
arranged to form a square or a circle whose size determines the size of the neighboring region
which will influence the pixels of the processed image.

40

4.3 – Image processing techniques

However, differently from filtering, morphological transformations are not simply equivalent
to the convolution of the kernel with the original image. Rather, the result of the transformation
is determined based on the thresholded value of the convolution [49].

The most common basic morphological transformations are:

• dilation

• erosion

• majority

Dilation dilates the shape of the object, while erosion shrinks it.
Often, these transformations are used together in compounded transformations. Opening is

erosion followed by dilation (see Figure 4.7 and 4.8), while closing is the opposite.

Figure 4.7: Example of opening operation on a binary image. Source: [35].

Figure 4.8: Another example of opening operation on a binary image. Source: [51].

Both these compounded transformations can be used to eliminate noise and obtained a
simpler and cleaner topology for the objects which are relevant to use in our figure.

4.3.4 Identifying Contours
Contours are the boundary curves that can be drawn around individual objects of interest in an
image. Drawing the contour of an object is one of the common objectives of image processing,
and a prerequisite to many object recognition tasks.

Identifying the contours can be done in many different ways. One of the most common is
to use an Edge Detection algorithm on our image to identify all edges, and then separating the
non-relevant edges from the ones that define the relevant contours.

Edges are defined as lines where rapid intensity variation occurs [49], and may therefore
include shadow boundaries, changes in surface orientations, variations in lighting, and many
other undesired features.

An alternative to using an edge detection algorithm is to use thresholding. In fact, after a
binary image is obtained, the task of finding the objects contours is trivial. In this case, the

41

4 – Computer Vision techniques

quality of the obtained contour depends on the goodness of the thresholded image in separating
the objects from the background.

This last approach in particular is the one that will be used in the applications developed
for this thesis, as mentioned in Chapter 5.

4.4 Object Recognition and Detection
4.4.1 Image Recognition with Neural Networks
Neural Networks for Regression

Artificial Neural Networks are a family of Deep Learning models that are used to identify and
"learn" patterns from large datasets.

A neural network in its simplest form is composed by:

• An input layer, which is essentially a real-valued vector which constitutes our input data.

• A series of hidden layers, which perform computations on the values coming from the
preceding layers. Each hidden layer is composed by a certain number of neurons and each
neuron has several coefficients, which are called weights, associated to it. Additionally,
each layer also has a constant term called bias.

• An output layer, which produces a real-valued vector which characterizes our output data.

Such a simple neural network is also known as the Multi-Layer Perceptron architecture [16].

Figure 4.9: A regression neural network in its simplest form, with a two-dimensional input,
a three-dimensional output and only one hidden layer. The bias terms are colored in yellow.
Source: [16]

A scheme of a such a simple neural network architecture can be seen in Figure 4.9. Each
neuron computes an output based on the inputs coming from all of the neurons of the preceding
layer, and passes it to all the neurons of the following layer. Neurons compute their output in
two steps: first, they compute a weighted sum of their inputs and the bias terms. Then, they
pass this output through an activation layer.

42

4.4 – Object Recognition and Detection

The weighted sum performed by a neuron j can be written as:

y′
j =

∑
wi,jxi + bj, (4.3)

where xi are the inputs to the neuron j (the outputs of the preceding layer), wi,j are the weights
associated to the connection between neuron j and neuron i of the preceding layer, and bj is
the bias term associated to the neuron.

Then, the output of the neuron is:

yj = ϕ(y′
j), (4.4)

where ϕ is some activation function. This activation function allows to suppress or attenuate the
neuron output if it does not overcome a certain threshold. The role of activation functions (see
Figure 4.10) is to introduce non-linearities in the neural network, thus allowing it to reproduce
any arbitrary (and, possibly, complex) non-linear function.

Figure 4.10: Some of the most popular activation functions. Source: [16]

The kind of neural network previously described can be trained on large datasets, where
both inputs and the "true" outputs are known, and then used to perform predictions on the
output of new input data, whose true output is unknown. In other words, they can be trained
to perform regression tasks.

Neural Networks for Classification

While regression tasks deal with real-valued outputs, classification (as is the case for image
recognition) deals with the case where the output is a label. To perform classification tasks,
the neural network architecture that was previously described, a Softmax layer can be added
(see Figure 4.11).

In this case, we have one output neuron for each of the possible classes our input data object
can belong to, and we interpret their value as the probability that the object belongs to that
particular class. In order to make sure that all probabilities are between 0 and 1 and they
add up to 1 (so that we can indeed interpret them as probabilities), the Softmax layer is used.
Then, we can either select the predicted class label as the one receiving the highest probability,
o select none if the highest probability is below a certain confidence threshold.

43

4 – Computer Vision techniques

Figure 4.11: A classification neural network. Source: [16]

Convolutional Neural Networks

In order to perform classification tasks on images, all pixels must be fed to the NN as input.
This means that the size of the input is equal to the number of pixels that form the image,
times three (the number of color channels that characterize each pixel). This makes the process
of training NNs for classifying images computationally unpractical.

Therefore, for the task of image classification, Convolutional Neural Networks (CNNs) were
developed. CNNs attempt to strongly reduce the size of the image without losing the most
relevant features, by applying convolution on the input image. More precisely, the convolution
layers map the original image to a set of feature spaces which are then used as the input to a
neural network (see Figure 4.12).

Figure 4.12: Scheme illustrating the convolution on an image. Source: [36]

Real CNNs use a complex combination of several convolution layers as well as other kinds
of layers, such as pooling layers [36] (see Figure 4.13).

Moreover, several complex architectures were developed starting from CNNs which introduce
new layers or connection elements to further improve their training time or the performance.

In particular, the pre-trained NNs used in the applications in this thesis are Residual neural
networks, also called ResNet. The ResNet architecture was first introduced in 2015 and it has

44

4.4 – Object Recognition and Detection

Figure 4.13: Example of a CNN architecture, with several convolution and pooling layers.
Source: [36]

since proven excellent ease of training and performance for object classification and detection
tasks [22].

4.4.2 Object Detection
The classification tasks that were previously described analyze an image and assign a class label
to the entire image (see Figure 4.14). Object detection is a more complex task and it deals
with the localization and classification of multiple objects in an image. For example, in the
applications presented in this thesis, two object detection tasks must be performed, sometimes
simultaneously: face detection and hand detection (identify whether a face or hand is present
or not, and localize it/them).

Figure 4.14: Difference between object classification and detection. Source: [25]

In order to achieve object detection, a number of regions of interest (ROIs) must be gener-
ated and then analyzed with an image classifier. A basic procedure to generate region proposals
is to use a sliding window approach, where a set of boxes with predefined width and height are
applied to the whole image repeatedly. This approach has many drawbacks however in that it
is computationally expensive and it will detect the same object several times.

Another, more efficient approach was introduced with the Region-based Convolutional Net-
work, or R-CNN [18], which integrates the region proposal phase in the CNN itself (see Fig-
ure 4.15). The architecture was then incrementally improved by subsequent work. These

45

4 – Computer Vision techniques

improved architectures were predicatably named by their authors Fast R-CNN [17] and Faster
R-CNN [43].

Figure 4.15: High-level scheme of the R-CNN architecture. Source: [18]

The R-CNN architecture can also be combined with other kinds of CNNs to obtain the best
detection speed and accuracy. In particular, the ResNet implementation for object detection
uses a R-CNN architecture where the original classification CNN is replaced with the ResNet
classification network [22]. This is the architecture that was used for the face detection tasks
required in the applications presented in 5.

Finally, another family of methods that have demonstrated top-level performance for object
detection are single-shot networks, such as the SSD architecture [33]. In contrast with region-
based architectures, single-shot networks eliminate the region-proposal portion relying instead
on a set of default boxes. The size variety that objects can have is handled by combining pre-
dictions from multiple feature maps, as illustrated in Figure 4.16. This particular architecture
is the one that was used for hand detections tasks required in the applications presented in 5.

Figure 4.16: High-level scheme of the SSD CNN architecture. Source: [33]

4.4.3 Characterizing shapes with Convex Hulls
The convex hull of a shape is the smallest convex set that contains it [46]. The convex hull of
the contour of an object is therefore a polygon that contains the whole object, whose vertexes
are the convexity points. Between any two consecutive convexity points, a convexity defect can
be identified, which is the point on the contour being the farthest away from the segment of the
convex hull comprised between the two consecutive convexity points [24], [12] (see Figure 4.17).

The convexity points of the convex hull of an object and its convexity defects can be useful
in several ways. For example, they were used to identify particular lesions in human organs
based on radioisotope images [24]. In this thesis, more simply, they will be used to characterize
the shape of a detected hand and identify the correct gesture using simple rules based on their
number and on the characteristics.

46

4.4 – Object Recognition and Detection

Figure 4.17: Illustration of the convex hull and convexity defects of a contour. Source: [11].

After the hand is identified by a hand detection neural network, the region of interest (a
rectangular region containing the hand only) is processed to achieve segmentation (separating
the hand from the background). At this point, the contour of the hand can be easily identified.
Finally, the convex hull and convexity defects of the hand contour are obtained and gesture
recognition is obtained by a set of rules based on them.

47

48

Chapter 5

Cases of study

This chapter presents the three cases of study developed for this thesis and illustrates the main
methods and algorithms developed for them. The sections are structured as follows: Section 5.1
illustrates the first case of study, Section 5.2 illustrates some methods and algorithms which
are common to both the second and third cases of study and Section 5.31 and Section 5.43
illustrate the second and third cases of study, respectively.

5.1 UR arm tracks the face of the user - Television ap-
plication

The idea beyond this case of study is to create a program usable in a television studio: the
television presenter moves in the television studios and the robotic arm, equipped with a camera
which focuses on the presenter, follows his movement using a face-tracking algorithm.

The application has been developed in a simulation environment. The robotic arm is sim-
ulated in a Polyscope simulation environment, while the video input is acquired by the fixed
camera of a laptop. A personal computer (the laptop) processes the video stream and imple-
ments the face-tracking algorithm, computing the translation that the robot arm must perform.
The personal computer and the simulated robot communicate using the RTDE interface (see
Section 2.4.2).

5.1.1 Algorithm overview
The program consists of two sub-programs which run in parallel: a Python code runs on a
personal computer and it uses its fixed camera. A Polyscope program, which runs on a virtual
machine, simulates the behavior of the robot. In particular, the PC computes the pose to
be achieved, while Polyscope gets the computed pose, calculates the joint motion required to
achieve that pose and simulates the movement. Figure 5.1 schematizes the PC program, the
Polyscope program and their interactions. To obtain the final pose and send it to Polyscope,
the PC program implements a face detection algorithm, sets up the RTDE connection used
to exchange data and an algorithm used to compute the translation vector which updates the
TCP pose, based on the input captured by camera.

5.1.2 Face tracking
In order to track the face position, a face detection algorithm, which is able to recognize a
human face in an image frame (see Section 4.4.2), is first needed.

49

5 – Cases of study

Figure 5.1: Flow chart of the algorithm used to control the robotic arm movement according
with the movement performed by an user in the room using a face detection algorithm. On the
left, the Polyscope algorithm is shown, on the right, the Python algorithm running on the PC.

To detect the face, a Deep Learning model (DNN) is used. The model is a Region-based
Convolutional Neural Network using the ResNet implementation (for more details, see Sec-
tions 4.4.1 and 4.4.2). The model is available through the OpenCV GitHub page in several
implementations. The implementation used in this thesis is the Caffe implementation. Caffe
is a deep learning framework developed by Berkeley AI Research and The Berkeley Vision and
Learning Center [29].

To correctly use the Deep Learning model and obtain accurate predictions, the input images
have to resized to a 300x300 pixels resolutions and the BGR channels must be modified with
mean subtraction of values 104 for blue channel, 177 for green channel and 123 for red channel
have to be applied [38].

In practice, at first the pre-trained model has to be loaded:

50

5.1 – UR arm tracks the face of the user - Television application

1 net = cv2.dnn. readNetFromCaffe (" deploy . prototxt ", "
res10_300x300_ssd_iter_140000_fp16 . caffemodel ")

Listing 5.1: How to load the pre-trained coffee model on Python using OpenCV

The video starts recording the image from the selected source (src=0 refers to the PC’s
integrated webcam) and the current frame is acquired:

1 vs = VideoStream (src =0).start ()
2 frame = vs.read ()

Listing 5.2: Read frame from the video

From an image a blob, which is the result of the image preprocessing required to obtain the
inputs to the Deep Learning model, can be obtained:

1 blob = cv2.dnn. blobFromImage (cv2. resize (frame , (300 , 300)), 1.0, (300 , 300) ,
(104.0 , 177.0 , 123.0))

Listing 5.3: Pre-processing procedure

The image blob is the result of two operations on the original image:

• Mean subtraction: as previously mentioned, all pixels of each channel of the image are
subtracted by a value which is the mean value for that channel of the training dataset
the DNN was trained on;

• Scaling: the image is resized to fit the same size the DNN was trained on.

Feeding the blob as input to the DNN, the detections are obtained:
1 net. setInput (blob)
2 detections = net. forward ()

Listing 5.4: Detection searching

The output of the DNN is the coordinates of the ROI, which is a rectangle in which the face
is contained, and a confidence measure of the detection itself (which quantifies how likely the
ROI is to actually contain a face). A rectangle can therefore be drawn around each detected
face which has a confidence level higher than a set threshold (a robust and reliable confidence
level is 0.55). The confidence of each detected face is specified above the drawn rectangle [53]:

1 if confidence > 0.55:
2 box = detection [3:7] * np.array ([w, h, w, h])
3 (startX , startY , endX , endY) = box. astype ("int")
4 text = "{:.2f}%". format (detection [2] * 100)
5 y = startY - 10 if startY - 10 > 10 else startY +10
6 cv2. rectangle (frame , (startX , startY), (endX , endY) ,(0, 0, 255) , 2)
7 cv2. putText (frame , text , (startX , y),cv2. FONT_HERSHEY_SIMPLEX , 0.45 ,

(0, 0, 255) , 2)

Listing 5.5: Pre-processing procedure

The figures from 5.2 to 5.7 show the movement of a person in the room and the movement
performed by the robot at the same time.

51

5 – Cases of study

Figure 5.2: Face-detection at the initial
time instant.

Figure 5.3: Initial robot pose.

Figure 5.4: Face-detection few instants af-
ter the first time instant.

Figure 5.5: Robot pose few instants after
the first time instant.

Figure 5.6: Face-detection few instants
later.

Figure 5.7: Robot pose few instants later.

52

5.1 – UR arm tracks the face of the user - Television application

5.1.3 RTDE and data exchange
As mentioned in Chapter 2.4.2, the Real-Time Data Exchange interface is used to send data
between robot and computer. The PC program must set up the connection and define the
names of the variables to be exchanged, the robot registers that must be read or written, and
the variables data types. This information is encoded in particular structures called recipes.
The key elements to establish the data exchange are:

• Robot host: since the robot is simulated in Polyscope using a virtual machine, the IP
address of the robot matches the IP address of the virtual machine;

• Port number: the port for RTDE connection is 300004 by default;

• Configuration file: the xml configuration file includes 3 recipes about the current state
of the robot (state), the pose that the robot has to reach (setp) and the watchdog, as
Table 5.1 shows.

Recipes Name of the variable to
synchronize

Types of the variable to
synchronize

State actual_tcp_pose VECTOR6D
output_double_register_0 DOUBLE
output_double_register_1 DOUBLE
output_double_register_2 DOUBLE
output_double_register_3 DOUBLE
output_double_register_4 DOUBLE
output_double_register_5 DOUBLE

Setp input_double_register_0 DOUBLE
input_double_register_1 DOUBLE
input_double_register_2 DOUBLE
input_double_register_3 DOUBLE
input_double_register_4 DOUBLE
input_double_register_5 DOUBLE

Watchdog input_int_register_0 INT32

Table 5.1: RTDE Recipies with names and types of data to synchronize

In particular, the recipe "state" is used to send position data from the robot to the computer,
such as the current pose of the TCP which is encoded with 6 float registers that contain the 6
elements defining the pose vector. The recipe "setp" is used to send the pose that the robot has
to achieve from the computer to the robot. Once again, the pose is encoded using 6 registers,
which represent the 6 coordinates of the robot pose. Finally, the recipe "watchdog" is used to
guarantee that the robot action does not miss updates from the PC.

5.1.4 Computation of TCP movements
The initial robot pose, which is the pose with respect to which all the subsequent TCP move-
ments occur, is related to the initial detected face position: in fact, the movements of the TCP
along x, y and x axis are computed with respect to the coordinates in which the face appears
for the first time in the frame.

53

5 – Cases of study

In order to avoid that the initial robot position is too close to the positions of maximum
extension or bending or near to singularities, if the initial position of the face is too close to the
edges of the frame, the initial face position is set to a predefined value, which is different from
the real one and which is less close to the corners of the image. In this way, also the initial pose
of the robot will be far from any inconvenient pose. This process is performed in Listing 5.6.

1 if 1 < initial_face_center [0] < 100:
2 initial_face_center [0] = 100
3 elif 300 < initial_face_center [0] < 380:
4 initial_face_center [0] = 300
5 else:
6 initial_face_center [0] = initial_face_center [0]
7

8 if 1 < initial_face_center [1] < 100:
9 initial_face_center [1] = 100

10 elif 160 < initial_face_center [1] < 200:
11 initial_face_center [1] = 160
12 else:
13 initial_face_center [1] = initial_face_center [1]

Listing 5.6: Algorithm to limit the initial position of the face and thus, the initial position of
the robot.

Two different methods are used to compute the displacement along the three axes:

• Multiplication by a scaling factor: it is used to compute the displacement along x
and y axes;

• Pinhole camera model algorithm and multiplication by a scaling factor: they
are used to compute the displacement along the z axis.

Lateral movement

The displacement of the TCP of the robot along these axes corresponds to the displacement
of the recognized face multiplied by a scaling factor. In particular, using the coordinates of
the rectangle which encloses the recognized face and which is shown using the face detection
algorithm, the position of the center of the rectangle is computed. The displacement between
the current face position and the initial face position is computed by subtracting the coordinate
of the center of the rectangle which actually encloses the face and the center of the rectangle
which encloses initial face position. The computed displacement along the x and y axes is
multiplied by a scaling factor which is experimentally calibrated and its value is 0.002.

Depth movement

To compute the movement along z axis, the pinhole camera model and the multiplication by
a scaling factor are used. The pinhole camera model mimics the geometrical projection of a
pinhole camera. A pinhole camera is a basic camera which consists of a closed box which has a
single tiny hole on a wall, which allows light to enter. Light hits a photosensitive surface inside
the box and produces an upside-down projection of what is outside of the box on its back wall,
as Figure 5.8 illustrates.

In the pinhole camera model, the aperture of a camera is reduced to a single point which
is called center of projection and the photosensitive surface, assumed to be planar, is called
the image plane. To determine where a 3D point is depicted in the image, a straight line
which intersects this point optical center is drawn and the image of the 3D point is obtained
at the intersection of the previously drawn line with the image plane, as Figure 5.9 shows. As
previously mentioned, the image plane shows the upside-down projection of objects. To avoid

54

5.1 – UR arm tracks the face of the user - Television application

Figure 5.8: Sketch of the pinhole camera. Source: [26]

this inversion, the true image plane can be replaced with a virtual plane placed at the same
distance from the center as the original image plane and parallel to it. To understand the

Figure 5.9: Sketch of the pinhole camera model. Source: [26]

algebraic formulation of the pinhole camera model, some concepts must be introduced first:

• Focal length (f): the distance between the center of projection and the image plane;

• Optical axis: the line which passes through the optical center and which is orthogonal
to the image plane;

• Principal point: the point given by the intersection between the optical axis and the
image plane;

• 3D point coordinates (X, Y, Z): they are expressed in the camera coordinate system,
whose origin is in the optical center; Conventionally, the Z axis is coincident with the
camera’s optical axis, and the X and Y axes are parallel to the columns and rows of
pixels in the image plane;

• Image coordinates system (x, y): its origin is in the principal point. The x and y
axes are parallel to the X and Y axes respectively;

• Pixel coordinate system (u, v): its origin lies in one of the image area’s corners.
According with the convention adopted by OpenCV it matches the upper left corner of
the image. The u and v directions are parallel to x and y axes respectively; their value is
expressed by the number of pixels.

Figure 5.10 shows more in detail the pinhole camera models, based on the concepts previously
expressed [26].

55

5 – Cases of study

Figure 5.10: Pinhole camera model with a point P(X,Y,Z) according to the camera coordinate
system. Source: [52]

Comparing similar triangles, the image point’s coordinates expressed in the image coordinate
system are:

x = f · X
Z

(5.1)

y = f · Y
Z

(5.2)

Thus, the focal length and the real point coordinate along the Z axis can be computed
respectively as:

f = Z · x
X

(5.3)

Z = f · X
x

(5.4)

To experimentally determine the focal length, it is sufficient to measure x, which is the size
of the face projected in the image plane along the x axis, expressed in pixels, Z which is the
distance between the origin of the camera reference system and the origin of the coordinate
system of the face in the real world and X, which is the real dimension (in meters) along the
X axis of the face. The experimentally evaluated values are:

x = 88 pixels Z = 0.495m X = 0.16m (5.5)

Having such data, the focal length of the used camera was computed as:

f = Z · x
X

= 272.5 (5.6)

Finally, the point position along the Z axis will depend on the value of the point along the
x axis and it can be computed as:

Z = f · X
x

= 272.25 · 0.16
x

(5.7)

In order to limit the movement along the Z axis of the robotic arm (in such a way that
when the user moves for example 2 meters or more along the Z axis, the robotic arm follows

56

5.1 – UR arm tracks the face of the user - Television application

the user without reaching its full extension), the obtained value is multiplied by a scaling factor
which was set to 0.2. In a real world application, this parameter would be set according to the
operational requirements of the studio.

Translation vector computation

To compute the translation along x, y and z axes, two functions are designed as part of the PC
program. The function translation_vector computes the translation vector without applying
any scaling factor. The vector translation has three elements: translation[0] corresponds
to the translation along x axis, translation[1] along y axis and translation[2] along z
axis.

1 def translation_vector (face_center , initial_face_center , translation_bool ,
y_rect , initial_y_rect):

2 face_center_opp = [face_center [0], -face_center [1]]
3 initial_face_center = [initial_face_center [0], -initial_face_center [1]]
4

5 translation = [0 ,0 ,0]
6 translation [0] = face_center_opp [0]- initial_face_center [0]
7 translation [1] = face_center_opp [1]- initial_face_center [1]
8 if y_rect >0 and initial_y_rect :
9 translation [2] = (real_face_y * focal_length)/y_rect -(real_face_y *

focal_length)/ initial_y_rect
10 else:
11 translation [2] = 0
12 translation = translation * translation_bool
13

14 return translation

Listing 5.7: Function to compute the translation vector without any scaling factor

In particular:

• translation_bool is a boolean variable which is set to 1 when a face is detected and to
0 when there is no face in the frame;

• y_rect is the dimension of the rectangle which encloses the face along y axis in pixels;

• initial_y_rect is the y_rect computed the first time in which a face appears in the
video;

The sign inversion along the x and y axis computed in face_center_opp is due to the fact
that the webcam of the computer flips the image (flipping the right and left side) and to the
orientation of the y axis according to the OpenCV convention (the origin of the axis is in the
upper left corner and the y axis is oriented downwards).

The function new_robot_pose computes the next pose of the TCP of the robot adding the
scaled translation vector to the initial TCP pose.

1 def new_robot_pose (translation , initial_robot_position):
2 translation_list = list(translation)
3

4 scaled_translation_vector = [0 ,0 ,0]
5 scaled_translation_vector [0] = scaling_factor * translation_list [0]
6 scaled_translation_vector [1] = scaling_factor * translation_list [1]
7 scaled_translation_vector [2] = scaling_factor_y * translation_list [2]
8

9 new_robot_position [0] = initial_robot_position [0]+
scaled_translation_vector [0]

57

5 – Cases of study

10 new_robot_position [1] = initial_robot_position [1]-
scaled_translation_vector [2]

11 new_robot_position [2] = initial_robot_position [2]+
scaled_translation_vector [1]

12

13 return new_robot_position

Listing 5.8: Function to compute the next TCP pose of the robotic arm

5.1.5 Robot program
The robot program, which runs in the Polyscope simulation environment, is responsible of
reaching the desired TCP pose and the algorithm to accomplish this task is shown in Figure 5.11.

Figure 5.11: Flow chart of the algorithm which Polyscope runs

Analyzing more in depth the code presented in Listing 5.9, in the Before Start sequence,
as the flow chart shows, elementary operations are performed, such as moving to the initial
pose and its storage in the variable setp, setting of the watchdog and writing of the setp
variable in the output float register: in this way the PC program can read the initial pose
from these registers. In particular, line 5 activates the watchdog for the RTDE input variable
input_int_register_0. If the watchdog does not receive an input update for this variable in
the time period specified by the second argument of the function, the action specified as the
third argument of the function is performed. In this case, if the update frequency is less than
1Hz, the program will stop.

In the Robot Program, which is the main thread of the algorithm, the new pose is reached
through two functions [3]:

• get_inverse_kin(tool pose): it calculates the inverse kinematic transformation, from
tool space to joint space. It returns the solution closest to the current joint positions.

58

5.2 – Gesture recognition algorithm

• servoj(output of get_inverse_kin, lookahead time, gain): it is used for online
realtime control of point positions. The lookahead time is a parameter used to project
the current position forward in time maintaining the current velocity. The gain adjusts
the current position towards the desired one.

Meanwhile, Thread 1 stores the current TCP pose in the setp variable and reads the next
pose to reach, which is computed by the PC program, from the input float registers. The pose
to reach is stored in the setp variable. It is then used by the Main Program and the new pose
is achieved by the robotic arm.

1 BeforeStart
2 MoveJ
3 init_pos
4 setp := get_actual_tcp_pose ()
5 rtde_set_watchdog (" input_int_register_0 " ,1,"PAUSE")
6 Loop 1 times
7 init := init_pos
8 write_output_float_register (0, init [0])
9 write_output_float_register (1, init [1])

10 write_output_float_register (2, init [2])
11 write_output_float_register (3, init [3])
12 write_output_float_register (4, init [4])
13 write_output_float_register (5, init [5])
14 sync ()
15 Robot Program
16 setp_inv_kin := get_inverse_kin (setp)
17 servoj (setp_inv_kin , lookahead_time = 0.05 , gain = 500)
18 Thread_1
19 setp := get_actual_tcp_pose ()
20 Loop
21 tmp :=p[0 ,0 ,0 ,0 ,0 ,0]
22 tmp [0] = read_input_float_register (0)
23 tmp [1] = read_input_float_register (1)
24 tmp [2] = read_input_float_register (2)
25 tmp [3] = read_input_float_register (3)
26 tmp [4] = read_input_float_register (4)
27 tmp [5] = read_input_float_register (5)
28 If tmp != p[0 ,0 ,0 ,0 ,0 ,0]
29 setp := tmp
30 sync ()

Listing 5.9: Function to compute the next TCP pose of the robotic arm

5.2 Gesture recognition algorithm
This section describes the gesture recognition algorithm which is common to the second (Sec-
tion 5.31) and third (Section 5.43) case of study. The second case of study consists in an
industry application: the program allows an operator to select the object to be processed by
the robot arm by performing a simple hand gesture in front of a camera. The third one is a
health-care application: a patient which cannot move due to health problems, performs gestures
which represent the object which he/she needs and the robot will hand it to him.

5.2.1 Algorithm overview
Similarly to the first case of study, the webcam of the PC is used, and once again, in order
to extract the region of interest (or ROI) from the entire image captured by the camera a

59

5 – Cases of study

Figure 5.12: Flow chart of the PC algorithm for gesture recognition

60

5.2 – Gesture recognition algorithm

pre-trained Deep Learning model is used. This time, however, the ROI is defined by the region
around the hand of the operator/patient, and therefore a DNN trained for hand detection must
be used.

Once the hand is detected and the ROI extracted, several Computer Vision techniques are
used to perform proper gesture recognition (i.e. identify the gesture which a person made).

Figure 5.12 shows the flow chart of the operations which have to be performed to recognize
gestures. Once the gesture to perform is recognized, it is sent to the robot program (running
in the Polyscope).

Since the Polyscope interface cannot simulate a realistic environment with people and ob-
jects to process, the RoboDK simulator is used. In particular, the movement of the robot are
performed on Polyscope and, at the same time, are emulated in RoboDK.

The setup for the second and third cases of study is therefore as follows: a PC (a laptop)
acquires video through its integrated camera and processes it. The computer program performs
hand detection and gesture recognition, and sends the gesture to be performed to the simulated
robot through the RTDE interface. The Polyscope simulation environment runs the robot
program and simulates the robot movement. The RoboDK simulation environment mirrors the
movements performed by the robot in Polyscope and reproduces them in a more complex and
realistic simulation environment.

5.2.2 Hand detection algorithm
The hand detection algorithm used in this work is developed by the researcher Victor Dibia
[13] using the egohands dataset from Indiana University [4] which contains 48 videos about
first-person interactions between two people.

The model is trained using Tensorflow, in particular the object detection API. In order to
use it, the training data are converted in Tensorflow format. The dataset is spilt into train
folders (80% of data), test (10% of data) and evaluation folder (10% of data). A detailed
overview of the algorithm is described in Section 4.4.2.

In Figure 5.13 an example frame captured by the webcam in which both the face and a
hand are recognized is shown.

Figure 5.13: Hand and face recognition using the webcam frame

61

5 – Cases of study

5.2.3 Gesture recognition
Thanks to the hand detection algorithm output, the original image frame can be cropped in
order to obtain an image which shows only the ROI in which the detected hand is present. An
example is shown in Figure 5.14).

Figure 5.14: Original frame region of interest in BGR color space

After the ROI is extracted, gesture recognition is performed based on some geometrical
features which encode its shape. In particular, the gesture is identified base on the character-
istics of the convex hull and the convexity defects (see Section 4.4.3) of the hand’s contour.
However, in order to extract the hand’s contour, its image must first be processed. First, the
image is converted to the YCrCb color space and the red-difference chroma channel Cr only is
retained. Then, the image is denoised using a Gaussian blur filter. Next, a binary image which
effectively separates the hand from the background is obtained with a thresholding operation
and a morphology transformation is applied to smooth out the obtained shape. Finally, the
contours can be easily extracted from the binary image of the hand.

As explained in Section 5.15, converting the BGR image in YCrCb means to separate the
luminance (Y channel) from the chromatic aspect (Cr and Cb channels) of the color of the image
(see Figures from 5.16 to 5.18). Considering only the chromatic aspect allows to perform easier
skin recognition, as image 5.15 shows.

Figure 5.15: YCrCb color space transformation of the original frame

62

5.2 – Gesture recognition algorithm

The code in Listing 5.10 shows how the YCrCb transformation of the original image and
channel split was performed using the OpenCV library (in Python).

1 img_YCrCb = cv2. cvtColor (crop_img , cv2. COLOR_BGR2YCrCb)
2 (ch_y , ch_cr , ch_cb) = cv2.split(img_YCrCb)

Listing 5.10: Color space transformation from BGR to YCrCb and channel split

Figure 5.16: Y channel of
YCrCb color space.

Figure 5.17: Cr channel of
YCrCb color space.

Figure 5.18: Cb channel of
YCrCb color space.

In this work, only the red-difference chroma channel Cr of the two chromatic aspects is
considered. In fact, considering only this channel is sufficient to perform a correct skin detection
[1], as Figure 5.17 shows.

To suppress noise from the Cr channel, a Gaussian Blur is applied. An overview of this
filter can be found in Section 4.3.2. Using this filter, the intensity of each pixel is substituted
by a weighted sum of the intensities of pixels of the original image in the surrounding area, as
Figure 5.19 shows. The function to perform this operation is shown in Listing 5.11.

1 ch_cr = cv2. GaussianBlur (ch_cr , (5, 5), 1)

Listing 5.11: Gaussian blur

where the first argument of the function is the source, the second is referred to the kernel
dimension and the third element is the standard deviation along x axis.

Figure 5.19: Gaussian blur filter applied to the Cr channel of the YCrCb frame.

To separate the hand from the background a thresholding operation is performed. The
result is shown in Figure 5.20.

63

5 – Cases of study

Figure 5.20: Thresholding technique to separate the hand from the background.

Listing 5.12 allows to obtain a good result performing binary thresholding with automatic
threshold selection using Otsu’s algorithm.

1 _, ch_cr_bin = cv2. threshold (ch_cr , 0, 255, cv2. THRESH_BINARY + cv2.
THRESH_OTSU)

Listing 5.12: Thresholding

Here, the first argument of the function is the source image, the second argument indicates
that the threshold value is not specified since it is defined by Otsu’s algorithm (which selects
the best threshold value), the third is the value that will be assigned to the output pixels which
are greater than the threshold value, and the last element is referred to the name of the chosen
algorithm.

If the obtained shape is still noisy, the morphological transformations may allow to attenuate
the noise on the image and thus, to obtain simpler and cleaner topology of the image as the
Section 4.3.3 explains. In the Figure 5.21 slight differences with respect to Figure 5.20 can be
noticed. More noisy shapes would benefit more from this morphological transformation.

Figure 5.21: Opening morphological transformations.

In Listing 5.13, the morphological transformation performed with OpenCV is shown.
1 kernel = np.ones ((10 , 10) , np.uint8)

64

5.2 – Gesture recognition algorithm

2 image_bin = cv2. morphologyEx (image_bin , cv2.MORPH_OPEN , kernel)

Listing 5.13: Morphological transformation

Here, the first argument of the function is the source, the second is referred to the type of
morphological operation to apply and the last is the kernel which is the structuring element
used for dilation.

To find the contours of the binary image, the Listing 5.14 can be used.
1 cont_all , hier = cv2. findContours (image_bin , cv2. RETR_EXTERNAL , cv2.

CHAIN_APPROX_SIMPLE)

Listing 5.14: Contour finding

The first argument is the source, the second is the contour retrieval mode and the third is
the contour approximation method. Using RETR_EXTERNAL retrieves only the extreme outer
contours. Using cv2.CHAIN_APPROX_SIMPLE the algorithm compresses horizontal, vertical and
diagonal segments and leaves only their end points.

The quality of the found contours depends on the threshold image obtained in the previous
step. To exclude the contours of small area which can be present inside or around the picture,
Listing 5.22 is implemented.

1 def contour_filtering (cont_all , area_to_ignore):
2 c_bigger = []
3 for i in range(len(cont_all)):
4 cont = cont_all [i]
5 a = cv2. contourArea (cont)
6 if a > area_to_ignore :
7 c_bigger . append (cont)
8 return c_bigger

Listing 5.15: Contour filtering function

If the area of the considered contour is bigger than area_to_ignore, the contour is accepted.
The area_to_ignore is set to 1/3 of the image area as Listing 5.16 shows.

1 cont_all_big = contour_filtering (cont_all , (rows*cols)/3)

Listing 5.16: Contour filtering

To draw the contour on the binary image Listing 5.17 is used. It allows to visualize on the
binary image image_extract_3ch the contours cont_all_big.

1 image_extract_3ch = np.zeros ((rows , cols , 3), dtype=’uint8 ’)
2 cv2. drawContours (image_extract_3ch , cont_all_big , -1, (0, 0, 125) , -1)

Listing 5.17: Contour filtering

The first argument is the image on which the contour is drawn, the second is the contour, the
third refers to the contour index (-1 value means that the all contours are drawn), the fourth
refers to the contour color and the last to the thickness of the contour (-1 value means to fill
the area inside the contour). The obtained output is shown in the Figure 5.22.

65

5 – Cases of study

Figure 5.22: Contour drawing.

For the purpose of gesture recognition, the computation of the center of the contours have
a certain relevance. To compute its position, at first the moments have to be estimated. The
moment, computed using Green’s theorem, describes some statistical properties of the shape,
such as the area, the centroid and the orientation. As shown in Listing 5.18, the center of
contours can be estimated from the moments.

1 for c in cont_all_big :
2 M = cv2. moments (c)
3 cX = int(M["m10"] / M["m00"])
4 cY = int(M["m01"] / M["m00"])
5 cv2. circle (image_extract_3ch , (cX , cY), 15, (255 , 255, 255) , -1)

Listing 5.18: Contours center estimation

Drawing a white circle in the contours center of the previous image, the obtained output is
shown in Figure 5.23.

Figure 5.23: Contours center drawing.

To identify gestures, the convex hull (see Section 4.4.3) and the convexity defects are ex-
tracted from the hand contour, as shown in Listing 5.19.

The key of the gesture recognition algorithm is that convexity points (the vertices of the
convex hull) are assumed to coincide with the tips of the fingers, while the convexity defects

66

5.2 – Gesture recognition algorithm

are assumed to be present at the concavity where the fingers meet the palm. Thus, thanks to
the convex hull it is possible to figure out how many fingers are extended and their relative
angle, which also allows to guess exactly which fingers are extended.

1 cnt = cont_all_big [0]
2 hull = cv2. convexHull (cnt , returnPoints =False)
3 defects = cv2. convexityDefects (cnt , hull)
4 if defects is not None:
5 for i in range(defects .shape [0]):
6 s, e, f, d = defects [i, 0]
7 d /= 256
8 if d > rows * far_ratio :
9 start = cnt[s][0]

10 end = cnt[e][0]
11 far = cnt[f][0]
12 cv2.line(image_extract_3ch , tuple(start), tuple(end), [0, 255,

0], 2)
13 cv2. circle (image_extract_3ch , tuple(far), 5, [255 , 0, 0], -1)
14 contour_with_defects . append ([start , far , end])
15 contours_with_defects . append (contour_with_defects)

Listing 5.19: Convex hull and convexity defects estimation

If the algorithm finds more than one cont_all_big (which might happen in harsh light
condition or when the background has a color similar to the hand), it selects only the first
detected contour which should be the most reliable.

In the cv2.convexHull() function, the first element is the contour and the second is a flag:
if it is True, it returns the convex hull points. To find the convexity defects, this flag has to be
set to False.

In function cv2.convexityDefects(), the first argument is the contour and the second the
convex hull. defects returns an array where each row contains values a start point (start),
an end point (end), a farthest point (far) and an approximate distance to farthest point (d).
To clarify, these points are represented in Figure 5.24 and 5.25.

The convexity points and defects are what allows to establish how many and which fingers
are extended. However, due to the rounded (and possibly, still noisy) nature of the hand’s
shape, many unrelevant convexity points and defects may be found, and they must be filtered
out in order to ensure the robustness of the algorithm. To exclude these unrelevant defects
from the obtained array, Listing 5.19 applies a filter which is used to make sure that the
distance between a convexity defect and the next is bigger than the minimum distance which
the physiognomy of the hand allows to have. This parameter is chosen experimentally.

Iterating over all the defects, the complete drawing of the convex hull (green line) and the
convexity defects (blue points) are obtained, as the Figure 5.26 shows.

Sometimes the algorithm might detect more than one convex hull points on a single finger
(for example, in certain conditions the computation of the start point of a finger and the end
point of the previous finger might not coincide) and this could compromise the effectiveness of
this algorithm. In order to avoid it, an additional filter is introduced: filter_vertices_by_angle
[40]. It uses the law of cosines to compute the angle between 3 points. The law of cosines states
that "the square of the length of any side of a triangle equals the sum of the squares of the length
of the other sides minus twice their product multiplied by the cosine of their included angle".
Thus, considering the Figure 5.27, to compute the α angle:

a2 = b2 + c2 − 2bc cos(α)) (5.8)

α = cos−1
(
b2 + c2 − a2

2bc

)
(5.9)

67

5 – Cases of study

Figure 5.24: Representation of start, far-
thest and end points.

Figure 5.25: Representation of the distance
to farthest point with respect to the convex
hull.

Figure 5.26: Convex hull and convexity defects drawing.

A new list, which contains only the contour_with_defects elements which satisfy the
condition set by this filter, i.e. the angle between two consecutive points is less than a certain
maximum value, is obtained[40] (see Listing 5.20). In particular, max_angle is selected by
trial-and-error and it is set to 80°.

1 def filter_vertices_by_angle (triple , max_angle):
2 a = linalg .norm(triple [0] - triple [2])
3 b = linalg .norm(triple [1] - triple [2])
4 c = linalg .norm(triple [1] - triple [0])
5 angle = np. arccos (((b ** 2 + c ** 2 - a ** 2) /(2 * b * c))) * (180 / np.

pi)
6 return angle < max_angle

Listing 5.20: Angles filtering function

The first argument of the function, triple, is composed from the farthest point of a finger i,
the end and far points of the previous finger i-1 (see Listing 5.21). In Figure 5.28 an example
of the points which compose a triple is shown.

68

5.2 – Gesture recognition algorithm

Figure 5.27: Law of cosines representation. Source:[55]

1 for i in range(len(contour_with_defects)):
2 triple1 = contour_with_defects [i]
3 triple2 = contour_with_defects [i -1]
4 new_triple = [triple1 [1], triple2 [2], triple2 [1]]

Listing 5.21: Creation of the list called triple

Figure 5.28: Representation of the points of a triple.

To ensure that two consecutive triples are connected, i.e the start point of the current triple
coincides with the end point of the previous triple and the distance between two consecutive
farther points is limited, Listing 5.22 is also used [40].

1 def check_mask_cutoff (triple1 , triple2):
2 return (triple1 [0][0] == triple2 [2][0] and abs(triple1 [0][1] - triple2

[2][1]) > 60 or triple1 [0][1] == triple2 [2][1] and abs(triple1 [0][0] -
triple2 [2][0]) > 60)

Listing 5.22: Consistence of triples checking

Now, applying the previous filters and a final filter which limits the maximum number
of detected fingers, it is possible to obtain a robust computation of the number of finger, as
Listing 5.23 shows.

1 if n_finger <=4 and filter_vertices_by_angle (new_triple , 80):
2 n_finger += 1
3 top_finger_list . append (new_triple [1])

Listing 5.23: Number of fingers computation

The list top_finger_list then contains the coordinate of the tip of each detected finger.

69

5 – Cases of study

To define the gesture type, a defining parameter is the angle between two consecutive fingers.
Having the coordinate of the center and the coordinate of the top of each finger, the distance
between these two coordinates can be easily computed. Having these distances, the angle can
be computed using the definition of the scalar product between two vectors, whose definition
is given by equation 5.10.

Figure 5.29: Representation of the angle between two vectors.

u⃗ · v⃗ = |u⃗| · |v⃗| cos(θ) (5.10)

cos(θ) = u⃗ · v⃗
|u⃗| · |v⃗|

(5.11)

This computation is performed in the PC program as in Listing 5.24.
1 for i in range (1, len(top_finger_list)):
2 dist_center_finger1 . append (top_finger_list [i]-(cX ,cY))
3 dist_center_finger2 . append (top_finger_list [i -1] -(cX ,cY))
4 cosine_angle = (np.dot(dist_center_finger1 [i], dist_center_finger2 [i])/(np

. linalg .norm(dist_center_finger1 [i])*np. linalg .norm(dist_center_finger2 [i
])))

5 angle. append ((math. degrees (np. arccos (cosine_angle))))
6 angle_diff . append (angle[i]-angle[i -1])

Listing 5.24: Angle between finger computation

To make sure that the computed angles are correct, another check is performed: an angle is
accepted only if it is less than 90°, since the human hand cannot produce angles greater than
90° under any circumstances. This operation is performed in Listing 5.26.

1 n_angle = 0
2 for j in range(len(angle_diff)):
3 if angle_diff [j] < 90:
4 cv2. circle (image_extract_3ch ,tuple(top_finger_list [j]), 5, [0, 255, 255] ,

-1)
5 line = cv2.line(image_extract_3ch , (cX , cY), tuple(top_finger_list [j]),

[0 ,255 ,255] , 2)
6 n_angle +=1

Listing 5.25: Filtering of the previously obtained angles

If an angle which satisfies all the requirement is found, for illustration purposes, a circle can
be drawn at the tip on the finger and a line can be drawn between this point and the center of
the contours, as Figure 5.30 shows.

70

5.3 – Gesture recognition in an industrial context

Figure 5.30: Representation hand with the detected fingers.

5.3 Gesture recognition in an industrial context
Sometimes the workpiece on which an operator has to process might be distant from the position
of the operator or the workpiece might be heavy or sharp and thus potentially dangerous for
the health of the operator. In these cases, a collaborative robot could help in making the work
environment safer and it could facilitate the operator’s work.

In this workplace, the five workpieces are far from the operator which has to executes some
operations on them. After the processing is completed, the workpieces have to be moved in
another station.

The workpieces are numbered in increasing order from the right to the left. According to
the gesture performs by the operator, the correct piece is taken.

Figure 5.31 shows a complete overview of the programs which run in parallel on the PC,
Polyscope and RoboDK and which will be illustrated in the following sections.

5.3.1 RTDE and data exchange
In Section 2.4.2 the actions required to set up the RTDE connection are explained. The
only element which changes with respect to the previous case (Section 5.1) of study is the
composition of the recipes defined in the configuration file. The output_bit_register_72 is
a boolean output register which is set to True if the gripper has to attach a certain workpiece,
otherwise it is set to False. The output_bit_register_73 controls the detaching of an object:
it is set to True if the gripper has to detach a workpiece, otherwise it is set to False. Since
also RoboDK uses the RTDE interface to read the data elaborated by the simulated robot in
Polyscope, these two registers are used to manage the attaching and the detaching action in
this simulator. The input_bit_register_65 indicates that the gesture is ’None’, the registers
from input_ bit_register_66 to input_bit_register_70 indicates the gestures from ’One’
to ’Five’ in increasing order and the register input_bit_register_71 is a binary register which
indicates if the information about the gesture to perform is sent or not to the robot. The role
of the watchdog recipe is the same explained in the Section 5.1.3.

5.3.2 Five number gesture recognition
Starting from the code explained in the Section 5.2.3 and analyzing the number of detected
fingers and the angle between the segments which connects the contour center to the tip of

71

5 – Cases of study

Figure 5.31: Flow chart of the algorithm for the case of study n.2. From left to right, the PC,
robot and RoboDK programs.

each finger, a basic gesture recognizer can be realized. The gesture is first encoded in a string
which contains the word of the performed gesture (see Listing 5.26).

72

5.3 – Gesture recognition in an industrial context

Recipies Name of the variable to
synchronize

Types of the variable to
synchronize

State output_bit_register_72 BOOL
output_bit_register_73 BOOL

Gesture input_bit_register_65 BOOL
input_bit_register_66 BOOL
input_bit_register_67 BOOL
input_bit_register_68 BOOL
input_bit_register_69 BOOL
input_bit_register_70 BOOL
input_bit_register_71 BOOL

Watchdog input_int_register_0 INT32

Table 5.2: Recipes with names and types of data to synchronize

1 if n_finger ==5 and n_angle ==4:
2 gesture = ’Five ’
3 elif n_finger in (4 ,5) and n_angle ==3:
4 gesture = ’Four ’
5 elif n_finger in (3 ,4) and n_angle ==2:
6 gesture = ’Three ’
7 elif n_finger in (2 ,3) and n_angle ==1:
8 gesture = ’Two ’
9 elif n_finger in (1 ,2) and n_angle in (0 ,1):

10 gesture = ’One ’
11 else:
12 gesture = ’None ’
13

14 gesture_list . append (gesture)
15 cv2. putText (image_extract_3ch ,gesture ,(20 ,115) , cv2. FONT_HERSHEY_SIMPLEX , 4,

(0, 0, 255) , 7, cv2. LINE_AA)

Listing 5.26: Five number gesture recognition algorithm

The intervals set in the number of fingers and in the number of detected angles in the if
statements is inserted in order to make more robust the algorithm in the case in which the image
has a bad quality and some parts of the hand, such as the wrist, are mistaken for fingertips.
Figures 5.32 to 5.41 shows the gestures and their recognition.

Figure 5.32: Gesture ’One’. Figure 5.33: Recognition of gesture ’One’.

73

5 – Cases of study

Figure 5.34: Gesture ’Two’. Figure 5.35: Recognition of gesture ’Two’.

Figure 5.36: Gesture ’Three’. Figure 5.37: Recognition of gesture ’Three’.

The performed gesture is sent to the simulated robot using registers available through the
RTDE connection. In particular, according to the string which indicates the gesture to perform,
Listing 5.27 encodes it into a binary value stores in the input registers.

74

5.3 – Gesture recognition in an industrial context

1 if final_gesture == ’Five ’:
2 gesture . input_bit_register_70 = 1
3 gesture . input_bit_register_69 = 0
4 gesture . input_bit_register_68 = 0
5 gesture . input_bit_register_67 = 0
6 gesture . input_bit_register_66 = 0
7 gesture . input_bit_register_65 = 0
8

9 elif final_gesture == ’Four ’:
10 gesture . input_bit_register_70 = 0
11 gesture . input_bit_register_69 = 1
12 gesture . input_bit_register_68 = 0
13 gesture . input_bit_register_67 = 0
14 gesture . input_bit_register_66 = 0
15 gesture . input_bit_register_65 = 0
16

17 elif final_gesture == ’Three ’:
18 gesture . input_bit_register_70 = 0
19 gesture . input_bit_register_69 = 0
20 gesture . input_bit_register_68 = 1
21 gesture . input_bit_register_67 = 0
22 gesture . input_bit_register_66 = 0
23 gesture . input_bit_register_65 = 0
24

25 elif final_gesture == ’Two ’:
26 gesture . input_bit_register_70 = 0
27 gesture . input_bit_register_69 = 0
28 gesture . input_bit_register_68 = 0
29 gesture . input_bit_register_67 = 1
30 gesture . input_bit_register_66 = 0
31 gesture . input_bit_register_65 = 0
32

33 elif final_gesture == ’One ’:
34 gesture . input_bit_register_70 = 0
35 gesture . input_bit_register_69 = 0
36 gesture . input_bit_register_68 = 0
37 gesture . input_bit_register_67 = 0
38 gesture . input_bit_register_66 = 1
39 gesture . input_bit_register_65 = 0
40

41 elif final_gesture == ’None ’:
42 gesture . input_bit_register_70 = 0
43 gesture . input_bit_register_69 = 0
44 gesture . input_bit_register_68 = 0
45 gesture . input_bit_register_67 = 0
46 gesture . input_bit_register_66 = 0
47 gesture . input_bit_register_65 = 0

Listing 5.27: Setting input bit registers of the second case of study to send the performed
gesture to the simulated robot

75

5 – Cases of study

Figure 5.38: Gesture ’Four’. Figure 5.39: Recognition of gesture ’Four’.

Figure 5.40: Gesture ’Five’. Figure 5.41: Recognition of gesture ’Five’.

5.3.3 Polyscope and RoboDK
The robot program in Polyscope allows the robot to perform the movement: to each movement
a register is associated which is read by the robot program and each movement corresponds to
a sequence of operations that the robot arm has to perform.

The flow chart of the robot program is shown in the middle column of the Figure 5.31. The
variable green_light stores the value of a register which if True indicates that the performed
gesture has already been interpreted by the algorithm and encoded into the registers. The
attach and detach variables allow to communicate to the RoboDK program whether an object
has to be grabbed or dropped.

All the movements which the robot performs are programmed using Polyscope. To move
fast from a TCP pose to another MoveJ is used, while for end movements such as the picking
or the placing of a workpiece MoveL is used.

RoboDK replicates the robot movements performed in Polyscope and allows to visualize
a more realistic environment with an operator, workpieces and workbenches. Also, a Python
script runs inside the RoboDK environment. In this script, the RTDE connection is established
and this allows the communication and the data exchange between Polyscope and RoboDK.
The registers which corresponds to attach and detach variables are written in Polyscope and
are accessed y RoboDK. These variables are properly set in order to perform grabbing the piece
when the end-effector is enough close to the workpiece and dropping the piece when the end-
effector can place the object on the workbench surface. The Figure 5.42 shows the simulation
environment.

76

5.4 – Gesture recognition in an hospital

Figure 5.42: Simulation of the third case of study in RoboDK.

5.4 Gesture recognition in an hospital
Patients might be not self-sufficient and they might stay on an hospital bed for days or months
without being able to use arms or the legs. In these situations, giving to the patient a certain
degree of autonomy is very important. A collaborative robot could help the patient to get the
objects he/she needs without getting help from a health care worker.

Figure 5.43 shows a complete overview of the programs which run in parallel on the PC,
Polyscope and RoboDK and which will be illustrated in the following sections.

5.4.1 RTDE and data exchange
The RTDE setup for this case of study is similar to the one presented for the second case of
study, the only difference being in the recipe used for encoding gestures (see Table 5.3). In
particular, in this case only three input registers are used since only three gestures can be
recognized. The function of the state and watchdog recipes is explained in Section 5.3.1 and

Recipies Name of the variable to
synchronize

Types of the variable to
synchronize

State output_bit_register_72 BOOL
output_bit_register_73 BOOL

Gesture input_bit_register_65 BOOL
input_bit_register_66 BOOL
input_bit_register_67 BOOL

Watchdog input_int_register_0 INT32

Table 5.3: Recipes with names and types of data to synchronize

77

5 – Cases of study

Figure 5.43: Flow chart of the algorithm for the case of study n.3. From left to right, the PC,
robot and RoboDK programs.

5.1.3 respectively. The input_bit_register_65 is associated to the getting the telephone,
the input_bit_register_66 to the getting the drugs and the input_bit_register_67 to the
getting the glass.

78

5.4 – Gesture recognition in an hospital

5.4.2 Three guidance gestures recognition
Similarly to the second case of study, the analysis of the number of detected fingers and the
angles allows to the algorithm to recognize the gesture performed by the patient. The string
encodes the name of the gesture which the patient performed. The algorithm recognizes three
different gestures, corresponding to three different actions: getting the telephone, the medicines
and drinks (see Listing 5.28).

1 if n_finger in (2 ,3) and n_angle ==1:
2 gesture = ’Telephone ’
3 elif n_finger in (3 ,4) and n_angle in (2 ,4):
4 gesture = ’Meds ’
5 elif n_finger in (1 ,2) and n_angle in (0 ,1):
6 gesture = ’Drink ’
7 else:
8 gesture = ’None ’
9

10 gesture_list . append (gesture)
11 cv2. putText (image_extract_3ch ,gesture ,(20 ,115) , cv2. FONT_HERSHEY_SIMPLEX , 4,

(0, 0, 255) , 7, cv2. LINE_AA)

Listing 5.28: Setting input bit registers of the third case of study to send the performed gesture
to Polyscope

Figures from 5.44 to 5.49 show the gestures and their recognition. Similarly to the code
presented in the Section 5.3.3, the gestures are encoded in registers to be sent to the simulated
robot. The code which performs this operation is shown in Listing 5.29.

1 if final_gesture == ’Telephone ’:
2 gesture . input_bit_register_65 = 1
3 gesture . input_bit_register_66 = 0
4 gesture . input_bit_register_67 = 0
5

6 elif final_gesture == ’Meds ’:
7 gesture . input_bit_register_65 = 0
8 gesture . input_bit_register_66 = 1
9 gesture . input_bit_register_67 = 0

10

11 elif final_gesture == ’Drink ’:
12 gesture . input_bit_register_65 = 0
13 gesture . input_bit_register_66 = 0
14 gesture . input_bit_register_67 = 1
15

16 elif final_gesture == ’None ’:
17 gesture . input_bit_register_65 = 0
18 gesture . input_bit_register_66 = 0
19 gesture . input_bit_register_67 = 0

Listing 5.29: Three gesture recognition algorithm

79

5 – Cases of study

Figure 5.44: Gesture ’Telephone’. Figure 5.45: Recognition of gesture ’Tele-
phone’.

Figure 5.46: Gesture ’Medicine’. Figure 5.47: Recognition of gesture
’Medicine’.

Figure 5.48: Gesture ’Drink’. Figure 5.49: Recognition of gesture ’Drink’.

80

5.4 – Gesture recognition in an hospital

5.4.3 Polyscope and RoboDK
The robot program, which runs in Polyscope, performs the movement of the robotic arm. To
each gesture corresponds a sequence of movement that the robot has to perform to grab the
object and hands it to the patient. After performing the complete sequence of movements, the
robot returns to its initial position. The explanation of the meaning of the variables in the
middle column of Figure 5.43 can be found in Section 5.3.3.

Also in this case, as explained in Section 5.3.3, RoboDK allows to visualize a more realistic
simulation of the environment around the patient. The hospital bed, bedside table and medicine
cabinet provide a more realistic context. As seen previously, RoboDK is necessary to simulate
the grabbing and the dropping of the object. The Figure 5.50 shows the simulation environment.

Figure 5.50: Simulation of the third case of study in RoboDK.

81

82

Chapter 6

Conclusion

In this thesis, Artificial Intelligence and Computer Vision techniques were explored to enable
the interaction between collaborative robots and humans in a variety of contexts (television
studio, manufacturing plant and hospital bedroom).

In the first case of study, the interaction between human and collaborative robot is based
on a face tracking algorithm: a robotic cameraman follows the face of the television presenter
thanks to a face-tracking algorithm and shoots the video. To do this, a high level algorithm
in Python language, which runs on a dedicated computer, is developed. This algorithm also
enables the communication between the robot and the computer in which the face-tracking
algorithm is implemented. Its main output is the pose which the robot has to reach and which
is sent to the robot through the Real-Time Data Exchange interface. The robot’s movement is
simulated in Polyscope.

In the second and the third cases of study, the interaction between humans and robots is
performed through gesture recognition. A human performs a gesture in front of a camera, the
frame is elaborated at first detecting the hand and cropping the frame around the Region of
Interest which contains the hand, and then applying processing techniques to this image which
allow to recognize the number of fingers detected and the angles between them. Once the
gesture is recognized, it is written on the corresponding register using boolean values and the
registers are sent to robot using the Real-Time Data Exchange interface. In this way, the action
to perform is sent to Polyscope. To analyze the correctness of the actions performed by the
robot, such as the attaching and the detaching of the gripper, and to simulate the objects in
a realistic environment in which several types of objects are present, RoboDK is used. In both
cases of study, to each gesture corresponds an action to perform: in the manufacturing plant,
according to the performed gesture, the robot grabs a workpiece from the input station, brings
it to the operator and waits until he finishes to process it. After it is processed, the workpiece
is brought to the output station. In the hospital bedroom case, the object (medicine, telephone
or glass of water) is taken by the robot and left in front of the patient.

The simulation of the three cases of study on both Polyscope and RoboDK shows promising
outcomes and, thus, they might be implemented on a real context after careful testing on a UR
arm. For example, in a real situation, to avoid any kind of dangerous situation, the appropriate
safety configuration (see Section 3.1.1) has to be chosen for each case after an appropriate risk
evaluation. In particular, after the identification of the safety area, the safety mode has to be
set: in the television studio and in the manufacturing plant, the reduce mode (i.e. the robot
moves slower when a person is nearby) would be used; in the hospital case, the safeguard stop
and continue (i.e. the robot stops when a person is nearby) might be more appropriate for the
patient safety.

Moreover, the first case of study might receive a new impulse from testing: using a camera
which is mounted on the end-effector, the pose of the TCP might be computed not only based

83

6 – Conclusion

the translation, but also considering the orientation. In this case, the camera would not be
fixed (as the webcam of the computer), but it could also rotate with the end-effector. In this
way, a more sophisticated robotic cameramen, able to follow the television presenter also in
positions which are difficult to reach using translation only, could be designed.

Considering the second and the third cases of study, a more sophisticated gesture recognition
algorithm could be implemented in order to obtain a more extensive library of gestures to
perform. An idea could be to directly use a classification algorithm, training a neural network
to recognize the gestures. In this way, the recognition might be more accurate and robust.

84

Bibliography

[1] Gesture recognition based on image processing and machine learning,
https://github.com/zzeitt/gesture-recognition.

[2] A/S, U. R. Universal robots website.
[3] A/S, U. R. The urscript programming language, January 2020.
[4] Bambach, S., Lee, S., Crandall, D. J., and Yu, C. Lending a hand: Detecting

hands and recognizing activities in complex egocentric interactions. In Proceedings of the
IEEE International Conference on Computer Vision (2015), pp. 1949–1957.

[5] Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., and Ša-
banović, S. Human-Robot interaction: An introduction. Cambridge University Press,
2020.

[6] Boccanfuso, L., and O’Kane, J. M. Charlie: An adaptive robot design with hand
and face tracking for use in autism therapy. International journal of social robotics 3, 4
(2011), 337–347.

[7] Bona, B. Dynamic modelling of mechatronic systems. Celid, 2013.
[8] Bradski, G., and Kaehler, A. Learning OpenCV: Computer vision with the OpenCV

library. " O’Reilly Media, Inc.", 2008.
[9] Brethes, L., Menezes, P., Lerasle, F., and Hayet, J. Face tracking and

hand gesture recognition for human-robot interaction. In IEEE International Conference
on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 (2004), vol. 2, IEEE,
pp. 1901–1906.

[10] Colgate, J. E., and Peshkin, M. A. Cobots, Sept. 14 1999. US Patent 5,952,796.
[11] Control Systems Technology Group Wiki, Eindhoven University of Tech-

nology (TU/e). Convexity defects, 2014. [Online; accessed August-2020].
[12] Dhawan, A., and Honrao, V. Implementation of hand detection based techniques for

human computer interaction. arXiv preprint arXiv:1312.7560 (2013).
[13] Dibia, V., and using Neural, R.-t. H.-D. Networks (ssd) on tensorflow,(2017),

github repository.
[14] for Standardization (ISO), I. O. Iso/ts 15066:2016 robots and robotic devices -

collaborative robots.
[15] Freund, Y., Schapire, R. E., et al. Experiments with a new boosting algorithm. In

icml (1996), vol. 96, Citeseer, pp. 148–156.
[16] Géron, A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Con-

cepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.
[17] Girshick, R. Fast r-cnn. In Proceedings of the IEEE international conference on com-

puter vision (2015), pp. 1440–1448.
[18] Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies

for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (2014), pp. 580–587.

[19] Goodrich, M. A., and Schultz, A. C. Human-robot interaction: a survey. Now
Publishers Inc, 2008.

85

Bibliography

[20] Hasanuzzaman, M., and Ueno, H. Face and gesture recognition for human-robot
interaction. Face Recognition (2007).

[21] Hawkins, K. P. Analytic inverse kinematics for the universal robots ur-5/ur-10 arms.
Tech. rep., Georgia Institute of Technology, 2013.

[22] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (2016),
pp. 770–778.

[23] Hentout, A., Aouache, M., Maoudj, A., and Akli, I. Human–robot interaction
in industrial collaborative robotics: a literature review of the decade 2008–2017. Advanced
Robotics 33, 15-16 (2019), 764–799.

[24] Homma, K., and Takenaka, E.-i. An image processing method for feature extraction
of space-occupying lesions. Journal of nuclear medicine: official publication, Society of
Nuclear Medicine 26, 12 (1985), 1472–1477.

[25] Hulstaert, L. A beginner’s guide to object detection, 2018. [Online; accessed 30-
August-2020].

[26] Ikeuchi, K. Computer vision: A reference guide. Springer Publishing Company, Incor-
porated, 2014.

[27] Jakubiec, B. Application of simulation models for programming of robots. In Proceedings
of the International Scientific Conference. Volume V (2018), vol. 283, p. 292.

[28] Jensen, O. H. Implementing the viola-jones face detection algorithm. Master’s thesis,
Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, 2008.

[29] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture for fast fea-
ture embedding. In Proceedings of the 22nd ACM international conference on Multimedia
(2014), pp. 675–678.

[30] Jost, C., Le Pévédic, B., Belpaeme, T., Bethel, C., Chrysostomou, D.,
Crook, N., Grandgeorge, M., and Mirnig, N. Human-Robot Interaction: Evalua-
tion Methods and Their Standardization, vol. 12. Springer Nature, 2020.

[31] Kovac, J., Peer, P., and Solina, F. Human skin color clustering for face detection.
In In International Conference on Computer as a Tool. EUROCON2003 (2003), vol. 2,
IEEE.

[32] Lienhart, R., and Maydt, J. An extended set of haar-like features for rapid object
detection. In Proceedings. international conference on image processing (2002), vol. 1,
IEEE, pp. I–I.

[33] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and
Berg, A. C. Ssd: Single shot multibox detector. In European conference on computer
vision (2016), Springer, pp. 21–37.

[34] Loresco, P., and Bandala, A. Human gesture recognition using computer vision for
robot navigation. In IEEE (2018).

[35] Moeslund, T. B. Introduction to video and image processing: Building real systems and
applications. Springer Science & Business Media, 2012.

[36] Nielsen, A. M. Neural Networks and Deep Learning. Determination Press, 2015.
[37] Oña, E. D., Garcia-Haro, J. M., Jardón, A., and Balaguer, C. Robotics in

health care: Perspectives of robot-aided interventions in clinical practice for rehabilitation
of upper limbs. Applied sciences 9, 13 (2019), 2586.

[38] OpenCV. Opencv deep learning module samples.
[39] Peshkin, M. A., Colgate, J. E., Wannasuphoprasit, W., Moore, C. A., Gille-

spie, R. B., and Akella, P. Cobot architecture. IEEE Transactions on Robotics and
Automation 17, 4 (2001), 377–390.

[40] Pessanha, F., and Correia, P. Hand-pose recognition, June 2019.

86

Bibliography

[41] Prince, S. J. Computer vision: models, learning, and inference. Cambridge University
Press, 2012.

[42] Putro, M. D., and Jo, K.-H. Real-time face tracking for human-robot interaction. In
2018 International Conference on Information and Communication Technology Robotics
(ICT-ROBOT) (2018), IEEE, pp. 1–4.

[43] Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing
systems (2015), pp. 91–99.

[44] RoboDK. Simulate robot applications - program any industrial robot with one simulation
environment.

[45] Robotiq. 2f-85 and 2f-140 grippers. Online datasheet (2019).
[46] Rockafellar, R. T. Convex analysis. Princeton university press, 1970.
[47] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. Robotics: modelling,

planning and control. Springer Science & Business Media, 2010.
[48] Sick. Safe robotics transfer: Productivity restarts automatically, December 2016.
[49] Szeliski, R. Introduction. Springer London, London, 2011, pp. 1–25.
[50] Topalidou-Kyniazopoulou, A. Motion planning strategy for a 6-dofs robotic arm in

a controlled environment.
[51] tutorials, O. P. Morphological transformations.
[52] Van Oosterwyck, N. Real Time Human-Robot Interactions and Speed Control of a

Robotic Arm for Collaborative Operations. PhD thesis, Ph. D. dissertation, 05 2018, 2018.
[53] Villán, A. F. Mastering OpenCV 4 with Python: a practical guide covering topics from

image processing, augmented reality to deep learning with OpenCV 4 and Python 3.7. Packt
Publishing Ltd, 2019.

[54] Wikipedia contributors. Barns grand tetons ycbcr separation, 2006. [Online; accessed
August-2020].

[55] Wikipedia contributors. Convexity defects, 2020. [Online; accessed September-2020].
[56] Xu, X., Xu, S., Jin, L., and Song, E. Characteristic analysis of otsu threshold and

its applications. Pattern recognition letters 32, 7 (2011), 956–961.

87

	List of Tables
	List of Figures
	Introduction and state of the art
	Introduction to Robotics and to the Universal Robots world
	Robotics preliminary concepts
	Robot Mechanical Structure
	Robots Kinematics

	Cobots
	Human Robot Interaction
	Universal Robots
	Universal Robots grippers - Robotiq 2F-85
	Universal Robots communication interfaces

	Tools overview
	Simulation Environments
	Polyscope
	RoboDK

	OpenCV

	Computer Vision techniques
	The taxonomy of Computer Vision
	Digital images representation
	Gray-scale images
	Color images and color spaces
	The YCbCr color space

	Image processing techniques
	Thresholding
	Filtering and the Gaussian Blur
	Morphological transformations
	Identifying Contours

	Object Recognition and Detection
	Image Recognition with Neural Networks
	Object Detection
	Characterizing shapes with Convex Hulls

	Cases of study
	UR arm tracks the face of the user - Television application
	Algorithm overview
	Face tracking
	RTDE and data exchange
	Computation of TCP movements
	Robot program

	Gesture recognition algorithm
	Algorithm overview
	Hand detection algorithm
	Gesture recognition

	Gesture recognition in an industrial context
	RTDE and data exchange
	Five number gesture recognition
	Polyscope and RoboDK

	Gesture recognition in an hospital
	RTDE and data exchange
	Three guidance gestures recognition
	Polyscope and RoboDK

	Conclusion
	Bibliography

