
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING

Master of Science in Computer Engineering

Master Degree Thesis

Personal Data Safe: a flexible
storage system for personal

data
Design and implementation of a data repository to empower

user privacy in the age of GDPR

Supervisors
Prof. Marco Mellia
Dr. Martino Trevisan

Candidate
Federico Torta

Academic Year 2019-2020

Abstract

With the global diffusion of the Internet, the number of actions and op-
erations performed online has increased exponentially: for example, e-
commerce is the preferred means for shopping nowadays, while Google
Maps seems to have definitely replaced the traditional paper maps. Be-
hind all these useful services, organizations that own websites are involved
in a profitable data market, where users’ data is sold by publishers to ven-
dors. In this way, data buyers try to understand users’ behaviour in order
to present them the most suitable ads according to their recent online
activity. The publication of the GDPR in May 2018, however, focused
the attention of companies and especially users on the possible security
and privacy issues that can emerge while browsing the Internet. These
new guidelines increased the concern about how user data is managed
and define which users rights each organization must ensure. One of the
first consequences has been small and slow changes in the scenario of data
management, with websites trying to be as clear as possible on data collec-
tion and use. Novel systems for data protection and storage are becoming
more popular as well. In this context, the so-called PDS (Personal Data
Store) appeared, looking for providing a secure way to store people data.

In this work I present the design and the implementation details of the
Personal Data Safe, a data storage system that has been developed as
part of the PDS of PIMCity, a European project that aims to provide a
standard definition of Personal Data Store and an easy modular way to
build new ones out of basic building blocks. The PIMCity PDS groups
together the main features of the major PDS on the market and tries to
provide a development kit to let organizations define their own system,
according to their needs and goals. The Personal Data Safe is one of these
building blocks and it’s the means for storing data. The system is built on
top of the Django framework, using the Python language and manages to

3

offer a flexible environment where users can potentially store any kind of
data; this is possible thanks to the presence of an administrator-created
schema, that defines the configuration of the whole system. The final
prototype has been designed also to be able to interact and connect with
the other PIMCity components, which offer further functionalities to build
a complete PDS.

4

Acknowledgements
I would like to thank my supervisors, Marco Mellia and Martino Tre-
visan, for the professionalism, availability and enthusiasm they put into
the project.

A special thank goes to my parents, my brother, my family, my girl-
friend and all my friends for the support in these years.

5

Contents

List of Tables 8

List of Figures 9

1 Introduction 11
1.1 Motivation . 11

2 Background 13
2.1 Current Scenario . 13

2.1.1 User Tracking . 13
2.1.2 Real Time Bidding 16
2.1.3 GDPR . 18

2.2 Personal Data Storage System 21
2.2.1 PIMS and PDS . 22
2.2.2 PIMS Design . 22

2.3 Our Goal . 24

3 Related Works 25
3.1 OpenPDS . 25
3.2 Mydex . 27
3.3 Hub of All Things . 29

4 P-DS Definition and Implementation Options 31
4.1 Framework . 32

4.1.1 Django . 32
4.1.2 Flask . 36
4.1.3 Spring . 37

4.2 Database . 40

6

4.2.1 Relational VS Non-Relational 40
4.2.2 MySQL . 43
4.2.3 MongoDB . 45
4.2.4 HBase . 47

4.3 Implementation Choices 49

5 Development and Implementation 53
5.1 Database Setup . 53
5.2 Data Structure Design . 54

5.2.1 Schema . 55
5.2.2 Data Model . 58
5.2.3 REST APIs . 61

5.3 Frontend . 64
5.3.1 User Interface . 64
5.3.2 Bootstrap and AJAX 68

6 Evaluation 71
6.1 Test . 72
6.2 Benchmark . 73

6.2.1 Filter operation . 73
6.2.2 Insertion operation 77

7 Conclusions 79
7.1 Future work . 80

Bibliography 87

7

List of Tables
4.1 Comparison table between Django, Flask and Spring . . . 51
4.2 Comparison table between MySQL, MongoDB and HBase 52
5.1 Summary of the used packages 64
6.1 Results of filter tests with increasing number of personal

information . 75
6.2 Results of URL filter tests with increasing number of users 77
6.3 Results of insertion tests 78

8

List of Figures
2.1 Interaction flow in Real Time Bidding 17
2.2 Main components involved in OpenRTB 18
3.1 Main components of openPDS 26
4.1 Django MVC design . 33
4.2 Spring Framework modules 40
4.3 MongoDB architecture . 47
4.4 HBase architecture . 49
5.1 General structure of the Personal Data Safe 55
5.2 P-DS views . 67
6.1 Results of URL filter tests with increasing number of per-

sonal information per user 75
6.2 Results of URL filter tests with increasing number of users 76
6.3 Results of insertion tests 78

9

10

Chapter 1

Introduction

1.1 Motivation
The modern world is almost totally driven by data, thanks to Internet
diffusion and accessibility. Every day, there are billions of people that
are connected through each other, exchanging data of any nature, from
complex structured information to simple text messages. Data is the main
actor in the digital society and its importance has grown over the years,
with the spread of the Internet and especially with the increase of com-
mercial interests. Every action we perform online, in fact, brings with it
a huge amount of information that can be used by companies and organi-
zations: our last position tracked by the smartphone GPS can be used by
Google to estimate the traffic in a specific city and in a specific moment
of the day, while our browsing history can be useful to understand our
interests or what we want to buy. This is why all web pages store infor-
mation about their visitors, for example in the so-called cookies, which
enable websites to understand the behaviour of their users, so that every
single person can be presented a different page according to her interests
and tastes.

If on the one hand, this kind of profiling seems to be quite common
nowadays and useful in most cases, it could be a little disorienting or even
scaring to know that each action we perform on the Internet is tracked both
by little and big organizations which store information about us even for
many years. Because of its ease of use, people tend to use Internet naively,
without understanding that also a simple click can have big consequences:
we don’t know who’s behind the pages we visit every day or how our data,

11

Introduction

collected with or without our consent, will be handled. From the few past
years, the concern about privacy and personal information usage started
to grow, especially with the GDPR1, a collection of data protection rules
entered into force in May 2018. The main focus today is the definition
of a set of guidelines and methods that can help each user regain control
over his data, in order to reduce that sense of spying that someone can
feel when browsing the Internet. For example, one of the goals of the
GDPR is to enforce anonymization techniques, so that the data stored by
web pages can not uniquely identify a specific user, or to increase people
awareness on how their data are used so that they know what risks they
are facing when performing a certain action on the Internet.

In this context, new systems called Personal Data Stores (PDS) or
Personal Information Management Systems (PIMS), emerged, trying to
provide a protected and GDPR-compliant environment to users and offer
a secure way to store information along with methods to reduce privacy
issues. Currently, the market of PDS is extremely heterogeneous, because
there are no standard definitions for these types of systems; there exist
both open-source and proprietary solutions, each of which offers different
functionalities and different security methods. Despite the number of PDS
implementations and the potential of such technology, none of them has
yet reached business or technological maturity nor managed to attract a
sizable user base. These issues are taken into consideration by PIMCity2,
an EU-funded project that aims to increase transparency and provide
users control over their data. The PIMCity project tries to overcome
the difficulties that characterize the PDS scenario and its main focus is
in fact, provide a development kit to build the main components that
can be found in all the existing PDSs, in order to define a general and
standard structure for these systems. In the next chapters, I will present
the prototype of a secure personal information store, called Personal Data
Safe (P-DS), that represents one of the building blocks of the PIMCity
PDS.

1General Data Protection Regulation
2https://pimcity.com/

12

https://pimcity.com/

Chapter 2

Background
Web sites, as well as companies and organizations behind them, have a
great interest in collecting data about their users and visitors; data, in fact,
represent the lifeblood of the digital world and have a strong connection
with money and profits: a simple example is shown by Amazon that aims
to keep track of the last researches in its web sites in order to present a
custom “You may be also interested in” section for each user.

The collection of data by web pages is a very common scenario, but
just recently people started to be concerned about profile tracking and
especially about the means of this operation. The GDPR, for example,
pointed out the possible risks and issues that can harm people privacy, so
websites have started to become clearer on their data collection and usage
policies. Systems for data protection and storage are becoming popular
as well.

2.1 Current Scenario

2.1.1 User Tracking
Methods used to gather information about users fall under the definition
of (web) tracking, that involves a set of different techniques. Although
the possible differences, the common goal is the collection of data, whose
types may be very different according to the purpose of each web page.
In general, the information that could be worth to collect is:

• IP addresses to determine users’ locations.

13

Background

• information about users’ interaction with the site, such as the buttons
they click or the average time they spend on the same page.

• information about the browser or the device the users access the page
with.

• browsing activity, that can give useful insight into users interests or
shopping habits.

This information can be used for multiple reasons; for example, websites
can use analytics software to gain data about their customers in order to
make business decisions and optimize the website based on how visitors
use it. Tracking is typically used also to improve website performance or
to provide certain functionalities (e.g. the YouTube recommended videos
section).
However, the commonest scenario is the one in which users information
are exploited in the marketing and economic field, to provide targeted
advertisements: data is collected by web pages and sites, then sold to
other organizations; in this way, the so-called data buyers can display
adverts for products users have recently viewed while browsing the web
or adverts based on users searching history, locations or interests. More
information will be presented in the section dedicated to real-time bidding.

Cookies

A possible way to implement user tracking is using cookies, a well-known
argument nowadays thanks to the GDPR guidelines and the adoption of
the ‘Cookie Bar’ by most sites. Cookies are small pieces of data that
websites store on the user’s devices and that can collect different types of
information. They can be classified according to:

• duration

– session cookies: they are temporary and expires when the session
ends or the user closes the browser.

– persistent cookies: they remain on the user hard drive until the
user himself or the browser erases it. They are characterized by
an expiration date.

• provenance

14

2.1 – Current Scenario

– first-party cookies: they are put on the user device directly by the
visited web site.

– third-party cookies: they are placed by a third party, such as ad-
vertisers or an analytic system.

• purpose

– strictly necessary cookies: they are necessary to exploit the fea-
tures of the web site, such as secure areas. They are generally
first-party session cookies. Cookies that allow webshops to hold
user items in his cart while he is shopping online is an example of
a strictly necessary cookie.

– preferences cookie: they can be used by the web sites to remember
choices and settings selected by the user, such as language or
geographic region for weather reports.

– statistics cookies: they collect data about how users use a web
site; information is anonymized and aggregated so that they don’t
identify any user and can be used to improve the functionalities
of the web site.

– marketing cookies: they track users’ online activity to help ad-
vertisers deliver more relevant advertising or to limit how many
times users see an ad. Marketing cookies are generally persistent
and third-parties.

Currently, the main concern and debate are on third-party, persistent
and marketing cookies: they can collect a huge amount of information
about habits, preferences and tastes of users and this kind of data is
generally sold to companies that are interested in providing targeted ad-
vertisements. Being third-party, these cookies can collect data potentially
for a big number of stakeholders and when information is sent to external
companies, the chain of responsibility can become easily complex, leading
to possible abuse of individuals information; the user in fact, despite being
the rightful data owner, is generally cut out from this chain and he is not
able to control who can access his data or how his data are handled. This
loss of control influences user privacy since the collected information may
uniquely identify a specific individual if anonymization techniques are not
used. Furthermore, most of the times these tracking methods act silently

15

Background

and can collect information without the users being aware, leading to even
more privacy issues or personal information leakages.

2.1.2 Real Time Bidding
Data collection is just the first phase of the complex system that involves
users’ personal information. In fact, data obtained by websites are gen-
erally exploited in a buying and selling mechanism in which the vendor
monetizes the information he has about his users and the buyer obtains
the right to display ads on the vendor sites. All these operations define a
structure called Real Time Bidding (RTB).

RTB is a means by which advertising inventory is bought and sold on a
per-impression basis, via instantaneous auction; whenever a user visits a
website, an ad request and the corresponding bid request is fired through
the Ad Exchange, the technology-driven platform that handles the RTB
mechanism. The bid request incorporates all the user context data, such
as demographical data, location information, browser history, etc. and it
is sent to companies that are interested in buying an ad space; according
to the individual data, each potential buyer makes a bid in the auction
and space is sold to the highest bidder: if the real-time bid is won, the
buyer’s ad is instantly displayed on the publisher’s site. The whole thing
lasts a few hundred milliseconds and it’s performed in a completely user-
transparent way.

The RTB mechanism has therefore two main actors:

• the advertiser: it is the one that wants to public his ads on the
spaces made available by publishers.

• the publisher: it is the one who makes available his “ad inventory”,
so his space for ads (e.g. YouTube).

The main issue is the fact that the user is not actively involved in the
auction: he is unaware of how his data are being used and generally he
is unaware even of the fact that his personal information is being sold to
third-parties and unknown companies. This information trading is very
complex to control or standardize and there is no way to avoid the auction
participants from combining or aggregating users’ data and sell them to
other buyers. Users completely lose control over their data, in favour of
third-parties’ earnings.

16

2.1 – Current Scenario

Figure 2.1: Interaction flow in Real Time Bidding

OpenRTB

One of the most used platforms for RTB is OpenRTB [10], created by IAB
Technology Laboratory3. The OpenRTB protocol aims at spur growth in
Real-Time Bidding marketplaces by providing open industry standards
for communication between buyers of advertising and sellers of publisher
inventory. The main goal is therefore standardizing the communication
between parties during online biddings.
In OpenRTB, ad requests originate at publisher sites or applications; for
each inbound ad request, bid requests are broadcast to bidders, responses
are evaluated under prevailing auction rules, and a winner is selected.
The winning bidder is notified of the auction win via a win notice. A loss
notification is also available to inform the bidder of the reason their bid
did not win.

The main focus of the OpenRTB project is on the interaction between
the demand side and the supply side, while the specifications about per-
sonal information manipulation and management are not so clear or de-
tailed. Recently, due to the GDPR, some flags have been introduced to be
compliant with the new regulations on privacy and user consent. GDPR

3https://www.iab.com/

17

https://www.iab.com/

Background

compliance will be a focal point of the OpenRTB 3.0 version.

Figure 2.2: Main components involved in OpenRTB

2.1.3 GDPR
In order to have stricter control over usage and processing of users per-
sonal information, on May 25 2018, the European Union adopted the
General Data Protection Regulation (GDPR); it is a legal framework that
requires businesses to protect the personal data and privacy of EU citi-
zens for transactions that occur within EU member states. GDPR has
been designed to harmonise data privacy laws across all of its members’
countries as well as providing greater protection and rights to individuals.
It has also been created to alter how businesses and other organisations
can handle the information of those that interact with them.

The GDPR full text contains 99 individual articles, which replace the
previous data protection directive of 1995. At the core of the GDPR, there
are seven principles, which have been designed to guide how people’s data
can be handled:

• lawfulness, fairness and transparency: lawfulness states that all
processes that in any way relate personal data of EU citizens must
meet the requirements described in the GDPR, including data collec-
tion, data storing and data processing; fairness means that companies
actions must match up with how it was described to data subjects, so

18

2.1 – Current Scenario

use personal data just for the purposes and during the time that the
company indicated. Finally, transparency states that the data subject
must stay informed regarding the purposes, the mean and the time of
data processing.

• purpose limitation: companies must inform the data subject about
the data collection and data can be collected and used only for those
purposes.

• data minimization: this principle states that the collected data
amount should be adequate, relevant and limited to what is necessary
in relation to the purpose for which they are processed[1].

• accuracy: personal data must be accurate and where necessary kept
up to date[1]. So, the company must avoid retaining old and outdated
information.

• storage limitations: the company have to set the retention period
for collected personal data and justify that this period is necessary
for specific objectives.

• integrity and confidentiality: the company must enforce anonymiza-
tion techniques to protect the identity of users, against unlawful pro-
cessing or accidental loss, destruction or damage[1].

• accountability: every step of the data management needs to be
carefully formulated and justified in the official document form.

While these seven principles define a set of rules and limitations for the
ones that use data subjects’ information, on the other hand, the GDPR
is also designed to help to protect the rights of users. Eight rights for
individuals have been defined:

• right to be informed: users must be informed about the collection
and usage of their personal data and companies have to give specific
privacy information about their business, data processing activities,
length of time the company will keep the data, rights to lodge a
complaint, etc.

• right of access: data subjects have the right to access to personal
data. Companies must give users confirmation of whether they are

19

Background

processing users data, supplementary information (including manda-
tory privacy information) and a copy of the personal data being pro-
cessed.

• right to rectification: data subjects can ask data controllers to
erase or rectify inaccurate or incomplete data.

• the right to erasure: users can ask companies to delete their per-
sonal data if data have been processed unlawfully, companies no longer
need the data for the original purpose, the user withdrew the consent
for data processing or erasure is necessary for compliance with other
EU or national law.

• right to restrict processing: individuals can ask companies to
restrict processing their personal data; in this case, companies are al-
lowed to store the data but won’t be able to carry out any processing.

• right to data portability: this right provides the data subject with
the ability to ask for a transfer of his or her personal data. As part of
such request, the data subject may ask for his or her personal data to
be provided back (to him or her) or transferred to another controller.

• right to object: if companies rely on lawful bases of public interest
or legitimate interests for processing, individuals may have a right to
object to such processing. The objection has to be justified and can
be made verbally or in writing.

• rights around automated decision making and profiling: the
data subject shall have the right not to be subject to a decision based
solely on automated processing, including profiling, which produces
legal effects concerning him or her or similarly significantly affects
him or her.

Despite being adopted from 2018, these guidelines and principles need
time to widely consolidate. One of the immediate effects has been changes
in user tracking consent mechanisms and personal data privacy policies of
websites, especially in the context of cookies and purposes of user tracking.

20

2.2 – Personal Data Storage System

GDPR and Cookies

The GDPR mentions only once the word cookie, but the impact is signif-
icant. As already said in the previous chapters, some cookies can collect
data that may identify a specific user (e.g. IP addresses, email addresses):
these kinds of data fall under the definition of personal information and
so they are regulated by the GDPR. To be compliant, organizations will
need to either stop collecting cookies or find a lawful ground to process
that data. Most of them rely on consent (either implied or opt-out), but
the GDPR’s strengthened requirements mean it’s much harder to obtain
legal consent.

Moreover, cookies are regularized by the ePrivacy Directive, formally
called the Cookie Law, that requires websites to ask prior informed con-
sent for storage or access to information stored on a user’s terminal equip-
ment[4]. In other words, a website must ask the visitor to authorize the
storage and retrieval of data sent through cookies and similar tracking
mechanisms before delivering and installing them. This has become par-
ticularly evident in the last years with the proliferation of “Cookie Bars”
on most websites. However, the results of all these regulations are weak
yet and the majority of websites still collects data without users consent,
as stated in [12], in which it is demonstrated that on more than 35,000
websites, almost half of them violates the Directive about the use of cook-
ies.

2.2 Personal Data Storage System
While the GDPR defines guidelines and rules about personal data and
their management, a great issue remains where to store this kind of in-
formation. Nowadays, it’s normal the case in which users data are split
between different companies: Facebook, for example, could keep the list
of the last liked posts of a user, while Google could have a list of the
recently visited places and Amazon of the last purchased items. Obvi-
ously, users have the right to retrieve their data whenever they want, but
this fragmentation leads to a loss of control, because the user is not at the
same time owner and keeper of his personal information, and he has to ask
companies to get them. A possible solution to this problem is represented
by emerging storage systems, called Personal Information Management

21

Background

Systems (PIMS) or Personal Data Stores (PDS).

2.2.1 PIMS and PDS
PIMSs and PDSs are storage systems that help users gather, store, man-
age, use and share personal information. They provide users with tools to
control what information they share with which people or organizations
and when, enabling individuals to handle their personal data in a highly
secure and structured way. The core idea of PIMSs is to build a secure
vault for users data, giving them the possibility to add new information,
delete old or inaccurate ones, decide whether and with whom to share
their data, for what purposes, for how long, etc.
In this way, PIMSs are trying to transform the current provider-centric sce-
nario into one centred on individuals that are able to manage and control
their data. The ongoing situation, in fact, can be considered provider-
centric because the service providers are the ones that collect, store and
handle users’ personal information. They have to define a clear and public
policy for data management, but actually, they are the ones that decide
how to use the collected information, and more importantly how to mon-
etize them. As explained in the real-time bidding section, the market of
user data is very huge and it’s completely transparent to the user himself,
leading to a data processing mechanism that is unfair to individuals who
earn nothing from the selling of their information. PIMSs are trying to
reverse the trend, providing the users with a data store that allows them
to handle their information as the actual and rightful owners.

2.2.2 PIMS Design
PIMSs are still at an early stage of development and there are no standard
definitions of what a PIMS is. This is why existing solutions present
differences in features and design:

• Data Location: a first main distinction can be made on the decision
where to keep data. PIMSs can be defined as local stores, where
personal data are kept in users’ devices, or can be cloud-based, where
information is handled by cloud-based service providers. In the latter
case, data can be stored in a single place or may be split among
different providers.

22

2.2 – Personal Data Storage System

• Data Processing: data can be processed entirely inside the PIMS
itself or can be securely transferred to the service provider, which can
apply encryption mechanisms.

• Data Security and Protection: in the field of personal information
storage, security is a major prerogative and involves encryption algo-
rithms for data confidentiality and authenticity, authorisation mech-
anisms to control third-parties access to user data, data minimisation
and anonymisation services to protect users privacy. PIMSs can adopt
different levels of data security and can implement different solutions.

Although all the possible differences, PIMSs present some common fea-
tures like fine-grained consent management for the release of personal
data towards services, the ability to revoke permissions and data, the
ability to negotiate and receive payments for the release of data, privacy-
preserving release of aggregate analytics or raw data, dashboards for ex-
tracting knowledge and quantifications from one’s own data. Moreover,
PIMSs may support many of the data protection principles, tools and
safeguards that are at the core of the GDPR. One of the objectives is to
put users in control of their personal information: PIMSs can facilitate
the users access to their data and the possibility to keep them up-to-date
and accurate (thus enhancing the quality of data), enforcing the rights to
access, rectification and data portability. PIMSs can then increase trans-
parency and traceability: for example, by looking at their dashboard in
their PIMS citizens could know whether their personal data have been
transferred between two different public administrations. Furthermore,
even when data are processed for a specific purpose based on another le-
gal basis, PIMS can help individuals to effectively manage their consent
for possible further utilisation for other purposes.

It seems clear that PIMSs can implement data protection laws at a
practical level and in a GDPR-compliant way. The bigger challenge, how-
ever, remains the difficulty of penetrating a market dominated by online
services based on business models and technical architectures where indi-
viduals are not in control of their data; a market that is well established
today.

23

Background

2.3 Our Goal
Since the GDPR came into force just in May 2018, it is still too early to
consider the effects that these regulations may have had. Although, one
of the first visible consequences of the GDPR has been an arms race by
users who have started to massively use systems to protect their online
privacy, e.g. tracking and advertising blockers. In response, services have
attempted to bypass blocking using a variety of elaborate tracking tech-
niques, and publishers have developed blocker detection technologies that
redirect users to pay-walls.

In this scenario, PIMSs and PDSs started to emerge, trying to provide
users with a storage system that could offer security features, giving (or
returning) people their data ownership. A great issue, however, is the lack
of standards and guidelines in the definition of such systems, which led
different organizations to propose their solutions, with different technolo-
gies, algorithms and goals. The PIMCity project tries to overcome these
problems, aiming to design, build and exploit a set of reusable, flexible
components in the form of a PIMS Development Kit (PDK). The PDK
intends to make building new PIMS, and extending existing ones, easier,
faster, and cheaper thanks to an open API, helping accelerate the devel-
opments towards finding the right PIMS for unblocking a fair and safe
data economy.

One of the fundamental components of the PDK is the Personal Data
Safe (P-DS), that is the means to store personal data in a controlled form.
The P-DS implements a safe repository for the user personal information
and gives the possibility both to the user to save new data and to auto-
matically import information as they are collected, for example by other
services and applications. The goal of this work is defining a prototype of
a flexible storage system, that can be easy to reproduce in order to build
more complex PIMSs; this prototype has to be as much elastic as possible
to be able to store any kind of information, from simple identity data (first
name, last name) to more detailed information, such as browsing history,
without being tied to a rigid schema or a hard-coded data pattern. The
system should be also efficient and quite fast in order to have good per-
formance in stress situations, like an increase in the number of users or
the volume of data. More information about design and technical aspects
will be presented in the following chapters.

24

Chapter 3

Related Works

As mentioned in the previous chapters, with GDPR new systems for per-
sonal information protection and storage appeared. Companies and or-
ganizations proposed over the years their own solutions for PIMSs and
PDSs, without following any standard or common guidelines: this is why
the world of PIMS is very heterogeneous and each solution presents dif-
ferences from the others. The following sections aim to provide a brief
description of some of the most common products that are available nowa-
days.

3.1 OpenPDS
OpenPDS[9] is an open-source project, implemented at the MIT. It is
defined as a personal metadata management framework that allows indi-
viduals to collect, store, and give fine-grained access to their metadata to
third-parties. It also introduces the SafeAnswer (SA) algorithm, a prac-
tical way of protecting the privacy of metadata at an individual level:
for each application (e.g. Facebook, Foursquare, etc. . .) there is a SA
module which is installed in the OpenPDS; it is a piece of code that uses
the sensitive raw metadata to compute the relevant piece of information
within the safe environment of the PDS. In this way only the processed
result is returned to the third-party, that can access just aggregated or
transformed information; in this way, the SA algorithm is able to protect
the privacy of individuals.

OpenPDS is composed of three main elements:

25

Related Works

• data requester: any application or web site that want to access user
personal information.

• PDS front-end: the front-end is composed of several SA modules,
one for application. All the SA access to the database must be au-
thorized and each SA module executes inside a sandbox. Just the
processed data (the so-called safe answer) leave the SA module, so
third-parties get just the minimal amount of information they need
and not additional metadata that could harm users’ privacy.

• database: metadata are stored in a CouchDB database4, a NoSQL
store that provides built-in functionalities to reduce the dimensional-
ity of the metadata.

Figure 3.1: Main components of openPDS

The OpenPDS framework offers a set of functionalities to help app
developers. Developers do not need to worry about the data collection
phase: they can spend most of their time in defining the SA module for

4https://couchdb.apache.org/

26

https://couchdb.apache.org/

3.2 – Mydex

their application while the PDS front-end takes care of creating the API
and of securing the connections for them.

Although OpenPDS may be a potential standard solution for personal
metadata management, it still faces several challenges: the automatic or
semi-automatic validation of the processing done by a PDS module; the
development of SafeAnswers privacy-preserving techniques at an individ-
ual level for high-dimensional and ever-evolving data; the development or
adaptation of privacy-preserving data-mining algorithms to an ecosystem
consisting of distributed PDSs; UIs allowing the user to better understand
the risks associated with large-scale metadata and to monitor and visualize
the metadata used by applications.

3.2 Mydex
Mydex5 provides its users with the Mydex Trusted Framework and Plat-
form, which enables to define single Personal Data Stores. Each PDS
allows the collection, the management and the distribution of personal
information, that are generally stored in the cloud, where the majority of
the operations are performed. The Personal Data Store is an independent
collection of files, that are uniquely encrypted using a private encryption
key that only the individual has. Personal information can be accessed by
the owner user and permissioned third-parties.

Client-side, Mydex offers a portable, privacy-friendly MydexID, a PDS
and a set of tools completely free of charge. The user has full control
over his data and can decide what kind of information insert in the PDS,
whether he wants to change platform or which people/organizations/appli-
cations can access his data. PDS owners can decide to define connections,
that enable to send and/or receive data to and/or from other people; in
this way, the PDS can be set up to have connections with organizations,
so that the user can send data to that organization or receive data from
them. With connections, companies can still perform analysis on users’
data, but in a way that is fairer for users themselves, since individuals
have more control on who can access their data. Users, in fact, can also
define permissions, which show which separate pieces of data the user is
prepared to send to third-parties and what the user is willing to receive

5https://mydex.org/

27

https://mydex.org/

Related Works

from them. Permissions enable the data owner to have fine-grained access
control, both in READ and WRITE mode: READ mode means that the
user is sending data, so the connected organization can read a specific
part of the PDS, while WRITE mode means that the user is willing to
receive information from the connected organization and this will update
a specific piece in the PDS.

Developer-side, the Mydex Platform offers a set of APIs that enable
to create a secure connection between a user’s PDS and a particular ap-
plication and to exchange data, generally in JSON format. Mydex API
offers:

• Attribute Exchange Services:

– invite individuals to have a Mydex PDS and connect it to their
records within an organization as a value-adding service.

– send data to an individual’s Mydex PDS with their permission
but without their intervention.

– secure access to verified data from an individual’s PDS with their
consent.

– keep records about an individual up to date and get notified when
any changes occur.

– develop an application that runs on a smartphone, tablet, desktop
or within a website that can access personal data from a Mydex
member.

• Identity Services:

– verify that a Mydex member is who they say they are.
– use Mydex Identity Services to replace organizations’ username
and password management services.

– add support for the MydexID into organizations’ sign-in options
on organizations’ website.

Regarding security, personal data are encrypted using AES 512-bit en-
cryption, while for communications information are always sent using 256-
bit SSL. When users exchange data with organizations they have agreed
to send or receive data from, it is encrypted using a one-time password
which is delivered via an asymmetric key pair, which are unique to the

28

3.3 – Hub of All Things

connection with that organization. Asymmetric keys enable data to be
verified in terms of who the sender is; data encrypted with one key can
only be decrypted by the other key.

3.3 Hub of All Things
Promoted by HCF, HAT Community Foundation, the Hub of All Things
(HAT)6 microserver is a scalable technology that confers legal rights of
personal data to users through the ownership of a personal data server.
The HAT microserver is hosted in the cloud and individuals can install
plugins to bring their data in from the Internet, exchange data with ap-
plications and install tools in their microservers to have private analytics
for insights into their data.

Hat microserver consists of four main components:

• HAT Web Server: each HAT microserver has its own API, which
is configurable.

• HAT Database: users own a HAT Database and they have com-
plete control over the contents of the database. Each HAT Database
contains a data schema, allowing to store individual’s data from any
source without losing the structure specific to the source. The Database
is characterized by namespaces, that identifies where an application
will have read and write access, just like folders in normal operating
systems.

• File Storage System: files are held in the S37 storage system offered
by AWS8 and managed by Dataswift.

• HAT Computation: this component enables the creation of pri-
vate analytics. HAT Computation provides an environment where
third-party code written in different languages can operate on HAT
data.

6https://www.hubofallthings.com/
7Simple Storage Service by Amazon Web Service
8Amazon Web Service

29

https://www.hubofallthings.com/

Related Works

As the rightful owner of the HAT Database, the user has complete con-
trol over the stored information and so can decide which organization can
access a particular subset of the data. The core of the data exchange mech-
anism is represented by the Data Debit system, defined as the cornerstone
of the permission-based, data contracts platform. Any data acquisition
from the database require permission: when permission is granted, a le-
gitimate contract is agreed upon. Once the data-sharing permissions are
given, the contract between the HAT PDA (Personal Data Account) owner
and the application provider is logged and Data Debits becomes the only
way data can be retrieved from a HAT PDA by anyone other than the
owner.

30

Chapter 4

P-DS Definition and
Implementation Options

As part of the PIMCity group dedicated to the PDK9 development, my
objective has been the definition of a possible and plausible structure of
the component dedicated to data storage, called Personal Data Safe (P-
DS). Basically, the P-DS is the secure repository of a PIMCity PDS and
the prototype has been designed in order to be quite simple to integrate
with the other PDK parts, which are:

• Personal Privacy Metrics: this component collects, computes and
shares easy to understand novel privacy metrics, providing fundamen-
tal information that can be used by users to make informed decisions.

• Personal Consent Manager: it is the means to define the users’
privacy policies for consent management and the policies users desire
to apply when sharing personal data with services.

• Personal Privacy Preserving Analytics: this element offers stan-
dard and open implementation of the fundamental methodologies that
can be exploited to enforce data control and user privacy.

All the components must be able to communicate together in an efficient
and simple way, so I chose to design the P-DS to support the REST10

9PIMS Development Kit
10REpresentational State Transfer

31

P-DS Definition and Implementation Options

paradigm. REST is a common architectural style for providing standards
between computer systems on the web, making it easier for systems to
communicate with each other. The main functionalities of the P-DS can
be exploited with a set of RESTful APIs that provide a simple interaction
mechanism, especially between non-human systems.

During the P-DS definition, the requirement phase involved two main
areas, the framework for the prototype and the database for the data
storage. This chapter is dedicated to explaining the main technical and
implementation choices that have been evaluated in the first months of
the project.

4.1 Framework

As the starting point for the prototype implementation, I decided to lever-
age a web framework, in order to make easier the P-DS backend devel-
opment. Today, web frameworks are very common and popular and they
are used also for big and complex applications with thousands of users:
they offer useful built-in functionalities (security, authentication, logging,
auditing, etc.), can speed up the implementation process and they gen-
erally come with a middleware that connects the high-level programming
language with the underlying storage layer. In the following sections the
three principal frameworks that have been considered will be presented.

4.1.1 Django

Django11 is a high-level, open-source, full-stack web framework written in
Python and it is used by popular sites and applications such as Mozilla,
Instagram, The Washington Post, and many others. Django was created
by two web developers, Adrian Holovaty and Simon Willison working at
the Lawrence Journal-World Newspaper in 2003. It was released publicly
as a BSD license in July 2005.

11https://www.djangoproject.com/

32

https://www.djangoproject.com/

4.1 – Framework

Architecture

Django follows a Model-View-Controller (MVC) architecture that can be
actually defined as MTV since the three main components are effectively
named Model (same as in MVC), Template (that has the role of the MVC
View) and View (the MVC Controller):

• data collected from the database is displayed by the Template; it
includes a set of files that come from the combination of static HTML
layout and Django syntax, which is essentially Python code, evaluated
and processed server-side.

• the Django View instead is composed by a set of Python files that
contain the business logic of the application and become the mediator
between the model and the template. In the Django MTV architec-
ture, the View is actually a little different from the Controller of the
classical MVC design, since Django Views are only corresponding to
a particular template and they are technically not selecting a model
or view by themselves. The controller function is indeed held by the
Django Framework itself, which is able to communicate with all the
components. Views can be distinguished in class-based and function-
based views.

• lastly, a Model in Django is a Python class that acts as the bridge
between the database and the server. This class is a representation of
the data structure used by the website and it can directly relate this
data structure with the database.

Figure 4.1: Django MVC design

33

P-DS Definition and Implementation Options

This architecture in Django presents several advantages: first, it makes
easier for multiple developers to work on different aspects of the same
application simultaneously because the project is separated in different
components; second, this architecture has different elements which re-
quire each other at certain parts of the application, at every instant, that
increases the security of the overall website; finally, if there is a change
in different components, the developer doesn’t have to change it in other
components.

Features

Being a big and complex framework, Django offers a huge set of function-
alities. The framework, in fact, follows the batteries included philosophy
and provides almost everything developers might want to do “out of the
box”: in this way common cross-cutting problems such as authentication,
logging, etc., present an already-working implementation, helping devel-
opers in saving time. Some examples are:

• ORM: Django offers a robust ORM12 system, which provides sup-
port for MySQL, Oracle, SQLite and PostgreSQL and makes easier
the dialogue and the interaction with the database. ORMs define a
middleware layer that closes the gap between high-level models and
lower-level entities, which represent how data are physically stored in
the database. In this way, all the operations that concern querying
the database are simpler and the developer can focus on the core busi-
ness of the application. The Django ORM automatically transforms
all the Python instructions in SQL instructions.

• admin panel: it is a customizable administrative interface, that
combines authentication, permissions levels and form data validation.

• authentication: Django offers an authentication system with per-
mission levels and groups, completely customizable.

Behind this set of built-in functionalities, Django defines a highly se-
cure environment, that helps developers by providing a framework that
has been engineered to protect the website automatically. For example,

12Object to Relational Mapping

34

4.1 – Framework

Django provides a secure way to manage user accounts and passwords,
avoiding common mistakes like putting session information in cookies
where it is vulnerable or directly storing passwords rather than a password
hash. It also enables protection against many vulnerabilities by default,
including SQL injection, cross-site scripting, cross-site request forgery and
clickjacking.

Furthermore, Django is considered as a scalable, maintainable, portable
framework. It is scalable because it uses a component-based shared-
nothing architecture, where each part of the architecture is independent of
the others and can hence be replaced or changed if needed. Having a clear
separation between the different parts means that it can scale for increased
traffic by adding hardware at any level: caching servers, database servers,
or application servers. Maintainability is achieved with principles and pat-
terns that encourage the creation of maintainable and reusable code. In
particular, Django makes use of the Don’t Repeat Yourself (DRY) princi-
ple so there is no unnecessary duplication, reducing the amount of code.
Django also promotes the grouping of related functionality into reusable
applications and, at a lower level, groups related code into modules. Fi-
nally, Django is written in Python, which runs on many platforms. That
means that developers are not tied to any particular server platform, and
can run applications on many flavours of Linux, Windows, and Mac OS
X.

Project Structure

When creating a new project, Django automatically defines a root direc-
tory that contains some predefined files and folders. The root directory
is the default app provided by Django and contains files that are used in
maintaining the whole project. The main files created by the framework
are:

• manage.py: this file is the command-line utility of the project and
it is used only to deploy, debug and test with the project. The file
contains the code for starting the server, migrating and controlling
the project through command-line and provides all the functionality
as with the django-admin. Some of the most common commands
include:

– runserver: it starts the test server provided by Django framework.

35

P-DS Definition and Implementation Options

– makemigrations: it is the command for integrating the project
with files or apps developers have added in it. This command
checks for any new additions in the project and then add that to
the same.

– migrate: this command actually add migrations developers made
with the makemigrations command.

• settings.py: the settings.py is the main file where developers will
be adding all their applications and middleware applications.

• urls.py: it contains the project level URL information and it connects
the web-apps with the project.

• wsgi.py: this file refers to the fact that Django is based on python
which uses WSGI server for web development.

4.1.2 Flask
Flask13 is a lightweight and extensible Python web framework, which offers
basic features for web application development. It keeps its core function-
alities small, but it can be easily enhanced with extensions that can add
application features as if they were implemented in Flask itself. Due to the
minimalist architecture, Flask is generally considered a micro-framework,
since it lacks most of the functionalities that are common in full-fledged
web application frameworks, like Django. Among the big companies that
use Flask, there are LinkedIn, Pinterest, Reddit, and more.

Flask is based on two main projects:

• Werkzeug: it is a utility library meant for usage with the Python
language. Mostly, it is a Web Server Gateway Interface or WSGI
app that can create software items for request, response, or utility
functions.

• Jinja: it is a template engine for Python programming purpose and
it could be compared to Django web frameworks templates.

13https://flask.palletsprojects.com/en/1.1.x

36

https://flask.palletsprojects.com/en/1.1.x

4.1 – Framework

Features

The main goal of Flask is to keep the architecture as simple as possible,
leaving all the additional features as external modules; Flask, in fact, is
designed to be easy to use and extend and the main idea behind the
framework is to build a solid foundation for web applications of different
complexity. Developers are then free to plug in any extensions they need
and are also free to build their own modules. Flask is great for all kinds of
projects, especially for small ones or for prototyping tasks. However, if this
simplicity requires more effort from the developer to define complete web
applications, on the other side the overhead of executing a Flask project is
much more reduced, leading it to be mostly faster than other frameworks.
The main features of Flask include:
• built-in development server and fast debugger.

• integrated support for unit testing.

• RESTful request dispatching.

• Jinja2 templating.

• support for secure cookies (client-side sessions).
Flask allows to define MVC applications, but it requires more low-

level operations, since the Model part of the MVC pattern, and so all the
operations related to physical data and query translation, is not covered
by the framework. Flask, in fact, is defined as ORM-agnostic and ORM
support is not automatically provided but can be easily integrated with
any project, as well as tools for handling migrations. In the context of
security, Flask offers basic services, such as protection against XSS14 in
Jinja2 templates.

4.1.3 Spring
Spring15 is an MVC web framework for Java-based enterprise applications,
that enables to build applications from plain old Java objects (POJOs) and
to apply enterprise services non-invasively to POJOs.

14Croos-Site Scripting
15https://spring.io/

37

https://spring.io/

P-DS Definition and Implementation Options

Key Principles

The Spring framework is based on three key principles that try to solve and
simplify one of the greatest issues of Java projects, that is dependencies.
Traditional Java-based programs, in fact, are generally composed of two
separate parts: a configuration one in which the developer defines and
resolves the relationships between classes and an operational one, that
contains the actual business logic of the program. This approach leads to
classes that are strongly coupled and that are not able to work without
the others since all the relations must be resolved before the real business
logic is executed. Therefore, applying any change becomes really complex
because relations cause a chain of variations in all the coupled classes; for
the same reason the testing phase is complicated as well. Spring tries to
overcome this problem with an automatic system that handles relations
and couples Java classes; this system is based on the main principles of
Spring:

• Inversion of Control (IoC): while in the normal case, a class A
would have a direct dependency to class B, with IoC the dependency
is removed with the introduction of an interface that abstracts the
behaviour of class B. In this way the interface splits two types of re-
sponsibility: class A knows just when it needs the services, offered by
the interface itself, while the real implementation of what is declared
in the interface is provided by class B or any other class, even proto-
types or test-only classes. IoC enables an easier way to perform tests
because Java objects are loosely coupled and just need to know the
interface’s methods to work, while the class implementing the func-
tions can be changed, modified or updated without any effect on other
elements.

• Dependency injection (DI): DI is a programming pattern that
realizes the coupling between objects at run time and not at compile
time. All the dependencies are created and stored inside a container,
that is handled directly by the framework itself; the developer just has
to define in a declarative way (using annotations for example) the rela-
tionships between classes and then, at run time, the framework takes
care of resolving them, injecting the dependencies as object proper-
ties. Spring offers a system for DI, called autowiring that provides a
type-based injections mechanism.

38

4.1 – Framework

• Aspect Oriented Programming (AoP): it is a programming model
that enables to describe and define cross-cutting concerns, separating
them from the application domain. Cross-cutting concerns, in fact,
include those functionalities that are not specific to any particular ap-
plication but are present in any project, such as logging, authentica-
tion, security. AoP allows the developer to define these functionalities
in just a single place, using special classes called aspects. Tasks of each
aspect can be applied in any part of the programs using annotations
that modify the base class at loading time.

Architecture

The Spring framework architecture contains four main modules, which are
the Core Container, the Data Access and Integration module, the Web
Container and a Miscellaneous module. The Core container provides
the fundamental parts and features of the framework, such as the IoC,
the dependency injection mechanism, a sophisticated implementation of
factory pattern called BeanFactory and the Application Context that has
access rights for any objects that defines and configures. In Spring, Beans
are the base classes that the developer defines for every single component.

The Data Access/Integration module includes a JDBC-abstraction
layer, that removes the need for JDBC related code, and the Spring Object
XML Mappers, a module that eases the mappings between Java object
and XML documents. The Spring Framework doesn’t have its own ORM
implementation, but it offers the integration layers with other popular
Object Relational Mapping tools such as iBATIS and Hibernate.

The last important Spring component is the Web Container, which
contains several frameworks for developing web-related applications. For
example, it offers the Web-MVC module, to develop MVC-compliant web
application and the Web-Socket module, with WebSocket support.

Finally, Spring comes with more than 50 starter-packs in the form of
POM16 files, offering a collection of libraries that help developers in solv-
ing almost automatically common sub-problems and sub-tasks, like web
programming, access to relational and non-relational databases, real-time
messaging, security, caching.

16Project Object Model

39

P-DS Definition and Implementation Options

Figure 4.2: Spring Framework modules

4.2 Database
The second important aspect that has been taken into consideration dur-
ing the design phase is the database. The Personal Data Safe, in fact, aims
to be a secure repository for user personal information, so a weighted de-
cision about what kind of data storage to use is fundamental. The debate
has involved both relational and non-relational solutions: for the SQL
world, I considered just MySQL, since almost all relational databases of-
fer the same functionalities and features, while for the NoSQL field, two
different products have been compared, because of the higher number of
types of NoSQL databases.

4.2.1 Relational VS Non-Relational
Relational Systems

Relational databases are a well-consolidated technology, used in the ma-
jority of the applications since the 70s. Relational systems organize data
in a structured way, using tables that are composed by rows (also called
tuples) and columns. Information can be processed and manipulated using

40

4.2 – Database

a querying language called SQL17, which provides the possibility to enforce
business rules and constraints, ensuring data integrity during operations.
A key concept in the relational model is the transaction, that is defined
as a single logical unit of work, containing one or more SQL instructions;
each transaction is an atomic unit, so the effects of all SQL instructions
will be commited (made permanent in the DB) if everything succeeded or
will be rolled back (deleted from the DB) if an error occurred. Transac-
tions can be used to guarantee the so-called ACID properties which are
fundamental in the relational world:

• Atomicity: all changes to data are performed as if they were a single
operation.

• Consistency: data is in a consistent state when a transaction starts
and when it ends, so the execution of a transaction preserves integrity
constraints on data.

• Isolation: the execution of a transaction is independent of other
transactions execution.

• Durability: after a transaction successfully completes, changes to
data persist and are not undone, even in case of a system failure.

Relational databases require the definition of a strict schema before
data insertion: each entry must fit the schema and this means that all the
records will have the same set of fields and the same data type for each
field. This aspect can be useful when the information that will be stored
present a fixed structure that does not change much over the years, but it
may be a problem for systems that need to evolve very quickly: the schema
of relational databases, in fact, may introduce significant downtime if it
is necessary to make changes that affect the whole database. Another
possible drawback of relational databases is the fact that data need to be
normalized before insertion, in order to avoid redundancies and anomalies
during updates. Normalization requires the use of JOIN operations to
connect tables and retrieve data: if tables contain a huge amount of entries,
these operations could become expensive. A last possible disadvantage
is the difficulty to scale horizontally: relational databases are easier to

17Structured Query Language

41

P-DS Definition and Implementation Options

scale vertically, which is better for enforcing ACID properties, while in a
horizontally-scaled environment it is way more complex.

Non-Relational Systems

The other half of the storage systems is represented by the NoSQL model.
As the name suggests, NoSQL and non-relational databases abandon the
use of the SQL language and prefer simpler APIs: in particular, JOIN
operations are avoided since they may be too expensive and time-wasting,
while custom APIs can lead to faster and more efficient systems. The
other important innovation introduced by non-relational databases is the
schemaless design: these products, in fact, enable the insertion and the
processing of data that do not follow a fixed and rigid schema; every
single record can have a different set of attributes and changes to the gen-
eral schema can be applied without any service downtime. This aspect is
very useful in the case of applications that need to evolve rapidly or that
deal with mutable data. As opposed to relational databases, NoSQL sys-
tems offer native support to horizontal scalability (sharding), which make
them particularly suitable for distributed environments, where adding new
servers/machine is preferable than enhancing the hardware of a single ma-
chine.

On the other side, one of the main drawbacks of non-relational system
is the fact that transactions are not supported: in a distributed environ-
ment it’s more complex the enforcement of the ACID properties, due to
the high number of nodes that have to be coordinated; instead NoSQL
databases are subjected to the CAP theorem by Eric Brewer[7], which
states that in distributed systems it’s impossible to guarantee simultane-
ously the consistency, availability and partition tolerance properties. If
the system is designed to be consistent and available, it will be not parti-
tion tolerant, while a not consistent system will be available and partition
tolerant and so on. This leads to the possibility to ensure a different set
of properties for NoSQL operations, the BASE properties, in contrast to
the ACID ones:

• Basic Available: the system is available most of the times.

• Soft State: the system state can change over time even without any
input.

42

4.2 – Database

• Eventually Consistent: the system will become consistent in a
certain time interval during which it doesn’t receive external inputs.

Non-relational databases can be divided into four different types, which
share the mentioned-above characteristics but differ in the way data is
stored and managed:

• Document Store: they enable to manage semi-structured data
where each key is associated with a document, containing key-value
pairs or nested objects.

• Key-Value Store: each element is stored as a key-value pair.

• Column-Oriented: data are stored in columns, to optimize the
calculation of aggregates.

• Graph Store: relations between entity are represented with graphs.

4.2.2 MySQL
MySQL18 is an open-source SQL database management system, devel-
oped, distributed, and supported by Oracle Corporation and it is one of
the most popular and used RDBMS19 on the market. Being a relational
system, data is stored in tables, composed by rows and columns, which
must follow a fixed schema that has to be defined before any insertion:
the database administrator defines and runs the table initialization code,
that creates the structure and the fields of each table.

Main features

As a relational database, MySQL supports transactions than enable to
enforce strong consistency of data and provides several mechanisms for
replication; replication allows the contents of a database to be copied
(replicated) onto several computers: this can increase protection against
system failure and improves the speed of database queries.

In terms of efficiency, MySQL is generally considered among the fasted
RDBM, thanks to a large number of benchmark tests. Performance can

18https://dev.mysql.com/
19Relational DataBase Management System

43

https://dev.mysql.com/

P-DS Definition and Implementation Options

either be improved in different ways, using for example memory caches or
indexes, which are a data structure that improves the speed of operations
in a table, avoiding scanning the whole table to find the relevant rows.
Indexes can be created using one or more columns, providing the basis
for both rapid random lookups and efficient ordering of access to records.
Indexes are completely transparent to users and are stored as a special
type of table, which keeps primary key or index field and a pointer to
each record into the actual table.

Finally, to ensure ACID properties, MySQL offers a locking system for
tables and rows: it enables to define a tool for concurrency control for
when multiple and concurrent queries need to access the same subset of
data. Locks can be divided into two groups, that are related to separate
operations, READ and WRITE. For WRITE operations, MySQL puts
a write lock on the table, if there are no locks on the table, otherwise,
it puts the lock request in the write lock queue. For READ operations,
the working flow is very similar, but requests are placed in the read lock
queue. When a lock is released, the lock is made available to the threads
in the write lock queue, then to the threads in the read lock queue. In
this way, MySQL can enforce the data consistency property.

Architecture

MySQL is defined as a client-server system, where the client establishes a
connection with the server: first, client and server exchange their capabil-
ities, then an SSL communication channel is set up if requested and lastly
the client authenticates against the server. MySQL servers are composed
of three major components:

• Application Layer: this layer is the topmost layer in MySQL ar-
chitecture and it includes some of the services which are common to
most of client-server applications; when the client connects to the
server, the Connection Handling module creates a new thread for the
connection and all the queries from that client are executed within
that specified thread, which is cached so that it does not need to
be created and destroyed at each new connection. At connections
creation, the server performs authentication operations, based on the
username, host of the client and password of the client user. After the
client gets connected successfully to the MySQL server, the server will

44

4.2 – Database

check whether that particular client has the privileges to issue certain
queries.

• Server Layer: this layer takes care of all the logical functionali-
ties of the MySQL RDBMS. The server layer is divided into various
subcomponents:

– MySQL Services and Utilities: it provides the services and utilities
for administration and maintenance of MySQL system, such as
backup and recovery, security, replication, partitioning.

– SQL Interface: it is a tool to interact between MySQL client user
and server, offering Data Manipulating Language (DML), Data
Definition Language (DDL), stored procedures, views and trigger.

– Parser: MySQL parses queries to create an internal structure,
called the parse tree. This module behaves as a single-pass com-
piler, providing support for lexical analysis and syntactic analysis.

– Optimizer: after the creation of the internal parse tree, the op-
timizer applies a variety of optimization techniques that may in-
clude rewriting the query, order of scanning tables, choosing the
right indexes to use.

– Cache and Buffers: MySQL caches store complete results for SE-
LECT statements. Before parsing the query, MySQL server con-
sults the query cache and if any client issues a query that is identi-
cal to one already in the cache, the server simply skips the parsing,
optimization and even execution, displaying the output from the
cache.

• Storage Engine Layer: the pluggable storage engine feature makes
the MySQL as a unique and preferred choice for most of the develop-
ers, allowing to choose among a variety of storage engines for different
situations and requirements.

4.2.3 MongoDB
MongoDB20 is a document-oriented NoSQL database used for high vol-
ume data storage. Instead of using tables and rows as in the traditional

20https://www.mongodb.com/it

45

https://www.mongodb.com/it

P-DS Definition and Implementation Options

relational databases, MongoDB makes use of documents: a document is
a single record in MongoDB and represents the basic data unit. They are
analogous to JSON objects but exist in the database in a more type-rich
format known as BSON. This provides MongoDB with a great level of
flexibility: schema, in fact, is no longer required and developers can store
any kind of data within the same collection, without worrying that docu-
ments may have a different structure. In this way, dynamic changes can
be produced at any time and with no system downtimes. A set of related
documents defines a collection, that is the equivalent of an RDBMS table.
Generally, documents within a collection have different fields but share a
similar or related purpose.

Main Features

Being a non-relational database, MongoDB refuses JOIN operations; re-
lationships between documents can be defined in two different ways:
• references: in this case, document A contains a field whose content

is the id of document B, which it is related with. This technique emu-
lates a JOIN, but it’s more inefficient because while JOIN operations
require one single table access, references require at least a double
access to the database.

• nested documents: the more used solution to represent relations
is with nested documents; each MongoDB document key, in fact, can
contain a nested object that is a complete document by its own. As
a result, it requires a single database access to retrieve the informa-
tion about the relation. The main disadvantage is the fact that this
method can lead to data replication or denormalized databases.

MongoDB is designed to be able to scale horizontally in systems where
the dataset is divided over multiple servers and system capacity is in-
creased with the addition of new servers. In particular, MongoDB uses
a specific method for distributing data across multiple machines, called
sharding. A MongoDB sharded cluster consists of three main components:
• Shard: each shard contains a subset of the sharded data and can be

deployed as a replica set.

• Mongos: mongos act as a query router, providing an interface be-
tween client applications and the sharded cluster.

46

4.2 – Database

• Config Server: config servers store metadata and configuration set-
tings for the cluster.

Figure 4.3: MongoDB architecture

Performance-wise, MongoDB is one of the highest performing databases,
with the implementation of replication, indexing and load-balancing. Fur-
thermore, it can handle large unstructured data, that allows users to query
in different manners that are more sensitive to workload.

4.2.4 HBase
HBase21 is a column-oriented non-relational database management system
that runs on top of Hadoop Distributed File System (HDFS)22. The main
difference between HBase and (non) relational databases is the fact that
it’s a columnar data store; with respect to row-oriented databases, HBase
uses a completely different mechanism for storing data in disk, since in-
formation is stored by columns and not by rows. Physical organization
of data has an impact on features such as partitioning, indexing, caching,
views, etc. In this case, the column-oriented system optimizes operations

21https://hbase.apache.org/
22https://www.ibm.com/analytics/hadoop/hdfs

47

https://hbase.apache.org/
https://www.ibm.com/analytics/hadoop/hdfs

P-DS Definition and Implementation Options

on data aggregation. HBase stores data in tables, which consist of rows
identified by a RowKey and each row has a fixed number of column fam-
ilies. Each column family can contain a sparse number of columns.

As the other non-relational DBMS, also HBase exploits a schema-less
design, where just column families must be defined and not a fixed column
schema. It provides data replication across clusters for higher availabil-
ity and it’s linearly scalable. With respect to MongoDB, HBase offers a
higher level of consistency, thanks to atomic read and write, on a row-
level: during one read or write process, all other processes are prevented
from performing any read or write operations.

Listing 4.1: row-oriented
1,Smith,Joe,40000;
2,Jones,Mary,50000;
3,Johnson,Cathy,44000;

Listing 4.2: column-oriented
1,2,3;
Smith,Jones,Johnson;
Joe,Mary,Cathy;
40000,50000,44000;

Architecture

HBase is composed of four main components which are:

• HBase Regions: they are the basic building elements of HBase
cluster that consists of the distribution of tables and are comprised
of Column families. It contains multiple stores, one for each column
family.

• HBase Regions Servers: when region servers receive writes and
read requests from the client, they assign the request to a specific
region, where the actual column family resides.

• HMaster: it is the implementation of a Master server in HBase
architecture. It acts as a monitoring agent to monitor all Region
Server instances present in the cluster and acts as an interface for
all the metadata changes. HMaster plays a vital role in terms of
performance and maintaining nodes in the cluster, it provides admin
performance, distributes services to different region servers and has

48

4.3 – Implementation Choices

features like controlling load balancing and failover to handle the load
over nodes.

• ZooKeeper: it is a centralized monitoring server which maintains
configuration information and provides distributed synchronization.
Distributed synchronization is to access the distributed applications
running across the cluster with the responsibility of providing coor-
dination services between nodes. If the client wants to communicate
with regions, the server’s client has to approach ZooKeeper first.

Figure 4.4: HBase architecture

4.3 Implementation Choices
After the evaluation phase, I opted for a Python web framework, since
Python is easier to learn and to use, especially for beginners and has a
learning curve that is less complex than the Java one, potentially lead-
ing to a higher level of productivity. Among the selected frameworks, I

49

P-DS Definition and Implementation Options

decided to use Django, because it provides a larger set of built-in and
already-tested functionalities, along with a wider online community that
can supply ready-to-use solutions for common problems. Furthermore,
Django offers a developer-friendly way to implement a set of RESTful
APIs, using a few lines of code. In order to achieve the flexibility and the
extensibility goals stated in Our Goal section, I decided to use a Mon-
goDB database, which can offer an elastic environment that is able to
evolve without being constrained to a rigid schema.

Technical information about the implementation of the P-DS prototype
will be presented in the following chapter.

50

4.3 – Implementation Choices

Table 4.1: Comparison table between Django, Flask and Spring

Django Flask Spring

Framework Type Full-stack web
framework for
Python

Lightweight and
extensible Python
web framework

MVC web frame-
work for Java-based
enterprise applica-
tions

Admin Interface Built-in admin in-
terface

Rely on a external
libraries

Admin interface
with Spring Boot
Admin

ORM Usage Robust ORM
system, supports
for MySQL, Or-
acle, SQLite and
PostgreSQL

Does not have
a built-in ORM
system; supports
SQLAlchemy and
Peewee

Supports in-
tegration with
Hibernate, Java
Persistence API
(JPA) and Java
Data Objects
(JDO) for resource
management,
data access object
implementations

Built-in func-
tionalities

Creation forms,
data validation
and CSRF token
validation, authen-
tication system
with permission
levels and groups

Relies on external
libraries

Composed by
different module:
Relational Data
Access, Non Rela-
tional Data Access,
Security, . . .

Security Protection against
XSS, CSRF, SQL
injection, Click-
jacking by default

Protection against
XSS in Jinja2

Spring Security:
authentication,
authorization,
protection against
attacks like session
fixation, click-
jacking, cross site
request forgery, . . .

Community Large community Smaller community
than Django

Smaller community
than Django

51

P-DS Definition and Implementation Options

Table 4.2: Comparison table between MySQL, MongoDB and HBase

MySQL MongoDB HBase

Data Format Data is stored in ta-
bles and rows

Data is stored
in json docu-
ments that can
be grouped in
collections

Data is stored in
column format

Schema Predefined schema,
tables must be de-
fined before storing
data

No defined schema,
fields can be added
on the fly

Schema-less design

Replication Master-slave repli-
cation and master
replication

Built-in replica-
tion, sharding,
auto-elections

Master-slave repli-
cation

Index If index is not de-
fined, needs to scan
the whole table to
find relevant rows

If index is not
found, every doc-
ument must be
scanned

Materialized views
maintained by de-
velopers in code, or
with coprocessors

Consistency Immediate consis-
tent

Eventually consis-
tent and immediate
consistent

Strong consistency
at row level

Access Control Users with fine-
grained authoriza-
tion concept

Access rights for
user and roles

Access to data can
be granted at a ta-
ble or per column
family basis

Best Scenario When data security
is an high priority

When most of the
services are cloud
based

When aggregation
functions are rele-
vant

52

Chapter 5

Development and
Implementation
The development of the P-DS prototype can be divided into two main
sections. The first one involves the definition of the backend design of the
system, which includes the data model, the REST APIs that expose the
P-DS functionalities and all the server-side utility functions. The backend
elements have been implemented using version 3.8.2 of Python language,
while for the Django framework I used the version 2.2.12. The second
section covers the frontend implementation: the P-DS prototype has been
designed to provide a simple user interface, where the data owner can
perform basic management actions on his stored personal information.
For these elements, I mainly used HTML for the web pages skeletons,
JavaScript to make the user interface dynamic and Bootstrap for style
and appearance.

5.1 Database Setup
The backend of the prototype relies on a MongoDB database, running in a
Docker23 container on my personal computer. For the development phase,
I decided to use a containerized version of MongoDB to have a high level
of flexibility in the management of the database, with the possibility to
easily create, stop, start database instances as needed. This elasticity is in

23https://www.docker.com/

53

https://www.docker.com/

Development and Implementation

fact, provided by Docker and by its lightweight virtualization mechanism
that allows to set up even complex environments in few instructions; for
all the P-DS implementation, in fact, I just used the following few Docker
commands:

• docker pull mongo:4.2.6 : the command downloads and starts a local
instance of MongoDB with version 4.2.6.

• docker start [containerID]: it starts the container with the specified
ID.

• docker stop [containerID]: it stops the specified container.

5.2 Data Structure Design
Server-side high-level components can be grouped into three main macro-
arguments:

• Schema: the P-DS configuration is based on a schema, a YAML file
that contains the possible types of information that can be stored in
the P-DS, listing the possible fields and the logical group for each
type. The schema has the primary goal to control the data that can
be inserted on the Personal Data Safe: in this way it prevents the user
from inserting unstructured information, that may be too complex to
handle and process, or erroneous data. On the other side, the schema
can be easily changed or expanded, providing the flexibility required
by the project goals. The schema can be consulted by users, but its
content is defined and managed by the system administrator.

• Data model: it includes the classes that I defined at source-code-
level to represent the data domain. In particular two entities have
been defined, the User class, that represents P-DS users, and the
PersonalInformation class, which describes the principal characteris-
tics of each P-DS entry.

• REST APIs: the P-DS functionalities about users and personal
information are exposed as REST APIs to external modules, to have
a simpler communication as possible.

54

5.2 – Data Structure Design

Figure 5.1: General structure of the Personal Data Safe

5.2.1 Schema
The schema represents the starting point of the P-DS structure. It is a
YAML file defined by the system administrator and contains the main
configuration of the data store, describing the kind of data that will be
saved inside it. The main purpose of the schema is to provide a high level
of flexibility in a controlled way. The P-DS in fact, need to be as elas-
tic as possible and should be implemented in a way that does not force
users to insert just certain types of data, with a given and fixed structure.
Theoretically, it should be possible to insert in the Data Safe any kind
of information, from common personal information, such as year of birth,
cell phone number and email address, to more complex and structured
data, like financial data, health-care information and so on. This pre-
cludes the possibility to have a limited set of accepted information with
a fixed structure and specific fields because the flexibility goal imposes a
general way to describe P-DS data. At the same time, it would be too

55

Development and Implementation

complex to handle a system, that gives the possibility to users to insert
any information, with different types or a different number of fields. A
form of control is necessary.

This is where the idea of the schema comes from. The configuration
of a single P-DS is contained inside the schema file, that is loaded before
actually starting the system and defines the data that is accepted by the
Data Safe; in particular, the core of the schema is represented by a list,
whose elements show the characteristics of each data type that the user
can insert. Some possible fields are:

• group-name: it defines the macro group, which the information be-
longs to. This field is used to group entries into semantic sets, in order
to have a hierarchical and structured repository. Example of group
names are personal-information, browsing-history, location-history.

• types: this field is another list and it specifies at a finer-grained level
which kind of information each group includes. Basically the types
field defines the hierarchy of a single group-name field. For example,
data that can be classified as personal-information may be the year
of birth, the email address, first name and last name, etc. . .

• name: each entry of the P-DS is associated to a name that describes
in a human-understandable way the content of the entry. For example,
the user may insert his birth date in the Data Safe and a plausible
name for the entry may be year-of-birth.

• type: also the type field is linked directly to a P-DS entry. It defines
the type, at code-level, of the information. This field is required to
perform consistency control functions and avoid the user inserting
erroneous data, such as a string object for a field that requires an
integer.

Moreover, the schema can achieve the desired flexibility and extensibil-
ity goal, because it can be easily modified, enabling to have a P-DS that
can potentially accept any kind of (validated) data. When users want to
store new kind of information, the system admin just needs to add a new
element to the types list and the Data Safe will be able to handle this
new information. Also, the already existing group names can be updated,
adding new features and actions: for example, for a particular group, users

56

5.2 – Data Structure Design

can be given the possibility to add/update entries directly from the user
interface, as well as upload a zip file for batch insertion or extract data in
JSON format. The main idea is that the schema can be updated in any
possible way, as long as it contains the entire configuration of the P-DS.

The schema includes just one hard-coded element, that is the possible
values of the type field. For simplicity sake, I decided to make the P-DS
support just a limited set of data types: string, int, float, date, boolean
and dict. The dict type identifies a JSON-like object, called dictionary,
composed of a list of key-value pair. This type has been included to handle
more complex information that doesn’t match the elementary types and
need a set of sub-fields to be fully described. In the schema, the dict type
is followed by the fields key, which lists all the sub-fields that are accepted
for that P-DS entry.

Listing 5.1: Example of basic P-DS schema� �
1 name: ‘‘PIMCity default P-DS schema’’
2 version: 0.1
3 author: ‘‘John Doe’’
4 content:
5 - group-name: personal-information
6 types:
7 - name: first-name
8 type: string
9 - name: last-name

10 type: string
11 - name: birth-data
12 type: date
13 - group-name: browsing-history
14 types:
15 - name: visited-url
16 historical: true
17 type: dict
18 fields:
19 - url: string
20 - page-title: string
21 - time: date� �

57

Development and Implementation

5.2.2 Data Model
As explained in its dedicated subsection, the Django framework comes
with an ORM system, that enables the developer to define high-level
classes, called models, that logically describe how a single entity is defined;
the main advantage of ORMs is the fact that all the low-level operations,
such as database connection and queries, are automatically performed by
the framework itself. Django does not provide a native ORM layer for
MongoDB, so I decided to use the Djongo24 connector. Djongo is an
open-source project that provides Django users with a way to connect
in an efficient way their applications with a MongoDB backend; Djongo
makes zero changes to the existing Django ORM framework, which means
unnecessary bugs and security vulnerabilities do not crop up. It simply
translates a SQL query string into a MongoDB query document. As a re-
sult, all Django features, models, etc. work as-is. For the P-DS prototype,
I used version 1.3.3 of Djongo.

Two main entities have been defined to describe the logical domain of
the P-DS: the PersonalInformation model and the User model.

Personal Information

The PersonalInformation class constitutes the base for all the information
stored in the P-DS. In order to have a system that is able to accept het-
erogeneous kinds of data, each PersonalInformation instance is basically
defined as a type-value pair, where the value is the actual content of the
information, with the declared type. In this way, the Data Safe can store
any kind of data, as long the value is consistent with the type and the
schema; the model, in fact, is provided with a clean method, that performs
two main controls:

• Schema Validation: the possible data that can be inserted are lim-
ited to the schema definition; each inserted entry is compared with
the schema content, to identify if the entry is compliant to the P-DS
configuration. Besides the value and type field, the PersonalInfor-
mation class is defined with two additional fields, group_name and

24https://nesdis.github.io/djongo/

58

https://nesdis.github.io/djongo/

5.2 – Data Structure Design

metadata, that can be used to control that the structure of the in-
serted information is accordant to what is declared in the schema.
The metadata field represents just the common name that identifies
a single entry in the P-DS, so it’s equivalent to the name field of the
schema, while the group_name determines the semantic set to which
the entry belongs to.

• Type Validation: if the entry structure matches the schema, a sec-
ond control must be performed to check if the declared type of the
information really fits the actual one of the entry. The control is
performed with a static cast: if the operation raises some errors or
exceptions, the type validation fails and the information will be dis-
carded because it is not compliant.

The value field of the PersonalInformation class exploits the JSONField
class of Djongo: I decided to treat each information value as a JSON object
in order to comply with how MongoDB stores natively data, so the JSON
format. This solution is the cleanest one that I found and enables also to
effortlessly process dict information since they are intrinsically in JSON
format. For data that have an elementary type, the value field has a single
subfield, where the key is the type of the inserted information.

The last important property of the PersonalInformation class is the user
field, that represents the link with the user associated with that personal
information instance. The relation between these two entities is defined
in a SQL-like fashion, using a foreign key. Each personal information
entry, therefore, is enriched with the reference to the user ID: in this way,
no user information is duplicated in the personal information collection
and any update on users are not reflected on personal information, since
they know just their user id, which is stable and does not change. This
solution exploits the ForeignKey field of Django and emulates a technique
that is typical of the relational world, join. The decision of using this
particular implementation to represent the relation between users and
their personal information came out from the testing phase: this solution,
in fact, proved to be the most efficient, because the embedded documents
approach could let to store in memory huge volumes of information, while
the reference approach performs poorly with high numbers for users or
personal information, due to heavy lookup operation at database-level.

In any case, queries that filter data using the id field of User objects
don’t require JOIN operations, since each PersonalInformation document

59

Development and Implementation

stores just the id of the associated user; in this way filter queries can be
performed efficiently.

Listing 5.2: PersonalInformation Class� �
1 class PersonalInformation(models.Model):
2 value = models.JSONField(db_index=True)
3 metadata = models.CharField(max_length=100, blank=True)
4 type_ = models.CharField(max_length=100)
5 group_name = models.CharField(max_length=100, db_index=True)
6 description = models.TextField(blank=True)
7 created = models.DateTimeField(editable=False)
8 user = models.ForeignKey(
9 User,

10 db_index=True,
11 blank=True,
12 null=True,
13 on_delete=models.SET_NULL
14)� �
User

The User class extends the AbstractUser class provided by the django-
contrib-auth-models package, so it inherits some predefined fields, such as
username and password, related to the authentication system of the frame-
work. The inherited fields are used mostly by the authentication system
offered by Django and provide information about the role of the user,
his privileges, details about login and registration operations. The class
User do not add any additional information related to the domain model
of the Personal Data Safe. Each user is linked to a set of entries stored
in the personal information collection, but all the information about this
relationship are defined on the other side so in the Personalinformation
class. The id of each user, in fact, is stored as a property in the personal
information instances, using a ForeignKey field.

Listing 5.3: User Class� �
1 class User(AbstractUser):
2 USER_CHOICES= [("ds", "DataSubject"),("da", "DataAggregator")]
3 user_type= models.CharField(max_length=100, choices=USER_CHOICES

, default="ds")� �
60

5.2 – Data Structure Design

5.2.3 REST APIs
The P-DS functionalities about PersonalInformation and User entities are
exposed to external components as REST APIs. REST is the acronym of
REpresentational State Transfer and represents a programming style that
enables the building of distributed systems, achieving properties such as
scalability, the possibility of evolving, efficiency and resilience. REST
paradigm is based on the following principles:

• Client–server model: the client-server architecture enables to sep-
arate user interface concerns from data storage concerns, improving
the portability of the user interface across multiple platforms and im-
proving the scalability of the server, whose components are simplified.

• Stateless: each request from clients to server must contain all of
the information necessary to understand the request and cannot take
advantage of any stored context on the server. All the information
about sessions is stored client-side.

• Cacheable: cache constraints require that the data within a response
to a request to be implicitly or explicitly labelled as cacheable or non-
cacheable

• Uniform interface: by applying the software engineering principle
of generality to the component interface, the overall system architec-
ture is simplified and the visibility of interactions is improved.

• Layered system: the layered system style allows an architecture to
be composed of hierarchical layers.

• Code on demand: REST allows client functionality to be extended
by downloading and executing code in the form of applets or scripts.

In a REST architecture, the server is composed of one or more ser-
vices. Each service manages a set of information, that have a globally
unique name (URI), can have multiple equivalent representations (gen-
erally JSON) and support CRUD25 operations. Data associated with a

25Create Read Delete Update

61

Development and Implementation

particular URL can refer to single object, collections (lists, sets) or func-
tional operations results.

The main advantages of REST are the facts that it introduces a stan-
dard way to define distributed systems since URLs names follow a uniform
convention and it fits well with the HTTP protocol, whose verbs support
natively a CRUD environment:

• Create →POST.

• Read →GET.

• Update →PUT.

• Delete →DELETE.

In order to define a REST structure, the P-DS backend has been inte-
grated with the version 3.11.0 of Django REST framework26, which is a
flexible toolkit for building REST-compliant Web APIs, based on Django
models. DRF offers the developers three main objects:

• Serializer: they allow complex data such as querysets and model
instances to be converted to native Python datatypes that can then
be easily rendered into JSON, XML or other content types. Serializers
also provide deserialization, allowing parsed data to be converted back
into complex types, after first validating the incoming data.

• Viewset: Django REST framework allows developers to combine
the logic for a set of related views in a single class, called a ViewSet.
A ViewSet class is simply a type of class-based View, that provides
actions such as .list() and .create().

• Router: DRF adds support for automatic URL routing to Django
and provides a simple and consistent way of wiring view logic to a set
of URLs.

In the P-DS prototype, I defined a PersonalInformation’sModelViewSet,
which provides all the four CRUD operations for the class, while for the
User entity I defined a ReadOnlyModelViewSet, that just enables read op-
erations on User objects. This decision has been made considering that

26https://www.django-rest-framework.org/

62

https://www.django-rest-framework.org/

5.2 – Data Structure Design

the Data Safe is a system that is focused on data, so all the components
that interact with the P-DS must have a simple way to interact with it
and with PersonalInformation entities, thus leveraging a complete set of
RESTful APIs, whereas for User instances all the CRUD operations may
not be required.

Listing 5.4: PersonalInformation User ViewSet� �
1

2 class PersonalInfoViewSet(viewsets.ModelViewSet):
3

4 queryset = PersonalInformation.objects.all()
5 serializer_class = PersonalInformationSerializer
6 permission_classes = [permissions.IsAuthenticatedOrReadOnly]
7 authentication_classes =
8 [TokenAuthentication, BasicAuthentication, SessionAuthentication]
9

10 def perform_create(self, serializer):
11 serializer.user = self.request.user
12 serializer.save()
13

14 def get_queryset(self):
15 user_ = User.objects.get(self.request.user.username)
16 return PersonalInformation.objects.filter(user__id=user_.id)
17

18 class UserViewSet(viewsets.ReadOnlyModelViewSet):
19 queryset = User.objects.all()
20 queryset_ = User.objects.all()
21 serializer_class = UserSerializer
22 permission_classes =
23 [permissions.IsAuthenticatedOrReadOnly, IsOwner]
24 authentication_classes =
25 [TokenAuthentication, BasicAuthentication, SessionAuthentication]
26

27 def perform_create(self, serializer):
28 serializer.save()
29

30 def get_queryset(self):
31 queryset = self.queryset_.filter(username=self.request.user)
32 return queryset� �

63

Development and Implementation

Table 5.1: Summary of the used packages

Package Version

Python 3.8.2

Django 2.2.12

djongo 1.3.3

pymongo 3.7.2

djangorestframework 3.11.0

5.3 Frontend
The second important element of the Personal Data Store is the frontend,
which consists of the components the user can directly interact with. The
P-DS in fact is the means by which the individual can store his personal
information and it offers also a web interface, that enables to view, orga-
nize and possibly update or insert data. The user interface is composed
of a set of HTML files, that leverage Django templates, the Bootstrap27

library for the graphic aspect and JavaScript code for all the client-side
dynamic parts.

5.3.1 User Interface

The P-DS user interface has the main goal to allow the user to have a
global view on his stored data, with the possibility to perform common
data management operations, such as insertion, update and deletion. In
the view of defining a prototype of a possible Data Safe, I implemented a
base version of a plausible user interface, which allows the P-DS owner to
perform simple actions on his information. Some more advanced functions
have been inserted, in order to show the potentialities of the P-DS, but
they will be integrated and extended by the other components of the
PIMCity project.

The core criteria that has been followed in the UI implementation is the

27https://getbootstrap.com/

64

https://getbootstrap.com/

5.3 – Frontend

flexibility property that dominates the entire prototype; the different in-
terface components present the least possible number of hard-coded parts:
all the elements have been designed to be as dynamic as possible, in order
to have a structure that can evolve based on the P-DS content and the
schema configuration.

The user interface can be divided into three main parts:

• Authentication View: the functionalities about security and autho-
rization have been implemented using Django built-in features, whose
end-points are automatically grouped under the /accounts/ URL. The
login form is a standard Django form, which is enriched with some
layout-oriented Bootstrap classes; if the authentication is successful,
a User object is associated to each request to the server, so in this
way, all the operations that can be performed are related to the spe-
cific user, avoiding unauthorized access to other people’s data. I also
inserted a basic form, that allows a user to reset their password by
generating a one-time use link that can be used to reset the password
and sending that link to the user’s registered email address.

• Home Page View: the home page of the P-DS is composed of two
elements. The upper one presents a summary of the possible actions
the user can perform: some of them can be considered fixed for all the
different P-DS, since they are cross-cutting operations, such as pass-
word reset, data import and data export, while the others enable the
user to visualize his data; in particular, for each information group
that the P-DS supports, I defined a dedicated button, so that the
user home page can provide a more organized and structured view
of the Data Safe content. These buttons are created at execution
time according to the schema. The second element of the home page
is the bottom one, which shows simple statistics about the data the
user stored, divided per group. Under the hood all the elements that
compose the home page are dynamically defined through JavaScript,
allowing to retrieve the information and especially the schema struc-
ture from the server. In this way, the prototype can fit different P-DS
configurations and can reflect its content without change the base
components of the web pages.

• Data Display View: this part of the user interface permits the user
to perform CRUD operations on the stored information. According

65

Development and Implementation

to the selected group, the view displays a table that lists all the data
belonging to that specific group. If present in the schema group con-
figuration, some possible additional actions can be executed:

– add (update): the add button open a pop-up that enables the
user to insert a new data entry for the current group. In order
to avoid insertions not compliant with the schema, a drop-down
menu shows the possible types of data the user can insert. Con-
trols on type consistency are then applied server-side. A general
guideline for add, as well update, operations is to avoid the user
deal directly with dictionaries, since people may not be accus-
tomed to managing JSON-like objects. This kind of data will
presumably be handled by automatic scripts or modules, that can
build/update effortlessly JSON dictionaries.
Similar is the update button, which allows the user just to change
the value of the selected data, to minimize the possibility of errors.

– delete: for all the P-DS groups, the user can select a subset of in-
formation through checkboxes and delete it using a button, which
opens a confirmation pop-up, aiming to avoid unwanted deletion.

– data extraction: since the GDPR states that each data subject
has the right to get a copy of his data, for each group the user can
extract a zip file, which contains a list of the stored information
in JSON format.

– data import: some information types are suitable to be imported
in the P-DS using an automatic loading system. For example,
the user may want to load the browsing history he downloaded
from Google Takeout directly in the Data Safe, without manu-
ally inserting entries one by one, or he would like to import his
whole location history from Google Maps. This is why for certain
groups (e.g. browsing-history, location-history), the page offers
the possibility to upload a zip file containing the information the
user wants to load automatically. The zip content is parsed as
a normal information insertion, so control on schema and type
compliance are executed.

– filter: it seems reasonable to let the user filter information, for
example by date in case of entries with time information. Also, in

66

5.3 – Frontend

this case, the filter is displayed just if the schema contains some
indication about it.

(a) Home page

(b) Data display page

Figure 5.2: P-DS views

For all the HTML pages, I used the template mechanism offered by
Django, which offers an inheritance system for HTML files: I defined a
base template that represents the user interface skeleton, which contains
a toolbar with a navigation menu, buttons for authentication operations
and a sidenav with the list of the data group supported by the P-DS.
These elements are common to all the pages of the UI, while the central
part of the skeleton is defined as a placeholder, that is replaced by the
HTML pages that extend the base template.

67

Development and Implementation

5.3.2 Bootstrap and AJAX
The HTML pages that compose the frontend include HTML skeletons and
JavaScript functions for all the client-side business logic. The graphic part
of the user interface has been enriched with elements and classes from the
Bootstrap library.

Bootstrap is a free and open-source front-end development framework
for the creation of websites and web apps. The Bootstrap framework is
built on HTML, CSS, and JavaScript to facilitate the development of re-
sponsive, mobile-first sites and apps. The framework is very simple to use,
can be integrated into any project and provides ready-to-use responsive
components. The main advantages of Bootstrap are the fact that it pro-
vides a grid system, which facilitates the organization of HTML elements
inside the web page, and that it allows the developers to (almost) forget
about style and CSS, enabling them to focus on the core of the web pages.
In the P-DS implementation, I made a basic use of Bootstrap classes, in
order to have a consistent style among all the pages, without losing too
much time on graphic. The prototype can be extended in various ways,
even exploiting more complex front-end frameworks, such as Angular.

On the other side, beyond all the style elements, each page of the user
interface is characterized by some logic that is executed by the client itself
and it’s defined in JavaScript files. These files contain all the functions
that support the creation of a dynamic UI: some of the elements of the
pages, in fact, are not defined directly through HTML but are built using
JavaScript, asking the server the needed information. In particular, the
interaction with the server has been implemented using principally AJAX
queries. AJAX28 is a set of web development techniques using many web
technologies on the client-side to create asynchronous web applications. It
is not defined as a technology but as a group of inter-related technologies,
which include:

• HTML and CSS: these technologies are used for displaying content
and style. It is mainly used for presentation.

• DOM: it is used for dynamic display and interaction with data.

• XML or JSON: for carrying data to and from server.

28Asynchronous Javascript and XML

68

5.3 – Frontend

• XMLHttpRequest: for asynchronous communication between client
and server.

• JavaScript: it is used to bring above technologies together.

The most important component of AJAX is the XMLHttpRequest, that
is used for asynchronous communication between client and server: it
sends data from the client in background, it receives the data from the
server and updates the webpage without reloading it. The XMLHttpRe-
quest object thus enables to make asynchronous the user interface, since
requests are performed in background and don’t block the client, as op-
posed to traditional synchronous applications. For each AJAX request, a
callback is registered so that it is invoked when the server returns some
data allowing the page to be updated. All the possibly expensive opera-
tions that involve the database are performed in background and so the
user is able to continue using the web application. Most of the interaction
between the P-DS user interface and the Django server is implemented
using AJAX request: in this way the client can retrieve information from
the server whenever they are needed without interrupting user interaction.
This could be a great advantage in case of big volumes of data.

69

70

Chapter 6

Evaluation

Once the prototype of the Personal Data Safe has been defined, the last
phase of the development process has been the testing phase. For web sites
or generally web services, the response time of requests and system speed
are crucial factors for the success of the application itself. The infographic
compiled by OnlineGraduatePrograms.com for example shows that one in
four people abandons surfing to a website if its page takes longer than four
seconds to load. Moreover, people tolerance of slow webpage speeds has
a huge impact on the possible earnings of a company. Amazon, in fact,
calculated that a page load slowdown of just one second could cost it $1.6
billion in sales each year[8].

The main functionalities of the P-DS backend have been tested in or-
der to understand the performance of the system in real situations, with
different numbers of users and of personal information for each user (ba-
sically the total number of entries in the PersonalInformation collection).
The following sections describe the tests that have been performed and
show the obtained results through boxplots. A boxplot is a method for
graphically depicting groups of numerical data through their quartiles.
Boxplots may also have lines extending from the boxes (whiskers) indi-
cating variability outside the upper and lower quartiles. The box of the
graph generally is delimited by the first and third quartiles, while whiskers
have been chosen to limit values between the 5th and the 95th percentile.

71

Evaluation

6.1 Test
Considering the main actions that a normal user can potentially perform,
I decide to perform tests on basic READ and WRITE operations. In
particular:

• for read operations, I considered a plausible query that users, or even
external companies, can perform on stored data, that is filtering by
URL name. The P-DS server exposes an URL that is associated
with a function that filters the personal information of type browsing-
history of the current user considering a specific URL, passed as a
request parameter. If the entry contains the given URL, the personal
information is retrieved and sent back to the one that performed the
request. Also, in this case, the query has been chosen considering that
browsing-history may be a common information type in most Personal
Data Safe and that filtering on URLs could be a frequent operation,
especially in the case of user behaviour understanding and targeted
advertisement.

• for insertion, I considered the endpoint rest/personal-information/,
which enables to add a new entry associated with the current user,
through a POST request. The main reason why I chose this partic-
ular endpoint is the fact that it could be exploited both by users,
directly from the user interface and by software systems or PDS mod-
ules, that can automatically perform insertions using the REST APIs.
The insertion of new personal information in the repository represents
therefore a crucial operation that has to be as much efficient as pos-
sible.

Tests have been applied in different situations, according to two main
dimensions, number of users and number of personal information for each
user:

• Number of users: the system should be resilient in case of huge
numbers of users. Insertions and read operations have been executed
in different conditions, with a variable number of users. In particular,
I defined three scenarios, one with 100 users, one with 5,000 users and
the last one with 10,000 users. In all the cases, each user has been
provided with 1,000 personal information.

72

6.2 – Benchmark

• Number of personal information: the second dimension consid-
ers the fact that the number of entries for each user can grow, even
rapidly if we consider information types such as browsing history or
location history, whose volumes may be huge. In this case, I consid-
ered three situations, where the number of users remains stable (500),
while the number of personal information varies between 100, 5,000
and 10,000 entries for each user.

For both dimensions, the test databases have been populated with
browsing-history entries of type visited-url, whose value.url field has been
chosen randomly in a dictionary of 500 possible URL names. For each
scenario, I performed the requests 1000 times for read operations and 500
times for write operations, to have enough data to define a statistical
distribution and draw related conclusions.

6.2 Benchmark

6.2.1 Filter operation
As stated in the previous section, the read operations that have been
taken in consideration perform a simple query on user data, filtering the
personal information of type browsing-history that contains a particular
URL name, passed as an argument of the request. Considering the data
model, two fields of the PersonalInformation class are crucial in running
this query:

• the user field: this property represents the link between a personal
information entry and a user in the database, through the id of the
user. If the number of users in the system is huge, this field can
have a big impact on query performance; the filter condition on the
user should be as efficient as possible so that the system can rapidly
discard entries that are not associated to the desired user.

• the value field: this field represents the content of the personal
information entry. In the case of browsing-history information, it
contains the URL value on which the filter is executed. The system
should have an efficient way to access this field in order to fetch just
the needed entries in a reasonable time.

73

Evaluation

Due to these two main considerations, I decided to add two indexes
in the personal-information collection. Indexes are special data structures
that store a small portion of the collection’s data set in an easy to traverse
form. They store the value of a specific field or set of fields, ordered
by the value of the field. The main advantage is that indexes support
the efficient execution of queries in MongoDB. Without indexes, in fact,
MongoDB must perform a collection scan, i.e. scan every document in
a collection, to select those documents that match the query statement.
Needed indexes have been created directly from the shell of MongoDB,
inside the docker container.

Test scenario: increasing number of personal information

For the first test scenario, I considered a situation in which the num-
ber of users is fixed, but the number of personal information for each
user increases on a log scale. Queries to retrieve browsing-history entries
matching a given URL name have been performed in three different setups:

• database with 500 users and 100 personal information per user.

• database with 500 users and 5,000 personal information per user.

• database with 500 users and 10,000 personal information per user.

For each setup, the GET request has been executed 1,000 times and
timings of the curl command have been recorded. Figure 6.1 summarizes
the results of the filter test.

Considering the figure, I can say that for all the possible scenarios the
median is approximately the same, with a value that is around 493 ms.
Since the median is in the centre of the boxes, data is not skewed and
the reduced dimensions of the boxes tell us that the collected data are
condensed: 50% of response time varies between 492 ms and 494 ms.
The reduced dispersion of data can explain the high number of outliers
for the second scenario (500 users with 5,000 personal information each):
outliers in fact don’t differ much from values in the box plot, but since
variability is very narrow even few microseconds can transform a value in
an outlier. Minimum response times range between 487 ms and 490 ms,
while maximum values between 496 ms and 499 ms.

Collected results state that the system performs query operations ef-
ficiently, with an average response time below 500 ms and queries seem

74

6.2 – Benchmark

100 5000 10000
Number of personal information per user

480

485

490

495

500

505

510

515

Re
qu

es
t t

im
e

(m
s)

Figure 6.1: Results of URL filter tests with increasing number of personal
information per user

to be unaffected by the chosen number of users personal information. To
understand the potentiality of the system, I then decided to perform re-
quests in a stress situation, where each test user is associated with 100,000
entries: response time increases up to 1.2 seconds. Therefore, in this case,
the number of personal information per users has a bigger influence on
system performance.

It’s necessary to say that with an increasing volume of the stored per-
sonal information, the effectiveness of index becomes fundamental. First
tests, in fact, have been performed on an indexless database and perfor-
mance of query resulted very poor. The introduction of indexes enabled
to pass from seconds-lasting operations to query executed in few millisec-
onds.

5th per-
centile

25th
per-
centile

median 75th
per-
centile

95th
per-
centile

setup 1 (100) 490.7 ms 492.3 ms 493.2 ms 494.0 ms 495.6 ms

setup 2 (5,000) 488.8 ms 492.2 ms 493.4 ms 494.5 ms 498.2 ms

setup 3 (10,000) 487.6 ms 491.9 ms 493.4 ms 494.7 ms 499.8 ms

Table 6.1: Results of filter tests with increasing number of personal infor-
mation

75

Evaluation

Test scenario: increasing number of users

For this second scenario I considered the other major dimensions, so the
number of users. Unlike the previous configuration, in this case, I decided
to vary the number of users, while keeping fixed the number of personal
information per user. Three different setups have been defined:

• database with 100 users and 1,000 personal information per user.

• database with 5,000 users and 1,000 personal information per user.

• database with 10,000 users and 1,000 personal information per user.

Also for this scenario, I performed URL filter requests 1,000 times for
each configuration. Results are presented in the following figure.

100 5000 10000
Number of users

480

485

490

495

500

505

510

515

Re
qu

es
t t

im
e

(m
s)

Figure 6.2: Results of URL filter tests with increasing number of users

Figure 6.2 shows that the chosen values for users numbers do not affect
much the response time of requests, that present an average time of 493
ms for all the setups. All the different configurations present a minimum
value around 489 ms and a maximum value around 497 ms and the 50%
of data falls between 492 ms and 494 ms. For the third configuration, the
boxplot displays slightly negative skewed data.

76

6.2 – Benchmark

5th per-
centile

25th
per-
centile

median 75th
per-
centile

95th
per-
centile

setup 1 (100) 489.9 ms 491.8 ms 493.0 ms 494.1 ms 496.0 ms

setup 2 (5,000) 489.6 ms 492.3 ms 493.3 ms 494.2 ms 496.0 ms

setup 3 (10,000) 488.7 ms 491.8 ms 493.0 ms 493.9 ms 496.5 ms

Table 6.2: Results of URL filter tests with increasing number of users

Consideration

Tests on GET requests proved that the average response time remained
below 500 ms, that can be considered as a good value in the context of
web sites. With reduced loading times in fact, also the probability of
the user bouncing to other sites decreases[5]. Possible improvements can
be reached with a fine-grained index tuning or with replica set or data
replication in MongoDB.

6.2.2 Insertion operation
For write operations, I considered performing requests to the REST end-
point dedicated to personal information; the server, in fact, exposes the
URL rest/personal-information/ which can accept both POST and GET
requests. In the case of POST requests, the content of new personal in-
formation is sent to a function that performs validation and consistency
controls on input data, creates a new PersonalInformation object and
then saves the instance in the database, linking the new entry with the
current user. I decided to consider this endpoint because it can be used
both by users through the web application or by software systems, which
can perform automatic insertions.

The test scenario that has been considered is the one in which the
number of users is fixed while the number of entries for each user increases.
The different setups involved:

• a database with 500 users and 100 personal information per user.

• a database with 500 users and 5,000 personal information per user.

• a database with 500 users and 10,000 personal information per user.

77

Evaluation

For each configuration, I executed 500 write operations and collected
the response time of the POST requests. Results are displayed in the
following figure.

100 5000 10000
Number of personal information per user

480

490

500

510

520

530

Re
qu

es
t t

im
e

(m
s)

Figure 6.3: Results of insertion tests

Also for write operations, the considered numbers of personal informa-
tion seem to have little impact on system performance. The box plots show
for each configuration an average request time of 502 ms. The first two
setups present very similar characteristic, with the 50% of data concen-
trated between 501 and 502 ms, minimum response time of 498 ms and
maximum response time of 506 ms. The third configuration is slightly
different: whiskers are longer, with a minimum value of 497 ms and a
maximum value of 508 ms, while the higher height of the central box
shows more distributed data. Also, the median is not in the centre of the
box, which implies positively skewed data. This might indicate a higher
influence of the personal information number dimension on system perfor-
mance.

lower
whisker

lower
quartile

median upper
quartile

upper
whisker

setup 1 (100) 500 ms 501 ms 502 ms 503 ms 504 ms

setup 2 (5,000) 499 ms 501 ms 502 ms 503 ms 505 ms

setup 3 (10,000) 498 ms 501 ms 502 ms 504 ms 507 ms

Table 6.3: Results of insertion tests

78

Chapter 7

Conclusions

In this work I presented a prototype of a user information repository
which defines one of the main modules of the PIMCity Development Kit
and which can be integrated into more complex Personal Data Stores.

The system has been developed starting from backend components, to
delineate the main features that need to be provided when building a PDS.
The core principle that has been followed for the entire project is flexibility;
the idea was to develop a system that could be as flexible as possible and
could handle different and heterogeneous types of data, without having
a rigid structure to follow. A fixed data pattern, in fact, could have
been easier to manage developer-side, but it would have restricted final
users too much. To have a dynamic and elastic environment, a schema
has been introduced: a YAML file that contains the configuration of the
whole system, listing the types of information that the P-DS can accept,
the different fields of each data type and the possible actions that can
be performed on each entry. Moreover, the schema allows to execute
some consistency controls on inserted data but does not limit users, since
it can be updated or extended in order to expand the set of accepted
information. The prototype schema has been designed to allow users insert
data belonging to personal information group (first-name, last-name, year
of birth, etc.), to browsing history group (visited URLs) and to location
history group (visited locations); this three categories have been chosen
as common data groups that users may frequently store in their Personal
Data Safe.

The flexibility principle has been mirrored also in the user interface,
which contains as few hard-coded elements as possible. The base skeleton

79

Conclusions

of the pages is filled with the information that is retrieved from the backend
and from the schema, which suggests what are the allowed actions and so
the graphic elements to display.

Finally, tests performed for read and write operations proved good per-
formance in real situations, both for high numbers of users (up to 10,000)
and for high numbers of personal information for each user (up to 10,000).
The MongoDB database managed to perform operations efficiently in all
the carried-out tests, with reasonable response times.

7.1 Future work
A possible interesting and challenging future work could be changing com-
pletely the database type that supports the prototype and passing from
a non-relational system to a relational one, such as PostgreSQL29. In the
development of the Personal Data Safe, in fact, I have not fully exploited
the potentialities of MongoDB, due to the difficulty of integrating Django
and MongoDB through Djongo. For example, the relation between User
class and PersonalInformation class is defined in a SQL fashion, using
a foreign key, while non-relational environments prefer other techniques.
The limitations that I encountered made me think that maybe the integra-
tion of non-relational databases with web frameworks, especially Django,
is not at a fairly mature level. It could be interesting to explore relational
solutions and understand how the system behaves with a database Django
is optimized to work with.

Regarding the backend features, futures releases of the P-DS prototype
may include the integration with other PIMCity modules. The PDK in
fact is composed of several components that can be combined to build a
complete Personal Data Store. The P-DS, for example, need to communi-
cate mainly with the Consent Manager, which is the module responsible
for defining the access privileges to user data; all the access to the data
repository must be preceded by the Consent Manager intervention, that
tells the P-DS who has the right to access a particular set of the user data.
In future, I would like to define the communication mechanism between
the P-DS and other components, towards the definition of a complete and
integrable prototype.

29https://www.postgresql.org/

80

https://www.postgresql.org/

7.1 – Future work

For user interface, I would like to explore different solutions, besides ba-
sic HTML and JavaScript code. Nowadays, in fact, there is a huge number
of possibilities for implementing client applications, from vanilla systems
where everything is defined from scratch to frameworks that allow build-
ing complex applications with less or no effort. For the current version of
the prototype, I focused more on the offered features of the user interface,
rather than the style of the whole application, which is composed mainly
by basic HTML pages and JavaScript for the dynamic elements. A possi-
ble alternative that can be examined in future works is the integration of
the prototype with the Angular framework. Angular is very popular today
and enables the definition of single-page applications, which are gaining
more and more ground. This could lead to a more user-friendly interface
with a general aspect that users are most used to.

Finally, future development branches could involve the other category
that will use the system, so data buyers. Data buyers are organizations
and companies that are interested in buying user personal information
to perform statistics and analysis aimed at targeted advertisements. In
order to build a fair market for individuals, accesses to users’ personal
information must be regulated by the Consent Manager module, that de-
fines rights and permissions toward data. Therefore, the Personal Data
Save should provide interfaces and functions for data buyers, giving them
the possibility to retrieve users’ data in a controlled way.

81

7.1 – Future work

83

Acronyms

AWS Amazon Web Service.

GDPR General Data Protection Regulation.

HDFS Hadoop Distributed File System.

IAB Interactive Advertising Bureau.

ORM Object-Relational Mapping.

P-DS Personal Data Safe.
PDA Personal Data Account.
PDK PIMCity Development Kit.
PDS Personal Data Store.
PIMS Personal Information Management System.

RDBMS Relational DataBase Management System.
RTB Real Time Bidding.

S3 Simple Storage Service.
SSL Secure Sockets Layer.

URI Uniform Resource Identifier.

XSS Cross-Site Scripting.

YAML YAML Ain’t Markup Language.

84

Glossary

CouchDB Open source database that focuses on ease of use and on
being “a database that completely embraces the web”. It is
a document-oriented NoSQL database that uses JSON to
store data, JavaScript as its query language using MapRe-
duce, and HTTP for an API.

curl Command line tool to transfer data to or from a server,
using any of the supported protocols (HTTP, FTP, IMAP,
POP3, SCP, SFTP, SMTP, TFTP, TELNET, LDAP or
FILE).

data subject An identifiable natural person who can be identified, di-
rectly or indirectly, in particular by reference to an identi-
fier such as a name, an identification number, location data,
an online identifier or to one or more factors specific to the
physical, physiological, genetic, mental, economic, cultural
or social identity of that natural person.

Docker Lightweight virtualization system that enables to create a
portable, self-contained, lightweight container to package
applications.

MVC Stands for "Model-View-Controller". MVC is an applica-
tion design model comprised of three interconnected parts.
They include the model (data), the view (user interface),
and the controller (processes that handle input). The MVC
model or "pattern" is commonly used for developing mod-
ern user interfaces. It provides the fundamental pieces for
designing programs for desktop or mobile, as well as web
applications.

85

Glossary

POJO Acronym for Plain Old Java Object. It’s a normal Java
object class and does not serve any other special role nor
does it implement any special interfaces of any of the Java
frameworks.

REST Representational state transfer is a software architectural
style that defines a set of constraints to be used for creating
Web services. Web services that conform to the REST
architectural style, called RESTful Web services, provide
interoperability between computer systems on the internet.

86

Bibliography

[1] 2018 reform of EU data protection rules. https://eur-lex.europa.
eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679. Euro-
pean Commission, May 25, 2018. (Visited on 09/08/2020).

[2] Tom Christie. Django Rest Framework (Version 3.11). https://
www.django-rest-framework.org/.

[3] Djongo (Version 1.3.3). https://nesdis.github.io/djongo/.
[4] ePrivacy Directive. https://eur-lex.europa.eu/legal-content/

EN/TXT/HTML/?uri=CELEX:32002L0058&from=EN. European Com-
mission, Nov. 25, 2009. (Visited on 09/19/2020).

[5] Find out how you stack up to new industry benchmarks for mo-
bile page speed. https://www.thinkwithgoogle.com/marketing-
strategies/app-and-mobile/mobile-page-speed-new-industry-
benchmarks/. (Visited on 10/03/2020).

[6] Django Software Foundation. Django (Version 2.2.12). https://
djangoproject.com.

[7] Armando Fox and Eric Brewer. “Harvest, yield, and scalable tolerant
systems”. In: IEEE CS (1999). doi: 10.1109/HOTOS.1999.798396.

[8] How One Second Could Cost Amazon $1.6 Billion In Sales. https:
//www.fastcompany.com/1825005/how-one-second-could-cost-
amazon-16-billion-sales. (Visited on 10/03/2020).

[9] Yves-Alexandre de Montjoye, Erez Shmueli, Samuel S. Wang, and
Alex Sandy Pentland. “OpenPDS: Protecting the Privacy of Meta-
data through SafeAnswers”. In: PloS one 9.7 (2014).

[10] Real Time Bidding (RTB) Project. IAB Technology Laboratory. https:
//www.iab.com/wp-content/uploads/2016/03/OpenRTB-API-
Specification-Version-2-5-FINAL.pdf, Dec. 2016.

87

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://nesdis.github.io/djongo/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32002L0058&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32002L0058&from=EN
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://djangoproject.com
https://djangoproject.com
https://doi.org/10.1109/HOTOS.1999.798396
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.iab.com/wp-content/uploads/2016/03/OpenRTB-API-Specification-Version-2-5-FINAL.pdf
https://www.iab.com/wp-content/uploads/2016/03/OpenRTB-API-Specification-Version-2-5-FINAL.pdf
https://www.iab.com/wp-content/uploads/2016/03/OpenRTB-API-Specification-Version-2-5-FINAL.pdf

BIBLIOGRAPHY

[11] Martino Trevisan and Federico Torta. Personal Data Safe. https:
//gitlab.com/pimcity/wp2/personal-data-safe.

[12] Martino Trevisan, Stefano Traverso, Eleonora Bassi, and Marco Mel-
lia. “4 Years of EU Cookie Law: Results and Lessons Learned”. In:
Proceedings on Privacy Enhancing Technologies. 2019.

88

https://gitlab.com/pimcity/wp2/personal-data-safe
https://gitlab.com/pimcity/wp2/personal-data-safe

	List of Tables
	List of Figures
	Introduction
	Motivation

	Background
	Current Scenario
	User Tracking
	Real Time Bidding
	GDPR

	Personal Data Storage System
	PIMS and PDS
	PIMS Design

	Our Goal

	Related Works
	OpenPDS
	Mydex
	Hub of All Things

	P-DS Definition and Implementation Options
	Framework
	Django
	Flask
	Spring

	Database
	Relational VS Non-Relational
	MySQL
	MongoDB
	HBase

	Implementation Choices

	Development and Implementation
	Database Setup
	Data Structure Design
	Schema
	Data Model
	REST APIs

	Frontend
	User Interface
	Bootstrap and AJAX

	Evaluation
	Test
	Benchmark
	Filter operation
	Insertion operation

	Conclusions
	Future work

	Bibliography

