
POLITECNICO DI TORINO

Master’s Degree in Software Engineering

Master’s Degree Thesis

EMGView8: a software for
Intraoperative Nerve Monitoring

Supervisors

Prof. Marco GAZZONI

Prof. Paolo BARDELLA

Candidate

Simone POSELLA

Academic Year 2020 - 2021

Dedicated to my aunt Cinzia,
who saw this path begin,
and never saw its end.

Summary

Supervising and guiding the actions of a surgeon in the operating room and giving
him/her as much information as possible are ones of the most innovative research
goals in the medical field. Till approximately fifty years ago patients were often
left with huge scars after surgery operation and a lot of damage has been caused
to unaware patients due to human errors or poor equipment. This problems can
now be avoided thank to the introduction of a new technique, based on the proper
combination of instruments, electronic devices, and algorithms. As a result, operat-
ing rooms are becoming some of the most innovative and modern places of work.
This thesis describes in details a software application and all of its main components
used in conjunction with two hardware modules, for intraoperative nerve monitoring
during a surgery exam. The presented software allows to monitor nerve stimulation
response applied on a patient in order to avoid injuries caused by nerves resection
during the operation. This software is called EMGView8 and is part of an Intra-
operative Nerve Monitoring product called Nerveäna, distributed by Neurovision
Medical Products, a company specialized in innovative surgical products, based
in Ventura (California). The design of both software and hardware parts belongs
to Neurovision together with OTBioelettronica s.r.l, an italian company based in
Torino, specialized in R&D in the bio-electronic field.

iii

Table of Contents

Acronyms viii

1 Introduction 1

2 Intraoperative Nerve Monitoring Methodology 3
2.1 General overview . 3
2.2 IONM principles . 4
2.3 IONM methods . 5
2.4 State of the art of IONM devices 7

3 System Overview 9
3.1 System requirements . 9

3.1.1 The existing system . 9
3.1.2 Hardware & firmware requirements 11
3.1.3 Software requirements . 12
3.1.4 Use cases scenario . 13

3.2 Parameters . 19
3.3 System implementation . 23

3.3.1 Hardware & firmware . 23
3.3.2 Noteworthy features . 24
3.3.3 Software implementation . 25
3.3.4 Software modules . 26

4 Software Components 29
4.1 Hardware communication . 29

4.1.1 Critical aspects . 30
4.1.2 Communication protocol . 31
4.1.3 Packet description . 44
4.1.4 NerveanaComm classes . 46
4.1.5 DataGeneratorNerveana . 47
4.1.6 How events works . 58

v

4.1.7 Data unpacking . 59
4.1.8 Data queues . 62

4.2 LoaderNerveana: Data serialization 66
4.2.1 NerveanaContentFilter . 66

4.3 NerveanaGUI: Graphic User Interface 72
4.3.1 Analysis of Startup form . 73
4.3.2 Analysis of Main form . 73
4.3.3 Analysis of ExamDetail form 88
4.3.4 Analysis of SelectDoctor form 89
4.3.5 Privacy . 90

4.4 Database and NerveanaRegistry . 91

5 Conclusions 94

Bibliography 96

vi

Acronyms

IONM
Intraoperative Nerve Monitoring

EMGView8
EMG Viewer 8 channels

OR
Operating Room

TMS
Transcranial Magnetic Stimulation

NPI
Nerveana Power Indicator

viii

Chapter 1

Introduction

From the 60s and due to the increasing amount of hospitalized people and higher
attention to hygiene inside operating room, surgery space starts to fill up with
pre-sterilized products, disposable needles and other equipments such as gloves,
masks, syringes and so on. With the incoming Digital Era operating room were
integrated also with high technology devices, from operating tables to surgical
lights or stimulator scissors.
In the future and with the further development of new algorithms, e.g. based on
Artificial Intelligence, considering the enormous amount of available medical data
that would be used to train machine learning algorithms, we will probably observe
a progressive replacement of doctors with autonomous robots. 1

I won’t discuss here the moral code at the base of this new debate but the truth is:
devices are key components and are strongly integrated in surgery operations.
The software I worked on for my thesis is part for a medical product used in patient
monitoring and developed for Neurovision Medical Product. 2

The systems monitors the state of the nervous system in real-time during surgery,
alerting the surgeons of potential evolving neurologic injuries and allowing the
application of corrective actions to prevent permanent deficits.

The main tasks of this software is described in the requirements section but
they can be organized in three different groups:

• Real-time signals visualization: values received from hardware modules
must be interpreted, converted to EMG wave form, and graphically visualized
on a screen.

1Hollywood is taking this idea too deeply, see Alien Covenant of Ridley Scott for a brutal
scene of a cesarean operation made by a surgery robot with a lot of available procedure installed.
It’s clearly exaggeration but it represents well this idea.

2http://www.neurovisionmedical.com/nmp/

1

Introduction

• Setting hardware configuration: software must be capable to configure
hardware internal parameters based on doctor preferences. A database must
be included to store information about settings, doctors and occasionally
patient.

• Allow offline visualization of recorded exams: real-time signals must
be saved to files to be successively examined for research or legal purpose.

The design of each key point is described in Chapter 4, while in Chapter 3 I will
look at a general overview of the product itself and how macro components are
integrated with each other. While I won’t present in details the technical aspects
of the various hardware components which compose the full Nerveana system,
I will however provide a brief overview of the complete device, dwelling on the
components directly related to the software development.

2

Chapter 2

Intraoperative Nerve
Monitoring Methodology

2.1 General overview

Intraoperative Nerve Monitoring (IONM) is a minimization risk tool developed
in the last four decades to monitor the functional integrity of neural structures.
It actually was experimented for the first time by Wilder Penfield, a Canadian
neurosurgeon, in 1930 during an epilepsy surgery as a substitute test for cortical
function, providing the first ever insight to monitoring human brain function. IONM
development was made easier by technological advances in software algorithms and
electronic equipment and became commercially available in 1981. A key role in the
development of IONM was played by anesthesia. When a patient is under general
anesthesia, he/she is paralyzed and heavily sedated to the point of unconsciousness.
This can suppress neural activity, and IONM could not be safely provided in the
Operating Room until enough advances were made in intravenous anesthesia.
IONM objective is to reduce the risk of damage to the patient and to provide a
guidance for the surgeon during the operation; since IONM was introduced in the
medical field, it has reduced the chance of paralysis, hearing loss, muscle weakness,
and loss of other biological functions. A spontaneous electrophysiologic signals is
received from the patient periodically or continuously through the course of the
operation by the use of a stimulator and a set of recording electrodes. In general, a
trained neurophysiologist (or a technician supervised by a neurologist), attaches
the system to the patient and observes and documents the signals for the surgery
session. IONM became more and more important through the years; The American
Society of Neurophysiological Monitoring was founded in 1990 in order to serve the
emerging field of neuro-monitoring .

3

Intraoperative Nerve Monitoring Methodology

2.2 IONM principles
A key factor of IONM is the Evoked Potential (EP), an electric potential
generated from a specific point of the nervous system after the presentation of a
stimulus [1]. There are in general four main different types of evoked potentials,
recorded from a different specific part of the nervous system after the generation of
a stimuli:

• Visual Evoked potentials (VEP): used to examine the visual nerve and
the optical pathway and detect optic nerve damage, neuritis or inflammation.
Visual stimulus could be, for example, a flashing light.

• Brainstem auditory evoked potentials (BAEP): helpful in the diagnose
of a hearing ability and detection of brainstem tumors and multiple sclerosis.
An acoustic stimulus could be a speech sound transmitted by earphones.

• Somatosensory evoked potentials (SSEP): provide an evaluation of the
central somatosensory pathway and the peripheral sensible nerves. The velocity
of the transmission of the impulse to the brain or the spinal cord is measured
after the occur of a transcutaneously stimulation, usually by an electric
stimulus. SSEPs are usually used to detect spinous cord dysfunction or during
surgery to examine neurological dysfunction.

• Motor evoked potentials (MEP): no sensory organ is stimulated but the
motor cortex itself is excited. Motor Evoked potentials are mainly used
intraoperatively to monitor the intactness of the motor system and to measure
the transmittance between the brain and a muscle.

What interests us is the MEP, recorded from muscles following a direct stimulation
of the exposed motor cortex. When a stimulus is generated, the proper observation
of the registered response’s shape allows us to discern if the nerve is injured or
dysfunctioning.
An example of possible acquired EP signal is shown in 2.1 In response to the
external stimulus applied at t=0 (1), the nervous system responds after a latency
interval (2) with a depolarization phase (3), followed by a repolarization phase (4).
It then recovers (5) to the unperturbed condition. Typical values for the measured
potential are in the millivolt range, while the depolarization and repolarization
phases typically last up to few tens of millisenconds.

4

Intraoperative Nerve Monitoring Methodology

Figure 2.1: Example of MEP
1) Extended Stimulus 2) Latency interval 3) Depolarization phase

4) Repolarization phase 5) Recover

2.3 IONM methods
Two types of stimulations are tipically used for MEPs, namely magnetic stimu-
lation and electrical stimulation. In both cases the procedure is the same: a
particular area is stimulated and the nerve activity is checked using a set of sensors
that follows the direction of the nerve itself. If a wrong signal shape is detected or
no activity at all is present, something is wrong through the pathway.

Figure 2.2: Transcranial
Magnetic Field

Figure 2.3: Scorpion®
(Neurovision)

Transcranial Magnetic Stimulation (TMS) is a non invasive form of brain
stimulation. The TMS procedure includes a magnetic field generator, placed near

5

Intraoperative Nerve Monitoring Methodology

the head and via electromagnetic induction the brain receives electric currents (Fig
2.2). In detail an electric pulse generator, or stimulator, is connected to a magnetic
coil, which is connected to the scalp. TMS has shown diagnostic and therapeutic
potential in the central nervous system with a wide variety of disease states in
neurology and mental health.
On the contrary, when the electrical stimulation is used, the stimuli is transmitted
through cutaneous electrodes. The main advantage of this technique is an higher
depth of penetration that allows direct spinal cord stimulation but the main limita-
tion is the local discomfort that is caused. Electrical stimulators (Fig 2.3) produce
constant current or high-voltage pulses of brief duration (from 2 ms to 50 ms) with
a current up to 1 A. The voltage is kept constant during the stimulation, but the
intensity of stimulation depends on the skin impedance.

Despite the many attempts in the 90s to monitor MEP following direct electrical
stimulation of the spinal cord, MEP recorded over muscle is now the most widely
adopted approach because of the relative simplicity of generating and recording
MEPs. For several years the eletrical stimulation was studied on animals and
researchers find out that an initial direct wave is followed by many indirect waves at
periodic intervals. Direct wave represent the stimuli received from the neurosystem,
while the indirect waves reflect indirect axons depolarization. Only the direct wave
could be not enough to sollecitate the motoneuron to fire but the sum of multiple
indirect waves can reach the threshold and trigger it.

To set up the use of IONM, in general, a trained operator connect one side of the
device to the computer and the other side to the patient using recording electrodes.
The device itself should be connected to a stimulator (or stimulating electrodes)
used to sollecitate the nerve. The control of the stimulator can be duty of the
surgeon or of the software that selectively activate the stimulation with timing.
The software running on computer carries out one main task: process and display
the electrophysiologic signals recorded by the electrodes. The neurophysiologist
can thus observe and document the signals in realtime in the operating area during
the surgery.

There are many surgery operations that can make use of IONM. In Thyroidec-
tomy and Parathyroidectomy can be used to find the superior laryngeal nerve.
In Submandibular Gland Excision can be utilized to locate the hypo glossal
nerve by placing needle electrodes into the tongue. In Neck and Skull Base Pro-
cedures can be used to monitor the trapezius muscle and so on. In all mentioned
cases the IONM procedure follows three steps:

• localize neural structure

6

Intraoperative Nerve Monitoring Methodology

• test structure functions

• detect neural injuries

2.4 State of the art of IONM devices
There are many companies on the market offering similar devices that differ mostly
on:

• number of channels they are able to monitor: usually 8, 16, 32, 64 channels
are used, while solutions with even more channels are also available.

• stimulation type: it depends mostly on the area we want to stimulate and on
the surgery operation the device is meant to support.

• portability: the device can be stand-alone or modular and configurable on
operating room trolley.

NeuroIOM (Fig 2.4) from Neurosoft is a 32-channel System for Intraoperative
Neurophysiological Monitoring with Advanced Functionality for SEP and MEP
acquisition. It provides auditory and visual evoked potentials, EMG, direct nerve
stimulation, EEG and ECoG with transcranial electrical stimulator.

Figure 2.4: NeuroIOM Figure 2.5: Cascade PRO

7

Intraoperative Nerve Monitoring Methodology

Figure 2.6: C2 Nerve Monitor-
ing

Figure 2.7: NIM 3.0

The Cascade PRO IONM from Cadwell (Fig 2.5) monitors from 16 to 32 chan-
nels with one or two amplifiers and provides multiple stimulation. It is way less
portable due to its number of accessories like: transcranial motor stimulation, elec-
trical stimulation, earphones for auditory stimulation, extender pod cable shielding
reduces noise and LED Goggles with disposable foam for visual stimulation.

C2 Nerve Monitoring (Fig 2.6) from Inomed offer six modalities for six differ-
ent application area: thyroid surgery, facial/ent surgery, spine surgery, colorectal
surgery, carotid surgery and brain mapping, all integrated in a single device with
4/8 monitoring channels and two dedicated stimulation channels.

The NIM 3.0 from Medtronic (Fig 2.7), for example, offer a semi-portable device
integrated with a touchscreen display.
This solution monitors up to eight channels of nerve-muscle combinations during
bipolar cautery offering also artifact detection software.

The new Nerveäna® system goals is to offer an high portability, thanks to the
compactness of the hardware main module and monitoring up to eight channels.
The system is designed to work stand-alone, notifying the operator with specific
sounds alert and allowing the surgeon to maintain attention on the surgical field,
or together with a touchscreen monitor. It includes also a stimulator with three
different types of stimulation.

8

Chapter 3

System Overview

The purpose of this chapter is to introduce the entire system and give a general
overview of the parts that compose it. Moreover, design choices will be discussed. I
will not cover in detail the hardware design but I will focus mostly on the software
part, that got me involved.

3.1 System requirements

3.1.1 The existing system
This project originates from the request from Neurovision Medical Product to
update an old product called Nerveäna®, an integrated surgical tool composed by
a nerve stimulator and an electromyographic monitor. There, the monopolar probe,
continuously applies a stimulation pulse to soft tissue while the EMG monitor
detects, interprets and records muscle response evoked by stimulation and once an
evoked EMG is identified, the Nerveäna® produces an audio alarm allowing the
surgeon to maintain attention on the surgical field.
In brief the old system is a one channel monitoring system that includes:

• A connector for stimulator probe

• Knob for setting stimulation value (up to 5 mA)

• Knob for increasing or decreasing signal amplification

• Knob for audio volume

• Knob for free-run EMG (chirp) level

• An impedance measurement function and monitor

9

System Overview

• An integrated speaker

• USB cable connection to PC

• EMG input cable

Figure 3.1: Nerveäna® surgeon nerve locator with accessories

One of most important design choice about the old Nerveäna® system is the
possibility to use two methods to locate the nerve according to the surgeon pref-
erences. Basically the system can work in two modes: Surgeon driven or in
IONM mode. In the first case the system is focused on the audio alert and for
this it does not need any monitor or any adjustable height cart but can be placed
on any fixed height surface. In the second mode the EMG signals are shown during
the exam and a technical operator is required. In this case a cart is needed but
due to the low number of accessories and the size of the hardware it doesn’t look
overwhelmed but small and compact. Image 3.2 and 3.3, taken from Nerveäna®
user manual, show better the two cases.
While the parameters will be discussed on the next chapter I want to focus a
moment on the impedance measurement. In order to ensure the success of neu-
romonitoring, the contact between nerve and electrode should also be guaranteed.
The loss of action potentials or the inability to stimulate a nerve might not always
be caused by nerve injury but also can be caused by a bad electrode-nerve-contact
or by the misplacement of the electrode. Both failures can be discarded by using
impedance measurement [2]. Impedance measurement can be started using the
Test function by pressing the apposite test button and then the hardware creates
a short circuit, induces a small electric current and it measures the impedance of
each sensor.

10

System Overview

Figure 3.2: Nerveäna®
with fixed height cart

Figure 3.3: Nerveäna®
with monitor

3.1.2 Hardware & firmware requirements
In the new system, the design must pay attention to audio alert and the same key
features mentioned above but it must monitor up to eight channels. Compactness
was an appreciated feature of the old system and the new one must take this
into account also if the channels upgrade involves in a change of size or in the
integration of one more hardware module. Summarizing the hardware and firmware
requirements are:

• continuous monitoring of eight EMG channels

• change parameters on the fly

• connector to a stimulator

• a library of audio tones for event alert

• integrated battery and charge supplier’s connector

• connection to computer for communication

• SD card space for data storage

• test function for impedance measurement

11

System Overview

• different set of free-run voltage threshold levels (chirp)

• different set of stimulation levels

• compactness

3.1.3 Software requirements
The three macro requirements of EMGView8 software are described in Chapter 1
but can be exploited in points:

• Hardware communication:

– Receive real-time EMG data: the hardware continuously monitors
EMG channels and sends, via USB-C cable, values and information that
must be elaborated and recorded.

– Real-time hardware set up: the software must allow the user to change
hardware parameters during the examination as if he/she were turning
the knobs present on the hardware front panel.

• Graphical User Interface:

– Real-time signals visualization: it must display all eight (or all active)
channels of running EMG signals and display also the responses of channels
after the stimulation.

– Visual Alert: the GUI should alert the surgeon with visual warning, like
red label message, when there are chance of risk, detected with algorithms.

– Display useful information: the software should display to operator
not only the EMG signals but also information received by hardware or
detected with algorithms (voltage peak, impedance and so on)

• Data storage:

– Store hardware configuration: the software must be able to store a
set of different hardware configurations and load inside main module the
chosen one during start up.

– Customize hardware configuration: Each set of settings must be
associated to the referring surgeon and must be customizable. Software
must handle preferences of a set of surgeons.

– Store examination: the real-time visualization must be saved to files
to be successively opened for research or examination purpose.

12

System Overview

– Privacy care: the database should pay attention to privacy and sensitive
data and must be accessible only using a password. According to local
law sensitive data can be encrypted.

• Offline examination:

– Print report: after the examination a report must be created, including
surgeon personal data, hardware settings and most important events that
happened during the operation.

– Visualize old exams: all the stored exams must be accessible through
the software, visualizing recorded signals and real-time hardware settings
changes

3.1.4 Use cases scenario

EMGView8 software interact and connect three actors: operator, hardware main
module and database and this section is meant to provide a view of the cases that
involve the actors and explain how they interact to satisfy the requirements.

The following figure shows a scenario of EMGView8 that includes the four most
important requirements.

13

System Overview

Figure 3.4: Use cases diagram

14

System Overview

Start new case

Requirements: at least one doctor and a configuration contained in the database.
To start a case the user must open the apposite window, select the Doctor who
is operating and the configuration settings he/she want to load inside hardware
module. When the operation is confirmed the software send initial settings and
start command to hardware and the examination begin.

Figure 3.5: Start new case

15

System Overview

Create new doctor

Requirements: no requirements are needed to create a doctor.
User just need to open the manage window (password required) and insert the
required information. When the operation is confirmed a database connection is
established and the data are stored.

Figure 3.6: Create new doctor

16

System Overview

Create new settings

Requirements: at least one active doctor is present inside database.
To create a new configuration the user need to open the manage window (password
is required), select the doctor and create a new configuration. The new settings
will be attached to the chosen surgeon. Then he/she can select and choose knobs
and background parameters he/she prefer for the setting.

Figure 3.7: Create new preference

17

System Overview

Modify preference

Requirements: there’s at least one active doctor that contains a configuration
settings.
To modify a preference the user must open the manage window (password is
required), select the doctor and the preference and open the edit window. Make
the changes he/she prefer, that could related to knobs parameters or to background
parameters and confirm.

Figure 3.8: Modify preference

18

System Overview

View old exam

Requirements: at least one exam is stored in the database. It could be added by
import of an external file or due to an effective surgery operation.
To view an old file the user have to open the review windows, find for the file and
confirm the selection. Another window should open, displaying the EMG signals
and the preference settings used during the exam.

Figure 3.9: View old exam

3.2 Parameters
Before continuing with the implementation section we need to understand which
parameters are involved in the process. I define two kind of parameters:

• The main parameters: under user control and adjustable during the entire
operation.

• The background parameters: hidden parameters, settable before the op-
eration starts. These parameters are related to hardware variables used for
calculation.

Starting from the first case there are five main parameters that must be handled
during an examination:

19

System Overview

• Stimulation level: the hardware must communicate with the stimulator
and set it’s stimulation value. The stimulation value can be changed by the
hardware main module or, in alternative, the operator can set it through the
software. Stimulation level is a risk factor because a wrong value can expose
the patient to a risk and lead to nerve injury.

• Chirp: this parameter, called also free-run EMG, is a threshold used to alert
the surgeon if it’s exceeded by a signal. In clinical use ranges between 50 and
150 uVolts.

• Waveform amplification: this parameter is related to the zoom level of the
signal. Increasing or decreasing the waveform amplification means changing
the multiplier for which the signal values are multiplied. The result is a better
visualization of the signals.

• Audio EMG: this parameter is used to select one of the eight channels for
Audio EMG, a direct voltage output to the audio speaker of the actual EMG
signal.

• Audio volume: this is the master volume control for all audio signals. It
changes audio level of the hardware integrated speaker.

One important value which enhances the Neurovision Medical Product over the
other companies is the Nerveana Power Indicator (NPI). As seen in section
2.2 the MEP complex and its components are the keys of intraoperative nerve
monitoring and the company has decided to interpret the shape of the response as
a number, called NPI. In fact the Nerveana Power Indicator is a value obtained
calculating the integral of the nerve response and some of the background parameters
are used by hardware to change how the NPIs are calculated. In details:

1. Window delay: this variable is used to determine the exact start moment
for the NPI calculation after we send a stimuli. The default value is 1.5 ms
and it’s the low boundary of the integral but can be adjusted by the user
depending on the distance between sensor and stimulator. Changing this
parameters means moving the integration window and can affect the NPI
value. The delay is shown in figure 3.10.

2. Integration threshold: This parameter is used to alert the operator when
the NPI exceeds the threshold. It’s not defined as a number but as a percentage
and it’s used to set the sensibility depending on position of sensors. Neurovision
company did several studies during the years and accordingly to many results
their researchers have defined a specified number for the 100% value of NPI.
Changing the integration threshold means allowing to alert the surgeon with
lower or higher value of the NPI with respect to the specified value. It’s mostly

20

System Overview

used if the stimulation pulse is deep inside the tissue or the stimulation point
is too far or close to the sensor location and may happen that the recorded
signal is not as wide as it should. An expert user can evaluate this situation
and accordingly adjust this parameter. The 100% default threshold is shown
in figure 3.10 as the black line that represent the usual response. Increasing
the sensibility the user can be alerted also with the response shown with the
red lines.

Figure 3.10: Parameters

3. Stimulation type: the stimulator type can be set to negative, positive or
biphasic. In the first two cases the stimulation use pulses of monopolar shape
with duration T. These are the most used and they are proposed by vendors
all over the world. The third one instead use a bipolar pulse with the same
amplitude and duration and from the most recent publications it seems to
play an important role in the reduction of the artifacts. Biphasic refers of two
phases: cathodic phase and anodic phase. At the cathodic phase, the action
potentials are initiated by applied current pulse and neural reaction is elicited
while the subsequent anodic phase cancels the charges accumulated on the
electrodes. [3]

Figure 3.11: Biphasic stimulation

21

System Overview

Figure 3.12: Positive stimulation

Figure 3.13: Negative stimulation

4. Stimulation duration: It defines the duration of the stimulus. Two values
are available: 158 us and 300 us.

5. Stimulation range: this variable is related to the set of values the stimulator
can be set to. Usually the stimulator range is 0 up to 5 mA but can be set
with range 0 - 10 mA.

6. Chirp level: this parameters define the chirp values assigned to the ten
different levels of the chirp knobs. Not a single set of chirp values is defined
but there are different possibilities. Usually the chirp go from 30 to 150 uV
and changing the parameters means moving up and down on the scale of
predefined values. The chirp level select which scale to use. For example:
[30 36 43 51 61 73 87 104 125 150],
[40 48 57 68 81 97 116 139 167 200],
[48 58 69 83 100 120 144 173 208 250],
and so on..

7. Impedance threshold: the impedance value (calculated with Test function)
of a specific channel is confronted with this variable. If the value is above the
threshold the user is alerted.

22

System Overview

3.3 System implementation

3.3.1 Hardware & firmware

Details of hardware and firmware parts are out of the scope of this thesis but
what I want to show is the general point of view of the hardware design. The new
Nerveäna® hardware system is composed by two modules:

Figure 3.14: Main module

Figure 3.15: Patient Interface
Box

Main module is the core component, it connects directly to a computer with a
USB-C cable and to the patient box with a custom cable specifically designed. The
front panel is composed with three knobs used to set the parameters described in
section 3.2. The knobs has ten different levels and can be used in two ways: simply
turning left or right to increase or decrease the level or by pushing and turning.
This different use is required by the large number of parameters surgeon can set
during the operation. The front panel is designed to contains three knobs that
interact with five parameters.
Stimulation knob: used to set Stimulation level, if the knob is pushed the "Test"
feature is activated. Push and turn don’t produce any changes.
Signal Amplification knob: used to increase or decrease the multiplier of each
signals. Turning the knob when is pushed allows to change the Chirp threshold.
Audio Volume knob: this knob is used to change the speaker volume. If it is
pushed, the turning action allows the operator to choose the channel which is used
for Audio EMG.

A led crowns surround each knobs with green led color to show the current level
of the main parameter. If it’s pushed the crown led color becomes yellow and shows
the chosen level of the second parameter.

23

System Overview

Figure 3.16: Front panel serigraphy

Patient Interface Box: it contains a single programmable board devoted to
interact with main module and communicate EMG signals. It connects with the
patient and, as shown in figure 3.15, it is composed by a set of connectors. In
detail eight pairs are used for the eight EMG channels, one connector is used for
the EMG ground and three are related to the electrical stimulator. Not all the
connector have to be used during a surgery operation, only the ones that’s needed.

3.3.2 Noteworthy features
I just want to mention two important features that are included with the new
hardware module.
Lead-off detection
Detecting the connectivity of an electrode to a patient is essential. If there is any
disruption between the body and the monitoring device, the reported results may
not accurately correspond to the patient’s physiology. Lead-off detection verifies
that electrodes are properly connected, and immediately notifies the user if a fault
is detected. This fault can be configured to alarm when an electrode is completely
disconnected or when the connection is weak. The design of a electrode relies on the
fact that the skin has a dry outer layer requiring gel in order to establish a strong
conductive path from the patient to the system. Over time, these gels begin to dry
out, changing the impedance characteristics between the electrodes and the patient.
Also air gaps may develop between the electrode and skin, especially if there is
hair on the skin surface, increasing the series impedance across the input path. [4].
The lead-off detection implemented in the new system constantly monitors that
the voltage of the electrodes is between 0 and 3.3 V otherwise it alerts the operator
to check the electrodes.

Exponential average filter
A design choice was to implement an high-pass filter that cut out all frequencies
below 10 Hz. Instead of inserting a high-pass filter in hardware it was decided

24

System Overview

to implement the filter at firmware level. This was done because if there were
any changes the hardware component should have been replaced with a new one
while, at firmware level, a simple change in firmware code would have solved the
problem. The implemented filter is calculated subtracting the low pass filter called
Exponential Average Filter, a moving average usually used in statistics. Given
a series of values and a number of subset, the first moving average is calculated
taking the average of the initials subset, then we shift excluding the first number
and including the next one. In brief it can be seen as a smoothing of the data.

Figure 3.17: Exponential Average Filter with N=15

3.3.3 Software implementation
EMGView8 software is designed for Windows operative system on a native high
definition monitor with 1920x1080 of resolution equipped with mouse or, in alter-
native, with a touchscreen. Its code is written in C++/C# programming language
using Visual Studio 2017 Integrated Development Environment for simplicity of
integration between the two different code sections. While the next chapter is
entirely dedicated to the software implementation and all others technical aspects,
this one want to cover the organization structure of classes, actors involved and the
high level diagram. Development metodology used follows the Agile Development
Principles:

• Deliver working software during the process for customer satisfaction

• Welcome changing requirements, even in late development

25

System Overview

• Daily cooperation

• Simplicity and attention to best requirements and design
Stand-up or short feedback were used to report among the parties the work progress
and define what to do in order to coordinate and adapt priorities.

The entire system is composed by three main actors: surgeon, EMGView8
software and hardware main module. Patient interface box is not considered
because is not directly connected to the EMGView8 software. Also when controlled
by main module to record the EMG signals, the values are communicated to the
software by the main module. During software implementation and in particular in
data storage, attention was paid to three important element: Surgeon, Exam and
Preference.

• Surgeon he/she is identified by a small set of personal information and is the
operator that uses the system. Each surgeon can create a list of preference,
that belong to him/her only, and pick one up at the start of the surgery
operation.

• Preference is a set of hardware settings and include all parameters that
can be configured in hardware module. Those parameters are loaded inside
hardware main module at the start up and while some of them remains fixed
for the entire operation (like Impedance Threshold) others can be changed on
the fly, like the parameters related to the knobs. The entire list of variables is
described in chapter 4.

• Exam is the surgery operation itself. It’s composed by the two previous
elements (preference and surgeon attributes) and other important data, such
as the patient personal information (optional attribute due to privacy) and
the stored files of EMG signals.

It is important to define some of the acronyms and synonyms that will be used
in next chapters:
Doctor/Surgeon/Operator: all terms refer to the main user.
Preference/Procedure/Preset/Settings/Configuration: are terms for the
configuration settings saved inside the database and from which the user can choose
before starting a new case.
Acquisition/Operation/Exam: is the set of files created after an exam, where
all hardware data and information are stored.

3.3.4 Software modules
To achieve and cover all aspects cited above the project was separated in parts to
not mix the functionalities. In particular, the main project is composed by five
sub-project:

26

System Overview

• NerveanaGUI: it contains all the form that are displayed to the user and
with whom he/she can interact. The startup form, the main form, the settings
form, the manage form and so on. Moreover it contain few classes for custom
control draw (led and knobs) to let user feels like he/she is using the hardware
itself.

– LedKnob class that contains drawing functions to simulate the hard-
ware knob and used to draw custom controls in main form and offline
examination form.

– LedBulb class, used to stimulate the hardware led.

• Utilities: It contains some useful classes like database and report in order to
open a connection and encapsulate the data and some other functions from
different use. In detail:

– Database class contains functions specific for database. Open, close, get
doctor, update doctor, insert preset, update preset, insert exam, update
exam, delete exam and so on. It contains two subclasses: Surgeon and
Procedure.

– Event class, used to create and store specific event happened during the
real-time operation. This class supports the creation of the PDF report.
When the user want to print a report, the software load data inside this
class and then the object is passed to the apposite function to build the
pdf file.

– NerveanaRegistry, a class that define variables saved on local machine
registry.

• NerveanaComm: this sub-project is the key for hardware communication.
Written in C++ it contains all the functions that handle the communication,
from opening the right port, create and send command to manage the incoming
data. NerveanaComm is born from the adaptation of a library proprietary
of OTBioelettronica that makes use of a class called DataGeneratorNerveana
that indentify the device and associate a set of variables and functions.

• LoaderNerveana: it contains all the necessary for file handling. Examination
file is stored and on opening each byte is interpreted in the correct way to
reproduce and display all the data (EMG channels and settings). This class
contains a subclass called NerveanaContentFilter, that is the real container of
the values.

• Soundtrack: this sub-project contains all functions related to the EMG signal
draw. Also this library is proprietary of OTBioelettronica used by many of its

27

System Overview

products. The most important sub class of this library is the Track class used
to encapsulate the NerveanaContentFilter and associate values with drawing
functions.

Figure 3.18: Class Diagram

28

Chapter 4

Software Components

This chapter is the core of my thesis, where the details of my work are explained,
together with algorithms and all the implementation work. I defined four subsection,
each of one related to the main sub-project of the EMGView8 software.

4.1 Hardware communication

The first subsection is about hardware communication. As said in a previous chapter
the hardware communication was made possible with the use of a proprietary library
of OTBioelettronica called OTComm. This library is written in C++ using Win32
API and implement class, structure and functions for communication and has been
modified and extended through many years with the design and development of
new devices. It allows to communicate with different protocol using wifi, bluetooth,
LAN or USB cable and it implements a different class for each device. The name
of those class is composed by the prefix DataGenerator followed by the name of
the device (DataGeneratorSessantaquattro for example, DataGeneratorNerveana
in our case). So the DataGenerator class contains all the functions useful for the
specific device. What has been done is the convertion of all the useful part of this
library into another one called: NerveanaComm.
OTBioelettronica devices are complex object that needs to be paired by the
user with adapter and sensor in order to work, so a set of functions are related
to the adapter connection and the saving of settings in .xml format for future
loading. Nerveana system instead has a fixed structure and all those functions were
ignored during the conversion. They were substituted by other functions used for
communication, especially those functions that regards commands. NerveanaComm
structure is shown in figure 4.1, not all the functions of DataGeneratorNerveana
are included in figure but they are explained individually in next section.

29

Software Components

Figure 4.1: NerveanaComm structure

4.1.1 Critical aspects
Communication of a software for intraoperative nerve monitoring is not a joke. The
purpose of this software is to be used in operating room, a place where anythings
gone wrong causes problems. What if the software crash? What if the software
freeze? These are case that must never happen. A priority for this project regards
non-blocking functionality, especially during the real-time communication. For this
reason asynchronous operation implemented with OVERLAPPED I/O were
used. When a function is executed synchronously, it does not return until the
operation has been completed. This means that the execution of the calling thread
can be blocked for an indefinite period while it waits for a time-consuming operation
to finish. Functions called for overlapped operation instead can return immediately,
even though the operation has not been completed. This enables a time-consuming
I/O operation to be executed in the background while the calling thread is free to
perform other tasks. For example, a single thread can perform simultaneous I/O
operations on different handles, or even simultaneous read and write operations on
the same handle. This asynchronous communication paradigm is provided by the

30

Software Components

operating system, refer to Charles Petzold’s book Programming Windows for any
technical interest.
To implement this choice three HANDLE variables which will be mentioned in next
sections have been defined:

• mDeviceHandle: variable used to create the file and allow the asynchronous
read/write operations from both software and hardware side.
The FILE_FLAG_OVERLAPPED flag variable is required.

• mCompletionPort: variable created from mDeviceHandle and that asso-
ciates mDeviceHandle with a port. When an asynchronous I/O operation on
the file handle is complete, an I/O completion packet is queued in first-in-first-
out (FIFO) order to the associated I/O completion port.

• mAsyncIoThreadHandle: handle to the thread in charge to communicate
with the hardware and handle all the communication core functionality.

4.1.2 Communication protocol
First of all I want to give an overview of the protocol defined for the hardware
main module because the functions that are gonna be explained in future sections
make use of this. The USB communication between the eight-channel device and
the PC uses a virtual COM implemented in the microcontroller.
The COM port specification are:

Parameter Value
BaudRate 1000000
number of data bits 8
Parity bit No
Stop bit 1
Flow control No

A command string must be sent through the USB port to start the data transfer,
to change the hardware configuration or the working mode. The command string
starts with a COMMAND&SIZE byte and ends with a CRC8 byte. The
COMMAND&SIZE byte determines how many bytes are in the command string
and their meaning.

COMMAND&SIZE
COMM2 COMM1 COMM0 SIZE4 SIZE3 SIZE2 SIZE1 SIZE0

COMM<2:0>: Type of command. Determines the meaning of the following
bytes in the command string. The detailed description of each command type is in
the following pages.

31

Software Components

• 100 = Device working mode

• 011 = Advanced EMG settings

• 010 = Advanced stimulation settings

• 001 = Sound tones assignment and test

• 000 = Basic settings and communication

SIZE<4:0>: Size of the command string. It is the number of bytes in the command
string including the COMMAND and SIZE byte themselves.

CRC8: It is the CRC estimation on 8 bits obtained from all the byte sent.
The device reply with an error code in case something received is wrong. A list of
possible errors and corresponding codes are listed in the following table:

Error type Response code
Wrong CRC 0xCC
Parameters out of range 0x0F
Wrong command length 0xCE
Command unknown 0xC0
Syntax error 0xE0

Basic settings and communication

This command string can be used to start a data transfer and changing the basic
settings of the hardware main module or to read the current settings. The bytes in
the “Basic settings and communication” command string, are the following:

1. COMMAND&SIZE

2. CONTROL BYTE 0

3. CONTROL BYTE 1

4. CONTROL BYTE 2

5. CONTROL BYTE 3

6. CONTROL BYTE 4

7. FILENAME PREFIX 0

8. FILENAME PREFIX 1

9. FILENAME PREFIX 2

32

Software Components

10. FILENAME PREFIX 3

11. FILENAME PREFIX 4

12. FILENAME PREFIX 5

13. TIMEDATE 0

14. TIMEDATE 1

15. TIMEDATE 2

16. TIMEDATE 3

17. CRC8

Not all the bytes are necessary, but at least the CONTROL BYTE 0 must be sent
to start the data transfer.

• CONTROL BYTE 0

GETSET FSAMP1 FSAMP0 NCH1
NCH0 MODE1 MODE0 END

GETSET: Describe the type of action

– 1 = GET settings. Regardless of the other bits and bytes sent values,
this command requires the hardware current setting. The reply will be a
sequence of 33 bytes indicating the current settings. This command can
only be sent if the data transfer is not in progress, otherwise it will be
discarded

– 0 = SET command. All the other bits and bytes are used to set new
values to the hardware settings.

FSAMP<1:0>: Sampling frequency

– 11 = Not used
– 10 = Not used
– 01 = 4000 Hz
– 00 = Not Used

NCH<1:0>: Transferred channels

– 11 = 8 channels

33

Software Components

– 10 = Not used
– 01 = Not used
– 00 = Not Used

MODE<1:0>: Working mode

– 11 = Test mode. Start transfer simulated signals and check the function-
ality of EMG

– 10 = Data transfer with Impedance check.
– 01 = Data transfer without Impedance check.
– 00 = Stop data transfer

END: specifies if there are more byte following

– 1 = there are no other bytes in the command except the CRC8 byte
– 0 = additional bytes follow

• CONTROL BYTE 1

LOFF2 LOFF1 LOFF0 STMTYP1
STMTYP0 SDSW REC BLANK

LOFF<2:0>: DC Lead-off comparator threshold

– 111 = 95% positive side, 5% negative side
– 110 = 92.5% positive side, 7.5% negative side
– 101 = 90% positive side, 10% negative side
– 100 = 87.5% positive side, 12.5% negative side
– 011 = 85% positive side, 15% negative side
– 010 = 80% positive side, 20% negative side
– 001 = 75% positive side, 25% negative side
– 000 = 70% positive side, 30% negative side

STMTYP<1:0>: Stimulation Type:

– 10 = Biphasic
– 01 = Positive
– 00 = Negative

SDSW: Enable or disable the REC button

34

Software Components

– 1 = the REC button on the front panel is enabled
– 0 = the REC button on the front panel is enabled

REC: Starts/stops the acquisition on the MicroSD

– 1 = Recording on SD Card in progress
– 0 = Recording on SD Card is not in progress

BLANK: EMG signal Blanking

– 1 = Short-circuit the EMG inputs during stimulation
– 0 = Do not short-circuit the EMG inputs during stimulation

• CONTROL BYTE 2

VOL3 VOL2 VOL1 VOL0
STIM3 STIM2 STIM1 STIM0

VOL<3:0>: Audio volume level 1 to 10
STIM<3:0>: Stimulation level 0 to 10 (0 = no stim, all LEDs off)

• CONTROL BYTE 3

0 0 NOTCH_OFF NTC_60_50
GAIN3 GAIN2 GAIN1 GAIN0

NOTCH_OFF 4: Enable or disable the notch filter

– 1 = Notch filter is OFF
– 0 = Notch filter is ON

NTC_ON 5: Enable or disable the notch filter

– 1 = Notch filter is set on 50 Hz
– 0 = Notch filter is set on 60 Hz

GAIN <3:0>: EMG gain from 1 to 10

• CONTROL BYTE 4

AEMG3 AEMG2 AEMG1 AEMG0
CHIRP3 CHIRP2 CHIRP1 CHIRP0
AEMG<3:0>: Channel for AEMG (Audio of one EMG signal) from 0

35

Software Components

to 8 (0 = no AEMG and all LEDs off, 1 = Channel1, 2 = Channel2. . .)
CHIRP<3:0>: Threshold level from 0 to 9 for the free run chirp function.

• FILENAME PREFIX 0..5: Five digits used as prefix for the filenames on
the MicroSD card. The following 3 digits will be an incremental number.

• TIMEDATE 0..3: Value incremented every 0.25 s. The time 0 is considered
00:00 of January 1ST 2018.

Get settings

In case a command with the GETSET bit equal to 1 is send to the hardware, it
replies with 33 bytes:

1. SIZE

2. CONTROL BYTE 0

3. CONTROL BYTE 1

4. CONTROL BYTE 2

5. CONTROL BYTE 3

6. CONTROL BYTE 4

7. FILENAME PREFIX 0

8. FILENAME PREFIX 1

9. FILENAME PREFIX 2

10. FILENAME PREFIX 3

11. FILENAME PREFIX 4

12. FILENAME PREFIX 5

13. TIMEDATE 0

14. TIMEDATE 1

15. TIMEDATE 2

16. TIMEDATE 3

36

Software Components

17. BATTERY_LEVEL

18. LED_STATE

19. FIRM_VER0

20. FIRM_VER1

21. FIRM_VER2

22. STIM LEV DUR

23. NPI SETTINGS

24. CHIRP LEVELS

25. TONES EVENTS 1-0

26. TONES EVENTS 3-2

27. TONES EVENTS 5-4

28. TONES EVENTS 7-6

29. TONES EVENTS 9-8

30. TONES EVENTS 11-10

31. TONES EVENTS 13-12

32. TONES EVENTS 15-14

33. CRC8

Sound tones assignment and test

The hardware has the option to let choose the user which sound can be associated
to a particular event. The “Sound tones assignment and test” command string
allows to set a tones for an event. The “Test tone play” event force the hardware
to play a tone as soon as it receives the command.

1. COMMAND&SIZE

2. TONES EVENTS 1-0

3. TONES EVENTS 3-2

4. TONES EVENTS 5-4

37

Software Components

5. TONES EVENTS 7-6

6. TONES EVENTS 9-8

7. TONES EVENTS 11-10

8. TONES EVENTS 13-12

9. TONES EVENTS 15-14

10. CRC8

• COMMAND&SIZE: This byte can have values between 0x23 (Command
= 1, Size = 3) and 0x2A (Command = 1, Size = 10). Refer to the COM-
MAND&SIZE byte description in the introduction to this section for further
details.

• TONES EVENTS X-Y

EVNTX3 EVNTX2 EVNTX1 EVNTX0
EVNTY3 EVNTY2 EVNTY1 EVNTY0

EVNTX<3:0>: Tone ID corresponding to event X (odd values)
EVNTY<3:0>: Tone ID corresponding to event Y (even values)

Advanced stimulation settings

This command string allows to set the stimulus duration and the different levels
assigned to the position of the stimulation level knob.

Duration ID
Stim. Duration
(µs)

0 158
1 300

38

Software Components

Lev ID
Stimulation lev-
els (mA)

0 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5
1 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6
2 0, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8
3 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10
4 0, 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12
5 0, 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 14
6 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16
7 0, 1, 2, 4, 6, 8, 12, 14, 16, 18, 20

The “Advanced stimulation settings” command string allows to set is composed by
the following bytes:

1. COMMAND&SIZE

2. STIM LEV DUR

3. CRC8

• COMMAND&SIZE: This byte can only have the value 0x43 (Command
= 2, Size = 3). Refer to the COMMAND&SIZE byte description in this
document introduction for further details.

• STIM LEV DUR

LEV3 LEV2 LEV1 LEV0
0 0 0 DURID

LEV<3:0>: Levels ID assigning different stimulation amplitudes to the 10
knob positions
DURID: Duration ID for the stimulation pulse

39

Software Components

Advanced EMG settings

This command string allows to set the NPI threshold, the delay with respect to
stimulus of the CAP integration window and the chirp thresholds.

NPI ID NPI Threshold
0 70 % of standard NPI
1 80 % of standard NPI
2 90 % of standard NPI
3 Standard NPI default at start-up
4 110 % of standard NPI
5 120 % of standard NPI
6 not used
7 not used

NPI Delay ID NPI window delay
0 1.5 ms
1 2.0 ms
2 2.5 ms
3 3.0 ms
4 4.0 ms
5 5.0 ms
6 10.0 ms
7 15.0 ms

Chirp Lev ID Chirp Thresholds
0 30, 36, 43, 51, 61, 73, 87, 104, 125, 150 uV
1 40, 48, 57, 68, 81, 97, 116, 139, 167, 200 uV
2 48, 58, 69, 83, 100, 120, 144, 173, 208, 250 uV
3 58, 69, 83, 100, 120, 144, 173, 208, 250, 300 uV
4 68, 82, 98, 118, 141, 169, 203, 243, 292, 350 uV
5 78, 93, 112, 134, 161, 193, 232, 278, 333, 400 uV
6 88, 106, 127, 152, 182, 218, 261, 313, 375, 450 uV
7 98, 117, 140, 168, 202, 242, 290, 348, 417, 500 uV

40

Software Components

Imped. ID Impedance Value
0 No threshold
1 1 kW
2 2 kW
3 3 kW
4 4 kW
5 5 kW
6 6 kW
7 7 kW
8 8 kW
9 9 kW
10 10 kW
11 12 kW
12 14 kW
13 16 kW
14 18 kW
15 20 kW
16 25 kW
17 30 kW
18 35 kW
19 40 kW
20 45 kW
21 50 kW
22 60 kW
23 70 kW
24 80 kW
25 90 kW
26 100 kW
27 120 kW
28 150 kW
29 200 kW
30 220 kW
31 250 kW

The “Advanced EMG settings” command string is composed by the following
bytes:

1. COMMAND&SIZE

2. NPI SETTINGS

3. CHIRP LEVELS

41

Software Components

4. CRC8

• COMMAND&SIZE:
This byte can only have the value 0x64 (Command = 3, Size = 4). Refer to
the COMMAND&SIZE byte description in this document introduction for
further details.

• NPI SETTINGS

0 NPIID2 NPIID1 NPIID0
0 DEL2 DEL1 DEL0

NPIID<2:0>: NPI threshold ID.
DEL<2:0>: NPI integration window delay ID.

• CHIRP LEVELS

IMP4 IMP3 IMP2 IMP1
IMP0 CHIRP2 CHIRP1 CHIRP0

IMP<4:0>: mpedance threshold levels ID.
CHIRP<2:0>: Chirp threshold levels ID.

Device Working mode

This command string allows to change the device working mode between Default
mode, Diagnosis mode, Calibration mode and Firmware upgrade mode.
The “Device working mode” command string is composed by the following bytes:

1. COMMAND&SIZE

2. WORKING MODE

3. CRC8

• COMMAND&SIZE:
This byte can only have the value 0x83 (Command = 4, Size = 3). Refer to
the COMMAND&SIZE byte description in this document introduction for
further details.

• WORKING MODE

42

Software Components

0 0 0 0
0 0 WM1 WM0

WM<1:0>: Device working mode.

– 11 = Set the device in Firmware upgrade mode
– 10 = Set the device in Calibration mode
– 01 = Set the device in Diagnosis mode
– 00 = Set the device in Default mode by resetting it

43

Software Components

4.1.3 Packet description
This section want to provide a compact vision of the data with which the packets
coming from hardware are built. Each information is associated with an exact byte
position inside the packet and this knowledge is used to unpack the container and
obtain all the required data.
Some important specification before the table:

1. All bytes in range 202 - 14202 are related to the EMG channels and contains
all the data about the signal monitoring.

2. All bytes in range 16212 - 16226 are the NPIs values calculated in hardware
main module.

3. All bytes between 16229 and 16259 are the Impedance values detected by the
hardware.

All other bytes are related to main and background parameters or other minors
information, refer to the name column to understand the scope.

Byte Index Name Value Size in bytes
0 Header 0x00AA 2
2 StimCurrent -32768 to 32767 200
202 EMGCh1 -32768 to 32767 2000
2202 EMGCh2 -32768 to 32767 2000
4202 EMGCh3 -32768 to 32767 2000
6202 EMGCh4 -32768 to 32767 2000
8202 EMGCh5 -32768 to 32767 2000
10202 EMGCh6 -32768 to 32767 2000
12202 EMGCh7 -32768 to 32767 2000
14202 EMGCh8 -32768 to 32767 2000
16202 StimLev 0 to 10 1
16203 Gain 1 to 10 1
16204 Volume 1 to 10 1
16205 ChirpThres 0 to 10 1
16206 AEMGChan 0 to 8 1
16207 MuteLED 0 to 3 1
16208 EventLED 0 to 3 1
16209 Ext12VLED 0 to 3 1
16210 BatteryLED 0 to 3 1
16211 SDCardLED 0 to 3 1
16212 NPI1 0 to 65535 2

44

Software Components

16214 NPI2 0 to 65535 2
16216 NPI3 0 to 65535 2
16218 NPI4 0 to 65535 2
16220 NPI5 0 to 65535 2
16222 NPI6 0 to 65535 2
16224 NPI7 0 to 65535 2
16226 NPI8 0 to 65535 2
16228 ActiveChan 0 to 255 1
16229 ImpedCh1P 0 to 65535 2
16231 ImpedCh1N 0 to 65535 2
16233 ImpedCh2P 0 to 65535 2
16235 ImpedCh2N 0 to 65535 2
16237 ImpedCh3P 0 to 65535 2
16239 ImpedCh3N 0 to 65535 2
16241 ImpedCh4P 0 to 65535 2
16243 ImpedCh4N 0 to 65535 2
16245 ImpedCh5P 0 to 65535 2
16247 ImpedCh5N 0 to 65535 2
16249 ImpedCh6P 0 to 65535 2
16251 ImpedCh6N 0 to 65535 2
16253 ImpedCh7P 0 to 65535 2
16255 ImpedCh7N 0 to 65535 2
16257 ImpedCh8P 0 to 65535 2
16259 ImpedCh8N 0 to 65535 2
16261 ImpedREF 0 to 65535 2
16263 AudioTone 0 to 255 1
16264 BatteryLevel 0 to 4096 2
16266 VoltExt 0 to 4096 2
16268 Curr12V 0 to 4096 2
16270 CurrBatt 0 to 4096 2
16272 CurrPatientMod 0 to 4096 2
16274 Time 0 to 65535 4
16278 UniqueHWID 0 to 65535 4
16282 CONTROL BYTE 0 0 to 255 1
16283 CONTROL BYTE 1 0 to 255 1
16284 CONTROL BYTE 2 0 to 255 1
16285 CONTROL BYTE 3 0 to 255 1
16286 CONTROL BYTE 4 0 to 255 1
16287 FILENAME PREFIX - 6

45

Software Components

16293 FIRM_VER - 3
16296 STIM_LEV_DUR 0 to 255 1
16297 NPI SETTINGS 0 to 255 1
16298 CHIRP LEVELS 0 to 255 1
16299 TONES EVENT 1-0 0 to 255 1
16300 TONES EVENT 3-2 0 to 255 1
16301 TONES EVENT 5-4 0 to 255 1
16302 TONES EVENT 7-6 0 to 255 1
16303 TONES EVENT 9-8 0 to 255 1
16304 TONES EVENT 11-10 0 to 255 1
16305 TONES EVENT 13-12 0 to 255 1
16306 TONES EVENT 15-14 0 to 255 1
16307 EventFlags 0 to 255 1
16308 Dummy 0 74
16382 Footer 0x0055 2

4.1.4 NerveanaComm classes
Before explaining the main class DataGeneratorNerveana I want to briefly give a
look at the other four classes that composes NerveanaComm:

• ErrorDescription: used by DataGenerator to encapsulate the exception and
fire an error event.

• DebugLog: provide a set of function for debugging purpose and most of
them are print functions. Custom message are allowed but also some specific
print are defined:

– LOG_ENTERING
– LOG_EXITING
– LOG_SUCCESS
– LOG_MESSAGE(message)
– LOG_ERROR(error)
– LOG_EXCEPTION(exception)

• GenericException: inside this class a custom exception class called Nerveana-
CommException is defined together with a set of exceptions, each of them
with its own custom message. The defined exception are:

– OpenDeviceFailedException

46

Software Components

– CloseDeviceFailedException
– InitializeDeviceFailedException
– StartAcquisitionFailedException
– StopAcquisitionFailedException
– InvalidHandleException
– CompletionPortException
– SendCommandFailedException
– SetCommFailedException
– GetCommFailedException
– AcquisitionThreadException
– ThreadCreationException

• OTWMI: contains functions helpful for windows management instrumenta-
tion. Two functions are defined: the first is WindowsVersion() and it’s used
to obtain the windows version installed on local machine and the second one
is GetUSBNerveanaSerialPort() and as can be guessed from the name search
for the correct COM port where the nerveana hardware is detected.

4.1.5 DataGeneratorNerveana
Now, I can finally focus on the main class DataGeneratorNerveana and de-
scribe the functions that belongs to it. DataGeneratorNerveana class handle the
communication with hardware main module, including commands creation and
commands sending and contains also a set of event that allow to pass the received
values to the graphical interface or raise specific function call. DataGenerator and
GUI are linked together so that while one is in charge of receiving packet from
hardware the second one can draw the EMG signals on the main window. Or,
viceversa, the graphical interface can capture the user intention to change knobs
value or activate a features and using methods of the DataGenerator can create
and deliver a command to the hardware.
DataGeneratorNerveana define an object that is initialized in main window and
through its set of methods allow to control and communicate with the hardware
main module. The events defined in the class are used to raise event from the
object to the GUI and let it handle the situation and are the following:

• StartAcquisition: Warns the graphical interface that the acquisition is
started.

• StopAcquisition: Warns the graphical interface that the acquisition is ended.

47

Software Components

• NewDataAvailable: This event is the most important one and is used to
encapsulate the data received from hardware and pass them to the graphical
interface. Every time that a new packet has arrived this event is raised and
the signals draw in the graphical interface are updated.

• CloseDevice: Warns the graphical interface that the device is closed.

• Error: Alert about an error encountered.

• InizializeDevice: Event raised when the device connection has been initial-
ized.

• OpenDevice: Event raised when the device connection is opened.

DataGeneratorNerveana contains also a list of functions of different uses. For
simplicity I divide the functions in three types:
Main functions, that contains all the most important functions that make use of
the other two types to work
Command Creation functions, that contains all the functions that create
command string depending of parameters or hardware features the user want to
activate.
Command sending functions, that take care of delivering the command to the
main hardware module. In figure 4.3 is shown the relationship between the main
functions and the others while relationships between the creation and sending
functions is shown in figure 4.3.

Figure 4.2: Relationship between main functions and others

48

Software Components

Figure 4.3: Relationship between creation and sending commands

Main functions

The main functions are used for any kind of purpose, they make use of the other
two sets of functions in order to achieve their goal and they define the main
functionalities of the communication library. Functions that belong to this section
are:

• OpenDevice: This function creates the mDeviceHandle and overwrites the
default port settings with the specification described at the beginning of
section 4.1.2. Then it creates the mCompletionPortHandle and return.

• StartAcquisition: This function is used to start the acquisition. First it
cancels any I/O operation on the mDeviceHandle, than it takes the settings
variables passed to the function and call the CreateCommand function to
create the array of byte. At the end it sends the string command using
SendToDevice method.

• SetBeforeClose: This function is used before closing the communication
with the device and has a simple purpose: mute the hardware. This is done
creating a string command with "0" as index for the setting, in particular for
the Audio Volume and send the string to the hardware.

• SetBeforeAcquisition: Before starting the communication with hardware,
the settings needs to be configured to the one chosen by operator and to
do so this function is used. Two string commands must be created, the
first regards the stimulation settings, stimulation diration and stimulation

49

Software Components

range, and the second is about the EMG settings, NPI integration thresh-
old, NPI window delay and Chirp set of levels. The two commands are
prepared using the functions CreateAdvancedStimulationCommand and
CreateAdvancedEMGCommand and once they’re ready, they are sent to
hardware using SendToDevice.

• StopAcquisition: This method simply closes the mCompletionPortHandle,
stopping the communication.

• CloseDevice: This method closes the mDeviceHandle.

• GetDeviceHandle: Returns the mDeviceHandle variable.

• GetCompletionPortHandle: Returns the mCompletionPortHandle vari-
able.

• InternalStopSerialDataTransfer: This function creates the stop command
and send it to the hardware, then it cancel any IO operation on mDeviceHandle.

• ComputeCRC8: Implement the same CRC function used on hardware to
check correctness of data.

• OuternThread: Starts a new thread and assign the ASyncIoSerialNerveana
as working function.

• AsyncIoSerialNerveana: This function is the heart of NerveanaComm
and take care of read/write operation on the communication socket. It’s
an adaptation from a function contained in OTComm library and it is the
only unmanaged code part of the entire library. While all the rest of the
DataGenerator class is managed code, that means that is internally translated
into a pseudocode and interpreted at runtime, the AsyncIoSerialNerveana
function is compiled directly into machine code.

Command creation functions

The Creation functions are used to build the correct array of byte to send to the
hardware module. This array is also called command, because it’s interpreted from
the hardware and activate particular behaviour. The array of byte is written taking
into account the protocol shown in section 4.1.2. There are two type of creation
functions, those that make use of passed parameters and those who use predefined
parameters and activate specific hardware functionalities. This section is growing
with the incoming new request from the customer but at the time of writing of this
thesis the functions that belong to this part are:

50

Software Components

• CreateCommand: This method is the most general command creation, a
functions to which are passed all variable related to the settings: workmode,
stimulation, gain, audio, chirp, AEMG, blank, stimtype and create the array.
It’s defined as follows:

1 array<Byte>^ CreateCommand(byte workmode , byte stim , byte
gain , byte audio , byte chirp , byte AEMG, byte blank , byte
st imtype) {

2 l a s t s t i m = stim ;
3 l a s t g a i n = gain ;
4 l a s t a u d i o = audio ;
5 l a s t c h i r p = ch i rp ;
6 lastAEMG = AEMG;
7 l a s t b l a n k = blank ;
8 l a s t s t im ty p e = st imtype ;
9 i n t commandlength = 17 ;

10 array<Byte>^ command = gcnew array<Byte>(commandlength) ;
11 command [0] = commandlength ;
12 command [1] =
13 GetSets : : Set << 7 |
14 FSamples : : FSample_4k << 5 |
15 NChannels : : NChannel_8 << 3 |
16 workmode << 1 ;
17 command [2] =
18 LOFFs : : LOFF_95 << 5 |
19 st imtype <<3|
20 SDSWs : : SDSW_enabled << 2 |
21 RECs : : REC_notinprogress << 1 |
22 blank ;
23 command [3] =
24 audio << 4 | stim ;
25 command [4] = gain ;
26 command [5] = AEMG<<4| ch i rp ;
27 command [6] = (Byte) ’N’ ;
28 command [7] = (Byte) ’V’ ;
29 command [8] = (Byte) ’ 0 ’ ;
30 command [9] = (Byte) ’ 8 ’ ;
31 command [1 0] = (Byte) ’_’ ;
32 command [1 1] = (Byte) ’_’ ;
33 command [1 2] = 0 ;
34 command [1 3] = 0 ;
35 command [1 4] = 0 ;
36 command [1 5] = 0 ;
37 command [commandlength −1] = ComputeCRC8(command ,

commandlength −1) ;
38 re turn command ;
39 }

51

Software Components

40

• CreateAdvancedStimulationCommand: This method is used to create
an array of bit for setting the background parameters related to the stimulator:
stimduration (158 us or 300 us) and stimulation level (0-5 mA, 0-10 mA or
higher). It takes the value passed and creates the command.

1 array<Byte>^ DataGeneratorNerveana : :
CreateAdvancedStimulationCommand (byte stimdur , byte st imlevID)
{

2 i n t commandlength = 3 ; // [0010 0011] −> 0010 command −
0011 s i z e

3 array<Byte>^ command = gcnew array<Byte>(commandlength) ;
4 command [0] = commandlength +64;
5 command [1] = st imlevID << 4 | stimdur ;
6 command [3 − 1] = ComputeCRC8(command , commandlength− 1) ;
7 re turn command ;
8 }
9

• CreateAdvancedEMGCommand: This is the second and last method
used to set background parameters, in this case: NPI integration threshold,
NPI window delay and the chirp level, not the single value but the index of
the set of values assigned to the ten knob position.

1 array<Byte>^ DataGeneratorNerveana : : CreateAdvancedEMGCommand(
byte NPIThreshold , byte NPIDelay , byte ch i rpLeve l) {

2 i n t commandlength = 100 ; // [0110 0100] −> 011 command −
0100 s i z e

3 array<Byte>^ command = gcnew array<Byte >(4) ;
4 command [0] = commandlength ;
5 command [1] = NPIThreshold << 4 | NPIDelay ;
6 command [2] = ch i rpLeve l ;
7 command [4 − 1] = ComputeCRC8(command , 4 − 1) ;
8 re turn command ;
9 }

10

• CreateDiagnosisCommand: This method is used to create the command
that set the hardware in diagnosis mode, a mode where the hardware send to
the software a list of internal information. This command does not require
any parameters or additional information.

52

Software Components

1 array<Byte>^ DataGeneratorNerveana : : CreateDiagnosisCommand () {
2 i n t commandlength = 3 ; // [0010 0011] −> 0010 command −

0011 s i z e
3 array<Byte>^ command = gcnew array<Byte>(commandlength) ;
4 command [0] = commandlength + 128 ; // dev i ce working mode
5 command [1] = 01 ; // d i a g n o s i s mode
6 command [commandlength − 1] = ComputeCRC8(command ,

commandlength − 1) ;
7 re turn command ;
8 }
9

• CreateCalibrationCommand: This is used to create the command that
set the hardware in calibration mode.

1 array<Byte>^ DataGeneratorNerveana : : CreateCalibrationCommand
() {

2 i n t commandlength = 3 ; // [0010 0011] −> 0010 command −
0011 s i z e

3 array<Byte>^ command = gcnew array<Byte>(commandlength) ;
4 command [0] = commandlength + 128 ; // dev i ce working mode
5 command [1] = 10 ; // c a l i b r a t i o n mode
6 command [commandlength − 1] = ComputeCRC8(command ,

commandlength − 1) ;
7 re turn command ;
8 }
9

• CreateConfigurationCommand: This method creates the command used
to receive the current hardware configuration setting and know all the param-
eters. No additional variable are required.

1 array<Byte>^ DataGeneratorNerveana : :
CreateConfigurationCommand () {

2 i n t commandlength = 3 ;
3 array<Byte>^ command = gcnew array<Byte>(commandlength) ;
4 command [0] = commandlength ;
5 command [1] =
6 GetSets : : Get << 7 | //GET CONFIGURATION
7 FSamples : : FSample_4k << 5 |
8 NChannels : : NChannel_8 << 3 |
9 WorkingModes : :WM_NoImp << 1 |

10 1 ; //END 1 no other bytes except CRC8

53

Software Components

11 command [commandlength − 1] = ComputeCRC8(command ,
commandlength − 1) ;

12 re turn command ;
13 }
14

• CreateTestCommand: This method creates the command for the Test
mode, used to read the impedance values.

1 array<Byte>^ DataGeneratorNerveana : : CreateTestCommand () {
2 i n t commandlength = 3 ;
3 array<Byte>^ command = gcnew array<Byte>(commandlength) ;
4 command [0] = commandlength ;
5 command [1] =
6 GetSets : : Set << 7 |
7 FSamples : : FSample_4k << 5 |
8 NChannels : : NChannel_8 << 3 |
9 WorkingModes : : WM_Test << 1 |

10 1 ;
11 command [commandlength − 1] = ComputeCRC8(command ,

commandlength − 1) ;
12 re turn command ;
13 }
14

• CreateStopTestCommand: This function creates the command to stop
the Test mode.

1 array<Byte>^ DataGeneratorNerveana : : CreateStopTestCommand
() {

2 i n t commandlength = 3 ;
3 array<Byte>^ command = gcnew array<Byte>(commandlength) ;
4 command [0] = commandlength ;
5 command [1] =
6 GetSets : : Set << 7 |
7 FSamples : : FSample_4k << 5 |
8 NChannels : : NChannel_8 << 3 |
9 01 << 1 |

10 1 ;
11 command [3 − 1] = ComputeCRC8(command , commandlength − 1) ;
12 re turn command ;
13 }
14

54

Software Components

Command sending functions

The last functions section regards all the functions that actually send the command
to the hardware module writing the buffer to the mDeviceHandle variable and they
are twisted with the creation methods in order to create the correct command.The
functions that belongs to this section are:

• SendToDevice: This is the general case where the command is passed as
a buffer variable and the functions simply take care of it and write on the
handle using the overlapped variable.

1 BOOL DataGeneratorNerveana : : SendToDevice (byte ∗buf , i n t
l ength) {

2 s t a t i c OVERLAPPED mOverlappedStrucSendCommand ;
3 ZeroMemory(&mOverlappedStrucSendCommand , s i z e o f (

OVERLAPPED)) ;
4 mOverlappedStrucSendCommand . I n t e r n a l = STATUS_PENDING;
5 SetLastError (0) ;
6 BOOL WriteFi leRes = WriteFi l e (mDeviceHandle , buf , length ,

NULL, &mOverlappedStrucSendCommand) ;
7 re turn true ;
8 }
9

• SendSpecificCommand: Instead of passing the command itself this func-
tions was implemented to pass the command parameters to the functions and
let it take care of creating the command. This is done using the CreateCom-
mand general case functions and once it is created, a call to SendToDevice is
made.

1 void DataGeneratorNerveana : : SendSpecificCommand (byte workmode
, byte stim , byte gain , byte audio , byte chirp , byte AEMG,
byte blank , byte st imtype) {

2 LOG_ENTERING;
3 {
4 array<Byte>^ buf_array = CreateCommand(workmode , stim

, gain , audio , chirp , AEMG, blank , st imtype) ; // Decimal va lue
to wr i t e to s e r i a l port

5 byte buf [1 2 8] ;
6 f o r (i n t i i = 0 ; i i < buf_array−>Length ; i i ++)
7 buf [i i] = buf_array [i i] ;
8 SendToDevice (buf , buf_array−>Length) ;
9 LOG_MESSAGE(" Nerveana : S p e c i f i c Command Sent ") ;

10 }

55

Software Components

11 LOG_EXITING;
12 }
13

• SendDiagnosisCommand: This method creates the diagnosis command
calling the creation function and send it to the hardware.

1 void DataGeneratorNerveana : : SendDiagnosisCommand ()
2 {
3 LOG_ENTERING;
4 In t e rna lS topSe r i a lDataTrans f e r () ;
5 array<Byte>^ buf_array = CreateDiagnosisCommand () ;
6 byte buf [1 2 8] ;
7 f o r (i n t i i = 0 ; i i < buf_array−>Length ; i i ++)
8 buf [i i] = buf_array [i i] ;
9 SendToDevice (buf , buf_array−>Length) ;

10 {
11 t ry
12 {
13 mMustStopAcquisition = f a l s e ;
14 FireOnStar tAcqu i s i t i on () ;
15 }
16 catch (Exception^exec)
17 {
18 throw gcnew Sta r tAcqu i s i t i onFa i l edExcep t i on (

__FUNCTION__, exec) ;
19 }
20 }
21 Sleep (100) ;
22 LOG_EXITING;
23 }
24

• SendCalibrationCommand: This method creates the calibrarion command
calling the creation function and send it to the hardware.

1 void DataGeneratorNerveana : : SendCalibrationCommand ()
2 {
3 LOG_ENTERING;
4 {
5 array<Byte>^ buf_array = CreateCalibrationCommand () ;
6 byte buf [1 2 8] ;
7 f o r (i n t i i = 0 ; i i < buf_array−>Length ; i i ++)
8 buf [i i] = buf_array [i i] ;
9 SendToDevice (buf , buf_array−>Length) ;

56

Software Components

10 LOG_MESSAGE(" Nerveana : Ca l i b r a t i on Command Sent ") ;
11 }
12 LOG_EXITING;
13 }
14

• SendTestCommand: This method creates the Test command calling the
creation function and send it to the hardware.

1 void DataGeneratorNerveana : : SendTestCommand ()
2 {
3 LOG_ENTERING;
4 {
5 array<Byte>^ buf_array = CreateTestCommand () ;
6 byte buf [1 2 8] ;
7 f o r (i n t i i = 0 ; i i < buf_array−>Length ; i i ++)
8 buf [i i] = buf_array [i i] ;
9 SendToDevice (buf , buf_array−>Length) ;

10 LOG_MESSAGE(" Nerveana : Test Command Sent ") ;
11 }
12 LOG_EXITING;
13 }
14

• SendStopCommand: This method creates the command to stop the Test
mode calling the creation function and send it to the hardware.

1 void DataGeneratorNerveana : : SendStopTestCommand ()
2 {
3 LOG_ENTERING;
4 {
5 array<Byte>^ buf_array = CreateStopTestCommand () ;
6 byte buf [3] ;
7 f o r (i n t i i = 0 ; i i < buf_array−>Length ; i i ++)
8 buf [i i] = buf_array [i i] ;
9 SendToDevice (buf , buf_array−>Length) ;

10 LOG_MESSAGE(" Nerveana : Stop Test Command Sent ") ;
11 }
12 LOG_EXITING;
13 }
14

• SendGetConfigurationCommand: This method creates the command to
get the hardware current settings and send it to the hardware.

57

Software Components

1 void DataGeneratorNerveana : : SendGetConfigurationCommand () {
2 LOG_ENTERING;
3 {
4 array<Byte>^ buf_array = CreateConfigurationCommand ()

;
5 byte buf [1 1 8] ;
6 f o r (i n t i i = 0 ; i i < buf_array−>Length ; i i ++)
7 buf [i i] = buf_array [i i] ;
8 LOG_MESSAGE(" Nerveana : CONFIGURATION Command Sent ") ;
9 }

10 LOG_EXITING;
11 }
12

4.1.6 How events works

There are few important moments in the life of a packet. They are born in the
hardware and through the USB cable they arrive in software where are captured
and transformed in graphical data to be plotted on the main screen. They are
exchanged using event triggers between the part that are involved in the process,
starting from the hardware and the overlapped structure up to the main plot. This
is done using events triggering and works as follows:

• A new packet comes from the hardware to the Overlapped structure

• DataGeneratorNerveana captures the packet and raise the OnNewDataAvail-
able event

• GUI captures the OnNewDataAvailable event and gets the values

• GUI feeds the RealTimeContentFilter with the new data

In detail the hardware module send four packets each second to the software and
as show in section 4.1.3 the packet size is 16384 bytes. This events triggering works
very quickly in order to not fill the buffer to the limit and do not cause a loss of
information. The following image simply depict the functioning.

58

Software Components

4.1.7 Data unpacking
At the beginning of this process the packet is captured from the main form in
charge to draw the EMG signals and all other useful information, and the data are
unpacked and stored inside different structure. While the next section explain how
the data are handled, this one is a step before and show how the unpack is done.
There are three functions that unpacks the data and are obviously related to the
three most important information:

1. EMG channels

2. NPIs values

3. Impedance

GetDataMatrixFromPacket

This function take all the EMG channels values from the packet, passed as an
argument from the raised event OnNewDataAvailable as seen in previous section.
Its purpose is to encapsulate all the data inside a matrix and to do so it make use
of a set of variables that points to the exact byte position of the EMG channels
inside the packet. For example a variable called mShiftChannelEMG1 is defined
and represent the starting point for the first EMG channel and, as can be deduced
from section 4.1.3, its value is 202. After 2000 byte, at position 2202 the packet
contains values of the second EMG channels and this position is stored inside the

59

Software Components

mShiftChannelEMG2 variable. This goes on for a bunch of variables but not only
for the EMG channels, a whole series of variables are defined to know where is
located each precise information. This part will be covered and discussed more in
detail in the next section.
What the function do next is iterating for the next one thousand sample and collect
the data. Successively they are converted to double and multiplied for a gain factor,
due to zoom feature (refer to chapter 4.3), and for a conversion factor of 0.2861 to
obtain the uV value.
In the following code sections there is a function called FindNextIndex that will be
discussed in chapter 4.3.

1 pr i va t e double [] [] GetDataMatrixFromPacket (NewDataAvailableEventArgs
packet , double gain , i n t zoomIndex)

2 {
3 double [] [] dataAva i lab le = new double [m_AcquisitionTracks . Count

] [] ;
4 f o r (i n t i i = 0 ; i i < dataAva i lab le . Length ; i i ++)
5 {
6 i n t maxValueAvailable = 1000 ;
7 i f (zoomLevels [zoomIndex] ∗ 4000 .0 < maxValueAvailable)
8 maxValueAvailable = (i n t) (zoomLevels [zoomIndex] ∗ 4000 .0)

;
9 dataAva i lab le [i i] = new double [maxValueAvailable] ;

10 FindNextIndex () ;
11 f o r (i n t j j = 0 ; j j < 2 ∗ maxValueAvailable ; j j += 2)
12 {
13 i n t pos = mShiftChannelEMG1 + lastK ∗ 2000 + j j ;
14 double va l = packet . Data . data8 [pos] + 256 ∗ packet . Data .

data8 [pos + 1] ;
15 dataAva i lab le [i i] [j j / 2] = (va l < 32768 ? va l : va l −

65536) / gainArray [(i n t) gain −1] ∗0 . 2861 ;
16 }
17 }
18 lastK = −1;
19 re turn dataAva i lab l e ;
20 }

GetDataMatrixFromPacketNPI

This function is used to collect the NPIs values from the packet. As the previous
function it make use of a variable, called mShiftChannelNPI1 that point to the
first NPI byte inside the packet and differently from the previous function it iterate
for eight times, that are the number of channels to which each NPI refers. Then it
collect the two byte value (NPIs sent as a int16 type) and the value is converted,

60

Software Components

no additional conversion are required. Also in this case there’s a function called
FindNextNPIIndex that will be discussed in chapter 4.3.

1 pr i va t e i n t [] GetDataMatrixFromPacketNPI (NewDataAvailableEventArgs
packet)

2 {
3 i n t [] dataAva i lab l e = new i n t [m_AcquisitionTracks . Count] ;
4 f o r (i n t i i = 0 ; i i < dataAva i lab le . Length ; i i ++)
5 {
6 i n t pos = mShiftChannelNPI1 + FindNextNPIIndex (i i + 1) ∗ 2 ;
7 i n t va l = packet . Data . data8 [pos] + 256 ∗ packet . Data . data8 [

pos + 1] ;
8 dataAva i lab le [i i] = va l < 32768 ? va l : va l − 65536 ;
9 }

10 re turn dataAva i lab l e ;
11 }

GetDataMatrixFromPacketImpedance

The last but not the least is the function for the impedance values. It has the same
behaviour of the previous function but it use the mShiftChannelImpedence variable
and also convert the value received in kOhm.

1 pr i va t e i n t [] GetDataMatrixFromPacketImpedence (
NewDataAvailableEventArgs packet)

2 {
3 i n t [] dataAva i lab l e = new i n t [8] ;
4 f o r (i n t i i = 0 ; i i < dataAva i lab le . Length ; i i ++)
5 {
6 i n t pos = mShiftChannelImpedence + FindNextNPIIndex (i i + 1) ∗

4 ;
7 i n t va l = packet . Data . data8 [pos]+ 256∗ packet . Data . data8 [pos

+1] ;
8 dataAva i lab le [i i] = (i n t) (va l ∗ 5 .8 / 1000) ; / / ((va l < 32768 ?

va l : va l − 65536)) ;
9 }

10 re turn dataAva i lab l e ;
11 }

All other real time informations, like led blinking, time, battery levels or number
of active channels are of course contained inside the packet but they’re taken by
the GUI only when’s needed using the appropriate variable for the number of bytes
to shift.

61

Software Components

4.1.8 Data queues

In order to understand how the data are handled I want to explain where they
are contained. The class defined for this purpose is RealTimeContentFilter and
also if it is not part of the communication library is used to contains the data
in the GUI part. The RealTimeContentFilter class contains many variables and
functions but the most important are three linked lists that are used to contains
data together with the Feed function. As seen in section 4.1.3 the hardware build
packets with a lot of information and software does not need to store all of it during
the real time visualization. What’s very important to the user and requires a special
management at each new packet are the EMG channels, NPIs and Impedance
values. That’s why the three linked list are:

• LinkedList<double[]> dataQueue: used to store the EMG channels that
must be drawn on the main screen.

• LinkedList<int> dataQueueNPI: the values of NPIs calculated by hardware.

• LinkedList<int> dataQueueImpedance: Impedance values detected by
hardware.

When the OnNewDataAvailable event is captured the Feed function is called and
the values are passed to the RealTimeContentFilter that add the three different
type of data to the three list. DataQueueNPI and dataQueueImpedence lists are
handled with FIFO (first in first out) queue management, using a variable to
determine the maximum buffer limit for the list, when the limit is reached a pop
operation is performed.
Unlike the other two the dataQueue made use of another queue management and
the important assumption on its task is: the user wants to look at the signal as
long as possible. Using a FIFO queue means having the EMG channels draw shift
left (or right, depending on draw) at each new packet. This is absolutely fine with
Impedance value and NPIs drawn on screen because the user just want to keep
looking at the last value but for EMG channels this is bad. The user want to
monitor at the channels and if the signal is moving he/she need to keep tracking
the signal with the eyes while it’s shifting out of the window. To overcome this
problem the idea is to keep a slots window and overwrite each slot at its specific
index location.
Suppose the user wants to monitor at the last five packets. As long as the buffer is
empty the Feed function keep filling the buffer.

62

Software Components

Figure 4.4: Buffer filling

Once the buffer is full the new packet does not push in and pop out the packet 1
but instead, it overwrites the packet 1 as shown in figure 4.5. The consequence of
this choice is that when a packet comes and is put inside the list, it stays at the
same exact position until a new packet takes its place. Supposing a slots window
of five slot, packet 1 at position 1 stands still for five packet and do not ever shift.
The operator does not need anymore to keep tracking the signal with the eyes.

63

Software Components

Figure 4.5: Buffer overwriting

The code of the function used to feed the three lists is the following

1 pub l i c void Feed2018a (double [] data , i n t NPI , i n t Impedence , double
VoltagePeak , i n t Delay)

2 {
3 t h i s . VoltagePeak = VoltagePeak ;
4 t h i s . Delay = Delay ;
5 i f (current_index == feedBuf f e rL imi t) empty = f a l s e ;
6 i f (empty) {
7 //At the beg inning you need to i n i t i a l i z e enough node in the

l i n k e d L i s t
8 i f (dataQueue . F i r s t == n u l l | | dataQueue . Count <

feedBu f f e rL imi t)
9 {

10 f o r (i n t i = 0 ; i < feedBuf f e rL imit −1; i++)
11 {
12 LinkedListNode<double [] > lastNode = new

LinkedListNode<double [] >(new double [2 0 0]) ;

64

Software Components

13 dataQueue . AddFirst (lastNode) ;
14 dataQueueNPI . AddFirst (0) ;
15 }
16 empty = f a l s e ;
17 dataQueue . AddFirst (data) ;
18 dataQueueNPI . AddFirst (NPI) ;
19 dataQueueImpedence . AddFirst (Impedence) ;
20

21 }
22 }
23 e l s e {
24 i f (current_index == feedBuf f e rL imi t) current_index = 0 ;
25 i n t i = 0 ;
26 LinkedListNode<double [] > nodeToSubst itute = n u l l ;
27 f o r (LinkedListNode<double [] > node = dataQueue . F i r s t ; node !=

n u l l ; node = node . Next)
28 {
29 i f (i == current_index)
30 {
31 nodeToSubst itute = node ;
32 break ;
33 }
34 i ++;
35 }
36 dataQueue . AddAfter (nodeToSubstitute , data) ;
37 dataQueue . Remove(nodeToSubst itute) ;
38 i = 0 ;
39 LinkedListNode<int > nodeNPIToSubstitute = n u l l ;
40 f o r (LinkedListNode<int > node = dataQueueNPI . F i r s t ; node !=

n u l l ; node=node . Next)
41 {
42 i f (i == current_index)
43 {
44 nodeNPIToSubstitute = node ;
45 break ;
46 }
47 i ++;
48 }
49 dataQueueNPI . AddAfter (nodeNPIToSubstitute , NPI) ;
50 dataQueueNPI . Remove(nodeNPIToSubstitute) ;
51 i f (dataQueueImpedence . Count > feedBu f f e rL im i t)
52 {
53 dataQueueImpedence . Clear () ;
54 }
55 dataQueueImpedence . AddFirst (Impedence) ;
56 }
57 current_index++;
58 }

65

Software Components

4.2 LoaderNerveana: Data serialization
Data storage in an important task for future evaluation. The EMGView8 software
must allow to open an old examination and show data and information exactly
as they were during the surgery operation and this could be possible thanks
to NerveanaContentFilter. This class is one of the two class the composes
the LoaderNerveana sub-project, together with the LoaderNerveanaPlugin
that contains the most important function for data loading used from the GUI.
NerveanaContentFilter is the real container of the data given the filenames of the
stored raw data, saved during the real-time visualization. Let’s start with order.

4.2.1 NerveanaContentFilter
This class is used to encapsulate the data for an offline visualization. The longer the
surgery operation, the more are the files that are stored, that’s why it’s associated
with a set of files. It uses a subclass called NerveanaStream to open a file stream
and manage file variable like number of packets, packet size, header position and
so on. NerveanaContentFilter define also a list of static variable that identify the
position of a specific information inside the packet. How it was shown in section
4.1.3 the packet has a specific byte position for each important information and
when data are loaded in software it must obtain the exact information it needs for
each packet of the file in order to reconstruct the same visual examination as if it
was real-time. Defining a set of position it ensure an easy pick inside the packet for
the specific value. Overwhelming the list it’s easy with dozens of position but not
all the details are useful for an offline visualization. Only index about information
the software must display are defined as position variable and are the following:

• PositionStimulationByte : 16202

• PositionGainByte : 16203

• PositionVolumeByte : 16204

• PositionChirpByte : 16205

• PositionAEMGByte : 16206

• PositionMuteByte : 16207

• PositionEventLED : 16208

• PositionExt12VByte : 16209

• PositionBatteryLed : 16210

66

Software Components

• PositionSDCardLevByte : 16211

• PositionActiveChannels : 16228

• PositionAudioToneByte : 16263

• PositionBatteryLevel : 16264

• PositionTime : 16274

• PositionUniqueHWID : 16280

• PositionEventFlags : 16309

From the list some important positions are missing, in particular EMG channels,
NPIs and Impedance but they’re defined directly inside the functions that make
uses of position. GetShiftsPerPacketDependingOnTrackIndex function take
an index value and return the exact location of the value inside the packet and is
used during the creation of a NerveanaContentFilter to determine which data will
be encapsulated in the object.

1 s t a t i c pub l i c i n t GetShiftsPerPacketDependingOnTrackIndex (i n t index)
2 {
3 switch (index)
4 {
5 case ChannelIndex . Header :
6 re turn 0 ;
7 case ChannelIndex . StimCurrent :
8 re turn 2 ;
9 case ChannelIndex . Gain :

10 re turn Posit ionGainByte ;
11 case ChannelIndex . EventLed :
12 re turn PositionEventLED ;
13 case ChannelIndex . StimLev :
14 re turn Pos i t i onSt imulat ionByte ;
15 case ChannelIndex . SDCardLev :
16 re turn PositionSDCardLevByte ;
17 case ChannelIndex . Mute :
18 re turn PositionMuteByte ;
19 case ChannelIndex . Volume :
20 re turn PositionVolumeByte ;
21 case ChannelIndex . Ext12V :
22 re turn PositionExt12VByte ;
23 case ChannelIndex . BatteryLed :
24 re turn Pos i t ionBatteryLed ;
25 case ChannelIndex . AudioTone :
26 re turn PositionAudioToneByte ;

67

Software Components

27 case ChannelIndex . NPI_1 :
28 re turn 16212 ;
29 case ChannelIndex . NPI_2 :
30 re turn 16214 ;
31 case ChannelIndex . NPI_3 :
32 re turn 16216 ;
33 case ChannelIndex . NPI_4 :
34 re turn 16218 ;
35 case ChannelIndex . NPI_5 :
36 re turn 16220 ;
37 case ChannelIndex . NPI_6 :
38 re turn 16222 ;
39 case ChannelIndex . NPI_7 :
40 re turn 16224 ;
41 case ChannelIndex . NPI_8 :
42 re turn 16226 ;
43 case ChannelIndex . Time :
44 re turn 16276 ;
45 case ChannelIndex .EMG_1:
46 re turn 202 ;
47 case ChannelIndex .EMG_2:
48 re turn 2202 ;
49 case ChannelIndex .EMG_3:
50 re turn 4202 ;
51 case ChannelIndex .EMG_4:
52 re turn 6202 ;
53 case ChannelIndex .EMG_5:
54 re turn 8202 ;
55 case ChannelIndex .EMG_6:
56 re turn 10202 ;
57 case ChannelIndex .EMG_7:
58 re turn 12202 ;
59 case ChannelIndex .EMG_8:
60 re turn 14202 ;
61 case ChannelIndex . IMP_1P:
62 re turn 16230 ;
63 case ChannelIndex . IMP_2P:
64 re turn 16233 ;
65 case ChannelIndex . IMP_3P:
66 re turn 16237 ;
67 case ChannelIndex . IMP_4P:
68 re turn 16241 ;
69 case ChannelIndex . IMP_5P:
70 re turn 16245 ;
71 case ChannelIndex . IMP_6P:
72 re turn 16249 ;
73 case ChannelIndex . IMP_7P:
74 re turn 16253 ;
75 case ChannelIndex . IMP_8P:

68

Software Components

76 re turn 16257 ;
77 case ChannelIndex .IMP_1N:
78 re turn 16231 ;
79 case ChannelIndex .IMP_2N:
80 re turn 16235 ;
81 case ChannelIndex .IMP_3N:
82 re turn 16239 ;
83 case ChannelIndex .IMP_4N:
84 re turn 16243 ;
85 case ChannelIndex .IMP_5N:
86 re turn 16247 ;
87 case ChannelIndex .IMP_6N:
88 re turn 16251 ;
89 case ChannelIndex .IMP_7N:
90 re turn 16255 ;
91 case ChannelIndex .IMP_8N:
92 re turn 16259 ;
93 case ChannelIndex .AEMG:
94 re turn PositionAEMGByte ;
95 case ChannelIndex . Chirp :
96 re turn Pos it ionChirpByte ;
97 d e f a u l t :
98 re turn 0 ;
99 }

100 }

From the function the index value is compared to the value defined inside the
ChannelIndex class that belong to a specific information. All the available
channel indexes are the following.

1 s t a t i c pub l i c c l a s s ChannelIndex
2 {
3 pub l i c const i n t Header = 0 ;
4 pub l i c const i n t StimCurrent = 1 ;
5 pub l i c const i n t Gain = 2 ;
6 pub l i c const i n t EventLed = 3 ;
7 pub l i c const i n t StimLev = 4 ;
8 pub l i c const i n t SDCardLev = 5 ;
9 pub l i c const i n t Mute = 6 ;

10 pub l i c const i n t Volume = 7 ;
11 pub l i c const i n t PowerLed = 8 ;
12 pub l i c const i n t Ext12V = 9 ;
13 pub l i c const i n t BatteryLed = 10 ;
14 pub l i c const i n t AudioTone = 11 ;
15 pub l i c const i n t NPI_1 = 12 ;
16 pub l i c const i n t NPI_2 = 13 ;
17 pub l i c const i n t NPI_3 = 14 ;
18 pub l i c const i n t NPI_4 = 15 ;

69

Software Components

19 pub l i c const i n t NPI_5 = 16 ;
20 pub l i c const i n t NPI_6 = 17 ;
21 pub l i c const i n t NPI_7 = 18 ;
22 pub l i c const i n t NPI_8 = 19 ;
23 pub l i c const i n t Time = 20 ;
24 pub l i c const i n t EMG_1 = 21 ;
25 pub l i c const i n t EMG_2 = 22 ;
26 pub l i c const i n t EMG_3 = 23 ;
27 pub l i c const i n t EMG_4 = 24 ;
28 pub l i c const i n t EMG_5 = 25 ;
29 pub l i c const i n t EMG_6 = 26 ;
30 pub l i c const i n t EMG_7 = 27 ;
31 pub l i c const i n t EMG_8 = 28 ;
32 pub l i c const i n t IMP_1P = 29 ;
33 pub l i c const i n t IMP_2P = 30 ;
34 pub l i c const i n t IMP_3P = 31 ;
35 pub l i c const i n t IMP_4P = 32 ;
36 pub l i c const i n t IMP_5P = 33 ;
37 pub l i c const i n t IMP_6P = 34 ;
38 pub l i c const i n t IMP_7P = 35 ;
39 pub l i c const i n t IMP_8P = 36 ;
40 pub l i c const i n t IMP_1N = 37 ;
41 pub l i c const i n t IMP_2N = 38 ;
42 pub l i c const i n t IMP_3N = 39 ;
43 pub l i c const i n t IMP_4N = 40 ;
44 pub l i c const i n t IMP_5N = 41 ;
45 pub l i c const i n t IMP_6N = 42 ;
46 pub l i c const i n t IMP_7N = 43 ;
47 pub l i c const i n t IMP_8N = 44 ;
48 pub l i c const i n t AEMG = 45 ;
49 pub l i c const i n t Chirp = 46 ;
50 }

Using a value between 0 and 46 allows to load the data specified by the ChannelIndex:
21 is used to load data about the first EMG channel, 12 is used for the NPI calculated
for the first channel, 2 is used to load the gain values during the entire operation
and so on. To be totally clear, the NerveanaContentFilter does not contain all
the data related to a surgery operation but just the one specified by the index.
Multiple content filter object are defined and each of them is related to a specific
information, creating a new NerveanaContentFilter means crossing all the saved
filenames, taking the value of each packet and store them inside an array.
The software uses a NervenaContentFilter for the EMG channels, one for the
impedance values, one for the NPIs and so on. The arrays are created when the
user choose to open an old file, in this case it select the exam with the apposite
window as shown in chapter 4.3 and the list of ".nrv" files is created.
The class contains also another important function called LoadData related to the
content filter and that given start and end time it return an array of type double

70

Software Components

containing all the values of the content filter information contained inside the set
of files.

LoaderNerveanaPlugin

This class is the other half part of this sub-project and is used in effect to load
the content filter and encapsulate it into another class which is more manageable:
Track class. This class is strictly related to the graphical user interface and will
be discussed in section 4.3.2 but using it as a black box the following code could
be discussed.

1 pub l i c TrackCo l l ec t ion LoadTracks (s t r i n g [] f i l enames)
2 {
3 List <s t r i ng > f i l e l i s t = new List <s t r i ng >() ;
4 f o r each (s t r i n g s in f i l enames)
5 {
6 f i l e l i s t . Add(s) ;
7 }
8 TrackCo l l e c t ion t ra ck s = new TrackCo l l e c t ion () ;
9 f o r (i n t i i = 0 ; i i < 47 ; i i ++)

10 {
11 NerveanaContentFi l ter ner = new NerveanaContentFi l ter (

f i l e l i s t , i i) ;
12 {
13 Track t r = new Track () ;
14 t r . ContentF i l t e r = ner ;
15 t r . Duration = ner . S igna lDurat ion ;
16 t r . T i t l e = ner . ChannelName ;
17 t r . UnitOfMeasurement = ner . Units ;
18 t r . RangeMax = ner . RangeMax ;
19 t r . RangeMin = ner . RangeMin ;
20 t r . S ta r t = 0 ;
21 t r . i sP layback = true ;
22 t r a ck s . Add(t r) ;
23 }
24 }
25 re turn t ra ck s ;
26 }

This above function is used to load the data stored into a list of tracks given a set
of files. The data are loaded defining a set of NerveanaContentFilter with different
index value, in detail using value between 0 and 46 as specified in the ChannelIndex
class. The content filter is then assigned to the track content filter and the object
is added to the list and returned to the graphical interface, who did the function
call. The following figure explain how the parts discussed are related.

71

Software Components

Figure 4.6: Loader Nerveana Relationships

4.3 NerveanaGUI: Graphic User Interface
This third section contains all the visualization part, from forms to draw library,
that are used in the graphical user interface. In general this third sub-project
define many forms or window used to allow a set of action to the operator, in
particular the action related to the use cases defined in section 3.1.4. The forms
has been designed using the toolbox included in Visual Studio 2017 and other
custom graphic objects created with drawing primitives in order to be as similar as
possible to the front panel of the main hardware module. Not all the windows will
be discussed but only the most important. The following list show almost all the
forms contained in the project

• frmMain: is used as main window for both the real-time and the offline
visualization. It include controls to let the user interact with the hardware
parameters and display the EMG channels. Implement the most part of this
sub-project, from alert algorithm to information display and is the core of the
GUI part.

• frmStartup: is the first screen that appear on launch, it allows the user
to access a specific part of the software, starting a new exam or manage
preference.

• frmSelectDoctor: is the real management window which the user can use
to create new doctor, new preference or make changes.

• frmSelectExam: is the window that show all the offline exam stored of the
local pc and allow to choose one of them for the offline visualization.

72

Software Components

• frmConfiguration: is the classic option tab that allow to make changes
related to the software, like theme or track colors, or access specific feature,
like change password or change backup path.

• frmConfirmCode: is the window used to verify user identity asking for the
password.

• frmChangePassword: allows the user to set a new password.

• frmExamDetail: this form appears at the end of a surgery exam and allows
to change personal data or to export a PDF report.

• frmInsertUpdateDoctor: is a simple window used to set or change doctor
personal data.

• frmInsertUpdatePreset: allows to select or change preference parameters
during the creation of a new set of hardware settings.

• frmMedicalDislaimer: shows and ask to accept a message of responsibility
for the use of the EMGView8

4.3.1 Analysis of Startup form

4.3.2 Analysis of Main form

The first window I want to analyze is the main form, in charge to draw signal
during real-time communication or offline examination, allow different action to the
user related to hardware command or to data visualization and display information
received from hardware or read from files.

73

Software Components

Figure 4.7: Main form

The main form appear in real-time as in figure 4.7 and the main sections shown
are:

A Soundtrack: this is the custom control defined to draw the EMG channels
and the response to the stimulation impulse. All about this class is explained
in section 4.3.2

B Control Panel: this panel contains a set of custom controls called virtual
knobs that allow the user to change parameters through the software, refer to
chapter 4.3.2 for all the information about.

C Led Panel: this panel contains custom leds that have the same blinking
behaviour of the hardware leds.

D Information Box: box where some informations are displayed during the
real-time visualization

E Action Panel: this last panel contains a set of button which are related to
particular features or graphic adjustment.

F NPI Panel: this panel contains the NPI value of each channel, drawn in a
rectangle and updated at each new packet.

74

Software Components

Control and Led Panel

As said in previous chapters is important to let the user feels like he/she is using the
hardware and this is done mostly for one reason: usability. Also if the target user
is a technician operator, the software wants to be simple to use and understand.
The double use mode (surgeon driven or IONM mode) requires that the operator
learn how to use hardware module and how knobs can be turned or pushed in order
to activate specific functionalities. Activating those functionalities or reproducing
the same behaviour using virtual knob does not require the operator to be trained
again from scratch. Without forgetting that the software must run on a touchscreen.
For this purpose two custom controls have been defined:

• Knob

• Led

Virtual knob must represent the knob as they are in hardware main module and
are drawn like in figure 4.8; a central circle show the value of the knob index,
while a crown of led surround it and is illuminated in green at the same index
position. Leds that surround the knob are interactive. The user can click on it to
set specified index position in hardware. This is done using the create command
method defined in section 4.1.5 and passing the selected values.

Figure 4.8: Virtual Knob

In control panel five knobs are defined: stimulation knob, chirp knob, waveform
vertical scale, AEMG knob and volume knob, each of them related to a specific
main parameters. In respect to the hardware the virtual knobs cannot be pushed,
that’s why the three physical knob (with turn and push use) have been substituted
with five virtual knobs. To better distinct the unit of measurements the stimulation
and chirp virtual knobs show the current mA and uV values. Remembering the
touchscreen use a feature has been implemented, allowing to change the knob using
a press and drag action. When a push is detected the virtual knob changes as in

75

Software Components

figure 4.9 and moving the finger right the value is increased, on the left instead the
value decreases.

Figure 4.9: Pushed virtual knob

Led custom control is also used singularly and not associated to a knob in the led
panel on the right-bottom part on the main form. Led in hardware have blink-
ing behaviour depending on the current situation: battery charging, stimulation
delivered, SD present or not, chirp threshold reached and so on and EMGView8
want to respect that behaviours in GUI. This is done mostly checking value of
the event flag contained inside the packet at position 16208 as defined in section
4.2.1. Depending of that information the stimulation led, beep led and chirp led
are updated. SD led, mute led, external supply charger led and battery led are
instead are updated using other position defined in the same section.

Information Box

The information box purpose is to show to user information related to the settings
he/she has chosen. Before a surgery exam start the operator choose the preference
that better fit his/her needs through the frmSelectDoctor. Those settings are in
part shown on screen.

Action Panel

On the left side on the main form there is the action panel, that contains different
button for activate specific function. In order:

1. Pause button: used to freeze the real-time visualization. Communication
keep running but the update of the draw of the EMG signals is stopped until
the pause button is clicked again.

76

Software Components

2. Zoom In button: used to enlarge the signal visualization. By default 25 ms
of signal are shown bu the scale can by changed on the fly.

3. Zoom out button: used to reduce the signal visualization and increase the
amount of time visualized on screen, Together with the zoom in button is
used to set the X-axis time scale.

4. Comment button: during real-time could happens that the operator needs
to keep track of a specific time moment, maybe just after some change or to
simply track the surgery procedure. To allow that this button is inserted and
when clicked a new window opens asking for a comment. The inserted text is
stored in a list and used to produce the PDF report at the end of the exam.

5. LarynxView button: this button was inserted after the request to open a
software used to communicate with a laryngeal webcam. A click simply start
a process of the defined software, provided by Neurovision.

6. Test button: as seen in chapter 3, the hardware can start the impedance
measurement with the activation of a test function. Via hardware this can be
done holding pushed the stimulation button while via software can be done
clicking this button, that using the SendTestCommand method activate the
test function.

7. Show NPI button: hide/show NPI values

8. Hide control panel button: hide/show control panel

9. Stop button: stop the communication and open the frmExamDetail to save
the exam and export the PDF report.

How the zoom works

From the action panel two buttons are related to zoom functionalities, changing
the horizontal time scale during real-time communication. As seen in section 4.1.8
a queue of double array manage the incoming packets and as we have seen at the
beginning it was handled like a FIFO stack and successively modified to overwrite
the older packet. How the two things are related? Well, the queue has a bound
limit called feedBufferLimit that identify the maximum number of packets that are
stored inside the list. This variable is changed from the zoom in and out buttons
and increases when the user wants to look at more packets at a time or decreases
if he/she prefer to have a closer look to the incoming packet. Knowing that each
second four packets come from the hardware when change the feeBufferLimit
accordingly. Zoom level can change from 0.25 s (one packet in buffer) up to 10
s (40 packet in the queue). The following images shows a single active channel

77

Software Components

feed with a sinusoidal signal thanks to a signals generator, with two different zoom
levels. The first plot 2.5 seconds that are the equivalent of 10 packets while the
seconds show 0.05 seconds that is a fifth of a packet.

Soundtrack

Like the OTComm library also Soundtrack library is proprietary of OTBioelettron-
ica, used by the company for its software with the specific purpose of drawing the
EMG signals. It provides a set of classes and functions that handle the signals

78

Software Components

drawing, from colors to vertical scale and is born with the intent to reproduce an
aspect similar to a multi-track audio editor like Audacity® or other sound editor.
The Soundtrack library define a custom control called Soundtrack that is used as
a container for the each signal draw which I will refer to with the name Track.
Track is a custom class used to encapsulate the content filter together with other
useful visualization variables, necessary for the signal draw. Not only, the library
defines also a class called GroupedTrack used to draw together a set of tracks.
Soundtrack did not implement all the requested features for EMGView8 software
but was an excellent starting point. In EMGView8 the track drawn in screen are
encapsulated in a grouped track to let them feel like they’re part of the same thing
because a set on single Track class are draw in a separate way and introduce a
different managing. In our case the tracks are similar, they belong to the same
recording module and I want to manage them as if they are the same object. I
don’t need to change the vertical scale or any other graphical parameters separately
for each track otherwise will be complex to distinguish the voltage scale and a
surgeon can confuse about the receiving data. Compacting them together create
more cohesion.
I want to mention that they’re still different Track class we can modify separately
and with each distinct parameters but the EMGView8 doesn’t need to loop for
each of them but just use the GroupedTrack when it make changes.

Track class

The Track class is our basic element for the visualization of a EMG channel. It
encapsulates the NerveanaContentFilter and define a set of functions for the draw
on screen of the data. There are two important variables that have been added at
the class for EMGView8 use: isGhost and dataGhost.
The isGhost variable is used to determine if the track is the usual EMG channel
or the response to a stimulation. All the channels are drawn during the real-time
visualization but when the operator is stimulating the soundtrack need to draw also
the response. Checking the event flag the software can determine if the stimulation
occurs and, in that case, fills the dataGhost array, that represent the stimuli
response for the specific channel. When dataGhost is not empty and the stimuli
occur the draw function are enabled to draw also the dataGhost in red color to
light up that those data are from a response to a stimuli. In detail the data about
the response are unpacked differently from the original because EMGView8 needs
to draw the data with a fixed zoom scale. The result is shown in the following
image:

79

Software Components

Figure 4.10: Ghost Track

In a second the hardware sends four packets but when the user has to look at the
ghost tracks he/she needs to have a close view to the form and the delay time of
the highest peak. Two modification have been done to allow this: first, we plot
only a packet at time. Each ghost track is in fact just 0,25 seconds, so the value
received are stretched to the entire screen and the response is evident. And second
an additional temporal bar are drawn to the bottom of the soundtrack with a
different time scale. On the right side a white rectangle is drawn for each track
displaying three important numbers:

• NPI value: calculated from the hardware module and contained in a packet.

• Delay: the delta time from the start of the stimuli and the time of the peak,
calculated in software.

• Voltage peak: the value in microvolt of the response peak.

Managing the active channels

At the very beginning of this project all the EMG channels were plotted on the
main screen but at some point the requirement changed, asking for plotting only
the active channels. The hardware send a packet containing data about all eight
channels so, the managing of this feature it had to be done on software. Fortunately
it sends instead a byte that specify the active channels.
To do that an index variable was defined to help the algorithm in shifting inside

80

Software Components

the packet to the correct byte position. As seen in section 4.1.7 the GetDataMatrix
function made use of a variable called lastK that, multiplied by 2000, represent
the byte position for the active channel to unpack. The manage of lastK variable
is done in FindNextIndex method and works as follow.

1 pr i va t e void FindNextIndex ()
2 {
3 i n t k ;
4 f lagFound = f a l s e ;
5 whi le (f lagFound == f a l s e)
6 {
7 f o r (k = lastK + 1 ; k < 8 ; k++)
8 {
9 i f (ActiveChannelsArray [k] == 1)

10 {
11 lastK = k ;
12 f lagFound = true ;
13 re turn ;
14 }
15 }
16 lastK = −1;
17 }
18 }

Let’s suppose only three sensors are connected: 1, 3 and 5. The hardware sends
all eight channels but the software must discriminate the unused position and
take only values about channel 1, channel 3 and channel 5. In GetDataMatrix the
byte position shifts based on lastK variable, that is set inside the FindNextIndex
function, called before the unpacking. FindNextIndex use a support array of
eight integer to know if the channel is active or not. The integer array is called
ActiveChannelsArray and can contain two value:

• 0 : if the channel is not active

• 1 : if the channel is active

In our example situation the array values are:

10101000

Starting from the last active channel, the function loop inside the array looking for
the next "1" and update the variable’s value. The same approach has been applied
for the NPIs and Impedance values of the active channels bu to not overlap another
function were created: FindNextNPIIndex.

81

Software Components

High Stimulation warning message

During a real-time examination the operator could require to increase the stimula-
tion level over safe value. This can be done only if the preference selected for the
exam allow to set stimulation over 5 mA, that is acceptable from a clinical point of
view but needs to be explicitly confirmed from the user. For this purpose comes up
the needs to create a custom Messagebox with non-blocking functionality that ask
the operator to confirm his/her choice. The problem of the usual messagebox is
that it appears on top on any other windows and freeze their functionalities until a
choice, usually Yes/No, is selected. During a real-time operation this is a problem
because it could block the main thread in charge to unpack the data and let the
buffer fill to the limit. The consequence is that after a choice, when the message
disappears, the main form is stucked and fails to resume the communication. To
avoid this problem the following code has been written.

1 i f (counter_high_stim >= 10 && ! highst imFlag)
2 {
3 counter_high_stim = 0 ;
4 i f (ledKnobStimulat ion . mil l iAmpereValue > 5 && ! highst imFlag)
5 {
6 frmHighStimAlert frm = new frmHighStimAlert (t h i s) ;
7 frm . TopMost = true ;
8 Invoke (new MethodInvoker (de l e ga t e () { HideAll () ; })) ;
9 frm . ShowDialog () ;

10

11 i f (frm . _resu l t == true)
12 {
13 counter_high_stim = 0 ;
14 highst imFlag = true ;
15 ledKnobStimulat ion . LedColor = Color . Red ;
16 ledKnobStimulat ion . ValueColor = Color . Red ;
17 } e l s e {
18 counter_high_stim = 0 ;
19 Invoke (new MethodInvoker (de l e ga t e () { UpdateStimTo5mA () ;

})) ;
20 highst imFlag = f a l s e ;
21 }
22 Invoke (new MethodInvoker (de l e ga t e () { ShowAll () ;
23 checkBoxPelvic . V i s i b l e = true ;
24 checkboxPedic leScrew . V i s i b l e = true ; })) ;
25 }
26 } e l s e {
27 counter_high_stim++;
28 }
29 i f (h ighst imFlag && ledKnobStimulat ion . mil l iAmpereValue < 5)
30 {

82

Software Components

31 highst imFlag = f a l s e ;
32 ledKnobStimulat ion . LedColor = Color . Green ;
33 ledKnobStimulat ion . ValueColor = Color . White ;
34 checkboxPedic leScrew . BackColor = SystemColors . Control ;
35 checkBoxPelvic . BackColor = SystemColors . Control ;
36 }

frmHighStimAlert is a custom form defined with two simple buttons to let the
user accept the consequences and no other way to escape it. The method is simple:
it asks for confirmation and if this has not been given, it reverts and set back the
stimulation to 5 mA. The new window is showed on top of main form to which all
controls contained are hidden using HideAll function, invoked on another thread.
To emphasize the risk, if the user choose to increase the stimulation the virtual
knob color change to red.
The highstimFlag variable is used to set the high stimulation condition because
the user can always change the stimulation manually back under 5 mA but the
EMGView8 software must ask for confirmation each time the stimulation is over
the threshold. The counter_high_stim variable helps in detecting the condition.

Figure 4.11: High stim alert window

Main form in examination mode

During offline examination the main form appears a bit different, part of the action
panel is cleared from unusable button while other appears. Another new custom
control is used to display information and in general the new sections are:

83

Software Components

Figure 4.12: Offline review main form

A Temporal scrollbar: a new custom control, drawn as a ruler to illuminate
the time section. On the left size the NPI scale is shown, starting from 100
which is the lower value to activate the NPI event up to the maximum NPI
event recorded for the exam. A set of red and blu dots are drawn in the
middle part and refer to specific even or odd channel. The 4.13 will explain
this feature. Moving cursor over the dots open a tooltip and display the NPI
value. There’s also a small slider that interact with the soundtrack and allow
to move along the signal duration.

B Media Player Box: a box where some button are displayed in order to slide
the exam like a sound track. Action permitted are: Play, Stop, Fast forward,
Slow forward and Go at Begin.

Led bulbs in right Led Panel as well as the knobs in Control Panel change value
according to the control value at that specific time moment. All information are
stored in file at specific position of each packet as described in section 4.6 and
this is used to load a set of track from the file in which each track belong to a
specific information. Once the software have these tracks, the EMG channel tracks
are loaded in soundtrack for examination while the others are hidden and used
just to update the control position. For the led bulbs the data are not stored in
dedicated tracks but loaded in different double array to be easily retrieved. To do
so, two custom event handler are defined: ledBulbUpdated and knobUpdated,
together with two custom event arguments:

84

Software Components

• knobChangedEventArgs: used to relate the virtual knobs with the sound-
track. While the soundtrack horizontal bar is moving the event arguments are
filled with the appropriate information and the knobUpdated event is raised.
The main form capture the event, unpack it and update the virtual knobs
values.

• ledBulbChangedEventArgs: used to relate the led bulbs with the sound-
track. While moving the horizontal bar, as in previous case, the event argu-
ments are filled with appropriate attributes and the ledBulbUpdated event is
raised. The main form capture the event, unpack it and update the led bulbs
values.

The two custom event arguments are defined as follows, with a value for each bulb
or knob:

1 pub l i c c l a s s knobChangedEventArgs : EventArgs
2 {
3 pub l i c i n t gain { get ; s e t ; }
4 pub l i c i n t s t imu la t i on { get ; s e t ; }
5 pub l i c i n t ch i rp { get ; s e t ; }
6 pub l i c i n t aemg { get ; s e t ; }
7 pub l i c i n t volume { get ; s e t ; }
8 }
9 pub l i c c l a s s ledBulbChangedEventArgs : EventArgs

10 {
11 pub l i c i n t ledStim { get ; s e t ; }
12 pub l i c i n t ledBeep { get ; s e t ; }
13 pub l i c i n t ledChirp { get ; s e t ; }
14 pub l i c i n t ledImpedance { get ; s e t ; }
15 pub l i c i n t ledExt12V { get ; s e t ; }
16 pub l i c i n t l edBatte ry { get ; s e t ; }
17 pub l i c i n t ledMute { get ; s e t ; }
18 pub l i c i n t ledSD { get ; s e t ; }
19 }

With the following functions the arguments are filled and then the event is raised.
In UpdateKnob software takes the values inside the content filter of the knob tracks,
at the specified time, and it fill the event’s arguments. Once the event is captured
events argument can be unpacked ad used as value for the knob.

1 pub l i c event EventHandler knobUpdated ;
2 pr i va t e void UpdateKnob ()
3 {
4 knobChangedEventArgs args = new knobChangedEventArgs () ;

85

Software Components

5 args . ga in = (i n t) knobTrack [1] . ContentF i l t e r [Convert . ToInt32 (
StartTime)] ;

6 args . s t imu la t i on = (i n t) knobTrack [0] . ContentF i l t e r [Convert .
ToInt32 (StartTime)] ;

7 args . ch i rp = (i n t) knobTrack [4] . ContentF i l t e r [Convert . ToInt32 (
StartTime)] ;

8 args . aemg = (i n t) knobTrack [3] . ContentF i l t e r [Convert . ToInt32 (
StartTime)] ;

9 args . volume = (i n t) knobTrack [2] . ContentF i l t e r [Convert . ToInt32 (
StartTime)] ;

10 t h i s . knobUpdated (th i s , a rgs) ;
11 }

In UpdateLedBulb software takes the values contained in its dedicated array and
use it to fill the event arguments. The arrays are contained in the Soundtrack
and filled during the file opening, in particular the tracks are loaded and all the
data inside the content filter are put into the arrays for an easy access. To access
a led bulb value at the specified moment the time is used as an index but first
multiplied by four because of the sampling rate. Some more checks are done to
insert information about ledChirp, ledBeep and LedStim because they’re related to
the value in the eventFlag. On the other side there’s the function that unpack these
arguments. This function is a bit more complex because it need to associate the
value retrieved to the color of the led that could have four different value: green,
orange, red and black together with its blinking behaviour.

1 pub l i c event EventHandler ledBulbUpdated ;
2 pub l i c double [] eventFlagArray ;
3 pub l i c double [] ledBulbSD ;
4 pub l i c double [] ledBulbMute ;
5 pub l i c double [] ledBulbExt12V ;
6 pub l i c double [] ledBulbBattery ;
7 pr i va t e void UpdateLedBulb ()
8 {
9 ledBulbChangedEventArgs args = new ledBulbChangedEventArgs () ;

10 i n t eventFlag = args . ledMute = (i n t) eventFlagArray [Convert .
ToInt32 (StartTime) ∗ 4] ;

11 switch (eventFlag)
12 {
13 case 0 :
14 args . ledChirp = 0 ;
15 args . ledBeep = 0 ;
16 args . ledStim = 0 ;
17 break ;
18 case 1 :
19 args . ledChirp = 0 ;
20 args . ledBeep = 0 ;

86

Software Components

21 args . ledStim = 0 ;
22 break ;
23 case 2 :
24 args . ledChirp = 0 ;
25 args . ledBeep = 0 ;
26 i f (f l a sh ingLed == 0)
27 {
28 f l a sh ingLed = 1 ;
29 args . ledStim = 1 ;
30 } e l s e {
31 f l a sh ingLed = 0 ;
32 args . ledStim = 0 ;
33 }
34 break ;
35 case 4 :
36 args . ledChirp = 0 ;
37 i f (f l a sh ingLed == 0)
38 {
39 f l a sh ingLed = 1 ;
40 args . ledBeep = 1 ;
41 } e l s e {
42 f l a sh ingLed = 0 ;
43 args . ledBeep = 0 ;
44 }
45 args . ledStim = 0 ;
46 break ;
47 case 8 :
48 i f (f l a sh ingLed == 0)
49 {
50 f l a sh ingLed = 1 ;
51 args . ledChirp = 1 ;
52 } e l s e {
53 f l a sh ingLed = 0 ;
54 args . ledChirp = 0 ;
55 }
56 args . ledBeep = 0 ;
57 args . ledStim = 0 ;
58 break ;
59 }
60 args . ledSD = (i n t) ledBulbSD [Convert . ToInt32 (StartTime ∗4)] ;
61 args . ledMute = (i n t) ledBulbMute [Convert . ToInt32 (StartTime ∗4)] ;
62 args . ledExt12V = (i n t) ledBulbExt12V [Convert . ToInt32 (StartTime ∗4)

] ;
63 args . l edBatte ry = (i n t) ledBulbBattery [Convert . ToInt32 (StartTime

∗4)] ;
64 t h i s . ledBulbUpdated (th i s , a rgs) ;
65 }

87

Software Components

4.3.3 Analysis of ExamDetail form
The ExamDetail form is what appears when the surgery operation is completed
and the user ask to save the data. In this window operator can insert the patient
personal data (first name and last name) or insert the title he/she prefer for the
examination, he/she can delete or modify the comments that has been inserted
during the exam, look at the screenshot taken or produce the PDF report. On
the top part of the window a graph is shown, displaying all events that has been
captured in real-time and that will be explained in next few lines.

Figure 4.13: ExamDetail form

Events

I take advantage of this window to explains a feature that has been asked from
customers during the design of this project: the need of detecting particular events.
This need is not related to a real-time behaviour from the software but in order to
have a wide view of the exam when the PDF Report in produced. The are three
type of event:

• a comment: at any moment, as show in Action Panel, the operator can click
on a button and insert a text. The comment is saved in a list and retrieved
by frmExamDetail at the end of the exam. Let’s suppose the operator wants
to take notes of a particular moment: "Preparing the stimulator", "Applying
the sensor" and so on.

• channel NPI over 100:

88

Software Components

– odd channel

– even channel

In both case the check is the same, the software must detect when an NPI
value of a channel is over 100, that is the value calculate from Neurovision
after hundreds of test to know that the response to the stimuli is significant.

A specific class was define to encapsulate all useful information and all these
three event are stored and plotted in a time graph to illuminate the moment when
something happened. A surgery operation can last a long time and can be confusing
to look for the right spot.

4.3.4 Analysis of SelectDoctor form

SelectDoctor window is used to choose a preference to start the exam with. On
the left side a listview displays all doctors that are registered into database and
to each of them on the right side another listview show the preferences. Many
buttons allow the user to insert a new doctor, modify or delete an existing one or
to import and export a doctor structure. In this last case software read or write
an XML file filled with doctor information and preferences. Other buttons are
instead related to the preference setup, the set of hardware configuration, and
allow to create a new one, modify or delete an existing one or to clone a preference
of a doctor into another doctor. The card drawing of the two listview is custom,
while the doctor card is very simple, the preference card want to give an overview
of the most important parameters set inside it. To do so three circles are drawn
to represent the three main important knobs while other important background
parameters are written.

89

Software Components

Figure 4.14: SelectDoctor form

4.3.5 Privacy

From the very beginning of this project customer asked to worry about privacy
related to all data belonging to the patients. In EMGView8 most of the data
belongs to the exam itself and the EMG channels, that can be opened effectively
only using the LoaderNerveana, that knows the protocol and how data are stored
and is able to load the EMG signal and plot the data. Anyone can look inside
the computer hidden directories and find an exam but also with the file is almost
impossible to interpret it without EMGView8. Anyway to leave no track at all and
don’t allow to associate the directory to the patient all the files stored and all the
directories created are created with random name string. In addition it was taken
into consideration to let the user access the data and the preference configuration
through the software only with the use of a simple password. The password chosen
is a four digit password, saved inside the NerveanaRegistry and encrypted with
SHA256. This means that if someone access patient data it’s intentional and
punishable by law. All other considerations that include the database are described
in section 4.4. The form used to ask the password is the following:

90

Software Components

Figure 4.15: Password form

4.4 Database and NerveanaRegistry
This is the last subsection and during this section are gonna be explained the
choices made for the database implementation. A database is essential for the use of
the EMGView8 software, as we have seen many information needs to be stored on
the local machine and in section 3.3.3 has been defined three important element to
take care of: Surgeon, Exam and Preference. Why the patient was not considered?
Essentially for privacy reason. During the saving of the exam data of patient are
not mandatory but they can be optionally added together with a comment. Those
three cited above components have led the design of the database tables and all
the attributes definitions. To access the database the library System.Data.SQLite
was used to create and execute SQL commands. To read the data has been made
use of SQLiteDataReader class together with DataTable structure.

Let’s exploit each main element.

Surgeon table identifies the man in charge of using the hardware during the
surgery operation. The software do not care about the correctness of surgeon’s data
but use it as an identifier. When the operator select for an Exam or a Preset
he/she want to understand who it belongs to. It’s clear that the Surgeon is our key
element for the database design and needs to be linked with other two tables. How
to identify the Doctor? Neurovision Medical Products did not set any constraint
and showed itself to be inclined to privacy care. During the surgery operation
is not always the surgeon itself to use the software but a technical operator so
the table was defined as simple as possible, just considering first name and last name.

91

Software Components

Exam is the second table considered and have to link together information
about the patient, the surgeon and the stored files. For this purpose it was decided
to add a foreign key to the doctor id and create the exam table with four others
important attributes:

• First name and last name of the patient

• Comments about the exam itself

• Name of the folder that contains the recorded files

Information about the patient are optional and can be inserted before the data are
saved. The name of the folder is probably the most important attributes of this
table and is used to load the data during the offline visualization. The path to the
main folder is stored inside the registry and is read from the EMGView8 software.
Then the folder’s name is combined to create real path to the desired exam. This
is completely transparent to the user because the software itself generate a random
string name for the directory and a random string for each file to store. Those
name must be stored in database to know which files open to access an exam.

Presets table is our last table. For each surgeon a set of preference need to
be stored and he/she can create or modify them as he/she prefer based on the
hardware settings needed. Among the three tables this is the one with more fields
because it stores all the variables that can be loaded inside the hardware main
module during the operation startup, the main and the background parameters
explained in section 3.10. The table need also to be linked to the doctor table
because each preference belongs to a specific surgeon and to him/her only

In figure 4.16 are shown the three tables.

92

Software Components

Figure 4.16: Database tables

On software side some important variables need to be stored and accessed
frequently and for this purpose a dedicated class has been defined: NerveanaReg-
istry. This class define three custom classes:

• RegistryBooleanValue

• RegistriStringValue

• RegistryIntValue

These three classes contain a variable associated to a registry key. NerveanaRegistry
allows to save on local machine registry a list of important variable and access
them quickly. Variable saved are related to preference default values, folder paths,
brush size and colors, font size, password, selected theme and so on.

93

Chapter 5

Conclusions

This project was the real test of fire to me, the first true approach to the real
world and allows me to learn something new and very specific. When you study
computer engineering you faces many topics, from programming to network and
telecommunication, from algorithm to graphics or data manage and also encryption,
communication protocol, web programming, server managing and so on without
really knows where you will dedicate and learn the most. This was the first real
project where you feel insecure in receiving a lot of new updates to code but also
excited when you got answered and you feel the customers happy about how you
have managed a situation.
Dedicating to this project made me put my hands into very different sections.
Starting from the two libraries proprietary of OTBioelettronica, Soundtrack and
OTComm, one related to the signals draw and the other to the hardware communi-
cation, transformed and included in the new project. Moreover, all the GUI parts
and the creation of custom controls, out of the toolbox, or the dealing with the
file interpretation. Without forgetting the database, the privacy section and the
password management. I followed this project at 360° and under all points of view,
I didn’t even know how to program in C# when all of this started.
The software is not finished yet, all the system is in clinical test and probably so
much new updates will come and I can guess some of them.

1. New hardware commands: the firmware, as well as the software, is in constant
change and will be modified. If any new feature will be added on firmware it
will probably need to be activated, this means that it require a new command
to set it or, in alternative, it can be handled as a new background parameter to
care about during startup. It will probably comes a new command to activate
or deactivate a notch filter and to choose if filter 50 Hz or 60 Hz.

2. Offline ghost track visualization: some work still needs to be done for the
offline examination, a feature that can be implemented could be the offline

94

Conclusions

visualization of the ghost track or in alternative, the NPI value while temporal
scrollbar slides.

3. Software sound system: at the moment only the hardware play sound during
the surgery operation but what if also the software emits alert?

4. Sound tones assignment: inside the hardware main module a set of sounds is
defined and attached to particular event. A new features could be let the user
choose how to relate sound to event.

95

Bibliography

[1] VandenBos and Gary R. «evoked potential (EP). APA dictionary of psychology
(2nd ed.).» In: (2015), p. 390 (cit. on p. 4).

[2] L Dıaz Rodrıguez, M Varga, J K Wolter, and U Pliquett. «Impedance as
guidance for electrode placement in intraoperative monitoring of nerve fibers».
In: Journal of Physics: Conference Series 434 (Apr. 2013), p. 012025. doi:
10.1088/1742-6596/434/1/012025. url: https://doi.org/10.1088%
2F1742-6596%2F434%2F1%2F012025 (cit. on p. 10).

[3] Saed Moradi, Esmaeel Maghsoudloo, and Reza Lotfi. «A new approach to
design safe and reliable electrical stimulator». In: International Journal of
Biomedical Engineering and Technology 15 (Sept. 2014), pp. 305–316. doi:
10.1504/IJBET.2014.064820 (cit. on p. 21).

[4] Stefan Hansen Anna Karilainen and Jorg Muller. «Dry and Capacitive Elec-
trodes for Long-Term ECG Monitoring.» In: (Nov. 2015) (cit. on p. 24).

96

https://doi.org/10.1088/1742-6596/434/1/012025
https://doi.org/10.1088%2F1742-6596%2F434%2F1%2F012025
https://doi.org/10.1088%2F1742-6596%2F434%2F1%2F012025
https://doi.org/10.1504/IJBET.2014.064820

Acknowledgements

Mi fa strano pensare di essere alla fine di questo percorso, come se un percorso
dovesse per forza avere una fine. Probabilmente cambiamo strada senza nemmeno
rendercene conto e ogni volta ci portiamo dietro qualcosa in più nel bagaglio. Se
così è, allora sto per lasciare questo sentiero impervio per una strada, credo, meno
dissestata. Ogni buona strada che si rispetti però ha salite e discese e spero che i
passi percorsi fino a qui abbiano preparato le mie gambe a dovere.
Sicuramente non sarei qui senza alcune delle persone che hanno fatto qualche
passo insieme a me. Prima di tutti ringrazio Paolo, per aver camminato le ultime
miglia con me, per avermi condotto e spronato, probabilmente ho imparato più
nel guardarti lavorare che in interi esami. Ringrazio i miei genitori, per i sacrifici
che hanno fatto e per avermi permesso di intraprendere questa strada. Ringrazio
Eugenio, senza il quale starei ancora cercando di passare Fisica II e tutti gli amici
con cui ho condiviso ore in biblioteca e momenti felici per tirarsi su di morale dopo
un esame non passato. Infine ringrazio Marta per essere stata la luce più forte,
quando tutto intorno si faceva troppo buio.

Voglio finire queste pagine con un proverbio a cui ho ripensato più e più volte.
Grazie al quale ho capito che va bene non farcela al primo colpo, che ci vuole tempo
per imparare, che non importa se si sbaglia e che nessuno nasce pronto.

“Ciò che cresce lentamente mette radici profonde”

97

	Dedication
	Acronyms
	Introduction
	Intraoperative Nerve Monitoring Methodology
	General overview
	IONM principles
	IONM methods
	State of the art of IONM devices

	System Overview
	System requirements
	The existing system
	Hardware & firmware requirements
	Software requirements
	Use cases scenario

	Parameters
	System implementation
	Hardware & firmware
	Noteworthy features
	Software implementation
	Software modules

	Software Components
	Hardware communication
	Critical aspects
	Communication protocol
	Packet description
	NerveanaComm classes
	DataGeneratorNerveana
	How events works
	Data unpacking
	Data queues

	LoaderNerveana: Data serialization
	NerveanaContentFilter

	NerveanaGUI: Graphic User Interface
	Analysis of Startup form
	Analysis of Main form
	Analysis of ExamDetail form
	Analysis of SelectDoctor form
	Privacy

	Database and NerveanaRegistry

	Conclusions
	Bibliography

