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Abstract

In statistical genetics, the exact test is of fundamental importance to assess whether,
in a population, genotypes are distributed according to the Hardy-Weinberg law.
Genetic variables are usually filtered on the basis of exact test results to avoid
genotyping errors, which can negatively affect subsequent analyses in genetic
epidemiology, ecology, forensics among others. It is used to test for statistical
independence of the different alleles within the same locus. Given this importance,
it is useful to understand which are the current tools to calculate it and how efficient
they are. For a bi-allelic context it is possible to use asymptotic tests, such as
the chi-square test. Widening the point of view and taking into account more
alleles the data are more scattered within the genotype matrix and the exact test
is the most reliable. This involves using the probability of the genotype counts you
are observing, and then extracting the final p-value from which you can deduce
whether or not there is evidence for deviation from equilibrium. All this comes to
a very high precision which is, however, at the expense of performance. A further
step is to consider the X chromosome, where the different conformation of the
two sexes causes considerable computational difficulties. In this master thesis,
the network algorithm available for the autosomes has been extended for the X
chromosome, achieving spectacular improvements in computation time with respect
to state-of-the art enumeration algorithms, avoiding the repetition of calculations
that can be stored and taking advantage of the recursive technique. We analysed
complete chromosomes of the 1,000 Genomes Project in order to evaluate exact
algorithms and results for autosomal and X chromosomal variants with two or more
alleles. Its functioning has been verified first of all in terms of final results with the
few tools currently available, with excellent outcomes. Subsequently a performance
analysis has highlighted the great usefulness of the result achieved, reducing by
several orders of magnitude the computation time to precise values. In some cases,
an analysis lasting more than 6 hours reduced to a few seconds to obtain the same
output values. This is an excellent step forward that delivers an interesting new
tool enabling efficient exact Hardy-Weinberg testing for X chromosomal variants
up to at least five alleles.
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Chapter 1

Introduction

1.1 Context

“Life as we know it is specified by the genomes of the myriad of organisms with
which we share the planet. Every organism possesses a genome that contains the
biological information needed to construct and maintain a living example of that
organism. Most genomes, including the human genome and those of all other
cellular life forms, are made of DNA (deoxyribonucleic acid) but a few viruses have
RNA (ribonucleic acid) genomes. DNA and RNA are polymeric molecules made
up of chains of monomeric sub-units called nucleotides”.
With these words Brown (2002) begins his book, The Human Genome, in which he
introduces several concepts that are of fundamental importance for understanding
what will be explained later. DNA is a fundamental junction point in a hierarchy
(see Figure 1.1) which, starting from the human being in general, reaches down to
the individual genes of different forms. Only having some concepts clear, which will
now be exposed, it will then be possible to better understand the field of statistical
genetics and reach useful results from different points of view.
DNA appears in a fairly stable and particular structure called double helix and is
organized into chromosomes. On the upper level there is the chromosome which
is composed of proteins associated with a single DNA molecule. The DNA or
RNA traits make up the genes, or the hereditary molecules that transfer the traits
to the offspring. Of fundamental importance is the difference between DNA and
genes: while DNA is a chemical structure that stores genetic traits, on the other
hand genes are small pieces of DNA from which a specific trait of the individual is
obtained who owns it (Panawala, 2017).
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1 – Introduction

Figure 1.1: Hierarchical structure DNA (from National Human Genome Research
Institute)

DNA

Deoxyribonucleic acid (DNA) is a nucleic acid which contains the genetic informa-
tion necessary for the biosynthesis of RNA and proteins, essential molecules for
the development and correct functioning of most living organisms and for their
reproduction. From a chemical point of view, DNA is an organic polymer made
up of monomers called nucleotides. All nucleotides are made up of three basic
components: a phosphate group, deoxyribose, a pentose sugar and a nitrogen base.
The latter binds to deoxyribose with an N-glycosidic bond. There are four nitroge-
nous bases that can be used in the formation of nucleotides to be incorporated
in the DNA molecule: adenine (A), guanine (G), cytosine (C) and thymine (T),
while in RNA, instead of thymine, uracil (U) is present. It is possible to define
DNA as an antiparallel oriented and complementary polynucleotide chain. These
bases are arranged in different orders in order to store the genetic information.
The order of the nucleotide sequence determines the characteristics of the genes
that form part of it. Two polynucleotide chains are joined together by hydrogen
bonds between complementary base pairs. This process is called complement base
pairing and it produces a doublestranded DNA molecule where each strand is
complementary. Doublestranded DNA is further coiled to form a double-helix
structure (see Figure 1.2). The two strands of a double-helix run into opposite
directions, making them antiparallel. The asymmetric ends of the strand are called
3Í and 5Í ends. An organism’s complete set of DNA is called a genome (Panawala,
2017).

2
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1 – Introduction

Figure 1.2: DNA is a double helix formed by base pairs attached to a sugar-
phosphate backbone (from U.S. National Library of Medicine)

The human genome consists of two different parts, which together create the
typical element of the genomes of all multicellular animals:

• the nuclear genome, comprise about 3.2 million DNA nucleotides, divided into
24 linear molecules.

• the mitochondrial genome is a circular DNA molecule of more than 16 thou-
sands nucleotides, multiple copies of which are found in mitochondria, which
are small organs involved in cellular respiration (Brown, 2002).

Gene
Going further down the hierarchy, we find the gene which is a region (locus) or
a specific nucleotide sequence on the DNA strand. Genes encode a amino acid
sequence of a specific protein.
Genetic instructions are transferred to offspring with reproduction thanks to genes,
which are considered as hereditary molecular units. Genes are expressed by means
of mRNA (messenger RNA), which encodes and transports information during
transcription from DNA. This is certainly the cornerstone of molecular biology.
The pioneer of these studies was, in 1860, Gregor Mendel, who managed to express

3
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1 – Introduction

the concept of gene and to give a model of inheritance through many famous
experiments. The whole theory developed by Mendel is very interesting to get
to the bottom of the biological concepts from which we will start in this study.
Despite this, the theory is very detailed and, for this reason, it was decided not
to deal with it since it is not the central objective of the thesis that we want to
pursue (Panawala, 2017).

Figure 1.3: Genes are made up of DNA, each chromosome contains many genes
(from U.S. National Library of Medicine)

Allele
In nature, some genes occur in a variety of different forms, located in the same
position, or genetic locus, on a chromosome. Each variant form of a gene is called
an allele. Organisms that have two alleles are called diploids; these include humans
with one allele inherited from the father and one from the mother. Each pair of
alleles represents the genotype of an individual for a specific gene. The genotypes
are described as homozygous if they consist of two identical alleles in a given
locus (AA or aa) and as heterozygous if the two alleles differ (Aa). One of the
fundamental elements to which alleles contribute is the phenotype, that is the
external aspect, of the organism.
Alleles can be dominant or recessive. When an organism is heterozygous at a
specific locus and carries a dominant allele and a recessive allele, the organism will
express the dominant phenotype (from Learn Science at Scitable).

Autosomes and sex chromosomes
The human being has a total of 46 chromosomes, 23 pairs, which can be divided
into two categories: one pair of sex chromosomes (XX or XY) and 22 pairs of

4
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1 – Introduction

autosomes.
The non-sexual chromosomes present in organisms are called autosomes. In

humans there are 22 series of autosomes; they are labeled or referenced numerically
from 1 to 22 (see Figure 1.4), depending on some properties such as shape and size.
These deal with the transfer of genetic information from parents to their offspring,
in fact they regulate all the inheritance of the characteristics of an organism. The
chromosomes in each pair have the same length and the centromere, the region that
unites each half of the chromosome, is also placed in the same position. During
mitosis (process of reproduction of eukaryotic cells thanks to which 2 daughter cells
genetically identical to the progenitor and between them are formed from a single
cell) the chromosomes double and then transfer to the daughter cells. Therefore,
the new daughter cells will receive a complete chromosome copy, containing the
genetic information of their mother cell. Moreover, there is the second category of
chromosomes: the ones that determine gender, male or female.
Such chromosomes that play a vital role in determining the gender or sex of humans
or other animal species are known as sex chromosome or allosomes, but are
generally called “X” and “Y” .
Among the pairs of chromosomes present in humans, the “XX” pair of chromosomes
is the female while the individual who has the “XY” pair of the chromosome is the
male.
Each chromosome has a structure with two arms, called the “p” arm (the shorter
one) and the “q” arm (the longer one). In the case of sex chromosomes, the “Y”
chromosome, which is much smaller than the “X” chromosome, consists of a very
long “q” arm and a short “p” arm. In the case of the “X” chromosomes, it has a
long and a short arm (see Figures 1.3 and 1.4) (Rachna, 2019).

5



1 – Introduction

Figure 1.4: Human chromosomes (from U.S. National Library of Medicine)

1.2 Problem statement and goal

From a mathematical point of view, “Statistical genetics is a branch of statistics
that deals with the analysis of inherited traits and genetic data” (Laird and Lange,
2010).
One of the most important topics covered by this discipline is that of Hardy-
Weingberg equilibrium. Godfrey Hardy and Wilhelm Weinberg managed in 1908
to extract a formula which, starting from the frequency distribution of the alleles
in the parents, derived the distribution of the genotypes of the offspring.
This law is an excellent junction point between mathematics (in particular statistics)
and the medical and biological sphere. Its study is of great importance in the
area of bioinformatics and biostatistics. Considering Hardy-Weinberg equilibrium
(HWE) in a very simple way, to describe it we start with the concepts of genotype
and alleles presented previously. For an autosomal biallelic marker, with only two
alleles, the heterozygous (Aa) and the homozygous (AA or aa) forms will appear
with the respective frequencies: 2pq, p2, q2, where p is the frequency of the allele of
‘A’ and q = 1− p the frequency of the allele ‘a’ (see Table 1.1).
If there are no particular problems of detection or genotyping errors, which is the
main reason for studying this phenomenon, then this proportion will be reached in
one generation of mating and will remain so for all subsequent ones. In this case
we can speak of Hardy-Weinberg equilibrium (Graffelman and Weir, 2016).

Various statistical tests will be introduced, such as the χ2 test or the exact test,
which can be used to test the existence of equilibrium in empirical genetic data

6
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1 – Introduction

A a
A p2 pq
a pq q2

Table 1.1: Genotype frequencies obtained from allele frequencies under HWE

sets.
The tests can be useful to detect two conditions, namely a deficit or an excess of
heterozygotes. The first case, corresponding to a homozygote increase, may be due
to consanguinity or stratification of the population. The second case can lead to
“problems in genotyping due to the existence of highly homologous regions of the
genome” (Wigginton et al., 2005).

Over the years, several authors have studied these types of problems, trying to
shed light on the important aspects and carrying out tests for HWE from different
points of view. The fundamental issues that must be clear in order to understand
the work done when talking about HWE are two:

• consider only autosomes or including allosomes in the study

• consider the number of alleles that may be involved

Starting from this last point, techniques that consider both two and more alleles
will be described. Obviously the problem increases its complexity by increasing
the number of factors. The first point, however, is the key element, to which
one wants to propose an innovative and efficient solution. As explained above,
there is a difference between autosomes and sex chromosomes. While women have
two X chromosomes, men are known to have only one, which is inherited from
their mother. The authors Graffelman and Weir (2016) explain very well that
the approach used to date has always been to test HWE only for females, thus
simplifying a problem that is complex in itself. The aforementioned article also
shows several very clear examples that highlight why using this approach leads to
evaluation errors and, therefore, it is not correct. Currently, there are algorithms
for exact HWE tests that take into account the X-chromosome for males, but only
in the case of two alleles, or at most three alleles (since the problem is already
computationally very heavy).
Without going into detail, the reasons for treating the X chromosome are also
described in articles such as the one written by Broman et al. (2006). Here the
authors talk about the mapping of quantitative trait loci (QTL), which represents a
region of DNA associated with a quantitative trait. From the Figure 1.5, taken from
the same article, you can see how, going down between generations, the influence
of sex chromosomes is more and more relevant and cannot be overlooked.

The challenge to be faced in the next chapters is to show a solution of a network

7



1 – Introduction

Figure 1.5: “The behavior of the X chromosome in an inter-cross. Circles and
squares correspond to females and males, respectively. Open and hatched bars
correspond to DNA from strains A and B, respectively. The small bar is the Y
chromosome” (Broman et al., 2006).

algorithm that, starting from the one developed by Engels (2009), described in Exact
Tests for Hardy–Weinberg Proportions, extends the possibility of testing for HWE
with more than two alleles, always taking into account the male X-chromosome
correctly. This problem was solved for the first time and with very encouraging
and satisfactory timing and performance.

1.3 State of the art
This paragraph will briefly summarize the problem analyzed throughout the project,
what the starting points were and the tools that are available today to solve them.
We here link the introductory chapter and the theoretical explanation of the key
statistical tools that form the foundations of the objective set above.
As will be explained later, during the last century there have been really many
tools used or invented to solve the problem of the Hardy-Weinberg equilibrium,
since the early 1900s, after precisely the study of the two authors after which the
equilibrium itself is named. An important turning point certainly occurred in 1949,
with Levene being among the precursors of the distribution of the exact test for
an arbitrary number of alleles. Among the many successors it is possible to list
Louis and Dempster (1987) or even Guo and Thompson (1992), who have worked
to deepen the same topic and taking further steps forward. Finally, coming to
nowadays, the exact test is analyzed by Wigginton et al. (2005), Engels (2009) and

8



1 – Introduction

Graffelman in many published articles. Obviously these names are just some of all
those who have worked on this topic and who are also mentioned in all the above
articles.
For biallelic variants, the exact test for HWE has become the standard statistical
procedure, and it can be performed on a genome-wide scale. From a computational
point of view, the problem is feasible and there are no major problems with the
calculations even for large sample sizes, as will be seen shortly. The R packages,
described in the next paragraph, give a big hand in carrying out results that were
previously only expressed in theory and that required an excessively long time to
resolve.
For k-allelics (k > 2), exact tests are computationally expensive, but have been
improved a lot and, thanks to the algorithmic optimization that has been achieved,
it is possible for large samples of autosomal variants. This is not a trivial thing:
you will see how much you can go down recursively in calculations, for example
of factorials, for large amounts of data. Without a study that, starting from
genetics and statistics, fully exploits the algorithm in all its forms and possibilities
to improve over the years, it would be impossible today to solve problems that
can then have utility on a very large number of fields, such as medical or forensic
science.
In the second half of the last century, some authors (Crow and Kimura, 1970; Hartl,
1980; Lange, 2002) highlighted an aspect hitherto underestimated: “the implications
of X-chromosomal inheritance for HWE” (Graffelman and Weir, 2016). In recent
years, therefore, efforts have been made to give importance to this situation also in
statistical genetics, trying to reach here also exact test distributions that took into
consideration the male hemizygous individuals, that is, with only one X chromosome
inherited from the parents. This created a lot of confusion, as an already complex
problem has further complicated itself. Regarding the X chromosome with only two
alleles, it was quite easy to adapt the previous problem, making small theoretical
and practical changes. So exact tests can be performed for the whole X chromosome,
regardless of the amount of data.
Taking a final step, we get to consider the same problem for more than two alleles.
Graffelman and Weir (2018) solved the case k = 3 with a complete enumeration of
the possible cases which, even if with small data sets, explodes in size. Therefore,
for the X chromosome a HWE exact test with k alleles (k > 3) is even more
computationally demanding and is currently not feasible, except by sampling from
the possible outcomes using a permutation test.
From here it is easier understood what the final goal of the thesis is, that is to
improve the efficiency of the current exact procedures to test HWE on X with
k > 3. On the one hand there is a problem partially solved but whose resolution
is very expensive and it needs to be improved, on the other there is a problem
that has not yet been analyzed previously and with which, therefore, there are no

9
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possible comparisons in results and efficiency.

1.4 Materials and Methods
All calculations of this project were carried out on a Dell Inspiron 15 7000 with Intel
Core i7-8550U processor at 1.80 GHz and 8 GB of RAM. This must be taken into
consideration as statistics will be shown regarding the timing of the resolution of the
statistical tests according to the algorithms, but obviously the computational power
of the processor must be taken into consideration, both positively and negatively.
The programming tools used are:

• RStudio 3.6.1 to use the programming language R

• Code::Blocks 17.12 for programming in C

• Visual Studio 2017 for programming in C++

As for the statistical context being analyzed, R is the best programming language
that allows you to quickly make calculations and extrapolate significant graphs
that summarize the theoretical aspects. The HardyWeinberg package, described
by Graffelman (2015), contains most of the functions useful for carrying out the
examples that will be shown, while the HWxtest package, owned by Engels (2009)
and no longer located on the CRAN (The Comprehensive R Archive Network), has
allowed to take a cue from some functions written in C for the most complicated
calculations. In particular, the latter package calls functions written in C directly
on R and, by passing parameters, is able to receive values backwards. The principle
adopted here is similar and, using the Rcpp library (François and Eddelbuettel,
2011), it is quite simple to compile C++ code in R.
The reason why we try to use more than a single language is that, while R is more
useful, as mentioned, to show graphs and results of calculations that use vectors
and matrices and that can be brought in parallel, the languages C and C++ allow
you to write better recursive algorithms that, if efficient, speed up your work.

10



Chapter 2

Statistical methods

Being aware of the importance of HWE, it is important to understand which
methods have been developed and used over the years to test genetic variants
for equilibrium. In fact, rather than testing equilibrium as a biological concept,
Statistical genetics has taken care of testing the Hardy-Weinberg proportions
(HWP). Generally speaking, it is possible to divide the tests that we have to date
into two subgroups.
On the one hand, methods that work well with very large samples and lead to
asymptotically acceptable results. Among them is the Pearson χ2 test or the
likelihood ratio test; the latter will not be dealt with.
On the other hand, when some frequencies in the contingency table are small,
the Exact test (Levene, 1949; Haldane, 1954; Chapco, 1976) is used, which, in
addition to working well with these quantities is also more accurate (Guo and
Thompson, 1992). A limitation of the latter is certainly the high computational
effort required to calculate it. In fact, if the genotype counts become larger, a
complete enumeration of the contingency tables is avoided (useful, as you will see,
for the exact test), going instead to use the permutation test that exploits sampling
of the exact distribution.

This chapter will shed light on the methods currently known and used for HWP;
in particular, the analysis takes into account statistical tests from different points
of view. The first is the number of alleles you consider: it is quite easy to think
about how the complexity of the problem can change depending on the number
of factors you consider. The second is the type of chromosome: autosomes are
the most common and those for which the literature is wider, having treated all
aspects and all chromosomes, in particular the X chromosome, the latter often
being bypassed, as explained above.
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2.1 Two alleles
In this section we start with the bi-allelic case, which is the basic one to fully
understand the statistical study for HWE. Being the simplest and most common
case, it is studied in depth in the literature in the two subcases which are discussed
below: the first concerns the autosomal context, while the second considers all the
chromosomes.

2.1.1 Autosomes

The study of autosomes is relatively simple, as there is no specific case to take
into account depending on the sex, as happens for the X chromosome. Therefore
there are several tests to verify a deviation from the HWE that have been analyzed
in detail in the years. We limit ourselves to seeing only a few of them, which are
among those most commonly used and which are then recalled later to describe the
heart of this project. The tests explained below are: chi-square test, permutation
test and exact test.

Chi-square test

The chi-square test includes several possible statistical tests and is based on the fact
that the test statistic follows the chi-square distribution under the null hypothesis.
The test we are talking about here is that of Pearson, which is aimed at verifying
whether there is a substantial difference between the frequencies observed and those
expected in the contingency table of genotype counts. The purpose of the test is
to assess the goodness-of-fit of the multinomial distribution with a given vector of
probabilities.

In the case of HWE, the goal is to verify that the observed genotype frequencies
are close to what is expected under the Hardy-Weinberg assumption. Using the chi
square test, and crossing the χ2 statistic with the degrees of freedom, it’s possible to
obtain “the probability that the observed numbers would deviate from the expected
numbers as much or more by chance (see Figure 2.1). The degrees of freedom used
to determine the significance of χ2 value are equal to the number of phenotypic
classes, k, minus one, and then minus the numbers of parameters estimated from
the data” (Hedrick, 2011).

In general, if there are k genotypes and Oi and Ei are respectively the observed
and expected frequencies of the i-th genotype, the chi-square statistic is:

X2 =
kØ

i=1

(Oi − Ei)2

Ei

(2.1)
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Figure 2.1: Chi-square distribution with different degrees of freedom (from
Wikipedia)

More precisely, considering autosomes with two alleles A and a, there are on
one side the genotype counts nAA, nAa and naa (see Table 2.1), while on the other
those expected in the context of HWE, which are eAA, eAa and eaa.
If there are n individuals, then there are 2n alleles and the frequency of allele A is
supposed to be p, while that of allele a is q (p + q = 1) and the expected counts
are: eAA = np2, eAa = 2npq and eaa = nq2.

A a
A nAA

1
2nAa

1
2nA

a 1
2nAa naa

1
2na

1
2nA

1
2na n

Table 2.1: The three genotype counts

So, the chi-square statistic, to be compared with a χ2
1 distribution (with 1 degree

of freedom) is:

X2 = (nAA − eAA)2

eAA

+ (nAa − eAa)2

eAa

+ (naa − eaa)2

eaa

(2.2)

Unfortunately, only with this kind of test it’s impossible to know if the reason for
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rejecting an HWE is for an excess or a lack of heterozygotes. In this sense there is
a further way to calculate the chi-square statistic which is the following:

X2 = D2

p2(1− p)2n
(2.3)

where D = 1
2(nAa − eAa) and indicates the deviation from independence for the

heterozygote (Graffelman, 2015). The sign of D reveals whether the sample is
characterised by an excess or a lack of heterozygotes.
Since we are trying to approximate a discrete distribution with a continuous one,
when the expected count ei is small, it is possible to modify this test by adding the
so-called continuity correction c, which is usually equal to 0.5. In this way, if we
have k genotypes, the new chi-square test result will be given by

X2
c =

kØ
i=1

(|ni − ei| − c)2

ei

(2.4)

Permutation test

Often, relying on an asymptotic solution, such as the chi-square test, can lead to
unreliable results. For this reason, a new method is now being introduced, the
permutation test, that was first proposed by Guo and Thompson (1992), which
allows you to get better results, although with a very large computational effort.
As explained above, if n individuals are considered in the analysis, there will be
2n alleles. First we calculate a test statistic, as can be the the X2 or X2

c , for the
observed data and that will be used as a threshold. After that, the 2n alleles are
listed sequentially (e.g. AaAaaaAAa) which will be permuted a certain number
N of times. For each permutation, the genotypes will be considered as pairs of
consecutive alleles in the sequence and a statistic will be calculated also here. This
process is repeated N times and the number of statistics is counted which is greater
than the statistic first calculated for the observed data. From the division between
this number C and the number of permutations N , the p-value of the permutation
test is obtained as C/N (Graffelman, 2015).

Exact test

Levene et al. (1949) described the conditional distribution of the number of het-
erozygotes of a sample taken from a population in equilibrium of Hardy-Weinberg,
for an arbitrary number of alleles. The distribution depends on the number of
each allele in the sample, and it is very similar to the fixed margins in Fisher’s
exact 2 x 2 distribution. This is the distribution used here to develop an exact
Hardy-Weinberg test (Louis and Dempster, 1987). Subsequently, several authors
have given a hand in improving this study, both from the point of view of the
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efficiency of calculation and to achieve reliable results, and from the point of view
of the complexity of the problem, which is presented here in the biallelic case.
This method is the central point of all the work done in this thesis, is the starting
point from which it is taken cue to extract a quick and reliable algorithm to solve
situations neglected until today. The conservative approach that is used starts
from considering nAA, nAa and naa the numbers of the individuals AA, Aa and aa
in the sample, respectively, and pA and pa the population frequencies of the alleles
A and a. Hence, the multinomial probability of obtaining the sample (nAA, nAa,
naa) from a population in HardyWeinberg equilibrium is

P (NAA = nAA, NAa = nAa, Naa = naa) = n!
nAA!nAa!naa! (p

2
A)nAA(2pApa)nAa(p2

a)naa

(2.5)
Considering now nA = 2nAA +nAa and na = 2naa +nAa, the probability of obtaining
the sample (nA, na) is given by the binomial distribution

P (NA = nA, Na = na) = 2n!
nA!na! (pA)nA(pa)na (2.6)

Finally, it’s possible to obtain the real probability we’re interested in: the conditional
distribution of the number of heterozygotes (NAa) given the minor allele count
(NA)

P (NAA, NAa, Naa|nA, na) =

= nA!na!n!2nAa

1
2(nA − nAa)!nAa!1

2(na − nAa)!(2n)! =

= nA!na!n!2nAa

nAA!nAa!naa!(2n)!

(2.7)

“The standard way to compute the p-value of an exact test is to sum probabilities
according to Equation (2.7) for all samples that are as likely or less likely than the
observed sample. This way to compute the p-value has been termed the SELOME
p-value (select equally likely or more extreme samples)” (Graffelman, 2015).
The difference between the exact test for HWE and that of Fisher mentioned above,
concerns only the frequencies that can be observed. Fisher’s test sets the extremes
in the contingency table, so as to have any freedom of values in the allele counts,
in order to respect the margins. With this type of test, however, considering A the
allele with the lowest count, then nAa will only take even values if nA is even; they
will be odd values in the opposite case.
As explained in Wigginton et al. (2005) paper, the higher computational effort
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depends on the value of nAa and the factorial calculation that derives from it.
The authors summarize a small algorithm, taking up what Guo and Thompson
(1992) started, with which the number of multiplications and divisions is fixed and
depends on the total number of alleles and not on the heterozygotes. This type of
approach, called naive, helps a lot the software that must use these formulas for
statistical tests to give faster answers and to avoid too high recursion levels, which
can fault the calculators.

2.1.2 X chromosome
The approach that is usually used to test HWE for X-chromosomal marker sees the
exclusion of males and the consideration of females only. This is because the males,
inheriting only one X chromosome from the mother, are hemizygous. Considering
them too involves a much higher computational cost which is often avoided. This
leads to fundamental errors in the HWP test: not considering the males, half of
the samples are lost; moreover, in doing so, it is assumed that the allelic frequency
of the two sexes is equivalent, which might, a priori, not be true (Graffelman and
Weir, 2016). Therefore, the same tests considered for autosomes will now be listed,
correctly adapted to the X chromosomal context for the biallelic case.

Chi-square test

The basic principle of the chi-square test is the same as in the case of the autosomes.
This time an additional factor comes into play, θ, which indicates the fraction of
males in the entire population considered. Going in order, if there are two alleles A
and a, pA is the frequency of the first and (1-pA) that of the second. The number
of males with the alleles A, mA, and a, ma and the number of females having the
three possible genotypes fAA, fAa and faa must be taken into account. Now, if nm

and nf are the total number of males and females in the population, n = nm + nf

is the total number of the sample, while nt = 2nf + nm is the total number of
alleles present. Having this notational framework available, the previously defined
θ factor will be equal to

θ = nm

n

Furthermore, the expected allele frequency of A (indicated with p̂A) will be the
number of A allele on the total number of them

p̂A = nA

nt

In the Table 2.2 it’s possible to see the different observed and expected counts for
the two male genotypes and the three female genotypes. In the first line there is
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the actual probability of the five categories in this analysis, while in the other two
lines we give expected and observed counts for a chi-square statistic.

Genotype Males Females
A a AA Aa aa

Probability θpA θ(1− pA) (1− θ)p2
A 2(1− θ)pA(1− pA) (1− θ)(1− pA)2

Observed mA ma fAA fAa faa

Expected nθp̂A nθ(1− p̂A) n(1− θ)p̂2
A 2n(1− θ)p̂A(1− p̂A) n(1− θ)(1− p̂A)2

Table 2.2: Observed and expected genotype counts for an X-chromosomal marker
under HWE

In particular, following the (2.1), if ei is the expected count of genotype i, the
statistic for goodness of fit will be

X2 = (mA − eA)2

eA

+(ma − ea)2

ea

+(fAA − eAA)2

eAA

+(fAa − eAa)2

eAa

+(faa − eaa)2

eaa

(2.8)

Normally the proportion of males, θ, is not known, therefore the distribution
following the statistics is that of a chi-square statistic with 2 degrees of freedom. This
type of test starts from considering two factors as null hypothesis: the homogeneity
of allele frequency between the two sexes and that the females follow the HWP.
When one or both of them fails, the test result will lead to the rejection of the null
hypothesis (Graffelman and Weir, 2016). This concept is very well explained in the
Figure 2.2, which is taken from the paper Testing for Hardy–Weinberg equilibrium
at biallelic genetic markers on the X chromosome of Graffelman and Weir (2016).
It shows a ternary diagram (also called de Finetti diagram thanks to the Italian
statistician Bruno de Finetti) for four different situations with male and female
genotype and allele frequencies for an X-linked marker in HWE:

a) females in HWE and equal allele frequencies for males and females

b) females not in HWE, but the same allele frequencies for the two sexes

c) females in HWP, but males and females with different allele frequencies

d) neither condition is verified

Permutation test

The modus operandi of the permutation test between autosomes and X chromosome
is the same. This time, after choosing a statistical test, the nt = nm + 2nf alleles
present are placed in sequence and mixed several times. The first nm elements are
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Figure 2.2: Hardy-Weinberg disequilibrium for a biallelic marker on X chromosome

considered males, while the remaining 2nf are females and seen in pairs, in order
to calculate the genotype counts. For each shuffle the statistical test is calculated
and, finally, the p-value is the division between the number of times the result
was greater than or equal to the threshold and the total number of permutations.
This permutation test conditions on the observed allele frequency and also on the
observed gender ratio (Graffelman and Weir, 2016).

Exact test

The equation (2.7) is just a special case of the real formula of the exact test, in which
it’s considered also the sex of the individuals. Following the same notation of the
chi-square test explained above, in which the single X chromosome is considered in
males and the double in females, we can express the probability of the intersection
of distribution of the allele A in males and of heterozygosity in females, starting
from having already fixed the sample size, the number of alleles A (nA) and the
number of males in the population (nm).

P (MA = mA ∩ FAa = fAa|n, nA, nm) = nA!na!nm!nf !
mA!ma!fAA!fAa!faa!nt!

2fAa (2.9)
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If males are excluded from the calculation, then mA = 0, ma = 0 and nm = 0,
the equation (2.9) is reduced to (2.7). The resulting p-value comes out, also in
this case, adding all the results less than or equal to that of the observed sample
(Graffelman and Weir, 2016). This type of test, applied to the X chromosome, is
the latest type available in the various R packages, in particular in HardyWeinberg,
and which can therefore be performed by a computer. All the calculations behind
this test take a long time to be processed with the algorithms that are available
today. The bi-allelic case is still feasible following the formula just explained; when
more alleles are considered, as will be seen from the next paragraph, the exact test
can only be calculated in practice for autosomes, although the theory underlying
the sex chromosome is also available and clear.
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2.2 k alleles
This paragraph is set up in a slightly different way from the previous one, despite
the natural continuation. The reason is that for a large number of alleles some
tests are not used in one or the other context and it is therefore useless to give a
detailed description as done before. The only test worth making a clear separation
is the exact test that will be explained last.

2.2.1 Chi-square test
In general, the chi-square test is not used in the case of multiple alleles, since
in this situation most likely some alleles are rare. This involves low counts
which, as mentioned, are not suitable for the chi square test and, in general, with
asymptotic statistics. For this reason, the exact test and the permutation test are
more suitable in this context. Nonetheless, we want to give a brief description
of how the chi-square test can still be used in the multi-allelic case, taking into
account the reliability of the results that come out according to what just said. The
situation with two alleles has been described in paragraph 2.1: if the autosomes are
considered, the distribution of the chi-square to test the HWE has only one degree
of freedom (χ2

1); on the other hand, if the X chromosome is taken into account, the
chi-square test has two degrees of freedom (χ2

2).
For the multi-allelic case, the chi-square statistics follow the samemodus operandi.

In particular, if there are k alleles, there will be a number of genotypes equal to

1
2k(k + 1)

Considering a1, ...ak the k alleles, we represent by nij the count of genotype aiaj

observed, whereas eij represents the expected count. Therefore, the resulting
statistic is

X2 =
Ø
i≥j

(nij − eij)2

eij

(2.10)

This time, the degrees of freedom for this test are 1
2k(k− 1). Also for this typology

it is possible to add the correction factor c, which was introduced by Yates in 1935
(Emigh, 1980), and the statistic becomes

X2
c =

Ø
i≥j

(|nij − eij| − c)2

eij

(2.11)

where, usually, c = 0.5.
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2.2.2 Exact test
As previously introduced, the distribution for an arbitrary number of alleles into a
population in HWE was introduced by Levene et al. (1949). In case the number
of alleles exceeds 2, both for the autosomes and for the X chromosome, we apply
the exact test that is treated in this project and for which an efficient resolution
algorithm is given. The theory and the figures that will be used now are inspired
by the paper of Graffelman and Weir (2018), which summarizes the main concepts
of this topic in a concise but very clear way.

Autosomes

In the same way of the previous section, instead of considering as two standard
alleles “A” and “a”, the k alleles are considered as a1, a2, ..., ak and ni is the total
count of the i-th allele (i = 1, 2, ..., k). In the context of autosomes, we have
nij, with i ≥ j, which indicates the total number of heterozygous aiaj or nii

which indicates the number of homozygous aiai, including both male and female
sex. Furthermore, n represents the total number of individuals and nt = 2n the
total number of alleles. The classic way of representing this situation is the lower
triangular matrix in the Table 2.3.

a1 n11
a2 n21 n22
... ... ... . . .
ak nk1 nk2 · · · nkk

a1 a2 · · · ak

Table 2.3: Lower triangular matrix for autosomal genotype counts

Exact inference for autosomal variants with multiple alleles is based on the condi-
tional distribution of the genotype counts, considering all observed allele counts as
given and is obtainable by the following formula, which takes over the previous
one (2.7)

P (Nij = nij|n1, ..., nk) = n!2h rk
i=1 ni!

(2n)! r
i≥j nij!

(2.12)

where h = q
i>j nij is the total heterozygote frequency.

X-Chromosome

For the X chromosome, gender must also be taken into account. Male individuals
are hemizygous and therefore they have only one allele, so nmi is the number of
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males with the genotype ai, while for females nfij will indicate the number of female
genotypes aiaj . If nm and nf are the number of males and females respectively, the
total sample size will obviously be n = nm + nf and the total number of alleles is
nt = nm + 2nf . All of this can be summarized in the Table 2.4.

a1 nm1 a1 nf11
a2 nm2 a2 nf21 nf22
... ... ... ... ... ...

ak nmk ak nfk1 nfk2
. . . nfkk

a1 a2 · · · ak

Table 2.4: Lower triangular matrix for female X-chromosomal genotype counts
and column vector with male genotype counts

Under the HWE hypothesis for the females and equality of allele frequencies
in the sexes, i.e. the same ones seen for the bi-allelic case, the distribution of the
genotype counts is given by the following equation

P (Nfij = nfij ∩Nmi = nmi) = nm!nf !2h rk
i=1 pni

irk
i=1 nmi!

r
i≥j nfij!

(2.13)

where h = q
i>j nfij is the total female heterozygote count and pi is the frequency

of the i-th allele. Under the same conditions, the Ni allele counts follow the
multinomial distribution

P (Ni = ni) = nt!rk
i=1 ni!

kÙ
i=1

pni
i (2.14)

The conditional distribution of the genotype counts given the allele counts is
obtained by dividing the previous two equations.

P (Nfij = nfij ∩Nmi = nmi|n1, ..., nk) = nm!nf !2h rk
i=1 ni!

nt!
rk

i=1 nmi!
r

i≥j nfij!
(2.15)

In both situations, the goal is to extract the p-value of the test, that is important
to understand if the considered sample is significant or not under HWE hypothesis.
Clearly, the tables 2.3 (autosomes) and 2.4 (X chromosome), refer only to the
observed sample. Based on the counting vector of the total alleles, the number of
obtainable tables of the same type can grow dramatically. Theoretically, to have the
final p-value, the probability must be calculated for each table and, finally, all the
probabilities less or equal to the statistical test of the initial table must be added,
as described in the previous chapter. Just to give an idea of the quantities we are
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talking about, it’s possible to take inspiration from an example of the paper written
by Engels (2009), which will be very useful in a few chapters. If the observed
sample, with 4 alleles, has the following matrix

a =


1
0 1
0 0 1
0 0 0 1


it is possible to indicate the vector of the count allele with m = [ 2 2 2 2 ].
From these data 17 different tables can be built, including the one above, and for
each table you have to calculate the corresponding probabilities; then it’s necessary
to perform the calculations explained above multiple times, and this will take a lot
of computer time, given all the factorials present in the formulas.
The goal of this project is to calculate Equation (2.15) in the most efficient way, in
particular for large samples for which there are many outcomes. Ideally, we want
to be able to carry out an X-chromosomal exact test for HWE for any sample size,
any number of alleles, and any observed allele and genotype counts.

2.2.3 Permutation test (Monte Carlo Method)
The explanation of the permutation test at the bottom is not accidental. The
reference statistic that was previously calculated with one of the existing tests of
choice, which could be the chi square test, this time must be carried out with the
exact test just explained, following the formula (2.12) or (2.15).
The procedure with which this test is carried out generally follows the previous
cases with two alleles, only this time there are larger groupings before extracting
the pairs. We will follow the explanation already given by Guo and Thompson
(1992) which describes the different steps to follow quite well in the third section.
For convenience, this time the k alleles will be indicated with a capital letter
Ai. Hence, if we have a population of n individuals, who have ni Ai type alleles
(i = 1, ...k), which can be arranged in the following way.

After a random permutation is applied, the n successive pairs of alleles can be
considered as a sample of size n drawn from a population under HWP, with ni

alleles of type Ai (i = 1, ..., k). If we repeat another permutation and pair the alleles
again into n pairs, then the n pairs can be considered as another random sample
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from the same population. The algorithm can be summarized in the following
points:

1. Compute the probability P following (2.12); set counter C = 0

2. Construct index vector s, with s1 = s2 = · · · = sn1 = 1, · · · ,
sn1+n2+nk−1+1 = · · · = snk

= k

3. For specified simulation size N do the following

a) Reset s to a random permutation of the previous one
b) Obtain sample g by cutting s into n consecutive pairs and letting

g = {As2c−1As2c , c = 1, ..., n}
c) If the probability of g is lower or equal than P, add 1 to C

4. The final p-value is equal to C
N

By changing some small things, for instance by using (2.15) instead of (2.12) it’s
possible to obtain a result for the case of the X-chromosome. This test can be
carried out in R and it is, so far, the only means of obtaining results for samples
with a large number of alleles and the X chromosome with currently available
computing power.
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Chapter 3

Examples with a single
polymorphism

Chapter three will allow you to better understand the different theoretical concepts
explained in the previous one. Real case studies will be taken in order to carry
out practical and, at the same time, meaningful numerical examples. This is of
fundamental importance to understand that the work carried out in this project
and the one already available, which concern HWE, are not only descriptive words
but have a significant practical implication in various fields. For each of the four
macro-categories that are being considered, i.e. autosomes and X chromosome,
each with 2 or with more alleles, one or more polymorphisms, Single Nucleotide
Polymorphisms (SNPs) or microsatellites, also known as Short Tandem Repeats
(STRs) will be taken, and some of the previously explained tests will be applied and
it will be seen what results will come and what this means. To better understand
what the data we will see means, let’s give a couple of more specific definitions.
The main concepts behind everything are trait and marker. Some traits, as can be
the state of a disease, depend on genetic variables. A marker is one of these, which
shows a variation over several individuals. The causes that can influence traits
are analyzed thanks to the interaction between these two concepts. If a marker
contains only homozygotes then it is called monomorphic. Otherwise, “the term
polymorphism is defined simply as a genetic variant at a single location within a
gene. Technically, a variation must be present in at least 1% of a population to be
classified as a polymorphism” (Foulkes, 2009). In general the terms polymorphism,
variant or marker will be used as synonyms, although the latter is a superset that
contains SNPs (Single Nucleotide Polymorphism), STRs (Short Tandem Repeat),
RFLPs (Restriction Fragment Length Polymorphism), indels (insertion / deletion
polymorphism), etc. In particular, with SNP we intend to observe the differences of
nucleotides (which contain the nitrogen bases) between the different individuals of
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a population. These can be factors of evolution over time, or they can be compared
with diseases to make medical diagnoses, as seen in Figure 3.1.

Figure 3.1: Marker SNPs (Foulkes, 2009)

DNA has, as already discussed, a double helix structure that requires that each
chromosome has complementary nucleotide pairs in each position. This is clearly
visible in the Figure 3.2, where there are two non-identical chromosomes in that
they differ in a pair (homologous chromosomes). Obviously, as already mentioned in
the first chapter, there are standards for reading DNA fragments in an unambiguous
way (following the 5Í and 3Í). SNPs are of enormous importance in modern genetic
mapping, especially in relation to the low financial cost of genotyping in different
places. They occur about once every 300 pairs for about 10 million SNPs in the
human genome (Laird and Lange, 2010).

Figure 3.2: Single nucleotide polymorphism (SNP) with alleles C and T (David
Hall, License: Creative Commons)

Therefore, within the following examples some polymorphisms belonging to
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real databases will be chosen which aim to study different types of diseases by
analyzing the SNPs of a certain different number of individuals. For the autosomes
no distinction will be made between the sexes, it is a crucial element however, for
the analysis of X chromosomal polymorphisms. The tools named in the Chapter 2
will be used. For some of them, in particular in the multi allelic analysis of the X
chromosome, there will be a detailed explanation of the operation of the algorithm
behind it in the following chapters.

3.1 Autosomes

Two alleles
In the context of the autosomes with two alleles, the chosen example to pursue
concerns a database that was drawn up to study Alzheimer’s disease and that was
taken from the paper written by Takei et al. (2009). This data-set has also been
included in the HardyWeinberg package (Graffelman and Camarena, 2008), so that
it can be used as an example of how some functions work for statistical tests and
the graphs that can be extracted from them. The study of HWE is preliminary to
that of diseases, such as Alzheimer. The article just cited explains in detail how
the study of the disease is carried out in a population of 1262 Japanese individuals.
“The Ô4 allele of APOE is a well-characterized genetic risk factor for late-onset
Alzheimer disease (LOAD)”: these are the first words of the abstract, in which it is
clearly understood that the study of different polymorphisms helps to detect allelic
mutations and, possibly, to have results to deepen the study of the disease or not.
All this, however, must be preceded by the verification of the HWP in the treated
sample. Confirmation of this is given by the final p-value which can give us an idea
of the rejection or not of the null hypothesis. Let’s see the example step by step.
First of all, the HardyWeinberg package can be installed and loaded by using:

1 install . packages (" HardyWeinberg ")
2 library (" HardyWeinberg ")
3 vignette (" HardyWeinberg ")

This will make available a lot of functions, like HWChisq, HWExact, HWPerm, that
are useful for our goals. The document describing the package can be consulted from
inside R by typing the last command in the previous script. Then, we choose the
polymorphism ‘rs446037’ to study its behavior. The alleles chosen in this example,
for uniformity with the data source, will be named with ‘M’ and ‘m’. Then, after
taking the data from the database (with the data command) and showing which
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row the chosen SNP corresponds to, the genotype counts are inserted in an x
vector, which will be given as input to the various tests. Note that the set of
polymorphisms is divided into cases and controls, but only the latter are used in
the following commands.

1 data(" Alzheimer ")
2

3 Alzheimer [60 ,]
4

5 MM <- Alzheimer [60, 1]
6 Mm <- Alzheimer [60, 2]
7 mm <- Alzheimer [60, 3]
8

9 x <- c(MM , Mm , mm)

The output of the command Alzheimer[60,], that is used just to print, is

MM Mm mm Group
rs446037.controls 674 34 1 0

and it confirms the SNP we’re analyzing (group 0 is for the controls).
Now one performs two chi-square test with the following functions: the first one
is with the continuity correction factor, while in the second one, with the option
cc=0, there is a normal test.

1 HWTest <- HWChisq (x, verbose = TRUE)
2

3 HWTest <- HWChisq (x, cc = 0, verbose = TRUE)

The two outputs

Chi-square test with continuity correction for Hardy-Weinberg
equilibrium (autosomal)
Chi2 = 0.01384079 DF = 1 p-value = 0.9063474 D = -0.5430183
f = 0.03095353

Chi-square test for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 0.6793078 DF = 1 p-value = 0.4098252 D = -0.5430183
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f = 0.03095353

show that there is a small statistic, 0.0138 in the first case and 0.6793 in the
second one, with two p-values (0.906 and 0.4098) much larger than the usual value
α = 0.05 or, even better, α = 0.01 as indicated in the paper where data come from.
In order to have a complete view, HWTest is a list object containing the all the results
of the test (statistic, p-value, half the deviation from HWE (D) for the heterozygote
and the inbreeding coefficient f). The first function (with continuity correction)
is not recommended for low minor allele frequencies, so the second one is more
reliable. It is useful to also mention the minor allele frequency (MAF). It is used in
statistical genetics studies because it provides an indication in order to differentiate
between common and rare variants in the population. When we have two alleles,
the MAF corresponds to the frequency of the least present one. If pM and pm are
the frequencies of the alleles M and m respectively, then MAF = min(pM , pm),
which can be obtained as follows.

1 M <- 2*MM + Mm # 1382
2 m <- Mm + 2*mm # 36
3 total <- 2*sum(x)
4

5 MAF <- m/total

MAF = 0.02538787

The closer this value is to 0, the closer the marker is to being a monomorphism
and the less frequent allele is rare.
Another possibility is the permutation test which is activated by

1 set.seed (123)
2 HWPermutationtest <- HWPerm (x, verbose = TRUE)

Permutation test for Hardy-Weinberg equilibrium
Observed statistic: 0.6793078 17000 permutations.
p-value: 0.3655882
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The number of permutations can be setted with nperm argument. By default the
chi-square statistic will be used as the test statistic, otherwise, another statistics
can be used with the FUN argument. The result of the p-value is 0.3655, so it is
similar to the previous one. Even if the data-set is not so big, this kind of test is
very slow due to its intrinsic functioning, so it must be used carefully and when
necessary, especially in the analysis of multiple SNPs. Finally, in order to perform
the exact test the function HWExact accept the genotype counts vector as input.

1 HWExactest <- HWExact (x, verbose = TRUE)

Haldane Exact test for Hardy-Weinberg equilibrium (autosomal)
using SELOME p-value
sample counts: n = 674 n = 34 n = 1
H0: HWE (D==0), H1: D <> 0
D = -0.5430183 p-value = 0.3660253

The latter is certainly the most relevant test and that gives us the most truthful
result. The p-value of 0.366 definitely confirms that we are in the acceptance zone,
so it is not possible to reject the null hypothesis and the HWE is confirmed. The
resulting statistics can be calculated in different ways (two-sided, greater and
less), as well as the p-value (dost, selome and midp) based on the parameters
that are passed to the routine. Here we will not go into detail, but only the default
ones (‘two-sided’ and ‘SELOME’) are used. In order to give an overview of the
results, you can use the function HWAlltests.

1 HWResults <- HWAlltests (x, verbose = TRUE , include .
permutation .test = TRUE)

Statistic p-value
Chi-square test: 0.67930778 0.4098252
Chi-square test with continuity correction: 0.01384079 0.9063474
Likelihood-ratio test: 0.51459407 0.4731569
Exact test with selome p-value: NA 0.3660253
Exact test with dost p-value: NA 0.7320506
Exact test with mid p-value: NA 0.2178784
Permutation test: 0.67930778 0.3655882
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k alleles
Another meaningful example that can be dealt with is the one taken from the article
of Mölkänen et al. (2010). This time the context is the tri-allelic one, although
autosomes are always being considered. We wanted to choose a relatively low k
since, in doing so, the same package R of the previous example is still exploitable. If
k becomes too large, other tools must be used to achieve results within a reasonable
time, which will be explained later. The chosen SNP is taken from a study created
to verify sepsis or organ dysfunction thanks to the C-reactive protein (CRP). In
particular, to verify the results of the variation of the protein in different SNPs, a
comparison was made with patients with Staphylococcus aureus bacteremia. The
scientific details of the medical studies can be read in the paper cited above and
are beyond the scope of the thesis, which focuses on statistical analysis. To ensure
that the biological data on which an analysis is made are correct, so as not to lead
eventually to altered results, the SNPs are subjected to statistical tests to test the
HWE. Given and considered the complexity of the problem, as already discussed
in Chapter 2, the tests that can be used and that can be trusted are less than in
the previous case. Therefore, more in detail, the polymorphism ‘rs3091244’ will
be used, the distribution of which has been studied in 116 patients. The Table 2
of the paper written by Mölkänen et al. (2010) shows the available data in detail.
Here in Table 3.1 only what is necessary for the following analysis is shown.

SNP Genotype distribution n
rs3091244 Additive

TT 21
TC 55
TA 4
CC 28
CA 8
A-minor allele recessive

Table 3.1: Distribution of SNP rs3091244 genotypes in 116 patients

First of all, the HardyWeinberg library is included, so that you can use the available
functions, in particular HWTriExact and HWPerm.mult. Subsequently, the data in
the table are manually entered into the corresponding variables.

1 library ( HardyWeinberg )
2

3 TT <- 21
4 TC <- 55
5 TA <- 4
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6 CC <- 28
7 CA <- 8
8

9 x <- c(AA=0,AB=TA ,AC=CA ,BB=TT ,BC=TC ,CC=CC)

The function that follows accepts standard labels for input alleles, that are A, B
and C. For this reason, since the alleles A, C and T are present in the polymorphism
being analyzed, it is decided to consider the allele T as B. Therefore the data are
inserted into a vector and the exact test is activated.

1 out <- HWTriExact (x)

Tri-allelic Exact test for HWE (autosomal).
Allele counts: A = 12 B = 101 C = 119
sum probabilities all outcomes 1
probability of the sample 0.01583807
p-value = 0.6872099

In this way we can obtain the analysis using the exact distribution with three
alleles, which can be done for X-chromosome too by using the same function with
different parameters. Then, to have a comparison from the point of view of the
results, the permutation test is launched with the following commands.

1 x3 <- toTriangular (x)
2 out <- HWPerm .mult(x3)

Permutation test for Hardy-Weinberg equilibrium (autosomal).
3 alleles detected.
Observed statistic: 0.01583807 17000 permutations.
p-value: 0.6821765

The function toTriangular is used to convert a vector of genotypes into a trian-
gular matrix, like in the Table 2.3, while HWPerm.mult approximates exact test
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probabilities for joint tests for HWE and equality of allele frequencies for variants
with multiple alleles (from help of the R package). The final p-values of the two
tests are very similar each other. They are larger than 0.05 and it can be confirmed
that there is no deviation from HWE in the genotype distributions for this SNP in
the CRP gene.

3.2 X chromosome

Two alleles
The examples of markers on the X chromosome, especially for the bi-allelic case,
are more difficult to find in the form with which the others have been described.
In particular, more than SNP we speak of STR (Short Tandem Repeat) in this
context, as we will see later with k alleles. This is probably due to the difficulty
of studying HWE with this type of problem and the consequent few practical
examples available are a demonstration of this. For now we will show two examples,
in order to see what functions exist in R and how to use them.
The first example is purely demonstrative and is taken from the paper written by
Graffelman and Weir (2016); the used data are summarized in the Table 3.2 and
they are taken from 20 patients, 10 males and 10 females.

SNP Genotype distribution n
Females
AA 0
AB 3
BB 7
Males
A 3
B 7
A-minor allele recessive

Table 3.2: Distribution of sample in 20 patients

This time, as hemizygous males (with only one X chromosome) are also being
considered, there will be a division between the sexes and their genotype counts.
First, as done in the previous examples, we include the HardyWeinberg library and
declare variables corresponding to the alleles to be inserted in a vector. The alleles,
in both examples we will see, will be called ‘A’ and ‘B’ to remain consistent with
the notation used in the sources.
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1 library ( HardyWeinberg )
2

3 # males
4 A <- 3
5 B <- 7
6

7 # females
8 AA <- 0
9 AB <- 3

10 BB <- 7
11

12 x <- c(A=A, B=B, AA=AA , AB=AB , BB=BB)

In order to test the HWP with the available data, the three different tests explained
in Chapter 2 are used. The chi-square test, the permutation test and the exact
test are activated in R using the following functions. The first one is called without
continuity factor and with the parameter x.linked=TRUE, in order to specify the
X chromosomal context, instead of autosomal one.

1 chisqResult <- HWChisq (x,cc=0,x. linked =TRUE , verbose =TRUE)

Chi-square test for Hardy-Weinberg equilibrium (X-chromosomal)
Chi2 = 1.09375 DF = 2 p-value = 0.5787556 D = NA
f = -0.1764706

In the same way, for the permutation test it’s specified the X chromosome; moreover,
here with nperm the number of permutations can be set.

1 permResult <- HWPerm (x,nperm =10000 ,x. linked =TRUE , verbose =
TRUE)

Permutation test for Hardy-Weinberg equilibrium of an X-linked
marker
Observed statistic: 1.09375 10000 permutations. p-value: 0.741
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Finally, the way to call the exact test is similar to the other ones.

1 exactResult <- HWExact (x, x. linked = TRUE , verbose = TRUE)

Graffelman-Weir exact test for Hardy-Weinberg equilibrium on the
X-chromosome using SELOME p-value
Sample probability 0.1940129 p-value = 0.7453581

All tests give very high p-values as output, certainly greater than the 0.05 threshold,
so it can be said that there is no deviation from the Hardy-Weinberg equilibrium.
From the same article containing this example, the summary of what has just been
said is given in the Table 3.3, thanks to small numbers it is feasible ‘by hand’.

mA mB fAA fAB fBB Prob
1 0 10 3 0 7 0.0002
2 0 10 2 2 6 0.0085
3 0 10 1 4 5 0.0340
4 0 10 0 6 4 0.0226
5 1 9 2 1 7 0.0121
6 1 9 1 3 6 0.1132
7 1 9 0 5 5 0.1358
8 2 8 2 0 8 0.0034
9 2 8 1 2 7 0.1091
10 2 8 0 4 6 0.2546
11 3 7 1 1 8 0.0364
12 3 7 0 3 7 0.1940
13 4 6 1 0 9 0.0035
14 4 6 0 2 8 0.0637
15 5 5 0 1 9 0.0085
16 6 4 0 0 10 0.0004

Table 3.3: All possible samples for a set of 20 individuals (10 males and 10
females) with a total of 6 A alleles
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In summary, another example is given, a little more significant since taken from
a real SNP and with slightly higher numbers. SNP ‘rs5968922’ is taken from an
experiment on 1255 individuals, including 604 males and the remaining females,
which is performed by Wellek and Ziegler (2019). The authors in the paper want
to analyze the dynamics and difficulties that face us in the same context of this
work. Looking at table 5 of the cited article, the data that are taken directly from
the GENEVA project are shown here in Table 3.4.

SNP Genotype distribution n
rs5968922 Females

AA 275
AB 296
BB 80
Males
A 392
B 212
B-minor allele recessive

Table 3.4: Distribution of sample ‘rs5968922’ in 1255 patients (from GENEVA
project)

Again, the names of the alleles are used in a standard way but could have been others
without any difference. Without going too far, we report the same calculations of
the previous example with their outputs.

1 # males
2 A <- 392
3 B <- 212
4 # females
5 AA <- 275
6 AB <- 296
7 BB <- 80
8

9 x <- c(A=A, B=B, AA=AA , AB=AB , BB=BB)
10

11 chisqResult <- HWChisq (x,cc=0,x. linked =TRUE , verbose =TRUE)

Chi-square test for Hardy-Weinberg equilibrium (X-chromosomal)
Chi2 = 0.00170001 DF = 2 p-value = 0.9991504 D = NA
f = 0.0009953963
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1 permResult <- HWPerm (x,nperm =10000 ,x. linked =TRUE , verbose =
TRUE)

Permutation test for Hardy-Weinberg equilibrium of an X-linked
marker
Observed statistic: 0.00170001 10000 permutations. p-value: 1

1 exactResult <- HWExact (x, x. linked = TRUE , verbose = TRUE)

Graffelman-Weir exact test for Hardy-Weinberg equilibrium on the
X-chromosome using SELOME p-value
Sample probability 0.002818315 p-value = 1

This time, due to the large numbers, the table with all possible combinations is not
shown. Anyway, it is quite clear from the result of all the tests that the p-value is
close, if not equal, to 1 and it is a sign of a perfect HWE for the SNP ‘rs5968922’.

k alleles
The most complex and complete context that can be shown is that which includes
the X chromosome for a number of k alleles greater than 2. From here on out we
will enter an “unexplored” world of which it is not possible, in most of the cases, to
have comparisons with other methods for the truthfulness of the results obtained.
The chosen example to explain is taken from the paper written by Chen et al. (2018),
in which 19 X-chromosomal STRs are taken from different Chinese populations
with the aim of analyzing forensic characterizations and exploring relationships
within them. Also in this case the study goes into medical details, as well as
statistics, which will not be seen in detail here and for which we refer you to the
direct reading of the article in case you want to deepen.
Very clear and simple is the definition that is given of STR, which, as anticipated
in the previous paragraph, is another type of marker, such as SNPs, which can be
analyzed in the context of statistical genetics. “Short tandem repeats (STRs), also
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known as microsatellites and composed of repeating 2 − 6 base pair motifs, are
highly variable variants with the number of approximately 700,000 in the human
genome, play a pivotal role in population genetics, anthropology, genetic genealogy
and forensics” (Chen et al., 2018). If, for instance, there is a tri-nucleotide STR,
AGG, that is repeated 3 times in an individual’s DNA sequence, it will be encoded
as 3 (3 times) or 9 (3 times tri-nucleotide) depending on the chosen encoding.
Furthermore, it is always to be taken into account that male individuals will inherit
one while female ones will inherit two alleles. The number of repeated alleles will
be analyzed in order to see those shared by different individuals to analyze their
HWE. With these premises, let’s see the example practically.
At first the libraries are included and the data are read (also available at the link
http://www.plosone.org/article/fetchSingleRepresentation.action?uri
=info:doi/10.1371/journal.pone.0204286.s001) of which, for the moment,
the STR ‘DXS7423’ is chosen for analysis, which, as we shall see, contains 4 alleles
(13, 14, 15 and 16). From here the males and females are split into two different
structures and, for the latter, a concatenation is carried out between the two
columns, so as to have data of the type “13/14”, like before there was “A/B” or
“AB”. The Table 3.5 shows the first rows of the reference database, while the output
of the two table statements gives us a count of the elements present. Overall, the
experiment included 206 individuals including 102 males and 104 females.

Sample identifier DXS7423...4 DXS7423...5
1 ZunyiHan001 14 15
2 ZunyiHan002 14 14
3 ZunyiHan003 15 15
4 ZunyiHan004 15 15
5 ZunyiHan005 15 15
6 ZunyiHan006 14 14
7 ZunyiHan007 15 15
8 ZunyiHan008 15 15
9 ZunyiHan009 14 15
10 ZunyiHan010 15 15

Table 3.5: Distribution of sample ‘DXS7423’ in 206 patients

1 library ( readxl )
2 library ( HardyWeinberg )
3
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4 dataSTR <- read_excel("../ journal .pone .0204286. s001.xlsx",
range = "A2:E208")

5 dataSTR <- dataSTR [ , -(2:3)] # removing unuseful STR
6

7 # splitting males and females
8 females <- dataSTR [1:104 ,2:3]
9 males <- dataSTR [105:206 ,2]

10

11 # concatenating father and mother X chromosomes
12 newFemales <- paste( females $ DXS7423 ...5 , females $ DXS7423

...4 , sep = "/")
13

14 table( newFemales )
15 table(males)

newFemales
14/13 14/14 15/14 15/15 16/14 16/15

2 8 39 46 1 8

males
13 14 15 16
1 33 64 4

After this, some functions are included which are useful in the calculations, such
as the probability of the sample considered according to the formula (2.15), or
some auxiliary functions that are used inside it. In particular, the observedProb,
matrix.to.vec, vec.to.matrix, alleleCounts, fillUpper functions are de-
clared and have been modified slightly compared to the Engels namesakes that are
part of its HWxtest package.

1 fillUpper <-
2 function (gmat){
3 if(!(is. matrix (gmat) && (nrow(gmat)== ncol(gmat)))) stop(

"Must be square matrix at least 2x2")
4 k <- nrow(gmat);
5 if(k <2) return (gmat)
6 for(j in 2:k) {gmat [1:(j -1) , j] <- gmat[j ,1:(j -1) ]};
7 gmat
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8 }
9

10

11 alleleCounts <-
12 function (gmat) {
13 if(class(gmat)!=" matrix ") gmat <- vec.to. matrix (gmat)
14 t <- fillUpper (gmat);
15 k <- dim(t)[1];
16 m <- integer (k);
17 for(i in 1:k) {m[i] <- sum(t[i ,]) + t[i,i]};
18 if(!is.null( rownames (gmat))) names(m) <- rownames (gmat)
19 m
20 }
21

22

23 vec.to. matrix <-
24 function (gvec , alleleNames =""){
25 if(!(is. vector (gvec) && is. numeric (gvec))) stop("\nMust

be a vector ")
26 nGenotypes <- length (gvec)
27 nAlleles <- as. integer (( sqrt (8* nGenotypes + 1) - 1)/2)
28 if( nGenotypes != nAlleles *( nAlleles + 1)/2) stop("\

nWrong number of genotype counts ")
29 t <- matrix (NA , nAlleles , nAlleles )
30 for(i in 1: nAlleles ){t[i, 1:i] <- gvec [(i*(i -1)/2 + 1):(

i*(i+1)/2)]}
31 if( length ( alleleNames ) >= nAlleles ) {
32 rownames (t) <- alleleNames ;
33 colnames (t) <- alleleNames ;
34 }
35 t
36 }
37

38 matrix .to.vec <-
39 function (gmat){
40 if(!(is. matrix (gmat) && (nrow(gmat)== ncol(gmat)))) stop(

"Must be square matrix ")
41 v <- c();
42 k <- nrow(gmat)
43 for(i in 1:k){v <- append (v,gmat[i ,1:i])}
44 names(v) <- NULL;
45 v
46 }
47

48 observedProb <-
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49 function (c, males , mf){
50 c <- fillUpper (c);
51 m <- alleleCounts (c);
52 d <- sum(diag(c));
53 n <- sum(m)/2;
54 nt <- mf [1] + 2*mf [2]
55

56 k <- n * log (2) + lgamma (mf [1]+1) + lgamma (mf [2] + 1) -
lgamma (nt +1) + sum( lgamma (m+males +1));

57 a <- matrix .to.vec(c); # only females
58 p <- exp(k - sum( lgamma (a+1)) - sum( lgamma (males +1)) - d

*log (2));
59 }

A further step is done by completing the vector of the genotype count with the values
at 0, so that we can use the functions listed above and calculate the probability of
the considered STR.

1 vecFemale <- table( newFemales )
2 vecMale <- table(males)
3 mf <- c(sum( vecMale ), sum( vecFemale ))
4 vecFemale ["13/13"] = 0
5 vecFemale ["16/16"] = 0
6 vecFemale ["15/13"] = 0
7 vecFemale ["16/13"] = 0
8

9 x <- vecFemale [order(names( vecFemale ))]
10 x
11

12 vecFemale <- as. vector ( vecFemale [order(names( vecFemale ))])
13 vecFemale <- vec.to. matrix ( vecFemale )
14

15 nAlleles <- 4
16

17 tot13 <- 2*x["13/13"] + x["14/13"] + x["15/13"] + x["16/13"]
+ vecMale ["13"]

18 tot14 <- x["14/13"] + 2*x["14/14"] + x["15/14"] + x["16/14"]
+ vecMale ["14"]

19 tot15 <- x["15/13"] + x["15/14"] + 2*x["15/15"] + x["16/15"]
+ vecMale ["15"]

20 tot16 <- x["16/13"] + x["16/14"] + x["16/15"] + 2*x["16/16"]
+ vecMale ["16"]
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21

22 prob <- observedProb (vecFemale , vecMale , mf)
23 prob

13/13 14/13 14/14 15/13 15/14 15/15 16/13 16/14 16/15 16/16
0 2 8 0 39 46 0 1 8 0

Prob 1.751051e-05

The final step is to build a data structure, here called counts, which contains the
complete set of individual allele counts and the observed probability. This structure
is printed on a file that will be taken as input by an executable, HWx.exe, which
was generated by the algorithm which will be discussed in Chapter 5. Then we
build the string with the other input parameters that the executable needs, such
as the number of alleles, the number of males and females and the probability
considered and outputs the exact test p-value.

1 counts <- as. numeric (sort(c(tot13 , tot14 , tot15 , tot16),
decreasing = T))

2 counts <- c(counts , prob)
3

4 write.table(counts , file=" counts .txt", row.names=FALSE , col.
names=FALSE)

5 nInput = 1
6 str <- paste("HWx.exe", nAlleles , nInput , mf[1], mf[2], "

counts .txt", " outpvalues .txt")
7

8 # call Program with Algorithm
9 system (str)

10

11 pvalsAlg <- read.table(" outpvalues .txt")

P-value
0.509918

The final result reached is a p-value of 0.509, which is far greater than 0.05 and
therefore the HWE is confirmed for this STR, confirming the premise for developing
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the study in the article. The big difference with what has already been discussed
by the authors is that they carry out the calculations to verify the HWE only on
the female individuals that are available, reaching a p-value of 0.2654 for the
same marker just studied, as is possible read in the paper or also in the summary
table 2 at the bottom of it (http://www.plosone.org/article/fetchSingleRep
resentation.action?uri=info:doi/10.1371/journal.pone.0204286.s002).
Both results lead to the same conclusion that he does not reject the null hypothesis
for Hardy-Weinberg proportions, but as it is clear, the numerical values are vastly
different. So, given that it can sometimes happen that the conclusions change
according to the consideration or not of the male individuals, the new algorithm
for this type of verification is appropriate and very useful.

As previously mentioned, the more you go forward in the number of alleles
considered, the more difficult it is to have, at least currently, tools to verify the
results obtained. Up to 5 alleles a good index of truthfulness can be obtained with
the permutation test of the HardyWeinberg package, for which the operation is
illustrated. Since the function requires that alleles have names, we call the 4 alleles
with letters from A to D and use the same numbers seen before.

1 x.m <- c(A=1, B=33, C=64, D=4)
2

3 x.f <- matrix (c(AA=0,AB=0,AC=0,AD=0,BA=2,BB=8,BC=0,BD=0,CA
=0,CB=39,CC=46,CD=0,DA=0,DB=1,DC=8,DD =0) , nrow = 4, ncol
=4, byrow=T)

4

5 out <- HWPerm .mult(x.m,x.f)

Permutation test for Hardy-Weinberg equilibrium and equality of
allele frequencies (X-chromosomal).
4 alleles detected.
Observed statistic: 1.751051e-05 17000 permutations.
p-value: 0.5061176

The result (0.506) is very very similar to that previously obtained (0.509), so it
is possible to confirm what has been said both numerically and as a resulting
conclusion. The important thing that changes between the two methodologies is
certainly the computation time, which is much higher in the permutation test and
which will be well explained and described in the next chapters, in order to give
feedback on the work done.
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Chapter 4

Algorithm for the bi-allelic
exact test

The test of the hypothesis that a population is in Hardy-Weinberg equilibrium
has been studied, deepened and improved throughout the last century up to the
present day. As already mentioned, deviations from HWE can indicate inbreeding,
population stratification, and even problems in genotyping (Wigginton et al., 2005).
For this reason, having useful and efficient tools has been increasingly necessary
over time. All the methods discussed in theory have had several implementations
in a practical context to achieve results and draw conclusions quickly, but in any
case comparable to the original ones in terms of consistency and correctness. A
summary of the historical path has already been seen in the introductory chapter.
Here we now want to focus exclusively on the exact test and its implementation in
the different algorithms available that can be used. Most of the topics that will be
explained here are an in-depth analysis of what has been seen, only superficially, up
to now with the examples. What’s inside those functions that lead us to such clear
results? Are they simple or complex? How long does it take to reach the output
values? These are some of the questions we will try to answer. In particular, only
the bi-allelic context is exposed here, dividing the algorithms for the autosomes
and for the X-chromosome. Finally, an analysis will be made in terms of speed
of the different solutions available, so as to have a focus on the main reasons for
applying one solution rather than the other.

4.1 Autosomes
In both types of chromosomes, the possible algorithmic implementations for the
exact test will be the same. The complete enumeration, sampling (permutation
test) and finally a network algorithm will be exposed, of which the last will be the
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absolute novelty in the next chapter for k alleles.

4.1.1 Complete enumeration
The complete enumeration algorithm is among the first and simplest developed
so far. The moment you are faced with this statistical problem, this is the most
intuitive method that comes to mind. The summary is as follows: list all the
possible tables that can be generated, keeping the margins fixed, calculate their
probabilities and add all those smaller or equal to the sample we are dealing with.
Let’s take a closer look at each step. The explanation will follow in practice the
code of the HWExact function, inside the HardyWeinberg package of R; for a more
theoretical treatment, instead, we take inspiration from the paper written by Louis
and Dempster (1987) which clarifies the operation step by step, both for two and
for more alleles. Suppose we have a sample of diploid individuals with a number of
AA, AB and BB genotypes whose HWE hypothesis we want to test. By keeping
the number of alleles A and B fixed, the n fixed samples can be considered, having
the Fisher margins fixed and constant. This means that, if nA and nB are the
number of alleles A and B, represented in Table 4.1 , the sum along the rows and
columns of all the possible tables generated with these data will remain the same.
It should be noted that, also from the theoretical point of view from now on, to
use the same notation of the package, alleles ‘A’ and ‘B’ will be used instead of ‘A’
and ‘a’ seen in the previous theoretical explanation.

A B
A 2nAA nAB nA

B nAB 2nBB nB

nA nB 2n

Table 4.1: Number of alleles and genotypes

From the code point of view, the first operation is to store the data and check its
structure, in particular if a three-element vector has been introduced and if they
are all positive integers. The homozygous and heterozygous genotypes are then
divided into two vectors.

1 if ( length (X) != 3 | any(X < 0))
2 stop(" HWExact : X is not a 3 by 1 non - negative count

vector ")
3 if (any(!is. wholenumber (X))) {
4 warning (" Genotype counts are not integers , counts will

be rounded .")

45



4 – Algorithm for the bi-allelic exact test

5 X <- round(X, digits = 0)
6 }
7 n <- sum(X)
8 Xhom <- X[ homozyg (X)]
9 Xhet <- X[ heterozyg (X)]

10 nA <- 2 * Xhom [1] + Xhet
11 nB <- 2 * n - nA

If nAA, nAB and nBB are the numbers of individuals with the genotypes AA, AB
and BB, respectively, and pA and pB are the population frequencies of the alleles A
and B, it is possible to express the multinomial probability of obtaining the sample
(nAA, nAB, nBB) if there is Hardy-Weinberg equilibrium, such as

P (NAA = nAA, NAB = nAB, NBB = nBB) = n!(2pApB)nAB

nAA!nAB!nBB! (p
2
A)nAA(p2

B)nBB (4.1)

Considering now nA = 2nAA + nAB and nB = 2nBB + nAB, it’s possible to obtain
the real probability we’re interested in. The conditional distribution of the number
of heterozygotes (NAB) given the minor allele count was derived by Levene et al.
(1949) and Haldane (1954) and it’s given by

P (NAA, NAB, NBB|nA, nB) = nA!nB!n!2nAB

nAA!nAB!nBB!(2n)! (4.2)

To obtain the final statistics we need, let’s calculate the cumulative probability,
that is obtained by summing all probabilities less than or equal to the probability
of the observed sample (“Select Equally Likely Or More Extreme” or SELOME).
The crucial point is to be able to obtain all the probabilities and, therefore, to
build the different samples. Considering nA and nB the fixed number of alleles, the
table can be made from the different sets of 3 elements, let’s call them (sAA, sAB,
sBB). We start with (0, nA, (nB−nA)/2) if nA ≤ nB or ((nA−nB)/2, nB, 0) in the
opposite case. Going forward, subtract 2 from the middle element (heterozygous)
and add 1 to each of the two extremes (homozygous) sAA and sBB. Continue until
sAB is 1 or 0. In this way you create a table like the 4.2 of which you can calculate
the probabilities of each row by following the formula (4.2). Finally, adding all the
minor ones than the one concerned, the desired p-value comes out.
Returning to the code, what has just been said is not implemented in exactly
the same way within the HWExact function. This happens because of the high
computational effort in listing the triples in this way and making the necessary
calculations. As introduced in Chapter 2, a naive approach is introduced in the
paper by Wigginton et al. (2005), which facilitates the recursive calculations that
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AA AB BB P (nAB|nA) p− value
1 86 14 0 0.6136 1.0000
2 87 12 1 0.3209 0.3864
3 88 10 2 0.0602 0.0654
4 89 8 3 0.0051 0.0053
5 90 6 4 0.0002 0.0002
6 91 4 5 0.0000 0.0000
7 92 2 6 0.0000 0.0000
8 93 0 7 0.0000 0.0000

Table 4.2: Example with all possible samples of 100 individuals and nB = 14

must be carried out, managing to obtain a fixed number of operations regardless
of the size of the dataset present. In particular, with a sample size of size N , the
authors reduce the calculations of the formula (4.2) to only four multiplications
and one division, regardless of N , using the following equations.

P (NAB = nAB + 2|N, nA)
= P (NAB = nAB|N, nA) 4nAAnBB

(nAB+2)(nAB+1) , and

P (NAB = nAB − 2|N, nA)
= P (NAB = nAB|N, nA) nAB(nAB−1)

4(nAA+1)(nBB+1)

(4.3)

The author of the package chooses to follow this path. So, after having placed the
index of the sample in ind, it calls two functions (CompProbUp and CompProbDown)
which help to fill two vectors with different probabilities, following the equations
just introduced.

1 MaxHet <- min(nA , nB)
2 if ( MaxHet < 2) {
3 pval <- 1
4 prob <- 1
5 pofthesample <- 1
6 ind <- 1
7 }
8 else {
9 ind <- match(Xhet , seq( MaxHet %%2, MaxHet , 2))

10 # 1 ,3 ,5.. nA (if odd) or 0 ,2 ,4.. nA (if even)
11 enAB <- nA * nB/(2 * n - 1)
12 enAB <- round(enAB , digits = 0)
13 if (( enAB %%2) != ( MaxHet %%2))
14 enAB <- enAB + 1
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15 nAA <- (nA - enAB)/2
16 nBB <- (nB - enAB)/2
17 initialprob <- 1
18 AboveExp <- NULL
19 BelowExp <- NULL
20 if (enAB < MaxHet )
21 AboveExp <- CompProbUp (nAA , nBB , enAB , initialprob ,
22 MaxHet ) # recursive formula
23 BelowExp <- CompProbDown (nAA , nBB , enAB , initialprob )
24 prob <- c(rev( BelowExp ), initialprob , AboveExp )
25 prob <- prob/sum(prob)
26 }

At this point, prob will contain all the probabilities of the different samples
obtainable starting from the fixed alleles. From now on, three vectors are declared
and filled, Plow, Phigh and Phwe. Given the theoretical part described so far, the
last one is the only one that interests us, as the default parameters passed to
the function are “selome” and “two.sided”, as already discussed. This vector will
contain at each index the probability value of the sample at that index.

1 if ( MaxHet %%2 == 0)
2 names(prob) <- seq (0, MaxHet , 2)
3 if ( MaxHet %%2 == 1)
4 names(prob) <- seq (1, MaxHet , 2)
5 Plow <- cumsum (prob)
6 Phigh <- 1 - c(0, Plow)
7 Phigh <- Phigh[- length (Phigh)]
8 Phwe <- pmin (1, 2 * Phigh , 2 * Plow)
9

10 pofthesample <- prob[ind]
11 pval <- switch ( alternative , # [...]
12 two.sided = switch (pvaluetype , dost = Phwe[ind],
13 selome = sum(prob[prob <= pofthesample ]), midp = sum(

prob[prob < pofthesample ]) + 0.5 * pofthesample , stop("
invalid value for parameter pvaluetype ")), stop(" invalid
value for parameter alternative "))

Considering the ind value that was stored before, thanks to the selome parameters
the final p-value is obtained. The switch instructions are useful in order to have a
flexible way to adapt the function according to the inputs. In this code only the
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part we’re interested in is reported. Finally, HWExact returns 3 values:

• pval: p-value of the exact test

• prob: probabilities of all possible samples with the same sample size and
minor allele count

• pofthesample: probability of the observed sample

4.1.2 Sampling (Permutation test)
The permutation test uses a sampling algorithm to obtain a statistical value of the
deviation or otherwise of a variant from the HWE. This is a type of test that uses
the tests already described (such as the chi-square or the exact test) to calculate
the simple probabilities of the marker observed. Despite being the one with the
highest computational effort, this test is still very useful and, in some ways, the
only one that can be used in certain cases involving a high number of alleles. In the
Chapter 2 it has already been introduced at a theoretical level, especially in the
multi-allelic context in which the algorithm by Guo and Thompson (1992) has been
used, describing it point by point. Here we will go into a little more detail, going to
observe how this is applied in practice and, in particular, in the HWPerm function of
the HardyWeinberg package in R. The article written by Li et al. (2013), from which
we will take inspiration for some considerations, analyzes the statistical power of
this test by demonstrating superiority over the simple chi-square, especially on a
large scale. Starting from the autosomal context with only two alleles, A and B,
and with n individuals, this test consists in: the calculation of the statistics of the
observed sample; subsequently, the 2n alleles are arranged one after the other and
considered in pairs, on which the statistics are calculated according to a chosen
test (the same for the example observed); finally, after N permutations, the p-value
is calculated in the way we will see shortly. This can be summarized schematically
in Figure 4.1, taken from the article cited above.
Also in this case we will accompany the theoretical explanation with the practical
one, highlighting the key aspects of the HWPerm function of the same package as
the previous one. If there are two alleles in the population, there will be 3 possible
genotypes, two homozygous (AA and BB) and one heterozygous (AB). By putting
these three elements into a vector x, we pass to the HWPerm function which, as the
first step, counts alleles. One of the cardinal elements of this test concerns the
type of internal test that you want to apply to the observed sample and obtain the
probability. This can be decided by the user through the FUN parameter, which
can be specified whether to perform a chi-square test (default), a likelihood ratio
or an exact test. So in stat.obs we will have the test statistic of the sample we
are considering.
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Figure 4.1: Permutation test with Monte Carlo method (Li et al., 2013)

1 n <- sum(x)
2 nA <- 2 * x[1] + x[2]
3 nB <- 2 * n - nA
4 stat.obs <- FUN(x)

The next step is to decide on the number of permutations to be made. The higher
the number of random samples, the more truthful the test will be, at the expense
of calculation times. The paper cited above explains mathematically that, for a
threshold α = 0.01, although it is more common to consider 0.05, and a confidence
level of 99%, the ideal is about 17000 permutations, which is also the default of
the function that we are analyzing . So it is appropriate to consider a parameter
nperm that is greater than or equal to this value, also depending on the available
computing power. This parameter is useful to cycle a correct number of times in a
loop, within which the following operations are carried out.

1. to build a random sample with the given number of A and B alleles
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2. the latter are placed in pairs and the genotypes are counted

3. to extract a vector y, similar to the one given at the beginning

4. to calculate the probability of y in the same way as x

1 pseudodist <- numeric (nperm)
2 i1 <- seq (1, 2 * n, 2)
3 i2 <- seq (2, 2 * n, 2)
4 for (i in 1: nperm) {
5 xx <- sample (c(rep("A", nA), rep("B", nB)))
6 A1 <- xx[i1]
7 A2 <- xx[i2]
8 Geno <- paste(A1 , A2 , sep = "")
9 Geno[Geno == "BA"] <- "AB"

10 nAA <- sum(Geno == "AA")
11 nAB <- sum(Geno == "AB")
12 nBB <- sum(Geno == "BB")
13 y <- c(AA = nAA , AB = nAB , BB = nBB)
14 stat. pseudo <- FUN(y)
15 pseudodist [i] <- stat. pseudo
16 }

The final step is to calculate the test p-value. To do this, among all the values just
calculated in the for loop, only those greater or equal to the value for the observed
sample (stat.obs) are added and, finally, we divide this value by the number of
permutations.

1 nlarger <- sum( pseudodist >= stat.obs)
2 pval <- nlarger /nperm

The high number of iterations is certainly a determining factor in the performance
and speed of this test, confirming that the operations within the cycle are not
trivial. We will see shortly how much this will affect in terms of CPU.
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4.1.3 Network algorithm
As you can easily guess, the algorithms just seen are very useful and often precise
to solve the initial problem. The flaw is, however, the effort necessary to do it.
In the last decades of the past century, several authors have tried to improve
existing algorithms with the aim of speeding up implementation. The first authors
to try this were Mehta and Patel (1983), who described a network algorithm
that allows to obtain the Fisher’s exact test more quickly. This study is then taken
up again by Engels (2009) who adapts it to the case that is useful to us too and
which is the starting point for the study of this thesis. In particular, assuming the
fixed number of alleles to be studied, it is possible to construct an acyclic graph in
which each path from the root to the tail represents one of the possible contingency
tables. The representation and the consequent calculation algorithm varies slightly
between the two papers mentioned. Having the Engels’s source code available was
a fundamental aid that helped a lot in the realization of what will follow. The
strength and usefulness of this algorithm comes out, in particular, for a number
of alleles larger than two, whether we consider all chromosomes or not. In fact,
the algorithm that we will see here for the autosomes with two alleles is only the
final part of the algorithm needed for k > 2 alleles. So you will not notice huge
improvements both with regard to the procedure and the performances compared
to the previous case. The most innovative and interesting part will be illustrated
in the next chapter.

For the simpler case described here, a real network will not yet be seen, since
with just the two alleles we require a specific but simpler treatment than what will
be described below. The Engels (2009) algorithm, adapted to our needs, starts from
taking into consideration an overall vector of the allele counts together with the
contingency table of the specific marker to be analyzed. We consider n individuals
with two alleles, also called A and B here. If with nA and nB we indicate the
total count of A and B respectively, while with nAA, nAB and nBB those of the
corresponding genotypes, the exact test distribution is as follows .

P (NAA, NAB, NBB|nA, nB) = n!2n−dnA!nB!
(2n)!nAA!nAB!nBB!

(4.4)

The difference with the formula (4.2) seen in the previous section is in the exponent
of 2 which stands for numerator: to indicate the total number of heterozygotes,
instead of doing it directly with 2nAB , subtract from the total number of individuals
n the factor d = nAA + nBB which is the number of homozygotes. This is a
simplification that helps the author to perform the necessary calculations, especially
when very large tables come into play. If carefully observed, the formula (4.4)
contains a part that always remains the same, regardless of the tables, and one
that varies as the marker achievable with the available alleles changes. You can
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clearly see it by rewriting it as follows.

P (NAA, NAB, NBB|nA, nB) = n!2nnA!nB!
(2n)!ü ûú ý
exp Kp

1
2dnAA!nAB!nBB! (4.5)

Here, the first multiplicative factor is the constant one, while the second is the one
that changes. The last premise to be made concerns a further simplification in the
calculations. Since there are large factorials in the distributions that we want to
calculate, it is good practice to use a less complex way that concerns the correlation
between logarithms and exponentials. Being that one is the inverse function of
the other and the logarithms greatly reduce the orders of magnitude, it is decided
to carry out all the accounts by tracing the data back to the logarithm, to then
perform only one exponential calculation at the end. For this reason, instead of
considering the probability of having a contingency table, given the count of alleles,
the logarithm is considered in this way

ln P (N |n) = Kp −
Ø
i≥j

f(nij)− d ln 2 (4.6)

where Kp is the constant factor just explained, nij is the count of the different
genotypes, while f is a function defined as f(i) = ln(i!). The final probability is
easily obtained by making the natural exponential of the result obtained. Now, the
algorithm is written in C and called in R via the .C() function. The required inputs
are: a vector of allele counts (rm), the number of alleles involved (rk, here is 2), a
vector with different types of statistics (such as χ2, LLR or simple probability), of
which we consider only the probability element useful for the test we are carrying
out and, finally, a vector for the return parameters. The other parameters are
irrelevant for our situation as they are useful for extracting the different histograms
that we have not dealt with in this project. The R hwx.test() function of Engels
(2009) internally calls the one in C xtest(). It should be noted that the following
code will cut out several parts of the original source code which, although present
in the original one, have not been treated here and are not useful for explanation.
The initial part of the function involves saving the input values in some global
variables, such as nAlleles, and creating some auxiliary attributes, such as Rarray,
which we will need shortly. Note the pPr parameter which will finally contain
the p-value to be returned to the caller. Subsequently, the constant Kp, called
constProbTerm, is built, already on a logarithmic scale, which contains the values
described before that do not change between the different tables. Finally, maxlPr
will contain the observed probability, with a certain tolerance rate, which will serve
as a threshold.
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1 void xtest (int * rm ,
2 int * rk ,
3 double * robservedVals , // observed stats
4 double * rPvals , // computed P values
5 [...]
6 )
7 {
8 nAlleles = *rk;
9 pPr=0;

10 Rbytes = *rk * sizeof ( COUNTTYPE );
11 Rarray = Calloc (*rk * *rk * (*rk -1)/2, COUNTTYPE );
12 for (int i = 0; i < nAlleles ; i++) Rarray [i] = rm[i];
13 mi = rm -1; // 1-based list of allele counts
14 lnFact = Calloc (rm[0] + 1, double );
15 // Make lookup tables
16 lnFact [0] = 0;
17 double lni;
18 for (int i = 1; i <= rm[0]; i++) {
19 lni = log(i);
20 lnFact [i] = lnFact [i-1] + lni;
21 }
22 int nGenes = 0;
23 for(int i = 0; i < nAlleles ; i++) nGenes += rm[i];
24 ntotal = nGenes /2;
25

26 // Get constant terms for Prob
27 constProbTerm = 0;
28 for (int i = 0; i < nAlleles ; i++) {
29 constProbTerm += lgammafn (rm[i] + 1); // lnFact [rm[i]];
30 }
31 constProbTerm += log(2)* ntotal + lgammafn ( ntotal +1) -

lgammafn ( nGenes +1);
32

33 // Get cutoffs for the four test statistics
34 double oneMinus = 0.9999999; // Guards against floating -

point -equality -test errors
35 if( robservedVals [0] > 0.000000000001) robservedVals [0] = 0;

// positive values are rounding errors
36

37 maxlPr = log( robservedVals [1]) * oneMinus ;
38

39 if ( nAlleles == 2) {
40 twoAlleleSpecialCase ();
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41 }else {
42 // ...
43 }
44 }

The last step is to call the twoAlleleSpecialCase() function, which is the heart
of the algorithm. This is very simple and includes the already introduced concepts
of the allele counts vector and triangular genotype array. The first, which had
been passed as the first parameter, has a form of the type [ nA nB ]. The second
concept can be schematized in the following two ways,C

nAA

nAB nBB

D
=

C
a11
a12 a22

D
the first according to our usual notation, while the other more similar to the code.
Here a kind of complete enumeration is made, in which in a for loop the possible
tables are listed, with the parameter nAA that goes from 0 up to nAA/2. For every
possible triad (nAA, nAB, nBB), the probability is calculated using the formula (4.6)
and exponentiating the result. Finally, the latter is added to pPr if it is less than
the previously defined threshold.

1 static void twoAlleleSpecialCase () {
2 unsigned a11, a21, a22, res1, res2;
3 double problT , prob;
4 unsigned dT;
5 int hdex;
6 res1 = mi[2]; // because they come ordered largest to

smallest
7 res2 = mi[1];
8 tableCount = res1/2 + 1;
9 for(a11 = 0; a11 <= res1/2; a11++) {

10 a21 = res1-a11*2; // integer arithmetic rounds down
11 a22 = (res2-a21)/2;
12 problT = lnFact [a11] + lnFact [a21] + lnFact [a22];
13 dT = a11 + a22;
14

15 // Here come the actual probability and LLR values
16 problT = constProbTerm - problT -dT * M_LN2;
17 prob = exp( problT );
18

19 // Now process the new values of prob and stat
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20 probSum += prob;
21 if( problT <= maxlPr ) pPr += prob;
22 } // for a11
23 }

The oneMinus variable in the caller function definitely deserves some extra attention.
This is used by Engels (2009), and then inherited in the creation of the new
algorithm, as guards against floating-point equality test errors or problem
of ties. Due to the small numbers you are in contact with when talking about
p-values and probabilities, particularly in these contexts, it is essential to have
an adequate calculation accuracy. When calculating the probability of a sample,
especially with the X chromosome, as we will see, the individual values can also be
of the order of 10−35. Obviously, the sum of all the values smaller than the one
considered goes to create a p-value with orders of magnitude more considerable and
useful to evaluate the significance of the HWE. For this reason it is important that,
when comparing for example two probabilities, it emerges which one is actually
smaller or larger than the other. If the precision is not sufficient, the risk is to skip
in the final sum some probabilities that then substantially change the value of the
final result. The variable oneMinus serves to give a certain downward tolerance to
the probability threshold value of our marker, in order to facilitate comparisons
with the others. What we have noticed, at the level of reliability of the result in
comparison with the already existing complete enumeration, is that the more this
value is precise and the more the two algorithms will have a better fit of the results.
When, however, this value exceeds a certain threshold of precision, then it causes
errors in the opposite way, eventually producing a result that is not true at all.
In the complete enumeration this precision can be modified from the outside, for
example in the case with 3 alleles you can add a small eps parameter at will that
changes the final result. Returning to the explanation the first thing that can come
to mind is why use these complications to end up in a situation where all possible
tables are listed, when this could be done from the start as seen in the previous
sections. In fact it may seem true for this context with few alleles, but it will be
seen that this is only the basis of a large lattice built to have a work as efficient as
it is precise.
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4.2 X Chromosome

Taking into account the X chromosome in the analysis that you want to carry out,
leads to a deepening with the modifications, more or less heavy, of the algorithms
just seen. As explained in Chapter 2, there are some changes in the final formulas
to arrive at the statistics of interest between the autosomes and the X chromosome.
Obviously, this reflects on the methodologies and calculations to be done to solve
problems in the most efficient way possible.

4.2.1 Complete enumeration

The complete enumeration is, also in this case, the easiest way to test the HWE
according to the exact test, even if not the most efficient. Due to the still no depth
study on this topic, there have not been many improvements in the literature to
develop these calculations more quickly. There are many papers that historically
describe the development of the exact test for autosomes and several authors
who have implemented new techniques. Searching for a well-done article that
explains these methods and the algorithms that underlie them in the context of
sex chromosomes is a difficult challenge. However, we will try to give it as clear a
hue as possible, always using the HWExact function of the HardyWeinberg package.
The paper by Graffelman and Weir (2016) (the first one is the same author of
the R package) is among the few able to give an explanation of how much we are
interested in this work, albeit keeping in a fairly theoretical line.

Being still in a bi-allelic context, it is also necessary here to take into account,
as a starting point, that the number of alleles A and B will remain unchanged and
fixed in all the calculations that will be carried out. The substantial difference
compared to the previous case concerns the division into sexes, males and females,
and that the former possess only one X chromosome, therefore just one allele per
genotype. The steps to follow, in broad terms, are always the same: building the
tables, calculating the different probabilities and adding those smaller or equal
to the sample observed to obtain the exact test p-value. Considering a set of n
individuals, consisting of nm males and nf females, we will indicate, following a
notation similar to the code we will see, with nA and nB the (fixed) number of
alleles A and B. Furthermore, by precisely making a division by sex , the number of
males with the alleles A and B will be indicated respectively with mA and mB, while
fAA, fAB and fBB identify the genotypes in the females. Finally, nt = 2nf + nm

is the total number of alleles. In this perspective, it is certainly useful to recall
the formula, already seen previously, of the calculation of the probability of the
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distribution to which we are interested.

P (MA = mA ∩ FAB = fAB|n, nA, nm) = nA!nB!nm!nf !
mA!mB!fAA!fAB!fBB!nt!

2fAB (4.7)

In the HWExact function, it is important for the analysis with the X chromosome to
set the parameter x.linked to TRUE. Subsequently, a vector with 5 values must
be input, 2 for the male allele counts (A and B) and 3 for the female genotype
counts (AA, AB and BB). This will be the sample considered for which we want to
test the HWE. We show how, internally, the parameter structures are first tested
and, subsequently, stored in variables that will be useful shortly for the calculations.

1 if ( length (X) != 5 | any(X < 0))
2 stop(" HWExact : X is not a 5 by 1 non - negative count

vector for an x- linked marker ")
3 if (any(!is. wholenumber (X))) {
4 warning (" Genotype counts are not integers , counts will

be rounded .")
5 X <- round(X, digits = 0)
6 }
7 lab <- names(X)
8 if (!all(lab %in% c("A", "AA", "AB", "B", "BB")))
9 stop(" Unknown genotypes occurred . Supply counts as a

named vector c(A,AA ,AB ,B,BB)")
10 n <- sum(X)
11 nfAA <- X[lab == "AA"]
12 nfAB <- X[lab == "AB"]
13 nfBB <- X[lab == "BB"]
14 nmA <- X[lab == "A"]
15 nmB <- X[lab == "B"]
16 nAf <- 2 * nfAA + nfAB
17 nBf <- 2 * nfBB + nfAB
18 nm <- nmA + nmB
19 nf <- n - nm
20 X <- c(nmA , nmB , nfAA , nfAB , nfBB)
21 nA <- nmA + 2 * nfAA + nfAB
22 nB <- nmB + 2 * nfBB + nfAB
23 nt <- nA + nB
24 pA <- nA/nt
25 if (nA < nB) {
26 X <- c(nmA , nmB , nfAA , nfAB , nfBB)
27 }
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28 else {
29 X <- c(nmB , nmA , nfBB , nfAB , nfAA)
30 }
31 nfAA <- X[3]
32 nfAB <- X[4]
33 nfBB <- X[5]
34 nmA <- X[1]
35 nmB <- X[2]
36 nAf <- 2 * nfAA + nfAB
37 nBf <- 2 * nfBB + nfAB
38 nA <- nmA + 2 * nfAA + nfAB
39 nB <- nmB + 2 * nfBB + nfAB
40 pA <- nA/nt

After arranging all the data received, the function internally calls auxiliartable
which helps to make the complete enumeration of the possible cases. This time
we start by considering the minor allele frequency at 0 in males, while giving the
rest to the other allele. With the number of remaining alleles it is possible to
see how many combinations of the female genotypes are achievable, following the
algorithm with the sets of three elements seen for the autosomes. Subsequently, the
minor allele is increased by 1 and the major allele decreases by 1, again in males,
obtaining a certain number of alleles still to be distributed for females. From here
the algorithm of before is re-launched and all possible cases are listed. This is
repeated until the minor allele in males reaches its entirety.
Recalling an example already seen in Chapter 3, if there are 20 individuals, divided
into 10 for each sex, and the minor allele is A which is present 6 times, then it
can be completely enumerated having as a result that of Table 4.3. Each row of
that table is only a subset of possible other enumerations within the female gender,
in fact fA is the total number of the minor allele count in females. By using this
values, it’s possible to build all the triples (fAA, fAB, fBB). The complete result
was already shown in Table 3.3.

1 Z <- auxiliartable (X)
2 prob <- numeric (nrow(Z))
3 pofthesample <- sample .prob.last(n, nm , nmA , nA , nfAB)
4 for (i in 1: nrow(Z)) {
5 prob[i] <- subsamples .prob(nA , nB , nm , nf , nt , Z[i,1],
6 Z[i, 2], Z[i, 3], pofthesample )
7 }
8 if ( pvaluetype == " selome ")
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mA mB fA

1 0 10 6
2 1 9 5
3 2 8 4
4 3 7 3
5 4 6 2
6 5 5 1
7 6 4 0

Table 4.3: Complete enumeration 20 individuals with 6 A alleles

9 pval <- sum(prob)
10 if ( pvaluetype == "midp") {
11 pval <- sum(prob) - 0.5 * pofthesample
12 }

Then, after the table, the probability of the observed sample is calculated in
pofthesample, using the formula (4.7); subsequently, a vector prob is constructed
thanks to the subsamples.prob function and it contains only the values of the
probabilities less than that observed, after having analysed all the enumeration in
the table. Again, the only parameter we are considering is “selome” and, therefore,
the final p-value will simply be the sum of all the elements of the prob vector.

4.2.2 Sampling (Permutation test)
If the X chromosome with two alleles is taken into consideration, the permutation
test remains a valid tool to verify HWE in a polymorphism, without complicating
the reasoning with respect to the previous case with autosomes only. The theory
behind this test is broadly explained in the article by Graffelman and Weir (2016).
The first author, in the HardyWeinberg package, extends the HWPerm function
also to this context, adapting the calculations to the distinction between males
and females as we will see. The central heart of the permutation test remains
the repeated sampling of the alleles that are arranged one after the other and
the subsequent calculation of the probabilities to then obtain the p-value. The
explanation seen in the Section 4.1.2 remains practically unchanged in the input
parameters needed for this algorithm, except for the vector x of the genotype counts.
Suppose that the two alleles involved in our marker are A and B. Hemizygous
males will have only one of them, while females inherit two. Therefore, this time
a vector of 5 elements is passed to the function, 2 for men and 3 for women (the
latter in the same format as the autosomes).
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The first step, after the error checks for the parameters received, is that of the
allele counts and the calculation of the probability, following the test that has been
chosen to use (also here it can be chi-square, likelihood ratio or exact test) thanks
to the FUN attribute.

1 if ( length (x) != 5 | any(x < 0))
2 stop(" HWPerm : x is not a 5 by 1 non - negative count vector

for an x- linked marker ")
3 if (any(!is. wholenumber (x))) {
4 warning (" Genotype counts are not integers , counts will be

rounded .")
5 x <- round(x, digits = 0)
6 }
7 lab <- names(x)
8 if (!all(lab %in% c("A", "AA", "AB", "B", "BB")))
9 stop(" Unknown genotypes occurred . Supply counts as a named

vector like c(A,AA ,AB ,B,BB)")
10 n <- sum(x)
11 nfAA <- x[lab == "AA"]
12 nfAB <- x[lab == "AB"]
13 nfBB <- x[lab == "BB"]
14 nmA <- x[lab == "A"]
15 nmB <- x[lab == "B"]
16 nm <- nmA + nmB
17 nf <- n - nm
18 x <- c(nmA , nmB , nfAA , nfAB , nfBB)
19 nA <- nmA + 2 * nfAA + nfAB
20 nB <- nmB + 2 * nfBB + nfAB
21 nt <- nA + nB
22 stat.obs <- FUN(x)

The next step is to arrange all the alleles in sequence one after the other and
permute them a certain number of times nperm, which by default is 17000, as
explained in the article by Li et al. (2013). If there are nm males and nf females, the
total number of alleles we will have will be nm + 2nf . From this long string, which
after each sample operation will be different, the first nm elements are considered
as male alleles and the subsequent 2nf female ones, taken in pairs. By counting
the different genotypes obtained it is possible to calculate a new probability.
This step is repeated as many times as the number of permutations chosen and the
values obtained are loaded into a pseudodist vector.
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1 pseudodist <- numeric (nperm)
2 for (i in 1: nperm) {
3 xx <- sample (c(rep("A", nA), rep("B", nB)))
4 males <- xx [1: nm]
5 nmAsim <- sum(males == "A")
6 nmBsim <- sum(males == "B")
7 females <- xx[(nm + 1):nt]
8 i1 <- seq (1, 2 * nf , 2)
9 i2 <- seq (2, 2 * nf , 2)

10 A1 <- females [i1]
11 A2 <- females [i2]
12 Geno <- paste(A1 , A2 , sep = "")
13 Geno[Geno == "BA"] <- "AB"
14 nfAAsim <- sum(Geno == "AA")
15 nfABsim <- sum(Geno == "AB")
16 nfBBsim <- sum(Geno == "BB")
17 y <- c(A = nmAsim , B = nmBsim , AA = nfAAsim , AB = nfABsim ,
18 BB = nfBBsim )
19 stat. pseudo <- FUN(y)
20 pseudodist [i] <- stat. pseudo
21 }

The last step consists of adding, among all the values obtained, those greater than
or equal to the value of stat.obs, in order to obtain the final p-value.

1 nlarger <- sum( pseudodist >= stat.obs)
2 pval <- nlarger /nperm

4.2.3 Network algorithm
From now on, what will be illustrated is, in large part, a novelty compared to what
can be found in the literature. Until now, the network algorithm developed by
Engels (2009) has never been adapted to all the chromosomes present in humans,
including the X. The work done from here on was only achievable thanks to what
the author just mentioned left in open source; in fact the ‘small’ changes to his
work, with targeted additions, made it possible to create this algorithm without
excessive effort. Also in this case the impact and the real innovation will be more
evident with k > 2 alleles which will be explained in Chapter 5, but here we begin
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to see the reasoning made to set the work in the bi-allelic situation. Without going
too far in defining a problem already seen in theory, we see the elements useful for
understanding the network algorithm for the X chromosome.
If we have a number of individuals n with two alleles, A and B, divided into males
and females, we know that the former inherit one while the females two, going to
build the genotype. We indicate with nm and nf the number of male and female
individuals respectively, therefore the total count of the alelles will be nt = nm +2nf .
To define the exact test distribution for the HWE we call the formula (2.9), seen a
few chapters earlier, with a slightly different notation. It can be rewritten in this
way.

P (MA = mA ∩ FAB = fAB|n, nA, nm) = nA!nB!nm!nf !
nt!mA!mB!fAA!fAB!fBB!2

nf −d (4.8)

If it is easy to understand what denominator terms are, in which the specific count
for males (m) and females (f) appears, the same may not happen for the exponent
of the term 2. As already seen for the same algorithm with the autosomes, this
notation then helps in writing the code. In particular d = fAA + fBB is the total
number of homozygotes. This time, unlike before, we only consider one gender and
this will be reflected in the code that we will see. Let’s make some premises that
help us understand better. Taking advantage of the same reasoning made with
autosomes and considering that to calculate the final p-value you have to build
all the possible tables, in the formula above you can see 3 different factors, one of
which is constant for all the tables (Kp) and the others that change in different
points depending on the sample considered.

P (MA = mA ∩ FAB = fAB|n, nA, nm) = nA!nB!nm!nf !
nt!ü ûú ý

exp Kp

2nf

mA!mB!ü ûú ý
exp 1

Kmales

1
fAA!fAB!fBB!2d

(4.9)
As you can see, the constants are indicated with exp. This happens because all
multiplications become sums if we move on to logarithms, simplifying complexity
by far. Therefore the probability of each marker will be on a logarithmic scale,
according to the following formula, to be transformed at the end.

ln P (MA ∩ FAB|n, nA, nm) = Kp −Kmales −
Ø
i≥j

f(fij)− d ln 2 (4.10)

where f is a function defined as f(i) = ln(i!) and fij is the female genotype count
for the alleles i and j .

63



4 – Algorithm for the bi-allelic exact test

Now let’s see how the actual algorithm behaves. Since the code by Engels (2009)
was written in C, in this case too we proceed following the same path. Externally,
this function can be imported into R, through the Rcpp package (François and
Eddelbuettel, 2011) and after being rewritten in order to adapt the C language to
C++. The only added parameter with respect to the function with autosomes is a
two-element vector (mf) containing the number of males and females involved in
the analysis. The procedure can be summarized by points as follows.

1. Useful constants, such as Kp, are calculated and data structures are set

2. A recursive function is launched to check the possible combinations of males,
females and number of alleles for each one

3. Probabilistic calculations are carried out for each specific sample

4. The probabilities less or equal than the observed marker are added

The main function is called xChrom() and is similar to xtest() seen before, so we
highlight the fundamental differences. In addition to the Rarray vector, another
one, alleleVect, is added as a global variable. Both are only two elements (equal
to the number of alleles): the first will contain those intended for females while the
second will be for males. In this way the final calculations with the female genotypes
will remain as similar as possible to the case of the autosomes already described.
The other fundamental step is that of calculating Kp, here called constProbTerm,
which contains the values seen in the formula (4.9) and whose logarithm is made.
Finally, maxlPr will contain the probability of the observed sample which will act
as a threshold for the calculation of the p-value, also in this case with a tolerance
that, probably, is even more useful than in the previous case given the high weight
of the denominator that causes infinitesimal numerical values..

1 void xChrom (int * rm ,
2 int * mf ,
3 int * rk ,
4 double * robservedVals , // observed stats
5 double * rPvals , // computed P values
6 [...]
7 )
8 {
9 // Set up global variables used during recursion

10 nAlleles = *rk;
11 male = mf[0];
12 female = mf[1];
13 pPr = 0;
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14 // [...]
15 Rarray = Calloc (*rk * *rk * (*rk -1)/2, COUNTTYPE );
16 alleleVect = Calloc (*rk * *rk * (*rk -1)/2, COUNTTYPE );
17 for (int i = 0; i < nAlleles ; i++) {
18 Rarray [i] = rm[i];
19 alleleVect [i] = rm[i]+1;
20 }
21 // [...]
22 // Make lookup tables
23 lnFact = Calloc (rm[0] + 1, double );
24 lnFact [0] = 0;
25 double lni;
26 for (int i = 1; i <= rm[0]; i++) {
27 lni = log(i);
28 lnFact [i] = lnFact [i-1] + lni;
29 }
30

31 int nGenes = 0;
32 for(int i = 0; i < nAlleles ; i++) nGenes += rm[i];
33 ntotal = nGenes /2;
34

35 // Get constant terms for LLR and Prob
36 constProbTerm = 0;
37 for (int i = 0; i < nAlleles ; i++) {
38 constProbTerm += lgammafn (rm[i] + 1);
39 }
40 int nt = male + 2* female ;
41 constProbTerm += lgammafn (male+1) + lgammafn ( female +1)

- lgammafn (nt+1);
42

43

44 // Get cutoffs for the four test statistics
45 double oneMinus = 0.9999999;
46

47 if( robservedVals [0] > 0.000000000001)
48 robservedVals [0] = 0; // positive values are

rounding errors
49 maxlPr = log( robservedVals [1]) * oneMinus ;
50

51 recursiveEnumeration (1);
52

53 // [...]
54 }
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Although the code is similar to the autosomal context, some subtle differences have
already been underlined. The fundamental part is shown at the bottom with the
call to recursiveEnumeration() and the disappearance of the switch by number
of alleles. This function, which has an integer as its only parameter, launches a
recursion that scrolls all the allele counts available and serves to delineate the
possible combinations of alleles distributed in the males, as long as there remains
an amount that coincides with the number of female individuals. For each of
the male tables found, the twoAlleleSpecialCaseX() function is called, which
is the correspondent of twoAlleleSpecialCase() for autosomes. The basic data
structures, at this point in the program, will be composed by alleleVect, which is
filled with the number of alleles for males, and Rarray with those to be distributed
to females. Apart from some calculations related to Kmales, called constMales
here, which includes what is collected in the second multiplicative factor of the
formula (4.9), the next procedure will be the same already seen with the autosomes,
given the available triangular matrix with two alleles.

1 static void twoAlleleSpecialCaseX () {
2 unsigned a11, a21, a22, res1, res2;
3 double problT , prob , constMales =0.0;
4 unsigned dT;
5 int nGenes = 0, nMales =0, n;
6

7 res1 = mi[2]- alleleVect [1]; // because they come ordered
largest to smallest

8 res2 = mi[1]- alleleVect [0];
9 tableCount = res1/2 + 1;

10

11 for(int i=0;i< nAlleles ;i++){
12 constMales += lgammafn ( alleleVect [i]+1);
13 nMales += alleleVect [i];
14 nGenes += Rarray [i];
15 }
16 n = (nGenes - nMales )/2;
17 constMales -= log(2)*n; // add 2^n in the constant

males
18

19 for(a11 = 0; a11 <= res1/2; a11++) {
20 a21 = res1-a11*2; // integer arithmetic rounds down
21 a22 = (res2-a21)/2;
22

23 problT = lnFact [a11] + lnFact [a21] + lnFact [a22];
24 dT = a11 + a22; // 2^h (h=n-d) only females
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25 problT = constProbTerm - problT - dT * M_LN2 -
constMales ; prob = exp( problT );

26

27 probSum += prob;
28 if( problT <= maxlPr ) pPr += prob;
29 } // for a11
30 }

The final part includes the calculation of the p-value, adding up the probabilities
obtained if they are less than maxlPr. Throughout the algorithm, only the most
useful parts have been shown, avoiding the reporting of auxiliary functions that
allow you to give a cut when you cannot proceed with the initial recursion and speed
up the calculations. Let’s now see how the described algorithms affect different
examples in terms of performance, in order to understand how influential the choice
is when there are only two alleles and the alternatives are manifold.

4.3 Performance in terms of CPU
To verify how efficient the 3 different algorithms just illustrated are, it was decided to
use one of the samples from the 1000 Genomes Project. In particular, it was decided
to analyze a population from Tuscany, Italy, which has 107 unrelated individuals,
including 53 males and 54 females (The 1000 Genomes Project Consortium, 2015).
All SNPs of chromosome 1 and X chromosome were extracted from this database,
called TSI. From the first case we have drawn up an analysis for autosomes, without
considering gender; the opposite was done in the second case for the X chromosome.
The three algorithms (complete enumeration, permutation and network) were
launched with an increasing number of polymorphisms and their output timings
were detected. To take the time needed for the different functions, in R it was
enough to detect these with the Sys.time() function at the beginning and at the
end of the algorithm under analysis and subtract the two values obtained to have
the final time. For the first two, the HWExactStats() and HWPerm() functions were
used in R: they extract the p-values for exact test in the most efficient way possible
with many SNPs in input. These functions are part of the HardyWeinberg package
in R (Graffelman and Camarena, 2008), therefore their call has no particular
delays if not inherent in the functions themselves. As for the network algorithm,
however, both for the code by Engels (2009) and for the modification in the case
of the X chromosome, an executable was extracted, as seen in the examples of
Chapter 3, called in R with system(). To obtain the results, the executable prints
all the p-values in a text file, which are then read in R. Printing output and reading
input of the data passed as parameters are fundamental since, at the moment, we
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did not manage to find a clean and functional integration of the code between the
C/C++ and R language. We are confident that this work will be carried out in the
future, but for now we must take into account that the network algorithm is
partially affected by the performance of these external factors.
Regarding the autosomes, the database without missing data and without con-
sidering monomorphic variants contains a number of markers equal to 1,155,326.
After arranging the data so as to conform to what the functions want as input,
it was decided to proceed step by step by analyzing the SNPs in powers of 10
(1, 10, 100, ...) up to covering the entire data set. Since the permutation test is
much slower than the other two, this has only been tested for up to 100 variants.
As can be seen in Figure 4.2, the calculation time explodes for sampling, while it
remains close to 0 for enumeration and the network. In Figure 4.3 a zoom of the
previous case is shown.

Figure 4.2: Performance plot for autosomes with 2 alleles (up to 100 SNPs)

Continuing to study the entire data set, we notice a lower time of the network
algorithm than the enumeration for a number of markers of 105, and then go back
up when the database is complete up to about 11.5 seconds, against the 5.8 of the
other (see Figure 4.4).
These data make us understand how the complete enumeration function for 2 alleles
is well structured and how the network is not fully exploited. Moreover, this small
difference can be explained considering the overhead mentioned before, for which
the network algorithm works externally from R and needs some I/O operations
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Figure 4.3: Zoom only on complete enumeration and network algorithm

Figure 4.4: Performance plot for autosomes with 2 alleles (whole dataset)

that in such a short time make the difference. These concepts had already been
mentioned in the previous theoretical explanation, but here we see the result in
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practice. The Table 4.4 shows the exact overall data, in which the difference
is only a few seconds between the two algorithms, if you consider the almost 5
minutes taken by the permutation test with only 100 markers. The fundamental
point is that of the comparison between the two sets of final p-values. Figure 4.5
indicates how in general the two algorithms are equivalent from the point of view
of the truthfulness of the results, with a maximum difference between outputs of
4.997736e− 08. In the first plot, the natural p-values are put in comparison, while
the second one uses the −log10 scale that is often used in genomics studies in order
to emphasise the smaller p-values, i.e. the most significant ones.

Complete Permutation Network
1 0.002038002 3.558928 0.1130481
10 0.001992941 46.391947 0.1125062
102 0.002020121 470.234341 0.1129351
103 0.007975101 - 0.1122561
104 0.052883863 - 0.2157109
105 0.582729101 - 0.1107490
All 5.826529026 - 11.4904130

Table 4.4: Computation times (in seconds) for autosomal variants with 2 alleles
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(a) normal scale

(b) -log10 scale

Figure 4.5: Complete enumeration and network outputs comparison for autosomes
with 2 alleles

A similar analysis was carried out for the X chromosome. This time the total
number of SNPs for the Tuscan population is 391,152. The fundamental differences
concern the formulas for calculating the probabilities, taking into account the
distinction between males and females, and the use of the new network algorithm
that is being tested for the first time. Also in this case it was decided to go
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gradually, for powers of 10, from 1 SNP to the whole set. The final results are very
similar for trends compared to the autosomal context, with subtle differences in
times between the complete enumeration and the network and with the explosion of
the permutation test already with 102 markers. Figures 4.6 and 4.7 show times up
to 100 SNPs, while Figure 4.8 includes all the data, excluding the clearly inefficient
sampling algorithm. It is clear how the network algorithm, albeit slightly, is less
efficient than the complete enumeration.

Figure 4.6: Performance plot for X chromosome with 2 alleles (up to 100 SNPs)
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Figure 4.7: Zoom only on complete enumeration and network algorithm

Figure 4.8: Performance plot for X chromosome with 2 alleles (whole dataset)

The Table 4.5 shows the precise data, from which one can start by asking why the
complete enumeration is not exploited and that’s all, without trying to find other
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ways.

Complete Permutation Network
1 0.0069820881 3.172202 0.1208451
10 0.0049870014 41.280097 0.1125350
102 0.0009970665 439.160565 0.1130559
103 0.0119681358 - 0.1116209
104 0.0728259087 - 0.6181090
105 0.6193430424 - 0.1128709
All 2.4702091217 - 20.9553330

Table 4.5: Computation time (in seconds) for X chromosomal variants with 2
alleles

The first point that gives us confidence is that shown in Figure 4.9, in which it is
noted that the results between an algorithm that has been in existence for years
and a completely new one are practically similar, with a maximum difference of
4.998902e− 08. Secondly, it has already been explained that with only 2 alleles
one can not allow to build a large network and that it really gives us an advantage,
without considering the external factors mentioned before because they partially
slow down the times. All these considerations have spurred us to move forward
with this approach also for a number of alleles k > 2 where, as we will see in the
next Chapter, we begin to understand why it was really necessary and how it
affects performance with large amounts of data.
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(a) normal scale

(b) -log10 scale

Figure 4.9: Complete enumeration and network outputs comparison for X chro-
mosome with 2 alleles
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Chapter 5

Algorithm for the k-allelic
exact test

The chapter that is being introduced now is the most important, but at the same
time more complex, of the whole project we are carrying out. The statistical testing
of Hardy-Weinberg proportions in a certain population with a large number of
alleles has acquired fundamental importance over the years and, therefore, the
same has happened for the parallel analysis of innovative procedures to carry out
the analysis. The network algorithm introduced in the previous chapter seems
to be good enough in terms of performance and reliability. For this reason, we
will go only into detail of this algorithm, both for the autosomes and for the X
chromosome, avoiding to recall the complete enumeration and the permutation
test. Despite this, they will be briefly mentioned in the final part of the chapter to
have, also in this context, feedback in terms of differences in computation power
between the methods. For both of the last two tests mentioned, it is quite simple
to algorithmically understand how generalization from 2 to k alleles takes place,
given the mechanics with which they are developed. Precisely for this reason
they are simple in construction but slow in terms of performance. The network
algorithm, on the other hand, is quite innovative compared to the others and will
therefore be analyzed in detail, in order to allow the reader to fully understand its
operation that is by no means trivial. We will start by taking up the algorithm
by Engels (2009), which has worked only with autosomes, trying to better explain
some things taken for granted in his article, but neglecting other detailed ones that
go beyond this thesis. Subsequently, the new network algorithm developed for
the X chromosome will be introduced, which is strongly based on that by Engels
but with differences upstream for the distinction of the two sexes.
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5.1 Autosomes
In his paper, Engels (2009) deals with different aspects of the exact test with a
number of alleles larger than 2. He talks about the possible probabilistic tools
that can be used, making a comparison between the simple probability, which is
the one seen so far and also the only one that we will continue to treat, and the
likelihood ratio (LR). After that he explains two different algorithms that take
advantage of the previous definitions, the network algorithm and the Monte Carlo
method. Looking through the article quickly, you notice how in reality the network
algorithm is called by Engels full enumeration. We will now see how, in reality,
that explained by the author is a sort of hybrid between the two things, in that it
is impossible to do without enumerating all the cases, in order to obtain a precise
and reliable p-value of the exact test. However, this does not remove the possibility
of doing it in the most optimal way possible, taking advantage of the concepts
already introduced by Mehta and Patel (1983) and drawing up an intrigued and
efficient algorithm.

Let’s start with the formal definition of the problem to be addressed, using a
notation similar to that of Engels both in the paper and in his HWxtest package,
from which we will take some parts of code that implement in practice what is
described in theory. If we have a sample of n individuals with k alleles, the diploid
genotypes can be represented in a lower triangular matrix k×k, where each element
aij indicates the number of genotypes for the alleles i and j. This matrix, also
called the triangular genotype array, presents homozygotes along the diagonal
and heterozygotes below. 

a11
a21 a22
... ... . . .

ak1 ak2 . . . akk


From here we can extract the vector of the alleles count where each element
ni = 2aii + q

i>j aij. è
n1 n2 . . . nk

é
If a sample is obtained from a population in HWE, its probability given the count
of alleles is given by Levene’s (1949) result:

P (Nij|ni) = n!2n−d r
ni!

(2n)! r
i≥j aij!

(5.1)

that is a generalization of equation (4.4) for k alleles, in which d = q
aii is the

total number of homozygotes.
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The central point of our problem is that, given a vector of allele counts, the number
of genotype arrays that can be constructed increases with the number of alleles and
genotypes. To test HWE, the formula (5.1) must be used for each of these arrays.
It is precisely here that the author introduces an innovation: to represent the set
of tables with a network made of nodes and edges, in a similar way to what was
done by Mehta and Patel (1983). Therefore, starting from a vector of fixed alleles,
each path of this network, which must be traveled from left to right, represents
one of the possible tables. If we have 4 alleles available, each one repeated 2 times,
we will have the vector made as followsè

2 2 2 2
é

and from which 17 contingency tables can be extracted. These can be represented
with the network in Figure 5.1.

Figure 5.1: Example of network with 4 alleles (Engels, 2009)

In particular, the dotted path is that relating to the matrix
1
0 1
0 0 1
0 0 0 1


Before explaining the network construction algorithm and its calculations to extract
the final p-value, to test deviation from HWE, we better interpret the network just
shown, trying to understand how it should be read and, especially, how to go from
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a path to its table. “The four digits identifying each node are the residual allele
counts, and each column of nodes represents the genotype assignments for one of
the rows of the table, starting with the bottom” (Engels, 2009). This means that,
for each edge that leaves one node and enters another, a row of the contingency
table of that path is built. Furthermore, each column of the network (meaning by
this the set of nodes appearing in the same vertical section), refers to one of the
elements in the vector as homozygous. In particular, it starts from the last element
to the right of a node and ends with the first on the left. The procedure used to
build the table from a path is schematically illustrated in Figure 5.2. Reading from
the bottom, each arc connecting two nodes corresponds to a row in the matrix
where you can see how many genotypes are formed by an allele with all the others.
Analyzing the two nodes term by term, the subtraction of each with the one above,
reveals the genotype count corresponding to that index in the corresponding row.
Finally, if the term we are analyzing is homozygous (circled here in red), it must
be divided by two.

Figure 5.2: Explanation of table construction with 4 alleles following the path

The reason for the presence of some arrays with a certain allele count rather than
another is a legitimate question at this point. It seems clear, now, how to interpret
the various paths of a ready-made network, but how to understand which are the
elements of the graph exactly? Why does the sequence of the dashed path have, in
each node, exactly those arrays? These questions will be answered shortly, when
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the algorithm will actually be presented. Let’s already anticipate that passing from
one vertical section to the next, it is as if we were going up the triangular matrix
of the genotype count. For this reason, every time we move forward by one section,
we find an extra 0 at the end of the node: the triangular matrix, by definition,
presents at each line starting from the bottom and going upwards, always one
element less than the previous one (also considered as 0).
Before proceeding, it is possible to notice that in this example a detail is missing,
due to the fact that the matrix contains many zeros inside it. Proceeding with
the member-to-member subtractions, if the result is not 0, this value must be
subtracted in turn in the calculation of the homozygous term, before the division
by two. Let’s quickly analyze another network in Figure 5.3, taken from the same
paper, in which there are 5 alleles and a network with 139 paths. The analysis
made before to go back to the table is the same, in which it is possible this time
to note that the residual alleles before the last term are not always equal to 0.
Therefore, following the dotted path, the final result is indicated in Figure 5.4.

Figure 5.3: Example of network with 5 alleles (Engels, 2009)

Having, therefore, a little clearer the interpretation of the network with which we
will work, we go to see the real algorithm. The probability calculations according
to the equation (5.1) are distributed along the network, so as to computationally
weigh as little as possible. As already seen for the bi-allelic case, this time too
we will work in a logarithmic scale, so as to make all the recursive multiplications
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Figure 5.4: Explanation of table construction with 5 alleles following the path

present lighter. In light of this, it is possible to think of the formula just referred to
as the set of two factors, one constant that we will call Kp, and the other variable
as the contingency tables vary.

P (Nij|ni) = n!2n r
ni!

(2n)!ü ûú ý
exp Kp

1
2d

r
i≥j aij!

(5.2)

Hence, the logarithm of the probability of obtaining a certain genotype array will
be given by

ln P (N) = Kp −
Ø
i≥j

f(aij)− d ln 2 (5.3)

where Kp is the constant factor, d is the total number of homozygotes, while f is a
function such that f(i) = ln(i!).

The algorithm is basically based on 3 parts:

1. first part with calculation of the constant Kp

2. homozygote() function which works on each node of the network

3. heterozygote() function called for each edge of the network
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From a code point of view, the call to the xtest() function denotes the beginning
of the algorithm. We have already seen what it contains within the same context
but with two alleles. We therefore underline only the fundamental aspects: the
calculation of Kp and the first call to homozygote() function.

1 void xtest (int * rm ,
2 int * rk ,
3 double * robservedVals , // observed stats
4 double * rPvals , // computed P values
5 [...]
6 )
7 {
8 // [...]
9 constProbTerm = constLLRterm = 0;

10 for (int i = 0; i < nAlleles ; i++) {
11 constProbTerm += lgammafn (rm[i] + 1);
12 }
13 constProbTerm += log(2)* ntotal + lgammafn ( ntotal +1) -

lgammafn ( nGenes +1);
14 // [...]
15 if ( nAlleles == 2) {
16 twoAlleleSpecialCase ();
17 } else {
18 homozygote (nAlleles , 0, 0, 0, 0, Rarray );
19 }
20 // [...]
21 }

The arrays rm and Rarray contain the residual allele counts, initially set to the values
contained in the vector of the allele count, n1, . . . , nk, in descending order. The
order does not change the final result but influences the performances. The constant
Kp, therefore, contains what can be seen from the formula (5.2). The other useful
parameter is robservedVals, in which there are the statistical values observed for
the marker considered. In addition to the exact test that uses the definition of
probability of the equation (5.1), the author also includes the computation of LR
and the chi-square statistics in the program. The latter have not been analyzed
and will not be explained, as the definition of probability for the exact test is the
only one we need now and afterwards for the extension to the X chromosome. If
the number of alleles is larger than 2, the function homozygote() is then called. The
analysis starts from the first node, starting from the left, of the network and from
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the last row of the contingency table. The function receives 3 parameters as input:

1. r: row of the table we are analyzing, initialized to k (the number of alleles)

2. fp: represents the partial sum q
f(aij) + d ln 2 of the probability that we are

calculating, initialized to 0

3. R: vector of the residual count allele, initialized with the one passed as input
to the calling function

The other parameters refer to the other statistical values that we will not see.
The homozygote() function initially provides for the calculation of the upper and
lower limit of the value of arr considered, according to the following formulas,
taking into account how many alleles remain available.

lower = (Rr −
r−1Ø
i=1

Ri)/2

upper = Rr/2

If lower is negative, it is set to 0. Furthermore, the sum is to be understood as
integers, therefore rounded down. At this point, for each value between the
two extremes, the call to the heterozygote() function is made, which receives
one more input: the column c that is being analyzed in the table. In detail, the
parameters passed are:

1. corresponding row r

2. column c, here equal to r − 1

3. update of fp: fp + f(arr) + arr ln 2

4. updated allele array RÍ

The array RÍ is obtained by subtracting 2arr from the value of the same allele in
Rr. Since arr is homozygous, it is part of the value d which provides for its total
sum, as described by the formula (5.3). Column c moves one “cell” backwards,
until it then traverses the entire corresponding row (see Figure 5.5). What we are
doing, in a nutshell, is going to calculate the “length of the arcs” of each path,
accumulating it in the parameter of probability, up to the last node.
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Figure 5.5: Scrolling the contingency table row

The code clearly shows what has been said.

1 static void homozygote ( unsigned r, double probl , [...] ,
COUNTTYPE * R)

2 {
3 // [...]
4 COUNTTYPE * Rnew = R + nAlleles ;
5 memcpy (Rnew , R, Rbytes );
6 // Find upper and lower limits for arr.
7 res = R-1; // So res is a 1-based version of R
8 resn = Rnew -1; // resn is 1 based for Rnew
9 lower = res[r];

10 for (i = 1; i <= r-1; i++) lower -= res[i];
11 lower = lower < 2 ? 0 : lower/2;
12 upper = res[r]/2;
13 // For each possible value of arr , examine the

heterozygote at r, r-1
14 for(arr = lower; arr <= upper; arr ++) {
15 resn[r] = res[r] - 2*arr; // subtracting the

homozygous a_rr
16 arrln2 = arr * M_LN2;
17 heterozygote (r,
18 r-1,
19 probl + lnFact [arr] + arrln2,
20 [...] ,
21 Rnew);
22 }
23 }

The subtraction of 2arr from the vector of the residual alleles immediately brings
to mind the explanation made at the beginning of the paragraph concerning the
interpretation and reading of the final network.
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Let’s now see the heterozygote() function, whose call is the last operation performed
by the previous one. This is a recursive procedure, which behaves differently
depending on the row (r) and column (c) parameters received. The first step is,
also here, the calculation of the upper and lower limits of the value of the genotype
arc that we are considering.

lower = (Rr −
c−1Ø
i=1

Ri)/2

upper = min(Rr, Rc)

Now let’s see in detail the three cases that can occur at this point of the algorithm.

a) c > 2

In this case we have not yet come to observe the whole row of our table. Then the
heterozygote() function is called recursively with the parameters [r, c−1, fp +f(arc),
RÍ], where RÍ is constructed by subtracting arc from Rr and Rc. In this way the
next call will analyze, in the same row, the possible values of ar,c−1 with the new
vector of the residual alleles updated.

1 static void heterozygote ( unsigned r, unsigned c, double
probl , [...] , COUNTTYPE * R)

2 {
3 lower = fmax(0, lower);
4 upper = fmin(res[r], res[c]);
5 if(c > 2) for (arc = lower; arc <= upper; arc ++) {
6 memcpy (Rnew , R, Rbytes );
7 // decrement residuals for the current value of arc.
8 resn[r] -= arc;
9 resn[c] -= arc;

10 heterozygote (r, c-1,
11 probl+ lnFact [arc],
12 [...]
13 Rnew);
14 } // for arc
15 // [...]
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b) c = 2 and r > 3

This time we have analyzed the whole row and, it remains only to understand how
many different values the first two genotypes of the same row can assume. For each
value of ar2 between the two extremes (lower and upper), the last value will be

ar1 = min(Rr − ar2, R1)
At this point the contribution of these two genotypes is added to the previous
probability and it is passed to the line immediately higher, that is to the next
node of the network, through the function homozygote() with parameters [r − 1,
fp + f(ar2) + f(ar1), RÍ], in which RÍ is constructed by subtracting ar2 from Rr and
R2; moreover, ar1 will be subtracted from Rr and R1.

1 if(c==2){
2 if(r > 3)
3 for (ar2= lower; ar2 <= upper; ar2++) {
4 memcpy (Rnew , R, Rbytes );
5 // decrement residuals for the current value of arc.
6 resn[r] -= ar2;
7 resn[c] -= ar2;
8 // The value of ar1 is now fixed , so no need for any

more calls to heterozygote in this row
9 ar1 = fmin(resn[r], resn[1]);

10 resn[1] -= ar1;
11 resn[r] -= ar1;
12 homozygote (r-1,
13 probl + lnFact [ar2] + lnFact [ar1],
14 [...] ,
15 Rnew);
16 } // if r > 3
17 // [...]
18 }

c) c = 2 and r = 3

We have therefore reached the third and last possibility, we have almost drawn the
whole contingency matrix and, in the variable fp, we have accumulated part of the
probability we need. Row number 3, starting from the top, ends by analyzing, for
each value of a32, what remains for a31 and updating the variable fp.

a31 = min(R3 − a32, R1)
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f Í = fp + f(a31) + f(a32)
We are therefore now in a situation similar to that with 2 alleles, whose count
was indicated with n1 and n2. The new values for the 2 remaining alleles will be
nÍ

1 = R1 − a31 and nÍ
2 = R2 − a32. At this point it is easy to obtain the first 3

values of the matrix (a11, a21, a22), making sure that they are positive. Therefore,
the algorithm can end with the actual calculation of the probability corresponding
to this table, therefore its path in the network, considering that: Kp was the initial
constant, f Í contains the probability deriving from the rest of the table and a11
and a22 are homozygous and must be added to the factor d.

ln P = Kp − f Í − f(a11)− f(a21)− f(a22)− (a11 + a22) ln 2

Finally, the exponential of the obtained value is calculated and, if it is verified that
it is lower than the probability of the observed marker, it is added to the final
p-value to be returned in output.

1 if(r==3) // and c = 2
2 {
3 for(a32 = lower; a32 <= upper; a32++) {
4 a31 = fmin(res[1], res[3]-a32);
5 probl3 = probl + lnFact [a32] + lnFact [a31];
6 // get residual allele counts for two - allele case
7 res1 = res[1] - a31;
8 res2 = res[2] - a32;
9

10 if(res1 > res2) {
11 resTemp = res2;
12 res2 = res1;
13 res1 = resTemp ;
14 }
15 // Now process two - allele case
16 tableCount += res1/2 + 1;
17 for(a11 = 0; a11 <= res1/2; a11++) {
18 a21 = res1-a11*2;
19 a22 = (res2-a21)/2;
20 problT = probl3 + lnFact [a11] + lnFact [a21] +

lnFact [a22];
21 dT = a11 + a22;
22

23 problT = constProbTerm - problT -dT * M_LN2;
24 prob = exp( problT );
25
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26 // Now process the new values of prob and stat
27 probSum += prob;
28 if( problT <= maxlPr ) pPr += prob;
29 // [...]
30 } // for a11
31 } // for a32
32 } // if r == 3
33 }

The complete algorithm ends when the first homozygote() function returns, so as
to be sure that it has covered all possible paths on the network. Certainly, the
one of Engels (2009) is a very complex and articulated algorithm, which however
manages to carry out the calculations little by little and not weigh down the overall
complexity. The use of recursion is a fundamental aid in this, albeit limited to the
size of the stack available. With some targeted changes, we managed to generalize
what has just been seen in the specific case of the X chromosome.

5.2 X Chromosome
Starting from the work just discussed, which was the cornerstone of the study for
this whole project, we tried to extend an algorithm studied in detail to an even
wider context. We have repeatedly mentioned the fact that the X chromosome
is different from all the others, since its quantity changes according to gender,
something that has often been overlooked or bypassed in its analysis regarding
HWE. Arriving almost at the end of the thesis, it is easy to understand how the
exact test for the deviation from the proportions of Hardy-Weinberg sees this
difficulty of calculation increase exponentially with the increase of the complexity
of the problem. Up to the bi-allelic case, still relatively small and manageable, we
have seen that there are different ways of approaching and solving the question.
At a time when the number of alleles considered is larger than 2, it was preferred,
for simplicity, to test only female individuals and take the final result for both
sexes for good. Even in the analysis with only 2 alleles it turned out that this
approach is very questionable and the results can often be different from the real
ones (Graffelman and Weir, 2016). For this reason, we wanted to take a path that
saw the solution of this problem, taking advantage of the very solid foundations by
Engels (2009), through a network algorithm which, in addition to being functional
in the results, is also very fast. Already in the previous chapter this was introduced,
with only 2 alleles, bringing out the logic that we wanted to exploit to do it. Let’s
see a little more in detail how the network algorithm for the X chromosome
can be generalized for k alleles.
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The situation we are in now involves different upstream considerations depending
on the gender. The X chromosome is present once in male individuals and twice
in female individuals. Contrary to before, this time when analyzing genotypes
this aspect must be taken into account. If we have a sample of n individuals, nm

males and nf females, in a context with k alleles we will have a background that
provides a vector for the first ones, in which for each allele i = 1, . . . , k how many
individuals nmi contain it, while a matrix for the latter, in which each cell nfij

shows the number of women with alleles i and j, both in the range 1, . . . , k. The
matrix is similar to that which for autosomes includes all individuals together; also
in this case, only the lower triangular part is taken into account.

nm1
nm2
...

nmk




nf11
nf21 nf22
... ... . . .

nfk1 nfk2 . . . nfkk


The total number of alleles will be nt = nm + 2nf , while every single quantity of
the generic allele i will be indicated with ni. The conditional distribution of the
genotype counts given the allele counts, taking up the equation (2.15) seen in the
first chapters, is

P (Nfij = nfij ∩Nmi = nmi|n1, ..., nk) = nm!nf !2nf −d rk
i=1 ni!

nt!
rk

i=1 nmi!
r

i≥j nfij!
(5.4)

where d = q
nfii is the total number of homozygous females.

After having already theoretically discussed these concepts, it is easy to understand
how the final p-value for the HWE must be calculated: with the number of alleles
fixed, a lot of samples can be constructed in addition to the one being analyzed;
therefore, in theory, for the exact statistical calculation it is necessary to list all
the possible matrices and vectors. Once again we split the equation so as to make
some constants clearly visible, which can be calculated initially and remain fixed,
and other factors which instead vary with the variation of the tables considered.

P (Nfij ∩Nmi|n1, ..., nk) = nm!nf ! rk
i=1 ni!

nt!ü ûú ý
exp Kp

2nfrk
i=1 nmi!ü ûú ý

exp 1
Kmales

1r
i≥j nfij!2d (5.5)

The reason why exp appears before each constant is because the calculations will
be carried out, also in this case, on a logarithmic scale to reduce the load due
to factorials and multiplications. The first term Kp is fixed and independent of
the sample. The second term Kmales, written as a relationship in the formula, is

89



5 – Algorithm for the k-allelic exact test

clear and defined once we know what is the value of the elements in the vector
of the male alleles nm1, . . . , nmk. The last multiplicative element changes as the
sample considered varies, depending on the female individuals. The logarithm of
the probability of the observed marker will be equal to

ln P (N) = Kp −Kmales −
Ø
i≥j

f(nfij)− d ln 2 (5.6)

where f is a function such that f(i) = ln(i!), useful to extract the last factor of
equation (5.5). Although what has been said may seem repetitive with respect
to the previous explanations, it is of fundamental importance to note the details
and the differences compared to the other cases. We are basing the study on the
adaptation of what has already been done by Engels, making the female genotype
matrix the analogue of the total contingency table for autosomes. The difference
that arises from the male hemizygous is inserted in a subtle way in the algorithm
described in the previous paragraph, thus managing to exploit its consolidated
efficiency. After the premises, we describe in more detail how the whole procedure
works, trying to avoid the repetitions of the functions that perform the same work
both here and with the autosomes.

The algorithm starts from the assumption of receiving the following parameters
as input:

• vector of total alleles count

• number of male and female individuals

• number of alleles

• test statistic for the observed sample, calculated using (5.4)

After this, in short it is possible to summarize the essential points on which we will
focus and which are the main steps to follow in order to carry out the algorithm:

1. calculation of the constant Kp, which will remain fixed until the end, and
initialization of variables R (female alleles vector) and Rmales (male alleles
vector) to the number of total alleles available

2. call recursiveEnumeration(), a function that allows you to list which values
Rmales can take (and for complementary also R) in each of the possible
contingency tables

3. for each Rmales the constant Kmales is calculated and homozygoteX() is launched

4. considering the vector R as if it were the overall autosomal one, the algorithm
proceeds as in the previous paragraph in which for each possible combination
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of Rmales a network for females is generated to be crossed in all possible paths,
thanks to the recursive calls between the homozygoteX() and heterozygoteX()
functions

5. as soon as the first call to homozygoteX() returns, proceed for another value
of Rmales by returning to point 3

6. when all possible males have been analyzed, recursiveEnumeration() returns
and the algorithm ends

Considering that even here we have exploited the Engels code, adapting our
modifications, we will see in C how this is reflected in the focal points, explaining
in detail something more than the points just listed.
The main function is xChrom(), which receives the parameters described above as
input and starts the algorithm. The points to note are the new parameters, such as
alleleVect (corresponding to Rmales) and mf (number of males and females), but
above all the new content of the constant constProbTerm (Kp), which changes
with respect to the autosomal context. Finally you can notice the maxlPr parameter
will contain the probability value of the observed polymorphism, to be used as a
threshold beyond which the values for calculating the p-value are excluded, and the
call to recursiveEnumeration(). The alleleVect array is defined as the number
of alleles +1 to favor the way in which it was decided to build the last function.

1 void xChrom (int * rm ,
2 int * mf ,
3 int * rk ,
4 double * robservedVals , // observed stats
5 double * rPvals , // computed P values
6 [...]
7 )
8 {
9 // Set up global variables used during recursion

10 nAlleles = *rk;
11 male = mf[0];
12 female = mf[1];
13 pPr = 0;
14 // [...]
15 Rarray = Calloc (*rk * *rk * (*rk -1)/2, COUNTTYPE );
16 alleleVect = Calloc (*rk * *rk * (*rk -1)/2, COUNTTYPE );
17 for (int i = 0; i < nAlleles ; i++) {
18 Rarray [i] = rm[i];
19 alleleVect [i] = rm[i]+1;
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20 }
21 // [...]
22 int nGenes = 0;
23 for(int i = 0; i < nAlleles ; i++) nGenes += rm[i];
24 ntotal = nGenes /2;
25 // Get constant term for Prob
26 constProbTerm = 0;
27 for (int i = 0; i < nAlleles ; i++) {
28 constProbTerm += lgammafn (rm[i] + 1);
29 }
30 int nt = male + 2* female ;
31 constProbTerm += lgammafn (male+1) + lgammafn ( female +1)

- lgammafn (nt+1);
32

33 double oneMinus = 0.9999999;
34 // [...]
35 maxlPr = log( robservedVals [1]) * oneMinus ;
36

37 recursiveEnumeration (1);
38 // [...]

The adaptation of the algorithm to the situation with the X chromosome has
seen us focus only on the exact test that follows the probability as defined in the
equation (5.4). For the moment, references to histogram extraction or other tests
have been neglected, which are instead taken into consideration by Engels. This
may then be a starting point for future work for completeness.
However, let’s now conceptually see how recursiveEnumeration() works. This
can be thought of as a depth visit to a tree: starting from the root, every time you
go down one level towards the leaves you are considering an extra allele; at each
level all possible combinations of values will be present depending on the count
present in the vector of total alleles. When it comes to the leaves, it is verified that
the number of alleles in that leaf is equal to the number of males under analysis and
that the remaining count is sufficient to cover the female genotypes. These are two
simple and quick checks that allow you to avoid going through an entire network
to test the contingency matrices if there are not the right numbers and therefore
make the whole procedure fast. Let’s see a small example to give a practical idea
of what has been said. Suppose we have a sample with 6 individuals, 4 males and 2
females, and the number of alleles k = 3. In this type of algorithm it is a good rule,
to speed up the calculations, to order the vector of alleles count in descending
order always obtaining the same result as the original case. If we call the alleles
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a1, a2 and a3 and their count is è
4 3 1

é
then we will have a recursion tree like the one in Figure 5.6.

Figure 5.6: Depth visit for male alleles

The tree starts from the top root and considers the possible quantity for each allele
ai at level i (i = 1,2,3). Since a1 is present at most 4 times, all possibilities from 4
to 0 are considered; the same happens with a2 which is at most 3 and a3 which
is 1 or 0. The red dotted arrows show us the order in which the construction
of the tree takes place in the first part. After which is the procedure continues
in the same way for the other values of the alleles. In the C code, the function
accepts as input the index parameter, corresponding to the level being analyzed in
the tree. By the time it reaches the leaves (index==nAlleles), we check that we
have enough residual alleles for the female individuals. If the control is passed,
then the constMales constant is calculated, that is Kmales in the formula (5.5), the
elements of R (here Rarray), are set for the total alleles for the female genotypes
and homozygoteX() is launched to start exploring the net.

1 static void recursiveEnumeration (int index){
2 int value = alleleVect [index -1];
3 int nGenes ;
4 double constMales ;
5 while( alleleVect [index -1]>0){
6 constMales = 0.0;
7 alleleVect [index -1]--;
8

9 if( alleleVect [index -1] < 0)
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10 return ;
11 else {
12 if(index == nAlleles ){ // last one
13 if(sum ()!= male){
14 continue ;
15 }
16 else {
17 if( enoughFemale ()){
18 if ( nAlleles == 2) {
19 twoAlleleSpecialCaseX ();
20 } else {
21 nGenes = 0;
22 for(int i=0;i< nAlleles ;i++){
23 constMales += lgammafn ( alleleVect [i]+1);
24 Rarray [i] -= alleleVect [i];
25 nGenes += Rarray [i];
26 }
27 constMales -= log(2)*( nGenes /2);
28 homozygoteX (nAlleles ,0,constMales , Rarray );
29 // Reset Rarray
30 for(int i=0;i< nAlleles ;i++){
31 Rarray [i] += alleleVect [i];
32 }
33 }
34 }
35 else {
36 continue ;
37 }
38 }
39 }
40 else {
41 recursiveEnumeration (index+1);
42 }
43 }
44 }
45 if(index !=1){
46 alleleVect [index -1] = value;
47 }
48 return ;
49 }

Clearly as the number of alleles k increases and the number of individuals increases,
this tree will be deeper and/or wider. In this case it is possible to make further
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changes to speed up the process, for example by avoiding reaching the leaves if
it is already understood that it will be the wrong way, for the moment we have
adopted a solution that is as intuitive as possible and that gives reliable results.
In the previous example, only 8 of the leaves are actually combinations of possible
alleles for the males and, from each of them, the network algorithm can start,
which sees the subtraction of the male alleles as the starting node. Whenever the
homozygoteX() function is launched after reaching the lowest level of the tree,
the situation that presents itself is similar to that of Figure 5.7, in which we have
avoided representing the various paths for each possible combination.

Figure 5.7: Starting exploring network for X chromosomal context

The homozygoteX() and heteroxygoteX() functions work exactly the same way as
in the previous paragraph, so we avoid repeating them again. The only difference
is that both receive one more parameter, Kmales, in order to pass it as a value until
the end of the algorithm. At the bottom of the heterozygoteX() function, then at
the end of a path, when in the contingency table for female genotypes we arrive at
the case in which r(ow) = 3 and c(olumn) = 2, this constant is subtracted from
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the logarithm of the final probability, as per formula (5.6).

1 problT = constProbTerm - problT -dT * M_LN2 - constMales ;
2 prob = exp( problT );
3 probSum += prob;
4 if( problT <= maxlPr ) pPr += prob;

Finally, if the probability is less than or equal to maxlPr it adds up to the final
p-value, which will be stored in pPr and returned as the program output.

The first attempts at use were aimed at verifying that what was realized was
in line with what already existed, therefore analyzing the differences in results
obtained by considering only 2 alleles. This led to good results, with fairly small
differences, such as in the order of 10−7. From here we started to consider the
instrument as valid even for more complex samples and, although there are currently
no algorithms to verify the reliability of the exact p-value, you can test the results
using the permutation test, whose output value is expected to be similar in order
of magnitude to what we have.

5.3 Performance in terms of CPU
To understand the importance of this chapter, it is necessary to evaluate the speed
of execution, as well as the reliability of the results, in using the new algorithms
rather than the most common ones. To do this we have taken two databases, one
for autosomes and one for the X chromosome, which contain tri-allelic variants
so that we have clear advantages using the network algorithm. The same premise
explained in the previous chapter is also valid here, that is to say that, while the
complete enumeration can be called from R directly, the network algorithm provides
the call to an external executable program, written in C, with the resulting input
and output operations influencing, even if slightly, the performance. Nevertheless
we will see how the impact of the new tools is extraordinary and makes these delays
infinitesimal.

5.3.1 Autosomal variants
Regarding the autosomes, the database chosen is the same one we have seen
before, which contains 107 individuals from a population coming from Tuscany,
Italy, and whose chromosome 7 is analyzed (The 1000 Genomes Project Consortium,
2015). In this case the distinction between genders does not count. Initially there
were 4164 markers, of which only 3907 have been extracted, which are those with
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3 alleles. Although Engels’ algorithm works well even with a large number of
alleles, this was done to evaluate not only the performance but also the truthfulness
of the p-values obtained with an exact test. The HWTriExact() function of the
HardyWeinberg package allows to calculate the exact test statistics for tri-allelic
variants, both for autosomes and X-chromosomes. The analysis we did was to see
how long it took this function to analyze a different number of markers ranging
from 1 to the total number, proceeding for powers of 10. The same procedure
was applied to the same data using the algorithm by Engels and the results are
represented graphically in Figure 5.8, whose exact times are shown in Table 5.1.

Figure 5.8: Performance results for 3-allelic variants

Complete Network
1 0.011 0.121
10 6.368 0.114
102 46.540 0.115
103 510.224 1.014
All 2309.469 4.259

Table 5.1: Performance results for autosomal variants with 3 alleles (in seconds)
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The figure that jumps out at once is the order of magnitude of the final results,
especially for the entire dataset. If the usual algorithm takes about 38 minutes,
the network algorithm in just over 4 seconds leads us to the same result. Now the
network is fully utilized and we understand why we should opt for this.

From the point of view of the final p-values obtained, this example brings out a
very interesting problem related to ties, introduced in the final part of the Section
4.1.3. From an immediate analysis in which we compare the results of the network
algorithm and the complete enumeration a maximum difference of 0.15285482
emerges, visible in Figure 5.9a and 5.9b. Here a large difference emerges, for which
one of the two algorithms can testify a deviation from the HWE while the other
one cannot. Going into detail in the marker with this problem, the permutation
test was also used to verify which of the two algorithms could be more reliable. The
permutation test (HWPerm.mult) gave a result very similar to the full enumeration
(HWTriExact), which suggests that the network algorithm gives a wrong solution.
Looking better at the autosomal variant in analysis, the permutation distribution
suggests the observed sample is the most likely sample. If that is true, the p-value
should be 1, like in the network algorithm, and it is not. Thus it seems that samples
with the same probability as the observed sample are “not counted”, whereas they
should. They might be “missed” because the probability is not regarded smaller
than that of the observed sample.
Therefore, playing a bit with the eps parameter of the HWTriExact function, it
turns out that if eps = 10−13 then the maximum difference between the two
algorithms drops to 4.998338e− 08. This is shown in Figure 5.9c and 5.9d, which
basically show very small difference appear, especially in the most significant results
(up to 10−10). This can be expected due to finite precision and confirms how much
the ties problem affects the algorithms and their results.
In this case, therefore, the network algorithm has better coped with this situation,
reaching a higher precision than the complete enumeration has to be dictated “by
hand” by the programmer. This does not detract from the fact that, in another
context, it is possible to find the opposite situation and that, therefore, this problem
must be analyzed even more in detail to minimize its negative effects.
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(a) normal scale (b) -log10 scale

(c) normal scale (d) -log10 scale

Figure 5.9: Complete enumeration and network outputs comparison for autosomal
variants with 3 alleles without (a and b) and with eps parameter (c and d)

5.3.2 X chromosomal variants

We now can move on to the much more interesting analysis of the X chromosome.
The chosen database contains 2979 tri-allelic variants, whose population is divided
into 56 males and 48 females. This data are used by Graffelman and Weir (2018)
in their paper, in which they analyze the behavior and performance of the full
enumeration algorithm on all these variants. After the high computational effort
that allows this study in a lot of hours, the authors themselves say: “We expect that
large computational gains can be achieved using the aforementioned computational
improvements and by re-programming the algorithms in the C++ computer language”.
This is exactly what we tried to do, let’s see how. The study is similar to the
previous one, where the HWTriExact() function is still used for the complete
enumeration and the C executable for the network algorithm. Also this time the
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analysis has been done with a number of variants that proceeds for powers of 10
and the timing has been evaluated. What came out is represented in Figure 5.10
and Figure 5.11, with a zoom in the first 100 markers. The result is of extraordinary
importance in terms of performance.

Figure 5.10: Performance plot for X chromosome with 3 alleles (whole dataset)

The execution times are shown in detail in Table 5.2. The new algorithm reduces
the calculation time exponentially compared to the complete enumeration. The
passage from the order of hours to seconds shows how the new instrument can
help to obtain equally accurate results in a short time.

Complete Network
1 95.265 0.106
10 185.526 0.114
102 2297.976 4.491
All ~6 hrs 11.191

Table 5.2: Performance results for X-chromosomal variants with 3 alleles (in
seconds)
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Figure 5.11: Zoom only on first 100 markers

In fact in Figure 5.12 the p-values resulting from the two techniques have been
plotted and the maximum difference is 2.393676e − 05. This denotes a work of
enormous precision as well as efficiency and the full potential of which can be
exploited.

The permutation test was not carried out because, as seen for only 2 alleles, it is
even slower than the complete enumeration. Despite this the times are comparable
for a number of alleles greater than 5, for which the algorithm works well but takes
too long. Although the accuracy is lacking, the permutation test can be a useful
weapon in these cases with the instruments present today.
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(a) normal scale

(b) -log10 scale

Figure 5.12: Complete enumeration and network outputs comparison for X-
chromosomal variants with 3 alleles
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Chapter 6

Empirical studies

To conclude the speech about the new algorithm we want to present a complete
final example, on a real dataset where several markers are analyzed, in order to
show how the new method should be used. The strength of what has been explained
in the previous chapters lies in being able to study the presence of a deviation
from HWE in a population whose X chromosome is analyzed. This can now be
done for more than 2 alleles in a more efficient way. The database chosen is the
TSI, the same as seen in the previous chapter, which contains a population from
Tuscany but of which we have extracted the X chromosome this time (The 1000
Genomes Project Consortium, 2015). The result is a total of 4219 variants, of
which we have taken into account at the moment only those up to 5 alleles, and
107 individuals (53 males and 54 females). This has been done not because the
network algorithm is not able to analyze the remaining markers, but because we
believe that the efficiency with more alleles is not equal to these great advances
made so far. The times have been reduced incredibly when we analyze variants
with 3, 4 or 5 alleles compared to the usual tools, while for higher numbers we
think that at the moment perhaps using the permutation test is more appropriate
in terms of performance, although not precision. Despite this it is always possible
to launch the new algorithm but with a very long time.

Having said that, let’s see step by step how to work with the new instrument in
R. Of course, the implementation may vary depending on the format of the data
you receive as input. In this case, after loading the data with the load() function
we remove the variants that are in a region where there is pairing between X and Y
chromosomes (par.region==1 or par.region==2). Being only interested in the X
chromosome, these variants are not interesting because they behave as autosomal
variants.
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1 load("./ variantsTSICHRX .rda")
2

3 data <- c()
4 indexes <- c()
5 for (i in 1: length ( variants )) {
6 if( variants [[i]]$par. region == 3 | variants [[i]]$par.

region == 0){
7 indexes <- c(indexes , i)
8 }
9 }

10

11 #107 individuals , only X (53 males , 54 females )
12 maleFemale <- c(53 ,54)
13 data <- variants [ indexes ]

From here our data are presented in the following format,

data[1]
[[1]]
[[1]]$k
[1] 3

[[1]]$als
[1] "0" "1" "2"

[[1]]$pos
[1] 2703501

[[1]]$id
[1] "rs11371846"

[[1]]$alt
[1] "AT,T"

[[1]]$ref
[1] "A"

[[1]]$X.f
0 1 2

0 3 0 0
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1 2 0 0
2 19 3 27

[[1]]$X.m
0 1 2

12 0 41

[[1]]$par.region
[1] 0

where

• $k is the number of alleles this polymorphism has

• $als gives the names of the existing alleles

• $pos gives the position along the chromosome in base pairs

• $id is the RS identifier of the polymorphism

• $alt are the alternate alleles

• $ref the reference allele for the polymorphism

• $X.f the triangular table of genotype counts for the females

• $X.m the vector of gentoype counts for the Males.

• $par.region if it is in pairing with Y chromosome.

The next step is to extract from the data only variants with a number of alleles less
than or equal to 5 and store them in a structure called dataUpToFive. Finally, for
each of the markers present we calculate the p-values using the data structure just
created and its attributes. In particular, we extract the matrix of female genotypes
and the vector of male alleles that serve to have a precise count of each allele
and the probability of the observed sample. The union of the two things, with
the vector of the counts ordered in a decreasing way for reasons of efficiency, is
the input that serves the executable to work. Finally you read the data from the
output file and store it in a vector.

1 dataUpToFive <- c()
2 indexesUpToFive <- c()
3 for (i in 1: length (data)) {
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4 if(data [[i]]$k <= 5){
5 indexesUpToFive <- c( indexesUpToFive , i)
6 }
7 }
8 dataUpToFive <- data[ indexesUpToFive ]
9 otherData <- data[- indexesUpToFive ]

10

11 pvalsUpToFive <- c()
12 for (i in 1: length ( dataUpToFive )) {
13 m <- dataUpToFive [[i]]$X.m
14 f <- dataUpToFive [[i]]$X.f
15 ftot <- alleleCounts (f)
16 tot <- m+ftot
17 prob <- observedProb (f, m, maleFemale )
18 alleles <- sort(tot , decreasing = T)
19 countsUpToFive <- c(alleles ,prob)
20 nAll= dataUpToFive [[i]]$k
21 nInput = 1
22 write.table( countsUpToFive , file=" countsUpToFive .txt", row

.names=FALSE , col.names=FALSE)
23 str <- paste("HWx.exe", nAll , nInput , maleFemale [1],

maleFemale [2], " countsUpToFive .txt", " outpvaluesUpToFive .
txt")

24 system (str)
25 pvalsUpToFive <- c( pvalsUpToFive , read.table("

outpvaluesUpToFive .txt"))
26

27 }

A total of 3864 markers with 3, 4 and 5 alleles were analyzed. In Table 6.1 it is
possible to see exactly how many variants there are for each number of alleles and
the time needed to analyze each of them.

Number of alleles Number of markers Time (minutes)
3 3496 6.688
4 333 9.169
5 35 13.465
Total 3864 29.332

Table 6.1: Performance of the network algorithm

It is easy to see how the complexity of the problem increases with increasing
number of alleles, so analysing fewer markers still costs more time. Despite this,
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we are very satisfied with these results. The reliability of the algorithm with 3
alleles has already been positively evaluated in the previous chapter. Nevertheless
we wanted to try one last time to see if the results obtained with more alleles
are reliable or not. The only test that allows us to approach this evaluation is
the permutation test, which is slower than the network algorithm but gives us a
good truthfulness index. We used this test only in the 35 variants with 5 alleles
and we saw the difference with the newly obtained p-values. In a time of 15.274
minutes the function HWPerm.mult() gave us back the p-values for the variants
with 5 alleles with a maximum difference of the same calculated with the network
algorithm of 0.01903.

Figure 6.1: Permutation test and network algorithm p-values in comparison for
5-allelic variants

The graph in Figure 6.1 shows the two algorithms in comparison. We can therefore
conclude that, even with a higher number of alleles, the new instrument appears
both efficient and reliable.

107



Chapter 7

Conclusion and Discussion

In this thesis we wanted to analyze with the exact test the deviation from the Hardy-
Weinberg equilibrium of X chromosomal markers, taking into account both male
and female gender. The study began by introducing the fundamental definitions
to understand the topic, so as to facilitate the subsequent reading even to those
who are not in the field. In particular, the biological definitions of DNA, gene
and alleles are pivotal points to understand why this thesis came to life and what
are the reasons that make the project interesting under different aspects that do
not stop at the computer field, but also enclose the medical, biological, forensic,
as well as the statistical one that can be seen as a link between the first and the
others. Subsequently, precisely, we have gone further in the technical field by
introducing the theory and from the statistical point of view that lies at the basis
of important analyses such as these and how it is actually possible to carry them
out in a practical way. The definitions of probability, statistical test and p-values
are those which, in the end, produce numbers with very precise interpretations to
give sensible conclusions. Since the study of HWE is of extraordinary importance
both in statistical genetics and in all the areas mentioned above, being able to help
those in need by providing useful and fast tools has been a great challenge full of
motivation and has been gladly accepted.
If there are already software and functions suitable for a complete X chromosome
analysis for bi-allelic variants, we were able to expand this potential to multiallelic
markers, whose balance has so far only been tested for females, simplifying the
problem by far. In fact, while for autosomal chromosomes there is a kind of
symmetry between the two genders, the X chromosome, present only once in male
hemizygous individuals, makes statistical calculations much more complicated,
making the set of tables to explore much larger and adding more factorial terms in
the equations. Statistical techniques seen in theory, such as the chi-square test, are
not adequate with many alleles because of the scattered data and low counts. The
only really accurate test is the exact test, but it has the disadvantage of a high
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computational load. The new network algorithm, which manages to reconcile power
and accuracy, can be a starting point for achieving the improvements expected in
the article by Graffelman and Weir (2018). The result obtained was very positive
from both points of view, managing to solve problems that require several hours of
computational time in the order of a few seconds. Just look at the final example
in Chapter 5, where a dataset of tri-allelic X chromosomal variants goes from an
analysis time of about 6 hours to just over 11 seconds between old and new tools.
The big improvement of the new algorithm has two fundamental elements at its
base: on the one hand there is the passage from the R environment to that of C and
C++ languages that are more suitable for the execution of complicated algorithms
and that make much use of recursive cycles and techniques; the second aspect is
precisely this, recursion. The strong point of the network algorithm is to weave
a very wide and deep network that has the task of passing reusable calculations
through the recursive homozygoteX and heterozygoteX functions in such a way
that the computational effort is minimal and unnecessary counting is avoided. The
combination of these factors has resulted in increased power and reliability.

All this can only be considered a “starting point” because, as seen, the work
is not completely finished and can still be improved. The first aspect to improve
is surely the 5 alleles barrier, i.e. as far as the algorithm works well enough to
be considered valid. Although the speed depends very much on the distribution
of the alleles in the observed marker, it has also been seen as for a number of
alleles greater than or equal to 6, the exact exploration of all the tables, despite the
recursion and the network, is very slow. The cue is very interesting, however, to
work on it in the future, avoiding to repeat counts that lead to the same results for,
for example, two different sets of male individuals. For the moment the structure
of the algorithm is very simple and adapts almost naturally to what Engels (2009)
has already explained, but it is certain that few further improvements would give
more strength to what has been done, further extending its usability.
The network algorithm developed for the X chromosome in this thesis could be
adapted to allow for faster computation of alternative statistical tests, such as the
likelihood ratio test or the chi-square test. In fact, if we only used probability as an
index to extract the exact test, Engels generalizes its algorithm to a wider range of
statistical tests, which also allows you to notice the differences between them and
easily extract histograms to represent the results. For the moment these aspects
have been neglected, focusing instead on the novelties due to the male gender in
the X chromosome and reliability compared to existing technologies.
Another aspect that has come up is the issue of ties. We have shown that the
numerical differences between the algorithms often derive from them, which affect
the final result for differences in accuracy even infinitesimal. Further work to
identify and accommodate for ties could improve the accuracy of test procedures
in a way that makes the work even more reliable than already described.
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The last element that should not be underestimated is that of a full integration of
the new algorithm within R, exploiting the functions written in C but importing
them in the same development environment, so that they can be imported in the
HardyWeinberg package and be available to all developers. For the moment the
use of the executable has been enough to extract data within the project, but this
step is of fundamental importance disseminate the new algorithm.

We conclude therefore saying that the development of this new algorithm has
been important and useful in every aspect. We are already in the process of writing
an article to report all the improvements achieved with respect to the existing tools
that have been shown. In this way the work will remain exposed in a more synthetic
way, showing only the really important and innovative contents. Moreover, we hope
it will be the cue for many future improvements, all the more so given the impact
this has in applied scientific contexts such as genetics, forensics and epidemiology
among others, and as can be seen from the presented analysis of empirical datasets;
not only toy examples. We are aware of the excellent progress we have made, and
are confident that this will spur further developments.
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