
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master’s Degree Thesis

Opportunistic Traffic Monitoring with
eBPF

Supervisor

Prof. Fulvio RISSO

Candidate

Simone MAGNANI

October 2020

“Technology is nothing. What’s important is that you have a faith in people, that
they’re basically good and smart, and if you give them tools, they’ll do wonderful

things with them.”
Steve Jobs

ii

Abstract

The growth of new technologies has opened new horizons for the network traffic
monitoring and analysis. Innovative solutions like eBPF and XDP marked a
clear distinction between traditional methodologies and new ones, which lead to
a more personalized and, sometimes, more efficient filtering. Although, despite
their flexibility and effectiveness, these technologies may seriously harm system
performance, since they move the entire monitoring engine into the lowest layers
of the operative system, introducing new problems related to the significant delay
that an inefficient program may cause. This thesis proposes unusual and innovative
usages of these new technologies, strengthening and favouring an in-kernel analysis
of packets, and dynamically inserting or removing user-defined monitoring programs,
exporting only the desired metrics using lightweight and standard data-interchange
formats. Polycube is the framework used as reference, an open source research
project developed by the Computer Network Group of Politecnico di Torino, which
enables the creation of virtual networks and provides fast and lightweight network
functions, as bridge, router, nat and many others. Within this complex and efficient
framework, the service Dynmon has been created, starting from an early prototype,
in order to accomplish dynamic network monitoring. The performance of this new
service has been compared to a well-known and widely used protocol, NetFlow, and
the promising and surprising results point out the efficiency of this new monitoring
method. The advantage that Dynmon introduces is the possibility to perform
adaptive network monitoring, choosing the granularity of data to be extracted,
while the state-of-the-art tools extract a default set of features, independently by
the type of the analysis, and it could result in an inefficient and heavy monitoring.
Finally, this thesis presents also a real use case scenario, the TOSHI project, where
Dynmon has been used in a more complex infrastructure, with the aim of detecting
different cybersecurity attacks using eBPF/XDP as the packet analysis and features
extraction method. Its usage perfectly meets the project need, which is to provide
different dynamic network traffic monitoring probes, in order to extract packets
features, according to the considered cybersecurity attacks.

Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction 1
1.1 Network monitoring . 1
1.2 The TOSHI project . 2
1.3 Thesis objective . 2

2 Problems and Limitations 4
2.1 Monolithic and repetitive applications 4
2.2 Offline analysis . 6
2.3 Static pre-defined monitoring logic 7

3 Related Work 9
3.1 Traffic monitoring with NetFlow . 9
3.2 Domain-specific tools . 11
3.3 Traffic monitoring with eBPF . 13

4 Exploited Technologies 14
4.1 eBPF and XDP . 14
4.2 Polycube . 16

5 Dynmon Architecture 19
5.1 Overview . 19
5.2 Self-adapting Control Plane . 21

ii

5.3 VNF Workflow . 22
5.4 YANG model description . 24
5.5 Dynamic Data Plane configuration 26
5.6 Metrics . 27
5.7 Run-time code enhancements . 29

6 Dynmon Implementation 32
6.1 Used languages . 32
6.2 Main classes . 33

6.2.1 Dynmon . 33
6.2.2 CodeRewriter . 34
6.2.3 MapExtractor . 36

6.3 Data Plane injection . 38
6.4 Supported data extraction . 40
6.5 Timestamping . 42
6.6 Dynmon Injector tool . 44
6.7 Dynmon Extractor tool . 45

7 TOSHI Infrastructure 49
7.1 Overview . 49
7.2 Architecture . 50
7.3 Artificial Intelligence support . 53
7.4 Dynmon probes for TOSHI . 55

7.4.1 DDoS attack detection . 55
7.4.2 Crypto-mining attack detection 57

8 Experimental validation 62
8.1 Dynamic injection of monitoring code 63
8.2 Extraction of metrics . 65
8.3 TOSHI performance . 68
8.4 NetFlow comparison . 71

9 Conclusions 76
9.1 Possible Dynmon improvements . 77
9.2 Possible eBPF programs improvements 78

iii

A Additional Open-Source Contributions 79
A.1 BCC IOVisor improvement . 79
A.2 Polycube Docker enhancement . 80
A.3 Polycube Firewall upgrade . 80
A.4 Polycube Linux support . 81
A.5 Polycube eBPF batch operations 81

Bibliography 82

iv

List of Tables

8.1 Crypto-Mining gathered traffic statistics. 71
8.2 NetFlow and Dynmon resource and bitrate comparison. 73
8.3 Dynmon probe simplified output. 75

v

List of Figures

2.1 Example of two overlapping monitoring programs. 5
2.2 Offline analysis schema. 7
2.3 Static monitoring program example. 8

3.1 Netflow architecture. 10

4.1 Architecture of eBPF. 15
4.2 Polycube architecture. 17

5.1 Polycube service architecture. 20
5.2 Dynmon architecture. 21
5.3 VNF typical workflow. 23
5.4 Packet path with PROGRAM_INDEX_SWAP rewrite type. 30

6.1 Data Plane injection workflow. 39
6.2 Map extraction pipeline. 41
6.3 C struct and union to key_type/leaf_type JSON objects. 42
6.4 Dynmon Injector workflow. 46

7.1 Toshi architecture overview. 51
7.2 Toshi detailed architecture. 52
7.3 LUCID neural network architecture. 54

8.1 Client-Server tests set up. 62
8.2 Data Plane injection with different eBPF map entries. 64
8.3 Data Plane injection with different eBPF maps. 65
8.4 Extraction time of different TCP headers and program enhancements. 66
8.5 Iterative and batch extraction time of TCP headers. 68

vi

8.6 Architecture of the TOSHI experiment. 69
8.7 TOSHI results. 70
8.8 Dynmon probe architecture for NetFlow comparison. 72
8.9 NetFlow and Dynmon probes CPU consumption comparison. 73
8.10 NetFlow and Dynmon probes bitrate comparison. 74

vii

Acronyms

AI

Artificial Intelligence

ML

Machine Learning

TCP

Transport Control Protocol

UDP

User Datagram Protocol

IP

Internet Protocol

ICMP

Internet Control Message Protocol

HTTP

HyperText Transfer Protocol

JSON

JavaScript Object Notation

VNF

Virtual Network Function

ix

Chapter 1

Introduction

This chapter introduces the bases on which the thesis took place. Network mon-
itoring is an essential component of IT security, but there are many drawbacks;
traditional state-of-the-art techniques result inefficient in modern distributed service
architectures, and this led to the growth of new solution for security management,
based on completely different approaches.

Finally, this chapter presents the objective of the thesis and the real use case
where the result of this research has been adopted, the TOSHI project.

1.1 Network monitoring

Network monitoring is a software that allows users to infer the condition of both
a network and devices that are part of it, by tracking all the related problems
(e.g., non-properly functioning devices or resources consume). It is carried out by
means of diagnostic tools or specific hardware appliances, which are connected to
the network and are capable of analysing the traffic passing through the specific
network card.

Through network monitoring it is possible to generate alarms to appropriately
signal the warning support system, which, according to the alarm type, can
automatically react to such issues by applying counter measures, like firewalling
policies. Despite the different enhancements that each network monitoring system
may have, all these instruments offer the possibility to generate reports on the
state of the network where all the problems are detected, in order to allow users to
consult, by means of a web interface or a command line one, such results.

1

Introduction

For security reasons, the ability to analyse traffic is essential, because it allows
infrastructures to automatically find out when an unexpected or undesired behaviour
is happening on the network, and to actively react to such threats.

1.2 The TOSHI project

The TOSHI (Total System Shield) project is a European project funded by EiT-
Digital, a leading European digital innovation and entrepreneurial education or-
ganization. TOSHI aims to provide a high-performance, automated and adaptive
defensive shield against cyber-attacks, exploiting efficient kernel-based technologies
that are self-adaptive, configured to monitor and counteract security threats under
the assistant of AI/ML mechanisms.

As later described in Section 7, TOSHI combines novel in-kernel Linux tech-
nologies such as eBPF/XDP with AI/ML algorithms to analyse events, detect and
mitigate anomalies on the host machines. It provides and entire infrastructure,
composed by many modules, in order to ensure scalability and robustness to the
entire system.

In order to achieve a lightweight network monitoring and an effective anomalies’
detection, the software injects to all the TOSHI-enable host devices two ad-hoc
monitoring program, to extract information from traffic. Every pre-established
period of time, a central entity gathers the collected data from the hosts, and
performs the analysis using a complex neural network structure previously trained,
in order to increase the accuracy of the detection engine. Once finished, the entity
decides whether to insert into the hosts firewalling rules, in order to block the
detected threat, or to keep monitoring, in the case it did not notice undesired
traffic.

1.3 Thesis objective

The main objective of this thesis is to provide unusual and innovative network mon-
itoring techniques adopting the latest technologies like eBPF/XDP. The proposed
solution must be as versatile and flexible as possible, allowing creating networking
probes that dynamically adapt to the user needs, changing the filtering program at
runtime and exporting the requested metrics. The provided service is built within
the Polycube framework, where eBPF and XDP are widely used to provide network

2

Introduction

functions efficiently exploiting these new technologies.
Moreover, to provide a concrete use case, the solution is used in the previously

anticipated TOSHI project scenario. This extraordinary possibility allows to test
the dynamic network monitoring provided by the newly introduced techniques
during a cybersecurity attack. For this scenario, it is given also a performance
evaluation, to make sure that, once deployed the monitoring program, the system
keeps working efficiently due to the irrelevant overhead introduced.

Finally, a performance comparisons with the traditional network monitoring
protocol NetFlow is performed, in order to check the validity of this thesis solution.
The aim is understanding the relevance and effectiveness of this new approach, in
order to evaluate if it can lead to better results, other than performing network
monitoring within a completely new perspective.

3

Chapter 2

Problems and Limitations

This chapter introduces the main limitation and problems of the current state-of-
the-art solution concerning network traffic and system monitoring. Among all the
limits, three have been individualized and analysed, since they perfectly represent
the reason why this thesis aims at providing completely different monitoring
methodologies:

1. monolithicity and repetition of code;

2. offline analysis;

3. static monitoring programs.

2.1 Monolithic and repetitive applications
The first problem presented is related to the massive code duplication due to the
integration of standalone monolithic network monitoring applications. As will be
described in the following section with some example, there are many valid tools
which allow users to perform every type of traffic filtering, using different techniques
and deploying, in addition, various detection engines alongside. Although, many of
these tools are designed for a specific application domain, limiting and hardening
integration with similar software. In fact, when two different products are combined
to perform a wider analysis, the resulting system will likely to have a lot of
monitoring code duplicated, not only for the packet filtering itself, but also for its
analysis.

4

Problems and Limitations

In modern infrastructure, where almost all the services are deployed in a cloud-
base environment with a significantly high networking capacity, the overhead
introduced by the duplicate code can worsen the service performance, resulting
in an inefficient usage of the system. Considering that nowadays both end-user
and networking devices are increasing their packet processing capacity, deploying
such infrastructures would mean losing the entire advantage that modern network
interface cards bring.

Figure 2.1: Example of two overlapping monitoring programs.

An example of such situation is provided in Figure 2.1. As it is depicted, there
are two different network monitoring programs (e.g., one IDS and one simple
analyser like Wireshark [1]) running on the same device, which in this case is a
switch. The intersection area coloured in orange between the two program indicates
that both of them are executing the same sub-set of instruction on the same packet,
which will surely result in twice the computation time that an efficient integration
would have taken. Moreover, in this case the performance is affected not only by
this code duplication, but also from the same function used to retrieve the incoming
or outgoing packet. In fact, the programs may not even know that they are both
executing at the same time and that they could share the retrieved packet, in order
to avoid asking one more unneeded time the packet to the underlying kernel. To
avoid copying twice the packet to the user-space, these programs may exploit the

5

Problems and Limitations

kernel bypass technique, which allow to directly access the privileged kernel memory
where the packet is stored. Although, this means that both of these programs
have to deliver their custom device drivers, since the one offered by the kernel is
not usable as it is completely bypassed. When dealing with custom device drivers,
there is a high chance of incompatibility between the two of them, thus not all the
program with that feature can be combined.

2.2 Offline analysis

The second problem that came up when dealing with state-of-the-art techniques,
is the inefficiency of the “offline" analysis. Traditional tools may even use kernel
BPF filters in order to capture only a certain sub-sets of the packets, but then
they perform the packet analysis and feature extraction in the user-space program,
meaning that the entire data structure of the packet has to be copied or at least
accessed entirely more than once.

As a matter of fact, copying the packet introduces a not negligible overhead
which may cause packets drop. On the other hand, in case the packet is directly
accessed by the application and not copied to the user-space, the additional overhead
introduced would be less than the previous case, but the running application which
performs the analysis is still a user-space application, meaning that it does not
have all the needed privileges to perform all the operations (e.g., system calls).
Thus, there is still the risk to hang the packet for more time than an in-kernel
analysis would have done, worsening performance.

Furthermore, as depicted in Figure 2.2, when performing an offline analysis, it is
not possible to modify the packet default path, meaning that it cannot be dropped
or routed to a different direction. As a result, the result of the analysis, like a
firewall rule, can be applied only to the following packets, while the “malicious"
one has already continued is path to the destination.

Finally, the user-space application is still a process running in the system, which
requires CPU computational power in order to perform all its tasks. Therefore,
the system has to host two different programs, one running in the kernel-space to
filter the packets, and one running in the user-space to perform the analysis. While
the former would run faster since it only has to match the packet according to the
user-defined rule (e.g., TCP, IP source), the latter takes more time to execute since
potentially it has to dig deeper the packet, meaning that the entire payload could

6

Problems and Limitations

Figure 2.2: Offline analysis schema.

be inspected, and this surely cannot keep up in terms of speed with the respective
kernel program, which can capture more packets than the application can handle.

2.3 Static pre-defined monitoring logic
The last consideration regards the poor flexibility of the monitoring programs.
Traditional software tends to provide a lot of customizable filtering options, but
they need to be pre-defined by the user before running the application. In case
the user wants to change the logic at runtime, he/she needs to restart the entire
application, or at the best case at least the filtering process.

The Figure 2.3 illustrates an example of a simple pre-defined monitoring program.
It is clear that, once the program is injected in the system, the defined instructions
(e.g., counter++) are going to be executed every time a packet is received, but in
case the user wants to modify the instructions by adding or removing some code,
he/she cannot do it, unless the entire program is stopped and recompiled. Despite
the effectiveness and efficiency of the monitoring, having a static program could
limit the entire analysis, harming the system with numerous instruction, even when
not needed. For instance, a more in-depth analysis of headers and payloads could
be enabled after a certain amount of time, when unusual traffic is recorded.

New technologies like eBPF, as it will be described later in this thesis, allow
creating service chains and/or modify at runtime the network monitoring code
injected in the system, in order to perform a more in-depth or superficial packet

7

Problems and Limitations

Figure 2.3: Static monitoring program example.

analysis. This allows to build adaptive programs that, according to some constraints
and user-defined logic, are able to save computational power when not required,
increasing the networking capacity of the device.

Unfortunately, despite being easy to implement in the user-space application,
most of the state-of-the-art techniques do not consider that option, or at least they
perform an adaptive analysis in user-space, which do not affect the network filtering
program running in the kernel or in the network interface card. This results in a
high inefficiency of the application, which, instead of considering only the sub-set
of packets requested, have to deal with all the traffic, and decide only later in the
upper OS layer whether to perform a generic or a more detailed analysis.

8

Chapter 3

Related Work

This chapter briefly presents other network traffic monitoring tools to highlight
their limits, since they have been taken into account both before and during the
development of Dynmon, comparing their methodologies to the innovative proposed
by the service.

3.1 Traffic monitoring with NetFlow
NetFlow [2], as described by authors, is an embedded instrumentation within Cisco
IOS Software to characterize network operations, introduced on Cisco routers
in 1996. This protocol provides the ability to collect incoming and outgoing IP
network traffic, gathering data and producing statistics concerning all the detected
flows. A typical flow monitoring setup, illustrated in Figure 3.1, consists of three
main components:

• flow exporter, it aggregates packets into flows and exports flow records towards
one or more flow collectors;

• flow collector, responsible for receiving, storing and pre-processing flow data
received from a flow exporter;

• analysis application, which analyses received flow data in the content of
intrusion detection or traffic profiling.

The Flow exporter is a user-space component which receives the filtered network
traffic and aggregates packets into flows, identified by many parameters like IP

9

Related Work

addresses, ports, IP protocol, type of service and the interface. It handles both IPv4
and IPv6 traffic, preparing the data to be collected by the collector component. Once
gathered enough data within a specified time window, the analyser applications
runs a detection engine in order to perform the desired task (e.g., intrusion detection
or profiling).

Figure 3.1: Netflow architecture.

Interestingly, the infrastructure may include also a web-based component, as
provided in ntopng, to visualize data and provide users/admins some useful chart.
In fact, while NetFlow is the main protocol developed by Cisco, a lot of different
software have been developed to use and extend it, like nprobe, ntop and ntopng, and
ndump to read from a command line interface the gathered data. The Listing 3.1
provides an example of output.

Listing 3.1: NetFlow output example.
1 Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Packets Bytes Flows
2 2010 -09 -01 00:00:00.459 0.000 UDP 127.0.0.1:24920 -> 192.168.0.1:22126 1 46 1
3 2010 -09 -01 00:00:00.363 0.000 UDP 192.168.0.1:22126 -> 127.0.0.1:24920 1 80 1

Despite the terrific service that these NetFlow-based tools provide, they rely on
the same traffic analysis method, which consists in copying the entire network traffic
detected into the user-space, where all the packets are aggregated. As a matter of
fact, copying packets from the kernel to the user application is a high-cost operation
which worsen the global performance of the device (e.g., if the networking capacity

10

Related Work

was 40Gbit/s, it is likely to drop to 10Gbit/s or even less). As a result, these tools,
that years ago have been proudly used for network monitoring, are beginning to lose
their primacy, being overcome by all the innovative in-kernel analysis techniques.
However, some of these tools like nprobe exploits the advanced kernel bypass
PF_RING Zero Copy technique to ensure high speed traffic monitoring by directly
accessing the packet, but as will be later described in the Section 8.4, applying
filters and monitoring logic from the user-space slows down the entire process as
well, resulting in worse performance and bitrate.

Even though this protocol allows collecting network traffic statistics, it is not
flexible enough, since each monitoring node has to support the NetFlow protocol.

3.2 Domain-specific tools
Several tools exist for Data Plane network monitoring tasks, whose authors aimed
at creating the most complete product according to their own functional objectives.
This results in very powerful and complete tools, but that are oriented to a domain-
specific application, such as traffic monitoring (e.g., for statistics, billing, accounting)
and security (e.g., network anomalies detection, blocking possible attacks).

In the real world, the above tools are usually deployed side-by-side, with the
obvious impact in terms of processing overhead (e.g., many functions are duplicated
among them, or some function is active even if not needed). As a matter of fact,
this results in a significant inefficiency and waste of resources.

The advantages of having many domain-specific tools are the interoperability,
scalability and modularization of the final infrastructure, since users can aggregate
different tools together and build their favourite topology. Although, despite
these qualities may also belong to non domain-specific tools, there are a lot of
disadvantages previously cited, which in a high-performance environment should
be taken into account, as the obtained performance will likely to be way worse
than expected.

Few examples of the most famous per-domain tools are:

• ntop [3]: as many of the solutions presented in the previous section, this tool
is a high performance network monitoring solution, build over the NetFlow
principle. Despite being widely used and having a handsome web-based user
interface with customizable filters and packets inspection, ntop uses a Zero-
copy packet distribution technique among different threads, which significantly

11

Related Work

enhance the monitoring program. Although, the techniques requires user-
defined device drivers in order to correctly run, as the entire kernel layer is
bypassed. Even though authors have built their own driver to interact with
the network card, this process does not favour reusability and integrability
with other software modules, which may use completely different techniques.

• Snort [4]: a free open-source network-based IDS (Intrusion Detection System)
maintained by Cisco Systems. It is one of the most efficient IDS solutions
available, both for the high-accuracy and extensibility of its detection engine.
Despite the accuracy, Snort requires a lot of resources in order to correctly
run all its component, which relies on libraries used to copy the packets
matching the user defined rule. For that reason, networking performance
may significantly decrease while using this tool, not for the analysis chain
performed in the user-space, but for the overhead introduced by copying the
matched packets into the slow path.

• Suricata [5]: a worthy rival of all the IDPSes (Intrusion Detection and Pre-
vention System), which not only is widely used, but also it has been strongly
enhanced, supporting also AI/ML modules for a more precise analysis. As all
the other IDPSes, Suricata requires many resources to run the entire infrastruc-
ture, but it is the most accurate and complete tool in its category. Moreover,
it contains a lot of programmable modules that makes it easy to extend, but
as all the other tools alike, when integrating it with similar products there are
going to be many similar functionalities repeated.

• Netify [6]: this tool gathers many features of both IDS and firewalls, imple-
menting Deep Packet Inspection logic, which allows digging deeper packets
payload in order to perform a more accurate analysis. This feature is already
present in many other solutions, as an in-depth packet analysis shares the
same principles of what in an IDS could be a “rule-based" detection method,
where all the payload is being analysed in order to match a specific pattern. In
addition, every scenario should have its own rule and analysis engine running,
thus a duplication of the entire processing process is inevitable.

12

Related Work

3.3 Traffic monitoring with eBPF
Some applications of eBPF/XDP concerning network monitoring and cybersecurity
have already been published. For instance, an example quite similar to the TOSHI
project, but with a completely different aim, is provided by this [7] paper. The aim
of the paper is to measure the efficiency of offloading network functions like DDoS
mitigator into the hardware, the SmartNICs, exploiting the usage of these new
technologies to perform controls at low level and at high speed. The paper presents
the DDoS mitigator scenario, where all the incoming malicious traffic belonging to
a DDoS attack should be blocked. In order to do so, the authors used eBPF/XDP
to extract features from the incoming traffic, and compute data in user-space using
heuristics algorithms, which are less precise than an entire neural network structure.
Once the computation finishes, the results (malicious IPs) are injected into the
eBPF programs, which will deny all traffic incoming from those sources.

Concerning only observability in a micro-services cloud-based environment, the
ViperProbe [8] framework has been proposed. The tool has been built to strengthen
both network and system monitoring, exploiting the different type of eBPF probes
which can be currently created. In fact, eBPF can be efficiently used also to
track system events, like system calls, in order to gather statistics and record the
entire system behaviour. ViperProbe proved to have limited overhead, providing
an analysis of eBPF metric performance, examining Envoy’s metric performance
profile, and showing that its eBPF metrics were significantly more effective for
horizontal autoscaling.

Finally, a worth mentioning growing framework is Cilium [9], an open source
software for transparently securing the network connectivity between application
services deployed using Linux container management platforms like Docker and
Kubernetes. At the foundation of Cilium is a new Linux kernel technology called
BPF, which enables the dynamic insertion of powerful security visibility and control
logic within Linux itself. Because BPF runs inside the Linux kernel, Cilium security
policies can be applied and updated without any changes to the application code
or container configuration.

13

Chapter 4

Exploited Technologies

This chapter presents the main technologies that have been used in order to create
both the architecture and implementation proposed in the following chapters. Most
of the information that this chapter provides are strongly inspired on the relative
software documentations present in the respective websites.

4.1 eBPF and XDP

Proposed by Alexei Staravoitov in 2013, eBPF [10] is the enhanced version of BPF
(Berkeley Packet Filter), an important technology which provides on some Unix-like
OSes a raw interface to data link layers in a protocol-independent fashion, to allow
network monitoring by multiple applications running in user space. With the next
version, the entire architecture has changed, including both modification to the
underlying virtual CPU and the possibility to directly access and modify the packet
from the kernel. In fact, eBPF deploys a sort of in-kernel virtual environment where
users can run their monitoring code, managing the real packet (and not a copy),
hence enabling a new breed of applications such as bridging, routing, NATting and
more.

The Figure 4.1 depicts the architecture of eBPF, considering the main compo-
nents involved during the entire compilation process and life cycle of a program.

To start with, eBPF code can be written in a restricted version of C, which
allows easier program development and more powerful functionalities with respect
to bare assembly code. The C code is then compiled by the LLVM/Clang [11]
compiler, which translated the entire source code into bytecode. The bytecode

14

Exploited Technologies

Figure 4.1: Architecture of eBPF.

is then forwarded, using a Linux dedicated system call, to the kernel, where the
eBPF Verifier and JIT (Just in Time compiler) perform various controls, in order
to ensure that, after injecting the program, the system will not be harmed. Once
the program successfully passes the validation phase, it is attached to the specified
hook, which can refer to both the packet reception engine or any Linux generic
kernel events represented by a system call. From that moment on, the program is
called every time the specific event represented by the hook is generated.

Considering the networking scenario, there are two main hooks exposed by every
OS: TC Ingress and TC Egress. As their name suggests, they are the entry and
exit points of packets within the kernel of an OS. Attaching a program to these
hooks allows both reading and modifying the real structure of the packet before it
reaches the higher OS layers, and, more interestingly, redirecting or even dropping
the packet.

Every time a packet passes through the Ingress or Egress hooks, the eBPF
program is triggered and a volatile “packet memory" is defined, which is a temporary
memory valid only for the current packet, meaning that in this type of memory
cannot be stored information concerning subsequent packets.

Interestingly, to address the need of storing data among different packets, eBPF
has introduced a set of memory areas called maps. Maps are data structures where
the user can store arbitrary data with a key-value approach: data can be inserted
in a map by providing the value and a key which will be later used to reference it.

15

Exploited Technologies

That said, there are many eBPF maps defined for almost all the possible scenarios,
and they not only replicate most of the data structures that higher languages
provide like arrays and hash maps, but they also introduce more specific map types
to perform efficient network monitoring, like histograms, queues, PER-CPU maps
and many others. Moreover, other important advantages of using maps are that
their content is preserved across program execution, and that they can be shared
both between programs belonging to the same or to different hooks. This feature
allows building complex network service chains, which can monitor both incoming
and outgoing traffic sharing data between them.

In addition to all the innovative features introduced by eBPF, there is XDP
[12], a programmable, high-performant packet processor in the Linux networking
Data Path, which provides an addition hook to be used with eBPF programs
in order to intercept packets in the driver space of the network adapter, before
even reaching the Linux kernel. A significant advantage introduced by this early
processing mechanism is that it avoids the overhead and memory consumption
added by the kernel to create the socket buffer structure, which wraps the entire
packet intercepted in the standard TC mode. Once the packet reaches the NIC, all
the attached eBPF programs are executed, and they can decide whether to drop
the packet or let it continue through the networking stack. One of the main use
cases is pre-stack processing for filter or DDoS mitigation, where, given an eBPF
map (probably filled by the Control Plane logic) containing the IPs and/or ports
to blacklist, the program can instantly drop the incoming packets. Unfortunately,
XDP is still a growing technology, and it does not support Egress hook in the NIC
yet, even because it would not make any difference for all those packets which
are directly sent by the machine running the programs, as it would have to go
through the entire networking stack spending time for analysis anyway. Thus, a
more complex service chain cannot be delivered fully in the XDP mode yet, but
there are going to be improvements in the following months, as already announced.

4.2 Polycube

Polycube [13] is an open source framework developed as research project by the
Computer Networks Group of Politecnico di Torino, which allows the creation of
Virtual Network Functions (e.g., bridge router NAT, load balancer firewall and
DDoS mitigator) capable of efficiently inspecting and manipulating the network

16

Exploited Technologies

traffic, and creating high-performant service chains exploiting the eBPF/XDP
technology.

All Polycube VNFs features are unified in a common point of control, which
enables the configuration of high-level directives and structure of the desired service
chain and topology. This model is integrated in service agnostic user space daemon,
polycubed, a program in charge of interacting and managing the different services,
and provides accessibility to all external user through standards REST APIs. Each
VNF, commonly called cube, is defined by a service, a C++ group of classes which
define both the internal operation and functionalities, and the accessible endpoints
within the daemon. The cubes are similar to plugins, since they can be installed,
launched at runtime, and they are compiled as external libraries, which are loaded
by the daemons if necessary. Once the daemon registers the service, users can
create different instances of it by using the REST interface.

Figure 4.2: Polycube architecture.

Figure 4.2 depicts the Polycube architecture. There are two standalone ap-
plication, pcn-k8s and pcn-iptables, realized to integrate and export the known
functionalities of Kubernetes and iptables within the framework. The central layer

17

Exploited Technologies

represents all the user-space components, like the polycubed daemon, the command
line interface tool polycubectl, and all the Control Plane of the services (router,
firewall and others). Finally, the lowest layer contains all the eBPF/XDP programs
running the services Data Plane, which are in charge of handling packets at high
speed by applying fast decision-making logic.

Interestingly, every cube is characterized by a fast path (Data Plane), commonly
known as the eBPF code injected and running in the kernel, and a slow path
(Control Plane), running in user-space within the service itself, which takes into
account all those packets that cannot be fully processed in kernel or that require
additional operations and may slow down the processing of all the following ones.

The Data Plane portion of a (virtual) network service is executed per packet,
with the consequent necessity to keep its computational cost as small as possible.
For each packet, the fast path retrieves both the entire packet structure and meta-
data associated to it from the reception queues, then all the eBPF code injected
is executed. Usually, such programs contain fast and precise operations, such as
packet parsing, memory lookup and statistics. However, while eBPF offers the
possibility to perform some complex and arbitrary actions on packets, it suffers
from some well-known limitations due to his restricted instruction set allowed,
in order to preserve the integrity and safety of the system. To overcome those
limitations, Polycube introduces an additional Data Plane component no longer
limited by the eBPF virtual machine, allowing programs to execute arbitrary code.
Moreover, a set of helper functions to redirect packets to the Control Plane and
perform other useful functionalities (e.g., checksum re-computation if the packet
has been modified) has been introduced, to ease the development and increase
code-readability.

On the other hand, the Control Plane of a network is the place where all the
out-of-band tasks, to both control the Data Plane and react to more complex
events (e.g., routing protocols and spanning tree), are implemented. Moreover,
it represents the entry point of all the interaction with external entities (users or
other services) that needs to access resources, modify or consult service parameters
and receive notification from the service fast path through a shared event buffer.
Control plane tasks are way slower that Data plane ones, thus calling such functions
from the fast path is strongly suggested only in certain cases, despite it provides
an in-depth packet analysis.

18

Chapter 5

Dynmon Architecture

This chapter presents the architecture of the proposed solution: Dynmon (Dynamic
Network Monitor) [14]. The architecture, which extends the one of a previous
prototype, has been studied to efficiently exploit Polycube VNFs and, as the
reference use case, achieve the best outcomes for the TOSHI project.

Considering the current state of the framework, which does not allow detaching
and remotizing the Control Plane from the Data Plane, the chosen solution pro-
vides a local self-adaptive service able to handle generic monitoring programs and
exporting the defined metrics accordingly.

5.1 Overview
Every Polycube service follows the structure illustrated in Figure 5.1. While the
Control Plane is a unique entity, the Data Plane can be composed by different
programs injected in the system in pipeline, which allow building complex and
modularized infrastructure.

As the names suggest, these two entities have different but complementary aims.
The Data Plane is the more sensible entity, because it directly affects the device’s
networking capacities, meaning that every instruction in its programs is weighted
and should be essential, otherwise it will slow down the entire packet management
process. Briefly, it contains the logic responsible for:

• monitoring traffic and filtering packets according to the eBPF programs;

• reading and/or filling shared data structures with Control Plane to improve

19

Dynmon Architecture

Figure 5.1: Polycube service architecture.

traffic analysis and to export monitoring values outside.

On the other hand, the Control Plane generally does not affect at all networking
capacities, since it is an independent process running in user-space which computes
data by applying a specific logic. Although, this concept does not apply in those
cases where, in order to analyse and produce results, the Control Plane needs to
interact with structures shared with the Data Plane to manage the values (read,
write or erase). Generally, the main tasks of a Control Plane program are:

• to manage the entire Data Plane, injecting and removing program when
needed;

• to manage shared structures, reading the gathered data and act accordingly;

• to provide access to external users, exploiting the REST interface to export
information concerning the service.

20

Dynmon Architecture

5.2 Self-adapting Control Plane

To support as much as different types of users dynamic injected configurations,
Dynmon presents a general purpose self-adapting smart Control Plane, which is able,
given the desired Data Plane representation, to adapt its extraction mechanisms
according to the specified metrics. Therefore, the Control Plane is the core of the
entire service.

Figure 5.2: Dynmon architecture.

As depicted in Figure 5.2, the structure follows exactly the principles of a generic
Polycube service, allowing interaction via REST API. Interestingly, while all the
other services have a constant Data Plane, Dynmon aims at dynamically accepting
user defined monitoring programs, which may vary over time at user convenience.
Thus, a basic Data Plane is provided and injected when an instance is created, but
the service is ready to accept and replace new configurations.

Since Data Plane refers both to Ingress (incoming) and Egress (outgoing)
interfaces, for each of them a configuration contains:

• a name, to represent the current configuration;

21

Dynmon Architecture

• the eBPF code, which corresponds to the Data Plane program to be injected;

• a list of metrics, containing all the specifications of the desired data structures
(eBPF maps) to be exported.

A few advantages of this approach are:

• single point of control: the VNF is instantiated in the same machine of the
monitored host, thus, there is no need to export data to remote controllers,
handling theoretically thousands of connections;

• continuity of operations: accepting dynamic configurations, the service is able
to substitute current settings with new one, without the need to delete and
create a new instance;

• dynamicity and versatility: the service is built to change and adapt at will
whenever required;

• flexibility: supporting a wide range of the current existent data structure,
Dynmon ensures that the largest number of user programs are correctly
compiled and running as expected.

5.3 VNF Workflow
The Figure 5.3 illustrates the typical workflow of interactions between an external
user and Dynmon, which are:

1. Service Creation: interacting with the Polycube daemon (Polycubed) a basic
instance of Dynmon is created and ready to accept a new configuration.
Unfortunately, during this phase it is not possible to specify the Data Plane to
be injected, but still other parameters like the network interface to be attached
to can be specified (otherwise a user can decide to attach the service to an
interface later in a different REST request).

2. Data Plane injection: the user contacts the daemon, which relays the request
to the Dynmon instance, specifying the new configuration to be used.

3. Data Plane tuning, compilation and injection: this is the most delicate phase,
since the configuration is meticulously analysed, the code is compiled and,

22

Dynmon Architecture

Figure 5.3: VNF typical workflow.

if successfully, injected in the system. Before compiling, a few advanced
enhancements to the code are performed according to optional parameters
specified in the configuration, but this is later discussed in Section 5.7.

4. Data collection: once the new Data Plane is injected, every time a packet
goes to through the apposite hook (Ingress/Egress) the injected program is
executed and it properly updates the BPF maps corresponding to the metrics
to be exported.

5. Metric request: the user can require all the collected metrics, a few of them or
just the one of a specific program chain (Ingress/Egress) by querying different
endpoints.

6. Metric extraction: the service, once received the request, retrieves all the
information to extract data from the BPF map (size, value types, etc.) and
exports their content using the JSON format. At this point, the service may
also perform, according to the additional parameters in the configuration,
other operations like emptying the map once read.

7. Service deletion: when the Polycube daemon is stopped or the user appositely
requires it, the service and all its related eBPF programs are removed, to keep

23

Dynmon Architecture

the system safe avoiding harming performance.

5.4 YANG model description
Polycube framework allows developers to define the structure of a service using
YANG [15], a language which, taken a model as input, produces the code source
code accordingly, which not only saves developers time by providing a working
basic structure, but it is also compliant to the RESTCONF protocol, defined in
RFC-8040 [16].

Here follows the data model defined for Dynmon. Some parts have been omitted
for simplicity (mandatory values, descriptions, etc.).

Data Plane container
The Data Plane container is the outer container containing both Ingress and

Egress containers and it has a simple structure as follows. Dynmon requires both
the two inner containers to be defined in the injected configuration, even when the
user wants to insert only one type of program (Ingress/Egress), otherwise it throws
an error to avoid an undetermined behaviour. An example of the YANG container
definition is provided in Listing 5.1.

Listing 5.1: Data Plane container YANG model.
1 conta ine r dataplane−c on f i g {
2 conta ine r i ng r e s s−path {
3 presence i n g r e s s ;
4 uses path−c on f i g ;
5 }
6 conta ine r eg re s s−path {
7 presence e g r e s s ;
8 uses path−c on f i g ;
9 }

10 }

Ingress/Egress container
These two containers (Listing 5.2), which they differ only for the name, are the

most essential one, since they contain:

• name, a string used to help the user identifying its service;

• code, the eBPF code to be injected;

• map-name, the name of the BPF map which contains the value of the metric;

24

Dynmon Architecture

• extraction-options, additional parameters to customize extraction;

• open-metrics-data, the exported metrics in the OpenMetrics [17] format.

Listing 5.2: Ingress/Egress container YANG model.
1 grouping path−c on f i g {
2 l e a f name { type s t r i n g ; }
3 l e a f code { type s t r i n g ; }
4 l i s t metric−c on f i g s {
5 key "name " ;
6 l e a f name { type s t r i n g ; }
7 l e a f map−name { type s t r i n g ; }
8 conta ine r ex t rac t i on−opt ions { . . . }
9 conta ine r open−metr ics−metadata { . . . }

10 }
11 }

Open Metrics container
The following container represents the exported metrics in the OpenMetrics

format. The resource follows the OpenMetrics syntax, exporting data specifying
their name, value and the type (histogram, normal data, etc.), as reported in
Listing 5.3.

Listing 5.3: Open Metrics container YANG model.
1 conta ine r open−metr ics−metadata {
2 l e a f he lp { type s t r i n g ; }
3 l e a f type {
4 type enumeration{
5 enum Counter ;
6 enum Gauge ;
7 enum Histogram ;
8 enum Summary ;
9 enum Untyped ;

10 }
11 }
12 l i s t l a b e l s {
13 key "name " ;
14 l e a f name { type s t r i n g ; }
15 l e a f va lue { type s t r i n g ; }
16 }
17 }

25

Dynmon Architecture

Extraction options container
Concerning the optional parameters and extraction enhancements, this con-

tainer (Listing 5.4) defines two possible tuning which will be analysed in-depth in
Section 5.7. In brief:

• empty-on-read, a boolean value used to teach Dynmon to erase the content of
the map whenever the user requires it;

• swap-on-read, another boolean value used to teach Dynmon to perform all
operation on maps atomically, without hanging the underlying Data Plane.

Listing 5.4: Extraction options container YANG model.
1 conta ine r ex t rac t i on−opt ions {
2 l e a f empty−on−read { type boolean ; }
3 l e a f swap−on−read { type boolean ; }
4 }

5.5 Dynamic Data Plane configuration
Given the previously defined YANG models, in order to configure the Data Plane
of the VNF, the user must provide a configuration file in the JSON format that
follows the YANG containers structures. As a consequence, the configuration file
must contain both ingress-path and egress-path field, each one composed by:

• name, the name of the configuration;

• code, the eBPF monitoring code to be injected in the system;

• metrics-configs, the list of the exported metrics with all their additional
parameters like open-metrics-metadata and extraction-options.

Listing 5.5: Data Plane configuration example.
1 {
2 "ingress -path ": {
3 "name ": " Packets counter probe ",
4 "code ": "\r\n BPF_ARRAY (PKT_COUNTER , uint64_t , 1) ;\r\n ..." ,
5 "metric - configs ": [
6 {
7 "name ": " packets_total ",

26

Dynmon Architecture

8 "map -name ": " PKT_COUNTER ",
9 "open -metrics - metadata ": {

10 "help ": " Number of packets .",
11 "type ": " counter ",
12 " labels ": []
13 },
14 " extraction - options ": {
15 "empty -on -read ": true
16 }
17 }
18]
19 },
20 "egress -path ": {}
21 }

The configuration provided in Listing 5.5 defines a simple eBPF program to count
the number of packets passing through the network interface, exporting such value
as a metric named packets_total, which refers to the BPF map PKT_COUNTER.
In addition to the OpenMetrics metadata specified, there is also the extraction
option empy-on-read, which specifies to reset the map whenever the user requires
that specific metric.

The example contains only Data Plane for the Ingress hook, but a user can
reuse the same configuration also for the egress-path, counting the outgoing packets.
Although, despite the Egress map name which may be equal to the Ingress one,
the two programs do not share the same structure for the map, but a new one with
the same name within a different scope. In order to use the same map in the two
hooks, users should specify something like BPF_ARRAY_SHARED(...) in one
program and BPF_ARRAY("extern"...) in the other, to make the map visible.

5.6 Metrics
Metrics are exported in two different formats to ease integration within other data
visualization services (e.g., Prometheus [18]):

1. JSON: one of the most used and lightweight data-interchange format, easy to
use, efficient and capable of reproducing the content of a BPF map (both the
primitive types and the structured ones);

2. OpenMetrics: the new standard designed for exposing metric data for ob-
servability (values over time). Despite being widely used, this format does
not support structured data structures (union, struct or nested); thus, only
primitive data types and arrays can be exported.

27

Dynmon Architecture

The service exposes two respective endpoints to make data accessible in the
desired format:

1. /metrics, which returns collected data in JSON format;

2. /open-metrics, which return metrics in OpenMetrics format.

The Polycube framework, exploiting the use of YANG models to generate the
base code of a service, generates also other useful endpoints to allow access to
specific metrics and their fields:

1. /metrics/ingress-metrics, to access the entire metrics list of the Ingress pro-
gram;

2. /metrics/egress-metrics, to access the entire metrics list of the Egress program;

3. /metrics/{in-e}gress-metrics/{metric-name}, to access a single metric by
providing its name, referring to the specific program type;

4. /metrics/{in-e}gress-metrics/{metric-name}/value, to access only the value
of a single metric by providing its name, referring to the specific program type.

In the example provided in Listing 5.5, to access the packets_total metric
the service can be queried sending an HTTP GET request to /metrics/ingress-
metrics/packets_total and the output would be like in Listing 5.6

Listing 5.6: Metric extraction output example.
1 {
2 "name " : " packet s_tota l " ,
3 " va lue " : [
4 6850
5] ,
6 " timestamp " : 1599403699607360
7 }

Otherwise, if just the value needs to be obtained, an HTTP GET request to the
endpoint .../metrics/ingress-metrics/packets_total/value would produce a response
containing only [6850].

28

Dynmon Architecture

5.7 Run-time code enhancements

The last important architectural component to describe is the CodeRewriter com-
ponent. It is an extremely advanced code optimizer to adapt user dynamically
injected code according to the provided configuration. It basically performs some
optimization in order to provide all the requested functionalities keeping high
performance and reliability. Moreover, it relies on eBPF code patterns that iden-
tify a map and its declaration, so the user does not need to code any additional
information other than the configurations for each metric he wants to retrieve.

Currently, there are only two additional parameters supported, as described in
the previous section: empty-on-read and swap-on-read. While the former is used to
specify that the content of a map should be erased once read, the latter triggers
the CodeRewriter component, since it specifies that all the operations concerning
the associated map should be atomic. Few examples are provided in Section 6.2.2.

The component exploits the use of pattern to match, substitute and modify parts
of the code provided in the injected configuration. There are two different types of
rewrites performed: PROGRAM_RELOAD and PROGRAM_INDEX_SWAP.

PROGRAM_INDEX_SWAP rewrite
This option is the most advanced one, aiming both at meeting user specifications

and speeding up the entire process. It exploits the usage and creation of program
chains that the framework allows doing. The steps it reproduces are as follows:

1. clone the injected eBPF code;

2. modify in the cloned code all references to all those maps declared swap-on-
read;

3. create a pivoting program which, according to the current state of the service,
will forward the incoming/outgoing packets to the right program;

4. inject in the system the pivoting code as first, then the user injected code and
the cloned one.

The three programs are all injected once in the system, so there are no problems
nor delays due to re-compilations and re-injections. An example of functioning is
provided in Figure 5.4: for every packet, the pivoting program is called and, using
internal BPF maps accessible also from the Control Plane to manage program

29

Dynmon Architecture

indexes, decides whether to call the original user defined program (Program v1) or
the cloned and modified one (Program v2).

Whenever a user requires the metrics, the Control Plane changes the index,
contained in the shared eBPF map, which corresponds to the version of the program
to be called by the pivoting program. Therefore, since the maps contained in the
two versions of the program are different, the collected metrics returned to the user
are retrieved from the actual unused one, ensuring atomicity as the Data Plane
program started to use the other one as soon as the request arrives.

Figure 5.4: Packet path with PROGRAM_INDEX_SWAP rewrite type.

PROGRAM_RELOAD rewrite
The PROGRAM_RELOAD option is simpler to understand and it is used as a

fallback option in case some error occurs during the PROGRAM_INDEX_SWAP
one or the syntax of the maps used by the user in the eBPF program is wrong.
Despite meeting the user specification ensuring atomicity among maps, this solution
has some drawback in terms of performance.

The steps reproduced are:

• clone the injected eBPF code;

• modify the name of the maps declared swap-on-read in the cloned code
fictitiously;

30

Dynmon Architecture

• inject alternatively in the system the original code and the modified one.

From these steps it is clear that this solution is slower than the previous one,
since the obtained codes are alternatively injected in the system, meaning that they
are always re-compiled and re-injected. When a user requires the collected metrics,
the Control Plane, before even extracting them, changes the currently loaded
program with the other one that, even though it contains the same instructions,
uses a different map (fictitious one). As a result, the Control Plane is able to read
the correct map atomically, even thought it surely it handles more slowly user
HTTP requests.

31

Chapter 6

Dynmon Implementation

This chapter presents the implementation of the previously described architecture,
adding more technical details concerning the chosen solution. Moreover, other
problems related to the Data Plane part are discussed, describing also the choices
to address such issues. Finally, it will discuss of two user-friendly tools created to
facilitate both deployment of a Dynmon instance and metrics extraction.

The source code can be found on the GitHub repository of the Polycube frame-
work [14].

6.1 Used languages

According to the Polycube framework’s standards, the main programming language
used to implement Dynmon was C++, an object-oriented and performing version
of C. A second language used for the model of the service was YANG, thanks to a
basic code structure for the service is created. Concerning the user-friendly tools,
the language Python was used, for its versatility and programmability, which allow
us to build high level programs to interact with Polycube using HTTP requests
easily.

Finally, for the tests it has been used BASH scripting integrated with the
Polycube command line tool (polycubectl). The tests aim at covering the most
possible use cases in Dynmon, to confirm its correct functioning.

32

Dynmon Implementation

6.2 Main classes
Following the YANG code generation, a lot of classes and packages are automatically
defined, including those where the accessible APIs are described. However, the
service as it is would not be usable at all, since their operational logic needs to be
implemented. Thus, in this section are listed and analysed the essential classes
introduced.

6.2.1 Dynmon
The Dynmon class represents the instance of the service, which contains all the
Control Plane logic. In addition, it represents also the entry point of the service, as,
depending on the HTTP request performed, it contains all the methods to correctly
produce a response.

This class, other than all the structures needed to handle concurrency, contains
a reference to the DataplaneConfig object, which represents the current Data Plane
of the VNF. Every time a new configuration is received, if it is correct and does
not produce errors (both compile-time and injection-time) the reference is updated,
otherwise the previous program is kept.

The Dynmon class contains also a SwapStateConfig object for each program
time, which is used to keep track of the current enhancements, if any, applied by
the CodeRewriter class. Finally, all this class methods are linked to the service
REST API, and they perform all the functions described in the VNF workflow.

The Listing 6.1 provides a code snippet of this class, in particular of the method
used to retrieve the collected metric specified by the name referring to the Ingress
program.

Listing 6.1: Snippet of the Dynmon class.
1 std :: shared_ptr <Metric > Dynmon :: getIngressMetric (const std :: string &name) {
2 logger () ->debug ("[Dynmon] getIngressMetric ()");
3 auto ingressPathConfig = m_dpConfig -> getIngressPathConfig ();
4 auto metricConfig = ingressPathConfig -> getMetricConfig (name);
5

6 std :: lock_guard <std :: mutex > lock_in (m_ingressPathMutex);
7 triggerReadIngress ();
8

9 try {
10 // Extracting the metric value from the corresponding eBPF map
11 return do_get_metric (name , metricConfig -> getMapName () , ProgramType :: INGRESS ,
12 metricConfig -> getExtractionOptions ());
13 } catch (const std :: exception &ex) {

33

Dynmon Implementation

14 logger () ->warn("{0}", eg.what ());
15 std :: string msg = " Unable to read " + metricConfig -> getMapName () + " map";
16 logger () ->warn(msg);
17 throw std :: runtime_error (msg);
18 }
19 }

6.2.2 CodeRewriter
The CodeRewriter is not a real C++ class, but it actually is a namespace which
defines functions used to parse and enhance the injected code. For future services
and/or improvements, its functions has been made accessible to anyone, in case its
tuning are needed elsewhere.

The enhancement methods rely on patterns to match in the provided eBPF
code, in order to locate and modify maps declaration and usage within the
code. Moreover, the logic implemented in the methods that provide the PRO-
GRAM_INDEX_SWAP rewrite is really advanced, as it tries to cover the most
scenarios and maps usage. On the other hand, the PROGRAM_RELOAD opti-
mization is always ensured and does not produce any error, since it simply clones
the code as it is modifying only the map names.

Concerning the PROGRAM_INDEX_SWAP option, the detailed list of per-
formed steps is as follows:

1. Fix non-swappable maps: in this phase all the maps belonging to the program
but not declared specifying the swap-on-read parameter need to be slightly
modified as well, to make them accessible between the two new versions
injected of the program. This step is the trickiest one as there are a lot of
map types that needs to be checked and that may belong to different scopes.
In fact, for each map declaration the function looks for:

(a) “extern" or “pinned" maps, as their declaration does not need to be
modified in the cloned code;

(b) standard (e.g., BPF_TABLE(...)) or customized (e.g., BPF_ARRAY())
map declarations, since the former is supported while the latter is not;

(c) “shared" or “public" maps, as in the cloned code they need to be changed
into extern (which refers to the map declared by the original program);

(d) every declaration that does not match any of the previous controls is
modified both in the original eBPF code and in the cloned one, adding

34

Dynmon Implementation

the “shared" attribute to all these maps in the former and “extern" in the
latter.

2. Fix swappable maps: the second phase consists in substituting the name of
maps declared with the swap-on-read parameter with a new fictitious one (e.g.,
from MAP_A to MAP_A_1). The maps of interest are those declared as
“shared", “public", “extern" or “pinned", since all the other ones are program
specific, thus declaring two maps with the same name in two different programs
effectively creates two different maps.

3. Creation of the pivoting code: this final step consists in taking the default
pivoting code provided in the namespace and modifying it according to the
program type (Ingress/Egress).

In the Listing 6.2 is provided a snipped of the only public function of the
CodeRewriter namespace, the one used to decide which type of enhancements to
use and return the appropriate configuration.

Listing 6.2: Snippet of the Code Rewriter namespace.
1 void CodeRewriter :: compile (std :: string & original_code , ProgramType type ,
2 const std :: vector < MetricConfigJsonObject > & metricConfigs ,
3 SwapStateConfig &config , const std :: shared_ptr < spdlog :: logger >& logger){
4 bool is_enabled = false ;
5 std :: vector <std :: string > maps_to_swap ;
6 /* Checking if some map has swap -on -read , otherwise no compilation */
7 for(auto &mc : metricConfigs) {
8 if (mc. getExtractionOptions (). getSwapOnRead ()) {
9 maps_to_swap . emplace_back (mc. getMapName ());

10 is_enabled = true;
11 }
12 }
13 /* If enabled , try enhanced compilation , otherwise basic as fallback */
14 if (! is_enabled) {
15 config = {};
16 logger ->info("[Dynmon_CodeRewriter] No map marked as swappable , no rewrites

performed ");
17 } else if(try_enhance_compilation (original_code , type , maps_to_swap , config)) {
18 logger ->info("[Dynmon_CodeRewriter] Successfully rewritten using

PROGRAM_INDEX_SWAP technique .");
19 } else if(do_base_compile (original_code , maps_to_swap , config)) {
20 logger ->info("[Dynmon_CodeRewriter] Successfully rewritten using

PROGRAM_RELOAD technique .");
21 } else {
22 config = {};
23 logger ->info("[Dynmon_CodeRewriter] Error , no rewrites performed ");
24 }
25 }

35

Dynmon Implementation

6.2.3 MapExtractor

The MapExtractor class is responsible for the actual extraction of the gathered
data from the respective eBPF maps into one of the two different export formats
(JSON or OpenMetrics). This component presents a static method to be called
from the instance of the service, the Dynmon class, which receives the user request
and waits for the apposite results to be ready.

Internally, this component has different methods to be used according to the
type of the map and its related information, like the contained value types. In fact,
each map type is treated differently, since it may support different operations than
the others. That said, every method uses the same utility functions to extract the
“leaf" data once the map has been navigated: the effectiveness of Dynmon is given
by the usage and export of data belonging to maps that the service does not know
a priori. Interestingly, the service has been programmed to read and parse the
eBPF table description object and act accordingly, calling a different method for
each data type.

Another strength of this class is the support it provides for the newest eBPF
map lately defined in the Linux kernel and the high efficiency of the low level
extraction methods. According to the current kernel version the service is being
used on, it enables/disables the so called “batch" operations, which are very high
performing operation on maps to perform multiple actions at a time, instead of
iterating over the map sequentially. This feature allows both the Control and Data
planes to be more efficient, since access to shared maps takes less time in terms of
locking mechanism and system calls.

Listing 6.3: Static main method of MapExtractor.
1 json MapExtractor :: extractFromMap (BaseCube &cube_ref , const string & map_name ,

int index , ProgramType type ,
2 std :: shared_ptr < ExtractionOptions > extractionOptions) {
3 // Getting the TableDesc object of the eBPF table
4 auto &desc = cube_ref . get_table_desc (map_name , index , type);
5

6 if(desc.type == BPF_MAP_TYPE_HASH || desc.type == BPF_MAP_TYPE_LRU_HASH)
7 return extractFromHashMap (desc , cube_ref . get_raw_table (map_name , index , type)
8 ,extractionOptions);
9 else if(desc.type == BPF_MAP_TYPE_ARRAY)

10 return extractFromArrayMap (desc , cube_ref . get_raw_table (map_name , index , type)
11 ,extractionOptions);
12 else if(desc.type == BPF_MAP_TYPE_QUEUE || desc.type == BPF_MAP_TYPE_STACK)
13 return extractFromQueueStackMap (desc , cube_ref . get_raw_queuestack_table (
14 map_name , index , type), extractionOptions);

36

Dynmon Implementation

15 else if(desc.type == BPF_MAP_TYPE_PERCPU_HASH || desc.type ==
BPF_MAP_TYPE_PERCPU_ARRAY || desc.type == BPF_MAP_TYPE_LRU_PERCPU_HASH)

16 return extractFromPerCPUMap (desc , cube_ref . get_raw_table (map_name , index ,
17 type), extractionOptions);
18 else
19 // The map type is not supported yet by Dynmon
20 throw runtime_error (" Unhandled Map Type " + std :: to_string (desc.type) + "

extraction .");
21 }

The Listing 6.3 reports the entry point of the MapExtractor class where, ac-
cording to the retrieved map type, it is decided which internal extraction method
to use. Moreover, in case the metrics is contained in a map not supported by any
of these methods, an error is raised. However, this class provides support for the
most used and common BPF maps, which are:

• arrays, the simplest linear data type whose data is accessible through an index;

• hash, a key-value map where the used key, which can be a structured user
define type, is hashed to improve accesses;

• LRU (Least recently used) hash, a hash map with an algorithm applied which
ensures that, when a new data needs to be inserted, the oldest entry in the
map is substituted;

• PERCPU array, an array map for each CPU core (thus potentially an array
of arrays), to avoid race conditions and locking mechanisms;

• PERCPU hash, a hash map for each CPU core;

• PERCPU LRU hash, an hash map with an LRU structure for each CPU core.

Another interesting snippet is provided in the Listing 6.4: the depicted method
recExtract() is used to decide whether the current value to be extracted represents
a primitive type or a more complex structure. The latter case would call recursively
the same method until it reaches the leaf values of the structure (e.g., a “struct"
would call recExtract() for each of its fields). And the end of the recursion, when
therefore the value under analysis represent a “leaf" primitive type of the structure,
the method valueFromPrimitiveType() is called, which will extract in JSON format
the information according to its type (integer, char, float, etc.).

37

Dynmon Implementation

Listing 6.4: MapExtractor method to extract values.
1 json MapExtractor :: recExtract (json object_description , void *data , int & offset) {
2 // Identifying the object
3 auto objectType = identifyObject (object_description);
4

5 switch (objectType) {
6 case Property : { // the object describes a property of a C struct
7 auto propertyName = object_description [0]. get <string >();
8 auto propertyType = object_description [1];
9 return propertyName , recExtract (propertyType , data , offset);

10 }
11 case ArrayProperty : { // the object describes a C array
12 auto propertyName = object_description [0]. get <string >();
13 auto propertyType = object_description [1];
14 auto len = object_description [2][0]. get <int >();
15 // array of primitive type
16 if (propertyType . is_string ()) // this string is the name of the primitive type
17 return valueFromPrimitiveType (propertyType , data , offset , len);
18 // array of complex type
19 else {
20 json array ;
21 for (int i = 0; i < len; i++)
22 array . push_back (recExtract (propertyType , data , offset));
23 return value_type (propertyName , array);
24 }
25 }
26 case Value : // the object describes a primitive type
27 return valueFromPrimitiveType (object_description .get <string >() , data ,
28 offset);
29 case Struct : // the object describes a C struct
30 return valueFromStruct (object_description , data , offset);
31

32 case Union : // the object describes a C union
33 return valueFromUnion (object_description , data , offset);
34

35 case Enum: // the object describes a C enum
36 return valueFromEnum (object_description , data , offset);
37 }
38 throw runtime_error (" Unhandled object type " + std :: to_string (objectType) + " -

recExtract ()");
39 }

6.3 Data Plane injection

As described in the previous chapter concerning the architecture, the core aspect of
the Dynmon service is the capability to dynamically change the behaviour of the
Data Plane, while the Control Plane performs the same operations independently
by the underlying injected program.

38

Dynmon Implementation

The runtime injection is possible thanks to the usage of functions like reload(),
which are accessible to all the Polycube services via inheritance of the BaseCube
class. This method is responsible for replacing the current eBPF program at a
certain index of the program type chain (e.g., the 2nd program in the Ingress hook),
ensuring that the new one is correctly compiled. Dynmon uses this function every
time a new Data Plane configuration is sent by the user, or in case the CodeRewriter
class performs the BASE tuning to the code.

Figure 6.1: Data Plane injection workflow.

The Figure 6.1 depicts the typical workflow and all the main interactions between
components when the user provides a new configuration. To start with, the Control
Plane, once it has received the configuration via an HTTP POST request, forwards
the new Data Plane to the CodeRewriter class which, according to the specified
parameters, decides whether to perform or not some enhancement and returns the
configuration to the Control Plane. At this point, the new artefact is forwarded
to the eBPF Verifier in kernel-space, where it compiles and validates the code
using the apposite LLVM compiler infrastructure, which produces the low-level
executable to be injected in the system. If no error occurs during the compilation
phase, the program is inserted in the apposite hook (Ingress/Egress).

39

Dynmon Implementation

6.4 Supported data extraction

One of the greatest feature of this service is the capability to export user-defined
metrics in the JSON lightweight data-interchange, extracting values from the
respective underlying eBPF maps independently by the contained data.

As previously described in Section 6.2.3, the main class involved in the extraction
process is MapExtractor. In order to access the low-level eBPF map description
structure, the class exploits the use of TableDesc class, provided by the BCC [19]
library. Moreover, all the extraction methods use the handler functions provided
by this library (which relies on libbpf [20]), as they both ease the system call
invocations, and they are always up-to-date with the functions and structures
provided by the kernel.

The TableDesc object of a specific map is obtained using the get_table_desc()
method provided by the parent BaseCube class. This object contains both key_desc
and key_desc, to JSON objects which describe the structure and type of the eBPF
map’s entries. These objects, are internally parsed, using apposite built methods
to allocate variable to hold the result according to the apposite specified type. In
fact, the key_desc and key_desc JSON objects, once correctly parsed, can describe
C values as primitive data types (e.g., int, char, double, unsigned long long and more),
enums, unions and structs.

In order to extract the eBPF map content, both key_desc and key_desc are parsed
recursively to cast the memory block of the map’s entries accordingly to their
structure. The parsing recursion method recognizes these objects as one of the
aforementioned data types, then calls the corresponding extraction method that will
cast the obtained memory block of a map entry in order to extract the contained
value.

Since the C structured objects have nested data types, for each one of their
fields, the recursive method is called on each of them. This way, the entire structure
is successfully extracted using only one method, rec_extract().

The Figure 6.2 depicts the extraction scenario. At first, the MapExtractor class
identifies the type of the map using the TableDesc object. Then, if it discovers
that the map type is supported, it uses the key_desc and key_desc elements to parse
the entire map. Calling the recursive recExtract() method on each value, this class
can identify the type of the node obtained and call one of the following apposite
methods:

40

Dynmon Implementation

Figure 6.2: Map extraction pipeline.

• valueFromStruct(): this method parses an entire memory block corresponding
to a C struct and produces a JSON object; this object is composed by the
key-value pair, representing each property name and value belonging to the
struct;

• valueFromUnion(): it parses a memory block corresponding to a C union. Unfor-
tunately, since the real type of union is decided by the program and cannot be
known at runtime, this method extract all the possible types contained in the
union, in order to let the user decide which of the gathered values has to be
used. Thus, the result corresponds to a JSON entity representing the union
as a set of key-value pairs, where the key refers to the attribute type, and the
value is the result of the memory casting operation to that specific type;

• valueFromEnum(): this method parsed a C enum memory block in order to
extract the specific value of the enum.

• valueFromPrimitiveType(): it parses a memory block corresponding to a C primi-
tive type (e.g., int, uint, float, etc.) and produces a JSON object containing
the extracted value, appositely cast to the primitive type. In order to correctly
parse and locate the primitive type, the method compares the one retrieved
from the TableDesc fields (key_value and leaf_value), which is stored as a
string, with some statically defined string (e.g., “unsigned int", “float", etc.).

41

Dynmon Implementation

A few example to better understand how the TableDesc class stores information
concerning keys and values types are provided in Figure 6.3.

Figure 6.3: C struct and union to key_type/leaf_type JSON objects.

6.5 Timestamping

One of the most known limitations of eBPF is the lack of a precise and standard
way of obtaining packets’ timestamps. The structures corresponding to the raw
packet are:

1. sk_buff, if the eBPF is loaded in Linux Traffic Classifier (TC) mode, meaning
that it is attached to the hooks of the Linux networking TCP/IP stack;

2. xdp_md, in case the program is loaded in the XDP mode, that is directly
injected in the network interface card.

Listing 6.5: xdp_md structure defined in the Linux Kernel.
1 s t r u c t xdp_md {
2 __u32 data ;
3 __u32 data_end ;
4 __u32 data_meta ;
5 __u32 i ng r e s s_ i f i nd ex ;
6 __u32 rx_queue_index ;
7 __u32 eg r e s s_ i f i nd ex ;
8 } ;

42

Dynmon Implementation

According to the Linux kernel, as shown in Listing 6.5, the xdp_md structure
does not contain a field representing the timestamp of the packet. Thus, when
injecting the program in XDP mode, there is no way to extract the timestamp
from the packet structure. On the other hand, when the program is loaded in the
TC mode, as reported in Listing 6.6, the sk_buff structure has a field representing
the packet reception/sending timestamp (struct skb_timeval tstamp, assigned by
the Linux networking stack).

Listing 6.6: sk_buff structure defined in the Linux Kernel.
1 s t r u c t sk_buff {
2 s t r u c t sk_buff ∗ next ;
3 s t r u c t sk_buff ∗ prev ;
4 s t r u c t sock ∗ sk ;
5 s t r u c t skb_timeval tstamp ;
6 .
7 .
8 .
9 unsigned char ∗ data ;

10 .
11 .
12 .
13 } ;

Although, the tstamp value has an undefined behaviour, meaning that sometimes
it may contain the real packet timestamp in the Unix Epoch format, or it could
contain an integer value retrieved by the kernel timer, or it could even be empty.
Due to this unpredictable value, since the eBPF program must contain only vital
instruction to avoid delaying the packet, it has been introduced in Polycube a
helper to retrieve the time in the standard Unix Epoch format.

The function pcn_get_time_epoch(), defined in the BaseCube class, is a method
accessible to all the eBPF programs in Polycube to compute the timestamp in
Unix Epoch format. This method retrieves the value of a kernel timer calling the
function bpf_ktime_get_ns(), and increment a base value EPOCH_BASE which
is used as a reference. In fact, EPOCH_BASE represent the Unix Epoch time of
the kernel timer, computed at a certain in the Control Plane, and later injected in
the Data Plane. This way, the pcn_get_time_epoch() called from the Data Plane can
simply add to the base reference value the kernel timer value of when the function
is called, obtaining, as a result, the Unix Epoch time of that specific moment.

Despite the effectiveness of this method and the accuracy of the computed

43

Dynmon Implementation

timestamp, there are few drawbacks to take into account, that hopefully are going
to be fixed in the next Linux kernel release as announced:

1. bpf_ktime() and bpf_ktime_get_ns() are very expensive functions which,
depending on the system they are called from (e.g., used in a VM can lead
to worst results than in a normal system), may introduce few nanoseconds
(40 ns) of overhead;

2. bpf_ktime() and bpf_ktime_get_ns() retrieve the value of the clock monotonic
kernel timer, which, unfortunately, does not include the time spent by the
system during sleep, hibernate and suspend states. Thus, until the device
running Polycube and these eBPF programs is up and running the computed
timestamp is coherent and real, but as soon as it suspends, the retrieved value
will be misaligned. However, few enhancements and checks in the Control
Plane can be introduced to re-align the value, adding the system inactivity
time.

6.6 Dynmon Injector tool
The Dynmon Injector tool is a high level user-friendly Python REST client which
communicates to a specified Polycube daemon to facilitate the creation of a Dynmon
service instance and the immediate injection of a Data Plane configuration, without
dealing with the Polycube command line tool. Moreover, the tool has been
developed to address an important lack of the command line tool: the complex
data type injection. In fact, while for some kind of operation the command line
tool is really useful (e.g., retrieving service information and statistics), for others
like a JSON file injection it turns out to be unusable.

The input parameters that the tool accepts are:

• cube_name (mandatory): the name of the Dynmon service instance to handle
(and also create if it does not exist yet);

• peer_interface (mandatory): the name of the network interface (e.g., eth0) to
which attach the service;

• path_to_configuration (mandatory): the local path to the Data Plane config-
uration to be injected;

44

Dynmon Implementation

• address (optional): the address where the Polycube daemon instance is listening
(default is localhost);

• port (optional): the port where the Polycube daemon instance is listening
(default is 9000);

• version (optional): prints the current tool version and exists.

When running the tool, it checks whether the service with the desired name
exists or not. In case the tool does not receive a response, it means that there is not
a Polycube daemon listening at the provided IP:PORT. Otherwise, if the service
does not exist yet, a new instance is created. Finally, when exists an instance
with the desired name, the tool contacts the daemon to attach the existent service
instant to the specified network interface.

Once the initial operations are correctly performed, the tool sends the provided
Data Plane configuration to the service instance Control Plane, to be parsed and
injected in the system.

A flowchart to summarize the tool behaviour is provided in Figure 6.4
TheListing 6.7 provides an example of output both when creating a service

instance that does not exist yet, and when attempting to creating an instance with
the same name, but with a different Data Plane configuration file (the existent
service is patched).

Listing 6.7: Dynmon Injector output example.
1 t e s t@te s t :~ $. / dynmon_injector monitor eth0 dataplane . j son
2

3 Creat ing new dynmon in s t anc e named monitor
4 Attaching monitor to wlp59s0
5

6 t e s t@te s t :~ $. / dynmon_injector monitor eth0 dataplane2 . j son
7

8 Dynmon monitor a l r eady e x i s t
9 I n j e c t i n g the new dataplane

6.7 Dynmon Extractor tool
The Dynmon Extractor tool is another user-friendly tool developed in Python to
contact a running Polycube daemon instance in order to extract gathered metrics.

45

Dynmon Implementation

Figure 6.4: Dynmon Injector workflow.

This tool has been developed both to ease metrics extraction, and to address the
Polycube command line tool lack of support for JSON objects output.

The input parameters that the tools accepts are:

• cube_name (mandatory): the name of the Dynmon service instance to handle
(and also create if it does not exist yet);

• address (optional): the address where the Polycube daemon instance is listening
(default is localhost);

• port (optional): the port where the Polycube daemon instance is listening
(default is 9000);

46

Dynmon Implementation

• save (optional): this parameter specifies that the retrieved metrics must be
stored in a file, by default named “dump.json";

• type (optional): the program type which the metrics should be extracted from
(e.g., only the Ingress metrics), by default both Ingress and Egress defined
metrics are extracted;

• version (optional): prints the current tool version and exists.

In order to provide an example of the tool output, considering the short con-
figuration provided in Listing 6.8 as the Data Plane configuration to be injected
in the service (the full code can be retrieved from the Polycube repository). This
configuration specifies two programs to count packets passing through the specified
interface.

Listing 6.8: Configuration used in the example.
1 {
2 " i ng r e s s−path " : {
3 "name " : " I n g r e s s packets counter probe " ,
4 " code " : " . . . " ,
5 " metric−c on f i g s " : [
6 {
7 "name " : " packet s_tota l " ,
8 "map−name " : "PKT_COUNTER"
9 }

10]
11 } ,
12 " eg re s s−path " : {
13 "name " : " Egress packets counter probe " ,
14 " code " : " . . . " ,
15 " metric−c on f i g s " : [
16 {
17 "name " : " packet s_tota l " ,
18 "map−name " : "PKT_COUNTER"
19 }
20]
21 }
22 }

After injecting the configuration using the Dynmon Injector tool, the metric
packets_total, which is different between Ingress and Egress programs, can be
retrieved as depicted in Listing 6.9.

47

Dynmon Implementation

Listing 6.9: Dynmon Extractor example.
1 t e s t@te s t :~ $. / dynmon_extractor . py monitor
2 {
3 " i ng r e s s−metr i c s " : [
4 {
5 "name" : " packet s_tota l " ,
6 " va lue " : [1 9] ,
7 " timestamp " : 1599837827721618
8 }
9] ,

10 " eg re s s−metr i c s " : [
11 {
12 "name" : " packet s_tota l " ,
13 " va lue " : [1 8] ,
14 " timestamp " : 1599837827721652
15 }
16]
17 }

Even though the Ingress and Egress metrics are defined with the same name, in
this example the two “packets_total" retrieved are different, and they only refer to
the packet passed through the specific hook. However, the user can build a more
complex program with a unique eBPF map shared among the hooks, exactly like
the monitoring developed for the TOSHI project presented in Section 7.

48

Chapter 7

TOSHI Infrastructure

This chapter analyses the architecture and, mainly, the implementation of the
TOSHI project, previously presented in Section 1.2. In particular, the implementa-
tion presented concerns only the components that I developed, which exploits the
newly realized Dynmon service to adapt to the different needed detection scenario.

However, all the components involved in TOSHI made by other partners are
explained, to provide a complete high-level vision of the project.

7.1 Overview

The objective of the TOSHI product is to provide a high-performance, automated
and adaptive defensive shield against cyber-attacks. TOSHI empowers Linux-based
host machines (e.g., servers, computers, IoT gateways) with efficient kernel-based
technologies that are self-adaptively configured to monitor and counteract security
threats under the assistance of AI mechanisms.

TOSHI combines novel in-kernel Linux technologies such as eBPF/XDP with
AI/ML techniques to analyse events, detect and mitigate anomalies on the host
machines. As described in the following sections, these components work in
conjunction with the Redborder cyber-security platform, which integrates functions
for data collection, data analysis, threat detection and response.

TOSHI is the result of a collaboration of the following partners:

1. Politecnico di Torino (prof. Fulvio Risso and I), responsible for data generation
and extraction using eBPF/XDP;

49

TOSHI Infrastructure

2. Fondazione Bruno Kessler1 (FBK), in charge of the entire AI/ML module
concerning DDoS detection;

3. Universidad Politécnica de Madrid2 (UPM), responsible for the AI/ML module
for Crypto Mining detection;

4. Telefónica3, a Spanish multinational telecommunications company, which
covers the DNS over HTTPS attack scenario, unfortunately not implemented
in the MVP4, and provides a test bed for the integration phase;

5. Innovalia5, a Spanish private business unit, and RedBorder6, a group within
Innovalia, which are in charge of providing a broker component, to ease the
integration between other components and their cybersecurity platform.

7.2 Architecture
A high-level representation of the TOSHI architecture is given in Figure 7.1. The
system is coordinated by the RedBorder platform, which collects the output of the
anomaly detection components executed on the host machines and takes decision
about appropriate countermeasures. The logically centralized position of RedBorder
(with respect to a TOSHI-enable administrative domain) enables both reactive
and pro-active mitigation strategies against network threats through a coordinated
deployment of traffic filtering policies aggregating the input coming from single
host machines.

Most importantly, the centralized position of RedBorder ensures that coherent
countermeasures policies are applied to the hosts, otherwise, if the two AI/ML
components would take individual decision, potentially they could apply contrasting
policies according to their analysis. Therefore, the need of a univocal decision has
led to the use of this component, integrated with a broker to forward information

1FBK website https://www.fbk.eu/en/
2Universidad Politécnica de Madrid website https://www.upm.es/
3Telefónica company website https://www.telefonica.com/en/
4Minimum Viable Product, a version of a program with just few features to satisfy early

customers and gather feedbacks.
5Innovalia Association website https://innovalia.org/en/
6RedBorder website https://redborder.com/

50

https://www.fbk.eu/en/
https://www.upm.es/
https://www.telefonica.com/en/
https://innovalia.org/en/
https://redborder.com/

TOSHI Infrastructure

Figure 7.1: Toshi architecture overview.

from the components to RedBorder, exploiting standardized REST APIs to ease
the management.

A more detailed view of TOSHI key elements and their interconnections is
provided in Figure 7.2. The figure shows the internal modules of TOSHI-enable
host machines and the interconnections among them and with the RedBorder
platform.

The main objective behind TOSHI architectural choices is to build a solution
that protects the host machines against network threats with minimal impact on the
applications running on the machines themselves (e.g., web servers, cloud services,
etc.). To this end, TOSHI exploits recent technologies such as eBPF, available in
the kernel of recent Linux operating systems (kernel version ≥ 4.15). This new
promising technology, is a kernel packet filtering/manipulation mechanism that
can be used to implement network functions efficiently.

In the TOSHI architecture, it is adopted the Polycube framework to manage
the functions deployed in the kernel space in the form of chains of eBPF programs.
These functions (e.g., firewalling, packet sampling, feature extraction, etc.) are
executed on the network traffic before it reaches the network stack of the operating
system. This allows TOSHI to inspect the traffic and to filter the malicious packets
at the earliest stages, hence saving both CPU and memory resources of the system.

Decision on how to handle the malicious traffic are taken into account by the
so-called TOSHI applications running on the user space of the host machines.

51

TOSHI Infrastructure

Figure 7.2: Toshi detailed architecture.

TOSHI applications interact with the network traffic through the interfaces (IF-1
and IF-3 in Figure 7.2) exposed by the Polycube daemon. Interface IF-1 enables
the applications to query the Polycube daemon for gathering the traffic information
so far collected by the eBPF programs in the kernel space and saved in the eBPF
maps.

Security policies produced by the TOSHI applications (e.g., traffic filtering,
traffic re-routing), which are produced after the analysis of the network traffic, are
injected into the kernel via interface IF-3. Specifically, these rules are injected into
the Polycube Firewall service, which stores them into eBPF maps to be used in
the Data Plane. One or more eBPF programs match the incoming packets against
these rules and take specific actions if the match is positive. For instance, traffic
filtering rules can be defined to drop the packets matching one of the source IP
addresses listed in the map.

As described in the following sections of this document, TOSHI applications
comprise a DDoS detection module, an application for Crypto-mining attacks

52

TOSHI Infrastructure

detection, and one for DoS over HTTPS attack detection. Once retrieved traffic
information from Polycube, these modules produce a set of traffic policies that are
necessary to mitigate the specific type of network threat they are implemented
for. Before being deployed in the kernel of the machine, these policies are sent to
the RedBorder using the apposite broker (communications between ML modules
and the broker via IF-2), for analysis, approval and aggregation, through the
IF-4. In response, the broker might decide whether to ignore the policies because
unnecessary, conflicting with other policies or already installed on the TOSHI-
enable host. On the contrary, RedBorder might aggregate the policies coming from
multiple TOSHI-enable hosts and send back (to all the hosts or a subset of them)
a set of combined rules to be inserted in the apposite eBPF maps.

The role of the broker is to provide a user-space standardized communication
channel to ease connectivity and communication between the different security
applications, Polycube and RedBorder.

To sum up, the main qualities and features of TOSHI are:

1. automatic incident response;

2. holistic protection (devices can be computers, switches, routers, etc.);

3. autonomous and detached operations;

4. resource efficient;

5. high networking speed management.

7.3 Artificial Intelligence support
As previously described, the security modules are user space applications that,
given the gathered metrics as input, produce policies to be possibly applied to
the firewall service. To enhance the analysis, these modules exploits many AI/ML
algorithm and structures, like neural networks or heuristic algorithms.

Despite being widely used in many fields, a machine learning model can signifi-
cantly improve cybersecurity threats detection, combining powerful algorithms able
to classify input data. In particular, a neural network, which is a very complex
multi-layer structure similar to a human brain neuron, can be trained with a pre-
defined dataset containing, for instance, the traffic captured during a DDoS attack
(thus labelled as malicious), in order to train the entire structure to automatically

53

TOSHI Infrastructure

analyse and decide the label for all the following inputs using correlations with the
training dataset.

An interesting application of machine learning in cybersecurity is provided by
LUCID [21], which is the technology used for DDoS attack detection also in the
TOSHI project. The Figure 7.3 depicts its architecture.

Figure 7.3: LUCID neural network architecture.

LUCID is a lightweight Convolutional neural network (CNN), which shares the
same parameters of CNNs used in Natural Language Processing, despite having
different weights adjusted to the cybersecurity scenario. There are two main benefits
of including a CNN based architecture. Firstly, it allows the model to benefit
from efficiency gains compared to standard neural networks, since the weights in
each filter are reused across the whole input. Secondly, during the training phase,
the CNN automatically learns the weights and biases of each filter such that the
learning of salient characteristics and features is encapsulated inside the resulting
model during training.

The Crypto-mining attack detection module exploits several ML models, using
Random Forest and Fully Connected Neural Networks to analyse the traffic. Once
the models have been trained with apposite malicious traffic, they are able, given

54

TOSHI Infrastructure

an array-like representation of flow states as input, return a value between 0 and 1.
This value represents the probability P of a given input to be part of a cyberattack.
Once decided the best value for the threshold T, all the inputs with probabilities P
≥ T will be considered malicious.

7.4 Dynmon probes for TOSHI
As already described, the eBPF programs are managed by the Polycube framework,
in particular the Dynmon service. This service provides a network monitor able
to handle dynamically injected user configuration to adapt network monitoring,
filtering and forwarding.

In the TOSHI scenario, Dynmon turns out to be the perfect candidate to manage
multiple probes, as it automatically adapts the Data Plane to the user needs. In
fact, two different programs has been developed, one for each scenario presented in
the MVP (the DoS attacks over DoH channels has not been presented yet).

The two program aims at extracting pre-defined features from the traffic, accord-
ing to the specific use case. Moreover, each use case needs to take into account only
certain protocols (e.g., UDP and TCP, but not ICMP), to improve the detection
mechanism by pruning the unneeded one.

7.4.1 DDoS attack detection
The probe created for the DDoS attack use case filters all the IPv4 traffic carrying
TCP, UDP or ICMP protocols. For each of these packets, the probe extracts the
values that identify the specific connection:

• source IP address;

• destination IP address;

• source port (for ICMP is 0);

• destination port (for ICMP is 0);

• protocol type.

Once retrieved the connection identifier, the probe inserts or update a specific
eBPF map where all the connections so far analysed are held. Then, if the number

55

TOSHI Infrastructure

of packets captured for that specific session has not reached a threshold value, a
few features of the current packet are extracted and pushed into a shared queue,
ready to be extracted from the Control Plane program.

Despite this approach is innovative and effective, the performance could be
constrained by two main factors. Firstly, sharing eBPF maps both between
Ingress/Egress programs and between all the current available CPUs significantly
slows down the networking capacity of the device, since all the cores computing
incoming and outgoing packets have to wait for the map to be accessible (locking
mechanism). Unfortunately, many constraints like the maximum packets analysed
per-session do not allow using PER-CPU maps, as each core will not have entirely
the current status of the capture (e.g., it will not be able to know if the current
packet must be ignored or not). Secondly, the shared queue is a new data structure
that I personally helped to improve, but it does not support PER-CPU usage yet.
Thus, even though a queue is really performant, it cannot support high network
traffic yet (e.g., 40Gbit/s). However, the proposed probe has been optimized,
in order to run monitoring code without harming the system. In fact, once the
maximum analysed packet is reached, the program basically does not perform heavy
instructions, since the shared queue cannot accept more packet. As a result, these
parameters introduced ensure the efficiency of the monitoring program also with
high speed, as it is reported in the experimental validation provided in Section 8.

Furthermore, it is worth considering that even all the others network traffic
filtering software do not support high networking speed. On the contrary, they
turn out to be even slower (e.g., Wireshark or NetFlow) as they rely on libraries
that copy the entire matched packet in user-space, which of course it is way more
expensive in terms of CPU time rather than taking few values and inserting them
in kernel map.

The features extracted from each packet are displayed in Listing 7.1.

Listing 7.1: DDoS attack scenario packets features.
1 /* Features to be exported */
2 struct features {
3 struct session_key id; // Session identifier
4 uint64_t timestamp ; // Packet timestamp
5 uint16_t length ; // IP length value
6 uint16_t ipFlagsFrag ; // IP flags
7 uint16_t tcpLen ; // TCP payload length
8 uint32_t tcpAck ; // TCP ack number
9 uint8_t tcpFlags ; // TCP flags

10 uint16_t tcpWin ; // TCP window value

56

TOSHI Infrastructure

11 uint8_t udpSize ; // UDP payload length
12 uint8_t icmpType ; // ICMP operation type
13 } __attribute__ ((packed));

The Listing 7.1 provides a snippet of the main logical section of this probe.
It is reported only the TCP analysis, but both the other two protocol have
similar instructions, except the struct session_key key = {...} which strongly
depends on the protocol ports.

Listing 7.2: TCP packet analysis for DDoS.
1 switch (ip -> protocol) {
2 case IPPROTO_TCP : {
3 struct tcphdr *tcp = data + sizeof (struct eth_hdr) + ip_header_len ;
4 if ((void *) tcp + sizeof (* tcp) > data_end) {
5 return RX_OK ;
6 }
7 struct session_key key = {. saddr =ip ->saddr , . daddr =ip ->daddr ,
8 . sport =tcp ->source , . dport =tcp ->dest , . proto =ip -> protocol };
9 if(check_or_try_add_session (&key , curr_time) != 0) {

10 return RX_OK ;
11 }
12 uint16_t len = bpf_ntohs (ip -> tot_len);
13 struct features new_features = {. id=key , . length =len , . timestamp =curr_time ,
14 . ipFlagsFrag = bpf_ntohs (ip -> frag_off),
15 . tcpAck =tcp ->ack_seq , . tcpWin = bpf_ntohs (tcp -> window),
16 . tcpLen =(uint16_t)(len - ip_header_len - sizeof (* tcp)),
17 . tcpFlags =(tcp ->cwr << 7) | (tcp ->ece << 6) | (tcp ->urg << 5) |
18 (tcp ->ack << 4) | (tcp ->psh << 3)| (tcp ->rst << 2) |
19 (tcp ->syn << 1) | tcp ->fin };
20 PACKET_BUFFER_DDOS .push (& new_features , 0);
21 break ;
22 }
23 case IPPROTO_ICMP : {
24 ...
25 }
26 case IPPROTO_UDP : {
27 ...
28 }
29 default : {
30 return RX_OK ;
31 }
32 }

7.4.2 Crypto-mining attack detection
The probe created for the Crypto-mining scenario, differently than the previous
one, exploits the use of the most efficient data structures available in eBPF. That

57

TOSHI Infrastructure

is possible as the neural network created for detecting such attacks is based on
statistics and aggregated features, and not on the entire list of features for each
packet. As a result, this probe is able to handle higher traffic speed than the DDoS
attack detection one.

To start with, the program identifies the session identifier as in the previous
case, by extracting IPs, ports and the protocol type from the packet header. The
only two protocols taken into account for the Crypto-mining attack are TCP and
UDP, carried over IPv4. Once retrieved the identifier, the program checks if an
already existent value for that specific key is already present in the used eBPF
map. If the key is missing, then a new value starting from the current packet’s
features is created. Otherwise, it looks for old connections identified by the same
key, meaning that the map already contained that key, but the value has not been
updated for a certain period, defined as SESSION_DROP_AFTER_TIME. In case
the already existent value is older, it is completely overwritten, otherwise it is just
updated adding the current packet ones.

Using a PER-CPU eBPF map allows the program to be really efficient, since
every CPU core which is handling a packet does not have to wait for the shared
map lock to be released, and the map can also be shared among Ingress and Egress
programs for the same reason: every CPU has an own map lock-free. However,
using a PER-CPU map does not allow referring to a unique structure in order to
lookup some common values that might be useful, like the timestamp of the last
received packet for that specific session. Every CPU has to handle its own, but since
the features include both timestamp and other useful values to understand whether
they are old or recent, when the maps contents are retrieved from the Control
Plane it is quite easy to parse it and understand which value can be aggregated
or has to be discarded since too old. That said, the PER-CPU map ensure high
performance, even with high amount of packets to be inspected, since the probe
needs to inspect all of them with no restrictions. The results reported in Section 8
confirm the effectiveness of this approach.

A complete list of features is provided in Listing 7.3. Depending on the server_ip,
the fields referring to the Ingress and Egress programs are converted into clien-
t/server in the Control Plane. Moreover, the duration of the connection is computed
by simply subtracting the start_timestamp value to alive_timestamp.

58

TOSHI Infrastructure

Listing 7.3: Features gathered for Crypto-mining scenario.
1 /* Features to be exported */
2 struct features {
3 uint64_t n_packets_ingress ; // Number of Ingress packets
4 uint64_t n_packets_egress ; // Number of Egress packets
5 uint64_t n_bits_ingress ; // Total Ingress bits
6 uint64_t n_bits_egress ; // Total Egress bits
7 uint64_t start_timestamp ; // First timestamp
8 uint64_t alive_timestamp ; // Last timestamp
9 uint32_t method ; // Heuristic method

10 __be32 server_ip ; // The server address
11 } __attribute__ ((packed));

Another important issue that needed to be addressed in this scenario was the
server identification within the connection; both the Ingress and Egress programs,
whenever receiving a new session or an already existing session that has to be
overwritten since too old, try to guess which of the two IP addresses belongs to
the server, as it is an important factor that the neural network takes into account.
There are different scenarios that needs to be considered:

• the program intercepted the 1st packet of a session: in this case it is still not
possible to confirm that the receiver corresponds to the server, as it could
be possible that the server itself opened a new connection with an already
existent client but on a different port;

• the program intercepted a packet in between of an already established session:
unfortunately, there is no way to certainly detects which of the two addresses
is the server, unless digging the payload, but it is not suggested in eBPF.

For each of these two scenarios there are few sub-scenarios, that worsen the
problem. To address all these cases, a performant heuristic algorithm has been
introduces in the eBPF program, as depicted in Listing 7.4.

Listing 7.4: Heuristic methods for server detection.
1 /* Method to determine which member of the communication is the server */
2 static __always_inline __be32 heuristic_server_tcp (struct iphdr *ip , struct tcphdr

*tcp , uint32_t * method) {
3 /* If Syn , then srcIp is the server */
4 if(tcp ->syn) {/* If source port < 1024 , then srcIp is the server */
5 * method = 1;
6 return tcp ->ack? ip -> saddr : ip -> daddr ;
7 }
8 uint16_t dst_port = bpf_htons (tcp ->dest);
9 /* If destination port < 1024 , then dstIp is the server */

10 if(dst_port < 1024) {

59

TOSHI Infrastructure

11 * method = 2;
12 return ip -> daddr ;
13 }
14 uint16_t src_port = bpf_htons (tcp -> source);
15 /* If source port < 1024 , then srcIp is the server */
16 if(src_port < 1024) {
17 * method = 2;
18 return ip -> saddr ;
19 }
20 * method = 3;
21 /* Otherwise , the lowest port is the server */
22 return dst_port <= src_port ? ip -> daddr : ip -> saddr ;
23 }

Three different identification methods have been designed:

1. Method 1: it is used only for TCP traffic (UDP only has Method 2 and 3),
and consists in looking for the SYN flag. If only the TCP SYN flag is set,
then the destination IP address is the server, otherwise if also the ACK flag
is set, then the source address is the server, which is answering to the 3-way
handshake protocol.

2. Method 2: this method try to identify the server by looking at the source and
destination ports. The IP corresponding to the port that has a value lower
than 1024 (well-known ports) is recognized as the server.

3. Method 3: this is left as the last option, and defines the server as the IP address
which is using the lowest port. Presumably, a client during a connection uses
a random dynamic port (49152 to 65535) free of its system, and it is not that
common that such ports are used by a server.

Finally, in the Listing 7.5 is reported the main extraction section of a TCP
packet, where all the so far discussed method are applied.

Listing 7.5: TCP packet analysis for Crypto-mining.
1 switch (ip -> protocol) {
2 case IPPROTO_TCP : {
3 struct tcphdr *tcp = data + sizeof (struct eth_hdr) + ip_header_len ;
4 if ((void *) tcp + sizeof (* tcp) > data_end)
5 return RX_OK ;
6 struct session_key key = {. saddr =ip ->saddr , . daddr = ip ->daddr ,
7 . sport =tcp ->source , . dport =tcp ->dest , . proto =ip -> protocol };
8 uint64_t curr_time = pcn_get_time_epoch ();
9 uint16_t pkt_len = bpf_ntohs (ip -> tot_len);

10 struct features * value = SESSIONS_TRACKED_CRYPTO . lookup (& key);
11 if (! value) {

60

TOSHI Infrastructure

12 pcn_log (ctx , LOG_DEBUG , " INGRESS - TCP New session ");
13 uint8_t method ;
14 __be32 server = heuristic_server_tcp (ip , tcp , & method);
15 insert_new_session (server , curr_time , pkt_len , server ==ip ->saddr ,
16 &key , method);
17 break ;
18 }
19 if(curr_time - value -> alive_timestamp > SESSION_DROP_AFTER_TIME) {
20 pcn_log (ctx , LOG_DEBUG , " INGRESS - TCP Session overwritten ");
21 uint8_t method ;
22 __be32 server = heuristic_server_tcp (ip , tcp , & method);
23 update_expired_session (server , curr_time , pkt_len , server ==ip ->saddr ,
24 &key , method);
25 break ;
26 }
27 update_session (value , pkt_len , curr_time , value -> server_ip ==ip -> saddr);
28 pcn_log (ctx , LOG_DEBUG , " INGRESS - TCP Session updated ");
29 break ;
30 }
31 case IPPROTO_UDP : {
32 ...
33 }
34 default :
35 return RX_OK ;
36 }

61

Chapter 8

Experimental validation

This chapter aims at providing experimental results concerning the performance
of the service both in general and in a more specific use case. In fact, other than
measuring CPU time taken by some basic operations in a general and simplified
scenario using the C++ std::chrono library (high_resolution_clock), it is also
presented the outcome achieved in the TOSHI project, where the monitoring
programs are way more complex, and they exploit some of the most advantage
features provided by the service (e.g., map atomicity).

Finally, to give an idea of Dynmon compared to similar networking programs,
this chapter provides a comparison between NetFlow and a specific probe, which
has been developed to act exactly like the other tool.

Figure 8.1: Client-Server tests set up.

The Figure 8.1 depicts the set up used for the tests. Even though the connection

62

Experimental validation

between the two machine supports 40Gbit/s, the maximum bitrate measured in
TCP connection between the two system under stable condition is 36.62Gbit/s.
The server runs an Ubuntu Server 18.04.3 LTS kernel 4.15.0-88-generic and 5.7.0-
050700-generic x86_64 distribution, and it is equipped with an Intel(R) Xeon(R)
CPU E3-1245 v5 3.50GHz processor (4 cores and hyper-threading, 8MB of L3
cache), 64GB DDR4 RAM. Moreover, it runs the latest Polycube Docker, published
September 16th and updated to the repository commit 770d0457.

The tools used to create high-speed TCP connections and measure resources’
availability are iPerf2 [22] and sar [23]. While iPerf2 is used to create both TCP
servers and clients communicating at the maximum speed reachable through the
cable connection, sar is used in some tests to measure CPU consumption, in order
to later compare data and comment the overhead added by some program.

8.1 Dynamic injection of monitoring code

To measure the time taken by the dynamic injection of user-defined monitoring
code, many tests have been conducted, but only with the Ingress hook, since the
same operations would be performed on the Egress, thus the resulting time taken
would be twice. Therefore, for simplicity, only half of the configuration file has
been injected, specifying different parameters in order to test as many cases as
possible.

The first test aims at measuring the time taken by Dynmon to inject, once
received, the Data Plane configuration, when declaring only one eBPF Array map
with different entries, from 1 to 5000. Also, the same test has been repeated with
the parameter “swap-on-read" enabled on the eBPF map, in order to trigger the
class CodeRewriter and perform, alternatively, both the two rewrite types. This
first experiment is expected to point out a constant injection and compilation time,
since the number of entries should only affect the memory space assigned to the
eBPF map, and not the entire injection process.

As depicted in Figure 8.2, it is quite clear that the number of entries in the eBPF
map does not affect at all the Data Plane compilation and injection, independently
by the optimizations introduced. In fact, on average this operation takes 0.195 s for
the normal program injection, 0.207 s when optimizing with PROGRAM_RELOAD,
and 0.389 s when using the PROGRAM_INDEX_SWAP feature. Changing the
number of entries of the eBPF maps does not affect at all the compilation time,

63

Experimental validation

Figure 8.2: Data Plane injection with different eBPF map entries.

which is constant for both the three programs, even when using a 5000 entries
map. However, if the PROGRAM_RELOAD rewrite leads to an injection time
quite similar to the one measured when no optimization are performed, when
using the PROGRAM_INDEX_SWAP feature takes twice the time to compile
the program. This difference is due to the various controls, code modifications
and the pivoting program injection, which of course slow down the entire process.
Although, even though the injection process is not as fast as the other cases, using
such optimization leads to a remarkable advantage every time the metrics have to
be exported, as it will be displayed in the results provided in the following section.

On the other hand, while increasing the entries of a map has no effect on time,
the second test presents the injection of different Data Planes, where only the
number of eBPF Array maps vary, while the number of entry per-map is constant
and equal to one. This time, the expected result is the opposite, since every map
declaration requires multiple operations to be performed from the compiler, which
has to instantiate and store information concerning all the structures.

The Figure 8.3, whose Y axes has been represented using a base 10 logarithmic
scale in order to show all the values, clearly confirms the expected behaviour. As
the number of maps grows, the required time increases exponentially, hitting a peak
of 13.2 s when no rewrites are performed, 155 s for the PROGRAM_RELOAD

64

Experimental validation

Figure 8.3: Data Plane injection with different eBPF maps.

rewrite, and 209 s when using the PROGRA_INDEX_SWAP enhancement, with
5000 eBPF maps. Clearly, this test has been performed only to measure the
performance of the service, but it does not reflect a real life scenario. In fact, it is
unlikely to have more than 10 eBPF maps in the same program, even the Polycube
framework itself contains a lot of services which declare a dozen of maps at most.
To summarize, even in this scenario the PROGRAM_INDEX_SWAP requires
more time to compile the program, while the other two options presents a similar
result for small eBPF maps. As soon as the number of maps increases (e.g., more
than 10), the time taken by a normal program injection grows as well, but not as
quick as the other two types, which turn out to require more than twice the time
for the entire process.

8.2 Extraction of metrics

While the previous section presented tests concerning the Data Plane injection,
this section covers the metrics extraction, which is way more important, since
potentially is the most required operation that a user could perform, and consulting
the maps may affect both the HTTP response time and the underlying injected
eBPF program, which keeps executing its routine while the Control Plane needs to

65

Experimental validation

consult the same maps.
Before starting, it is quite important to remember that the extraction time

is strongly related to the complexity of the data to be extracted, meaning that
parsing a primitive value (e.g., int and unsigned) requires way less time than a
structured one (e.g., struct and union). The following tests have been performed
consulting an eBPF hash map with a variable number of entries, which are defined
as:

• key: the 5-item tuple identifying a specific connection (source IP, destination
IP, source port, destination port, protocol type);

• value: the entire TCP header (C struct containing 8 primitive fields), to cover
a more complex scenario.

As most of the time is taken by the service to parse the raw value extracted
from the map, these tests highlight the total execution time of the HTTP request,
and the mere key-value lookup from the Control Plane.

Figure 8.4: Extraction time of different TCP headers and program enhancements.

The Figure 8.4 shows the HTTP GET request total execution time, where all
the variable keys-values belonging to the map are required. The program under
test has been compiled and run both with no optimization, PROGRAM_RELOAD
and PROGRAM_INDEX_SWAP rewrites, to mainly verify the efficiency of the

66

Experimental validation

enhanced method over the other. The advantage of using the latter feature when
extracting metrics is relevant, compare to the other rewrite performed. In fact, this
mode introduces only almost 4ms of overhead with respect to the normal use case,
where no map are declared as swap. On the other hand, the PROGRAM_RELOAD
functionality takes 10 times more to extract the metrics, since every time they
are requested the respective copy of the program containing the fictitious maps
has to be re-inserted in the system. However, as soon as the number of entries in
the eBPF map increases, the difference between all the 3 methods is negligible, as
most of the time is taken by the C++ Control Plane to convert the data from raw
pointers to JSON.

Considering both the complexity of keys and values (TCP headers have a lot
of fields), the service is really performant up to a certain number of entries to
extract, while the effects of having a generic method to parse all the possible eBPF
maps are evident when using huge maps. Interestingly, for all those configurations
which define only primitives and simple metrics to be extracted (e.g., the number
of packet captured), the overhead introduced by the conversion from raw pointer
to C++ data type and then JSON can be overlooked, and the charts would depict
a linear dependency between the number of entries and the execution time.

The following test aims at underlying the clear difference between the mere
map lookup performed by the Control Plane while using standard system calls
and enhanced ones, later introduced into the Linux Kernel as “batch" operations.
The main difference between these two operation is that the latter recalls only one
system call, which encloses all the individual operations in order to perform the
CPU context switch only once, saving precious time.

In fact, as represented in Figure 8.5, the batch operations introduces a significant
advantage, speeding up the entire process of more than x10 factor, independently
by the number of entries to lookup. The chart represents both the axes using a base
10 logarithmic scale, and the result is a directly proportional linear dependency
between the number of entries and the required lookup time. Unfortunately, this
advantage becomes negligible if the entire extraction and parse time is considered,
as the previous chart (Figure 8.4) reports, since the HTTP response generated
by the service takes almost 100 times more to be produced, due to the Dynmon
recursive and generic parse methods.

However, as explained in Section 9.1, once the map key-value parse method is
optimized using different techniques (BTF or parse method caching), the introduc-
tion of the batch operation will not be vain, but, on the contrary, will assume a lot

67

Experimental validation

Figure 8.5: Iterative and batch extraction time of TCP headers.

of importance.

8.3 TOSHI performance

Dynmon is the service used within the TOSHI project, in order to extract metrics
from packets and forward them to the user-space neural network, ready to analyse
the traffic and decide whether some flow is malicious or not. For that purpose, two
different probes has been injected in the system, one for each scenario taken into
account (DDoS and Crypto-mining attacks). These probes have been inserted in
sequence, and the final architecture is depicted in Figure 8.6.

The Crypto-mining probe has been injected as the last eBPF program executed
at every packet, since it gathers statistics and it is extremely useful to check, during
the experiment, if the entire system running the probes was able to handle all
incoming and outgoing packets at high speed. The server is running 4 instances of
iPerf2, in order to distribute connections among all the available cores. From a
different machine in the same network, 4 iPerf2 clients each one with two parallel
connections send TCP traffic to the server through the interface eth0. The link
between client and server and their respective interfaces support 40Gbit/s network
speed.

68

Experimental validation

Figure 8.6: Architecture of the TOSHI experiment.

For the entire 60 seconds of connections between iPerf2 clients and server, the
server has also been monitored using sar, storing results into a specific file later
consulted. The collected statistics both from the tool and from the various iPerf2
servers are:

• Bitrate: 36.62Gbit/s

• Total bytes transmitted: 274.7GB

• Average CPU consumption: 97.7%

These results are really encouraging, as the system was able to handle high
speed network traffic, even though almost all the CPU has always been busy
computing packets, but at least there is no packet loss. In fact, the TOSHI probes
turned out to be extremely efficient, due to their advanced monitoring intelligence,
which ensures that the Crypto-mining probe captures all the traffic efficiently using
PER-CPU maps, while the DDoS probe handle only a limited amount of packets
as the neural network has been appositely trained to take decisions also with lower
traffic information. In Figure 8.7 are illustrated these results with their respective
confidence intervals, to better understand the efficiency of the probes.

In order to check whether the probes have correctly gathered all this amount
of traffic, the two respective Python scripts have been used, in order to extract
metrics from the two probes, post-processing data (e.g., convert timestamp into
human-readable date, IP from integer to string, and many other) and store them.

69

Experimental validation

(a) Average CPU consumption. (b) Average Bitrate.

Figure 8.7: TOSHI results.

Listing 8.1: TOSHI probes metrics extraction output.
1 Crypto−mining − Got something !
2 Time to r e t r i e v e metr ic : 0 .02627873420715332 (s)
3 Time to parse : 0.0004508495330810547 (s)
4 Metric parsed : 8
5

6 DDoS − Got something !
7 Time to r e t r i e v e metr i c s : 0 .3696458339691162 (s)
8 Time to parse : 0.0031197071075439453 (s)
9 Packet parsed : 800

The output provided in Listing 8.1, suggests that the probes have correctly
detected all the 8 connections (4 clients with 2 connections each) created. Moreover,
the DDoS probe has successfully extracted the first 800 packets it detected, ignoring
all the following ones, since the metrics has been required only once at the end of
the experiment, thus there is only one time-window of size 60 seconds. While for
simplicity the 800 hundreds packets output is not reported, the Table 8.1 reports
the most important data gathered for each detected connection, ignoring some
derived value that is still computed and passed to the neural network (e.g., number
of client packets over the server ones). Finally, the last row in the table reports
the sum of all these values. To improve the readability of the data, the following
legend has been used:

• C: client

70

Experimental validation

• S: server

• PKTS: packets

• Gbits: total Gigabits transmitted from the entity

C IP S IP C Port S Port Proto C PKTS S PKTS C Gbits S Gbits
192.168.254.4 192.168.254.2 34754 5203 TCP 1583575 1299728 271.3 0.52
192.168.254.4 192.168.254.2 49248 5202 TCP 1622573 1303211 285.89 0.53
192.168.254.4 192.168.254.2 34756 5203 TCP 1421394 1205893 218.31 0.51
192.168.254.4 192.168.254.2 49244 5202 TCP 1423466 1205932 218.54 0.50
192.168.254.4 192.168.254.2 51616 5201 TCP 1540845 1166858 299.4 0.51
192.168.254.4 192.168.254.2 51620 5201 TCP 1422428 1207217 218.02 0.53
192.168.254.4 192.168.254.2 43740 5204 TCP 1664996 1293129 320.9 0.49
192.168.254.4 192.168.254.2 43742 5204 TCP 1728679 1296447 361.06 0.50

8 Connections 22386371 2197.6

Table 8.1: Crypto-Mining gathered traffic statistics.

Interestingly, the Crypto-mining probe not only correctly detected all the con-
nections distinguishing clients and servers, but it also computed all the traffic
transmitted, as the total amount of client-server traffic is 2,197.6Gbit, which corre-
sponds to 274.7GB previously indicated in the output of the iPerf2 servers. These
results are impressive, and clearly indicate that the two eBPF programs developed
for TOSHI do not affect at all the system performance, monitoring traffic and
exporting data at high speed.

8.4 NetFlow comparison
The last scenario taken into account provides a pure comparison between Dynmon
and NetFlow, a wide-used protocol developed by Cisco introduced in many net-
working tools like ntopng (which uses nprobe). NetFlow has always been one of the
most rated paradigms to extract metrics and statistics from traffic, and collect in a
centralized component all these values to be easy accessible to users. Although, to
make a comparison as real and effective as possible, an eBPF program has been
created, in order to replicate the same behaviour provided by NetFlow, but within
the Polycube framework.

While NetFlow, and in particular nprobe, exploits the usage of the On-Demand
Kernel Bypass with PF_RING technique, allowing user-defined Device Drivers to
handle the raw peripheral, the Dynmon probe is injected in the system following
the architecture depicted in Figure 8.8. There is a probe attached both to the

71

Experimental validation

Figure 8.8: Dynmon probe architecture for NetFlow comparison.

Ingress and Egress hook, monitoring all incoming and outgoing packets. According
to the information gathered and exported by the NetFlow protocol, the probe
gathers the following features for each flow:

• 1st packet timestamp

• duration

• protocol type

• source IP address

• source port (if any)

• destination IP address

• destination port (if any)

• IP protocol flags (if any)

• type of service

• total packets

• total bytes

• number of flows (if the same addresses, ports and protocol type are being
reused)

72

Experimental validation

More importantly, the Dynmon probe also supports IPv6 like NetFlow, but for
simplicity this experiment carries only IPv4 data, in particular TCP connection
between iPerf2 servers and clients, exactly like in the previous TOSHI scenario.
These connections are being tracked for 60 seconds, and parameters like the average
CPU available for other processing tasks and the bitrate reached by the system
are computed and stored. Both the two instruments have been used to track only
traffic passing through the eth0 interface.

Cpu Consumption (%) Bitrate (Gbits/sec) Total GBytes
20s 40s 60s

NetFlow 98.45 98.11 98.23 25.35 190.1
Dynmon 96.51 96.61 96.60 28.98 217.35

Dynmon+* 96.59 96.66 96.45 36.62 274.0
* The difference between Dynmon and Dynmon+ is the used eBPF map, which is a normal
hash in the former case, and a PERCPU one in the latter.

Table 8.2: NetFlow and Dynmon resource and bitrate comparison.

Figure 8.9: NetFlow and Dynmon probes CPU consumption comparison.

The Table 8.2 reports the surprising results of this test. Clearly, the average
CPU available is quite constant for the entire test both for the three programs,
but what really changes is the average bitrate measured. While running the
nprobe program, the system was able to handle traffic at 25.35Gbit/s, which is

73

Experimental validation

Figure 8.10: NetFlow and Dynmon probes bitrate comparison.

a good value considering that the full capacity (40Gbit/s) of the connection is
probably never reached, and that every packet has to be analysed. On the other
hand, unexpectedly, the system was able to manage traffic at 36.62Gbit/s while
running the Dynmon PERCPU eBPF probe, which is significantly more that the
previous one, almost exploiting the real wire speed as if no program would delay
the processing of the packets.

The charts in Figure 8.10 and Figure 8.9 depict the measured differences between
both nprobe, the baseline program developed in Dynmon using an eBPF hash map,
and the respective enhanced version with the PERCPU maps. Surprisingly, even
the baseline version is able to handle network traffic at very high speed, with a
peak of 31.53Gbit/s, which, considering that the map is shared between Ingress
and Egress hooks, is a great result. However, the enhanced version allows to both
handle more traffic (36.62Gbit/s) and to save some CPU time, which can be used
by other process other than the networking sub-system. The probe provided by
nprobe definitively requires more resources than the eBPF programs, and it also
decreases the throughput to 25.4Gbit/s. Furthermore, as these programs have been
tested by extracting a different set of features, while nprobe constantly requires the
same resources, the eBPF programs can slightly save more CPU time by extracting
less information from packets. On the other hand, when the number of features

74

Experimental validation

grows, the baseline version of the program needs more resources in order to parse
the packets, while the PERCPU version clearly shows an almost constant behaviour,
concerning both resources and bitrate.

In addition, to make sure that these results were coherent and real, the eBPF
metrics have been extracted using an apposite Python extraction script, that, after
retrieving the values from the Polycube daemon, perform some post-processing
operations (e.g., changes IP from integer to string) in order to achieve the result
reported in Table 8.3 (some parameter like duration, type of service and flows have
been omitted to simplify the output, as they are known a-priori and not relevant
at all in this test).

First seen Proto Src IP:Port Dst IP:Port Flags Packets GBytes
2020-09-23 16:58:46 TCP 192.168.254.4:43822 192.168.254.2:5204 ...AP.SF 25590259 33.71
2020-09-23 16:58:46 TCP 192.168.254.4:49326 192.168.254.2:5202 ...AP.SF 25200321 33.42
2020-09-23 16:58:46 TCP 192.168.254.4:34836 192.168.254.2:5203 ...AP.SF 25278497 33.43
2020-09-23 16:58:46 TCP 192.168.254.4:51698 192.168.254.2:5201 ...AP.SF 25417700 33.55
2020-09-23 16:58:46 TCP 192.168.254.4:34834 192.168.254.2:5203 ...AP.SF 25160514 32.55
2020-09-23 16:58:46 TCP 192.168.254.4:43820 192.168.254.2:5204 ...AP.SF 25444234 33.58
2020-09-23 16:58:46 TCP 192.168.254.4:51696 192.168.254.2:5201 ...AP.SF 25663311 34.32
2020-09-23 16:58:46 TCP 192.168.254.4:49328 192.168.254.2:5202 ...AP.SF 26549718 35.43

8 Connections 204304554 274.0

Table 8.3: Dynmon probe simplified output.

The output suggests that the Dynmon probe has successfully recorded all the
traffic previously specified by the iPerf servers (274.0GB), monitoring all the 8
TCP connections with no problems. Interestingly, the huge difference between the
two programs designates new possibilities in the network monitoring field, which
not only turned out to be efficient, but they also proved to be even better than
older techniques, like in this last comparison.

75

Chapter 9

Conclusions

The proposed solution has shown promising results which go beyond the TOSHI
project use case, and it has opened new horizons in the network monitoring. Many
companies and projects are already trying to implement eBPF-based solution,
like Cloudfare, both for fast packet analysis and statistics, proving that these
technologies have a lot of potential that, from a research point of view, can be
exploited and tried out. Moreover, this new method allows implementing a runtime
adaptive packet inspection, which is extremely useful to tune the monitoring
infrastructure according to both the system workload and the severity of the
incoming traffic.

Interestingly, apart all the completely innovative way of adaptively monitoring
traffic, this new technique has proven to be performant at least, but in some cases
even better, than all the other traditional solutions, like NetFlow. This great
achievement suggests that, in the worst case scenario, Dynmon performs exactly
like all the other analysed solution, but in addition it allows modifying at runtime
both the monitoring code and the metrics to be exported, while this is not possible
to do with other tools.

The introduction of an adaptive and efficient monitoring logic, which allows users
to both run their programs on-demand and change the quantity and granularity
of information exported, should be clearly taken into account, because as far as
this thesis has analysed the newly available technologies, it seems that the few
drawbacks are strongly worth all the advantages individualized. Not to mention that
the proposed solution addresses only one of the few limitations of the current state-
of-the-art techniques. In fact, there are still open problems that could be overcome,

76

Conclusions

but this thesis has pointed out that using eBPF to perform both networking
functions and an adaptive analysis is an encouraging starting point for all the
future developments.

9.1 Possible Dynmon improvements

As a matter of fact, the proposed solution can always be improved, both within
the Polycube framework and outside as a stand-alone application.

Despite having introduced a lot of advanced features like the atomicity of
maps thanks to the swap technique, a great enhancement that could improve
the performance of the service could be the use of BTF (BPF type format), a
metadata format that encodes debug information related to the BPF program
and relative maps. This method is already used by bpftool, a tool which allows
analysing information concerning both the eBPF programs and maps injected in
the kernel using a command line interface. As a result, the use of BTF would
significantly simplify the extraction logic of all the kinds of maps, which right now,
despite being efficiently read exploiting the batch operations, takes a lot of time
inspecting the type of the entries.

An alternative to BTF, would be introducing a “cache" to store the parsing
method used for each eBPF map. This way, only the 1st entry has to invoke all the
recursive method, while all the following ones would be extracted directly calling the
function of interest. The advantage of such solution would be significant especially
with huge eBPF maps, as the tests conducted pointed out some limitations of the
extraction method when dealing with a lot of complex values to be extracted.

Furthermore, another great improvement to the service can be to enlarge the
support of eBPF maps, allowing the extraction of all the types available so far.
Unfortunately, many types are not so used, or they have never been used during
these months, so the service offers support for all those that have actually been used,
like arrays, queues, hash and PER-CPU. However, many of the most recent types
of maps are still being developed, thus things like batch operations or PER-CPU
map of those types are not available. It would be interesting to introduce directly
in the Linux kernel these enhancements, in order to improve both the performance
of the eBPF programs injected in Dynmon, and the supported maps in the service.

77

Conclusions

9.2 Possible eBPF programs improvements
Despite eBPF has proved to offer an interesting traffic monitoring support, even
when using the Dynmon service realized, users have to manually write their own
programs to be injected in the probe. The idea of providing templates of network
monitoring programs, which offers the possibility to activate/deactivate certain
network functions, like inspecting certain layers of the packets rather than others,
would definitively ease the entire development process. As a result, users would
have to only provide the portion of code to collect the data, worrying only to
correctly invoke the specific map function. This way both the code reusability
and scalability would improve, since the template must be coded only once and
introduced in the framework, while the user can specify at runtime, using the Data
Plane configuration file, which network functions he/she desires to use.

Furthermore, another advantage introduced by the introduction of templates,
would also be the flexible granularity of the monitoring program, which can adapt
itself, according to the user-defined parameters, in order to dig deeper or less some
aspects of packets, lighten the system overhead in certain conditions where controls
are not required at all.

Lastly, the potential of network monitoring programs introduced by eBPF could
lead to a more sophisticated threats’ detection engines, which could stop malicious
traffic belonging to cyberattacks from the NIC itself, before it even enters the
system. A notable example is provided in this [24] paper, where researches were
able to detect and tag traffic belonging to a Skype conversation by only looking
to packets headers correlations. Being able to categorize traffic at low level just
by looking at some features would be revolutionary for the entire networking and
cybersecurity world, which currently mostly relies on AI/ML algorithms running
in user-space to retrospectively analyse packets, like Cloudfare [25].

78

Appendix A

Additional Open-Source
Contributions

This section of the Appendix presents all the other important contributions to open-
source projects. They were essential both for improving the Polycube framework
and Dynmon itself, and to extend known and widely used frameworks.

A.1 BCC IOVisor improvement

The major contribution was to the BCC IOVisor project. BCC is a toolkit for
creating efficient kernel tracing and manipulation programs, and includes several
useful tools and examples. It makes use of extended BPF (Berkeley Packet Filters),
generally known as eBPF, a new feature that was first added to Linux 3.15.

My contribution consists in adding support for new eBPF map types added in
the latest Linux kernel versions, in order to allow users to use them within BCC,
both for C++ and Python languages. Moreover, I revised other PR inherent to
that extension, including the addition of the entire documentation for those new
maps. These changes enable and ease the use of eBPF Queue/Stack maps within
the framework, ensuring that all the interaction with the underlying data structure
recall the specific system call.

79

Additional Open-Source Contributions

A.2 Polycube Docker enhancement

Polycube provides a Docker image in order to deploy the entire framework without
building the source code locally. Although, the Docker image was not optimized,
since it contained all the needed dependencies both to build and execute the
software.

My contribution consists in building a multi-layer Docker in order to install
the needed dependencies and build the framework on a temporary image. From
a fresh Ubuntu image, the final Docker extracts all and only the executable files
(e.g., Polycube executable, shared libraries and system libraries) to make Polycube
run correctly. A few tests have been run before publishing this change.

This choice led to a slimmer Docker image, from 2.7GB of the previous image
installed in the system (754MB compressed) to 265MB (81MB compresses). This
is really useful both to save space in the system, and to speed up the image
download, especially in case Polycube has to be deployed in a cluster (e.g., the
Kubernetes dedicated image).

A.3 Polycube Firewall upgrade

The Firewall service inside Polycube allows inserting Ingress and Egress rules in
order to filter traffic as desired, like a real Firewall. Although, in order to insert
rules the user has to perform one HTTP request at a time, even though the firewall
presents a “transactional" mode where, before compiling the rules, it waits for the
specific user request to mark the transaction as finished.

My contribution consists in modifying this mode, changing the “transactional"
mode into a “batch" mode. Using newly created endpoints for the batch operations,
users can specify a list of rules and the action that he/she wants to be performed
on that rule (e.g., insert, modify or remove) that will be analysed and inserted
in the eBPF programs at once. This mode allows to save a lot of time, which is
essential especially in scenarios where interaction with Polycube are performed
outside the device hosting the framework, meaning that these request have to pass
through the Internet or a possibly congested interface (e.g., in TOSHI during a
DDoS attack it is quite unlikely that all the single HTTP requests will be handled
by the firewall).

80

Additional Open-Source Contributions

A.4 Polycube Linux support
Polycube has always been tested with the version 4.15 of the Linux Kernel on
Ubuntu. Despite it cannot be deployed on every Linux distribution for the needs
of specific XDP kernel modules available for Ubuntu, I extended the kernel version
support until the 5.7 version, enabling as a result all the newest Linux kernel
features integrated (BPF maps, helpers, etc.).

The installation process has been enhanced, to detect the correct OS distribution
and kernel version, in order to correctly download the needed dependencies for the
compilation. In fact, since Ubuntu 20.04 a few packages like GO do not need to
be manually installed from a dedicated repository any more, since they have been
integrated on the Ubuntu official ones.

A.5 Polycube eBPF batch operations
Polycube defines an additional abstraction layer to interact with eBPF maps,
in order to easily retrieve or modify data. This layer is encapsulated inside the
RawTable class, deeply used by Dynmon, in order to extract data from a generic
map.

Although, while general basic methods to retrieve entries were already present
and used, I decided to implement also wrapper methods to use batch operations,
which has proved to be 10x faster than normal ones. These batch operations are
currently used only in Dynmon, but can be potentially called by any other service
which interacts with its maps.

81

Bibliography

[1] Wireshark. https://www.wireshark.org/ (cit. on p. 5).
[2] Netflow. https://www.cisco.com/c/en/us/products/collateral/ios-

nx- os- software/ios- netflow/prod_white_paper0900aecd80406232.
html (cit. on p. 9).

[3] ntop. https://www.ntop.org/ (cit. on p. 11).
[4] Snort. https://www.snort.org/ (cit. on p. 12).
[5] Open Information Security Foundation. Suricata. https://suricata-ids.

org/ (cit. on p. 12).
[6] Netify. https://www.netlify.com/ (cit. on p. 12).
[7] S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and R. Sommese. «In-

troducing SmartNICs in Server-Based Data Plane Processing: The DDoS
Mitigation Use Case». In: IEEE Access 7 (June 2019), pp. 107161–107170.
doi: 10.1109/ACCESS.2019.2933491 (cit. on p. 13).

[8] J. Levin. «ViperProbe: Using eBPF Metrics to Improve Microservice Observ-
ability». https://cs.brown.edu/research/pubs/theses/ugrad/2020/
levin.joshua.pdf. MA thesis. Brown University, May 2020 (cit. on p. 13).

[9] Cilium. https://cilium.io/ (cit. on p. 13).
[10] Matt Fleming. A thorough introduction to eBPF. https://lwn.net/Articl

es/740157/ (cit. on p. 14).
[11] LLVM. https://llvm.org/ (cit. on p. 14).
[12] IOVisor. XDP eXpress Data Path. https://www.iovisor.org/technology/

xdp (cit. on p. 16).
[13] Polycube. https://github.com/polycube- network/polycube (cit. on

p. 16).

82

https://www.wireshark.org/
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.ntop.org/
https://www.snort.org/
https://suricata-ids.org/
https://suricata-ids.org/
https://www.netlify.com/
https://doi.org/10.1109/ACCESS.2019.2933491
https://cs.brown.edu/research/pubs/theses/ugrad/2020/levin.joshua.pdf
https://cs.brown.edu/research/pubs/theses/ugrad/2020/levin.joshua.pdf
https://cilium.io/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://llvm.org/
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://github.com/polycube-network/polycube

BIBLIOGRAPHY

[14] Simone Magnani. The Dynmon service. https://github.com/polycube-
network/polycube/tree/master/src/services/pcn- dynmon (cit. on
pp. 19, 32).

[15] YANG data modelling. http://www.yang-central.org/twiki/bin/view/
Main/WebHome (cit. on p. 24).

[16] M. Bjorklund, J. Schoenwaelder, P. Shafer, K. Watsen, and E. Wilton. REST-
CONF Extensions for the NMDA (RFC 8527). https://tools.ietf.org/
html/rfc8527. Mar. 2019 (cit. on p. 24).

[17] OpenMetrics. https://openmetrics.io/ (cit. on p. 25).

[18] SoundCloud. Prometheus. https://prometheus.io/ (cit. on p. 27).

[19] IOVisor. BPF Compiler Collection (BCC). https://github.com/iovisor/
bcc (cit. on p. 40).

[20] libbpf. https://github.com/libBPF/libBPF (cit. on p. 40).

[21] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martínez-del-Rincón, and
D. Siracusa. «Lucid: A Practical, Lightweight Deep Learning Solution for
DDoS Attack Detection». In: IEEE Transactions on Network and Service
Management 17.2 (June 2020), pp. 876–889. doi: 10.1109/TNSM.2020.
2971776 (cit. on p. 54).

[22] iPerf2. https://sourceforge.net/projects/iperf2/ (cit. on p. 63).

[23] Sar. https://linux.die.net/man/1/sar (cit. on p. 63).

[24] D. Bonfiglio, M. Meo, M. Mellia, and D. Rossi. «Detailed Analysis of Skype
Traffic». In: IEEE Transactions on Multimedia 11.1 (Feb. 2009), pp. 117–127.
doi: 10.1109/TMM.2008.2008927 (cit. on p. 78).

[25] Cloudfare. https://www.cloudflare.com/ (cit. on p. 78).

83

https://github.com/polycube-network/polycube/tree/master/src/services/pcn-dynmon
https://github.com/polycube-network/polycube/tree/master/src/services/pcn-dynmon
http://www.yang-central.org/twiki/bin/view/Main/WebHome
http://www.yang-central.org/twiki/bin/view/Main/WebHome
https://tools.ietf.org/html/rfc8527
https://tools.ietf.org/html/rfc8527
https://openmetrics.io/
https://prometheus.io/
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/libBPF/libBPF
https://doi.org/10.1109/TNSM.2020.2971776
https://doi.org/10.1109/TNSM.2020.2971776
https://sourceforge.net/projects/iperf2/
https://linux.die.net/man/1/sar
https://doi.org/10.1109/TMM.2008.2008927
https://www.cloudflare.com/

Acknowledgements

With immense joy and a pinch of melancholy, my acknowledgements go to:
Prof. Fulvio Risso, for taking me under his wing, teaching me how to deal with

problems, broaden my thought and for treating me like a son;
PostDocs. Sebastiano Miano, Alex Palesandro, and PhD. Marco Iorio, for their

kindness, their professionalism and for having pushed me over the limits to overtake
all difficulties;

Riccardo, Francesco, Enrico, Ilaria, Giulia and Daniele, my essential Turin
friends, for walking side by side with me this two years, filling them with joy, love
and immeasurable laughs which eased off stressful periods and the lack of home;

Edoardo, Fabrizio, Pietro, Carlo and Andrea, my cybersecurity teammates in
Cesena, for their loyalty, their passion and knowledge shared also during these
difficult years apart;

Rosanna, Fabrizio and Francesco, my beautiful family, and my grandma Paola,
for their infinite love and for always believing in me and supporting my decisions,
even though it means being far miles away from them;

all those who have shown me back love and sympathy during these years,
especially my numerous UniTo friends, because it made me feel grateful and
honoured, increasing my positivity and energy;

all those who turned out to be fake, resentful and opportunistic, because thanks
to them I grew, I learned how to take care of myself and I developed extraordinary
judgemental skills.

Infinite gratitude to you all.

“The road is now calling, and I must away”
Billy Boyd, The Last Goodbye

84

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Network monitoring
	The TOSHI project
	Thesis objective

	Problems and Limitations
	Monolithic and repetitive applications
	Offline analysis
	Static pre-defined monitoring logic

	Related Work
	Traffic monitoring with NetFlow
	Domain-specific tools
	Traffic monitoring with eBPF

	Exploited Technologies
	eBPF and XDP
	Polycube

	Dynmon Architecture
	Overview
	Self-adapting Control Plane
	VNF Workflow
	YANG model description
	Dynamic Data Plane configuration
	Metrics
	Run-time code enhancements

	Dynmon Implementation
	Used languages
	Main classes
	Dynmon
	CodeRewriter
	MapExtractor

	Data Plane injection
	Supported data extraction
	Timestamping
	Dynmon Injector tool
	Dynmon Extractor tool

	TOSHI Infrastructure
	Overview
	Architecture
	Artificial Intelligence support
	Dynmon probes for TOSHI
	DDoS attack detection
	Crypto-mining attack detection

	Experimental validation
	Dynamic injection of monitoring code
	Extraction of metrics
	TOSHI performance
	NetFlow comparison

	Conclusions
	Possible Dynmon improvements
	Possible eBPF programs improvements

	Additional Open-Source Contributions
	BCC IOVisor improvement
	Polycube Docker enhancement
	Polycube Firewall upgrade
	Polycube Linux support
	Polycube eBPF batch operations

	Bibliography

