
POLITECNICO DI TORINO

Department of Electronics and Telecommunications
Master’s Degree in Electronic Engineering (Embedded Systems)

Master’s Degree Thesis

Wireless sensor network for
temperature monitoring and
cooling optimization in data

centers

Supervisor:
prof. Maurizio Rebaudengo

Tutor:
prof. José M. Moya

Candidate:
Andrea Giacobbe

Academic year 2019/2020

I

Acknowledgments

There are a number of people without whom my master career and this thesis project
would be harder and to whom I am greatly indebted.

First of all, to my family, that has been a source of encouragement and inspira-
tion to me throughout my life, especially during the tough times. A special thank
also to Oriana for the support and the help for writing this thesis.

Thanks to prof. Rebaudengo and the team GreenLSI (ETSIT UPM), in partic-
ular to prof. José Manuel Moya, Alejandro, and Alvaro for the contribution on this
work. To my close friends Marco, Giovanni, Claudia, Lorenzo, Antonio and to all
people that I have met during these years, in particular Manuel, Dimitri, Francesco,
Cosimo, Marta, Nika, Emanuela, Manuela, Giada, and David.

To my mom and my grandparents who for sure would have been proud of the
person who I am.

This work is for, and because of you and all the challenges to come.

II

Summary

In recent years the increasing demand for storage and data processing led to the
growing complexity and energy density of data centers. Several measures to improve
performance and energy efficiency are being studied, not only to reduce operational
costs, but also to facilitate a sustainable industry growth. To accomplish this aim,
the cooling aspect has a relevant role within the data center infrastructure.
The objective of this thesis has been the development of a sensor node model for
the wireless network responsible for monitoring the temperature and the humidity
in air-cooled data centers. This network is made with Bluetooth 5.0 with Mesh
profile, which allows the interconnection of a multitude of devices. The network
consists of a large number of distributed sensor nodes at strategic positions for
data sensing, coordinator nodes to control them and let data flow to databases for
collection, and then data analysis. These sensor nodes send regular measurements
to the gateways that send these data to the analysis platform, which can be used
to control the cooling resources in order to dynamically optimize the set-points of
the cooling systems in the data centers. The solution of this wireless sensor network
takes also in consideration the easy configuration and maintainability by the data
center operator to deploy the sensor nodes.
The choice to exploit wireless sensors is due to the fact that they have different
advantages, such as not requiring to make changes to the existing infrastructure,
being easy to deploy and relocate, and being relatively low cost.
As we are working with critical infrastructures, and cooling control is one of the
most important operation decisions, the primary objective is to guarantee safety in
operation. For that reason, formal methods and real-time analysis techniques are
applied to the design and implementation in order to validate the behaviour of this
node in the network.

III

The initial phase of this thesis project was the definition of the requirements and
the system design as finite state machine. The simulation and verification phases
have assured the correctness of the system over the set of defined specifications and
safety properties due to its real-time purpose even through a complex state space.
In order to achieve this, the model checker tool NuSMV has been chosen among
others available on the web since it is well documented and because of it supports
specifications expressed as Linear Temporal Logic formulas.

A C based implementation of this sensor node model has been proposed also thanks
to the team GreenLSI of Polytechnic University of Madrid. The Nordic Semicon-
ductor nRF52840 board, which hosts a 32-bit ARM Cortex-M4 processor, has been
chosen for the purpose because it has protocol support for Bluetooth mesh network
that is suited to create large-scale device networks.

Finally, with the results of the C implementation it has been proven the real be-
haviour of the node through the timing and power analysis. Two possible scheduling
for the models have been proposed to guarantee the deadlines by the node, one ca-
pable to reduce the dynamic power consumption of this node.
In particular, the topics are divided in this way:

• In Chapter 1, an introduction to data centers and motivation.

• In Chapter 2, the system modelling using Finite State Machines.

• In Chapter 3, model checking and Linear Temporal Logic.

• In Chapter 4, the NuSMV checking tool to verify the model.

• In Chapter 5, the system requirements and the wireless sensor network defi-
nition.

• In Chapter 6, the simulation and the verification of the SMV model to control
the node.

• In Chapter 7, the language containment between the C implemented model
and the SMV model.

• In Chapter 8, the scheduling techniques and the estimation of total power
consumption for the proposed implementation of the node.

• In Chapter 9, the conclusion and some possible future developments of this
thesis project are suggested.

• In Appendix A, the SMV code is shown.

IV

• In Appendix B, the C implementation for the node based on the board
Nordic Semiconductor nRF52840.

• In Appendix C, the calculation for the daily total power consumption of the
sensor node.

V

Contents

Acknowledgments II

Summary III

1 Data centers 1
1.1 Introduction . 1
1.2 Energy consumption and environment sustainability 1
1.3 Motivation . 3
1.4 Objectives . 5

2 Finite-State Machines 6
2.1 Basic elements of Finite-State Machine 6
2.2 Deterministic Finite State Machine 7

2.2.1 Moore Machine . 7
2.2.2 Mealy Machine . 8

2.3 Non-Deterministic Finite State Machine 9
2.4 Extended Finite State Machine . 10

2.4.1 Primitive Architecture . 10

3 Model Checking 12
3.1 Introduction to Model Checking . 12
3.2 Temporal Logics . 13
3.3 Linear Temporal Logic . 14

3.3.1 Syntax of LTL . 14
3.3.2 Semantics of LTL . 16
3.3.3 Semantics of LTL over Paths and States 18

4 The NuSMV Model Checking Tool 20
4.1 Input Language . 21

4.1.1 Types Overview . 21
4.1.2 Expressions . 22

VI

4.2 Definition of the FSM . 24

4.2.1 Variable Declarations . 25

4.2.2 Modelling Style . 25

4.2.3 Declarations and Instantiations of the Modules 27

4.3 Specifications . 28

4.3.1 LTL specifications . 28

4.3.2 Desired LTL properties . 29

4.4 Running NuSMV . 29

4.4.1 Simulation and Checking Specifications Commands 30

5 Wireless Sensor Network 32

5.1 Introduction to the system . 32

5.2 Requirements . 35

5.2.1 Traceability table . 37

5.3 System Model Definition . 39

5.3.1 Configuration Model . 39

5.3.2 Reading Model . 41

6 System Simulation and Verification 45

6.1 Configuration Model Simulation . 45

6.2 Reading Model Simulation . 53

6.3 Configuration Model Verification . 60

6.4 Reading Model Verification . 61

6.5 Verification Results . 63

7 Language Containment 64

8 Experimental Results 67

8.1 Schedulability Analysis . 67

8.2 Power consumption Analysis . 71

8.2.1 Hardware configuration . 71

8.2.2 Power consumption at different states 73

8.2.3 Daily power consumption analysis 76

9 Conclusion 77

A SMV code 79

A.1 CONF MOD.smv . 79

A.2 READ MOD.smv . 83

VII

B System Implementation 88
B.1 conf fsm.c . 88
B.2 read fsm.c . 93

C Total power consumption calculation 97

Bibliography 99

VIII

List of Tables

3.1 Truth table of propositional boolean operators. 15
5.1 Requirements and LTL specifications traceability table. 37
5.2 Description of the states and events for the LTL specifications. 38
5.3 State transition table for the Configuration model. 41
5.4 State transition table for the Reading model. 44
7.1 I/O behaviours of C Implementation vs SMV model for the Configu-

ration FSM. 66
7.2 I/O behaviours of C Implementation vs SMV model for the Reading

FSM. 66
8.1 Temporal parameters for the two tasks. 69

IX

List of Figures

1.1 ASHRAE’s graph which specifies the strict air condition range to
ensure the high reliability and performance of IT equipments in data
centers[8]. 3

1.2 Proposal locations for sensors in the data centers: CRAC inlet, CRAC
outlet, underfloor plenum, rack inlets and rack outlets[7]. 5

2.1 State diagram of a simple Moore machine. 8
2.2 State and output generation in Moore machine[9]. 8
2.3 State diagram of a simple Mealy machine. 8
2.4 State and output generation in Mealy machine[9]. 9
2.5 A simple Non-deterministic FSM. 9
2.6 An example of Extended FSM[11]. 10
2.7 A basic architecture for realizing an EFSM[11]. 11
3.1 Model checking[9]. 13
3.2 LTL model[9]. 13
3.3 Branching-time model[9]. 14
3.4 Illustration of semantics of LTL temporal operators. 18
3.5 a) Kripke structure and b) its unwinding. 19
5.1 Architecture of the system[21]. 33
5.2 Bluetooth Mesh Network[23]. 34
5.3 EFSM for the Configuration Model. 40
5.4 EFSM for the Reading model. 42
7.1 C Implementation vs SMV state machine for the Configuration model. 65
7.2 C Implementation vs SMV state machine for the Reading model. . . . 65
8.1 Task parameters[9]. 68
8.2 Tasks. 69
8.3 Cyclic scheduling. 69
8.4 YDS scheduling. 70
8.5 Customized sensor used to measure temperature and humidity. 71
8.6 Nordic nRF52840-DK Board. 72
8.7 Hardware configuration. 72
8.8 Node not provisioned in the network and awake. 73

X

8.9 Node provisioning phase. 73
8.10 Initial sleeping phase. 74
8.11 Node provisioned and in sleep mode. 74
8.12 Node provisioned, wakes up and then goes into the sleep mode again. 74
8.13 Node provisioned and sends out the measurement without the wake-

up event. 75
8.14 Node provisioned, wakes up and sends out the measurement. 75

XI

Chapter 1

Data centers

1.1 Introduction

The trend for Cloud computing is leading to the increasing of data centers due to
the necessity to store a big amount of information, which is rising over time. Com-
panies such as Amazon, Google, Microsoft, Facebook and Apple have decided to
offer information stored in the Internet Cloud, ensuring faster and more efficient
services to the users. The magic of the virtual world is created by computer servers,
which store website data and share it with other computers and mobile devices,
but every search, click, or streamed video can activate servers of different data cen-
ters around the world, consuming a lot of real energy resources. The advantages of
Cloud computing allow the usage of a technological infrastructure with high degrees
of automation, consolidation and virtualization, which means a more efficient man-
agement of the resources of a data center. The Cloud model allows, besides a large
number of users, the use of concurrent applications that otherwise would require
a dedicated computing platform. The total Cloud market had a value of $214.3
billion in 2019, and it is projected to grow up to $331.2 billion in 2022, according
to Gartner[2].

1.2 Energy consumption and environment sustain-

ability

Today, data centers consume about 2% of electricity worldwide, that could rise to 8%
of the global total by 2030, according to a study by Anders Andrae, who researches
sustainable ICT at Huawei Technologies[3]. The servers, the storage equipment,
and the power cooling infrastructure in the data centers need electricity in order to
operate. The total energy consumed by data centers is growing sharply, therefore

1

1 – Data centers

becoming a critical element for economic and environment sustainability. The main
contributors to the energy consumption in a data center are:

• The Information Technology (IT) resources, which consist of servers and other
IT equipment (up to 60% of the overall data center consumption);

• The cooling infrastructure needed to ensure that IT operates within a safe
range of temperatures, ensuring reliability (around 40%)[17];

• The remaining percentage comes from lighting, generators, Uninterrupted
Power Supply (UPS) systems and Power Distribution Units (PDUs)[6].

The big demand for connectivity means more energy into these data centers, and
much of that energy is non-renewable and contributes to carbon emissions. Data
centers contribute 0.3% to global carbon emissions, according to Nature[4].
Just the United States has 3 million of data centers, and a large number is clustered
in Virginia. Only 12% of Amazon’s data centers and 4% of Google’s are powered
by renewable energy in that area, according to Greenpeace[3].
In China, data centers get 73% of their power from coal and 23% from renewable
sources[3]. As coal-powered sources are relatively cheap and abundant, there is a
lack of clean energy infrastructure which is still under development. China’s data
centers emitted 99 million tons of CO2 in 2018 and will emit two-thirds more by
2023 unless the industry addresses its energy consumption, as stated in a study by
Greenpeace and North China Electric Power University of 2019[3].
The power usage into a server can be: Dynamic or Static. Dynamic power contri-
bution depends on the switching transistors in electronic devices during workload
execution. Static power consumption, around 70% of the power consumption in a
server, is strongly related to the temperature due to the leakage currents which in-
crease as technology scales down[5]. The impact of leakage currents on IT resources
increase with higher temperatures which can be controlled by a precise management
of the cooling system. The temperature in data centers is strongly increasing due
to the activity of servers to guarantee the growing demand. The generated heat is
evacuated outside as thermal pollution avoiding server failures. With better cool-
ing, the heat coming off the servers can be used to warm other places thus saving
electricity demand elsewhere[4].
These energy and thermal aspects stimulate researchers, not only to develop more
performing data centers, as well as to minimize their environment impacts.

2

1 – Data centers

1.3 Motivation

To keep the temperature low is a popular solution to locate data centers in cool en-
vironments and blow the outside air into them[4]. For high-density and high-power
computing, the most efficient thing to do is to immerse servers in a non-conductive
oil or mineral bath[4], thus utilizing big amounts of water (billion litres). Among
all available cooling solutions, air cooling dominates the data center industry due to
its simpleness. However, the efficiency of air cooling solution is not the best due to
the low air density and specific heat.
Controlling the set point temperature of cooling systems in data centers is still to
be defined and it represents a key challenge from the energy perspective. Often
this choose is conservative as provided by manufacturers of equipment, based on the
worst-case scenario resulting on over-cooled facilities. Temperature increasing by
1◦C results in savings of 7.08% in cooling consumption[5], so an accurate manage-
ment ensures both safe temperature range for IT resources and energy saving. More-
over, the accumulated heat can lead to server shutdown and to decrease the lifetime.
In case of air cooling system, ASHRAE (American Society of Heating, Refrigerating
and Air-Conditioning Engineers) recommends temperatures within 18◦C-27◦C, and
relative humidity within 27%-60%, at constant pressure, as shown in Figure 1.1.

Figure 1.1: ASHRAE’s graph which specifies the strict air condition range to ensure
the high reliability and performance of IT equipments in data centers[8].

In addition, high air temperature reduces the cooling capability, in particular a study
states that an increment of 15◦C leads to an increment in circuit delay by 10-15%.

3

1 – Data centers

There are two common approaches to evaluate the thermal performance[7]:

• Computational Fluid Dynamics (CFD) simulation, useful for the design and
the trouble-shooting phases.

• Real-time measurement, better for the stationary thermal behaviour, server
replacement, equipment upgrading and time-varying outdoor condition.

Although a model validation procedure for the the real-time system measurement
is still necessary[7], this measurement is more precise and reliable than simulation.
These monitored data can be used to dynamically control the cooling resources as
response to temperature changes. Moreover, for the real-time measurement, big data
analytic techniques and advanced data processing architectures should be employed
to manage these data.
Measurement strategies inside the data center can be mainly categorized into three
types[7]:

• Traditional method with limited number of sensors installed on fixed locations,
openings and hot/cold aisles, etc.

• Advanced method using increased number of sensors (perhaps with some mo-
bility) measuring a wide range of locations.

• 3D thermal map created by built-in sensor readings from various components
inside the server, e.g., CPU, HDD, memory, etc.

The advanced method can achieve a better space resolution in comparison with the
traditional method. The 3D thermal map provides a big thermal picture at the data
center scale without extra cost, but it is often unavailable where servers belong to
different owners, thus to make difficult server cooperations. In this case, the ad-
vanced method is the best option, and also because of the readings from built-in
sensors may suffer from relevant accuracy issues which often lead to overcooling.
Another relevant aspect is the location to deploy the sensors, in particular, they
should be in CRAH, hot/cold aisles, and underfloor plenum (see Figure 1.2)[7].
High-density sensor systems are employed to monitor and control the cooling sys-
tem. For example, the sensor density of HP data center in Bangalore, India, is 1.15
sensors/m3[7]. Therefore, up to 10% of IT equipments is replaced each month and
it has been observed that most of the data center operators deploys the sensors in
wrong places[7]. In literature, the monitoring intervals range from 0.1 seconds to 30
minutes[7]. Monitoring systems can be wired, wireless, or a combination of both.
IoT technology for industrial purpose can be applied to wireless solutions to improve
scalability and system flexibility.
Some issues are related to wireless systems such as[7]: limited communication range,

4

1 – Data centers

Figure 1.2: Proposal locations for sensors in the data centers: CRAC inlet, CRAC
outlet, underfloor plenum, rack inlets and rack outlets[7].

due to obstacles which block the wireless signals; wireless sensing nodes are often
powered by battery, hence sleep scheduling techniques are necessary to save energy
and to extend system lifetime; node failures and security issues can be addressed by
using periodical probing message and encryption techniques.
In Summary, exploring innovative and efficient cooling solutions will become more
important in coming years to save electricity costs, guarantee performance connec-
tivity for the user and lessen carbon emission and water utilization.

1.4 Objectives

• Analysing the system requirements for this wireless sensor network.

• Defining FSM in order to control the sensor node within the network.

• Coding the model within the NuSMV environment.

• Verifying the model with the model checking approach.

• Analysing the power consumption of the node within the network and the
scheduling approaches based on a first implementation.

5

Chapter 2

Finite-State Machines

An introduction to Finite-State machines is shown in this chapter1, in particular a
deep view of the Extended FSM. Real-time embedded systems must be sensitive to
environment signals and react to them in a certain amount of time. Hardware and
software design methods must be integrated to achieve functional and non-functional
requirements. A way to specify real-time systems and their behaviour is through
Finite-State Machines (FSMs).

2.1 Basic elements of Finite-State Machine

During software design and sequential logic circuits, the FSM represents the abstract
computation model. A FSM is a system that collects the state of an object at a
given time and operates on input stimuli (events) to change the state and/or cause
an action or an output to occur for any given change[9]. Each state is related to
the object’s history. A change from one state to another is called a transition,
due to the occurrence of some triggering events or conditions. A FSM can be
defined with a finite number of states. The state in which it is at a given time is
called the current state. A FSM can be represented by a directed graph called
state diagram where each state is a node and each transition is an edge; or through
a state transition table. States can be classified into initial states, final states
and intermediate states. Generally, an initial state is graphically identified with an
incoming arrow, while a final state is represented with two circles. It describes the
system’s behaviour considering discrete events and states, where transitions fired
on certain events, not specifying the exact time they occur but just knowing the
temporal order between them. The complexity of the traditional FSM model is
2N , where N is the number of the variables that are used to describe the model.
Deterministic, Nondeterministic, and Extended FSM are some of the FSM types.

1The information in this chapter comes from [9], [10], [11], [12].

6

2 – Finite-State Machines

2.2 Deterministic Finite State Machine

In Deterministic FSM, the transition from one state to another and the outputs are
defined uniquely for each triggering event presented at the input of the machine[9].
Mathematically, it can be denoted as M = (S, I, φ, s0, F)[9], where:

• S is a finite set of states.

• I is a finite set of possible input symbols.

• φ is a transition function from each pair (state, input) to a new state, φ : S
× I → S

• s0 is the initial state, s0 ∈ S.

• F is a set of final states, F ⊆ S.

Given an input to the machine, it will update its state and, possibly, produce an
output to each transition. There are two types of deterministic FSMs that generate
outputs:

• Moore machines, whose output depends only on the current state.

• Mealy machines, whose output depends on the current state and the current
input.

Although often a Mealy machine is more compact and practical than a Moore ma-
chine since it can perform the same task with a less number of states, any Moore
machine can be turned into Mealy, and vice versa.

2.2.1 Moore Machine

A Moore machine generates the output as it enters into a new state (the reaction to
input events in one cycle is always produced in the next cycle[12]). It is denoted by
M = (S, I, φ, s0, O, λ). The final states set F is not included in the Moore machine
definition. In addition, a finite set of output symbols O and the output function λ
from each state to an output symbol (λ : S → O), indicating that outputs depend
just on states, are considered. Figure 2.1 shows a basic state diagram of a Moore
machine with two states. The machine starts in state S0 and it produces X to the
output. When it receives the input α, the machine shifts to S1 and produces Y .
Similarly, when the machine is in S1, an event β changes the machine’s state to S0.
Again, the machine is in S0 and generates X as output.
Figure 2.2 illustrates how next states and outputs are computed in a Moore machine.

7

2 – Finite-State Machines

Figure 2.1: State diagram of a simple Moore machine.

Figure 2.2: State and output generation in Moore machine[9].

2.2.2 Mealy Machine

In Mealy machine, the outputs are generated when certain transitions occur, instead
of states as in Moore machine. In a Mealy state diagram, transitions are labelled in
the format of i/o, where i is the input and o is the output generated. It is denoted
by M = (S, I, φ, s0, O, λ) as Moore machine with the only difference that the
output function is λ : S × I → O, thus the outputs depend on both current states
and inputs, and they are represented on the transitions[9], see Figure 2.3. In the
Mealy model, an input produces a change of output in the same cycle[12]. Figure 2.4
illustrates how the following states and outputs are produced in Mealy machines.

Figure 2.3: State diagram of a simple Mealy machine.

8

2 – Finite-State Machines

Figure 2.4: State and output generation in Mealy machine[9].

2.3 Non-Deterministic Finite State Machine

In a Non-deterministic FSM, given an input and a state, there may be more than
one next state, or a transition can link states without any input, or there is no
next state at all for some given input. It can be used when there is an unspecified
system behaviour. Mathematically, as it can be identified M = (S, I, φ, s0, F)[10],
where S, I, s0, and F are defined as in deterministic FSM, but with the difference
that the transition function is defined as φ : S × I → S∗, where S∗ denotes the
power set of S, which defines the set of all possible subsets of S. This kind of model
defines different possible behaviours for the machine. Figure 2.5 shows a simple
Non-deterministic FSM, where S0, S1, S2 are the states, and α, β, and γ are the
inputs.

Figure 2.5: A simple Non-deterministic FSM.

9

2 – Finite-State Machines

2.4 Extended Finite State Machine

In a traditional FSM, the transition is associated with a set of output Boolean func-
tions given a set of input Boolean conditions. In an Extended FSM model (EFSM),
the transition can be expressed by an If -statement consisting of a trigger condition
and a set of data operations: when the trigger condition is satisfied, the transition
is executed, thus changing the machine’s state and performing the specified data
operations[11] (outputs and variables are updated and available in the next cycle).
Considering the example shown in Figure 2.6[11], the transition from state S1 to S0

is denoted as:

T (S1 → S0) : If(counter ! = 6) counter + +;

This transition is only executed when the current state is S1 and the data variable
counter is not 6. When it is executed, it brings the machine to state S0, and
increases the counter value by 1 through the data operation counter++. Generally,
the trigger conditions and the data operations may depend on the external inputs
and data variables.

Figure 2.6: An example of Extended FSM[11].

2.4.1 Primitive Architecture

To synthesize an EFSM, it can be turned into a structural diagram consisting of
three major combinational blocks, see Figure 2.7, and a few registers[11]. These
blocks are:

• FSM -block, which is a traditional FSM that performs the state transition
graphs of the EFSM model;

10

2 – Finite-State Machines

• A-block, the arithmetic block to execute the data variable due to each transi-
tion. This block is regulated by the output signal of the FSM -block;

• E-block, it evaluates the trigger conditions for each transition. The data vari-
ables go into this block, while it generates the binary output signals given as
inputs to the FSM -block for deciding the state transition.

Figure 2.7: A basic architecture for realizing an EFSM[11].

For the example in Figure 2.6, FSM -block is the logic for the FSM, A-block is
responsible for performing three operations on the data variable counter (increment,
reset, and freeze), and E-block realizes the trigger conditions of transitions.

Timing critical path

The timing critical paths can be revealed by examining the most complicated tran-
sition in the EFSM model. For the implementation, the transition that involves
the logic in every one of those three blocks is the most timing critical path[11].
Since the transition needs to be executed in a single clock cycle if triggered, its
corresponding timing path could start from the output of the data variable block,
passing through the E-block, FSM -block, A-block, and finally reaches the input of
the data variable block. In Figure 2.6, the most timing critical path is the transi-
tion T (S1 → S0)[11], since it activates all the three blocks. If the delays of the main
three blocks along the critical path are denoted as d(FSM -block), d(A-block), and
d(E-block), then the clock cycle time is dominated by τcp = d(FSM -block)+d(A-
block)+d(E-block)[11].

11

Chapter 3

Model Checking

In this introductory Chapter we will show how the behaviour of the embedded
systems can be verified in a formal way specifying the properties with temporal
logic, in particular Linear Temporal Logic (LTL). Model checking is a verification
technique for the first step of system design, to find out whether system model
matches the specifications, or not.

3.1 Introduction to Model Checking

Model Checking1 means verifying formally and automatically finite-state concur-
rent and reactive systems. It comes from the work by E. M. Clarke, E. A. Emerson,
by J. P. Queille, and J. Sifakis in the early 1980s. Functional and property spec-
ifications are important to ensure reliability and correctness of digital circuits and
software designs, in particular for those are highly critical. Two common approaches
to ensure them are software testing and simulation. In software testing, the com-
ponent, hardware or software, is executed to evaluate desired properties. Instead, in
simulation, the system is modelled with a set of mathematical formulas: a program
shows an operation to the user through simulation without actually performing that
operation. In spite of those techniques being widely used in industrial applications,
unfortunately, they are not able to simulate or test all the possible scenarios of a
given system (due to the high number of possible cases to be taken into account),
thus the failure cases could not be detected, generating potential damages in case
of errors in the real environment. For this case, systems are modelled as FSMs and
desired properties are specified with formulas based on temporal logic. A formal
verification method can be stated: given a System model M and a property spec-
ification, expressed as a temporal logic formula ϕ, a tool, called Model Checker
decides if ϕ is satisfied by M from a given state s[9]. This checker prints out ‘Y es’

1The information in this Chapter come from [9], [13].

12

3 – Model Checking

whenever the property is satisfied; otherwise, it shows a counterexample of execu-
tion in which the property is violated. Figure 3.1 illustrates how the checker verifies
the property on the system model, that is sensitive to the external environment.

Figure 3.1: Model checking[9].

3.2 Temporal Logics

Temporal logic is a set of symbolism and rules which describes the ordering of events
in time without explicit notion of time. A temporal logic model contains states that
correspond to different time events. There are two models of time:

• Linear-time model: Introduced by Pneuli in the 1970s, it defines the time as
a single path of time points which are ordered linearly, where each time point
has a unique successor and it is easy to say which one is earlier than the other,
in a deterministic way. As it is illustrated in Figure 3.2, point t is the future
of point s. In this case, the logic to model time as sequence of states is called
Linear Temporal Logic (LTL).

Figure 3.2: LTL model[9].

• Branch-time model: a time point may have two or more future points that
are not related to each other. For any two of those future points, we cannot
say which one occurs before the other point in time. This means that, for each
time point, its future is not deterministic. For example, in Figure 3.3 it is not
possible to say that s is the future of t (or vice versa), or what is the future

13

3 – Model Checking

of r deterministically. The other logic to model time as tree-like structure is
called Computational T ime Logic (CTL).

Figure 3.3: Branching-time model[9].

From now on it is considered just LTL model.

3.3 Linear Temporal Logic

LTL models time as an infinite sequence of states, called computation path, or just
path. Different paths are present for representing different possible futures. The
syntax and the semantics of LTL will be shown onwards.

3.3.1 Syntax of LTL

A LTL formula, over a finite set AP of atomic propositions (indivisible formulas),
is defined as the following Backus-Naur form[9]:

ϕ ::= >|⊥|a|¬ϕ|(ϕ ∧ ψ)|(ϕ ∨ ψ)|(ϕ→ ψ)|(©ϕ)|(♦ϕ)|(�ϕ)|(ϕUψ)|(ϕRψ) (3.1)

where a ∈ AP ; > and ⊥ stands for true and false, respectively. An atomic propo-
sition is true on a path, if it holds on the first state of a given path. Any atomic
proposition, logic constants true/false, and any of the operators applied to any
LTL formula are still a LTL formula, as shown in Equation 3.1. Any LTL formula is
based on the following propositional boolean operators (represented in Table 3.1):

• ¬ : Negation (not).

• ∧ : Conjunction (and).

• ∨ : Disjunction (or).

• → : Implication (If -then).

14

3 – Model Checking

ϕ ψ ¬ϕ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ

T T F T T T
T F F F T F
F T T F T T
F F T F F T

Table 3.1: Truth table of propositional boolean operators.

In addition, there are operators which express relation among states[9]:

• © (X or Next) specifies that a formula is held at the next time point.

© ϕ is true if ϕ is true at the next step.

• ♦ (F or Future) means that a formula is eventually held at some point in the
future.

♦ ϕ is true if ϕ is true somewhere in the future.

• � (G or Globally) means that a formula is held on the entire subsequent path.

� ϕ is true if ϕ is always true in all future states.

• U (Until) defines that a formula is held until another one occurs.

ϕUψ is true if ϕ is true at least until ψ becomes true.

• R (Release) defines that a formula is held until and including the time point
where another formula becomes true.

ϕRψ is true if ψ is true until the first position in which ϕ is true.

All these operators have different priorities: ¬, ©, ♦, � (unary operators) are
stronger than others (binary operators), and U takes precedence over ∧, ∨, →.
The listed propositions, along with others not presented here, can be combined to
express more complex ones.

15

3 – Model Checking

3.3.2 Semantics of LTL

Each LTL formula describes the evolution of events in time. The evaluation of LTL
propositions is related to paths, which means a path can satisfy a LTL formula,
or not. Assume a fixed set AP of atomic propositions, a set of states S, and a
labelling function L which maps S to the power set of AP , denoted by 2AP , which
represents the set of all subsets of AP . If AP = {p,q,r}, then:

2AP = {∅, p, q, r, {p,q}, {q,r}, {p,r}, {p,q,r}}

For each state s ∈ S, L(s) is a set of all atomic propositions that are evaluated to
be true in that state[9]. A generic path can be denoted as:

π = s1 → s2 → s3 → ...

For any LTL formula, the binary satisfaction relation with respect to a generic path
π is denoted by ‘|=’, in this form:

π |= LTL formula

which means that the path π satisfies LTL formula, according LTL syntax. The
LTL formulas satisfied by a path π are[9]:

• True/False, both are always satisfied by the path.

π |= > (3.2)

π |= ⊥ (3.3)

• Atomic proposition, any atomic proposition a ∈ AP is true on a path, if
and only if (iff) it holds on the first state s1 of the path, so it holds for all that
path.

π |= a iff a ∈ L(s) (3.4)

• Negation of atomic proposition, the negation of an atomic proposition a
∈ AP holds on a path π if and only if the atomic proposition does not hold in
s1 (so for all states of the path).

π |= ¬ a iff a 6∈ L(s) (3.5)

• Composition, the composition of LTL formulas ϕ and ψ with propositional
boolean operators (∧, ∨, and →) is evaluated in the first state s1 of the path.

π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ (3.6)

π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ (3.7)

π |= ϕ → ψ iff π |= ψ as long as π |= ϕ (3.8)

16

3 – Model Checking

• Next (©), the LTL formula is evaluated to be true in the next state s2.

π |= © ϕ iff π[s2...] |= ϕ (3.9)

• Future (♦), means that the formula will become true at some state si along
the path.

π |= ♦ ϕ iff ∃ i ≥ 1 | π[si...] |= ϕ (3.10)

• Globally (�), means that the formula must hold on the entire subsequent
path.

π |= � ϕ iff ∀ i ≥ 1 | π[si...] |= ϕ (3.11)

• Until (U) operator evaluates if ϕ is true in every state along the path until
a state in which ψ is true.

π |= ϕUψ iff ∃ i ≥ 1 | π[si] |= ψ and ∀ j=1,2,...i-1 | π[sj] |= ϕ (3.12)

• Release (R) operator evaluates if ψ is true in every state along the path until
a state in which both ψ and ϕ are true.

π |= ϕRψ iff ∃ i ≥ 1 | π[si] |= ϕ and ∀ j=1,2,...i | π[sj] |= ψ (3.13)

Figure 3.4 illustrates the semantics of these temporal operators, where the first
bubble in the path represents the first state of the path.

17

3 – Model Checking

Figure 3.4: Illustration of semantics of LTL temporal operators.

3.3.3 Semantics of LTL over Paths and States

Until now we have defined the semantics of the LTL operators over paths. At this
step it is necessary to extend this semantics to an interpretation over paths and
states of a finite state system. This system can be defined as a Kripke structure
M = (S, I, R, L)[9], where:

• S is a finite set of states.

• I ⊆ S is a set of initial states.

• R ⊆ S × S describes state transition relations. For each s ∈ S, there is s'
such that s → s'. The transition is denoted as (s, s') ∈ R.

• L : S → AP labels states with the atomic propositions.

It can be illustrated as a transition system as in Figure 3.5a. A path π in M is an
infinite sequence of states, and since a state can have more than one successor, the
Kripke structure can be thought as unwinding into an infinite tree, representing all
the possible executions of the system starting from the initial states (Figure 3.5b).
M satisfies an LTL formula ϕ if and only if it satisfies the formula on all paths
starting from any initial state[13]:

M |= ϕ iff s |= ϕ ∀ s ∈ I

18

3 – Model Checking

where, LTL formula ϕ is valid in state s if and only if ϕ is true for all paths starting
from s:

s |= ϕ iff ∀ π ∈ Paths(s) | π |= ϕ.

(a) (b)

Figure 3.5: a) Kripke structure and b) its unwinding.

The assumption of no terminal states in M , makes all paths be infinite. This
assumption is made for simplicity; it is also possible to define the semantics of
LTL for finite paths (the semantics is irrelevant whether or not M is finite).

19

Chapter 4

The NuSMV Model Checking Tool

In this Chapter we will show the model checking tool to support system prop-
erty verification. Possible model checker can be NuSMV, SPIN, CADP, ProB,
FDR2, etc. For our purpose, it is introduced the NuSMV1 model checker. NuSMV
stands for New Symbolic Model V erifier, which is an automatic open-source tool
developed by FBK-IRST (Italy), Carnegie Mellon University (USA), the Univer-
sity of Genoa (Italy) and the University of Trento (Italy), in 1998. NuSMV, re-
leased in 1993, is an extension of SMV, the first symbolic model checker based on
Binary Decision Diagram2 (BDD).
BDDs symbolically represent the Kripke structures for boolean formulas, which is
standard when the order of the variables has been defined. A state of the system
is represented by an assignment of boolean values to the set of state variables. A
boolean formula, and thus its BDD, is a compact representation of the set of the
states represented by the assignments which make the formula true. In the same
way, the transition relation can be expressed as a boolean formula in two sets of vari-
ables, one for the current state and the other for the next state[18]. The strength of
symbolic model checking is reducing the state space explosion of Kripke structure
(exponential dependency on number of components), which would require too much
memory to store all its states.
NuSMV has been created to support the verification for industrial designs, the cus-
tom verification tools, the formal verification techniques, and the research fields[14].
The main features of NuSMV are the following[14]:

• Functionalities. It allows to represent asynchronous and synchronous FSM
to analyze specifications expressed as CTL and LTL, using BDD-based and
SAT-based model checking techniques, for achieving efficiency and partially
controlling the state explosion.

1The information in this Chapter comes from [9], [18], [14].
2http://nusmv.fbk.eu/NuSMV/papers/sttt j/html/node4.html.

20

4 – The NuSMV Model Checking Tool

• Architecture. Modules define different components and functionalities of
NuSMV. Modules are linked thanks to interfaces.

• Implementation. It is written in ANSI C. It combines the state-of-art BDD-
package, developed at Colorado University, and the SAT -basedmodel checking
component that includes an RBC-based Bounded Model Checker, which can
be connected to the Minisat SAT Solver and/or to the ZChaff SAT solver.
This ensures NuSMV2 is robust, portable, efficient and easy to understand by
developers.

In this work it is used NuSMV v2.6.03 which is distributed with an open source
license.

4.1 Input Language

In this section it is presented the syntax and semantics of the input language of
NuSMV. A vertical bar (‘|’) is used to separate alternatives in the syntax[14]. Any
string starting with two dashes (‘−−’) and ending with a newline is a comment and
it is ignored by the parser[14].

4.1.1 Types Overview

This section provides an overview of the types that are supported by NUSMV, which
are Boolean, Integer, Enumeration, Word, and Array.

Boolean type comprises symbolic values FALSE and TRUE.

Integer type is simply any whole number, positive or negative in the range −231 +1
to 231 − 1.

Enumeration type is specified by full enumerations of all the values that the type
comprises. It does not contain information about the exact values constituting the
types, but only the flag whether all values are integer numbers (integer enu-
meration), symbolic constants (symbolic enumeration), or both (integers-and-
symbolic enumeration). For example, it may be {-1, 1}, {stopped, running,
waiting, finished}, or {FAIL, 1, 3, OK}.

Word type defines unsigned word[N] and signed word[N], vectors of bits
which allow bitwise logical and arithmetic operations (unsigned and signed, respec-
tively), where N represents the width.

3http://nusmv.fbk.eu/

21

4 – The NuSMV Model Checking Tool

Array declares arrays with a lower and upper bound for the index and the type of
the elements in the array itself. For example, array 0..3 of boolean defines
an array of four elements of boolean type.

Since it is intended to describe finite state machines in this work, the only data
types used are Boolean and Enumeration.

4.1.2 Expressions

In NuSMV all expressions are constraints on the type of operands. If an expres-
sion violates the type system, then program will generate error. Expressions can
be grouped in Basic expressions and Next expressions. Basic expressions can
represent sets of states. Instead, next expressions link current and next state vari-
ables to express transitions as in the Kripke structure. An Identifier is an expression
which references an object. Objects are instances of modules, variables, and defined
symbols. The syntax of an identifier is as follows:

identifier :: symbol

Basic Expressions

Some of the representative basic expressions are: Boolean, Integers, Symbolic and
Range.

• Boolean Constant is one of the symbolic values FALSE or TRUE. The syntax
is the following:

boolean constant :: FALSE | TRUE

• Integer Constant is an integer number.

integer constant :: integer number

• Symbolic Constant is an identifier with a unique value (with symbolic
enumeration).

symbolic constant :: identifier

• Range Constant is a set of consecutive integer numbers.

range constant :: integer number .. integer number

22

4 – The NuSMV Model Checking Tool

For example, a constant -1..5 indicates the set of numbers -1, 0, 1, 2,
3, 4 and 5.

Other common expressions used in NuSMV are: Arithmetic, Logic and Bitwise,
Comparison and Conditional.

• Arithmetic Operators are related to integer and word type. They are ad-
dition, subtraction, multiplication, division, and mod (remainder of the divi-
sion).

basic expr ::
basic expr + basic expr
| basic expr - basic expr
| basic expr * basic expr
| basic expr / basic expr
| basic expr mod basic expr

• Logic and Bitwise Operators require boolean operands, or word type. The
main ones are & (and), | (or), xor (exclusive or), -> (implies), <-> (if and
only if), and ! (not) (unary operator).

basic expr ::
basic expr & basic expr
| basic expr | basic expr
| basic expr xor basic expr
| basic expr -> basic expr
| basic expr <-> basic expr
| !basic expr

• Comparison Operators are: = (equality), != (inequality), > (greater than),
< (less than), >= (greater than or equal to), and <= (less than or equal to).

basic expr ::
basic expr = basic expr
| basic expr != basic expr
| basic expr > basic expr
| basic expr < basic expr
| basic expr >= basic expr
| basic expr <= basic expr

• Case Expressions (If-then-else) returns the value of the first expression on
the right hand side of ‘:’, such that the corresponding condition on the left
hand side is TRUE.

23

4 – The NuSMV Model Checking Tool

case
cond1 : expr1;
cond2 : expr2;
...
TRUE : exprN; --otherwise

esac

If cond1 then expr1, else if cond2 then expr2, else if ... then exprN.
If all conditions on the left hand side are FALSE, the program will return an
error.

Basic Next Expression

This expression refers to the values of variables in the next state. Given a state
variable a, next(a) refers to that variable a in the next time step, thus defining
the transition relation in the FSM.

next(var) := next expr;

next expr is evaluated in the domain of var. If no next() assignment is spec-
ified for a variable, then the variable can evolve non-deterministically (i.e. it is
unconstrained). Usually If-then-else and next() expressions are combined to al-
low variables to have different evolution in time.

4.2 Definition of the FSM

The basic building blocks of SMV models are modules. They define the set of
state variables, parameters and restrictions on behaviour during the execution of
the FSM. The state of the whole model consists of instantiated modules and their
internal states. A module includes:

• A declaration section of the variables.

• An assignment section to define the valid initial states.

• An assignment section which defines the transition relations, describing how
the variables change at each step.

• A specification section to determine if a such property is verified or not.

24

4 – The NuSMV Model Checking Tool

4.2.1 Variable Declarations

A variable can be State, Frozen, or Input variable. The type of a variable is spec-
ified by means of the declaration section, according to the variable’s types specified
in the paragraph 4.1.1. Each state of the model is an assignment of values to a set
of state and frozen variables. A variable can take only the values from the domain
of its declared type.

State variables can be instanced within a module (which defines the model), and
within the specifications. They are declared by the notation VAR.

Input variables, declared by IVAR, are used to label transitions of the Finite
State Machine. Input variables cannot be instanced within a module (more limited
than state variables).

Frozen Variables, FROZENVAR, keep their initial value through the whole evolu-
tion of the state machine. For these variables, initial state assignments are allowed,
but next state assignments are illegal and other statements can lead to some unsafe
behaviours of the model. All kinds of specifications involving those variables are
allowed.

The following example shows different variable declarations, where a, c, and d
are boolean, instead b is defined as enumerative type, where all possible values are
{stopped, running, waiting, finished}.

VAR
a : boolean;
b : {stopped, running, waiting, finished};

IVAR
c : boolean;

FROZENVAR
d : boolean;

4.2.2 Modelling Style

The behaviour of the model can be defined through constraints on variable in-
stanced within the modules. Constraints can be INIT, INVAR, TRANS, ASSIGN,
and FAIRNESS.

INIT constraint determines the set of boolean expressions that must be true in
every initial state.

INIT expr

25

4 – The NuSMV Model Checking Tool

INVAR constraint defines the set of boolean expressions that must be true in every
state.

INVAR expr

TRANS constraint defines the set of transition relations of the model as a set of
current/next state pairs.

TRANS expr

In the case where no next statement is defined, TRANS constraint does not hold.
For those cases, INVAR constraints must be used.
ASSIGN constraint assigns the current, the initial and the next value to a variable.

ASSIGN
var1 := expr1;
init(var2) := expr2;
next(var2) := expr3;

The normal assignment, init() and next() constraints can be rewritten in terms
of INVAR, INIT, and TRANS constraints, respectively, but it is not true the vice
versa. FAIRNESS restricts the analysis to paths where the property is true infinitely
often.

FAIRNESS expr;

A path which satisfies this kind of constraint is called fair path.
Modelling with ASSIGN constraint assures there are not deadlock states. On the
other hand, INIT and TRANS constraints could lead to this problem[14]. To avoid
this bad situation, FAIRNESS constraint can be used for each wanted behaviour
of the system. Moreover, the set of initial values of the model’s variables defines
the initial states of the system. Defining the transition relations, means forcing the
variables to assume such value in the next time step. If the initial value for a vari-
able is not specified and/or no transition assignment is specified, then that variable
initially can assume any value in its domain, and it can evolve non-deterministically.

Restrictions on the assignments

How the FSM evolves in time is described by the assignments, which are defined by
a system of equations. To guarantee that a program is implementable, restrictive
syntactic rules are placed on the structure of assignments:

• Each variable may be assigned only once in the program, to avoid conflicting
definitions. For example, either assign a value to a variable a (a := value)
once, or init(a) and/or next(a) once, but not both at the same time for
a.

26

4 – The NuSMV Model Checking Tool

• The set of equations must not have ‘cycles’ in its dependency graph not broken
by delays, thus there is a fixed order variables computed at each step. For
instance, the assignments:

x := y;
y := x;

form a loop of dependencies whose total delay is zero. In this case there is
no-deterministic way to compute x or y, since at each time instant x depends
on the value of y and vice versa. To overcome it, can be introduced a “unit
delay dependency” between variables, using next() operator.

x := y;
next(y) := x;

If a SMV program does not respect these restrictions, an error is reported by
NuSMV.

4.2.3 Declarations and Instantiations of the Modules

A module is a collection of declarations, constraints and specifications. In each SMV
program there must be a Module main, which is the top-module. Modules are used
in such a way that each instance of a module refers to its data structures. SMV
language allows to build structural hierarchy, thus a module can contain instances
of other modules. Once defined, a module can be instantiated as many times as
necessary, and it is listed inside the VAR declaration of the parent module. All the
variables defined in a module can be accessed from outside via the DOT notation
(e.g., <MODULE NAME>.<variable>). The semantics of the module instantiation
follows the call-by-reference mechanism, where formal parameters are substituted by
actual parameters when the module is instantiated into upper-module. For example
in the following code fragment:

MODULE main
...
VAR
a : boolean;
b : foo(a); --foo instance
...

MODULE foo(x)
ASSIGN
x := TRUE;

27

4 – The NuSMV Model Checking Tool

the variable a has value TRUE.
The latest versions of NuSMV support only synchronous FSM by the input language,
thus there is not any synchronization problem since the program executes the model
in a sequential style.

4.3 Specifications

Each SMV program can specify the correctness of properties on the FSM, to be sure
that the modelled system is designed properly. NuSMV checker supports specifica-
tions in LTL, CTL, and others, which can be included within any module. Each
specification is evaluated by NuSMV, in order to determine their truth or falsity
over the FSM. When they are false, the model checker prints a counterexample, i.e.
a trace of the FSM where the property is violated.

4.3.1 LTL specifications

LTL specifications are specified by the keyword LTLSPEC. The syntax is:

LTLSPEC ltl expr;

where ltl expr can include any logical expression, future expression, and past
expression. The syntax of LTL formulas recognized by NuSMV is as follows:

ltl expr ::
! ltl expr --logical not
| ltl expr & ltl expr --logical and
| ltl expr | ltl expr --logical or
| ltl expr xor ltl expr --logical xor
| ltl expr -> ltl expr --logical implies
-- FUTURE
| X ltl expr --next state
| G ltl expr --globally
| F ltl expr --future
| ltl expr U ltl expr --until
| ltl expr V ltl expr --release

In NuSMV, LTL specifications can be analyzed both by means of BDD-based model,
which investigates only infinity paths; or by means of SAT-based model which deals
also with bounded paths. Depending on the verification engine used, the NuSMV
may return different results for the same LTL specification. The FSM to be checked
is said total if it returns the same result for both model checker engines, otherwise,
it can lead to deadlock states[14].

28

4 – The NuSMV Model Checking Tool

4.3.2 Desired LTL properties

At this point it is important to define the properties in NuSMV that must be sat-
isfied by the model to ensure its correctness. They are: Safety, Liveness, and
Fairness properties[9].

Safety property assures that two or more conditions never occur at the same
time, thus avoiding bad behaviours. It can be expressed as:

LTLSPEC G ! (cond1 & cond2)

G-operator is used to state that the formula holds in every state of every path of
the model.

Liveness property states that whenever a request is received, at some sub-
sequent state a response is executed:

LTLSPEC G (request -> F response)

This property prevents the model from starvation condition.

Fairness property assures that a condition is verified in every state along every
path infinitely often:

LTLSPEC G F cond

4.4 Running NuSMV

In this section are shown the steps to run a SMV program. NuSMV can be used
either in batch or in interactive mode. The simulation of a SMV program helps the
user to check the model against a set of specifications, and to explore the possible
executions (traces) of the SMV model. There are three ways to generate traces:

• Deterministically (automatically generated by NuSMV);

• Randomly (automatically generated by NuSMV);

• Interactively, where the system executes and shows the possible future states
step by step. The user can choose the next state and specify further constraints
on the next states.

The main interaction mode of NuSMV is through an interactive shell. First of all,
to launch the NuSMV shell, the path of ‘bin’ directory of NuSMV must be included
within the environment variables of the operating system. The model description
and the specifications are written in a file with .smv extension. The interactive
shell is activated from the system prompt as follows:

29

4 – The NuSMV Model Checking Tool

system prompt> NuSMV -int file name.smv
NuSMV>

The previous command starts the interactive shell (-int) loading the file file name.smv.
Once in the NuSMV shell, the system is ready to execute user commands step by
step. Every command is a sequence of words:

• left-most specifies the command to be executed;

• remaining ones are arguments to the invoked command.

To quit the NuSMV shell:

NuSMV> quit

4.4.1 Simulation and Checking Specifications Commands

In the NuSMV shell, the system must be initialized as follows:

NuSMV> go

Once the system has been initialized in the NuSMV shell, to perform the simulation,
at the beginning it is necessary to pick a state from the possible initial states to start
a new trace.

NuSMV> pick state -r -v

This command line picks and prints out a random initial state. Subsequent states
are computed typing the command:

NuSMV> simulate -r -p

which randomly simulates 10 steps of a trace from the current selected state and
shows variable changes during the simulation (to simulate more steps just add -k
<number steps>). To show all the currently simulated traces:

NuSMV> show traces -a

To print out the number of all reachable states:

NuSMV> print reachable states

The number of fair transitions (transitions executed infinitely often) is printed out
with the command:

NuSMV> print fair transitions

30

4 – The NuSMV Model Checking Tool

For checking if the transition relation is total to prevent deadlock state:

NuSMV> check fsm

For the LTL formulas check over the system can be used:

NuSMV> check ltlspec

which prints out if each LTL property is satisfied (TRUE) or not by the model. When
a specification does not hold, a counterexample (i.e., a witness of the offending
behaviour of the system) is produced.

31

Chapter 5

Wireless Sensor Network

In this Chapter1, the system for the Wireless Sensor Network and its features are
defined. The architecture and the different subsystems are explained to accomplish
our scope. Moreover, the system is presented as two Extended FSMs. There are
different advantages in using wireless sensors, such as[24]:

• Non-intrusive, to deploy them it is not required to make changes to the existing
data center infrastructure. Having thousands of sensors wired to the TCP/IP
network can lead to the performance degradation and system management
risks.

• Suitable to changes, they can be quickly deployed and relocated, which is an
important feature for the final operators.

• Low cost, they have a relatively low price in comparison with the worth of the
servers, and with the purpose they accomplish.

5.1 Introduction to the system

This system is based on plenty of sensors which allow to obtain big amounts of data
regarding each server including temperature, humidity, and power consumption. It
is thought to work with up to thousands of sensors (limited by the Bluetooth net-
work) in order to keep the data center into its operating range. This sensors can
communicate with other parts of the network, sending data, and receiving actions
within a network Bluetooth 5.0. The collected data can be processed and will help
the final user in real-time to make decisions thus to improve the efficiency of the data
center. This system is designed to be flexible and reliable, thanks to the distribution
of Gateways, which act as joint points for the communication between the sensors

1The information in this Chapter comes from [21] and [22].

32

5 – Wireless Sensor Network

and the Base Stations, the Core, and the system Service for the user. Figure 5.1,
shows the architecture of our system.

Figure 5.1: Architecture of the system[21].

A board Nordic Semiconductor nRF52840 Development Kit (nRF52840-DK)2

and some peripherals are used to validate the operating principle of our scope. This
development board implements and manages the gateways, which will communicate
with the sensors. It is connected to the PC through a USB cable, which will act as
base station, maintaining a direct and stable communication for the core and the
service to the final user. The choice of this nRF52840-DK is due to its great com-
munication power. Base Stations will communicate with the Core of the network
through MQTT 3 bus, which is able to manage huge volume of data and is easily scal-
able. Sensors and gateways will be linked through a Wireless Mesh Network[19],
and shown in Figure 5.2. This choice was made in order to have a better com-
munication, security, system stability, and to have an easy reconfiguration for the
final user. Mesh network topology has the ability of dynamically self-organizing

2https://www.nordicsemi.com/
3http://mqtt.org/

33

5 – Wireless Sensor Network

and self-configuring the nodes, where every node is connected to each other and
everything is efficiently distributed across the network with no central entity. The
process of adding a device to a specified mesh network is called Provisioning4; it
turns a sensor device into a node on the network and includes security key distribu-
tion and the creation of a unique ID for the sensor being added. During this phase,
the gateway executes the auto-configuration. The user who installs the sensors will

Figure 5.2: Bluetooth Mesh Network[23].

shake one of them, thus the linked gateway will receive a notification that a new
sensor has been introduced in the network. The user will assign a name to it for the
base station, which will interchange passwords between them, and the gateway will
define its address to send data packets and configuration settings. From this point
on, the sensor will be part of the system and will send measurements periodically
to the base station, and will wait for operations from the gateway. Moreover, the
base station will collect messages and information on the available nodes among
the network. It’s important also to simulate the installation process by the user to
ensure the right behaviour of the this system in a real environment. The final user
will obtain metrics in real-time and the historical view, to help him making decisions
to optimize the cooling resources in the data center. The goal of this project is to
verify, from the functional point of view, this wireless sensor network in order to re-
duce the time and the costs due to the development of this kind of critical real-time
systems.

4https://www.bluetooth.com/bluetooth-technology/topology-options/mesh/mesh-glossary/

34

5 – Wireless Sensor Network

5.2 Requirements

This section provides the functional requirements of this system with the format
in compliance with the Easy Approach to Requirements Syntax (EARS)[20].
The functional requirements include Event-driven requirements, State-driven re-
quirements, Unwanted behaviour requirements, and Complex requirements. Event-
driven requirements are invoked only when a trigger event takes place. They state
what the system shall do when a specific event is detected at the system boundary,
and begin with the word WHEN. State-driven requirements are triggered when the
system enters a specific state, or mode, and they are indicated by the word WHILE.
Unwanted behaviour requirements handle all situations that are undesirable (such
as error conditions, failures, faults, disturbances and other undesired events), and
they are stated in IF/THEN form. Complex requirements are combinations of all
the previous ones. The requirements for this wireless sensor network are:

RQ01 - WHILE the node is active and WHEN it is provisioned in mesh net-
work, the gateway shall maintain the node awake.

RQ02 - WHILE the node is awake and WHEN a notification request timer ex-
pires, the node shall send its status to the gateway every 5 seconds.

RQ03 - WHILE the node is active and WHEN it is commanded to remain awake,
the gateway shall maintain the node awake.

RQ04 - WHILE the node is active and WHEN it is commanded by the gate-
way to go into the sleep mode, the gateway shall change the mode of this node.

RQ05 - WHILE the node is in sleep mode and WHEN a specific periodic timer
expires, the gateway shall activate the node for 10 seconds.

RQ06 - WHILE the node is in sleep mode, WHEN the user applies a move-
ment on the sensor, the gateway shall activate the node for 10 seconds.

RQ07 - WHILE the sensor is connected into the network, WHEN the user applies
a movement on it, the gateway shall detect it and send a notification to the user
through the user application.

RQ08 - WHILE the sensor is detected by the system, WHEN the user enters
the identifier of the node through the user application, the gateway shall activate
the sensor’s led.

35

5 – Wireless Sensor Network

RQ09 - WHILE the sensor is detected by the system, WHEN the user accepts the
terms to operate with it in the user application, the system shall run the autotest
and the provisioning for the node into the network.

RQ10 - WHILE the node has passed the autotest and the configuration in the
network, and a specific timer expires, the sensor node shall send data every 2 min-
utes to the gateway.

RQ11 - WHILE the node is active, WHEN the user performs a predefined se-
quence of movements on the sensor, the system shall run the autotest on the node.

RQ12 - WHILE the sensor is connected to the network, IF the user enters a
wrong identifier through the user application, THEN the system shall generate an
error condition.

RQ13 - WHILE the sensor is connected to the network, IF the user does not
accept the terms to operate with it, THEN the system shall generate an error con-
dition.

RQ14 - WHILE the node is active, IF the sensor fails the autotest, THEN the
system shall generate an error condition.

36

5 – Wireless Sensor Network

5.2.1 Traceability table

Table 5.1 indicates which LTL specification covers which requirement for this sys-
tem, as defined in the previous section, where each state and event is described in
Table 5.2.

RQXX LTL Specifications

RQ01
G (active & already prov − > F (keep & node on
& notify timer))

RQ02 G (keep & notify req − > F notify on)
RQ03 G (keep & on req − > F (!keep timer & notify timer))

RQ04
G (keep & sleep req − > F (sleep & !keep timer
& !notify timer & !node on))

RQ05 G (sleep & wake timer − > F (keep & keep timer & node on))
RQ06 G (sleep & move − > F (keep & keep timer & node on))
RQ07 G (active & move − > F notify pc)
RQ08 G (active & id − > F led)
RQ09 G (active & accept − > F (auto req & provis))
RQ10 G (keep & timer expires − > F read send)
RQ11 G (keep & move seq − > F auto req)
RQ12 G (active & !id − > F err 1)
RQ13 G (active & !accept − > F err 2)
RQ14 G (active & !autotest − > F err 3)

Table 5.1: Requirements and LTL specifications traceability table.

37

5 – Wireless Sensor Network

State Description

active Node active but not provisioned in the network

keep Node active and provisioned

sleep Node in sleep mode

Event Description

already prov Node successfully provisioned into the network

notify req Notification request

notify on Notification sent by the node

sleep req Sleep request sent by the gateway to the node

on req Request to keep the node active

node on Status of the node (1=awake, 0=asleep)

wake timer Periodic time frame to wake up the node

keep timer Timer to keep the node awake for 10 seconds

notify timer Timer to send notification every 5 seconds

move Signal when the user performs a movement on the sensor

notify pc Sensor detected by the whole system

id Signal related to the ID entered by the user

accept When the user accepts the terms

led Signal to control the led of the sensor

auto req Autotest function

provis Provisioning function

timer expires Periodic time frame to read temperature and humidity

read send Signal to read data from the sensor and send them out every 2 minutes

move seq Sequence of movements on the sensor performed by the user

autotest Result of autotest function

err 1 Error when the user enters a wrong ID for the node

err 2 Error when the user does not accept the terms to operate
with the node

err 3 Error when the sensor fails the autotest

Table 5.2: Description of the states and events for the LTL specifications.
38

5 – Wireless Sensor Network

5.3 System Model Definition

For this Wireless Sensor Network, we focus on two main aspects (and an EFSM has
been designed for each of them):

• Initialization until the node has been provisioned, sleep mode request, and
wake up request sent by the gateway. This aspect is covered by the Configuration
model. Moreover, this model assures as well as to keep the node in sleep mode
to reduce the power consumption.

• The periodic reading from sensors, the conversion of the values in order to fit
in the Bluetooth message payload, the construction and the transmission of
data packet forward the base station. This aspect is covered by the Reading
model.

5.3.1 Configuration Model

According to the purpose of this Wireless Sensor Network, the Configuration model
has the following specifications:

• At the beginning, the sensor (node) must be provisioned in the network.

• Once it is provisioned, the node remains on until it receives the sleep request
by the gateway. When the node receives a sleep request, it goes to the sleep
mode, and remains like that until a periodic timer (wake timer) expires, or
when a movement of the sensor is performed by the user. On both cases
a timer starts, and the node remains on if it receives an on request by the
gateway within 10 seconds, otherwise it goes to the sleep mode again.

• When the node is on, it is asked to send a notification to the gateway every
5 seconds to confirm that it is active.

Figure 5.3 shows the Configuration model as Extended Finite State Machine, where
the system can take one of the following states at any given time:

• START, where the node is waiting to be provisioned.

• KEEP, the node is in provisioned and awake.

• PROV, the node is in sleep mode.

The state transitions are:

• S1, when auto-configuration is completed, the node is provisioned into the
mesh network (the gateway receives already prov), the sensor is activated
(node on) and notify timer starts.

39

5 – Wireless Sensor Network

Figure 5.3: EFSM for the Configuration Model.

already prov / node on := 1, notify timer := 1;

• S2, the node receives a request to send a notification (notify req) when
notify timer expires. Then, the notification is sent (notify on).

notify req / notify on := 1;

• S3, the gateway sends the command to the node to stay active (on req). The
node remains active by stopping keep timer, and notify timer starts.

on req / keep timer := 0, notify timer := 1;

• S4, the node receives a command by the getaway to go into the sleep mode
(sleep req). Then it is in the sleep mode (!node on), and keep timer
and notify timer are stopped.

sleep req /
node on := 0, keep timer := 0, notify timer := 0;

• S5, the node receives a command to wake up, through either the periodic
timer that expires (wake timer) or the movement of the sensor by the user
(move). The node wakes up and the keep timer starts counting.

wake timer | move / keep timer := 1, node on := 1;

The current state, the trigger condition, the next state, and the variable updates
for the Configuration model are grouped in Table 5.3.

40

5 – Wireless Sensor Network

Transition Current State Condition Next State Variable

S1 Start already prov Keep
node on

notify timer

S2 Keep notify req Keep notify on

S3 Keep on req Keep
!keep timer
notify timer

S4 Keep sleep req Prov
!node on

!keep timer
!notify timer

S5 Prov wake timer | move Keep
keep timer

node on

Table 5.3: State transition table for the Configuration model.

5.3.2 Reading Model

For the periodic reading by the sensor and to send data packet to the base station,
the Reading Model has been designed according to the following specifications:

• To make this real-time system able to interact with the user, also the possibility
of a user application has been considered during the design of this Wireless
Sensor Network. Initially, the sensor is placed into the network and the system
starts. When the user makes a move on the sensor and it is detected by the
system, the user can enter the identifier associated to the sensor into the user
application to make it ready to communicate. This is also useful to ensure
higher security for the network by the outside world.

• Once the user has entered the identifier and has accepted the terms to operate
with it, the network system starts the autotest and the auto-configuration
for provisioning the node. The autotest is performed to ensure the hardware
integrity of the sensor in the network.

• If the node has passed the autotest and it is configured correctly, then it is able
to read and send measurements. Once a specific timer of 2 minutes expires,
the network collects the data from the sensor until a sequence of movements
is performed on the sensor. When this occurs, the node must perform the
autotest again.

• If during the configuration phase, errors are detected, a signal of error is gen-
erated and the network must be reset by the user.

41

5 – Wireless Sensor Network

Figure 5.4: EFSM for the Reading model.

Figure 5.4 shows the Reading model as EFSM, where the machine accepts any of
the states:

• START, the initial state and the sensor is already placed in the network.

• NAME, the user can enter the node’s identifier into the user application.

• APPROVAL, the user can accept or not the terms to operate with it.

• ERROR1, in case of the user enters a wrong name or does not accept the
terms.

• CONF, where the autotest and provisioning are performed.

• READ, when the sensor has successfully passed the autotest and the config-
uration phase, it is able to read and send data periodically.

• ERROR2, in case of error during the autotest phase.

The state transitions are:

• T1, the node detects the movement (move) and notifies the user through the
user application (notify pc).

move / notify pc := 1;

• T2, the user enters the right identifier of the node (id). Then the gateway
switches on the led of the sensor (led).

id / led := 1;

42

5 – Wireless Sensor Network

• T3, the user enters a wrong identifier (!id). An error notification is raised to
the user (err 1).

!id / err 1 := 1;

• T4, the user accepts the terms for the node (accept). The autotest starts
(auto req), and the provisioning for the node is performed (provis).

accept / auto req := 1, provis := 1;

• T5, the user does not accept the terms (!accept). A notification error is
raised to the user (err 2).

!accept / err 2 := 1;

• T6, When the errors conditions (err 1 and err 2) are fixed, an event is
generated (deadline), and the machine is restarted.

!err 1 ∧ !err 2 / deadline := 1;

• T7, the node successes the autotest (autotest) and it is configured correctly
into the network (config), and then a timer starts (init read).

autotest ∧ config / init read := 1;

• T8, an error is detected during the autotest (!autotest), then a notification
is raised (err 3).

!autotest / err 3 := 1;

• T9, the node is not configured into the network correctly (!config), then
the system performs the provisioning of the node again.

!config / provis := 1;

• T10, every time the timer init read expires (timer expired), the sensor
performs the reading and it is sent to the gateway (read send).

timer expired / read send := 1;

• T11, the specific sequence of movements is performed on the sensor (move seq),
then the timer ends (!init read) and the autotest is performed again.

43

5 – Wireless Sensor Network

move seq / init read := 0, auto req := 1;

• T12, once the sensor fails the autotest, the machine will stay in ERROR2
state until it will be restarted.

1 / -;

The current state, the trigger condition, the next state, and the variable updates
for the Reading model are shown in Table 5.4.

Transition Current State Condition Next State Variable

T1 Start move Name notify pc

T2 Name id Approval led

T3 Name !id Error1 err 1

T4 Approval accept Conf
auto req
provis

T5 Approval !accept Error1 err 2

T6 Error1 !err 1 & !err 2 Start deadline

T7 Conf autotest & config Read init read

T8 Conf !autotest Error2 err 3

T9 Conf !config Conf provis

T10 Read timer expired Read read send

T11 Read move seq Conf
!init read
auto req

T12 Error2 1 Error2 -

Table 5.4: State transition table for the Reading model.

44

Chapter 6

System Simulation and
Verification

The system presented in Chapter 5 and modelled in Annex A is simulated and ver-
ified within the NuSMV shell in this Chapter. The models have been simulated
interactively and randomly, considering 100 steps, according to the NuSMV com-
mands presented in Section 4.4.

6.1 Configuration Model Simulation

In this section the simulation result of the Configuration model CONF MOD.smv,
defined in A.1, is presented.

Listing 6.1: Simulation trace of the Configuration model.

$ NuSMV -int CONF_MOD.smv

*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:37:22 2015)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

*** Please report bugs to <Please report bugs to <nusmv-users@fbk.eu>>

*** Copyright (c) 2010-2014, Fondazione Bruno Kessler

*** This version of NuSMV is linked to the CUDD library version 2.4.1

*** Copyright (c) 1995-2004, Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver.

*** See http://minisat.se/MiniSat.html

*** Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson

*** Copyright (c) 2007-2010, Niklas Sorensson

45

6 – System Simulation and Verification

NuSMV > go
NuSMV > pick_state -r
NuSMV > simulate -r -p -k 100

******** Simulation Starting From State 1.1 ********
Trace Description: Simulation Trace
Trace Type: Simulation

-> State: 1.1 <-
MOVE = FALSE
ALREADY_PROV = FALSE
SLEEP_REQ = FALSE
WAKE_TIMER = FALSE
NOTIFY_REQ = FALSE
ON_REQ = FALSE
sensor1.state = start
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE
sensor1.NOTIFY_ON = FALSE

-> State: 1.2 <-
-> State: 1.3 <-
ALREADY_PROV = TRUE

-> State: 1.4 <-
sensor1.state = keep
sensor1.NOTIFY_TIMER = TRUE
sensor1.NODE_ON = TRUE

-> State: 1.5 <-
SLEEP_REQ = TRUE

-> State: 1.6 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE

-> State: 1.7 <-
-> State: 1.8 <-
MOVE = TRUE

-> State: 1.9 <-
MOVE = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.10 <-
-> State: 1.11 <-
SLEEP_REQ = TRUE

-> State: 1.12 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE

-> State: 1.13 <-

46

6 – System Simulation and Verification

WAKE_TIMER = TRUE
-> State: 1.14 <-
WAKE_TIMER = FALSE
ON_REQ = TRUE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.15 <-
SLEEP_REQ = TRUE
NOTIFY_REQ = TRUE
ON_REQ = FALSE
sensor1.NOTIFY_TIMER = TRUE
sensor1.KEEP_TIMER = FALSE

-> State: 1.16 <-
SLEEP_REQ = FALSE
NOTIFY_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE

-> State: 1.17 <-
-> State: 1.18 <-
-> State: 1.19 <-
-> State: 1.20 <-
-> State: 1.21 <-
-> State: 1.22 <-
-> State: 1.23 <-
MOVE = TRUE

-> State: 1.24 <-
MOVE = FALSE
WAKE_TIMER = TRUE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.25 <-
SLEEP_REQ = TRUE
WAKE_TIMER = FALSE
ON_REQ = TRUE

-> State: 1.26 <-
SLEEP_REQ = FALSE
NOTIFY_REQ = TRUE
ON_REQ = FALSE
sensor1.state = prov
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE

-> State: 1.27 <-
MOVE = TRUE
NOTIFY_REQ = FALSE

-> State: 1.28 <-
MOVE = FALSE

47

6 – System Simulation and Verification

WAKE_TIMER = TRUE
ON_REQ = TRUE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.29 <-
WAKE_TIMER = FALSE
ON_REQ = FALSE
sensor1.NOTIFY_TIMER = TRUE
sensor1.KEEP_TIMER = FALSE

-> State: 1.30 <-
-> State: 1.31 <-
-> State: 1.32 <-
-> State: 1.33 <-
-> State: 1.34 <-
SLEEP_REQ = TRUE

-> State: 1.35 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE

-> State: 1.36 <-
-> State: 1.37 <-
MOVE = TRUE

-> State: 1.38 <-
MOVE = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.39 <-
SLEEP_REQ = TRUE

-> State: 1.40 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE

-> State: 1.41 <-
-> State: 1.42 <-
MOVE = TRUE
WAKE_TIMER = TRUE

-> State: 1.43 <-
MOVE = FALSE
WAKE_TIMER = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.44 <-
SLEEP_REQ = TRUE

-> State: 1.45 <-

48

6 – System Simulation and Verification

SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE

-> State: 1.46 <-
-> State: 1.47 <-
-> State: 1.48 <-
WAKE_TIMER = TRUE

-> State: 1.49 <-
WAKE_TIMER = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.50 <-
-> State: 1.51 <-
-> State: 1.52 <-
SLEEP_REQ = TRUE

-> State: 1.53 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE

-> State: 1.54 <-
WAKE_TIMER = TRUE

-> State: 1.55 <-
MOVE = TRUE
WAKE_TIMER = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.56 <-
MOVE = FALSE
ON_REQ = TRUE

-> State: 1.57 <-
ON_REQ = FALSE
sensor1.NOTIFY_TIMER = TRUE
sensor1.KEEP_TIMER = FALSE

-> State: 1.58 <-
SLEEP_REQ = TRUE

-> State: 1.59 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE

-> State: 1.60 <-
MOVE = TRUE
WAKE_TIMER = TRUE

-> State: 1.61 <-
MOVE = FALSE

49

6 – System Simulation and Verification

WAKE_TIMER = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.62 <-
SLEEP_REQ = TRUE

-> State: 1.63 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE

-> State: 1.64 <-
MOVE = TRUE

-> State: 1.65 <-
MOVE = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.66 <-
SLEEP_REQ = TRUE

-> State: 1.67 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE

-> State: 1.68 <-
MOVE = TRUE

-> State: 1.69 <-
MOVE = FALSE
ON_REQ = TRUE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.70 <-
NOTIFY_REQ = TRUE
ON_REQ = FALSE
sensor1.NOTIFY_TIMER = TRUE
sensor1.KEEP_TIMER = FALSE

-> State: 1.71 <-
NOTIFY_REQ = FALSE
sensor1.NOTIFY_ON = TRUE

-> State: 1.72 <-
sensor1.NOTIFY_ON = FALSE

-> State: 1.73 <-
SLEEP_REQ = TRUE

-> State: 1.74 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE

50

6 – System Simulation and Verification

sensor1.NODE_ON = FALSE
-> State: 1.75 <-
MOVE = TRUE

-> State: 1.76 <-
MOVE = FALSE
WAKE_TIMER = TRUE
ON_REQ = TRUE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.77 <-
WAKE_TIMER = FALSE
ON_REQ = FALSE
sensor1.NOTIFY_TIMER = TRUE
sensor1.KEEP_TIMER = FALSE

-> State: 1.78 <-
SLEEP_REQ = TRUE

-> State: 1.79 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE

-> State: 1.80 <-
-> State: 1.81 <-
MOVE = TRUE

-> State: 1.82 <-
MOVE = FALSE
WAKE_TIMER = TRUE
ON_REQ = TRUE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.83 <-
SLEEP_REQ = TRUE
WAKE_TIMER = FALSE
NOTIFY_REQ = TRUE
ON_REQ = FALSE
sensor1.NOTIFY_TIMER = TRUE
sensor1.KEEP_TIMER = FALSE

-> State: 1.84 <-
SLEEP_REQ = FALSE
NOTIFY_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE

-> State: 1.85 <-
-> State: 1.86 <-
MOVE = TRUE

-> State: 1.87 <-

51

6 – System Simulation and Verification

MOVE = FALSE
WAKE_TIMER = TRUE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.88 <-
WAKE_TIMER = FALSE
ON_REQ = TRUE

-> State: 1.89 <-
SLEEP_REQ = TRUE
ON_REQ = FALSE
sensor1.NOTIFY_TIMER = TRUE
sensor1.KEEP_TIMER = FALSE

-> State: 1.90 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE

-> State: 1.91 <-
MOVE = TRUE
WAKE_TIMER = TRUE

-> State: 1.92 <-
MOVE = FALSE
WAKE_TIMER = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.93 <-
SLEEP_REQ = TRUE

-> State: 1.94 <-
SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NODE_ON = FALSE
sensor1.KEEP_TIMER = FALSE

-> State: 1.95 <-
WAKE_TIMER = TRUE

-> State: 1.96 <-
WAKE_TIMER = FALSE
ON_REQ = TRUE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

-> State: 1.97 <-
ON_REQ = FALSE
sensor1.NOTIFY_TIMER = TRUE
sensor1.KEEP_TIMER = FALSE

-> State: 1.98 <-
SLEEP_REQ = TRUE

-> State: 1.99 <-

52

6 – System Simulation and Verification

SLEEP_REQ = FALSE
sensor1.state = prov
sensor1.NOTIFY_TIMER = FALSE
sensor1.NODE_ON = FALSE

-> State: 1.100 <-
MOVE = TRUE
WAKE_TIMER = TRUE

-> State: 1.101 <-
MOVE = FALSE
WAKE_TIMER = FALSE
sensor1.state = keep
sensor1.NODE_ON = TRUE
sensor1.KEEP_TIMER = TRUE

NuSMV > quit

6.2 Reading Model Simulation

In this section is shown the simulation result of the Reading modelREAD MOD.smv,
which has been defined in A.2.

Listing 6.2: Simulation trace of the Reading model.

$ NuSMV -int CONF_MOD.smv

*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:37:22 2015)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

*** Please report bugs to <Please report bugs to <nusmv-users@fbk.eu>>

*** Copyright (c) 2010-2014, Fondazione Bruno Kessler

*** This version of NuSMV is linked to the CUDD library version 2.4.1

*** Copyright (c) 1995-2004, Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver.

*** See http://minisat.se/MiniSat.html

*** Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson

*** Copyright (c) 2007-2010, Niklas Sorensson

NuSMV > go
NuSMV > pick_state -r
NuSMV > simulate -r -p -k 100

******** Simulation Starting From State 1.1 ********
Trace Description: Simulation Trace
Trace Type: Simulation

-> State: 1.1 <-
MOVE = FALSE
MOVE_SEQ = FALSE

53

6 – System Simulation and Verification

ID = FALSE
ACCEPT = FALSE
TIMER_EXPIRED = FALSE
AUTOTEST = FALSE
CONFIG = FALSE
sensor1.state = start
sensor1.NOTIFY_PC = FALSE
sensor1.LED = FALSE
sensor1.AUTO_REQ = FALSE
sensor1.PROVIS = FALSE
sensor1.READ_INIT = FALSE
sensor1.READ_SEND = FALSE
sensor1.DEADLINE = FALSE
sensor1.ERR_1 = FALSE
sensor1.ERR_2 = FALSE
sensor1.ERR_3 = FALSE

-> State: 1.2 <-
-> State: 1.3 <-
MOVE = TRUE

-> State: 1.4 <-
MOVE = FALSE
ID = TRUE
sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.5 <-
ID = FALSE
sensor1.state = approval
sensor1.NOTIFY_PC = FALSE
sensor1.LED = TRUE

-> State: 1.6 <-
sensor1.state = error1
sensor1.ERR_2 = TRUE

-> State: 1.7 <-
sensor1.LED = FALSE
sensor1.ERR_2 = FALSE

-> State: 1.8 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.9 <-
MOVE = TRUE
sensor1.DEADLINE = FALSE

-> State: 1.10 <-
MOVE = FALSE
sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.11 <-
sensor1.state = error1
sensor1.NOTIFY_PC = FALSE
sensor1.ERR_1 = TRUE

54

6 – System Simulation and Verification

-> State: 1.12 <-
sensor1.ERR_1 = FALSE

-> State: 1.13 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.14 <-
sensor1.DEADLINE = FALSE

-> State: 1.15 <-
MOVE = TRUE

-> State: 1.16 <-
MOVE = FALSE
ID = TRUE
sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.17 <-
ID = FALSE
sensor1.state = approval
sensor1.NOTIFY_PC = FALSE
sensor1.LED = TRUE

-> State: 1.18 <-
sensor1.state = error1
sensor1.ERR_2 = TRUE

-> State: 1.19 <-
sensor1.LED = FALSE

-> State: 1.20 <-
-> State: 1.21 <-
-> State: 1.22 <-
sensor1.ERR_2 = FALSE

-> State: 1.23 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.24 <-
sensor1.DEADLINE = FALSE

-> State: 1.25 <-
-> State: 1.26 <-
-> State: 1.27 <-
-> State: 1.28 <-
-> State: 1.29 <-
-> State: 1.30 <-
-> State: 1.31 <-
-> State: 1.32 <-
-> State: 1.33 <-
-> State: 1.34 <-
-> State: 1.35 <-
MOVE = TRUE

-> State: 1.36 <-
MOVE = FALSE
ID = TRUE
sensor1.state = name

55

6 – System Simulation and Verification

sensor1.NOTIFY_PC = TRUE
-> State: 1.37 <-
ID = FALSE
sensor1.state = approval
sensor1.NOTIFY_PC = FALSE
sensor1.LED = TRUE

-> State: 1.38 <-
sensor1.state = error1
sensor1.ERR_2 = TRUE

-> State: 1.39 <-
sensor1.LED = FALSE

-> State: 1.40 <-
-> State: 1.41 <-
-> State: 1.42 <-
-> State: 1.43 <-
sensor1.ERR_2 = FALSE

-> State: 1.44 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.45 <-
MOVE = TRUE
sensor1.DEADLINE = FALSE

-> State: 1.46 <-
sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.47 <-
MOVE = FALSE
sensor1.state = error1
sensor1.NOTIFY_PC = FALSE
sensor1.ERR_1 = TRUE

-> State: 1.48 <-
sensor1.ERR_1 = FALSE

-> State: 1.49 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.50 <-
sensor1.DEADLINE = FALSE

-> State: 1.51 <-
-> State: 1.52 <-
-> State: 1.53 <-
MOVE = TRUE

-> State: 1.54 <-
MOVE = FALSE
sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.55 <-
sensor1.state = error1
sensor1.NOTIFY_PC = FALSE
sensor1.ERR_1 = TRUE

56

6 – System Simulation and Verification

-> State: 1.56 <-
-> State: 1.57 <-
sensor1.ERR_1 = FALSE

-> State: 1.58 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.59 <-
sensor1.DEADLINE = FALSE

-> State: 1.60 <-
-> State: 1.61 <-
MOVE = TRUE

-> State: 1.62 <-
MOVE = FALSE
sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.63 <-
sensor1.state = error1
sensor1.NOTIFY_PC = FALSE
sensor1.ERR_1 = TRUE

-> State: 1.64 <-
-> State: 1.65 <-
-> State: 1.66 <-
sensor1.ERR_1 = FALSE

-> State: 1.67 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.68 <-
MOVE = TRUE
sensor1.DEADLINE = FALSE

-> State: 1.69 <-
MOVE = FALSE
sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.70 <-
sensor1.state = error1
sensor1.NOTIFY_PC = FALSE
sensor1.ERR_1 = TRUE

-> State: 1.71 <-
sensor1.ERR_1 = FALSE

-> State: 1.72 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.73 <-
sensor1.DEADLINE = FALSE

-> State: 1.74 <-
-> State: 1.75 <-
MOVE = TRUE

-> State: 1.76 <-
MOVE = FALSE

57

6 – System Simulation and Verification

sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.77 <-
sensor1.state = error1
sensor1.NOTIFY_PC = FALSE
sensor1.ERR_1 = TRUE

-> State: 1.78 <-
sensor1.ERR_1 = FALSE

-> State: 1.79 <-
sensor1.state = start
sensor1.DEADLINE = TRUE

-> State: 1.80 <-
sensor1.DEADLINE = FALSE

-> State: 1.81 <-
MOVE = TRUE

-> State: 1.82 <-
MOVE = FALSE
ID = TRUE
sensor1.state = name
sensor1.NOTIFY_PC = TRUE

-> State: 1.83 <-
ID = FALSE
ACCEPT = TRUE
sensor1.state = approval
sensor1.NOTIFY_PC = FALSE
sensor1.LED = TRUE

-> State: 1.84 <-
ACCEPT = FALSE
AUTOTEST = TRUE
sensor1.state = conf
sensor1.AUTO_REQ = TRUE
sensor1.PROVIS = TRUE

-> State: 1.85 <-
sensor1.AUTO_REQ = FALSE

-> State: 1.86 <-
sensor1.PROVIS = FALSE

-> State: 1.87 <-
CONFIG = TRUE
sensor1.PROVIS = TRUE

-> State: 1.88 <-
TIMER_EXPIRED = TRUE
sensor1.state = read
sensor1.PROVIS = FALSE
sensor1.READ_INIT = TRUE

-> State: 1.89 <-
TIMER_EXPIRED = FALSE
AUTOTEST = FALSE
sensor1.READ_SEND = TRUE

-> State: 1.90 <-

58

6 – System Simulation and Verification

MOVE_SEQ = TRUE
sensor1.READ_SEND = FALSE

-> State: 1.91 <-
sensor1.state = conf
sensor1.AUTO_REQ = TRUE
sensor1.READ_INIT = FALSE

-> State: 1.92 <-
MOVE_SEQ = FALSE
sensor1.state = error2
sensor1.AUTO_REQ = FALSE
sensor1.ERR_3 = TRUE

-> State: 1.93 <-
-> State: 1.94 <-
-> State: 1.95 <-
-> State: 1.96 <-
-> State: 1.97 <-
-> State: 1.98 <-
-> State: 1.99 <-
-> State: 1.100 <-
-> State: 1.101 <-

NuSMV > quit

59

6 – System Simulation and Verification

6.3 Configuration Model Verification

The verification result of the property specifications over the Configuration model
CONF MOD.smv, as described in A.1, is shown below.

Listing 6.3: Verification of the property specifications over the Configuration model.

$ NuSMV -int CONF_MOD.smv

*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:37:22 2015)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

*** Please report bugs to <Please report bugs to <nusmv-users@fbk.eu>>

*** Copyright (c) 2010-2014, Fondazione Bruno Kessler

*** This version of NuSMV is linked to the CUDD library version 2.4.1

*** Copyright (c) 1995-2004, Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver.

*** See http://minisat.se/MiniSat.html

*** Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson

*** Copyright (c) 2007-2010, Niklas Sorensson

NuSMV > go
NuSMV > check_fsm

##
The transition relation is total: No deadlock state exists
##
NuSMV > check_ltlspec
-- specification G ((sensor1.state = start & ALREADY_PROV) -> F ((

sensor1.state = keep & sensor1.NOTIFY_TIMER) & sensor1.NODE_ON))
is true

-- specification G ((sensor1.state = keep & NOTIFY_REQ) -> F (sensor1
.state = keep & sensor1.NOTIFY_ON)) is true

-- specification G ((sensor1.state = keep & ON_REQ) -> F ((sensor1.
state = keep & !sensor1.KEEP_TIMER) & sensor1.NOTIFY_TIMER)) is
true

-- specification G ((sensor1.state = keep & SLEEP_REQ) -> F (((
sensor1.state = prov & !sensor1.KEEP_TIMER) & !sensor1.NOTIFY_TIMER
) & !sensor1.NODE_ON)) is true

-- specification G ((sensor1.state = prov & WAKE_TIMER) -> F ((
sensor1.state = keep & sensor1.KEEP_TIMER) & sensor1.NODE_ON)) is
true

-- specification G ((sensor1.state = prov & MOVE) -> F ((sensor1.
state = keep & sensor1.KEEP_TIMER) & sensor1.NODE_ON)) is true

-- specification G (F sensor1.NOTIFY_TIMER) is true
-- specification G (F sensor1.NOTIFY_ON) is true

60

6 – System Simulation and Verification

-- specification G (F sensor1.NODE_ON) is true
-- specification G (F sensor1.KEEP_TIMER) is true
NuSMV > print_reachable_states
##
system diameter: 9
reachable states: 22 (2ˆ4.45943) out of 3072 (2ˆ11.585)
##
NuSMV > print_fair_transitions
##
Fair transitions: 60 (2ˆ5.90689) out of 3072 (2ˆ11.585)
##
NuSMV > quit

6.4 Reading Model Verification

The verification result of the property specifications over the Reading modelREAD MOD.smv,
as described in A.2, is presented here.

Listing 6.4: Verification of the property specifications over the Reading model.

$ NuSMV -int READ_MOD.smv

*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:37:22 2015)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

*** Please report bugs to <Please report bugs to <nusmv-users@fbk.eu>>

*** Copyright (c) 2010-2014, Fondazione Bruno Kessler

*** This version of NuSMV is linked to the CUDD library version 2.4.1

*** Copyright (c) 1995-2004, Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver.

*** See http://minisat.se/MiniSat.html

*** Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson

*** Copyright (c) 2007-2010, Niklas Sorensson

NuSMV > go
NuSMV > check_fsm

##
The transition relation is total: No deadlock state exists
##
NuSMV > check_ltlspec
-- specification G (((sensor1.state = read & TIMER_EXPIRED) & !

MOVE_SEQ) -> F (sensor1.state = read & sensor1.READ_SEND)) is
true

61

6 – System Simulation and Verification

-- specification G ((sensor1.state = name & !ID) -> F (sensor1.state
= error1 & sensor1.ERR_1)) is true

-- specification G ((sensor1.state = approval & !ACCEPT) -> F (
sensor1.state = error1 & sensor1.ERR_2)) is true

-- specification G (F sensor1.READ_SEND) is true
-- specification G ((sensor1.state = start & MOVE) -> F (sensor1.

state = name & sensor1.NOTIFY_PC)) is true
-- specification G ((sensor1.state = name & ID) -> F (sensor1.state =

approval & sensor1.LED)) is true
-- specification G ((sensor1.state = conf & !AUTOTEST) -> F (sensor1.

state = error2 & sensor1.ERR_3)) is true
-- specification G (((sensor1.state = conf & AUTOTEST) & CONFIG) -> F

(sensor1.state = read & sensor1.READ_INIT)) is true
-- specification G ((sensor1.state = error2 & !AUTOTEST) -> G ((

sensor1.state = error2 & !AUTOTEST) & sensor1.ERR_3)) is true
-- specification G !(sensor1.ERR_1 & sensor1.LED) is true
-- specification G !(sensor1.ERR_3 & sensor1.READ_SEND) is true
-- specification G ((sensor1.state = approval & ACCEPT) -> F ((

sensor1.state = conf & sensor1.PROVIS) & sensor1.AUTO_REQ)) is
true

-- specification G ((sensor1.state = read & MOVE_SEQ) -> F ((sensor1.
state = conf & sensor1.AUTO_REQ) & !sensor1.READ_INIT)) is true

-- specification G !(sensor1.ERR_2 & (sensor1.PROVIS & sensor1.
AUTO_REQ)) is true

NuSMV > print_reachable_states
##
system diameter: 10
reachable states: 95 (2ˆ6.56986) out of 917504 (2ˆ19.8074)
##
NuSMV > print_fair_transitions
##
Fair transitions: 210 (2ˆ7.71425) out of 917504 (2ˆ19.8074)
##
NuSMV > quit

62

6 – System Simulation and Verification

6.5 Verification Results

During the simulation and verification phase, the inputs to the system have been
considered random, thus to keep the FSM’s execution unpredictable. As shown
by the Simulation Trace, each Model has the expected behaviour, thus to match
the requirements. Both FSMs are free from deadlock states and possible logical
contradiction during the design phase, thus ensuring the implementation of both of
them. The system properties, as well as the Liveness properties, defined in Chapter
5 are all verified as shown executing the command check ltlspec. Moreover,
Safety properties have been satisfied to assure the absence of incorrect behaviours
during the execution, and Fairness properties are guaranteed in case of a task makes
infinitely often requests to produce a specific output. Another information provided
is the total number of Reachable states and Fair transitions that each model can
actually reach out of the complete state space.

63

Chapter 7

Language Containment

In this Chapter1 it is proven that the C implemented models (Annex B) are equiv-
alent to the SMV models (Annex A) for verification purposes. In particular, to
ensure that the C implementations and the SMV models produce the same output
given a particular input sequence. Given a state machine M , it is called language
L(M) the set of all behaviours for that machine. A behaviour of a state machine
is an assignment of such a signal to each port p of that machine. A signal is a se-
quence of values, one value at each reaction, according to its type set Vp ∪ {absent},
represented as a function of the form[25]:

sp : N → Vp ∪ {absent}

A signal can be received on that port, if it is an input, or produced on that port,
it is an output. Two machines are said Language equivalent if they have the
same language, thus the same behaviour. Therefore, given two deterministic state
machines A and B, with the same inputs and outputs ports, same input signal types
accepted and output signal types produced, and L(A) ⊆ L(B), therefore B has I/O
behaviours that A does not have. This case is called Language containment and A
is a Language refinement of B. Moreover, if every behaviour of B is acceptable to
an environment, then every behaviour of A will also be accepted to that environment,
and A can replace B for that environment. Language containment assures that any
LTL formula about inputs and outputs verified on B are also verified on A[25].

1The information in this chapter comes from [25].

64

7 – Language Containment

SMV model and the implementation are deterministic state machines, so the
replacement and correctness in terms of property specification are assured when
the output is fired given the same input signals, as summarized in Table 7.1 and
Table 7.2. Figure 7.1 and Figure 7.2 show the C implemented and SMV finite state
machines for the Configuration and Reading models, respectively.

Figure 7.1: C Implementation vs SMV state machine for the Configuration model.

Figure 7.2: C Implementation vs SMV state machine for the Reading model.

65

7 – Language Containment

Configuration FSM
C Implementation SMV

Input Output Input Output

already prov()
app timer start(notify timer)

already prov
notify timer

mesh keep on(true) node on

sleep req()
app timer stop(notify timer)

sleep req
!notify timer

app timer stop(keep timer) !keep timer
mesh keep on(false) !node on

accel req()
mesh keep on(true)

move
node on

app timer start(keep timer) keep timer

wake timer()
mesh keep on(true)

wake timer
node on

app timer start(keep timer) keep timer
notify req() wakeup node notify() notify req notify on

on req()
app timer stop(keep timer)

on req
!keep timer

app timer start(notify timer) notify timer

Table 7.1: I/O behaviours of C Implementation vs SMV model for the Configuration
FSM.

Reading FSM
C Implementation SMV

Input Output Input Output
configured() app timer start(m repeated timer id) config init read

timer expired() read send() timer expired read send

Table 7.2: I/O behaviours of C Implementation vs SMV model for the Reading
FSM.

66

Chapter 8

Experimental Results

8.1 Schedulability Analysis

Task management and scheduling are important topics for real-time systems. The
scheduler in Real-Time Operating System kernel is able to allocate and schedule
tasks on the processor to ensure that deadlines are met. This chapter presents the
techniques used for the scheduling of this system.
A task is a unit of work scheduled that the CPU can execute. There are three types
of tasks[9]:

• Periodic tasks, they are cyclically executed at specific rates, which can be
derived from the application requirements. Each instance of a task must com-
plete its execution before next instance starts.

• Aperiodic tasks, these are single-tasks and do not have deadlines or at least
soft deadlines.

• Sporadic taks, these have arrival times not known a priori, but with hard
deadlines since they need to response on a minimum interarrival time.

In any real-time system, a task can be specified by these temporal parameters[9]
(shown in Figure 8.1):

• Release time (R), the time when a task becomes available for the execution.
A task can be scheduled at or after the release time.

• Deadline (D), it is the instant of time by which its execution must be com-
pleted. The amount of time between the release time and the deadline is called
Relative deadline.

67

8 – Experimental Results

• Execution time (C), the time required to complete the task, when it is ex-
ecuted alone and when it has all the resources available. This parameter
depends on the task’s complexity and on the speed of processor.

• Response time, the elapsed time between the release time and the time when
the task is completed.

• Period (T), the time between the release times of two consecutive instances
of the task.

Release time and deadline are typically used to impose real-time constraints. Given
n periodic tasks, the least common multiple of the periods of the tasks is called
hyperperiod H and the secondary periods are defined as H=k ·S. When the sched-
ule is defined for the first hyperperiod, then the same schedule for the following
hyperperiods is repeated.

Figure 8.1: Task parameters[9].

For our system, the tasks are periodic and will run on one thread, so a Cyclic
Scheduling can be exploited. For this purpose there are two tasks, one for each
FSM. The parameters for the tasks are grouped in Table 8.1 and shown in Fig-
ure 8.2. In particular, the execution times C have been approximately evaluated
using the power profiler of Nordic when case the node wakes up and sends out the
data (see Figure 8.14), including 10% of uncertainty, and considering that conf fsm
and read fsm are executed by 30% and 70% respectively out of the total time. In
this case H=2.486s and S=1.243s. Figure 8.3 shows the cyclic scheduling which
exploits the maximum CPU frequency.

68

8 – Experimental Results

Task C T D
conf fsm 339ms 1243ms 1243ms
read fsm 791ms 2486ms 2486ms

Table 8.1: Temporal parameters for the two tasks.

Figure 8.2: Tasks.

Figure 8.3: Cyclic scheduling.

Another possible scheduling is presented to reduce the dynamic power consumption
of this system. Since the dynamic power depends on the frequency, we can use the
Y DS Scheduling[26]. Using the Table 8.1, YDS defines the Intensity in a generic
time interval (a,b) as

G[a,b] =

∑N
i=1Ci

(b− a)
(8.1)

where the term
∑N

i=1Ci is the sum of the execution times of the tasks included in
that interval. The highest intensity, in each interval, defines the frequency rate of
the tasks to be executed in that time interval for the final scheduling. In our case:

G[0,1243] = 0.91
G[1243,2486] = 0.27

The CPU frequency of the microcontroller can operate at frequency 0.91 · fmax in
the first secondary period to perform the tasks, and at 0.27 · fmax in the second one

69

8 – Experimental Results

to execute conf fsm, as well as assuring the deadlines. Figure 8.4 shows the YDS
scheduling to reduce the dynamic power.

Figure 8.4: YDS scheduling.

Although YDS scheduling is able to reduce the dynamic power consumption, we
cannot say a priori it is better than the classic cyclic scheduling to minimize the
total power consumption. In fact, the first scheduling could minimize the total
power consumption, having a lower static power consumption than the other one,
thus to lead a better optimization of the overall power consumption.

70

8 – Experimental Results

8.2 Power consumption Analysis

In this section will be shown the power consumption results for the different phases
of the node, as well as the daily average power consumption analysis, since the power
consumption is one the most relevant aspects for this kind of system.

8.2.1 Hardware configuration

For this purpose, Nordic supplies the Power Profiler Kit1 for power measure-
ment and optimization of embedded systems. This tool is mounted directly on the
nRF52840-DK (shown in Figure 8.6), and allows to obtain the current consumption
of the sensor in real-time. The sensor used has been manufactured by the team
GreenLSI of Polytechnic University of Madrid, and it is shown in Figure 8.5. The
sensor has been connected to the Power Profiler Kit through the External DUT
connector, and nRF52840-DK has been connected to the PC trough an USB ca-
ble. The current measurements are displayed through a desktop application, called
nRF Connect, provided by Nordic. The whole hardware configuration to calculate
the power consumption is shown in Figure 8.7.

Figure 8.5: Customized sensor used to measure temperature and humidity.

1https://www.nordicsemi.com/Software-and-tools/Development-Kits/Power-Profiler-Kit

71

8 – Experimental Results

Figure 8.6: Nordic nRF52840-DK Board.

Figure 8.7: Hardware configuration.

72

8 – Experimental Results

8.2.2 Power consumption at different states

Node not provisioned and awake

When the node is awake and not provisioned in the network, it consumes power
rapidly unless when there are some troughs due to periodical messages issued by it,
as in Figure 8.8 through the application nRF Connect. This state occurs also when
the node is reset or when there is no gateway present to manage the sleep mode of
the node.

Figure 8.8: Node not provisioned in the network and awake.

Node provisioned

The provisioning phase is shown in Figure 8.9. The node, during the configuration,
needs to be awake to exchange messages with the gateway. Again, troughs are shown
due to messages exchanged.

Figure 8.9: Node provisioning phase.

Initial sleep mode configuration

Figure 8.10 shows the initial sleep configuration. In this image, the node is awake
and receives the command by the gateway to go into the sleep mode.

73

8 – Experimental Results

Figure 8.10: Initial sleeping phase.

Node in sleep mode

In sleep mode (Figure 8.11), as expected, the node consumes less power, thus saving
battery’s charge when it is not required to operate.

Figure 8.11: Node provisioned and in sleep mode.

Node wake-up and not sending

Figure 8.12 shows the node provisioned in the network, that wakes up and sends a
message to the gateway to declare it is on. Once the message is sent, the node is
commanded by the getaway to go to sleep after almost 1 second (anyway it would
go automatically after 10 seconds). This time, when the node is awake, it has a
significant impact on the total power consumption.

Figure 8.12: Node provisioned, wakes up and then goes into the sleep mode again.

74

8 – Experimental Results

Node sends out the measurement

Figure 8.13 shows the measurement by sensors and the sending phase. During the
first stage, the node is sleeping and then it starts to measure. After the second step,
it wakes up and sends out the data packet as a BLE message using the radio channel.
In this case, the node wakes up without the specific wake-up event. Therefore, once
it has sent out the data, it goes to sleep automatically (unless it receives a wake-up
event when it is high). A long delay ensures that the message is sent.

Figure 8.13: Node provisioned and sends out the measurement without the wake-up
event.

The state in Figure 8.14 occurs when the node is provisioned, but the wake-up
and the send events are different. Again, the first step is for measuring, then the
node wakes up and sends out the data. The node sends a message to the gateway to
declare it is awake and ready to execute another command. This case is more reliable
than the previous one, but it requires more time to stay on, and thus consumes more
power.

Figure 8.14: Node provisioned, wakes up and sends out the measurement.

75

8 – Experimental Results

8.2.3 Daily power consumption analysis

The purpose of this analysis is to quantify the daily average power consumption of
this implementation (see Appendix C for more details), which is:

∆Pday = ∆Psendday + ∆Pwakeday + ∆Psleepday

∆Pday = 4.78mAh

where:

• ∆Psendday = 1.13mAh, the average power consumption when the node is send-
ing.

• ∆Pwakeday = 0.021mAh, the average power consumption when the node is
awake.

• ∆Psleepday = 3.63mAh, the average power consumption when the node is sleep-
ing.

This case study does not include the power consumption during the provisioning
phase, since it is only done once for each node. For an average provisioning time of
15 seconds, a waiting time frame of 3 minutes before a gateway’s command and a
drain of current of 17mA (as in Figure 8.9), the node consumes 0.9208mAh.

76

Chapter 9

Conclusion

The work carried out during this thesis project has been a great advance in the
deployment of a wireless network of sensors in an environment that requires a very
accurate and long-lasting monitoring like in data centers. The main goal has been
the design and verification of the sensor node model for the wireless sensor network
to detect the temperature and humidity in order to control the cooling resources in
air-cooled data centers.
The system requirements have been defined in order to allow better performance
and usage. This thesis project has been a first attempt to study a modern approach
trying to set up a system based on wireless sensors using formal verification method-
ologies to monitor the servers in real-time. The sensor node has been defined with
two finite state machines: one to read the temperature and humidity, and the other
to manage the sleep mode of the node when it is not required to operate. The FSMs
and properties specifications as LTL formulas have been coded within the NuSMV
environment. Moreover, thanks to this tool, a detailed study of the behaviour of
the model of the sensor node has been done. The analysis of the simulation traces
provided by the tool and the continuous improvement of the node model have been
critical to achieve the results obtained. In fact, model checking allows to investigate
a large number of possible executions of the system in comparison with the classical
testing to prevent damages for the whole infrastructure. Additionally, the verifica-
tion phase has been important to support the development and the correctness of
the C coded implementation of the node model on the Nordic board by the team
GreenLSI. Finally, this implementation has been necessary to define the different
scenarios of the power consumption of the node which have been analysed in a case
of study of the daily power consumption in order to estimate the real behaviour of
this node. Two possible scheduling have been presented to accomplish the tasks
within a certain given time. Therefore, this work has been a great enhance in the
model verification field for the wireless sensor network, based on Bluetooth mesh
5.0.

77

9 – Conclusion

This work can be used as a base to define new functionalities of the model, for
example: to define a proper user interface and the interaction with other nodes in
the network to prevent collisions between them and the gateways. In the future, the
sensor node can be fed by a battery, thus the optimization of the power consumption
of the single node would be required in order to develop a complete wireless sensor
network with several nodes that maximize the battery’s life.

78

Appendix A

SMV code

In this Annex are presented the SMV codes for the Configuration Model and for
Reading Model, as defined in the Chapter 5. Each program include the FSM with
random inputs, and the LTL properties must be verified.

A.1 CONF MOD.smv

Listing A.1: SMV code for the Configuration Model.

1 --WIRELESS SENSOR NETWORK
2 --Configuration_FSM and LTL PROPERTIES
3
4 ---
5 MODULE main
6 VAR
7 MOVE : boolean;
8 ALREADY_PROV : boolean;
9 SLEEP_REQ : boolean;

10 WAKE_TIMER : boolean;
11 NOTIFY_REQ : boolean;
12 ON_REQ : boolean;
13
14 sensor1 : system(MOVE,ALREADY_PROV,SLEEP_REQ,WAKE_TIMER,ON_REQ,

NOTIFY_REQ);
15
16 ASSIGN
17 init(MOVE) := FALSE;
18 init(ALREADY_PROV) := FALSE;
19 init(SLEEP_REQ) := FALSE;
20 init(WAKE_TIMER) := FALSE;
21 init(NOTIFY_REQ) := FALSE;
22 init(ON_REQ) := FALSE;
23

79

A – SMV code

24 next(ALREADY_PROV) :=
25 case
26 !ALREADY_PROV : {TRUE,FALSE};
27 TRUE : ALREADY_PROV;
28 esac;
29
30 next(NOTIFY_REQ) :=
31 case
32 NOTIFY_REQ : FALSE;
33 sensor1.state=keep & ON_REQ : {TRUE,FALSE};
34 TRUE : NOTIFY_REQ;
35 esac;
36
37 next(ON_REQ) :=
38 case
39 ON_REQ : FALSE;
40 (sensor1.state=start & ALREADY_PROV) | WAKE_TIMER | MOVE : {TRUE

,FALSE};
41 TRUE : ON_REQ;
42 esac;
43
44 next(SLEEP_REQ) :=
45 case
46 SLEEP_REQ : FALSE;
47 sensor1.state=keep : {TRUE,FALSE};
48 TRUE : SLEEP_REQ;
49 esac;
50
51
52 next(WAKE_TIMER) :=
53 case
54 WAKE_TIMER : FALSE;
55 sensor1.state=prov : {TRUE,FALSE};
56 TRUE : WAKE_TIMER;
57 esac;
58
59 next(MOVE) :=
60 case
61 MOVE : FALSE;
62 sensor1.state=prov : {TRUE,FALSE};
63 TRUE : MOVE;
64 esac;
65
66 ---
67 --LTL SPECIFICATIONS
68 --LIVENESS
69 --RQ01
70 LTLSPEC G ((sensor1.state=start & ALREADY_PROV) -> F (sensor1.state =

keep & sensor1.NOTIFY_TIMER & sensor1.NODE_ON))

80

A – SMV code

71 --RQ02
72 LTLSPEC G ((sensor1.state=keep & NOTIFY_REQ) -> F (sensor1.state =

keep & sensor1.NOTIFY_ON))
73 --RQ03
74 LTLSPEC G ((sensor1.state=keep & ON_REQ) -> F (sensor1.state =

keep & !sensor1.KEEP_TIMER & sensor1.NOTIFY_TIMER))
75 --RQ04
76 LTLSPEC G ((sensor1.state=keep & SLEEP_REQ) -> F (sensor1.state =

prov & !sensor1.KEEP_TIMER & !sensor1.NOTIFY_TIMER & !sensor1.
NODE_ON))

77 --RQ05
78 LTLSPEC G ((sensor1.state=prov & WAKE_TIMER) -> F (sensor1.state =

keep & sensor1.KEEP_TIMER & sensor1.NODE_ON))
79 --RQ06
80 LTLSPEC G ((sensor1.state=prov & MOVE) -> F (sensor1.state =

keep & sensor1.KEEP_TIMER & sensor1.NODE_ON))
81
82 --FAIRNESS
83 LTLSPEC G F (sensor1.NOTIFY_TIMER)
84 LTLSPEC G F (sensor1.NOTIFY_ON)
85 LTLSPEC G F (sensor1.NODE_ON)
86 LTLSPEC G F (sensor1.KEEP_TIMER)
87
88 ---
89 --SYSTEM MODULE
90 MODULE system(a,b,c,d,e,f) --a=M1.MOVE_TEMP,b=ALREADY_PROV,c=

SLEEP_REQ,d=WAKE_TIMER,e=ON_REQ,f=NOTIFY_REQ
91
92 VAR
93 state : {start,keep,prov}; --set of states
94 NOTIFY_TIMER : boolean;
95 NODE_ON : boolean;
96 KEEP_TIMER : boolean;
97 NOTIFY_ON : boolean;
98
99 ASSIGN

100 init(state) := start;
101 init(NOTIFY_TIMER) := FALSE;
102 init(NODE_ON) := FALSE;
103 init(KEEP_TIMER) := FALSE;
104 init(NOTIFY_ON) := FALSE;
105
106 next(state) :=
107 case
108 (state = start & b) : keep;
109 (state = keep & c) : prov;
110 (state = prov & (d | a)) : keep;
111 (state = keep & e) : keep;
112 (state = keep & f) : keep;

81

A – SMV code

113 TRUE : state;
114 esac;
115
116 next(NOTIFY_TIMER) :=
117 case
118 c : FALSE;
119 state = keep & e & !c : TRUE;
120 state = start & b : TRUE;
121 TRUE : NOTIFY_TIMER;
122 esac;
123
124 next(NOTIFY_ON) :=
125 case
126 c : FALSE;
127 NOTIFY_ON : FALSE;
128 (state = keep & f & !c & !e) : TRUE;
129 TRUE : NOTIFY_ON;
130 esac;
131
132 next(NODE_ON) :=
133 case
134 (state=start & b) | d | a : TRUE;
135 state = keep & c : FALSE;
136 TRUE : NODE_ON;
137 esac;
138
139 next(KEEP_TIMER) :=
140 case
141 c | e : FALSE;
142 (state = prov & (d | a)) : TRUE;
143 TRUE : KEEP_TIMER;
144 esac;
145
146 FAIRNESS NOTIFY_TIMER;
147 FAIRNESS NOTIFY_ON;
148 FAIRNESS NODE_ON;
149 FAIRNESS KEEP_TIMER;

82

A – SMV code

A.2 READ MOD.smv

Listing A.2: SMV code for the Reading Model.

1 --WIRELESS SENSOR NETWORK
2 --Reading_FSM and LTL PROPERTIES
3
4 ---

5 MODULE main
6 VAR
7 MOVE : boolean; --single movement on the sensor
8 MOVE_SEQ : boolean; --sequence of movements on the sensor
9 ID : boolean;

10 ACCEPT : boolean;
11 TIMER_EXPIRED : boolean;
12 AUTOTEST : boolean;
13 CONFIG : boolean;
14
15 sensor1 : system(MOVE,MOVE_SEQ,CONFIG,TIMER_EXPIRED,AUTOTEST,ID,

ACCEPT);
16
17 ASSIGN
18 init(MOVE) := FALSE;
19 init(MOVE_SEQ) := FALSE;
20 init(ID) := FALSE;
21 init(ACCEPT) := FALSE;
22 init(CONFIG) := FALSE;
23 init(TIMER_EXPIRED) := FALSE;
24 init(AUTOTEST) := FALSE;
25
26 next(MOVE) :=
27 case
28 sensor1.state=start : {TRUE,FALSE};
29 TRUE : FALSE;
30 esac;
31
32 next(MOVE_SEQ) :=
33 case
34 sensor1.state=read : {TRUE,FALSE};
35 TRUE : FALSE;
36 esac;
37
38 next(ID) :=
39 case
40 MOVE : {TRUE,FALSE};
41 TRUE : FALSE;
42 esac;
43

83

A – SMV code

44 next(ACCEPT) :=
45 case
46 ID : {TRUE,FALSE};
47 TRUE : FALSE;
48 esac;
49
50 next(TIMER_EXPIRED) :=
51 case
52 TIMER_EXPIRED : FALSE;
53 AUTOTEST & CONFIG : {TRUE,FALSE};
54 TRUE : FALSE;
55 esac;
56
57 next(AUTOTEST) :=
58 case
59 sensor1.state=conf & AUTOTEST : AUTOTEST;
60 ACCEPT : TRUE;
61 MOVE_SEQ : {TRUE,FALSE};
62 TRUE : FALSE;
63 esac;
64
65 next(CONFIG) :=
66 case
67 sensor1.state=conf & !CONFIG : {TRUE,FALSE};
68 ACCEPT : {TRUE,FALSE};
69 TRUE : CONFIG;
70 esac;
71
72 ---

73 --LTL PROPERTIES
74 --LIVENESS PROPERTIES
75 --RQ07
76 LTLSPEC G ((sensor1.state=start & MOVE) -> F (sensor1.state=name &

sensor1.NOTIFY_PC))
77 --RQ08
78 LTLSPEC G ((sensor1.state=name & ID) -> F (sensor1.state=approval &

sensor1.LED))
79 --RQ09
80 LTLSPEC G ((sensor1.state=approval & ACCEPT) -> F (sensor1.state=conf &

sensor1.PROVIS & sensor1.AUTO_REQ))
81 --RQ10
82 LTLSPEC G ((sensor1.state=read & TIMER_EXPIRED & !MOVE_SEQ) -> F (

sensor1.state=read & sensor1.READ_SEND))
83 --RQ11
84 LTLSPEC G ((sensor1.state=read & MOVE_SEQ) -> F (sensor1.state=conf &

sensor1.AUTO_REQ & !sensor1.READ_INIT))
85 --RQ12

84

A – SMV code

86 LTLSPEC G ((sensor1.state=name & !ID) -> F (sensor1.state=error1 &
sensor1.ERR_1))

87 --RQ13
88 LTLSPEC G ((sensor1.state=approval & !ACCEPT) -> F (sensor1.state=

error1 & sensor1.ERR_2))
89 --RQ14
90 LTLSPEC G ((sensor1.state=conf & !AUTOTEST) -> F (sensor1.state=error2

& sensor1.ERR_3))
91
92 LTLSPEC G ((sensor1.state=conf & AUTOTEST & CONFIG) -> F (sensor1.state

=read & sensor1.READ_INIT))
93 LTLSPEC G ((sensor1.state=error2 & !AUTOTEST) -> G (sensor1.state=

error2 & !AUTOTEST & sensor1.ERR_3))
94
95 --SAFETY
96 LTLSPEC G ! (sensor1.ERR_1 & sensor1.LED)
97 LTLSPEC G ! (sensor1.ERR_2 & (sensor1.PROVIS & sensor1.AUTO_REQ))
98 LTLSPEC G ! (sensor1.ERR_3 & sensor1.READ_SEND)
99

100 --FAIRNESS CONSTRAINT
101 LTLSPEC G F (sensor1.READ_SEND)
102
103 ---
104 --SYSTEM MODULE
105 MODULE system(a1,a2,b,c,d,f,g) --a1=M1.MOVE_TEMP, a2=M2.MOVE_TEMP, b=

CONFIG, c=TIMER_EXPIRED, d=AUTOTEST, f=ID, g=ACCEPT, h=ERR_ID, i=
ERR_ACCEPT, j=ERR_AUTO

106 VAR
107 state : {start,name,approval,error1,conf,read,error2}; --states
108 NOTIFY_PC : boolean;
109 LED : boolean;
110 AUTO_REQ : boolean;
111 PROVIS : boolean;
112 READ_INIT : boolean;
113 READ_SEND : boolean;
114 DEADLINE : boolean;
115 ERR_1 : boolean;
116 ERR_2 : boolean;
117 ERR_3 : boolean;
118
119 ASSIGN
120 init(state) := start;
121 init(NOTIFY_PC) := FALSE;
122 init(LED) := FALSE;
123 init(AUTO_REQ) := FALSE;
124 init(PROVIS) := FALSE;
125 init(READ_INIT) := FALSE;
126 init(READ_SEND) := FALSE;
127 init(DEADLINE) := FALSE;

85

A – SMV code

128 init(ERR_1) := FALSE;
129 init(ERR_2) := FALSE;
130 init(ERR_3) := FALSE;
131
132 next(state) :=
133 case
134 (state=name & !f) | (state=approval & !g) : error1;
135 (state=conf & !d) | state=error2 : error2;
136 (state=start & a1) : name;
137 (state=name & f) : approval;
138 (state=approval & g) | (state=read & a2) : conf;
139 (state=conf & d & b) | (state=read & c) : read;
140 (state=error1 & !ERR_1 & !ERR_2) : start;
141 TRUE : state;
142 esac;
143
144 --NOTIFY_PC
145 next(NOTIFY_PC) :=
146 case
147 (state=start & a1) : TRUE;
148 TRUE : FALSE;
149 esac;
150
151 --LED
152 next(LED) :=
153 case
154 state=error1 : FALSE;
155 (state=name & f) : TRUE;
156 TRUE : LED;
157 esac;
158
159 --Autotest request
160 next(AUTO_REQ) :=
161 case
162 (state=approval & g) | (state=read & a2) : TRUE;
163 TRUE : FALSE;
164 esac;
165
166 --Provisioning request
167 next(PROVIS) :=
168 case
169 state=conf & !b : {TRUE,FALSE};
170 (state=approval & g) : TRUE;
171 TRUE : FALSE;
172 esac;
173
174 --TIMER for reading
175 next(READ_INIT) :=
176 case

86

A – SMV code

177 (state=conf & d & b) : TRUE;
178 (state=read & a2) : FALSE;
179 TRUE : READ_INIT;
180 esac;
181
182 --READ AND SEND DATA
183 next(READ_SEND) :=
184 case
185 state=read & c : TRUE;
186 TRUE : FALSE;
187 esac;
188
189 --DEADLINE
190 next(DEADLINE) :=
191 case
192 (state=error1 & (!ERR_1 & !ERR_2)) : TRUE;
193 TRUE : FALSE;
194 esac;
195
196 --Error ID entered
197 next(ERR_1) :=
198 case
199 state=error1 & ERR_1 : {TRUE,FALSE};
200 (state=name & !f) : TRUE;
201 TRUE : FALSE;
202 esac;
203
204 --Error terms not accepted
205 next(ERR_2) :=
206 case
207 state=error1 & ERR_2 : {TRUE,FALSE};
208 (state=approval & !g) : TRUE;
209 TRUE : FALSE;
210 esac;
211
212 --Error autotest
213 next(ERR_3) :=
214 case
215 (state=conf & !d) : TRUE;
216 TRUE : ERR_3;
217 esac;
218
219 FAIRNESS READ_SEND;

87

Appendix B

System Implementation

In this Annex it is presented an implementation1 of this Wireless Sensor System
modelled in Annex A and formally verified in Chapter 6. This Implementation has
been developed in code C to exploit the tools and libraries of board Nordic.

B.1 conf fsm.c

The following implementation has been developed according the Configuration Model
defined in A.1.

Listing B.1: C Implementation of the Configuration FSM.

1 #include <stdint.h>
2 #include <string.h>
3 #include <stdbool.h>
4

5 #include "main.h"
6

7 #define NRF_LOG_MODULE_NAME conffms
8 #include "nrf_log.h"
9 NRF_LOG_MODULE_REGISTER();

10

11 #include "app_utils.h"
12 #include "app_timer.h"
13 #include "nrfx_gpiote.h"
14 #include "nrfx_saadc.h"
15

16 #include "mesh_helper.h"
17 #include "wakeup_common.h"
18 #include "wakeup_node.h"

1The Implementation has been developed with the team GreenLSI of the Polytechnic Univer-
sity of Madrid.

88

B – System Implementation

19 #include "nrf_strerror.h"
20 #include "boards.h"
21

22 #include "fxos.h"
23

24 #define DEFAULT_KEEP_TIME 10000UL
25 #define DEFAULT_NOTIFY_TIME 5000UL
26

27 #define INT_PIN PIN_INT1_FXOS8700CQ
28

29 /** TIMER */
30 APP_TIMER_DEF(conf_timer);
31 APP_TIMER_DEF(keep_timer);
32 APP_TIMER_DEF(notify_timer);
33

34 /** FSM */
35 enum {
36 START,
37 KEEP,
38 PROV,
39 };
40

41 /* Global variables **/
42 static volatile bool wake_flag = false;
43 static volatile bool accel_flag = false;
44 static volatile bool sleep_flag = false;
45 static volatile bool notify_flag = false;
46 static volatile bool on_flag = false;
47

48 volatile int16_t voltage = 0;
49

50 /* Function prototypes ***/
51 static void timers_init(void);
52

53 static void set_wake_flag(void* p_context);
54 static void set_keep_flag(void* p_context);
55 static void set_notify_flag(void* p_context);
56

57 static int already_prov(mealy_t* self);
58 static int sleep_req(mealy_t* self);
59 static int on_req(mealy_t* self);
60 static int accel_req(mealy_t* self);
61 static int wake_timer(mealy_t* self);
62 static int notify_req(mealy_t* self);
63 static void mesh_off(mealy_t* self);
64 static void start_keep(mealy_t* self);
65 static void start_config(mealy_t* self);
66 static void start_on(mealy_t* self);
67 static void notify_on(mealy_t* self);

89

B – System Implementation

68

69 /* Transition Table **/
70 static mealy_trans_t mealy_trans[] = {
71 {START, already_prov, KEEP, start_config},
72 {PROV, accel_req, KEEP, start_keep},
73 {PROV, wake_timer, KEEP, start_keep},
74 {KEEP, sleep_req, PROV, mesh_off},
75 {KEEP, notify_req, KEEP, notify_on},
76 {KEEP, on_req, KEEP, start_on},
77 {-1, NULL, -1, NULL}
78 };
79

80 /* Callbacks ***/
81 static void set_wake_flag(void* p_context)
82 {
83 wake_flag = true;
84 }
85

86 static void set_notify_flag(void* p_context)
87 {
88 notify_flag = true;
89 }
90

91 static void set_keep_flag(void* p_context)
92 {
93 sleep_flag = true;
94 }
95

96 static int already_prov(mealy_t* self)
97 {
98 return mesh_is_prov();
99 }

100

101 static int sleep_req(mealy_t* self)
102 {
103 return sleep_flag;
104 }
105

106 static int notify_req(mealy_t* self)
107 {
108 return notify_flag;
109 }
110

111 static int accel_req(mealy_t* self)
112 {
113 return accel_flag;
114 }
115

116 static int on_req(mealy_t* self)

90

B – System Implementation

117 {
118 return on_flag;
119 }
120

121 static int wake_timer(mealy_t* self)
122 {
123 return wake_flag;
124 }
125

126 static void mesh_off(mealy_t* self)
127 {
128 NRF_LOG_DEBUG("%s", __func__);
129 conf_fsm_t* conf = (conf_fsm_t*)self;
130 sleep_flag = false;
131 accel_flag = false;
132 notify_flag = false;
133 ERROR_CHECK(app_timer_stop(notify_timer));
134 ERROR_CHECK(app_timer_stop(keep_timer));
135 wakeup_node_sleep(&conf->wakeup_node);
136 mesh_keep_on(false);
137 DEBUG_LED_OFF(LED_2);
138 }
139

140 static void start_keep(mealy_t* self)
141 {
142 NRF_LOG_DEBUG("%s", __func__);
143 accel_flag = false;
144 wake_flag = false;
145 mesh_keep_on(true);
146 DEBUG_LED_ON(LED_2);
147 notify_flag = true;
148 nrf_saadc_value_t vbat = 0;
149 ERROR_CHECK(nrfx_saadc_sample_convert(0, &vbat));
150 voltage = (uint16_t) (vbat * 3600.0 / 4095.0);
151 NRF_LOG_DEBUG("battery: %d mV, %x", (int)(voltage), voltage);
152 ERROR_CHECK(app_timer_start(keep_timer, APP_TIMER_TICKS(

DEFAULT_KEEP_TIME),
153 NULL));
154 }
155

156 static void start_config(mealy_t* self)
157 {
158 NRF_LOG_DEBUG("%s", __func__);
159 accel_flag = false;
160 wake_flag = false;
161 mesh_keep_on(true);
162 DEBUG_LED_ON(LED_2);
163 notify_flag = true;
164 ERROR_CHECK(app_timer_start(notify_timer,

91

B – System Implementation

165 APP_TIMER_TICKS(DEFAULT_NOTIFY_TIME),
166 NULL));
167 }
168

169 static void start_on(mealy_t* self)
170 {
171 NRF_LOG_DEBUG("%s", __func__);
172 on_flag = false;
173 DEBUG_LED_ON(LED_2);
174 ERROR_CHECK(app_timer_stop(conf_timer));
175 ERROR_CHECK(app_timer_stop(keep_timer));
176 ERROR_CHECK(app_timer_start(notify_timer,
177 APP_TIMER_TICKS(DEFAULT_NOTIFY_TIME),
178 NULL));
179 notify_flag = true;
180 }
181

182 static void notify_on(mealy_t* self)
183 {
184 NRF_LOG_DEBUG("%s", __func__);
185 conf_fsm_t* conf = (conf_fsm_t*)self;
186 notify_flag = false;
187 uint32_t status = wakeup_node_notify(&conf->wakeup_node);
188 NRF_LOG_DEBUG("Notify status: %d, %s", status, nrf_strerror_get(

status));
189 }
190

191 /* Function definitions **/
192 static void timers_init()
193 {
194 NRF_LOG_DEBUG("Init Timers");
195

196 ERROR_CHECK(app_timer_create(
197 &conf_timer,
198 APP_TIMER_MODE_REPEATED,
199 set_wake_flag));
200 ERROR_CHECK(app_timer_create(
201 ¬ify_timer,
202 APP_TIMER_MODE_REPEATED,
203 set_notify_flag));
204 ERROR_CHECK(app_timer_create(
205 &keep_timer,
206 APP_TIMER_MODE_SINGLE_SHOT,
207 set_keep_flag));
208

209 }
210

211 /* Public functions **/
212 void conf_fsm_init(conf_fsm_t* fsm)

92

B – System Implementation

213 {
214 timers_init();
215 mealy_init((mealy_t*)fsm, mealy_trans);
216 DEBUG_LED_ON(LED_2);
217 }
218

219 void conf_sleep_cb(uint32_t time)
220 {
221 NRF_LOG_DEBUG("Sleep cb, %d", time);
222

223 if(time == 0) {
224 on_flag = true;
225

226 } else {
227 ERROR_CHECK(app_timer_stop(conf_timer));
228 ERROR_CHECK(app_timer_start(conf_timer, APP_TIMER_TICKS(time),
229 NULL));
230 sleep_flag = true;
231 }
232

233 }

B.2 read fsm.c

For the Reading model, it has been implemented just the configuration, the reading,
and the sending phases of the node within the network, according to A.2.

Listing B.2: C Implementation of the Reading FSM.

1 #include <stdint.h>
2 #include <string.h>
3 #include <stdbool.h>
4

5 #include "main.h"
6 #include "app_utils.h"
7 #include "app_timer.h"
8 #include "hts221.h" // Temperature
9 #include "lps25hbtr.h" // Barometer

10 #include "mesh_helper.h"
11 #include "nrf_delay.h"
12 #include "nrf_strerror.h"
13

14 /** TIMER */
15 APP_TIMER_DEF(m_repeated_timer_id);
16

17 /** FSM */
18 enum {
19 CONF,

93

B – System Implementation

20 READ,
21 };
22

23 /* Global variables **/
24 static volatile bool timer_flag = false;
25 static hts221_t m_hts;
26 static lps25hbtr_t m_lps;
27 extern volatile int16_t voltage;
28

29 /* Function prototypes ***/
30 static void timer_init(void);
31 static void setTimerFlag(void* p_context);
32 static void hts_init(void);
33 static void lps_init(void);
34

35 static int configured(mealy_t* self);
36 static int timer_expired(mealy_t* self);
37 static void init_read(mealy_t* self);
38 static void read_send(mealy_t* self);
39

40 /* Transition Table **/
41 static mealy_trans_t mealy_trans[] = {
42 {CONF, configured, READ, init_read},
43 {READ, timer_expired, READ, read_send},
44 {-1, NULL, -1, NULL}
45 };
46

47 /* Callbacks ***/
48 static void setTimerFlag(void* p_context)
49 {
50 timer_flag = true;
51 }
52

53 static int configured(mealy_t* self)
54 {
55 return mesh_is_prov();
56 }
57

58 static int timer_expired(mealy_t* self)
59 {
60 return timer_flag;
61 }
62

63 static void init_read(mealy_t* self)
64 {
65 ERROR_CHECK(app_timer_start(
66 m_repeated_timer_id, APP_TIMER_TICKS(600000), NULL));
67 }
68

94

B – System Implementation

69 static void read_send(mealy_t* self)
70 {
71 temp_fsm_t* self_temp = (temp_fsm_t*)self;
72 timer_flag = false;
73 hts221_value_t temp;
74 hts221_value_t humd;
75 lps25hbtr_value_t press;
76 lps25hbtr_value_t temp2;
77 ERROR_CHECK(hts221_read(&m_hts, &temp, &humd));
78 ERROR_CHECK(lps25hbtr_read(&m_lps, &press, &temp2));
79

80 // Convert data from float to int16
81 int16_t temp_aux = (int16_t) (temp * 100.0); // ?C x100
82 uint8_t humd_aux = (uint8_t) (humd); //%rh
83 int32_t press_aux = (int32_t) (press * 100.0);
84 uint8_t voltage_aux = (uint8_t) ((voltage-1000)/10); //V x100
85

86 NRF_LOG_DEBUG("Send temp(x100): %d humd(x10.000): %d press(hPa x100):
%d", temp_aux, humd_aux, press_aux);

87

88 DEBUG_LED_ON(LED_3);
89 mesh_enable();
90 uint32_t status = nrftemp_node_send_unreliable(
91 &self_temp->nrftemp_node, voltage_aux, temp_aux, humd_aux,

press_aux, 1);
92 NRF_LOG_DEBUG("Send status: %d, %s", status, nrf_strerror_get(status)

);
93 DEBUG_LED_OFF(LED_3);
94 }
95

96 /* Function definitions **/
97 static void hts_init(void)
98 {
99 hts221_conf_t hts_conf = {

100 .frec = HTS221_FREC_ONE_SHOT,
101 .avtemp = HTS221_AVTEMP_128,
102 .avhumd = HTS221_AVHUMD_128,
103 .cb = NULL,
104 .drdy_pin = PIN_DRDY_HTS221,
105 };
106

107 ERROR_CHECK(hts221_init(&m_hts, &m_twi, &hts_conf));
108 NRF_LOG_DEBUG("HTS init");
109 }
110

111 static void lps_init(void)
112 {
113 lps25hbtr_conf_t lps_conf = {
114 .frec = LPS25HBTR_ONE_SHOT,

95

B – System Implementation

115 .cb = NULL,
116 .drdy_pin = PIN_INT_DRD_LPS25HBTR,
117 .timeout = 0,
118 };
119 ERROR_CHECK(lps25hbtr_init(&m_lps, &m_twi, &lps_conf));
120 NRF_LOG_DEBUG("LPS init");
121 }
122

123 static void timer_init()
124 {
125 NRF_LOG_DEBUG("Init Timer");
126

127 // Create timers
128 ERROR_CHECK(app_timer_create(&m_repeated_timer_id,
129 APP_TIMER_MODE_REPEATED,
130 setTimerFlag));
131 }
132

133 /* Public functions **/
134 void temp_fsm_init(temp_fsm_t* fsm)
135 {
136 timer_init();
137 hts_init();
138 lps_init();
139 mealy_init((mealy_t*)fsm, mealy_trans);
140 NRF_LOG_DEBUG("%s: Init temp fsm", __func__);
141 }

96

Appendix C

Total power consumption
calculation

In this Appendix will be shown the steps used to calculate the daily power consump-
tion. Considering the power consumption for the different phases:

Sending phase

The required time, the average current flowing in the node according to the Fig-
ure 8.13, and the average power consumption in order to send the measurement
are:

Tsend = 0.481s

∆Isend = 11.751mA

∆Psend = ∆Isend · (Tsend)h =

= 0.00157mAh

The total number of times the node sends the measurements in a day, sending every
2 minutes:

Nsend =
24h

Periodsend(h)
=

24h

0.0333h
= 720 (C.1)

Then, the daily average power consumption when the node sends is:

∆Psendday = ∆Psend ·Nsend = 1.13mAh (C.2)

97

C – Total power consumption calculation

Awake phase

According Figure 8.12, the required time, the average current flowing, and the av-
erage power consumption when the node is awake are:

Twake = 3.74s

∆Iwake = 3.409mA

∆Pwake = ∆Iwake · (Twake)h =

= 0.00354mAh

The total number of times the node is awake, waking up every 4 hours, is:

Nwake =
24h

Periodawake(h)
=

24h

4h
= 6 (C.3)

The daily average power consumption when the node is awake:

∆Pwakeday = ∆Pwake ·Nwake = 0.021mAh (C.4)

Sleep mode

The time, the average current flowing, and the average power consumption dur-
ing the sleep mode, according Figure 8.11, are:

Tsleep = (24h− (Tsend)h ·Nsend − (Twake)h ·Nwake) = 23.89h

∆Isleep = 0.152mA

The daily average power consumption when the node is in sleep mode:

∆Psleepday = ∆Isleep · Tsleep = 3.63mAh (C.5)

Finally, the daily average power consumption results in:

∆Pday = ∆Psendday +∆Pwakeday +∆Psleepday = 4.78mAh (C.6)

98

Bibliography

[1] A. Capozzoli, G. Primiceri. Cooling systems in data centers: state
of art and emerging technologies. Energy Procedia, Volume 83, 2015,
Pages 484-493, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2015.12.168.
(http://www.sciencedirect.com/science/article/pii/S1876610215028337).

[2] Katie Costello. Gartner Forecasts Worldwide Public Cloud Revenue to Grow
17.5 Percent in 2019. Gartner, STAMFORD, Conn. April 2, 2019.

[3] Naomi Xu Elegant. The Internet Cloud Has a Dirty Secret.
https://fortune.com/2019/09/18/internet-cloud-server-data-center-energy-
consumption-renewable-coal/, Fortune, September 18, 2019.

[4] Nicola Jones. How to stop data centres from gobbling up the world’s electricity.
https://www.nature.com/articles/d41586-018-06610-y, Sep. 18, 2019.

[5] Patricia Arroba Garc̀ıa. Proactive Power and Thermal Aware Optimizations for
Energy-Efficient Cloud Computing. Universidad Politécnica De Madrid, PhD
Thesis, 2017.

[6] J. G. Koomey. Growth in data center electricity use 2005 to 2010. Analytics
Press, Oakland, CA, Tech. Rep., Aug, 2011, p. 24.

[7] J. Wan, X. Gui, S. Kasahara, Y. Zhang and R. Zhang. Air Flow Measurement
and Management for Improving Cooling and Energy Efficiency in Raised-Floor
Data Centers: A Survey. in IEEE Access, vol. 6, pp. 48867-48901, 2018, doi:
10.1109/ACCESS.2018.2866840.

[8] Condair. Data Centre Humidification. https://www.condair.sg/knowledge-
hub/data-centre-humidification.

[9] J. Wang. Real-time embedded systems. John Wiley & Sons, Inc, First Edition,
2017.

[10] S. Anderson, M. Cole, P. Jackson, M. Grohe, D. Sannella,
and M. Cryan. Inf1A: Non-deterministic Finite State Machines.
http://www.inf.ed.ac.uk/teaching/courses/inf1/cl/notes/Comp3.pdf, The
University of Edinburgh, School of Informatics. 2004.

[11] Shi-Yu Huang. On Speeding Up Extended Finite State Machines Using Catalyst
Circuitry. Conference: Design Automation Conference, 2001, Proceedings of
the ASP-DAC 2001, Asia and South Pacific, Feb. 2001.

99

Bibliography

[12] M. Tranchero, E. Bellocchia, D. Boyang, G. Causapruno, A. Moré, N. Ostadab-
basi, J.C. Wang, L. Lavagno. Modeling and Optimization of Embedded Systems.
Politecnico di Torino, Department of Electronics and Telecommunication En-
gineering, Jan. 2019.

[13] C. Baier, J.- P. Katoen. Principles of model checking. MIT, 2008.
[14] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, M.

Roveri, A. Tchaltsev. NuSMV 2.6 User Manual. FBK-irst, 2010.
[15] N. Engbers, E. Taen. Green Data Net. Report to IT Room INFRA, European

Commision. FP7 ICT 2013.6.2, Nov. 2014.
[16] A. Donoghue, P. Inglesant, and A. Lawrence. The EU dreams of renewable-

powered datacenters with smart-city addresses, ”https://451research.com”. Oct.
2013.

[17] J. Hamilton. Cooperative expendable micro-slice servers (cems): low cost, low
power servers for internet-scale services. In Proceedings of the 4th Biennial
Conf. Innovative Data Systems Research, ser. CIDR ’09, Asilomar, CA, USA,
2009.

[18] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri NuSMV: a new symbolic
model checker. International Journal on Software Tools for Technology Transfer
2(4):410-425. March 2000. DOI 10.1007/s100090050046.

[19] Yu Liu, Kin-Fai Tong, Xiangdong Qiu, Ying Liu, and Xuyang Ding. Wireless
Mesh Networks in IoT Networks. 2017 International Workshop on Electromag-
netics: Applications and Student Innovation Competition, London, 2017, pp.
183-185.

[20] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. EARS (Easy Approach
to Requirements Syntax). IEEE, October 2009.

[21] A. E. Vilar. Análisis y diseño de herramientas de verificación y testeo autom-
atizado para aplicaciones de internet de las cosas. Universidad Politécnica De
Madrid, Bachelor’s Thesis, June 2019.

[22] A. V. Pérez. Desarollo de un firmware optimizado en consumo para una red
mallada de dispositivos bluetooth. Universidad Politécnica De Madrid, Bache-
lor’s Thesis, July 2019.

[23] Rete Mesh, come funziona la tecnologia Wi-Fi del futuro?.
https://www.ilsoftware.it/articoli.asp?tag=Rete-mesh-cos-e-e-come-
funziona 18101. Dec 2018.

[24] Jie Liu, Bodhi Priyantha, Feng Zhao, Chieh-Jan mike Liang, Qiang Wang, Sean
Jame. Towards discovering data center genome using sensor nets. HotemNets’
08, June 2-3, 2008, Charlottesville, VA.

[25] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems - A Cyber-
Physical Systems Approach. Second Edition, MIT Press, 2017.

[26] Lothar Thiele and Jian-Jia. Energy-Efficienct Real-Time Task Schedul-
ing. Embedded Systems and Wireless Networking Laboratory.

100

Bibliography

https://www.csie.ntu.edu.tw/ r95093/files/slides/Energy%20Efficiency%20Real-
Time%20Scheduling.pdf

101

	Acknowledgments
	Summary
	Data centers
	Introduction
	Energy consumption and environment sustainability
	Motivation
	Objectives

	Finite-State Machines
	Basic elements of Finite-State Machine
	Deterministic Finite State Machine
	Moore Machine
	Mealy Machine

	Non-Deterministic Finite State Machine
	Extended Finite State Machine
	Primitive Architecture

	Model Checking
	Introduction to Model Checking
	Temporal Logics
	Linear Temporal Logic
	Syntax of LTL
	Semantics of LTL
	Semantics of LTL over Paths and States

	The NuSMV Model Checking Tool
	Input Language
	Types Overview
	Expressions

	Definition of the FSM
	Variable Declarations
	Modelling Style
	Declarations and Instantiations of the Modules

	Specifications
	LTL specifications
	Desired LTL properties

	Running NuSMV
	Simulation and Checking Specifications Commands

	Wireless Sensor Network
	Introduction to the system
	Requirements
	Traceability table

	System Model Definition
	Configuration Model
	Reading Model

	System Simulation and Verification
	Configuration Model Simulation
	Reading Model Simulation
	Configuration Model Verification
	Reading Model Verification
	Verification Results

	Language Containment
	Experimental Results
	Schedulability Analysis
	Power consumption Analysis
	Hardware configuration
	Power consumption at different states
	Daily power consumption analysis

	Conclusion
	SMV code
	CONF_MOD.smv
	READ_MOD.smv

	System Implementation
	conf_fsm.c
	read_fsm.c

	Total power consumption calculation
	Bibliography

