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Summary

Over the past decades the industry has been pushing to find ways to achieve
better performance and efficiency. The natural evolution of microarchitecture
has introduced first the pipeline and then out-of-order superscalar processors
to achieve a greater Instruction Level Parallelism. This newer iteration have,
on the other hand, increased the complexity of the pipeline stage such as the
issue stage.

This thesis focus on the above mentioned pipeline stage, analysing which
are the aspect that add complexity and energy inefficiency. Using Sniper
simulator, an x86 architecture will be used to track the usage of the wake up
signal in order to find the instructions that really need to broadcast a signal.
Lastly a simple hardware addition will be investigated as a possibility to
reduce the broadcast width and simplify the wake up logic.
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Chapter 1

Introduction

The word of computing devices has had since the beginning an insatiable
demand for better performance year over year. Moore’s law, since the 1960s,
has predicted the growth of the number of transistors in computer chips that
would lead to increasing performances at a lower cost.

Another correlated positive trend is expressed by Dennard’s law, which
describes how the power density in a chip stays constant since the growing
density of transistor is compensated by the lower power they require to
function. This abundance of resources brought to the introduction of new
architecture like super-scalar out-of-order processor that could expose an
higher Instruction Level Parallelism and therefore greater performances.

Around a decade ago the above-mentioned models stopped being valid due
to technical limitation and caused designers to focus on other ways to reach
an increase of performance. The whole industry has also been subject to a
shift of the attention towards the energy efficiency of chips due to the growing
number of small and portable device. This new environment is demanding
for architecture that are more aware of the area and power consumption.
This phenomenon eventually brought designer to even prefer simpler in-order
scalar architecture respect to the more complex ones, sacrificing performance
in favor of energy efficiency.

Another way of facing this matter is, instead, to simplify and optimize
the superscalar out-of-order architecture and in particular their most energy
expensive component : the issue queue, which can make up 18% [1] of the
whole chip consumption. The high complexity is due mainly to the wake up
logic, to tell the entries their components are ready, and to the select logic
which sends to execution the ready instruction.
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A significant amount of work has been already done in order to simplify
the issue stage, but the main focus so far has always been the select stage.
Many proposal take into consideration the simplification of the out-of-order
architecture [2][3][4][1] while others take the opposite approach, making the
in-order more performing [5] [6].

In this thesis, instead, the major focus will be the wake up logic that
none of the cited works have faced and therefore offers great possibility for
improvements. In this project we will, in order, analyze the usage of the wake
up, reduce the instruction that need to use this logic and imagine a simple
additional hardware structure to further shrink the broadcasts needed.

1.1 Thesis goal

The goal of this thesis is to analyze and reduce the complexity of instruction
wake-up logic in superscalar out-of-order processors. All the instructions
finishing their execution need to broadcast wakeup signals (i.e. generally,
their destination register IDs) so that their dependents in the issue queue
can be waken up. Therefore, the number of wake-up signals need to be
broadcasted depends on the maximum number of instructions that can finish
execution in the same cycle. The goal of this thesis is to minimize the number
of signal that need to be broadcasted per cycle, thereby reducing the number
of comparisons required per issue queue entry and their associated area and
energy cost.

Towards this end, we first study the distribution of number of instructions
finishing execution in same cycle. We use this distribution to identify
the minimal broadcast width (i.e. maximum number of wakeup signals
broadcasted per cycle) with minimal impact of performance. To further
reduce the broadcast width, we make a critical observation that an instruction
does not need to broadcast its results if none of the instructions in issue queue
depends on it. By avoiding to broadcast wakeup signals for such instructions
we can reduce the broadcast width. To reduce the broadcast width even
further, our key insight is that we can delay the broadcast of a wakeup signal
if all the instructions needing this signal are the non-critical ones. Prior
work has shown that not all instructions contribute to performance equally.
Therefore, delaying the wakeup of non-critical instruction has the potential
to reduce broadcast with a minimal performance penalty.

2
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1.1.1 Requirements
• R1 Gather information on broadcast usage

• R2 Study the instruction and their relation with the wake up signal

• R3 Develop a strategy to reduce complexity

1.1.2 Contribution
• An overview on the use of wake up signal by instructions

• An evaluation on the necessary broadcast width

• A microarchitecture which exploits instruction criticality to reduce the
broadcast width

3



Chapter 2

Background

This chapter presents the necessary background in how a processor works,
forming the basis for the following research.

Introduction  �

remains in the reorder buffer until it commits. The goal of the reorder buffer is to store information 
about the instruction that is useful for its execution but also for squashing it if necessary.

Memory operations are handled in a special manner. They need to compute the effective ad-
dress, which typically is done in the same way as an arithmetic instruction. However, besides access-
ing the data cache, they may need to check their potential dependences with other in-flight memory 
instructions. The load/store queue stores the requited information for this, and the associated logic 
is responsible for determining when and in which order memory instructions are executed.

In an in-order processor, instructions flow through these phases in the program order. This 
means that if an instruction is stalled for some reason (e.g., an unavailable operand), younger in-
structions may not surpass it, so they may need to be stalled too.

In a superscalar processor, each one of the components described above has the capability of 
processing multiple instructions at the same time. Besides, it is quite normal to add buffers between 
some pipeline stages to decouple them and in this manner allow the processor to hide some of the 
stalls due to different types of events such as cache misses, operands not ready, etc. These buffers are 
quite common between fetch and decode, decode and rename and dispatch and issue.

1.3.1	 Overview of the Pipeline
This section presents an overview of the main components of the pipeline. A detailed description of 
them is presented in following chapters.

FIGURE 1.1: High-level block diagram of a microprocessor.
Figure 2.1: A general scheme of a pipeline design and major stages. Picture
from [7]

2.1 Pipeline
The foundation of modern processor architecture is the pipeline which splits
the execution of an instruction in multiple smaller stages that run indepen-
dently at a higher frequency. This makes possible to execute many instruction
at the same time in different stages, exposing what is defined as Instruction
Level Parallelism. The processor therefore achieves an higher throughput

4



Background

because the smaller stages have a smaller execution time that allows the
processor to run at an higher frequency. Since the architecture works as an
assembly line each cycle it can deliver a complete instruction meaning that
the total throughput is much higher.

One typical design of a pipeline is showed in Figure 2.1 and its main stages
are:

• Fetch

• Decode

• Rename

• Execute

• Write-back

• Commit

Ideally the more the pipeline is split in smaller and numerous stages, higher
is the frequency it could operate on; however, this is not entirely true because
the time for each step to complete is anchored to the slowest of the stages.

Another factor that can affect the performance of the pipeline is the
dependencies in between the instructions, for example: if I2 needs the data
produced by I1 then the former needs to wait until the source instruction is
completed and this could cause a stall.

2.1.1 Fetch and Decode
Fetch is the first stage of the pipeline and it’s the one responsible of inserting
the instruction into the processor. This stage computes the address of
the next instruction and then it accesses the instruction cache to fetch it;
this whole process for one instruction is usually completed in one cycle
but it can be affected by branches which, due to their nature, prevent the
next instruction address to be calculated in parallel (unless a speculative
mechanism is introduced).

Decode is the stage which is in charge of interpreting the instruction
previously fetched, so to understand what type of operation it describes,
which execution unit it needs, which source operands it depends on as well
as in which register the result will be written to.
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2.1.2 Rename Stage
Strictly related to the decode is the rename stage. It is used to allocate
physical registers to the decoded instruction that are not necessarily the
one encoded in the instruction. It can happen that multiple instructions
are meant to use the same architectural register even if the data meant
to be written will not be shared, this creates a false dependency which
is called "Name dependency". The renaming logic solves this problem: it
allocates the above-mentioned instruction in different physical registers and
it keeps track of this allocation in dedicated tables [8]. In a superscalar
(see subsection 2.2.1) processor there is the necessity to rename multiple
instructions in the same cycle: to find the dependencies between them the
source register of each entry is compared to the destination of the others. If
an instruction’s parent is in its group, the identifier of the physical register
allocated to the parent overrides the identifier obtained from the rename
map [8]. This logic is useful when many dependencies are exposed, therefore
it finds a better use in out-of-order architecture rather than in-order.

2.1.3 Issue stage
The issue stage has two main purpose: 1) it is responsible for choosing which
instruction will be sent to the Functional Units for execution and 2) it keeps
track of the readiness of the source operands and wakes up instructions when
all their source operands are ready. It represents one of the most complex
and energy consuming components, especially in out-of-order architecture.
As issue stage is the focus of this thesis, it will be described more in details
in 2.2

2.1.4 Execute and write back
This is the stage at which the results are actually computed. The instruction,
as we know, can be of different types and therefore need different functional
unit for their execution: for example an integer operation needs different
components compared to a memory operation. In modern processors, there
are implemented different execution paths for integer, memory, floating point
and branch instructions which also have different execution latencies.

Once the operation is completed the results are immediately available but
they should then be written back to the register files before they can be used

6
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by the dependant instruction and this would cause a loss of 1 or more cycles.
In modern processors, in order to maximize performance, the result can also
be forwarded as soon as it is available after the execution stage through the
bypass network

2.1.5 Commit
The commit is the last stage of a pipeline and it is in charge of actuating the
modification derived from the execution of the instruction in previous stages.
In modern architecture it is important to keep feeding the processor with
new instruction to be executed even if it is not sure that their result will be
used due to branches and exceptions. Therefore there is a difference between
architectural state, which is the correct flow of execution, and speculative
state which is the current flow of instruction that are being executed and
will be committed into architectural state only in the commit stage.

In an out-of-order processor this is also the place where the instruction are
finally put back in order before being written in memory and the resources
in the Reorder Buffer and other structures are reclaimed.

2.2 Issue Stage Details
As this project aims to simplify instruction wake up mechanism, we discuss
the issue stage in details.

2.2.1 Issue order
There are two main approaches to issue instructions in a processor: in-order
and out-of-order. The former is more classic approach where the instructions
are issued in the same order as they are fetched and it results in a simple
hardware implementation. However, it is limited in its ability to extract
Instruction level parallelism (ILP). With out-of-order issue, the instruction
are executed as soon as they are ready, meaning as soon as their source
operands are produced. Once they are executed they are then put back in
order in the commit stage. While this solution is beneficial to the speed
of the processor, it also results in a very complex implementation and the
issue stage can become the critical path, limiting the clock frequency in the
pipeline.
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The issue stage also represents one of the most energy consuming compo-
nent, the issue queue alone can count up for 18% [3] of the total energy in a
processor due to a writing activity which is high energy demanding.

2.2.2 Scalar/Superscalar processor

Another major difference in processor microarchitectures is the issue width,
in other words the number of instruction issued per cycle. A Scalar processor
is able to issue only one instruction per cycle and work only on one piece
of data at the time. The Superscalar processor, instead, can issue multiple
instructions each cycle and work on multiple pieces of data [9] therefore it is
able to achieve a throughput higher than one instruction/cycle unlike the
former solution.

the issue stage  49

file that stores the architectural state and the speculative values as described in detail in Chapter 5. 
However, the described hardware easily can be adapted to any other register file scheme.

This chapter also covers other alternatives like distributed issue queues and reservation sta-
tions. These alternatives will be explained in less detail since most of the tradeoffs that need to be 
considered in the implementation already have been covered with the aforementioned scenarios.

Finally, we pay special attention to the implementation of the issue logic for memory opera-
tions. Conversely to the rest of operations where data dependences are checked at the renaming 
stage, memory dependences cannot be identified until the memory operations compute their ad-
dresses. This characteristic has significant implications on the management of these instructions, as 
we will decribe later.

6.3.1	 Issue Process when Source Operands Are Read before Issue
The main characteristic of an issue queue where operands are read before the issue stage is that it 
needs to hold the information from the instruction to perform the issue and the values from the 
source operands that have been already produced. Figure 6.1 shows a general overview of the typi-
cal components used to store this information. Every block in Figure 6.1 represents a table with as 
many entries as the number of instructions that can be held by the issue queue. Moreover, for the 
sake of simplicity, we assume a processor with an ISA similar to a simplified MIPS [32], where in-
structions can have up to two source operands or one source operand and an immediate value coded 
as part of the instruction.

Src1 data Src2 data
Or ImmCtrl infoV1 V2R1 R2SrcId

1
SrcId

2
CAM
Dests

Destination Id of produced value

CAM
Dests

Produced value

Select Logic

To Functional Units

FIGURE 6.1: Hardware components of a typical issue queue where source operands are read before 
issue. Figure 2.2: Example of Issue stage with operands read before the issue.

The image is take from [7]

2.2.3 Reading Operands

An instruction can read its operands either before or after the issue stage:
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Reading the operands before the issue stage

Figure 2.2 shows the necessary hardware blocks when the operands are read
before the instruction is issued. Src1Id and Src2Id are the memory blocks
used to keep the operand ID (after they have been renamed) of the instruction
in the issue queue. Other two symmetric tables Src1 data and Src2 data
are used to hold the values of correspondent operands of the instruction
along with immediate value (in Src2 data only) when necessary. The validity
bits are stored in other two tables V1 and V2. When the operands of an
instruction are produced then the latter is marked as ready for issue, marking
the corresponding bits in the R1 and R2.

Reading the operands after the issue stage

In case the operands are read after the issue, the hardware structure is
simplified: The table Src1 data is not needed anymore while Src2 data is
kept only to be used for immediate operands and is therefore reduced in size.
The consequence of reading after is that there is an extra cycle between the
instruction being ready and being issued.

On the other hand this design brings benefits such as the reduction of
stages between renaming and queue allocation since data are yet to be read;
this also causes a reduction of CAM memory needed.

Another big difference is in the number of the read port needed which is
also proportional to area, power and access latency of the register file. With
this implementation the number of read port is, in fact, linked to the issue
width but it can be be also smaller with minimal impact on the performance.
Most of operands is also read from the bypass logic making the number of
read port needed even smaller.

For this project we will consider this implementation as the target archi-
tecture.

2.2.4 Wake up signal
Once one of the source operand has been produced a signal is sent to issue
queue containing the ID and validity. The CAM logic is used to check
that the ID is present in above-mentioned ID table and eventually set the
corresponding validity bit.

In Figure 2.3 is reported an example of Wake up logic: the tag logic
marks a match when the destination tag of a parent is broadcasted and the

9
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Phy_ID(Op1_src1)

Phy_ID(Op1_src2)

Phy_ID(Op2_src1)

Phy_ID(Op2_src2)

Phy_ID(Op3_src1)

Phy_ID(Op3_src2)

Phy_ID(Op1_dest)

Phy_ID(Op2_dest)

Phy_ID(Op3_dest)

from rename map
Physical identifiers Op3_destOp3_src2Op3_src1

Encoder
Priority

Encoder
Priority

Op2_destOp2_src2Op2_src1Op1_dest

Op2 Op2 Op2
Src1 Tag Src2 Tag Dest Tag

Op3Op3
Src1 Tag Src2 Tag Dest Tag

Op3
Src2 Tag

Op1
Src1 Tag

Op1
Dest Tag

Op1

Figure 4. Dependency Analysis Logic for Three Instructions

RSE SRC TAG M SHIFT R SRC TAG M SHIFT RDELAY DELAY

SELECT
LOGIC

DEST TAG

GrantRequest

Destination Tag Bus

Figure 5. Scheduling Logic for One Reservation Station Entry

labeled SRC TAG contain the tags of the source operands.
The R (READY) bit for each source is set if the data for
that source is available in the register file or is available for
bypass from a functional unit.

In our machine model, instructions broadcast their tags
in the same cycle they are selected for execution. Because
not all instructions have the same execution latency, the
number of cycles between the time their tags are broadcast
and the time their results are available is not constant. The
DELAY fields are used to handle this variability. 2 For each
source, the DELAY field encodes the number of cycles—
relative to some base—between when the tag for the source
is broadcast and when the associated result is available. We
will provide more details shortly about the actual number
that is encoded. For the logic implementation described in
this paper, this number is encoded as an inverted radix-1
value; e. g., 3 is represented by ‘1. . . 1000’.

Figure 6 shows the wakeup logic of one source tag for
our machine model. It is similar to the MIPS R10000
wakeup logic [5] but has been modified for handling multi-
cycle operations. When the destination tag of a parent is
broadcast, one of the tag comparators will indicate that a

2Alternative solutions exist. For example, if each functional unit only
executes instructions that all have the same latency, the tag broadcast can
simply be delayed so that it occurs a fixed number of cycles before the re-
sult broadcast. This eliminates the need for the DELAY fields. However,
if functional units can execute instructions of differing latencies, this solu-
tion is unsuitable at high clock frequencies: Multiple pipe stages may need
to broadcast tags, rather than just one. Either the pipe stages will need to
arbitrate for tag buses, or the number of tag buses will need to be increased.

match has occurred, and the M (MATCH) bit will be set.
The MATCH bit is a sticky bit that will remain set after the
tag match. On a tag match, the SHIFT field is loaded with
the value contained in the DELAY field. The SHIFT field is
actually contained in an arithmetic right shift register. The
MATCH bit is the shift enable for this register. The least sig-
nificant bit of the SHIFT field is the READY bit mentioned
above. After the READY bits for all source operands have
been set, the instruction requests execution.

= OR

=

load

shift
SRC TAG M SHIFT R

Source is Ready

DELAY

Destination Tag Bus
Tag 1

Tag 8

Figure 6. Conventional Wakeup Logic

For a source whose producer has an N-cycle execution
latency, the DELAY field contains N-1 zeros in the least
significant bits of the field. The remaining bits are all set to
1. This allows the READY bit to be set N-1 cycles after the
match. For example, in our model, a load instruction that
hits in the data cache takes three cycles to execute. Sup-

Figure 2.3: Conventional wakeup logic [10]

correlated bit is set.
Since the wakeup signal is produced only once it must be guaranteed

that all the interested consumers get the information even if not in the issue
queue, this brings to the use of the CAM memory also in the renaming
tables. CAM memory, unfortunately, are known for taking more area and
consuming more then a normal addressed memory like SRAM. This means
that reducing their usage could certainly benefit the overall energy efficiency.
In fact it has been found that the wake up logic represents up to 63% of the
whole issue logic [11] which can be roughly translated to 16% of the total
energy consumption of a processor.

The waking up signal is generated by an instruction when it finishes
the execution to inform the dependant operands that they can be ready to
execute. As shown in Figure 2.4 the wake up signal can be generated in
advance, knowing how long it takes to a specific instruction to complete so
to bring an higher overlapping of the pipeline stages. This implementation
can be possible if a data bypass, discussed in subsection 2.1.4, is put in
place. It allows data from the executed instruction to be used directly by
the following, without storing it in the register files.

In addition, the number of comparisons required for each issue queue
entry equals the number of source operands times the number of instructions
finishing execution each cycle. Though the number of operands remains
constant for an ISA, the number of instructions producing results increases
with issue width of processor. Thus, the wakeup logic becomes more complex
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as the issue width increases.
the issue stage  53

incurring in significant performance drops [7]. In conclusion, back-to-back execution is critical for 
performance [34], and for this reason, most of the processors implement it [27,30,33,48] among  
others.

There are two common implementations to generate the wakeup signal. One alternative is to 
generate the signal in the pipeline stage where the instruction resides three cycles before its execu-
tion completes. Note that the number of cycles an instruction requires for execution depends on the 
functional unit it uses. For instance, an integer adder usually requires one single cycle to complete, 
whereas an integer multiplier or a floating point functional unit may require longer. Therefore, the 
pipeline should be able to generate the wakeup signal from the select stage, for single-cycle opera-
tions, until three cycles before the functional unit that takes longer ends.

Another alternative is to implement every entry of the valid bit array as a shift register plus 
the valid bit. These shift registers also may be implemented as a scoreboard with one shift register 
per physical register. Every shift register should have as many bits as the maximum number of cycles 
required by a functional unit to produce the value. Then, the wakeup signal is always generated at 
the select stage, and it sets to 1 the bit of the shift register in the position equal to the latency of 
the functional unit minus 1. The shift registers shift every cycle and, as soon as the bit 0 of the shift 
register becomes 1, the corresponding valid bit is set.

Note that these mechanisms are suitable when the latency of an instruction is constant and 
only depends on the instruction itself. This assumption applies to all arithmetic operations but 
not for memory operations. The latency of a memory operation (a load, for instance) depends on 
whether it hits or misses in the data cache or the data TLB. Unfortunately, this is known only when 
the load is issued, computes its address and accesses these structures.

Wake-Up Select Drive Execution WriteBack

Wake-Up Select Drive Execution

Wake-Up Select Drive Execution

3 cycles bubble

1

2

Wake-Up Select Drive Execution WriteBack

Producer

Consumer

Producer

Consumer

WakeUp signal received when value becomes available

WakeUp signal received 3 cycles before becomes available

Wakeup signal

Wakeup signal

Data bypass

Time

FIGURE 6.3: Timing of the wakeup signal to support back-to-back execution.
Figure 2.4: Example of the waking signal and the possible bypass imple-
mentation [9]
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Chapter 3

Opportunity Analysis

This chapter analyzes the opportunity in reducing the broadcast width, i.e.
the maximum number of wake-up signals broadcasted in a cycle, by either
avoiding or delaying the broadcast of wake-up signals.

3.1 Instruction categories
The instructions can be categorized as follows based on whether or not they
need to broadcast a wake-up signal:

• ARITHMETIC
• LOAD
• STORE
• BRANCH

An instruction needs to broadcast a wake-up signal, when it finishes
execution, to wakeup the dependent instructions in the issue queue. However,
if an instruction does not generate a date value, it would not have any
dependents and hence it does not need to broadcast a wakeup signal. This is
the case for branch instructions. Branch instructions only decide the control
flow direction and do not have any data dependent instructions. Therefore,
they do not need to broadcast a wakeup signal.

Store instructions write to memory and not to register file. The depen-
dencies through memory are handled by load/store queue and not by the
issue queue. Therefore, stores also do not need to broadcast a wakeup signal.
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Arithmetic and load instructions, on the other hand, do have dependent
instructions in the issue queue that wait for their results. Therefore, these
two category of instructions do not need to broadcast wake-up signals when
they finish execution.

We assume that the baseline core does this distinction among instructions
based on whether or not they need to broadcast wakeup signals. Next we
show the fraction of instructions that does not need to broadcast wakeup
signals in the baseline core.

3.2 Instruction distribution in baseline core
Figure 3.1 shows the dynamic instruction distribution in the above categories.
As the figure shows, on average, about 9% of instructions are stores and a
further 11% of instructions are branches. Therefore, a total of about 20%
of instructions do not need to broadcast the wake-up signal in the baseline
architecture. Looking at individual workloads, there are benchmarks like
omnetpp and perlbench where instructions that do not need to broadcast
wake-up signals (stores and branches) constitute about 35% of dynamic
instruction stream. Therefore, these applications do not require a wide
broadcast width.
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Figure 3.1: This graph shows the usage of the different categories of
instruction for each benchmark

However, for the majority of applications, the dynamic instruction stream
is dominated by instructions requiring to broadcast wake-up signal. For

13



Opportunity Analysis

example, in gamess, GemsFDTD, gromacs, leslie3d, sphinx3, wrf, and
zeusmp nearly 90% of instructions need to broadcast the wakeup signals.
Therefore, they all are likely to require wide broadcast width.

3.3 Instructions with no dependents in the
issue queue

As noted earlier, our critical observation is that, if an instruction (load or
arithmetic) does not have any dependent instruction in the issue queue it
does not need to broadcast a wake-up signal on its completion. This is
because it has no instruction to wake-up in the issue queue. If a dependent
instruction later enters the issue queue, it will already have its operands
present in the register file.

If we detect and avoid the wake-up signal broadcast for such instructions,
we can further reduce the total number of instructions that need to broadcast
wake-up signals. Figure 3.2 shows the fraction of dynamic instructions that
have no dependent instructions in the issue queue when they finish execution.
Note that the figure includes only loads and arithmetic instructions as stores
and branches do not need to broadcast wake-up signal. On average the 7%
of the instructions broadcast a wake up signal that does not wake-up any
instruction in issue queue.
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Figure 3.2: This graph shows the percentage of instruction that should not
broadcast a signal because they do not have dependent. Store & Branch are
not included because they do not need to broadcast a wake up signal
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There are some benchmarks like hmmer and sphinx3 where this observation
does no affect a significant slice of the instructions. On the other hand many
workloads like calculix, wrf, xalancbmk and zeusmp present percentage
even higher than 10%, suggesting that this observation could still lead to a
meaningful reduction of the broadcast width when applied.

3.4 Instruction criticality to reduce broad-
cast width

To further reduce the number of instructions requiring to broadcast wake-up
signal, we exploit the phenomenon of instruction criticality. Prior work [12, 3,
5] has shown that non all instruction contribute equally to the performance.
Delaying the execution of non-critical instructions by some cycles hardly
has any impact on performance. Our key idea is to delay the wake-up
signal broadcast to non-critical instructions to reduce the broadcast width.
Though this will delay their wake-up and execution, it might not have a big
performance impact as these instructions are not critical to performance.
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Figure 3.3: Percentage of instruction, out of the total, that are sending a
wake up signal to a non Critical dependant. In this figure the percentage
of instruction that have no dependent has been excluded to simplify the
comparison

We describe the mechanism to identify the non-critical instructions and
delay wake-up signal broadcast for them in section 5.1. Here we present
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Opportunity Analysis

the number of additional instructions that do not need to broadcast their
wake-up signal immediately, rather when broadcast ports are available.

Figure 3.3 shows the number of instructions that generate results only
for non-critical instructions. Hence, their wake-up signal can be delayed.
In figure, for the sake of simplicity, the instructions with no dependent are
excluded because already taken into consideration in Figure 3.2. The average
number of instruction that can be delayed is around 41%, with conspicuous
peaks given by benchmarks like castsADM, gromacs and mcf (79%, 66%
and 61% respectively). This results meets our expectation and introduces a
further idea to reduce the broadcast width.

3.5 Combining all the results
Having seen the three categories of instructions, as mentioned above, whose
wake-up signal broadcast can either be avoided or delayed, now we combine
them together and present the overall results in Figure 3.4. On average
the amount of instruction that do not need to broadcast wake-up signal
immediately or never at all is around 68%, which supports our argument. In
most of the workloads this number exceeds 50% while some like cactusADM
and mcf even get above 90%, showing the best predisposition to benefit from
a broadcast width reduction while keeping similar performance.
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Figure 3.4: In this figure all the percentage of instruction (Store & Branch,
No dependant, No critical dependent) discussed in previous point are com-
bined
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Chapter 4

Analyzing the broadcast
width requirements

This chapter puts into practise the ideas of broadcast width reduction
described in chapter 3, analysing the resultant behaviour for each of the
previous proposal

4.1 Analyzing the broadcast width require-
ments

The major focus of this study is to analyze and reduce the broadcast width,
which means reduce the number of wake up signal that can be broadcasted
in one cycle. As mentioned before, in the baseline core, all the instruction
broadcast a wake up signal apart from stores and branches. To understand
further developments here we will show the initial situation.

4.1.1 Broadcast width for baseline core
Figure 4.1 shows the distribution of wake-up signals that need to be broad-
casted each execution cycle. The benchmarks show very different distri-
butions. In cases like gcc or mcf the majority of cycles ( 84% and 90%
respectively) does not seem to need any broadcast which is likely due to
frequent stalls caused by cache misses.

On the other hand cases like cactusADM, gamess and hmmer point out a
far higher pressure on the broadcast logic, in particular the latter workload
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Figure 4.1: Broadcast usage per cycle in the baseline version with issue
queue set to 168

presents 38% of cycles with 2 wake up signal and 31% with 3 wake up signals.
Considering all benchmarks the average of the distribution is fairly uniform
with the cases from 0 up to 3 wakeup per cycle representing 90% of the total
(40%, 18%, 18% and 14 % are the respective percentage in order from 0 to 3
wake up / cycle).

From the data presented so far we can deduce that more than 4 broadcasts
per cycles are rarely needed. In fact, on average, 4 broadcast are used in 7%
of the cycles while 5 and 6 represent 2% and 0.2% respectively. This shows
that a broadcast width set to 4 would be already capable of covering 98% of
the cycles in the baseline core.

4.1.2 Minimizing broadcast width
Given the data illustrated in Figure 4.1 we now explore what is the change
in the distribution of broadcast when putting in practise the ideas discussed
in chapter 3

Eliminating broadcast for instructions without dependents

In section 3.3 we found that, on average, 7% of the instruction still broadcast
a wake up signal even if they do not have any dependent. In this section
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we explore the impact on the broadcast distribution if the above-mentioned
instructions do not use a wake up signal.
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Figure 4.2: Broadcast usage per cycle with issue queue set to 168 when
the instruction with no dependent do not send a signal

Figure 4.2 shows the new distribution and the improvement obtained in
most of the workloads. We can observe that, as expected, since the number
of broadcasts is lower, also the number of wake up signals per cycle should
diminish.

The average shows that 96% of the cycles require 3 or less broadcasted
signal respect to 90% showed in the previous scenario. It’s worth noticing
that the individual concentration are 44%, 22%, 19% and 10 % in order from
0 to 3 wake up / cycle, displaying a shift of the concentration toward the
lower end.

In line with Figure 3.2 the benchmark xalancbmk shows one of the biggest
improvement, with an increase of 11% of cycles without broadcast. Astar,
on the other hand, has a small increase in both 0 and 1 wake up signal per
cycles (3.70% and 0.14% respectively) as the Figure 3.2 suggested. Overall
4.2 confirms our prediction and shows a general improvement. In particular
it appears that a broadcast width greater than 3 does not affect a great
number of instruction and neither brings great benefit, therefore it could be
set as a good compromise when considering this setting.
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Delaying broadcast for non-critical instructions

In chapter 3 we found that the concept of instruction criticality could
be exploited to reduce the number of broadcast per cycle. This is possible
because the non critical instruction have a smaller impact on the performance
and they can be delayed to reduce the pressure on the broadcast logic.
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Figure 4.3: Broadcast usage per cycle with issue queue set to 168 when
only the signals towards critical instructions are broadcasted

Figure 4.3 shows the simulation when only the wake up signals to Critical
instruction are broadcasted immediately (non-critical are not shown in this
figure). In this scenario the pressure on the broadcast logic is further reduced
and, as the average data shows, the cases from 0 to 2 wake up per cycle
signal gather 95% of the total cases. In detail the cycles with 0 wakeup
represent the 67%, while the other from 1 to 3 make for 20%, 9% and 3%
respectively.

Looking in details, the benchmarks cactusADM and h264ref show the
biggest difference with respect to the section 4.1.2. This may be due to the
fact that most of the instructions do not have a critical dependent in the
issue queue.

Noticeably the workloads that less benefit from this scenario (in terms
of increase of cycles without any wake up signal needed), are at the same
which had already a low usage of the broadcast logic, gcc and mcf.

Lastly the decrease in the broadcast of wake up signal is aligned to the
expectation given by Figure 3.4: the benchmark that have more instruction
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Analyzing the broadcast width requirements

that broadcast to a non-critical dependent have also an higher improvement
in Figure 4.3.

Given the data showed so far we can say that the broadcast width needed
in this scenario is of 2 or 3 signal per cycle to have a minimal impact on
the performances. This simulation helps to have an idea on the broadcast
width reduction that could be possible in an ideal situation with only critical
broadcast; in realistic scenario all the wake up signal should be considered.
An additional component is needed to delay the broadcast when possible.

4.2 Critical instructions
To pursue the goal of reducing the broadcast width, in previous chapters we
have introduced the concept of instruction criticality. Previous work [12, 3,
5] have shown that not all the instruction contribute equally to performance.
In particular it has been noticed that the instruction which need to access
the memory tend to have longer execution time than others and should
therefore be prioritize. This is mainly caused by the growing amount of
memory off-chip and more complex cache hierarchy.

Among the memory related instruction, our interest is towards the Loads
instruction because we know that Stores, by definition, do not have dependent
waiting for them in the issue queue. In addition, the instructions that generate
addresses for loads are also categorized as critical as loads cannot execute
until their address is available. Furthermore, instruction generating addresses
for stores are also considered critical. This is because store addresses are
needed to disambiguate younger loads.

4.2.1 Detecting critical instruction

To detect critical instruction, we use the Iterative Backward Dependency
Analysis (IBDA) [5]. The main purpose of IBDA is to exploit the loops that
are commonly present in code to mark the critical instruction using simple
hardware structures: The Instruction Slice Table (IST) and Register depen-
dency table (RDT). The first is used to store the address of the instruction
marked as critical and the latter stores the address of the instruction which
last wrote to the source register of a critical instruction to trace dependencies
and identify address-generating instructions. The main idea is that on the
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first iteration of a loop the Loads are marked as Critical and treated accord-
ingly, meantime IBDA will trace, for each of these Loads, the instruction
which computed their addresses in the RDT. On the second iteration of the
loop the IBDA, using the information collected previously, will also mark
in the IST the address-generating instruction as critical. It has been found
that with an IST of 128 entry the IBDA is capable of marking 99% of the
relevant instruction [5].

4.3 Broadcast queue

Fetch Decode Rename Dispatch Issue Execute Memory

Commit

 

I-cache Decoder

IST RDT

Register
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Sched.
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File
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Figure 4.4: The microarchitecture used in this thesis which keeps some
components of the Load Slice Core [5]. It introduces two additional FIFO
queues (in green) to buffer the Broadcast directed to Critical Instruction
(CBQ) and Non-critical instruction (NCBQ)

We have discussed so far that the criticality of an instruction is given
by its impact on the execution performance. We have found as a result
that definition can be applied to two category of instructions, Loads and
their address-generators, because accessing the memory is a long-latency
operation.

Given this distinction, in section 3.4 we have found out that the amount
of instruction that broadcasts a wake up signal to a non-critical dependent
is, on average, 41 %. The main idea is, in fact, to broadcast the wake up
signal to critical instruction as soon as possible while the remaining wake up
signals can be delayed and spread over the following cycle where the pressure
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on the broadcast logic is lower. By doing so, we expect to distribute the
broadcast of signal more evenly over different cycles and therefore be able to
reduce the broadcast width with minimal impact on performance.

To achieve this goal we introduce two simple FIFO queues to buffer the
wake up signal informations : the first is used for wake up signals broadcasted
to critical dependents and the second for signals to any other instruction.
Each new cycle the queue for critical instruction will have higher priority; only
when broadcast ports are left unused the second queue can then broadcast
its signals.

These queues are introduced because they allow us to vary the broadcast
width and understand its impact: when the number of broadcasted signals
exceeds the slots available, they will be stored in the queues and handled
in the following cycles. This allows us to evaluate which could be the
performance loss associated to different broadcast width reductions in order
to find which is the best compromise. Throughout our study we will assume
that the FIFO queues introduced will have infinite entries.
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Chapter 5

Microarchitectural Design

In this chapter we will show the implementation of the ideas that we have
discussed so far to reduce the broadcast width. We will focus on the technique
used to detect the critical instruction in a workload and we will describe the
broadcast queue, an additional simple component used to delay the broadcast
of wake up signal towards non critical instruction.

5.1 Critical instructions

To pursue the goal of reducing the broadcast width, in previous chapters we
have introduced the concept of instruction criticality. Previous work [12, 3,
5] has shown that not all the instructions contribute equally to performance.
In particular it has been noticed that the instructions which need to access
the memory tend to have longer execution time than others and should
therefore be prioritize. This is mainly caused by the growing amount of
memory off-chip and more complex cache hierarchy.

Among the memory related instructions, our interest is toward the Load
instructions because we know that Stores, by definition, do not have de-
pendents waiting for them in the issue queue. In addition, the instructions
that generate addresses for loads are also categorized as critical as loads
cannot execute until their address is available. Furthermore, instruction
generating addresses for stores are also considered critical. This is because
store addresses are needed to disambiguate younger loads.
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5.1.1 Detecting critical instruction
To detect critical instructions, we use the Iterative Backward Dependency
Analysis (IBDA) [5]. The main purpose of IBDA is to exploit the loops
that are commonly present in code to mark the critical instructions using
simple hardware structures: The Instruction Slice Table (IST) and Reg-
ister dependency table (RDT). The first is used to store the address of
the instruction marked as critical and the latter stores the address of the
instruction which last wrote to the source register of a critical instruction to
trace dependencies and identify address-generating instructions. The main
idea is that on the first iteration of a loop the Loads are marked as Critical
and treated accordingly, meantime IBDA will trace, for each of this Loads,
the instruction which computed their addresses in the RDT. On the second
iteration of the loop the IBDA, using the information collected previously,
will also mark in the IST the address-generating instruction as critical. It has
been found that with an IST of 128 entry the IBDA is capable of marking
99% of the relevant instruction [5].

5.2 Broadcast queue
We have discussed so far that the criticality of an instruction is given by
its impact on the execution performance. We have found as a result that
this definition can be applied to two category of instructions, Loads and
their address-generators, because accessing the memory is a long-latency
operation.

Given this distinction, in section 3.4 we have found out that the amount
of instructions that broadcast a wake up signal to a non-critical dependent
is, on average, 41 %. The main idea is, in fact, to broadcast the wake up
signal to critical instruction as soon as possible while the remaining wake up
signals can be delayed and spread over the following cycle where the pressure
on the broadcast logic is lower. By doing so, we expect to distribute the
broadcast of signal more evenly over different cycles and therefore be able to
reduce the broadcast width with minimal impact on performance.

To achieve this goal we introduce two simple FIFO queue to buffer the
wake up signal information : the first is used for wake up signals broadcasted
to critical dependents and the second for signals to any other instruction.
Each new cycle the queue for critical instruction will have higher priority; only
when broadcast ports are left unused the second queue can then broadcast
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its signals.
These queues are introduced because they allow us to vary the broadcast

width and understand its impact: when the number of broadcasted signals
exceeds the slots available, they will be stored in the queues and handled
in the following cycles. This allows us to evaluate which could be the
performance loss associated to different broadcast width reduction in order
to find which is the best compromise. Throughout our study we will assume
that the FIFO queues introduced will have infinite entries.
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Chapter 6

Evaluation

In the following chapter we will make a comparison in order to find which is
the best compromise taking into consideration the broadcast width reduction
and the eventual performance loss.

6.1 Methodology

The main tool that we have used to evaluate the proposed architecture is
Sniper simulator [13] which works by expanding Intel’s PIN tool with models
for the core, memory hierarchy, and on-chip networks. The simulations have
been performed using CPU2006 benchmark suite with reference inputs. To
keep the simulation time reasonable, SimPoint methodology [14] is used to
choose a single most representative region of 1 billion instructions in each
application. For our experiment we have considered the following designs.

- The first is based on the Baseline core and introduces one unlimited
FIFO queue where all the wake up signals exceeding the broadcast width
will be stored.

- The second is an improved version of the first where the instruction with
no dependent do not broadcast any signal in order to lower the pressure on
the broadcast logic.

- The third is described in 5.2 and uses two different FIFO queue to
manage critical and non-critical wake up signal.
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6.2 Broadcast width of 4
We first set the broadcast width to 4 as we found in subsection 4.1.1 that
the usage of more than 4 broadcasts per cycle is rare; therefore, we don’t
explore broadcast widths higher than four.

Figure 6.1 shows the performance loss caused by setting the broadcast
width to 4 over an unlimited broadcast width design. The results in figure
point out that the baseline version is, as expected, affected more than the
other two designs, i.e. when the instructions with no dependents do not
broadcast and when the critical instruction are prioritized. The average
performance penalty in the baseline case is about 1% while the other two
designs show much lower performance loss: 0.03% and 0.02% respectively.
These results show that the performance loss with a broadcast width of 4 is
negligible compared to an unlimited broadcast width design.

Considering each benchmark individually we can see that gamess presents
the peak delay in terms of additional cycles with respect to unlimited broad-
cast width in all the scenarios considered: 4.3%, 0.2% and 0.2% respectively.
This numbers show that all the three microarchitecture, even in the worst
case considered, have a limited performance loss, especially when excluding
unnecessary broadcast when there are no dependents or when prioritizing
the critical instructions.

It is worth noticing that the benchmarks that happened to have 5 or 6
broadcast per cycle more often in Figure 4.1 (gamess, leslie3d, h264ref
and wrf ) here show the highest delay as it can be expected. On the other
side, workloads like hmmer, even showing an higher pressure on the broadcast
logic (94% of the cycles require to broadcast at least 1 wake up logic) does
not look to suffer from the reduction in broadcast width. This is because
the broadcast width of four is wide enough to wake-up the majority of
instructions on time.
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Figure 6.1: The figure shows the increase of the number of cycles, when
the maximum number of broadcasted signals is set to 4, expressed as a
percentage respect to the case with unlimited broadcast width

6.3 Broadcast width of 3
Figure 6.2 presents the performance loss when the broadcast width is set to
3 in terms of percentage of additional cycles needed to complete execution.
In this scenario we found that No Dependant and Critical Instruction are
slightly impacted in the performance, in fact their average delay gets to
0.51% and 0.50% respectively.

When looking at individual benchmark we found that the delay for
the baseline is greater in the same workloads mentioned above (gamess,
leslie3d, h264ref and wrf ) but at the same time not all of them show the
same slow down when looking at No Dependant and Critical Instruction(i. e.
wrf has a pretty negligible delay both when it broadcasts wake up signals
for critical instruction and when excluding the signal when no dependent is
in the issue queue) .

The Baseline maintains a similar behaviour to the previous case with
a delay of 1.13%. We can observe that, in this case, the performance loss
impacts significantly the two more advanced architectures while the baseline
version has a small increase of 0.13% given by the fact that it was already
impacted much by the width set to 4.
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Figure 6.2: The figure shows the increase of the number of cycles, when
the maximum number of broadcasted signals is set to 3, expressed as a
percentage respect to the case with unlimited broadcast width

6.4 Broadcast width of 2
Figure 6.3 shows the results when the broadcast width is set to 2. A significant
performance loss can be seen in the baseline core due to instructions not
being waken up on time. The average slowdown for the baseline core is about
9%, with the slowdown being as high as about 24% in gamess. The same
trend can be observed also when the design does not broadcasts results for
non-dependent instructions. The average performance loss in this case is
about 5.6%.

Our final design that considers instructions criticality shows 5.7% perfor-
mance loss. When looking to benchmarks individually it can be noticed that,
besides group of benchmarks already cited before, new critical cases emerged
: calculix shows the biggest increase of delay probably because the short
amount of wake up signals allowed exposes close-up dependency that cause
the slow down. The narrow broadcast width also showed that in benchmarks
like gamess or calculix the proposed microarchitecture with two queues is
found to cause a greater delay than the second architecture with only one
queue. This can be caused by the huge number of "Critical" broadcast which,
due to the prioritized queue, block the "Non-critical" signals so long that
the benefits brought by this architecture on the MLP are counterweight and
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result in a loss of performance.
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Figure 6.3: The figure shows the increase of the number of cycles, when
the maximum number of broadcasted signals is set to 2, expressed as a
percentage respect to the case with unlimited broadcast width

Summary: To summarize, simply reducing the broadcast width of the
baseline core, to reduce the complexity of wake-up logic, significantly hurts
performance. As the results presented in this section show, reducing the
broadcast width to 2 leads to a performance loss of about 9% and as high
as 24% in some benchmarks. Our proposal, in contrast, aim to keep the
performance penalty to minimal by taking advantage of instruction criticality
and the observation that some instructions do not have their dependents in
the issue queue when they finish execution.

From the data collected we can see that adding one queue and preventing
instruction to broadcast when they have no dependent gives the best results
at the minimum cost. Using two queues to prioritize the broadcasts causes,
in some benchmarks, a meaningful loss with respect to the previous solution.
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Chapter 7

Conclusion

The continuous demand for higher performance has caused processor design
to change drastically over the year. Processors has evolved from simple
single-cycle in-order execution machines to highly speculative out-of-order
execution engines. Though this evolution has brought many fold performance
benefits, it has also increased processor complexity significantly. Specifically,
the instruction scheduling mechanism, i.e. the issue stage, is one of the
most complex operations in contemporary processors. Its complexity stems
from its need to wake-up instructions for execution when all their operands
become available and select them for execution based on priority heuristics.

The goal of this thesis was to analyze and reduce the complexity of the
instruction wake-up mechanism. We first established a reasonable baseline
by assuming that store and branch instructions never need to broadcast
wake-up signal as they do not have any data dependent instructions. Starting
from this baseline, we further showed that there are other instructions for
which the wake-up signal broadcast can either be completely eliminated or
delayed, thus reducing the required broadcast width. For example, if an
instruction does not have any dependent instructions in the issue queue when
it completes its execution, it does not need to broadcast a wake-up signal at
all. Furthermore, we exploited instruction criticality to delay the wake-up
broadcast if all the dependents of an instructions are non-critical.

If more instructions finish execution in a cycle than the number of wake-up
broadcasts supported by the processor, we buffer the extra broadcasts in two
FIFO queues: one for critical and other for non-critical instructions. When a
broadcast port becomes available, we issue broadcasts from these queue with
instructions in critical queue getting higher priority than non-critical ones.
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Conclusion

By reducing the number of instructions that need to broadcast wake-
up signal immediately, we are able to reduce the broadcast width with
various degree of success. When restricting the broadcast width to 4 and 3
the performance loss is, on average, negligible ( around 0.02 % and 0.50%
respectively). With the broadcast width set to 2 wake up signal per cycle the
delay is more noticeable and stands at 5.6% with only one queue. We also
found that implementing two queues of broadcast to prioritize the critical
signal does not bring an substantial improvement and, when the broadcast
width is set to 2, it causes substantial delays in some benchmarks.

We proved to some degree that is possible, implementing simple hardware,
to reduce the broadcast width to simplify the wake up logic with a limited
impact on the performances.
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Chapter 8

Related Work

The issue stage, as mentioned before, is one of the most expensive component
of a pipeline due to its high complexity. Many studies that have been carried
out focus on this stage in order to find simpler architecture with a low impact
on performance.

Table 8.1: Comparison withing different proposal to improve the issue stage.
Picture from [1]

8.1 Works on out-of-order architecture
One of the first work presented on such topic has been the MLP-Aware
Dynamic Instruction Window Resizing [2] that, as the name suggests,
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focuses on extracting Memory-Level Parallelism (MLP). The main observa-
tion is that the issue window influences the performance according to the
type of workload: the gcc benchmark have a degradation of IPC when the
windows size increases but, on the other hand, memory intense benchmark
like libquantum benefit from a large issue window because of the better MLP.
This brought to the idea of implementing an architecture which is capable
of resizing the window and have a large size only when necessary to extract
MLP and a smaller window when the workload is more computing-intense.
Another important work is Long Term Parking [3], which first introduced
the idea of separate queues for less important instructions. The idea is to
identify which instruction can expose Memory-Level Parallelism and can
therefore be considered worth of allocating the expensive IQ resources; all
the other types should instead be "parked" in a simper and cheaper structure
(like a FIFO) until they are ready. An instruction should allocate resources
according to a metric based on its Readiness and its relation with Long
Latency Instruction called Urgency, otherwise be "parked". This allows to
reduce the dimension of the IQ and the Register File without affecting the
performance.
Another proposed idea to simplify the issue stage is the Front-end Execu-
tion Architecture which focuses on reducing the issue width. The design
includes both an in-order execution unit (IXU) and an out-of-order execution
unit (OXU) placed one after the other: the instruction will first enter the
IXU and, if ready, it will be executing using the FUs present at this stage; if
not ready the instruction will be considered as a NOP and enter the OXU.
The IXU in mainly acting like a filter for ready instruction that can instantly
execute without wasting the issue resources of the OXU so that the latter
can have a reduced width.
Taking on these previous ideas and merging some aspects of it another work
has been presented: Delay-and-Bypass [1] The instruction are, in this case,
separated according to a criteria based on both readiness and criticality: the
resources of the IQ are allocated only to critical instructions waiting to be
ready. When it is critical and ready it is issued directly to the execution
units; non-critical are put in a simple FIFO queue. This evolution of the
criteria allows DNB to reduce the IQ in size and width while keeping better
performance than LTP.
The FIFOrder MicroArchitecture [4] focuses on using cheaper FIFO to deduct
the pressure on the IQ so to improve energy efficiency up to 50% and perfor-
mance [4]. To achieve that it categorizes the instruction according to their
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readiness at the dispatch stage : three of these types (Ready-at-Dispatch,
Almost-Ready-at-Dispatch and Load-tail) are found to not benefit from the
out-of-order execution and can be put in cheap separated FIFOs to avoid
further stalls. The remaining category (which represents on average the
remaining 33%) will allocate resources in the IQ. Respect to the cited FXA,
this architecture proves to have better performance per energy when using
three FIFOs and it does not require to replicate Functional Units. [4]

8.2 Work on in-order architecture
One other approach to the problem of complexity is to improve the perfor-
mance and ILP of the in-order architecture that are by definition simpler
than out-of-order architecture.
The Load Slice Core microarchitecture [5] focuses on extracting Memory-
Level Parallelism: the instructions that are interested in this process (Loads
and address generating) are marked as critical and therefore bypassed to
another dedicated queue in order to avoid the stall that can occur in the
normal stream. The structures used are still simple (RAMs and FIFOs)
because the order is still kept as it is, generating "slices" of instructions. This
idea guarantees simple hardware but its performance cannot be compared to
a real out-of-order processor because the dependencies in between instruction
still frequently block MLP generation.
An evolution on this architecture to overcome dependence-oblivious in-order
slice execution has been proposed by Freeway [6]. The idea is that when
executing the bypassed instruction mentioned above, the architecture should
be aware of their dependency and, by using another FIFO structure, put them
aside until they are available for execution. This whole mechanism allows
the independent instruction to be executed out-of-order using a minimum
amount of additional Hardware.

8.3 This work
All the projects and proposals that have been illustrated so far take different
approaches to improve the issue stage : some start from a out-of-order archi-
tecture and try to reduce its complexity without losing performance, other
try improve a simple and efficient in-order architecture to gain performance
without over complicating. Most of this efforts have been made on the issue
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logic but none of this works takes into consideration the wake up logic which
also represents a critical component. The use of CAM and RAM in the Issue
Queue is strictly correlated to the employment of the wake up signals and,
in particular, the area and energy consumption are proportional to the ports
of the cited memories.
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