POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

A FPGA-based tensor accelerator for
Machine Learning

Supervisors Candidate
Prof. Paolo BERNARDI
rol. acto Francesco ANGIONE
Prof. Pedro P.M. TRANCOSO

A.Y. 2019/2020

Abstract

Part of a Neural Network inference execution mainly consists in multiplications and
additions, basic operation of tensor convolutions, and across several execution data,
especially weight tensors, are reused. Clearly, those operations are executed on a
CPU but, as it is well known, they are independent of each other and therefore they
can be executed in parallel by the means of parallel architectures, such as GPU or
domain specific hardware platform. In the following pages, the state-of-the-art for
accelerating Neural Network inference is explored starting from the newest proposed
GPGPU architecture by NVIDIA to the domain specific accelerator from Google,
NVIDIA, and Habana.

With the state-of-the-art awareness, a hardware accelerator capable of execution
tensor convolution, compute and memory intensive operation of a Neural Network,
is designed from scratch. It is also designed for accommodating different data type
computation request from Neural Network models, ranging from integer8/16,/32/64
to floating-point 32 and brain floating-point 16. Starting from the hardware sys-
tem development, through the software development of a library capable to use
the underlying hardware, it ends with integration into a popular Machine Learning
framework, Tensorflow.

The work is carried out on a configurable hardware, FPGA, which allows to explore
different design points, in terms of latency and number of processing elements, for
different Neural Network models and data type. Moreover, the impact of integrat-
ing the accelerator into the Neural Network model is measured and compared with
different platforms. Energy consumption is also estimated in the case of deployment
on mobile devices.

Keywords: Computer, science, computer science, engineering, hardware, accelerator,
machine learning.

Acknowledgements

It is always hard to write this part of a work. I would say it is the hardest part,
more than the technical one.

However, let me try to address it anyway. I am apologizing in advance if i will forget
something.

This work is the sum of five years of experiences, from a technical and non-technical
point of view, and it has been developed during a terrible event, a pandemic, which
has literally stopped the entire world and caused death, issues and debates. How-
ever, as the human race has always been, we are resilient to everything, and we
tried as much as we could to not let the world stop, especially thanks to technology,
Internet and all the related services. We are just human, but we can do whatever
we can image, especially in Computer Science.

First, I would like to thank my family for all their support and presence, even when
i was going counter current in my life. I would like to thank to both my supervi-
sors Prof. Paolo Bernardi and Prof. Pedro Petersen Moura Trancoso for believing in
me without any guarantees on the final work, and their support through this journey.

To the day in which I learned how to read, an important pillar of my life.

To the people who have contributed, in badness and goodness, to make me the person
who i am today.

To my past and future failures, where I have built and I will build myself.

To my feelings, which remember us how much we are fragile but at the same time
they remind us that we are human being, and we gather our strength from them.
Sapere aude.

Francesco Angione, Gothenburg, October 2020

vii

Contents

List of Figures xi
List of Tables XV
1 Introduction 1
2 Background 3
2.1 Overview 3
2.2 Machine Learning oo 4
2.2.1 Brain Inspired oo)

2.2.1.1 Neural Networks 6

2.2.1.2 Spiking Neural Networks 7

2.3 Machine Learning Quantization 8
2.4 Applications 9

3 State-of-the-Art 11
3.1 Overview oL 11
3.2 GPU . .. 11
3.2.1 Nvidia Ampere A100 Tensor Core GPU 12

3.3 Domain Specific Hardware Platform 16
3.3.1 NVDLA 16

3.3.1.1 NVDLA Software 18

3.3.2 Google TPU 19

3.3.3 Habana Goya HL-1000 20

4 System Development 23
4.1 Overview 23
4.2 Software 27
4.3 System Level 29
4.4 DTPU, the hardware accelerator. 31
4.4.1 Real Implementation, 31

4.4.2 High Level State Machine of Control Unit 33

4.4.3 Datapath 34

4.4.3.1 Filter&Select and Compact&Select 35

4.4.3.2 Matrix Multiplication Unit 38

5 Results 41
Francesco Angione Politecnico di Torino ix

Contents

5.1 Ewvaluation metricso 41
5.2 Utilization Factor 42
5.3 Energy and Power Consumption 45
54 Throughput 56
5.5 Latency D7
5.6 Accuracy 60
6 Conclusion 63
6.1 Discussion 63
6.2 Future Works 64
Bibliography 65
A Accelerator library 1
B Top level entity of DTPU core XLVII
C Results for different frequencies LV

X Politecnico di Torino Francesco Angione

List of Figures

2.1 Classification of Al with emphasis on machine learning and its sub-
classificationo 4

2.2 A parallelism between a human-brain neuron and a neuron in a Brain
Inspired Network)
2.3 Example of a Neural Network 6
2.4 Approximation of floating-point values to integer values 8
3.1 Streaming Multiprocessor Architecture [21] 12
3.2 Matrix Multiplication in Tensor Core [21] 13
3.3 Mixed Precision Schema of a FMA unit in Tensor Core Unit [21] . . . 13
3.4 Sparsity Optmization of a weight tensor [21] 14
3.5 Matrix Multiply Accumulate [21] 0L 14
3.6 Software stack [21] 15
3.7 Comparsion of two possible NVDLA system [22] 16

3.8 Internal architecture of NVDLA small system, Secondary DBB not
considered [22] 16
3.9 NVDLA Software stack[24] 18
3.10 Google TPU architecture[l] 19
3.11 Google TPU Software Stack [25] 20
3.12 High level view of Goya architecture [4] 21
3.13 Habana Goya Software Stack [4] 21
4.1 Average execution time divided by type of operations 23
4.2 Development workflow oL 25
4.3 Execution Graph oo 27
4.4 Flow Chart with accelerator 28
4.5 Zynq 7000 SoC [32] 29
4.6 System view hosted in the PL'Y 30
4.7 Logical view of DTPU accelerator 31
4.8 Real RTL view of DTPU accelerator 31
4.9 RTL view of DTPU core 32
4.10 A high level view of Control Unit 33

4.11 A detailed view of the DTPU core datapath. Enable and resets signals
for clocked units has been omitted for improving readability. 34
4.12 Data Distribution of Filter&Select unit for a MXU size of 8x8 36
4.13 MXU interal structure and weights distribution 38
4.14 SMAC and SMUL details 39
Francesco Angione Politecnico di Torino xi

List of Figures

4.15 DSP Slice Functionality [38] 40
5.1 Post Implementation Utilization Factor of integer 8 bit PEs and clock
frequency of 30 Mhzo 42
5.2 Post Implementation Utilization Factor of integer 16 bit PEs and
clock frequency of 30 Mhzo 42
5.3 Post Implementation Utilization Factor of integer 32 bit PEs and
clock frequency of 30 Mhz 43
5.4 Post Implementation Utilization Factor of integer 64 bit PEs and
clock frequency of 30 Mhzo 43
5.5 Post Implementation Utilization Factor of bfp 16 bit PEs and clock
frequency of 30 Mhzo 43
5.6 Post Implementation Utilization Factor of fp 32 bit PEs and clock
frequency of 30 Mhz 44
5.7 Post Implementation Power Consumption of Processing System for
integer 8PEso 45
5.8 Post Implementation Static Power Consumption Programmable logic
for integer 8 PEso 45
5.9 Post Implementation Dynamic Power Consumption per Programmable
logic with integer 8PEso o000 46

5.10 Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and integer 8

PEs . . 46
5.11 Post Implementation Power Consumption of Processing System for

integer 16 PEso 47
5.12 Post Implementation Static Power Consumption Programmable logic

for integer 16 PEso 48
5.13 Post Implementation Dynamic Power Consumption per Programmable

logic with integer 16 PEso 48

5.14 Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and integer

16 PEs 49
5.15 Post Implementation Power Consumption of Processing System for

integer 32 PEso 49
5.16 Post Implementation Static Power Consumption Programmable logic

for integer 32 PEso 50
5.17 Post Implementation Dynamic Power Consumption per Programmable

logic with integer 32 PEs oo 50

5.18 Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and integer

32PEs . . . 51
5.19 Post Implementation Power Consumption of Processing System for

integer 64 PEs 51
5.20 Post Implementation Static Power Consumption Programmable logic

for integer 64 PEs oo 52

xii Politecnico di Torino Francesco Angione

List of Figures

5.21

0.22

5.23

5.24

0.25

5.26

5.27

5.28

5.29

5.30

5.31

C.1

C.2

C.3

C4

C.5

C.6

C.7

C.8

Post Implementation Dynamic Power Consumption per Programmable
logic with integer 64 PEs oL 52

Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and integer
64 PEs 53
Post Implementation Power Consumption for bfpl6 PEs 53
Post Implementation Dynamic Power Consumption per entities in

Programmable Logic with a clock frequency of 30 MHz and bfp16 PEs 54
Post Implementation Power Consumption for fp32 PEs 54
Post Implementation Dynamic Power Consumption per entities in

Programmable Logic with a clock frequency of 30 MHz and fp32 PEs 55

Comparison of Post Implementation Dynamic Power Consumption
per entities in Programmable Logic with a clock frequency of 30 MHz
and a MXU 3x3 55
Roofline model of the accelerator with a MXU size of 8x8 56
Roofline model of the accelerator with a MXU size of 8x8 and vec-
torized PEs 56
Total Execution time of Invoke method (left) in the configuration
with accelerator and MNIST model 58
Total Execution time of Invoke method (left) in the configuration
with accelerator and Cifar1l0 model 58

Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 50 MHz and integer 8

PEs . . LV
Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 80 MHz and integer 8

PEs . . o LV
Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 100 MHz and integer

8PEs . . . LVI
Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 120 MHz and integer

8PEs . . . LVI
Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 50 MHz and integer

16 PEs LVII
Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 80 MHz and integer

16 PEs o LVII
Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 100 MHz and integer

16 PEs o o LVIII
Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 50 MHz and integer
32PEs . . . LVIII

Francesco Angione Politecnico di Torino xiii

List of Figures

C.9 Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 80 MHz and integer
32PEs . . .

C.10 Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 100 MHz and integer
32 PEs . . .

C.11 Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 50 MHz and integer
64 PEs

C.12 Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 60 MHz and integer
64 PEs

Xiv Politecnico di Torino Francesco Angione

List of Tables

5.1 Execution Time for different platform and model, integer 8 57
5.2 Execution Time for different platform and model, integer 16 57
5.3 Execution Time for different platform and model, integer 32 Y
5.4 Accuracy Output! with Convolution on integer 8 60
5.5 Accuracy Output! with Convolution on integer 16 60
5.6 Accuracy Output! with Convolution on integer 32 60

Francesco Angione Politecnico di Torino XV

List of Tables

xXvi Politecnico di Torino Francesco Angione

1

Introduction

Machine learning is one of the hot technologies today as it is being used to solve
complex problems that would otherwise be very hard or costly to solve with tra-
ditional methods. Speech and image recognition as well as many other complex
decision-making problems such as self-driving vehicles are successfully solved with
machine learning and deep-learning.

In the last years, the number of published papers regarding machine learning has
grown exponentially, and the success of machine learning has been driven by the
current available hardware which could provide the required demands in terms of
storage and compute capacity. But obviously as problems scale so do the demands
and thus companies have started to develop, deploy and sell their own hardware
platform, such as Tensor Processing Unit [1| from Google, NVDLA[2]| from Nvidia
and Gaudi [3] and Goya [4], respectively for training and interference, from Habana
(acquired by Intel).

The use of commodity hardware is not the most efficient way to execute machine
learning, so researchers are looking at flexible hardware solutions [5] [6] that can
satisfy the required demands for different machine learning models but at lower cost
and energy consumption in order to be deployed also on mobile devices. Moreover,
during the inference process, a model does not need high precision computations [7]
[8] for achieving high accuracy into its outputs. As it is very well-known, hardware
accelerators are capable, if designed correctly, of delivering significant improvements
in terms of the latency but also in terms of energy efficiency [9]. Thus, in order to
obtain the best solution in every metric a hardware-software co-design is needed,
and it also requires to the hardware designer a basic knowledge of machine learning
algorithms.

Machine learning includes two processes, the training and the inference. The training
process is done off the field, on powerful machines, exploiting different algorithms
for optimizing the models in terms of memory footprint, data type and feedback
mechanisms for fine-tuning the weight values. On the other hand, the inference
process is the execution of the trained model, applying the inputs and expecting
the correct outputs. It is done in the field, for example on a mobile device, which
is area and energy constrained. The inference process is massively composed of
multiplication and addition and on a normal CPU-based system they are executed
sequentially, increasing the latency of the model and the energy consumption due

Francesco Angione Politecnico di Torino 1

1. Introduction

to data movement.

Thus, the goal of this work is to develop from scratch a hardware accelerator, which
implements a tensor-based convolution. Exploiting a non Von Neumann architecture
and data locality and reuse for weights reduces the CPU workload and boosts the
model’s performance. The use of different arithmetic data types can drastically re-
duce the computations without reducing the final accuracy of the neural network|[7]
[10]. From a hardware perspective, the use of different arithmetic precision [11],
such as the use of integer operations instead of floating-point operations, can lead
to benefits in terms of area, energy consumption and latency.

In order to have the possibility of exploring different solutions, in terms of size and
latency, of the accelerator the work is deployed on FPGA and it is integrated into
a common ML-Framework, Tensorflow. Accuracy of operations, reliability, perfor-
mance and energy efficiency are evaluated and compared to the implementation of
the same models executed on a GPU.

2 Politecnico di Torino Francesco Angione

2

Background

Can a machine think?
— Alan Turing, Computing Machinery and Intelligence

2.1 Overview

In the past decade many companies have started to advertise the use of AI(Artificial
Intelligence), even if they are using a subfield of the Al in their products and soft-
ware applications. Nevertheless the recent growth, the Al fiels is not a recently
invented concept but it takes one of its roots from a theoretical paper of Alan Tur-
ing published by journal Mind in the 1950 [12].

The general definition of Al: intelligence demonstrated by machines, any device that
perceives its environment and takes actions that mazimize its chance of successfully
achieving its goals [13]. In general, "artificial intelligence” is used when machines
mimic the cognitive functions of the human mind, i.e. learning and problem solving.

According to the definition, Al is too vast to be studied and simulated [13]. There-
fore, it has been divided into subfields, characterized by different traits, such as
knowledge representation, planning, learning, natural language processing, percep-
tion, motion and manipulation, social intelligence and general intelligence.

Al can be seen as a general purpose technology. It does not excel in a specific
task, and tasks are not even characterize.

Francesco Angione Politecnico di Torino 3

2. Background

Artificial Intelligence

Machine Learning

Brain-Inspired

Neural
Networks

Figure 2.1: Classification of Al with emphasis on machine learning and its
subclassification

2.2 Machine Learning

A particular interesting subcategory of Al in Computer Science is the machine learn-
ing. It is the study of algorithms used to compute a specific task(image recognition,
computer vision etc) without explicit programming the machine, relying on patterns
and inference, in order to make decisions.This approach is able to solve tricky or
unfeasible problems with conventional algorithms.

A peculiarity of machine learning model is that it is composed of two processes,
training and inference. The inference process is the process in which a conclusion
is given at the end of the evaluation process, i.e. the input stimulus are applied to
the model and the output is observed. The training process has to be done before
the model is put on the field, before the inference process, otherwise the latter can
give wrong results. As the name suggests, in this process the model learns how to
behave, adjusting the weight accordingly to the applied inputs and expected outputs.

Besides this type of training and according to [13], other exists, characterized by
approach, type of data and tasks:
o Supervised learning, it builds a mathematical model of a set of data that
contains both the inputs and the desired outputs.
o Unsupervised learning, it takes a set of data that contains only inputs and find
structure in the data.
e Semi-supervised learning, it falls between unsupervised learning and super-
vised learning.
o Reinforcement learning, it concerns how software agents should take actions
in order to maximize some notion.
o Self learning is a type of learning with no external rewards and no external
teacher advices.

4 Politecnico di Torino Francesco Angione

2. Background

o Feature learning, also called representation learning algorithms, often attempts
to transform data and preserve at the same time. It is used as a preprocessing
step before any classification or predictions.

» Sparse dictionary learning is a feature learning method where a training ex-
ample is represented as a linear combination of basis functions, and is assumed
to be a sparse matrix.

o Anomaly detection, also known as outlier detection, identifies rare items,
events or observations which are significantly different from the majority of
data.

o Association rules is a rule-based method for discovering relationships between
variables in large databases.

Machine learning space is also divided into other type of models such as decision
tree, support vector machines, regression analysis, bayesian networks and genetic
algorithms. As it can be seen in Figure 2.1 brain inspired machine learning is also
divided in subcategories.

2.2.1 Brain Inspired

Brain inspired networks arebased on algorithms which take their basic functionalities
from our understanding of how the brain operates, trying to mimic the functionali-
ties.

Dendrite

Axon Terminal

Node of
Ranvier °

Schwann cell

Myelin sheath

Nucleus
. weights
inputs
z—{y)
activation
functon
X @ net input
net;
S =2
i
X @ activation
transfer
5 y function
0.
xﬂ /
threshold

Figure 2.2: A parallelism between a human-brain neuron and a neuron in a Brain
Inspired Network!

In the human brain, the basic computational unit is the neuron.

Neuron, which receives input signal from dendrites and produce output signal along
the axon which interacts with other neurons via synaptic weights.

The synaptic weights are obtained after a learning process, which can strengthen

Francesco Angione Politecnico di Torino)

2. Background

them or not.

2.2.1.1 Neural Networks

Neural networks (or artificial neural networks) can be represented as graphs in which
every node is interconnected to others using edges, which have a weight properly
tuned during the training process.

As mentioned before, each and every node of the neural networks is called arti-
ficial neurons (a loosely model compared with its biological counterpart) and the
connections (synapses in biological brain) can transmit information from one neuron
to another. In Figure 2.2 the neurons receive signals, which are processed internally,
and then they propagate it to the other connected neurons. The information ex-
changed between a neuron and another is a real number, a result of a non-linear
function of the sum of all its input.

In the Figure 2.3 an implementation of a neural network can be appreciated.

Hidden Layer

Output Layer

Input Layer

Figure 2.3: Example of a Neural Network

As it can be seen in Figure 2.3, a neural netwokrs is always divided in layers in which
only the output and input layers are visible from the external world, as consequence
the internal layers are called hidden layers. When an input vector is applied, it
will propagate from the left side of the network to its right side through the layers
and the neurons which compose each layer. It is worth to mention that layers may
perform different kind of computation on their inputs. Moreover, the deep neural
networks are named after the huge amount of hidden layers.

In the early development of artificial neural networks (ANNs) the goal was to solve
problems in the same way of human brain would do. However, over time, the aim

'Figures under CC license

6 Politecnico di Torino Francesco Angione

2. Background

moved to perform specific tasks, leading to a different architecture of the biological
brain and brain-inspired networks (Spiking Neural Networks).

Depending on how the edges are connected and the topology, an artificial neural
network can be classified in several sub-types:

e Feed forward, the data move only from input layer to output layer without
cycles in the graph.

o Regulatory feedback which provides feedback connections back to the same
inputs that active them, reducing requirements during learning. It also allows
learning and updating much easier.

o Recurrent neural network which propagates data backward and forward, from
later processing stages to earlier stages.

e Modular, several small networks cooperate or compete to solve problems.

o Physical which is based on electrically adjustable resistance material to simu-
late artificial synapses.

2.2.1.2 Spiking Neural Networks

Spiking neural networks (SNNs) are artificial neural networks that more closely
mimic natural neural networks [14].

In addition to neuronal and synaptic state, in their operational model, SNNs add the
concept of time. The idea is that neurons in the SNN do not activate at each prop-
agation cycle but rather activate only when specific value is reached. The current
activation level is modeled as a differential equation and it is normally considered
as neuron’s state.

In principle, SNNs can be applied to the same application of artificial neural net-
works. Moreover, SNNs can model brain of biological organisms without prior
knowledge of the environment. Thus, SNNs have been useful in neuroscience for
evaluating the reliability of the hypothesis on biological neural circuits but not in
engineering.

SSNs are still lagging ANNs in terms of accuracy, but the gap is decreasing and
has vanished for some task[15]. However, computer architectures based on SNN
have a huge energy footprint compare to other types of architecture [16].

Francesco Angione Politecnico di Torino 7

2. Background

2.3 Machine Learning Quantization

The reduction of computation demand, the increase of power efficiency and the
memory footprint of machine learning algorithms can be achieved through the quan-
tization, which is a set of techniques for converting, and mapping, input values from
a large set to output values in a smaller set.

The idea of quantization is not recent, it has been around since the birth of digi-
tal electronics. Imagine taking a picture with the phone’s camera, the real world
is analog and the camera is capturing the analog world and converting it into a
digital format. Nevertheless, the high quality of nowadays pictures, quantization is
not lossless, it is practically impossible to fully represent in the digital domain the
analog world.

A trivial quantization example for neural network model is given in the below figure,
where a set of potentially infinite value(floating-point) are mapped to finite values
(integer).

floating point

. set1 set 2 set 3 set 4 set 5 set @ set 7 setd set9 set10 set 11
domain

Integer L - - - Ly Ly L Ry Ly
domain value1 value 2 value 3 valued values value B value 7 wvalue 8 value 9 value 10 value 11

Figure 2.4: Approximation of floating-point values to integer values

It has been proved that even if the model has been quantized, for example from fp32
to integer32, its accuracy is still good and the accuracy drop between the two data
representation is negligible [7].

Several quantization techniques can be applied, together or separated, to already
trained ML models (post-training quantization):
o Linear quantization: data are directly scaled by taking their maximum value
and normalizing them to falling in the desired range.
 Outlier channel splitting (OCS) [17] : linear quantization is sensitive by large
inputs. The idea of OCS is to reduce the value of outliers (for both weights
and activations) duplicating the node with halving the output or the weight.
This transformation leaves the node functionality equivalent while at the same
time it narrows the weight/activation distribution allowing a better linear
quantization.
 Analytical Clipping for Integer Quantization [18]: it represents the state-of-
the-art for the post-training quantization techniques. It basically means ap-
plying a clipping function in a given range in order to reduce the quantization
noise.

8 Politecnico di Torino Francesco Angione

2. Background

On the other hand, a quantization-aware training can also be done [19].

Quantization relaxes the requirements on the hardware, as it is very well-known
floating-point operations are much more expensive than integer operation from a lot
of perspectives, and as consequence a reduction into the power consumption of the
algorithm. It is also important to mention that the data traffic between the memory
and the hardware is reduced due to the compaction of data.

Nowadays, edge devices take advantage of lower precision and quantized operations,
including GPUs. Thus, quantization of machine learning algorithms is a defacto
standard for edge inference.

2.4 Applications

In principle the AT can be applied to any intellectual tasks [13]. Focusing on machine
learning applications, they can spread through a variety of different domains:

o Healthcare, mainly used for classification purposes.

o Automotive, used in self-driving cars.

o Finance and economics, to detect charges or claims outside the norm, flagging
these for human investigation. In banks system for organizing operations,
maintains book-keeping, investing in stocks and managing properties.

o Cybersecurity, automatically sort the data in networks into high risk and low-
risk information.

o Government, for paired with facial recognition systems may be used for mass
surveillance.

e Video games in which it is routinely used to generate dynamic purposeful
behavior in non-player characters.

« Military, enhancing Communications, Sensors, Integration and Interoperabil-
ity.

« Hospitality, to reduce staff load and increase efficiency.

o Advertising, it is used to predict the behavior of customers from their digital
footprint in order to target them with personalized promotions.

o Art, it has inspired numerous creative applications including its usage to pro-
duce visual art.

However, all the machine learning applications are characterized by the need of a
huge amount of data set for the training process.

Francesco Angione Politecnico di Torino 9

2. Background

10 Politecnico di Torino Francesco Angione

3

State-of-the-Art

3.1 Overview

The role of machine learning has continuously growth in the past few years and a
lot of efforts have been done for developing good software APIs in order to address
different needs and domains.

In principle, all the machine learning algorithms can be run on the CPU, which
already runs the OS and other application software. This leads to overheads, espe-
cially in terms memory accesses which are expensive in terms of energy and latency.

Analyzing machine learning algorithms comes evident that they massively do the
same operations and access to data with some kind of patterns. Thus, with the out-
come of the new paradigm for the GPU, the General Purpose GPU programming
comes in handy that implementing those algorithms on a GPU, which matches the
machine learning algorithms requirements regarding the massive operations and the
reuse of data, has given a lot of advantages in terms of latency and energy effi-
ciency. However, the capability of GPU of running machine learning algorithms has
been pushed almost at the maximum with the increase of computation demands in
modern neural networks. Therefore other solutions have been explored, such as the
development of specific hardware platform.

3.2 GPU

The Moore’s law is reaching the end from the point of view of CPUs. However, it
seems that the GPUs can still carry on the Moore’s law [20]. For this reason, im-
proving efforts especially from the companies have been made for developing more
and more GPUs with a higher performance per watts.

As already mentioned, with the income of general purpose GPU programming
paradigm, more and more machine learning algorithms have been designed for being
run on the GPU, gathering the best fruits given by that type of architecture.

As consequences, companies such as Nvidia have started to develop GPU for boost-
ing machine learning applications performance.

Francesco Angione Politecnico di Torino 11

3. State-of-the-Art

3.2.1 Nvidia Ampere A100 Tensor Core GPU

The Nvidia Ampere A100 Tensor Core GPU has been announced recently and it is
one of the most performant GPU. The newly added Tensor Core Unit allows massive
increases in throughput and efficiency. It is able to deliver up to 624 TFPLOPS!
for training and inference machine learning applications.

The GPU is composed of multiple GPU processing clusters (GPCs), texture pro-
cessing clusters (TPCs) and streaming multiprocessors (SMs). The core of the GPU
is the Streaming Multiprocessor, which is built up from the SM of Volta GPU and
Turing one.

Lo Insfruction Cache
‘Warp Scheduler (32 threadiclk}
Dispatch Unit {32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT3ZINT3Z PR32 PRS2 FPoa INT32INT3Z FR33 FPS2 FRea
INT3ZINT3Z PR32 FR32 FPoa INTIZINT3Z P33 PR32 FPea
INT3ZINT3Z FP32 PRS2 Fres INT3ZINT32 FPS2 FPS2 rres
INT32 INT32 FP32 FP32 FP84 INT32 INT32 FP&4
TENSOR CORE TENSOR CORE
INT3ZINT3Z P32 PR32 FPod INT3ZINT32 FPGa
INTaZINT3Z FP32 PR32 FPoa INT3ZINTS2 FRGa
INT3ZINT3Z FR32 FRS2 Froa INT3ZINTI2 FP3Z FP32 Fres
INT32INT32 FP32 FP32 FPE4 INT32INT32 FP32 FPaz2 FPe4

Lo ol

W W L Lo Lo LD LD LDf LD LDd Lof
sT st st st st st st s | SAU T ST ST 8T

sT ST ST

‘Warp Scheduler (32 threadiclk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INTaziNT3z P32 FP3Z FPoa INTazINT3Z FRS2 FP32 Fred
INT3ZINTIZ [FR3Z P32 FPod INTI2INTSZ PR32 FP32 Frea
INT32INTIZ P32 FR32 FPe4 INT32INT3Z FP32 FP32 Fres
INT32INT3Z [FP32 FPa2 FPB4 INT32 INT3Z FP32 FP32 FP84
TENSOR CORE TENSOR CORE
INTaZ iNT32 P32 FP32 FPea INT32 INTS2 FP&4
INTaz iNTaz P32 FPA2 FPes INT32 INT32 FPas
INT3ZiNT3z P32 P32 FPod INT3Z INT3; FPas

INT3ZINTIZ P32 P32 FPod INT3Z INTS; FP64

of W LY WY WD LDy o Lon i Lo i
T 8T & &7

L
8T ST 8T sT 8 ST ST ST 8T

Figure 3.1: Streaming Multiprocessor Architecture [21]

Composed of integer, FP32, FP64 units and the Tensor Core Units are designed
specifically for deep learning. It introduces also new data types in the tensor core
for the computation such as binary, integer 8 and 4 bits, floating-point 64, 32, 16
and bfp16 (the throughput of the tensor core computation for fp16 and bfp16 is the
same). The Ampere SM can achieve such efficient workload on mixed computation
and addressing calculations thanks to an independent parallel integer and floating-
point data paths.

floating-point operations per second

12 Politecnico di Torino Francesco Angione

3. State-of-the-Art

Matrix-Matrix multiplication operations are at the core of neural network training
and inference, and are used to multiply large matrices of input data and weights in
the connected layers of the network. The idea is represented into the Figure 3.2 and
compared to previous architectures.

NVIDIA V100 Tensor Core FP16 NVIDIA A100 Tensor Core FP16 with Sparsity NVIDIA V100 FP32 NVIDIA A100 Tensor Core TF32 with Sparsity

ﬁ
P

NVIDIA V100 FPb4 NVIDIA A100 Tensor Core FP64 NVIDIA V100 INT8 NVIDIA A100 Tensor Core INT8 with Sparsity

WRuRR
b % %\ ¢
Sy

r J I 7

WRuwn
A\ A\ \ Y
SN

r I 7

Figure 3.2: Matrix Multiplication in Tensor Core [21]

The Ampere A100 GPU contains 108 Streaming multiprocessor, and 432 third gen-
eration Tensor Core. According to Figure 3.3 the Tensor Core Units are able to
compute multiplications on FP16 and accumulate on FP32, leading to a further
reduction of latency and energy consumption.

Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result
uuuuu products

- OO —m
I

Figure 3.3: Mixed Precision Schema of a FMA unit in Tensor Core Unit [21]

A novel approach for doubling the throughput of deep neural networks has been
introduced in this architecture. At the end of training process, only a subset of the
total weights are necessary to execute a neural network correctly. As consequence
not all the weights are needed, and they can be removed.

Based on training feedback, weights can be adapted at runtime during the train-
ing and this does not have any impact on the final accuracy. Thus, thanks to the

Francesco Angione Politecnico di Torino 13

3. State-of-the-Art

sparsity of weight tensors., inference process can be accelerated. In addition, also
the training process can be accelerated exploiting the sparsity idea but it has to be
introduced at the beginning of the process for achieving some benefits.

Sparse Input
Tensor Core activations
Fine-grained Compress
structured
pruning
Dgnge (2:4 non-zero) i Non- Non- Output
trained " zero zero activations
weights Fine-tuning data indices

weights

Figure 3.4: Sparsity Optmization of a weight tensor [21]

The apporach in Figure 3.4 doubles the throughput by skipping the zeros. It also
leads to a reduction of memory footprint and an increase into the memory band-
width.

Following the idea, NVIDIA has introduced a new set of instruction for inference:
sparse Matrix Multiply-Accumulate (MMA). Those instructions are able to skip the
matrix entries which contain zero values, leading to an increase of the Tensor core
throughput. An example can be seen in Figure 3.5, where the light blue matrix has
a sparsity of 50%. It is also important to mention that the non-zero entries of the
light blue matrix will be matched with the correct entries of the red one.

3

N cycles on N/2 cycles on
Dense MMA Sparse MMA

Figure 3.5: Matrix Multiply Accumulate [21]

14 Politecnico di Torino Francesco Angione

3. State-of-the-Art

The deep learning frameworks and the CUDA Toolkit include libraries that have
been custom-tuned to provide high multi-GPU performance for each one of the
following deep learning frameworks in the Figure 3.6.

DEEP LEARNING FRAMEWORKS
a

°c @
Calie mxnet

o
Flensorflow theano PYTHRCH | w

DEEP LEARNING USER SOFTWARE
NVIDIA DIGITS™

Caffe

- THIRD PARTY ACCELERATED SOLUTIONS

NN kinstica

MAPD

ViBlazing 2. graphistry

© CONTAINERIZATION TOOL

NVIDIA Docker

- GPU DRIVER

NVIDIA Driver

+ SYSTEM

Host 05

Figure 3.6: Software stack [21]

Combining powerful hardware with software tailored to deep learning, it provides
to developers and researchers solutions for high-performance GPU-accelerated deep
learning application development, testing, and network training.

Francesco Angione

Politecnico di Torino 15

3. State-of-the-Art

3.3 Domain Specific Hardware Platform

Instead of developing GPUs also suitable for Machine Learning applications, the
companies have designed and deployed special purpose hardware accelerators.

3.3.1 NVDLA

The Nvidia Deep Learning Accelerator is a free open source hardware platform from
Nvidia, highly customizable and modular, which allows to design and deploy deep
learning inference hardware.

The architecture comes in two configurations:

cPU

1RQ cse 1RO cse
Sys
DRAM
Sy
NVDLA LAY NVOLA
srandiF DEBIF SRAMIF DBBIF
SRAM
“Small” NVDLA system “Large™ NVDLA system

Figure 3.7: Comparsion of two possible NVDLA system [22]

As already mentioned, the aim of the work is to develop a hardware accelerator for
machine learning suitable for mobile devices. Therefore from now on the NVDLA
small system will be considered and analyzed.

The internal architecture of the NVDLA small system is:

Headlass NVDLA core

————- Corfiguration inerface block
+ Comvolufion bofler = Comoiution coee

» Actvation engine (SDF)

+ Puoging engne (POF}

= Local resp moem (COP)
= Reshape [RUBK)

Bridge DMA

Figure 3.8: Internal architecture of NVDLA small system, Secondary DBB not
considered [22]

According to Figure 3.7, for the Small configuration of the accelerator, the proces-
sor will be in charge of programming and scheduling the operations on the NVDLA

16 Politecnico di Torino Francesco Angione

3. State-of-the-Art

and as consequences handles the start/end of operations and possible interrupts, all
of them through the CSB (Configuration Space Bus) interface which is AXI Lite
compliant[23].

The data movement to/from memory are handled by the Internal memory controller
through the DBB (Data BackBone) interface, which is AXI [23] compliant.

The internal architecture of NVDLA is composed by various engines. FEach one of
them is able to perform specific Machine Learning operations:

o Convolution Core: it comes in pair with the Convolution Buffer, its private
memory for the data (inputs and weights). It is used to accelerate the convo-
lution algorithms.

« Activation engine (Single Data point Operations): it performs post processing
operations at the single data element level such as bias addition, Non-linear
function, PReLU (Parametric Rectified Linear Unit) and format conversion
when the software requires different precision for different hardware layers.

» Pooling engine (Planar Data Operations): it is designed to accomplish pooling
layers, i.e. it executes operation along the width and height plane.

o Local response normalization engine(Cross Channel Data operations): it is
designed to address local response normalization layers.

» Reshape(Data memory and reshape operations): it transforms data mapping
format without any data calculation.

o Bridge DMA: it is in charge of copying data from the Main Memory to the
SRAM of the accelerator, only available into the large configuration of the
system.

Another possible configuration which is worth to mention is the possibility to let
the engines work separately on independent task or in a fused fashion where all of
them are pipelined, working as a single entity.

According to developers the configurability of the cores ranges from arithmetic pre-
cision to the theoretical throughput that a single unit can achieve (increasing the
number of internal Processing Elements). Moreover, since the engine units are in-
dependent of each other, according to the application and the model used they can
be safely removed from the design.

Francesco Angione Politecnico di Torino 17

3. State-of-the-Art

3.3.1.1 NVDLA Software

It is also worth to mention that the accelerator comes already with a basic software
stack:

—_— e e e e e e e = = =

Runtime environment

User Application Software

A 4

umMD

Caffe Parser Compiler
Portability layer
[}

|
|
|
|
|
| [wvec
|
|
|
|
|

A 4

KMD

Loadabe Portability layer

Figure 3.9: NVDLA Software stack[24]

The Compilation tools are in charge of converting existing pretrained model into a
set of hardware layers (for the desired precision) and programming sequences suit-
able for the NVDLA. The output of this process is a Nvidia Loadable file suitable
for the runtime environment.

Regarding the runtime environment, it has been designed for a system in which
is present an OS. It is composed in two parts: the User Mode Driver (UMD) and
the Kernel Mode Driver (KMD).

The User Mode Driver loads the loadable file in memory and submits the operation
to the KMD. It is also in charge of data movement from/to the accelerator.

The KMD is in charge of submitting operations to the accelerator through low level
functions, scheduling the operations and handling the interrupts.

Both the KMD and the UMD are wrapped into portability layers which are, re-
spectively, hardware dependent and OS dependent. In principle, for migrating the
software to another OS or hardware plaftorm it is enough to modify only the porta-
bility layers.

18 Politecnico di Torino Francesco Angione

3. State-of-the-Art

3.3.2 Google TPU

Google developed its own application-specific integragrated circuit for neural net-
works, which is tightly integrated with TensorFlow Software. It includes:
« Matrix Multiplier Unit (MXU): 65,536 8-bit multiply-and-add units for matrix
operations
o Unified Buffer (UB): 24 MB of SRAM that work as registers
 Activation Unit (AU): Hardwired activation functions
In Figure 3.10 a general view of TPU architecture is presented.

Welght FIFO
{Wolght Fetcher)

{} 30 Gigls

Matrix Multipty

14 GiBls (B4K por cycle)

g 14 Gik/s

PClo Gon3 x16

Normalize | Pool

i

Figure 3.10: Google TPU architecture[1]

Rather than be tightly integrated with a CPU, the TPU is designed to be a copro-
cessor in which the instruction are sent by the host server rather than fetched.

The matrix multiplication unit reuses both inputs many times as part of producing
the output, avoiding the overhead of continuously read data from memory. Only
spatial adjacent ALU are connected together, which makes wires shorter and energy-
efficient. The ALUs only perform computations in fixed pattern.

Francesco Angione Politecnico di Torino 19

3. State-of-the-Art

As far as concerned the software stack, the TPU can be programmed for a wide
variety of neural network models. To program it, API calls from TensorFlow graph
are converted into TPU instructions.

Google
Application
Google
[TensorFlow] Application
[StreamExecutor API]
' H —
' } H g
[User Space Driver J]
4]
] 2
[Kernel Driver J
[Tensor Processing Unit }

Figure 3.11: Google TPU Software Stack [25]

3.3.3 Habana Goya HL-1000

Habana’s Goya is a processor dedicated to inference workloads. It is designed to
deliver superior performance, power efficiency and cost savings for data centers and
other emerging applications.

It allows the adoption of different deep learning models and is not limited to specific
domains. Moreover, the performance requirements and accuracy can be user-defined.

In Figure 3.12 a high level view of the Goya architecture can be appreciated.

20 Politecnico di Torino Francesco Angione

3. State-of-the-Art

GEMM Engine

Local Memor

- -

Local Memory Local Memor Local Memory Local Memor

Shared Memory

Local Memor Local Memo

Figure 3.12: High level view of Goya architecture [4]

It is based on scalable, fully programmable Tensor Processing Cores, specifically
designed for deep learning workloads.

It also provides other flexible features such as GEMM operation acceleration, special
functions dedicated hardware, tensor addressing, latency hiding capabilities and dif-
ferent data types support in TPC (FP32, INT32, INT16, INT8, UINT32, UINT16,
UINTS).

Regarding the software stack, it can be interfaced with all deep learning frameworks.
However, a model has to be first converted into an internal representation, as it can
be seen in Figure 3.13.

NN Exchange Format Daap Laaming Framawork

— == PYTHRCH ﬁ cation |
€ ONNX i 95- el st

| |

SynapseAl AP|

Synapsedl AP|

! (
Synapsed

Habana Library Hatans

Graph Compller

Linux Kernel Driver

Linux PCle Driver

Figure 3.13: Habana Goya Software Stack [4]

It also supports quantization of models trained in floating-point format with near-
zero accuracy loss.

Francesco Angione Politecnico di Torino 21

3. State-of-the-Art

22 Politecnico di Torino Francesco Angione

al

System Development

4.1 Overview

As already mentioned, the use of custom hardware for a specific application can
have big benefits especially in terms of energy consumption and latency.

The inference process of neural network is mainly characterized by massive mul-
tiply and addition operations. Fetch of data from main memory follows patterns
and it has been proved that those data, in particular weight data, are reused for
several executions of the neural network model.

As consequence, executing a neural network model on a von Neumann based ar-
chitecture machine leads to performance degradation, even in a cache-based system,
since the CPU has to request the data from the main memory, execute the operation
on those data and then save back to main memory before moving to the next data.

The introduction of vectored instruction in the modern processors can have a slight
impact in the performance benefits. However, the drastically increase of layers in
the neural network has made them suitable for several applications. This it can be
translated into a massive increase of operations for executing them, as it can be also
observed in the following Figure:

m Other Operations

| Convolution

MNIST CIFAR10 MOBILENET
V2

INCREASING MODEL COMPLEXITY

Figure 4.1: Average execution time divided by type of operations

Following the fast demands of operations into a neural network, it becomes evident

Francesco Angione Politecnico di Torino 23

4. System Development

that executing them on a CPU could not meet real-time application requirements.

Instead, the designed accelerator has a dataflow architecture, with emphasis on
weight data reuse, and it is able to execute a tensor convolution. The basic idea is a
computation matrix composed in every entry of processing elements which are able
to perform operation between the incoming data and the weights, which have been
already loaded for exploiting a data reuse approach.

The custom hardware accelerator is not useful as it is. It has to be integrated into
a ML-Framework in order to appreciate its benefits. After a preliminary research
on which ML-Framework would allow to integrate a custom hardware accelerator
minimizing the efforts to change the model code and its definitions, it has been evi-
dent that the TensorFlow Framework, an end-to-end open source machine learning
platform [26], suits the needs.

24 Politecnico di Torino Francesco Angione

4. System Development

The workflow of the hardware-software development is illustrated in the following:

MM M odel

Host

Configure

Delegate

...............

—> Inference Output

CPU

Target Pynq Z2 board

Figure 4.2: Development workflow

Francesco Angione

Politecnico di Torino

25

4. System Development

The entire work is implemented on a PYNQ Z2 board from TUL, based on a Zynqg-
7000 SoC [27]. In order to speed-up the development process and use built-in library
for the AXI protocol and the DMA transfers, the software is partially carried out
through the PYNQ environment of the board [28] based on Python which has be-
came a de facto standard [29].

The usage of Python as basic software allows to easily integrate it with high level
Machine Learning Framework, such as TensorFlow in this case.

26 Politecnico di Torino Francesco Angione

4. System Development

4.2 Software

The focus of the work is the inference process, pre-trained models are needed and
TensorFlow Hub [30] comes in handy for this purpose. It provides already pre-
trained machine learning models for different domains. Moreover, TensorFlow has
the feature of quantizing a post-trained model for different arithmetic precision. In
the Fig. 4.2 it can be seen that the quantization process has been done offline.

The choice of using the stable release 2.1 of TensorFlow is dictated from the possi-
bility of using Delegates (aka hardware accelerators or GPUs) in its neural network
model.

A delegate is a way to delegate part or all graph execution to another executor.
Every model is represented, internally, as a graph (with its relative order of execu-
tion for the nodes) and every node of the graph is described as a set of operation
that has to be applied to the node’s input. As every node is described by a set
of operations, it is easy to understand which part of the graph can be executed on
the accelerator in advance, and this operation is done at the beginning when both
the model and the accelerator library is loaded as it is represented in the following
Figures:

| Reshape | Convolution Activation Function
..... — - = c e
| cPU | CcPU cPU

S

(a) without delegate

[Reshape 3 Convolution ' Activation Function
\ CPU Delegate Hw]
\))

- Data exchange,

(b) with delegate

Figure 4.3: Execution Graph

It is worth to mention that TensorFlow is open-source and since no binary installa-
tions for its 2.1 release are provided for Arm processor, it has been cross-compiled
from scratch for the PYNQ-Z2 board.

Francesco Angione Politecnico di Torino 27

4. System Development

TensorFlow demands as library for the accelerator a C Python-API compatible
shared library. In addition, the code for using the accelerator was already written
using the PYNQ environment in Python. Therefore, for allowing code reuse and
decreasing the development time the Python code has been embedded in the C code
(from a TensorFlow example of the delegate library), adding callbacks to Python
codel.

This has been possible thanks to the Python library CFFI (C Foreign Function
Interface) [31], which is also able to provide a shared library Python-API compati-
ble as output. In the following Figure the flow chart between Tensorflow Lite and
the accelerator library can be seen:

Executed Functions

Time

Executed Functions

Executed Functians

Figure 4.4: Flow Chart with accelerator

'See Appendix A

28 Politecnico di Torino Francesco Angione

4. System Development

4.3 System Level

As it can be seen from Figure 4.5, it is divided in two big blocks:

» Processing System: The processing system (in Figure 4.6 referred as processing
system7) is in charge of running the OS and the Machine Learning applica-
tion. As consequence it also runs the necessary software for programming the
accelerator registers and the data movement to/from main memory from/to
the accelerator.

» Programmable Logic: The programmable logic (PL) hosts the entire design,
from the accelerator itself to the DMAs and the AXI interconnections.

Processing System

Flash Controller NOR, NAND, Multiport DRAM Controller
SRAM, Quad SP1 DDR3, DDR3L, DDR2

AMBA® Interconnect AMBA® Interconnect

MPCGore

NEON™ SIMD and FPU NEON™ SIMD and FPU

X |
Il oo 5
2x SDID

512KB L2 Cache 256KB On-Chip Memory

with DMA
m JTAG and Trace | Configuration m

2xUSB
with DMA

Processor 1/0 Mux

2x Gigk
wi:h IIJgMﬁ AMBA® Interconnect

Security
AES, SHA, RSA

General-Purpose ACP High-Performance
AXI Ports AXI Ports
Programmable Logic PCIe® Gen 2

el (System Gates, DSP, RAM) 1-8 Lanes

Multi-Standard I/0s(3.3V & High Speed 1.8V) Serial Transceivers

Figure 4.5: Zynq 7000 SoC [32]

Furthermore, the Programmable Logic in Figure 4.6 is hosting:

« AXI interconnections: IP cores from Xilinx [33] [34] in order to connect and
correctly address entities in the Programmable Logic.

o AXI DMA: IP core from Xilinx [35] which allows data movement between
main memory and accelerator memories. Several single channel DMA have
been used instead of using a single DMA with multiple channels. The reason
is that in the PYNQ environment only the drivers for the single channel DMA
are provided.

o DTPU: the actual hardware accelerator.

o XADC: IP core from Xilinx [36] which allows to measure the temperature of
the SoC, the voltages and the currents at run time.

Francesco Angione Politecnico di Torino 29

In the following figure, the schematic of the overall design in the PL is presented.

4. System Development

o yaa }

wolsAs Buissa00id JONAZ

[o:gluorsioaid Cmmy

1os0x WoISAS 105580010

1BULOOIIY XY

NL3STY ¢

oV e

NLISTUY ¢

oV ¢

NLISTY

oVt
NL3STUY

OV

L} % B nissawy

n_n 10V 7

0Vl

NL3STUY

OV ¢

NLISTY

0V

>

wvoos-t F

[+]

ydued xe 0 /sd

Jlo:0luesas

loelo™aes

N0L3s3 104 I
o704 e
10" Z3AVM 0011 s oo
10071 3AVMT00LL ; 1OV 0dHXVS i P
100703 T00LL DINAZ OV 040XV _— 5
e i1 000 XV W - 5 3 SXv W €317 XV s+ |
L T QLS IXY s ATV s+
[[j+oowesn WL OUT 0 Y S o i
ooz i
i+ PR
T [s | TIXY W AV s+
1 Ko st i
0wk Bussea0ld BS® st ol
[FraT I XV W
v o
ey VNG IXY
[s e
o uosore st
TS |
Unosase e T
TR o weisuop
3 (0010
- - o)
oo
—— T WEsuooN
oSV s+
wnsixv s+
T
[+
ndip

Jeljoauog dnielIIXY

Jeigeus

Francesco Angione

System view hosted in the PL 2

Politecnico di Torino

Figure 4.6

2Except for the Zynq Processing system

30

4. System Development

4.4 DTPU, the hardware accelerator

The hardware accelerator, named Cogitantium?®, The Dumb Tensor Processing Unit,
is in charge of carrying out the tensor convolution of the neural network model,
exploiting a data-flow architecture on the input data and a data reuse for the weight
data.

Figure 4.7 presents the Logical block diagram of the accelerator.

DTRU

— Input FIFO

Matrix Multiplication Unit

— Output FIFO
: Memory&Bus
['S_m Interface |]

== Weight Memory

Control Unit

=t CSR Memory

Figure 4.7: Logical view of DTPU accelerator

4.4.1 Real Implementation

The work is not focused on developing embedded memories and AXI interfaces,
therefore a Xilinx’s IP core, which includes all those necessary sub components, has
been used [37] leading to the actual block diagram which can be observed in the
Figure 4.8.

I
5 ani_ema =

- 25 _an
¢l [r—— |
e 0> :g: D | 48 _FO ARG 2
tst_muode [T | 418 _FEO_OMRGD
—TTiEr EF_BRAM_\MRG_0
anabis [B— TRl Vadior Legie :W e) ot 0]
505 o [l I R 5wz 0 e et _cut[2.0]
L 5_ANS 1 x B
5_mis_wen [I dipu_coee I :sﬂq , a5 04 L 1_a15 _eutife
1 2o Inbemupt -
5 805 infio [- w1_d_ack i L intamupt_dy
=] 4+ contret_irterioce. e I - s 0ok o
- " [——
et oy RTL et x i s ol
vaight_pem !
e wenn
vt o e e
g = b _ssiz_swezein
ole_0(00] [t = | .
£ BT
n

Figure 4.8: Real RTL view of DTPU accelerator

3Thoughtful

Francesco Angione Politecnico di Torino 31

4. System Development

The latter has allowed to completely focus the work on the DTPU core*, which has
become:

DTPU core
aresetn
enable | . !nput fifo
enable = interface
r_ Output o
Ea_é_ Matrix Multiplication Unit = interface
recisior| MU e
== interface
Weight memoary
Yy P i
== interface
Cantrol Unit Data precision
—
Control Interface state >

” precisior| DEBUG signals
=

Figure 4.9: RTL view of DTPU core

Where the sub-units:

o L/S array provides the data for the Matrix Multiplication Unit, especially the
weight data are reused across several executions and therefore loaded once.

o Control Unit is in charge of handling handshake signals for transferring the
ownership of the data (data transferred by the DMA from the Main Memory),
load the weights and activation in the respectively units and save the results
to the output FIFO. Since it is a Data flow architecture, there is no control
flow of the data in the core and this has allowed to keep the Control Unit as
simple as possible.

« Matrix Multiplication Unit (Mxu) is the computation unit of the hardware ac-
celerator. It executes the tensor convolution for different arithmetic precision.

4See Appendix B

32 Politecnico di Torino Francesco Angione

4. System Development

4.4.2 High Level State Machine of Control Unit

The dataflow architecture has allowed to design a control unit as much simple as
possible, presented in the below figure:

infifo_is_empty_n

linfifo_is_empty_n
done==1

ready==1

Load Data
in L/S array

Figure 4.10: A high level view of Control Unit

In which:

o Idle state is waiting for the start signal from the axis accelerator adapter
(generated when all the data have been transferred®).

o Fetch CSR Memory state is in charge of retrieving from the CSR memory
the desired data precision for the computation and the starting address of the
weight memory. It also notifies to the awis accelerator adapter that it is ready®.

o Load data in L/S array state loads the correct weight values (retrieved from
the weight memory) and the activation data into the correct L/S unit. The
number of active L/S unit is computed at run time. It depends from the
current required data precision and the fixed number of rows and columns in

the MXU.

®Input Data, Weight data and CSR data
5The ready signal is used as handshake between the core and the axis accelerator adapter for
transferring the ownership of the data

Francesco Angione Politecnico di Torino 33

4. System Development

o Compute state activates the MXU and it waits the end of computation before
committing the results to the output FIFO.

» Save to output FIFO state saves the data stored in the active L/S units to the
output FIFO.

o Done state, depending on the input FIFO if it is empty or not, continues
the computation for the next activation data or it returns to the idle state,
notifying to the axis accelerator adapter the end of the computation”.

4.4.3 Datapath

As it is well-known, the execution of ML models is memory intensive and it consists
in massive multiplication and accumulation operations. In addition, it can be seen
that during execution of ML models some memory location are accessed frequently.
Therefore, it is evident that a dataFlow architecture which could exploit local data
reuse and compute, massively, in parallel multiplications and additions could boost
the performance.

The DTPU core has been designed according to the previously mentioned ideas
and the datapath of the core is presented in Figure 4.11 as block diagram.

Frem input FIFQ

To output FIFGY |
e

Data Precision

Fram CU
"—:; Filter&Select
T I £
™
From CU i 1
From Memory Dout i s _E °";pa‘t
—_— Rows*Columns Select
To Memory Atddress:,
Address i T p
enerator ;E"-"-' & A

Figure 4.11: A detailed view of the DTPU core datapath. Enable and resets
signals for clocked units has been omitted for improving readability.

“the notification for the end of computation allows the axis accelerator adapter to put the results
on the output master axi stream interface in order to be transferred by the DMA

34 Politecnico di Torino Francesco Angione

4. System Development

In Figure 4.11, the brawn of the accelerator is the MXU wrapper, which contains
the symmetric matrix of MACs with variable precision. Regarding the other blocks:

o Activation Decoder: It is able to generate the right activation signals for the
L/S units, depending on from the current data precision and MXU size.

o Muxes and DeMuxes: Their purpose is to feed the right data from/to memory
to/from the right units. The counter (from 0 to ROWS-1) in the Mux for the
output FIFO is for saving at every clock cycle a data in the FIFO.

o Filter&Select: depending on the precision it provides the correct data to the
correct computation units.

o Compact&Select: it is the complement of the Filter&Select unit. It is able to
compact the output data from the MXU wrapper and feed the store registers.

o L/S weight Units: the name L/S has been kept for consistency even if it does
not have any store process since the weight are only loaded once (stationary
weights) and kept until a next full execution.

o L/S Activation Units: they are in charge of loading the data from the input
FIFO into batteries of Flip-Flops while at the same time they can save the
results to submit late in the output FIFO.

4.4.3.1 Filter&Select and Compact&Select

In principle, for each Processing element in the MXU wrapper a weight and an acti-
vation has to be provided (and as consequence it has to be provided from its relative
Load Units). However, since the data width of memories and FIFO has been fixed to
its maximum, 64 bits, it comes evident that during a computation with 8 bit integer
it will fetch(and save for the output FIFO), in case of a 8x8 Mxu Size, 8 values from
FIFO and 64 values from the weight memory. In this scenario all the Flip-Flops
of the L /S units (both activation and weights) would sample values where the 56
upper bits are always unused leading to a waste of time for the memory accesses
and energy for unused data.

A clever solution is to pack data before sending them to the accelerator. Never-
theless, the pack of data requires to internally unpack and, before committing to
the output FIFO, pack the results. Unpacking and packing are done, respectively,
by Filter&Select and Compact&Select units. Retrieving the previous example (com-
putation on 8 bit integer, MXU size of 8x8 and 64 bit memory data) and using the
approach of unpacking and packing, this leads to use only one L/S unit for activa-
tions (8 for the L/S weight units) for both the load and store operation. With one
single L./S active unit and 8 bit integer computation, an 8 bit activation data has to
be distributed for each column of the MXU, and this is done by the Filter&Select
unit. For committing to output FIFO, results on 8 bit will be compacted in one
single data of 64 bit by the Compacté&select.

A visual distribution of the data can be seen in Figure 4.12. The same can be
applied for each row of L/S Weigth units.

Francesco Angione Politecnico di Torino 35

4. System Development

Data precision from CU

to evey mux
i_ ________
|
|
: (7.0
LT m
|
131:0]
| =1 COLUMN 0
|
Data " ~
| }
|
|
|
|
|
|
: [15:8]
| \
|
I —
: [31:1§
: [63:32] ! COLU MN 1
Data ' =
' |
|
|
|
|
|
| (2316 |\
| [47:32]
! [31_mf> COLUMN 2
Data I =
! 3/
| /
| 131:24]
|
|
|
|
|
|
| [63:48]
[63:3R] from L'S1
fromLjg 3 [63:56 frgm LIS 0
COLUMN 7

Data

Filter&Select

Figure 4.12: Data Distribution of Filter&Select unit for a MXU size of 8x8

36 Politecnico di Torino Francesco Angione

4. System Development

In case the required precision is on 16 bit, with the same MXU size, two L /S units
for activation are activated (2*ROWS for the L/S weight units) and will feed the
respective Columns.

The reason behind the two active L/S units is that in 64 bit, only 4 16-bit values
can be packed. Increasing the MXU size, the L/S units are activated accordingly.
For example, in case of a MXU size of 16x16 and integer 8 bit, two L/S units are
activated (in case of integer 16 computation,4 units are activated).

This approach comes also with the overhead of packing and unpacking the data
on the CPU but, on the other hand, the memory data movement is reduced and
bandwidth increased, with a reduction in the energy consumption (thanks also to
the reduced active L/S units).

It is also worth to mention that using sizes for the MXU which are power of two
would maximize the memory bandwidth.

Francesco Angione Politecnico di Torino 37

4. System Development

4.4.3.2 Matrix Multiplication Unit

The Matrix Multiplication Units (referred as MXU) is the muscle part of the ac-
celerator, where the convolution is done. As the name suggest, it is organized as a
Matrix:

Activation Data 0 Activation Data 1 Activation Data 2 .
Activation Data Columns-1

H H H MXU Wrapper

v v
SMUL SMAC SMAC SMAC
0,0 —3 01 —t 02 == R —3> 0, COLUMNS-1 —==>Y0
w0 W1 Wwo,2 0,COLUMNS-1
SMUL SMAC
_—— s L 11 =3 00000 DEGT 0RO SRS MR 00m a0
ujtiply W10 Wi

s .
I IL

; SMAC
SMUL . ROWS-1 COLUMNS-1
ROWS 1O == & = « ss s = = = =ss¢ = 5 « = = = = = = = = &= == _
W ROWS-1,0 WROWS-1 COLUMNS- Y ROWS-1
Accumulate

Figure 4.13: MXU interal structure and weights distribution

Every sub units has its own weight value (distributed thanks to the L/S weight
combined with Filter&Select units, see Figure 4.11).

It is a homogeneous unit, except for the first column, which does not accumulate. In
addition, as it can be seen from the block diagram, there is no control flow between
every processing units. There is only data exchange from the previous unit to the
next one (for both axis).

This matrix configuration of the hardware allows to massive multiply and accu-
mulate at the same time, in particular it can compute:

MACops = ROWS « COLUMNS per # clock cycle required for a single unit
with a Throughput = Rows

The MXU can be synthesized with different criteria. In particular, the processing
elements can be independently generated for a single data precision, from integer
8/16/32/64 to floating-point 32 or brain floating-point 16, or with some precision at
the same time. Then data precision is decided, via software, and properly controlled
using signal in Figure 4.14.

38 Politecnico di Torino Francesco Angione

4. System Development

A detailed view of SMAC (Sub unit Multiply and Accumulate) and SMUL(Sub unit
Multiply), the Processing Elements, is given in Figure 4.14.

Weight Data input
14 fi!

Active Chaig) S MAC
select Erecisigg RESET

64
64
Resmacn

Data Input to next row

Resmac p

S

Weight Datainput
| li‘

Active Cha\g SMUL
select precisign RESET
=k?%> o —

64
64
Res mac n

Data Input to next row

Figure 4.14: SMAC and SMUL details

It is important to mention that the sub units are always receiving data on 64 bits
even if internally they may use all of them or not, depending on the value of select
precision and active chain signals.

For the full integer configuration (64 bit width operations) beside the possibility
of computing for different data width (i.e. choose between 8/16/32/64) the pro-
cessing elements can compute vectorized operations. With the help of active chain
signal (active low, otherwise it is a 64 bit computation) and data width fixed to
64 bit, it is able to compute at the same time two 8-bit, one 16-bit and one 32-bit
operations (multiplication for SMUL and multiplication and addition for SMAC).
However, this comes with the overhead of correctly packing and unpacking the data
on the CPU before transferring them to the accelerator.

Francesco Angione Politecnico di Torino 39

4. System Development

SMAC and SMUL units have been designed, internally, using Vivado DSP primitives
[38], which a general schema can be appreciated in Figure 4.15:

| 48-Bil Accurnulalor/Logic Unil

B—1= —\

l @
-y D

25x18
Multiplier

Pre-adder

Figure 4.15: DSP Slice Functionality [38]

Allowing fitting two computation (referring to SMAC) in one single unit® and max-
imize the resource utilization.

As soon as the Synthesis process reach the maximum value of DSP utilization, it
does not switch automatically to use fabric for those primitives. For maximizing
the resource usage of the FPGA, the DSP primitives have been regenerated for both
Fabric and DSP blocks. In this way, during the generation algorithm for the MXU,
it uses primitives for DSP up to the maximum allowed value for the given board and
then it starts to utilize fabric. This approach has allowed almost a full utilization
of the FPGA resources.

80nly for integer 8 and 16

40 Politecnico di Torino Francesco Angione

O

Results

If you can not measure something, you can not improve it.

— William Thomson Kelvin

5.1 Evaluation metrics

Generally speaking in computer science, every domain and application could have
different evaluation metrics, for example the energy efficient of a CPU is a heavy
metrics in embedded systems while in a high performant CPU latency and through-
put are dominant metrics. As said that, evaluation metrics strongly depend on the
end-users, therefore the designers have to make assumption on the end-user inten-
tions and applications.

In this work the assumptions are that the accelerator will be deployed into an em-
bedded system and at the same time it should give to the user a certain degree
of flexibility for running neural network models. Thus, as it is suggested [5] the
following metrics are used:
o Accuracy, quality of the final result of inference process.
o Throughput, for measuring real time performance. It depends on the number
of internal computation cores.
« Latency, for interactive applications.
e Energy and power.
« Hardware cost (Utilization Factor in case of an FPGA) of chip area and process
technology.

Francesco Angione Politecnico di Torino 41

5. Results

5.2 Utilization Factor

An important aspect of an embedded system is the on-die utilization area. Those
kinds of system are usually deployed on tight area-constrained chips for hiding their
presence to the user. Therefore, it is important to measure and understand the
behavior on the Utilization of the FPGA (used as area measurement in this case)
of the design as the size of Matrix Multiplication Unit increases and in parallel the
throughput.

The Utilization Factor, composed of Look-up-Table, Flip Flops and Digital Sig-
nal Processor usage, is expected to increase as the size of Multiplication Matrix
increase and the bit width of Computation Unit.

In the following Figures, utilization results are presented for each data type, where
the Matrix Multiplication Unit sizes are pushed as much as the timing requirements
are meet:

« Integer 8 bit:

100,00%
90,00%
80,00%
70,00%
60,00%
50,00%
40,00%
30,00%
20,00%
TR ol
0,00% ot 1 dl 1111]]1]][[Qem—_
LU

T LUTRAM FF BRAM DSP 1/0 BUFG

Wm3x3 M4x4 MW5x5 MW6x6 MW7x7 mW8x8 MWM10x10

W 12x12 W 14x14 W 16x16 W 18x18 M 20x20 W 22x22 W 24x24

Figure 5.1: Post Implementation Utilization Factor of integer 8 bit PEs and
clock frequency of 30 Mhz

o Integer 16 bit:

60,00%

100,00%

90,00%

80,00%

70,00%

50,00%

40,00%

30,00%

20,00%

A vt D

0,00% i IIII l||| {1 [[] | —
L Sp

T LUTRAM FF BRAM D! 1/0 BUFG

Wm3x3 M4x4 m5x5 WM6x6 WM7x7 M8x8 M10x10 m12x12 m14x14 m16x16 m18x18

Figure 5.2: Post Implementation Utilization Factor of integer 16 bit PEs and
clock frequency of 30 Mhz

42 Politecnico di Torino Francesco Angione

5. Results

o Integer 32 bit:

100,00%
90,00%
80,00%
70,00%
60,00%

50,00%

40,00%

30,00%

20,00%

<2 ME o ol R o

0,00% (T I I I"I“I EmEREEE

LUTRAM BRAM BUFG

H3x3 EM4x4 m5x5 H6x6 M7x7 m8x8 mM10x10

Figure 5.3: Post Implementation Utilization Factor of integer 32 bit PEs and
clock frequency of 30 Mhz

« Integer 64 bit:

100,00%
90,00%
80,00%
70,00%
60,00%

50,00%
40,00%
30,00%
20,00%
10,00% I I I I
0,00% mmn . l [| -

LuT LUTRAM BRAM BUFG

H3x3 m4x4 m5x5

Figure 5.4: Post Implementation Utilization Factor of integer 64 bit PEs and
clock frequency of 30 Mhz

« DBrain Floating point 16:

100,00%
90,00%
80,00%
70,00%
60,00%

50,00%

40,00%

30,00%

20,00% ‘

Sl

— I Wi ..

LUTRAM BRAM BUFG

H3x3 H4x4 m5x5 m6x6 M7x7 H8x8

Figure 5.5: Post Implementation Utilization Factor of bfp 16 bit PEs and clock
frequency of 30 Mhz

Francesco Angione Politecnico di Torino 43

5. Results

o Floating point 32:

100,00%
90,00%
80,00%
70,00%
60,00%

50,00%

40,00%

30,00%

20,00% |‘ |

10,00% I I I

— L] | T p—
LUT FF DSP 1/0

LUTRAM BRAM BUFG

H3x3 m4x4 m5x5 m6x6 HM7x7 H8x8

Figure 5.6: Post Implementation Utilization Factor of fp 32 bit PEs and clock
frequency of 30 Mhz

It can be seen that the trend for integer 8 and 16 is similar (Figure 5.1 and 5.2). It
is a 1 to 1 mapping between the PE and the DSP entity on the board. Actually, the
DSP entities are on 16 bit and using the 8 bit units the high 8 bits are gated to zeros.

As soon as the DSP are used the utilization of LUT and FF is linear in the sizes of
Matrix Multiplication unit, while the DSP utilization is quadratic. At a full utiliza-
tion of DSP entities the PEs start to be implemented in logic and it can be seen, in
all the previous graphs, a sudden rise in the LUT utilization.

It is also worth to mention that the PEs on 64 bit integer are a special case of
FPGA’s utilization, they reach sooner than the other designs the full utilization.
Every PEs in this configuration is using a 14 DSP entities for taking into account
also the possibility of computing vectorized operations as previously mentioned.

Regarding the floating point units, it has been used the same hardware unit for
both the fp32 and bfpl6, since they have the same exponent bit length but different
mantissa length (this also allows to have the same numerical stability). Relying
on the synthesis process to properly optimize the different units and discard, where
necessary, the unused hardware. In fact, comparing Figure 5.5 with Figure 5.6, there
is a slight different in the utilization of the LUT and a more remarkable difference
in FF utilization.

Increasing the clock frequency, the FPGA’s utilization is reduced since with an
increase of the Matrix Multiplication Unit sizes the design is not able anymore to
meet the timing requirements, especially for the floating point units.

44 Politecnico di Torino Francesco Angione

5. Results

5.3 Energy and Power Consumption

Energy and Power consumption are important factor, for a mobile device in which
there is a limited battery capacity meanwhile for data centers stringent power ceil-
ings due to cooling costs.

According to the Vivado Power estimation manual[39], the static power is calcu-
lated over all the FPGA resources. This is due to the hard estimation of the static
power per single design. In the following Figures, estimations of power consumption
from Vivado are presented for each data type and different clock frequencies:

o Integer 8:

92,00%
90,00%
88,00%

86,00%
84,00%
82,00%
80,00%
78,00%
76,00%
74,00%

30mhz 50mhz 80mhz 100mhz 120mhz

H3x3 MW4x4 m5x5 6x6 MW7x7 mW8x8 mW10x10
W 12x12 W 14x14 W 16x16 W 18x18 W 20x20 W 22x22 W 24x24

Figure 5.7: Post Implementation Power Consumption of Processing System for
integer 8 PEs

30mhz 50mhz 80mhz 100mhz 120mhz

9,20%
9,00%
8,80%
8,60%
8,40%
8,20%
8,00%
7,80%

7,60%

Hm3x3 m4x4 m5x5 6x6 M7x7 mW8x8 mM10x10
H12x12 W 14x14 m16x16 W 18x18 W 20x20 W 22x22 W 24x24

Figure 5.8: Post Implementation Static Power Consumption Programmable logic
for integer 8 PEs

Francesco Angione Politecnico di Torino 45

5. Results

14,00%
12,00%
10,00%

8,00%

6,00%

4,00%

= ol ol
oo NI

30mhz 50mhz 80mhz 100mhz 120mhz

H3x3 W4x4 5x5 6x6 M7x7 MW8x8 MWM10x10
B 12x12 m14x14 m16x16 M 18x18 W 20x20 W 22x22 W 24x24

Figure 5.9: Post Implementation Dynamic Power Consumption per
Programmable logic with integer 8 PEs

The previous Figures represent the behaviour of the power consumption with
different Matrix Multiplicatio Unit and for different clock frequency (see Ap-
pendix C). It is expressed as percentage with reference to the total power
consumption of the SoC (processing system and programmable logic). In fact
it can be seen that the power consumption of the processing system and the
static power consumption have a less impact on the total power consumption
with an increase of the Matrix Multiplication Unit and the frequency. On the
other hand, the dynamic power consumption in Figure 5.9, as expected, grows
with a growing Matrix Multiplication Unit and the design frequency.

In the following Figures, the dynamic power consumption for each entities
(in percentage, wrt the dynamic power in Figure 5.9) in the FPGA is ana-
lyzed for different clock frequencies.

As it is very well known, the clock distribution is one of the main source of

1/0

Clocks Signals Logic BRAM DSP XADC

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0,00%

H3x3 W4x4 5x5 6x6 M7x7 M8x8 MW10x10
W 12x12 m14x14 W 16x16 W 18x18 W 20x20 W 22x22 W 24x24

Figure 5.10: Post Implementation Dynamic Power Consumption per entities in

Programmable Logic with a clock frequency of 30 MHz and integer 8 PEs

46

Politecnico di Torino Francesco Angione

5. Results

power consumption, and it is confirmed from all the previous Figures. Also
the interconnections, called signals in the figures, are power hungry (a bigger
MXU leads to many, and longer, interconnections between PEs). In fact the
clock distribution networks and the interconnections are the predominant en-
tities of the dynamic power consumption of the programmable logic. The logic
entity is containing all the power consumed by the FFs and LUTs, it looks like
their power consumption is decreasing but it is only the percentage of the total
dynamic power which is decreasing.

It is worth to mention that the PEs (at least the majority of them) are im-
plemented using the DSP entities. However, the power consumed by those
entities is almost negligible, the DSPs are low power entities in the FGPA
according to its datasheet [32].

Regarding the BRAM, I/O and XADC, with an increase or a decrease of
the other entities impact they have a slightly modification of their impact on
the power consumption.

o Integer 16:
In the follwing Figures, the same considerations for the Integer 8 are still valid
since the PEs are always implemented on the same DSP entity but without
the higher 8 bits of the input values gated to zeros.
90,00%
89,00%

88,00%

87,00%
86,00%
85,00%
84,00%
83,00%
82,00%

30mhz 50mhz 100mhz 120mhz

M3x3 WA4x4 m5x5 m6x6 M7x7 HM8x8 M10x10 m12x12 m14x14 m16x16 m18x18

Figure 5.11: Post Implementation Power Consumption of Processing System for
integer 16 PEs

Francesco Angione Politecnico di Torino A7

5. Results

9,10%
9,00%

8,90%

8,80%
8,70%
8,60%
8,50%
8,40%
8,30%

30mhz 50mhz 100mhz 120mhz

HM3x3 M4x4 m5x5 m6x6 M7x7 M8x8 M10x10 m12x12 m14x14 m16x16 m18x18

Figure 5.12: Post Implementation Static Power Consumption Programmable
logic for integer 16 PEs

8,00%
7,00%

6,00%

5,00%
4,00%
3,00%
2,00%
i
0,00%

30mhz 50mhz 80mhz 100mhz

HM3x3 M4x4 m5x5 m6x6 WM7x7 M8x8 M10x10 m12x12 m14x14 m16x16 m18x18

Figure 5.13: Post Implementation Dynamic Power Consumption per
Programmable logic with integer 16 PEs

48 Politecnico di Torino Francesco Angione

5. Results

60,00%
50,00%
40,00%

30,00%

20,00%
- ||‘ || “‘ ‘I‘l“l |‘ “l‘ll
0,00% | I R III Illllll [LB T

Clocks Signals Logic BRAM DSP XADC

H3x3 H4x4 m5x5 6x6 M7x7 M8x8 WM10x10 m12x12 m14x14 m16x16 m18x18

Figure 5.14: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and integer 16 PEs

o Integer 32:
From now on, the MXU sizes and the frequencies will show a reduction in their
values, this is manly because big designs (with almost full FPGA’s utilization)
are not able to meet anymore the timing requirements.

90,00%
89,00%
88,00%

87,00%
86,00%
85,00%
84,00%
83,00%
82,00%
81,00%
80,00%
79,00%

30mhz 50mhz 80mhz 100mhz

H3x3 m4x4 m5x5 6x6 M 7x7 m8x8 mM10x10

Figure 5.15: Post Implementation Power Consumption of Processing System for
integer 32 PEs

It is worth to mention the power consumed by the DSP entities, comparing to
integer 8 and 16 PEs, is bigger. The main reason is that there is no more one
to one mapping between PEs and DSP entities.

Francesco Angione Politecnico di Torino 49

5. Results

9,10%
9,00%
8,90%

8,80%
8,70%
8,60%
8,50%
8,40%
8,30%
8,20%
8,10%

30mhz 50mhz 80mhz 100mhz

H3x3 m4x4 m5x5 m6x6 M7x7 H8x8 M10x10

Figure 5.16: Post Implementation Static Power Consumption Programmable
logic for integer 32 PEs

10,00%
9,00%
8,00%
7,00%

6,00%
5,00%
4,00%
3,00%
2,00%
il
0,00%

30mhz 50mhz 80mhz 100mhz

H3x3 m4x4 m5x5 m6x6 HM7x7 H8x8 W 10x10

Figure 5.17: Post Implementation Dynamic Power Consumption per
Programmable logic with integer 32 PEs

50 Politecnico di Torino Francesco Angione

5. Results

70,00%
60,00%

50,00%

40,00%

30,00%

20,00%

= T

0,00% I IIIIIII --lllll lllll-- AN

Clocks Signals Logic BRAM XADC

H3x3 H4x4 M5x5 mo6x6 H7x7 H8x8 M10x10

Figure 5.18: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and integer 32 PEs

30mhz 50mhz 60mhz

o Integer 64:

89,00%
88,00%
87,00%
86,00%
85,00%
84,00%
83,00%
82,00%
81,00%
80,00%

79,00%

H3x3 m4x4 m5x5

Figure 5.19: Post Implementation Power Consumption of Processing System for
integer 64 PEs

As mentioned in the Utilization chapter, the PEs on 64 bit integer are using 14
DSP entities (for having the possibility to compute vectorized operations on
data). Therefore, this heavy utilization per PEs is impacting also the power
consumed by the DSPs but as it can be seen in Figures.

Francesco Angione Politecnico di Torino 51

5. Results

9,00%
8,90%
8,80%

8,70%
8,60%
8,50%
8,40%
8,30%
8,20%
8,10%
8,00%

30mhz 50mhz 60mhz

H3x3 m4x4 m5x5

Figure 5.20: Post Implementation Static Power Consumption Programmable
logic for integer 64 PEs

12,00%
10,00%

8,00%

6,00%
4,00%
2,00% I I
0,00%

30mhz 50mhz 60mhz

H3x3 m4x4 m5x5

Figure 5.21: Post Implementation Dynamic Power Consumption per
Programmable logic with integer 64 PEs

52 Politecnico di Torino Francesco Angione

5. Results

40,00%
35,00%
30,00%
25,00%
20,00%
15,00%
10,00%

5,00%

0,00%

Clocks Signals Logic BRAM

H3x3 m4x4 m5x5

XADC

Figure 5.22: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and integer 64 PEs

» Brain floating point 16:

100,00%

90,00%
80,00%
70,00%
60,00%
50,00%
40,00%
30,00%
20,00%
10,00%

0,00%

PL Static

H3x3 H4x4 WM5x5 m6x6 M7x7 M 8x8

PL dynamic

Figure 5.23: Post Implementation Power Consumption for bfp16 PEs

Francesco Angione

Politecnico di Torino

93

5. Results

50,00%
45,00%
40,00%
35,00%

30,00%

25,00%

20,00%

15,00%

10,00% |I

5,00% I I

0,00% I III III--- [| I r——

Clocks Signals Logic BRAM DSP XADC

H3x3 H4x4 W55 m6x6 H7x7 H8x8

Figure 5.24: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and bfp16 PEs

» Floating point 32:

100,00%
90,00%

80,00%
70,00%
60,00%
50,00%
40,00%
30,00%
20,00%
10,00%
0,00% —---..

PL Static PL dynamic

HM3x3 W4x4 m5x5 m6x6 M7x7 M8x8
Figure 5.25: Post Implementation Power Consumption for fp32 PEs
For the bfpl6 and fp32 it can be seen that the majority of the power is con-

sumed by the interconnections and the logic. Mainly, because the PEs are
implemented in logic.

54 Politecnico di Torino Francesco Angione

5. Results

50,00%
45,00%
40,00%
35,00%

30,00%

25,00%

20,00%

15,00%

10,00% |I

5,00% I

0,00% II [[III N [Tr——

Clocks Signals Logic BRAM DSP XADC

W 3x3 m4x4 m5x5 6x6 W 7x7 M 8x8

Figure 5.26: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 30 MHz and fp32 PEs

Until now, the focus has been on how much the single entities and the different type
of power were impacting the total power consumption. It is also worth to compare
the absolute values for different data precision, as in the Figure 5.27.

0,018
0,016
0,014

0,012

0,006
0,004
= HAAF A il
) 1 - || S

Clocks Signals Logic BRAM XADC

Power [W]
o
o ©
o o
o P

Hint8 MWintl6e MmWint32 int64 Mfp32 Mbfpl6

Figure 5.27: Comparison of Post Implementation Dynamic Power Consumption
per entities in Programmable Logic with a clock frequency of 30 MHz and a MXU
3x3

As it is very well known from literature and it has also been evident from the other
figures and observations, the power consumption per entities grows with the increase
of the bitwidth (in the case of integer) and complexity (in the case of floating point).

The power consumed by the DSPs (entities in which the integer PEs are imple-
mented in) is negligible for the integer 8 and 16 while it starts to grow slowly using
the integer 32 but it explodes with the 64 bit PEs. The high utilization of those
PEs leads also to a huge impact in their power consumption.

Francesco Angione Politecnico di Torino 55

5. Results

5.4 Throughput

According to the definition, the Throughput is the amount of units of information
a system can process in a given time. As said that, for the designed accelerator,
it results to be equal to the number of rows into the Matrix Multiplication Unit.
Normalizing this value with the clock frequency, it results to be constant for all the
data type and frequencies.

O R, N WA O O N O

0 1 2 3 4 5 6 7 8 9

Int8

Int16 Int32 Int64

Figure 5.28: Roofline model of the accelerator with a MXU size of 8x8

The theoretical throughput given by the roofline model (Figure 5.28) and it is equal
to the number of rows in the matrix multiplication unit. The assumption is that
enough data are provided to the accelerator in order to have all the Processing
Elements working with useful data, if the latter is not meet the throughput goes
down. In Figure 5.28 the different slopes for different data width are representing
the different number of internal memory accessess in order to retrieve data for all
the Processing Elements.

The throughput can be further increased in the 64-bitwidth configuration of the
Processing Elements. As already mentioned, those 64-bit units are able to compute
vectorized instructions and therefore increase the number of computation per cy-
cle. However, this comes with the overhead of more memory accesses as it can be
appreciated in Figure 5.29.

35

N W
a S

N
o

MACops/cycle
.
]

=
o

o wn

0 2 4 6 8 10 12 14 16
MACops/data

Int64 2-Int8

2-Int8, 1-INt16 == 2-Int8,1-Int16,1-INt32

Figure 5.29: Roofline model of the accelerator with a MXU size of 8x8 and
vectorized PEs

56 Politecnico di Torino Francesco Angione

5. Results

5.5 Latency

In a real time application, the most important factor is the latency, the execution
time of a task. In this case the latency is measured as average of the execution time
of a neural network model for different platforms. In addition, the execution of the
models, on the target, in the configuration CPU+accelerator is done with different
clock frequencies and data type in the Programmable Logic, and as consequence a
different overall latency (and power consumption).

In the following tables, the execution type for different data type and model is
presented (with a fixed clock frequency of the accelerator at 100 MHz).

Model CPU (host)! | GPU(host)* | CPU(Pynq CPU(Pynq
72 board)? Z2 board) +
accelerator
MNIST 0.3 ms 5.7 ms 2.9 ms 509 ms
Cifar 10 20 ms 22 ms 160 ms 13356 ms

Table 5.1: Execution Time for different platform and model, integer 8

Model CPU (host)! | GPU(host)? | CPU(Pynq CPU(Pynq
72 board)? 72 board) +
accelerator
MNIST 0.3 ms 5.7 ms 2.9 ms 503 ms
Cifar 10 20 ms 22 ms 160 ms 13178 ms

Table 5.2: Execution Time for different platform and model, integer 16

Model CPU (host)! | GPU(host)?> | CPU(Pynq CPU(Pynq
72 board)? Z2 board) +
accelerator
MNIST 0.3 ms 5.7 ms 2.9 ms 496.9 ms
Cifar 10 20 ms 22 ms 160 ms 13218 ms

Table 5.3: Execution Time for different platform and model, integer 32

Looking at the previous tables, the latency for different data precision it is not
changing. This is due to the hardware structure, the Matrix Multiplication Unit is
build in such a way that the latency between the one operation and the next one is

ntel i7-6700HQ, 2.60 Ghz
2NVIDIA, GeForce GTX960M, 1.176 Ghz
3Arm dual-core Cortex-A9, 650 MHz

Francesco Angione Politecnico di Torino o7

5. Results

always of 3 clock cycles (for integer operations).

It is worth to analyze and reason about the increase in the latency in the con-
figuration with the accelerator, since one of the main goal was to reduce the latency.

Focusing on the following Figure:

56%

3% [—

3%

38%

y

m Other operations = Hw exec + rebuild output matrix

= Data Exchange C-Python = Other internal operations

Figure 5.30: Total Execution time of Invoke method (left) in the configuration
with accelerator and MNIST model

88%

1% —
P 9%

m Other operations = Hw exec + rebuild output matrix

= Data Exchange C-Python = Other internal operations

Figure 5.31: Total Execution time of Invoke method (left) in the configuration
with accelerator and Cifarl0 model

58 Politecnico di Torino Francesco Angione

5. Results

As it has been mentioned before, the most compute intensive part is always the
convolution operations. Introducing the hardware accelerator and its library comes
with several overheads as it can be seen in Figures 5.30 and 5.31:

o Data exchange between C and python: the accelerator library has been de-
veloped in Python code with the C interface to Tensorflow Lite. This means
that every matrix (input, output and weight) is copied to the python sublayer
for further processing. Migrating all the accelerator library into C code will
remove this overhead.

o Rebuilding of output matrix: After every execution of the computation by
the accelerator it is parsing the accelerator’s output and rebuilding the out-
put matrix accordingly to the current execution indexes. It can be removed
preprocessing the model before the deployment, transforming the matrices in
a suitable format for the accelerator as most of on the market accelerators do.

« Hardware execution time (and data transfer to the accelerator): This is the
actual execution time of the hardware and the data transfer from/to the ac-
celerator. It is also bounded by the fixed internal memory access. It can be
reduced by increasing the frequency of Programmable Logic.

o Other internal operations: it includes the time for reshaping the input matrix
in a format suitable for the accelerator and the save back from python to C
of the output matrix. It can be removed preprocessing the model before the
deployment, transforming the matrices in a suitable format for the accelera-
tor. Moreover, the migration towards a complete C implementation is going
to remove the overhead due to the saving back of the output matrix.

It is also important to mention another reason for the latency overheads. This work
is based on accelerating ML execution, by solo-accelerating predefined operations of
TensorFlow (the most compute intensive ones). All the previous overheads has been
the results of this approach, because inside the TensorFlow accelerated functions
another software, hardware and data transfer layers have been added. This is slight
in contrast with the approaches analyzed during the State-of-the-art chapter, where
the entire (preprocessed) model is loaded on the accelerator one and then only the
prediction is sent to the CPU.

Taking into account all the previous details and suggestions, the latency of the model
can be pushed down to the latency in the solo-CPU execution with the benefits of
less power consumption and CPU overload.

Francesco Angione Politecnico di Torino 59

5. Results

5.6 Accuracy

The accuracy of inference process in Machine Learning model is how much the pre-
diction is close to the actual value. For example, using the MNIST model, how
much is accurate the prediction of a number giving the number as input to the neu-
ral network.

In the following case, the accuracy for different data width and model will be pre-
sented with reference to the actual value, in this case the inference without the
hardware accelerator. Moreover, the data provided to the accelerator are bounded
by the filter size of the weight, which is always fixed to 3x3 for the used models.
Therefore, the MXU for the following comparison has been the standard one, the
8x8.

Model < £5% +5% = 25% | £25%+50% | £50%=75% | > £75%
MNIST X
Cifar 10 X

Table 5.4: Accuracy Output! with Convolution on integer 8

Model < +5% +5% = 25% | £25%+50% | £50%=75% | > £75%
MNIST X
Cifar 10 X

Table 5.5: Accuracy Output! with Convolution on integer 16

Model < +£5% +5% = 25% | £25%+50% | £50%=75% | > £75%
MNIST X
Cifar 10 X

Table 5.6: Accuracy Output® with Convolution on integer 32

It comes suddenly evident that the output prediction with the accelerator integrated
varies of a huge amount from the expected one.

One of the reason of the wrong prediction may reside in the input data feed to
the model, they are totally random. Being feed with random, and probably unrea-
sonable, data the prediction accuracy has been degradeted.

!The accuracy is measured percentage(wrt the reference accuracy) of the difference between the
reference accuracy (the model’s output on the CPU only execution) and the output accuracy of
the CPU+ hardware accelerator of the main predicion, the higher one.

60 Politecnico di Torino Francesco Angione

5. Results

Another improvement from the hardware point of view, which could improve the
output accuracy, should be to accumulate on the different bitwidth precision, for
example compute multiplication on 8 bits integer and accumulate values on 16 bit
integer. Moreover, as in every software product, bugs have not been detected but
this does not means that the written software is bug-free.

Francesco Angione Politecnico di Torino 61

5. Results

62 Politecnico di Torino Francesco Angione

§

Conclusion

6.1 Discussion

A big portion of inference process for neural networks involves massive multiply and
add computation, basic operation of tensor convolutions, and across several execu-
tion data, especially weight tensors, are reused. As consequence, for speeding-up
and reduce the power consumption (especially in mobile devices) of ML models an
hardware accelerator has been developed. It is also designed for accommodating
different data type computation request from neural network models, ranging from
integer8/16/32/64 to floating-point 32 and brain floating-point 16.

The approach of the work has been a hardware/software co-design in order to ac-
commodate the high compute intensive request of machine learning, the tensor con-
volution. Therefore, the hardware core for tensor convolution has been developed
from scratch, while the common components, such as memories and bus interface,
have been chosen from the available ones in the tools.

Moving one step at the time above in the abstraction level, the accelerator library
has been developed and deployed. In order to accomplish it in a fixed time, the
core of the library has been developed in Python, which has been interfaced with
a C-code template provided from the developers of thee ML-framework used. This
has lead to a hybrid library which encapsulates a frozen Python code layer, called
from the C-code, the latter is only in charge of retrieving the data and passing them
to the Python layer.

Again, moving one step above in the abstraction, the ML-framework level is reached.
In this level, the most popular ML-framework, TensorFlow, has been chosen. It also
offers the possibility of delegate part of the execution graph to coprocessor or GPUs.
Moreover, existing Tensorflow pretrained models have been quantized for different
bitwidth and data precision.

It is possible to build a custom hardware accelerator for a specific ML operation and
then integrate it into a framework without changing the model nor the framework.
The bottom up approach and the delegate class available in Tensorflow has allowed
to fully tailor a new class of hardware accelerators which can accommodate different

Francesco Angione Politecnico di Torino 63

6. Conclusion

needs (i.e. depending on which part of the model has to be accelerated). As it has
been organized, changing the core software in the Python code and the core in the
hardware, it can be also used for addressing different model’s operations.

6.2 Future Works

For every human artifacts, there is always work to do. In addition, for computer
engineering artifacts there is also an important step which is the software (and in
this case also of the hardware) optimization. In particular:

o Software optimization and migration to a full C code implementation for fur-
ther reducing the latency.

o Hardware optimization.

o A deep software/hardware testing for finding additional bugs.

o Power estimation using the simulation’s switching activity in order to obtain
a very precise and reliable power consumption.

o Comparison of model execution on different state-of-the-art platforms.

Following the previous recommendation, the work may arrive to a competitive level
such as the one of the GPUs or other hardware platforms.

64 Politecnico di Torino Francesco Angione

Bibliography

N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, et all, “In-Datacenter Per-
formance Analysis of a Tensor Processing Unit”, CoRR 2017, abs/1704.04760.
Nvidia, NVDLA| http://nvdla.org/index.html#.

Habana, “Gaudi™ Training PlatformWhite Paper”, 2019.

Habana, “Goya™ Inference Platform White Paper”, 2019.

V. Sze, Y. H. Chen, T. Yang, J. S. Emer, “Efficient Processing of Deep Neural
Networks: A Tutorial and Survey”, IEEE vol. 105 no. 12 pp. 2295-2329 Dec.
2017.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, “A domain-specific architecture
for deep neural networks”, ACM 61 pag. 50-59 August 2018.

Y. Cai, C. Liang, Z. Tang, H. Li, S. Gong, “Deep Neural Network with Limited
Numerical Precision”, 2018, (Eds.: J. Abawajy, K.-K. R. Choo, R. Islam), 42—
50.

J. Johnson, “Rethinking floating point for deep learning”, Facebook AI Re-
search 2018.

A. Rahman, S. Oh, J. Lee, K. Choi, “Design space exploration of FPGA ac-
celerators for convolutional neural networks”, 1996.

J. T. Johnston, S. R. Young, C. D. Schuman, J. Chae, D. D. March, R. M.
Patton, T. E. Potok, “Fine-Grained Exploitation of Mixed Precision for Faster
CNN Training”, 2019, 9-18.

H. J. L. Hao Zhang, S.-B. Ko, “Efficient Fixed/Floating-Point Merged Mixed-
Precision Multiply-Accumulate Unit for Deep Learning Processors”, 2018.
A. Turing, “Computing machinery and intelligence”, Mind 1950.

S. Russell, P. Norvig, Artificial intelligence : a modern approach. Pearson Ed-
ucation Limited, 2016.

W. Maass, “Networks of spiking neurons: The third generation of neural net-
work models”, Neural Networks 1997, 10, 1659 —1671.

A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, A. Maida,
“Deep learning in spiking neural networks”, Neural Networks 2019, 111, 47
—63.

A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. D. Nolfo, T. Nayak,
A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz, M. Debole, S. Esser, T.
Delbruck, M. Flickner, D. Modha, “A Low Power, Fully Event-Based Gesture
Recognition System”, IBM research 2017.

R. Zhao, Y. Hu, J. Dotzel, C. D. Sa, Z. Zhang, “Improving Neural Network
Quantization without Retraining using Outlier Channel Splitting”, 2019.

Francesco Angione Politecnico di Torino 65

Bibliography

[18] R. Banner, Y. Nahshan, D. Soudry, “Post training 4-bit quantization of con-
volutionalnetworks for rapid-deploymen”, 2019.

[19] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou, “DoReFa-Net: Training
Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients”,
2018.

[20] Chien-Ping Lu in Proceedings of 2010 International Symposium on VLSI De-
sign, Automation and Test, 2010, pp. 5-5.

[21] Nvidia, “NVIDIA A100 Tensor Core GPU Architecture, Unprecedent acceler-
ation at every scale”, 2020.

[22] Nvidia, NVDLA Hardware Architectural Specification, http://nvdla.org/
hw/v1/hwarch.html.

23] Arm, “AMBA® AXI™ and ACE™ ProtocolSpecification”, 2011.

[24] Nvidia, NVDLA Software Manual, http://nvdla.org/sw/contents.html.

[25] Google, An in-depth look at Google’s first Tensor Processing Unit (TPU),
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-
googles—first-tensor-processing-unit-tpu.

[26] TensorFlow, https://www.tensorflow.org/overview.

[27] Xilinx, “Zyng-7000 SoC, Technical Reference Manual”, 2018.

28] Xilinx, PYNQ, http://www.pynq.io/board.

[29] G. Corradi, “The value of Python Productivity: exteme edge analytics on
Xilinx zynq portfolio”, Xilinx 2018.

[30] TensorFlow Hub, https://www.tensorflow.org/hub/overview.

[31] C Foreign Function Interface for Python, https://cffi.readthedocs.io/
en/latest/.

[32] Xilinx, “Zynq-7000 SoC Data Sheet: Overview”, 2018.

[33] Xilinx, “AXI Interconnect v2.1LogiCORE IP Product Guide”, 2017.

[34] Xilinx, “Vivado Design Suite, AXI Reference Guide”, 2017.

[35] Xilinx, “AXI DMA v7.1LogiCORE IP Product Guide”, 2019.

[36] Xilinx, “7 Series FPGAs and Zyng-7000 SoC XADC Dual 12-Bit 1 MSPS
Analog-to-Digital Converter , User Guide”, 2018.

[37] Xilinx, “AXI4-Stream Accelerator Adapter v2.1LogiCORE IP Product Guide”,
2015.

[38] Xilinx, “7 Series DSP48E1 Slice,User Guide”, 2018.

[39] Xilinx, “Vivado Design Suite UserGuide: Power Analysis andOptimization”,
2020.

66 Politecnico di Torino Francesco Angione

AW N

6

7

8

9

Accelerator library

Script for creating library:

import cffi
import sys
sys.path.append(’/usr/local/lib ")
#
HHHH The Frankenstein, a mixz of C and Python
S
##H#H# create .so library from PYNQ python code for DITPU accelerator

HAHHAH
A on board compiling, it requires
HAHHH T
#H to have tensorflow/tensorflow/lite in /usr/include /pythonX.X

A from r2.1 branch

ffibuilder = cffi.FFI()

ffibuilder .cdef ("""

extern "Python" {

bool destroy p(void);

bool CopyFromBufferHandle p(void);
bool CopyToBufferHandle p(void);
void FreeBufferHandle_p(void);
bool SelectDataTypeComputation_ p(int);
bool Init_p(int ,int,int);

bool Prepare_p(int);

bool Invoke_ p(bool,int);

void load__overlay(void);

bool ResetHardware_p(void);

s void push_weight_to__heap(void *,int *,int);

void push__input_tensor to__heap(wvoid *,int =*,int);
void push__output_tensor_ to_heap(wvoid *,int *,int);
bool print_power_consumption_p(void);

bool start_power__consumption (void);

void activate_time_probe_p (bool);

bool print_python_time_probes(void);

}:

void * tflite_plugin_create_delegate ();

Francesco Angione Politecnico di Torino

35

36

37

38

40

41

42

44

45

46

49

50

52

w

4

(SIS, IS, B SO B
S | ot C

ot
>

A. Accelerator library

void
bool
bool
bool
bool
bool

tflite_plugin__destroy__delegate (void % ,void %);

SelectDataTypeComputation (int);
print_power__consumption () ;
measure__power__consumption () ;
print__ezecution__stats();
activate__time_probe(bool);""")

cpp__file=open("./DTPU_delegate.cpp","r")
ffibuilder .set_source("dtpu_lib", cpp_file.read () ,source_extension=".
cpp’,

extra_compile args=[’—Wno-unused—result ’,

)
)

a_ga

dpkg/no—pie—compile.specs’,
'—Wformat ’ |

'—Wsign—compare’ , '-DNDEBUG

‘—g’, '—fwrapv’, =027, '—=Wall’, '—Wstrict—prototypes’,
'—fdebug—prefix —map=/build /python3.5.2=.", ’'—specs=/usr/share/

local/lib '],

extra_link args=["-WIl,—Bsymbolic—functions

no—pie—link .specs’,

'—Wl,—z,relro’, ’—specs=/usr/share/dpkg/no—pie—compile.specs’, '—

D_FORTIFY SOURCE=2’,’'—fPIC’] ,
libraries=[’pthread’, ’expat’,’z’,’dl’, util ’,'m’, tensorflow ' |)
51 #if you want to simply access a global variable you just use its name.
However to change its value you need to use the global keyword.
python_file=open("./DTPU_delegate.py","r")
ffibuilder .embedding_ init_code(python_file.read())

'—fstack—protector —strong’,
'—Werror=format—security >, ’=I/usr/local /include’, =L/ usr/

’,'—specs=/usr /share/dpkg/

)

ffibuilder .compile(target="DTPU_delegate.*", verbose=True)

cpp_ file. close ()
python_file.close ()

IT

Politecnico di Torino

Francesco Angione

A. Accelerator library

C++ code of the library:

/'l release dependent libraries tensorflow r2.1
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/c_api_internal.h>
#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/context_util.h>
#include <tensorflow/c/c_api.h>

#include <vectors>

#include <time.h>

#define DEBUG 1

static bool destroy_p(void);

static bool CopyFromBufferHandle_p(void);
static bool CopyToBufferHandle_p(void);
static void FreeBufferHandle_p(void);

s static bool SelectDataTypeComputation_p(int);

static bool Init_p(int,int,int);

static bool Prepare_p(int);

static bool Invoke_p(bool,int);

static void load_overlay(void);

static bool ResetHardware_p(void);

static void push_weight_to_heap(void «,int «,int);

static void push_input_tensor_to_heap(void =«,int «,int);
static void push_output_tensor_to_heap(void =«,int «,int);
static bool print_power_consumption_p(void);

static bool start_power_consumption(void);

, static void activate_time_probe_p (bool);

static bool print_python_time_probes(void);

/%

possible operations
kTfLiteBuiltinAdd = 0,
kTfLiteBuiltinConcatenation = 2,
kTfLiteBuiltinConv2d = 3,
kTfLiteBuiltinDepthwiseConv2d = 4,
kTfLiteBuiltinDepthToSpace = 5,
kTfLiteBuiltinFullyConnected =
kTfLiteBuiltinMul = 18,
kTfLiteBuiltinSub = 41,
kTfLiteBuiltinDelegate = 51,
kTfLiteBuiltinAddN = 106,struct timespec ts_start ,ts_end;

9,

*/

5 int bit_width_computation;

int NO FP=—1;
bool signed_computation=false;
bool only_con2d=false;

Francesco Angione Politecnico di Torino

I1I

A. Accelerator library

49

50 // time probes

51 bool time_probe=false;

s int n_execution=0;

53 double avg_time_delegate;

s« double avg_time_data_exchange;
56

57 using namespace tflite ;

s #ifdef __cplusplus
o extern "C" {

¢1 #endif

62 // This is where the execution of the operations or whole graph
happens.

6 // The class below has an empty implementation just as a
guideline

6« // on the structure.

os class DTPU_delegate {

66 public:

67 // Returns true if my delegate can handle this type of op.

68 static bool SupportedOp(const TfLiteRegistration« registration
) |

69 /] from builtin_ops.h

o #ifdef DEBUG

7 printf("[DEBUG — C]-—— Supported Operation of DTPU delegate

class — \n");
72 #endif
73 switch (registration —>builtin_code) {
74 /~case kTfLiteBuiltinConv2d:
75 only_con2d=true;
76 #ifdef DEBUG
77 printf ("[DEBUG-C]—— Supported operations only 2d
convolution ———\n") ;
78 #endif
79 */
80 case kTfLiteBuiltinDepthwiseConv2d:
81 #ifdef DEBUG
82 printf (" [DEBUG — C]——Hello world! | can make 2D
convolution and depth wise 2D convolution——\n");
83 #endif
84 return true;
85 default:
86 return false;
87 }
88 }

89
90 /!l Any initialization code needed
o1 bool Init(TfLiteContext« context,const TfLiteDelegateParams=

v Politecnico di Torino Francesco Angione

A. Accelerator library

delegate_params) {
oo #ifdef DEBUG
93 printf ("[DEBUG — C]-—— Init of DTPU delegate class —— \n");
94 #endif

95

96 #ifdef DEBUG

97 printf ("[DEBUG — Cl-—— Init of DTPU delegate class check
if tensors indexes are equal to the ones in the Invoke
o \nn);

98 for (int input_index: TfLiteIntArrayView (delegate_params—>

input_tensors)){

99

100 printf ("[DEBUG — Cl—-—— Init of DTPU delegate class getting
tensors Y%d—— \n",input_index);

101

102 }

103 #endif

104

105 if (time_probe){

106 avg_time_delegate=0.00;

107 avg_time_data_exchange=0.00;
108 n_execution=0;

109 }

110

11 // instantiate buffcfers and soft reset of accelerator

112 return Init_p (context—>tensors_size ,delegate_params—
input_tensors —>size ,delegate_params—>output_tensors—
size);

113

114 }

115 /! Any preparation work needed (e.g. allocate buffers)
s TfLiteStatus Prepare(TfLiteContext+« context, TfLiteNodex node)

{

117 #ifdef DEBUG

s printf ("[DEBUG — C]——— Prepare of DTPU delegate class —— \n")

o #endif

120 /] initialize , link the buffers accordint to the size of

node data

121 /! KkTfLiteMmapRo aka weights

122 int num_weight_tensor=0;

123 /! set precison check

124 if (NO_FP==—1){

125 printf ("ERROR! Need to execute
SelectDataTypeComputation function before calling
the Tensorflow Interpreter\n");

126 return kTfLiteError ;

127 }

128

Francesco Angione Politecnico di Torino \%

129

130

131

132

133

134

136

137

138

139

140

141

142

143

144

145

146

161

162

163

164

165

166

168

A. Accelerator library

for (int input_index : TfLitelntArrayView (node—inputs)){
/! one of this should be the weight tensor
auto& in_t= context—>tensors[input_index];
if(in_t.allocation_type==kTfLiteMmapRo) {
num_weight_tensor++;
#ifdef DEBUG
printf (" [DEBUG —C]—-——found a tensor weight %d—-\
n", input_index);
#endif
/! get dimesion of tensors
/! push to python sublayer
if ('NO_FP){
switch (bit_width_computation) {
default:
case 8:
#ifdef DEBUG
if (signed_computation) {

printf (" [DEBUG-C]-—— kTfLiteInt8 ————— \n
ll);
}else{
printf (" [DEBUG-C]-———— kTfLiteUInt8 ————— \
nll);

}
#endif

if (signed_computation) {

push_weight to_heap(in_t.data.int8, in_t.dims—>data,
in_t.dims—>size);

}else {

push_weight_to_heap(in_t.data.uint8, in_t.dims—>data,
in_t.dims—>size);

}
break ;
case 16:
#ifdef DEBUG
printf (" [DEBUG-C]———— kTfLitelnt16 ————— \n"
)
#endif
push_weight_to_heap(in_t.data.i16, in_t.dims
—>data, in_t.dims—>size);
break;
case 32:
#ifdef DEBUG
printf (" [DEBUG-C]-—— kTfLitelnt32 ————— \n");
#endif

push_weight_to_heap(in_t.data.i32, in_t.dims—>data,
in_t.dims—>size);
break;

VI

Politecnico di Torino Francesco Angione

170

171

172

173

174

176

177

178

179

180

181

182

183

184

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

A. Accelerator library

case 64:
#ifdef DEBUG
printf (" [DEBUG-C]———— kTfLiteInt64 ————— \n");
#endif
push_weight_to_heap(in_t.data.i64, in_t.dims—
data, in_t.dims—>size);
break;
}
}

else { // use fp units
switch (bit_width_computation) {
case 16:
if (context—>allow_fp32_relax_to_fp16 && NO _FP==3)
{ // NO FP==3 —> fp active and bfp active
#ifdef DEBUG

printf (" [DEBUG-C]l-—— kTfLitefloat32 relaxed aka
bfp16 ————— \n") ;
#endif

// remembedr f16 is TfLiteFloat16 «

/=typedef struct {
uint16_t data;
} TfLiteFloat16;
x/
push_weight_to_heap(in_t.data.f16, in_t.dims—>data,
in_t.dims—>size);
}
break;
case 32:
#ifdef DEBUG
printf (" [DEBUG-C]———— kTfLitefloat32 ——— \n") ;
#endif
push_weight_to_heap(in_t.data.f, in_t.dims—>data,
in_t.dims—>size);

break;
default:
printf (" [DEBUG-C]l-—— ERROR! no fp precision defined
______ \nll);
break ;
}
}
}

#ifdef DEBUG

printf (" [DEBUG-C]l-—— number of weights found= %d \n",
num_weight_tensor) ;

#endif
if (Prepare_p(num_weight_tensor)){

Francesco Angione Politecnico di Torino VII

212

213

214

215

216

217

218

219

220

221

222

230

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

A. Accelerator library

return kTfLiteOKk;

}
return kTfLiteError ;
}
// Actual running of the delegate subgraph.
TfLiteStatus Invoke(TfLiteContexts context, TfLiteNode= node)
{
struct timespec ts_start ,ts_end;
int curr_input=0;
#ifdef DEBUG
printf ("[DEBUG — C]-—— Invoke of DTPU delegate class —— \n"
) ;
printf (" [DEBUG — Cl-—— Invoke of DTPU delegate class getting
tensors —— \n");
#endif
if (time_probe) {
if (ltimespec_get(&ts_start ,TIME_UTC)) {
fprintf (stderr ,"error during the acquisition of start
time I\n");
exit(—1);
}
}
/! run inference on the delegate and data transfer to/from
memory/accelerator
for (int input_index : TfLitelntArrayView (node—>inputs)){
/! one of this should be the weight tensor
#ifdef DEBUG
printf ("[DEBUG — C]l-——— Invoke of DTPU delegate class
getting tensors %d—— \n",input_index);
#endif
TfLiteTensor in_t= context—>tensors[input_index];
if ((in_t.allocation_type==kTfLiteMmapRo)){ //cause the
weights have been transferred into the Prepare method
if (curr_input!=0){
curr_input=input_index;
}
// get dimesion of tensors
/! push to python sublayer
if ('NO_FP){
switch (bit_width_computation) {
default:
case 8:
#ifdef DEBUG
if (signed_computation) {
printf (" [DEBUG-C]-—— kTfLiteInt8 ————— \n
VIII Politecnico di Torino Francesco Angione

A. Accelerator library

")

254 }else{

255 printf (" [DEBUG-C]———— kTfLiteUInt8 ————— \
n");

256 }

257 #endif

258 if (signed_computation) {

259 push_input_tensor_to_heap(in_t.data.int8 ,in_t.dims—>data

,in_t.dims—>size);

260 }else {
261 push_input_tensor_to_heap(in_t.data.uint8 ,in_t.dims—
data,in_t.dims—>size);

262 }

263

264 break;

265 case 16:

266 #ifdef DEBUG

267 printf (" [DEBUG-C]-——— kTfLitelnt16 ————— \n"

) ;
268 #endif
269 push_input_tensor_to_heap(in_t.data.i16,in_t.dims
—>data,in_t.dims—>size);

270 break;

271 case 32:

273 printf (" [DEBUGC]-———— kTfLiteInt32 ————— \n") ;

274 #endif

27 push_input_tensor_to_heap(in_t.data.i32,in_t.dims—
data,in_t.dims—>size);

276 break;

277 case 64:

278 #ifdef DEBUG

279 printf (" [DEBUG-C]———— kTfLiteInt64 ———— \n");

280 #endif

281 push_input_tensor_to_heap(in_t.data.i64,in_t.dims—
data,in_t.dims—>size);

282 break;

283 }

284 }

285 else { // use fp units

286 switch (bit_width_computation) {

287 case 16:

288 if (context—allow_fp32_relax_to_fp16 && NO_FP==3)

{ // NO FP==3 — fp active and bfp active

289 #ifdef DEBUG

200 printf (" [DEBUG-C]l-—— kTfLitefloat32 relaxed aka
bfp16 ————— \n") ;

291 #endif

202 push_input_tensor_to_heap(in_t.data.f16,in_t.dims

Francesco Angione Politecnico di Torino IX

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

314

319

320

321

322

323

328

329

330

332

333

334

A. Accelerator library

—>data,in_t.dims—>size);
}
break;
case 32:
#ifdef DEBUG
printf (" [DEBUG-C]-—— kTfLitefloat32 ————— \n");
#endif
push_input_tensor_to_heap(in_t.data.f,in_t.dims—
data,in_t.dims—>size);

break;
default:
printf (" [DEBUG-C]l-——— ERROR! no fp precision defined
______ \nll) ;
break;
}
}
}

for (int output_index : TfLitelntArrayView (node—>outputs))({
auto& out_t= context—>tensors[output_index];
/! get dimesion of tensors
/! push to python sublayer

#ifdef DEBUG

printf ("[DEBUG — C]-—— Invoke of DTPU delegate class
getting output tensors %d—— \n",output_index);
#endif
if (INO_FP){
switch (bit_width_computation) {
default:
case 8:

#ifdef DEBUG
if (signed_computation) {

printf (" [DEBUG-C]-—— kTfLitelnt8 ————— \n
ll);
}else{
printf (" [DEBUG-C]-—— kTfLiteUInt8 —————— \
nll);

}
#tendif

if (signed_computation) {

push_output_tensor_to_heap(out_t.data.int8 ,out_t.dims
—>data,out_t.dims—>size);

}else {

Politecnico di Torino Francesco Angione

343

344

345

346

347

349

350

351

353

356

357

358

359

360

361

362

363

364

366

367

368

369

A. Accelerator library

push_output_tensor_to_heap(out_t.data.uint8 ,out_t.dims
—>data,out_t.dims—>size);

}
break;
case 16:
#ifdef DEBUG
printf (" [DEBUG-C]———— kTfLitelnt16 ————— \n"
);

#endif
push_output_tensor_to_heap(out_t.data.i16 ,out_t.
dims—>data, out_t.dims—>size) ;
break;

case 32:
#ifdef DEBUG

printf (" [DEBUGC]-—— kTfLitelnt32 ————— \n");
#endif
push_output_tensor_to_heap(out_t.data.i32,out_t.dims
—>data, out_t.dims—>size);
break ;

case 64:

#ifdef DEBUG
printf (" [DEBUG-C]-—— kTfLitelnt64 ——— \n");
#endif
push_output_tensor_to_heap(out_t.data.i64,out_t.dims
—>data, out_t.dims—>size);
break;
}
}

else { // use fp units
switch (bit_width_computation) {
case 16:
if (context—allow_fp32_relax_to_fp16 && NO_FP==3)
{ // NO FP==3 — fp active and bfp active
#ifdef DEBUG

printf (" [DEBUG-C]l-—— kTfLitefloat32 relaxed aka
bfp16 ————— \n");
#endif

push_output_tensor_to_heap(out_t.data.f16,out_t.
dims—>data, out_t.dims—>size); // a uint16
pointer
}
break;
case 32:
#ifdef DEBUG
printf (" [DEBUG-C]-—— kTfLitefloat32 ———— \n") ;
#endif
push_output_tensor_to_heap(out_t.data.f,out_t.dims
—>data, out_t.dims—>size);

Francesco Angione Politecnico di Torino XI

A. Accelerator library

374 break;

375 default:

376 printf (" [DEBUG-C]l-——— ERROR! no fp precision defined

—————— n");

377 break ;

378 }

379

380 }

381

382 }

383 if (time_probe) {

384 if (timespec_get(&ts_end, TIME_UTC)) {

385 fprintf (stderr ,"erorr during the acquisition of end time
\n");

386 exit(—1);

387 }

388 /! update average and execution time

389 avg_time_data_exchange+=ts_end.tv_sec=1000 + ((double)

ts_end.tv_nsec)/1000000 — ts_start.tv_sec=1000 — ((
double)ts_start.tv_nsec)/1000000;

390

301 n_execution++;

392 }

393

394 if (time_probe){

305 if (timespec_get(&ts_start, TIME_UTC)) {

396 fprintf (stderr ,"erorr during the acquisition of end time
n\n");

397 exit(—1);

398 }

399 }

400 if (Invoke_p(only_con2d,curr_input)){

401 if (time_probe){

402 if (ltimespec_get(&ts_end, TIME_UTC)) {

103 fprintf (stderr,"erorr during the acquisition of end time
\n");

404 exit(—1);

405 }

406 avg_time_delegate+=ts_end.tv_sec+«1000 + ((double)ts_end.

tv_nsec)/1000000 — ts_start.tv_sec=1000 — ((double)
ts_start.tv_nsec)/1000000;

407 }

408 return kTfLiteOKk;
409 }

410 return kTfLiteError ;
411 }

412

413 };

414

XII Politecnico di Torino Francesco Angione

415

416

418

419

420

421

423

428

429

430

431

433

438

439

440

441

443

A. Accelerator library

TfLiteStatus SelectDataTypeComputation(int data_type){
#ifdef DEBUG

printf ("[DEBUG — C]——— SelectDataTypeComputation of DTPU
delegate class —— \n");
#endif

int precision= data_type & 0x000f;
signed_computation= ((data_type & 0x00100)>>8)==1 ? true
false;

NO FP= (data_type & 0x060) >>5;
switch (precision) {
default:
case 1: //INTS8
bit_width_computation=8;
break ;
case 3: //INT16
bit_width_computation=16;
break;
case 7: //INT32
bit_width_computation=32;
break ;
case 15: //INT64
bit_width_computation=64;
break;
}
// check compatibilyt of signed and unsigned
if (signed_computation && bit_width_computation!=8) {
printf ("ERROR-> signed/unsigned distinction is only
compatible with 8 bit computation") ;
return kTfLiteError;
}
if (SelectDataTypeComputation_p(data_type)){
return kTfLiteOKk;
}

return kTfLiteError ;

}

TfLiteStatus ResetHardware(){
#ifdef DEBUG

printf("[DEBUG — C]l-—— Reset underlaying hardware —— \n");

#endif

if (ResetHardware_p ()){
return kTfLiteOKk;
!

return kTfLiteError ;

Francesco Angione Politecnico di Torino

XIII

A. Accelerator library

w1 // Create the TfLiteRegistration for the Kernel node which will
replace

w2 // the subgraph in the main TfLite graph.

ws TfLiteRegistration GetMyDelegateNodeRegistration () {

464 /! This is the registration for the Delegate Node that gets

added to
465 // the TFLite graph instead of the subGraph it replaces.
166 // 1t is treated as a an OP node. But in our case
167 /I Init will initialize the delegate

s // Invoke will run the delegate graph.
469 /! Prepare for preparing the delegate.

470 /! Free for any cleaning needed by the delegate.

w1 #ifdef DEBUG

472 printf ("[DEBUG — C] —— get delegate node registration
function ——-\n");

473 #endif

w2 TfLiteRegistration kernel_registration;
475 kernel_registration.builtin_code = kTfLiteBuiltinDelegate;

476 kernel_registration.custom_name = "DTPU_delegate";

w7 kernel_registration.free = [](TfLiteContext+ context, void=
buffer) — void {

478 delete reinterpret_cast<DTPU_delegate>>(buffer);

479 };

w0 kernel_registration.init = [](TfLiteContext+« context, const
char+ buffer,

481 size_t) — void« {

182 /! In the node init phase, initialize MyDelegate instance

183 const TfLiteDelegateParams+« delegate_params =

484 reinterpret_cast<const TfLiteDelegateParams«>(buffer);

485 DTPU_delegate my_delegate = new DTPU_delegate;

186 if (!my_delegate—Init (context, delegate_params)) {

187 return nullptr;

189 return my_delegate;

490 };

491 kernel_registration.invoke = [](TfLiteContext= context,

192 TfLiteNode+ node) —>

TfLiteStatus {

1903 DTPU_delegate« kernel = reinterpret _cast<DTPU_delegate>(
node—>user_data) ;

494 return kernel—>Invoke (context, node);

495 };

ws kernel_registration.prepare = [](TfLiteContexts context,

407 TfLiteNode node) —>

TfLiteStatus {

1908 DTPU_delegate« kernel = reinterpret _cast<DTPU_delegate«>(
node—>user_data) ;

199 return kernel—>Prepare(context, node);

500 };

XIV Politecnico di Torino Francesco Angione

A. Accelerator library

501

s return kernel_registration;

503 }

504

so0s // TfLiteDelegate methods

so6 // interface to tensorflow runtime

sor TfLiteStatus DelegatePrepare(TfLiteContext+ context,
TfLiteDelegate« delegate) {

508 // Claim all nodes that can be evaluated by the delegate and

ask the
509 /] framework to update the graph with delegate kernel instead.
510 // Reserve 1 element, since we need first element to be size.
512 printf ("[DEBUG — C] —— preparing the delegate ———\n");
513 #endif
s1e std::vector<int> supported_nodes(1);

515 TfLitelntArray~ plan;

si6 TF_LITE_ENSURE_STATUS(context—>GetExecutionPlan(context, &plan
));

iz TfLiteNode~ node;

sis TfLiteRegistration= registration;

519 for (int node_index : tflite :: TfLitelntArrayView (plan)) {

520 TF_LITE_ENSURE_STATUS(context—>GetNodeAndRegistration (

521 context, node_index, &node, ®istration));
522 if (DTPU_delegate :: SupportedOp(registration)) {
523 supported_nodes.push_back(node_index) ;

524 }

525 }

526 // Set first element to the number of nodes to replace.

527 supported_nodes[0] = supported_nodes.size() — 1;

528 TfLiteRegistration my_delegate_kernel_registration =

529 GetMyDelegateNodeRegistration () ;

530

531 // This call split the graphs into subgraphs, for subgraphs
that can be

532 // handled by the delegate, it will replace it with a

533 /!l "my_delegate_kernel_registration’

s32. - return context—>ReplaceNodeSubsetsWithDelegateKernels (

535 context, my_delegate_kernel _registration ,
536 reinterpret_cast<TfLitelntArray«>(supported_nodes.data()),
delegate) ;

537 }

538

s30 void FreeBufferHandle (TfLiteContexts context, TfLiteDelegate«
delegate

540 TfLiteBufferHandle+ handle) {

su #ifdef DEBUG
542 printf ("[DEBUG — C]——— Do any cleanups———-\n");
543 #endif

Francesco Angione Politecnico di Torino XV

A. Accelerator library

s FreeBufferHandle_p () ;
545 }

546

547

sis TfLiteStatus CopyToBufferHandle(TfLiteContext« context,

549 TfLiteDelegate« delegate,

550 TfLiteBufferHandle buffer_handle

551 TfLiteTensor= tensor) {

553 printf ("[DEBUG — C]-—— Copies data from tensor to delegate
buffer if needed.————-\n");

554 #endif
555 if (CopyToBufferHandle_p()){
556 return kTfLiteOKk;

557 }

558 return kTfLiteError;

559}

560

se1 TfLiteStatus CopyFromBufferHandle (TfLiteContext+ context,

562 TfLiteDelegate« delegate,

563 TfLiteBufferHandle
buffer_handle ,

564 TfLiteTensor« tensor) {

ses #ifdef DEBUG

se printf (" [DEBUG — C]l-——Copies the data from delegate buffer
into the tensor raw memory———\n") ;

567 #endif

568 if (CopyFromBufferHandle_p()){

se0o return KkTfLiteOk;

570 }
571 return kTfLiteError;
572 }

s TfLiteStatus activate_time_probe (bool activate){

st printf (" [DEBUG-C]l-—— activating time probes ———\n");
577 #tendif

578 if (!time_probe && activate){

579 time_probe=true;

580 #ifdef DEBUG

581 printf (" [DEBUG-C]-—— activated time probes ———\n");
582 #endif

583 activate_time_probe_p (activate);

584 } else{

585 printf ("ATTENTION! Time probes are not active\n");
587 }

588 return kTfLiteOk;

XVI Politecnico di Torino Francesco Angione

A. Accelerator library

589
590 }
591

592

s0s TfLiteStatus print_execution_stats () {

594

595

596

597

598
599

600
601

602
603
604
605
606
607
608

609 }

610

#ifdef DEBUG
printf (" [DEBUG — Cl-——— printing time probes of the library
_____ \nll);
#endif
printf("If you are seeing too many zeros you probably did
not set the time probes variable to true!\n");

// print ¢ time probes
printf ("Overall time of delegate invoke: %3f [ms]\n",
avg_time_delegate/n_execution) ;
printf ("Data exchange between interfaces (C—>Python—C): %3f
[ms]\n" ,avg_time_data_exchange/n_execution);

/! print python time probes

if (print_python_time_probes()){
return kTfLiteOKk;

}

return kTfLiteError;

si1 TfLiteStatus measure_power_consumption () {
c12 #ifdef DEBUG

613

614
615
616
617
618
619

620 }

621

printf ("[DEBUG — C]-——Measuring power consumption of the
accelerator during invoke ———\n");

#endif

if (start_power_consumption()){
return kTfLiteOk;

}

return kTfLiteError;

s> TfLiteStatus print_power_consumption () {

623

624

625
626
627
628
629
630 }

631

#ifdef DEBUG

printf ("[DEBUG — Cl—-——Printing power consumption of the
accelerator during invoke ———\n");

#endif

if (print_power_consumption_p()){
return kTfLiteOk;

}

return kTfLiteError;

Francesco Angione Politecnico di Torino XVII

A. Accelerator library

e32 // instantiate the delegate, it returns null if there is an
error

ss3 1fLiteDelegate « tflite_plugin_create_delegate ()

e3¢ //char=~ argv , chars~ argv2, size_t argc, void (xreport_error)(
const char =))

635 {

s36 TfLiteDelegate« delegate = new TfLiteDelegate;

637

s3s delegate —>data_ nullptr;

ss0 delegate—>flags = kTfLiteDelegateFlagsNone;

s20 delegate—>Prepare = &DelegatePrepare;

641 /! This cannot be null.

s> delegate —>CopyFromBufferHandle = &CopyFromBufferHandle;

643 /! This can be null.

s12 delegate —>CopyToBufferHandle = &CopyToBufferHandle;

645 /! This can be null.

s16 delegate—>FreeBufferHandle = &FreeBufferHandle;

647 /! load overlay

s1s load_overlay () ;

649 #ifdef DEBUG

sso printf ("[DEBUG — C] ——the delegate method of DTPU is born for

TensorFlow %s———\n" ,TF_Version ()) ;

651 #endif
652 return delegate;
653 }

654

655

o6 void tflite_plugin_destroy_delegate (void =« delegate_op , void =
argtypes) {

es7 // destroy the delegate

ess 1fLiteDelegate =+ delegate= (TfLiteDelegate =«) delegate_op;

sso #ifdef DEBUG

so printf (" [DEBUG — Cl-———— cleaning memory —> callback of python
function ——\n") ;
661 #endif

sz 1T (ldestroy_p()) {

663 printf ("ERROR IN FREEING BUFFERS!") ;
m4}

es // free (argtypes);

fm;free(delegate);

ww}

ez #ifdef __CpIUSpIUS

6(;9} // extern "C"

o0 #endif

XVIII Politecnico di Torino Francesco Angione

A. Accelerator library

Frozen python code in the accelerator library:

from dtpu_lib import ffi

from pynq import Overlay

from pynq import allocate

from pynq import MMIO

from pynq import Xlnk

from pynq.lib import dma

import numpy as np

import math

import _thread

10 import sys

1 import time

12 import struct # see https ://docs.python.org/3/library/struct.
html#struct —examples

13 _DEBUG_PRINT=True

1« _TIME_PROBES=False

5 HHABFHUFHBHH AR FH B HHREH AR HH

16 ##### memory map of xadc #####

17 RHBHHAREH AR FHBEH AR H AR H AR HH RS

1s G_BASEADDRESS=0x43C10000 #

19 SRR= 0x0 # w software reset register

20 SR= 0x04 # r status register

21 AOSR= 0x08 # r allarm output status register

22 CONVSTR= 0x0C # w Bit[0] = ADC convert start register (3) Bit[1]
= Enable temperature update logic Bit[17:2] = Wait cycle for
temperature update

23 SYSMONRR=0x10 # w xadc hard macro reset register

24 GIER=0x5C # rw global interrupt enable register

25 IPISR=0x60 # r toggle on write ip interrupt status register

26 IPIER=0x68 # rw ip interrupt enable register

27 TEMPERATURE=0x200 # The 12—bit Most Significant Bit (MSB)
justified result of on—device temperature measurement is
stored in this register

2s VCC_INT=0x204 # The 12—bit MSB justified result of on—device V
CCINT supply monitor measurement is storedin this register.

20 VCC_AUX=0x208 # The 12—bit MSB justified result of on-device V
CCAUX Data supply monitor measurement is stored in this
register

s0 VP_VN=0x20C # rw When read: The 12—bit MSB justified result of A
/D conversion on the dedicated analog input channel (Vp/Vn)
is stored in this register.When written: Write to this
regiter resets theXADC hard macro

s1 VREF_P=0x210 # r The 12—bit MSB justified result of A/D
conversion on the reference input V REFP is stored in this
register.

32 VREF_N= 0x214 #r The 12—bit MSB justified result of A/D
conversion on the reference input V REFN is stored in this
register.

33 VCC_BRAM= 0x218 # r The 12—bit MSB justified result of A/D

= w V] =

© o0 ~ [=2] ot

Francesco Angione Politecnico di Torino XIX

A. Accelerator library

conversion on the reference input V BRAM is stored in this
register

32 SUPPLY_A OFFSET=0x220 # r The calibration coefficient for the
supply sensor offset of ADC A is stored in this register

35 ADG_A OFFSET= 0x224 # r The calibration coefficient for the ADC
A offset calibration is stored in this register.

s ADC_A GAIN_ERR=0x228 # r The calibration coefficient for the
gain error of ADC A is stored in this register.

s DEV_CORE_SUPPLY=0x234 #r The VCCINT of PSS core supply.
Present only on Zynq—7000 devices.

ss DEV_AUX_CORE_SUPPLY=0x238 # r The VCCAUX of PSS core supply.
Present only on Zyng—7000 devices.

30 DEV_CORE_MEM_SUPPLY=0x23C # r The VCCMEM of PSS core supply.
Present only on Zyng—7000 devices

10 # v axux p/n

a V_AUX 0= 0x240 #r The 12—bit MSB justified result of A/D
conversion on the auxiliary analog input 0 is stored in this
register.

1 V_AUX 1= 0x244 #r

43 V_AUX_2= 0x248 #r

44 V_AUX_3= 0x24C #r

5 V_AUX 4= 0x250 #r

16 V_AUX 5= 0x254 #r

w7 V_AUX 6= 0x258 #r

s V_AUX_ 7= 0x25C #r

19 V_AUX 8= 0x260 #r

s0 V_AUX 9= 0x264 #r

51 V_AUX_10= 0x268 #r

s2 V_AUX 11= 0x26C #r

53 V_AUX_12= 0x270 #r

s V_AUX_13= 0x274 #r

55 V_AUX_14= 0x278 #r

56 V_AUX_15= 0x27C #r

s7 ## value of 12 bit msb

ss MAX CTMP= 0x280 # r

59 MAX_VCC_lNT= 0x284

so MAX_VCC_AUX= 0x288

s1 MAV_V_BRAM= 0x28C #r

o2 MINTMP= 0x290 # r

63 MlN_VCC_'NT= 0x294 #

s« MIN_VCC_AUX= 0x298 #

os MIN_V_BRAM=0x29C # r

66 MAX_VCC_P'NT= 0x2A0 #

o7 MAX_VCC_PAUX= 0x2A4 #

ss MAX_VCC_DDRO= 0x2A8 #

#
#

sos MIN_VCC_PINT= 0x2b0
7o MIN_VCC_PAUX= 0x2b4
71 MIN_VCC_DDRO= 0x2b8 #
= SUPPLY B OFFSET= 0x2C0 # r The calibration coefficient for the

—_ = = = = =

XX Politecnico di Torino Francesco Angione

A. Accelerator library

supply sensor offset of ADC A is stored in this register

s ADC_B OFFSET= 0x2C4 # r The calibration coefficient for the ADC
A offset calibration is stored in this register.

=« ADC_B GAIN_ ERR= 0x2C8 # r The calibration coefficient for the
gain error of ADC A is stored in this register.

s FLAGS=0x2FC # The 16—bit register gives general status
information of ALARM, Over Temperature (OT), Disable XADC
information. Whether the XADC is using the internal reference
voltage or external reference voltage is also p

7« CONF_REG_0=0x300 # rw

7 CONF_REG_1=0x304 # rw

= CONF_REG_2=0x308 # rw

7o« SEQ REG 0= 0x320 # r/w adc channel selection

so SEQ REG 1= 0x324 # r/w adc channel selection

s1 SEQ_ REG 2= 0x328 # r/w adc channel average enable

s2 SEQ_REG 3= 0x32C # r/w adc channel average enable

s3 SEQ_REG_4= 0x330 # r/w adc channel analog input mode
ss+ SEQ_REG 5= 0x334 # r/w adc channel analog input mode
ss SEQ_REG_6= 0x338 # r/w adc channel acquistion

ss SEQ_ REG_7= 0x33C # r/w adc channel acquistion

s7 ALLARM_THRESHOLD 0= 0x340 #rw The 12bit MSB justified alarm
threshold register 0 Temperature Upper

ss ALLARM_THRESHOLD 1= 0x344 #rw he 12bit MSB justified alarm
threshold register 1 V CCINT Upper

so ALLARM_THRESHOLD 2= 0x348 #rw The 12bit MSB justified alarm
threshold register 2 V CCAUX Upper

oo ALLARM_THRESHOLD 3= 0x34C #rw the 12bit MSB justified alarm
threshold register 3 T Upper

o1 ALLARM_THRESHOLD 4= 0x350 #rw the 12bit MSB justified alarm
threshold register 4 Temperature Lower

9> ALLARM_THRESHOLD 5= 0x354 #rw the 12bit MSB justified alarm
threshold register 5 V CCINT Lower

o3 ALLARM_THRESHOLD_ 6= 0x358 #rw The 12bit MSB justified alarm
threshold register 6 V CCAUX Lower

o1 ALLARM_THRESHOLD 7= 0x35C # rw The 12bit MSB justified alarm
threshold register 7 OT Lower

o5 ALLARM_THRESHOLD 8= 0x360 # rw The 12bit MSB justified alarm
threshold register 8 VBRAM Upper

os ALLARM_THRESHOLD 9= 0x364 # rw The 12bit MSB justified alarm
threshold register 9 V CCPint Upper This register is only on
Zynq—7000 devices.

o7 ALLARM_THRESHOLD_10= 0x368 # rw The 12bit MSB justified alarm
threshold register 10 V CCPaux Upper This register is only
on Zyng—7000 devices

os ALLARM_THRESHOLD_11= 0x36C # rw The 12bit MSB justified alarm
threshold register 11 CCDDRO Upper This register is only on
Zynq—7000 devic

99 ALLARM_THRESHOLD_12= 0x370 # rw he 12bit MSB justified alarm
threshold register 12 VBRAM Lower

Francesco Angione Politecnico di Torino XXI

A. Accelerator library

100 ALLARM_THRESHOLD 13= 0x374 # rw The 12Bit MSB justified alarm
threshold register 13 V CCPint Lower This register is only on
Zynq—7000 devices

101 ALLARM_THRESHOLD_14= 0x378 # rw The 12bit MSB justified alarm
threshold register 14 V CCPaux Lower This register is only on
Zynq—7000 devices

102 ALLARM_THRESHOLD_15= 0x37C # rw he 12bit MSB justified alarm
threshold register 15 v CCDDRO Lower This register is only on
Zyng—7000 devices

103 HAFHBHHHBHHBHHHBHHBHHHBHH B HHBHH B FHRHH AR FHBSH AR H B H RS

04 ###SH#H##S#H##E MEMORY MAP of acceleratro ################H

105 HEFHBHHAHHHBHH AR AR B AR

0o BASE_ADDRESS ACCELERATOR=0x43C00000

107 ADDRESS_RANGE_ACCELERATOR=0x10000

s # address reg offset

0o GTRL =0x0000

110 STATUS =0x0004

111 |ARG_RQT_EN =0x0010

112 OARG_RQT_EN =0x0014

113 CMD =0x0028

112 OARG_LENGTH_MODE =0x003C

115 ISCALAR_FIFO_RST =0x0040

116 OSCALAR_FIFO_RST =0x0044

17 ISCALAR_RQT_EN =0x0048

s OSCALAR_RQT_EN =0x004C

119 ISCALARO_DATA =0x0080

120 ISCALAR1_DATA =0x0084

121 ISCALAR2_DATA =0x0088

122 ISCALAR3_DATA =0x008C

123 ISCALAR4_DATA =0x0090

122 ISCALAR5_DATA =0x0094

125 ISCALAR6_DATA =0x0098

126 ISCALAR7_DATA =0x009C

127 ISCALAR8_DATA =0x00A0

125 ISCALAR9_DATA =0x00A4

120 ISCALAR10_DATA=0x00A8

130 ISCALAR11_DATA =0x00AC

121 ISCALAR12_DATA =0x00B0

122 ISCALAR13_DATA =0x00B4

133 |SCALAR14_DATA =0x00B8

121 ISCALAR15_DATA =0x00BC

135 OSCALARO_DATA =0x00CO0

136 OSCALAR1_DATA =0x00C4

157 OSCALAR2_DATA =0x00C8

138 OSCALAR3_DATA =0x00CC

130 OSCALAR4_DATA =0x00D0

110 OSCALAR5_DATA =0x00D4

111 OSCALAR6_DATA =0x00D8

112 OSCALAR7_DATA =0x00DC

XXII Politecnico di Torino Francesco Angione

143
144
145
146
147
148
149
150
151

53

54

1
1
1
155
156
1

158
159
160
161

162

173
174
17
176
177
178
179
180
181
182
183
184
185
186
187
188
189

190

A. Accelerator library

IARGO_STATUS =0x0100
IARG1_STATUS =0x0104
IARG2_STATUS =0x0108
IARG3_STATUS =0x010C
IARG4_STATUS =0x0110
IARG5_STATUS =0x0114
IARG6_STATUS =0x0118
IARG7_STATUS =0x011C
OARGO_STATUS =0x0140

> OARG1_STATUS =0x0144

OARG2_STATUS =0x0148
OARG3_STATUS =0x014C
OARG4_STATUS =0x0150
OARG5_STATUS =0x0154

;7 OARG6_STATUS =0x0158

OARG7_STATUS =0x015C

ISCALARO_STATUS =0x0180
ISCALAR1_STATUS =0x0184
ISCALAR2_STATUS =0x0188
ISCALAR3_STATUS =0x018C
ISCALAR4_STATUS =0x0190
ISCALAR5_STATUS =0x0194

s ISCALAR6_STATUS =0x0198

ISCALAR7_STATUS =0x019C

7 ISCALAR8_STATUS =0x01A0

ISCALAR9_STATUS =0x01A4

ISCALAR10_STATUS =0x01A8
ISCALAR11_STATUS =0x01AC
ISCALAR12_STATUS =0x01B0
ISCALAR13_STATUS =0x01B4
ISCALAR14_STATUS =0x01B8
ISCALAR15_STATUS =0x01BC

s OSCALARO_STATUS =0x01CO0

OSCALAR1_STATUS =0x01C4
OSCALAR2_STATUS =0x01C8
OSCALAR3_STATUS =0x01CC
OSCALAR4_STATUS =0x01D0
OSCALAR5_STATUS =0x01D4
OSCALAR6_STATUS =0x01D8
OSCALAR7_STATUS =0x01DC
OSCALAR8_STATUS =0x01EO
OSCALAR9_STATUS =0x01E4
OSCALAR10_STATUS =0x01ES8
OSCALAR11_STATUS =0x01EC
OSCALAR12_STATUS =0x01F0
OSCALAR13_STATUS =0x01F4
OSCALAR14_STATUS =0x01F8
OSCALAR15_STATUS =0x01FC

191 OARGO_LENGTH =0x0200

Francesco Angione Politecnico di Torino XXIIT

A. Accelerator library

102 OARG1_LENGTH
105 OARG2_LENGTH
101 OARG3_LENGTH
105 OARG4_LENGTH
106 OARGS_LENGTH
107 OARG6_LENGTH
10s OARG7_LENGTH
190 OARGO_TDEST
200 OARG1_TDEST
200 OARG2_TDEST
202 OARG3_TDEST
205 OARG4_TDEST
201 OARG5_TDEST
205 OARG6_TDEST
200 OARG7_TDEST

=0x0204
=0x0208
=0x020C
=0x0210
=0x0214
=0x0218
=0x021C
=0x0240
=0x0244
=0x0248
=0x024C
=0x0250
=0x0254
=0x0258
=0x025C

207 HHHHBHBHHBHBHHHHBHHHHBHBHHBHBHHBHBHHHHBHRHHBHBHHBHRHH

208 HHAHHHHHHH
200 HHHHHHH#HH
210 HHHAHBHHBHH
1 HHHBH RS RS

2

-

2

CSR DEFINITIONS

MEMORY MAP
bitwidth 8
see csr_definition.vh

215 ARITHMETIC_PRECISION=0

... FP_MODE=1

215 BATCH_SIZE=2 # aka active rows
216 TRANSPARENT_DELAY_ REGISTER=3

217 DEBUG=4
215 TEST_OPTIONS

=5

219 ACTIVATE_CHAIN=0x1

200 INT8=0x1

221 INT16=0X3
200 INT32=0x7
223 INT64=0xF

20¢ # precision of fp computation

225 # integer pr
226 ACTIVE_FP=1
227 ACTIVE_BFP=0
22z ROUNDING=0x0
229 NO_FP=0X00
230 SIGNED=0x1
231 NO_S'GNED=OX

ecision

x03
0

0

is tuned using the

232 WMEM_STARTING_ADDRESS=0 #32 MSB

033 HHHBHHHBHHBHHHRHH B HHBFH B FH B H AR B H R RS H
234 #### accelerator adapter command #########H##H}H#
035 HHHBHHHBHHBHHHBHH B FHBHH AR FH B H AR B H SRR H
236 CMD_UPDATE_lN_ARG=0XO

237 CMD_UPDATE_OUT_ARG=0x1

238 CMD_EXECUTE_STEP=0X2
230 CMD_EXECUTE_CONTINOUS=0x4

210 CMD_STOP_EXECUTE_CONTINOUS=0x5

HHHHRHHHHH
HEHHH RS HH
HHHHHHBHHH
HEHHHH R HH
o HEHHBHBHHBHBHHHHBHHHHBHBHHBHBHHRHBHHHHBHRHHBHRHHBHBHH

XXIV

Politecnico di Torino

Francesco Angione

241

242

A. Accelerator library

HHHBHBHHBHBHHAHBHH AR B H R H R H R H AR RS H
BASE_ADDRESS_INTC=0x40800000

213 ADDRESS_RANGE_INTC=0x10000

244

BASE_ADDRESS_DMA _INFIFO=0x40400000

215 ADDRESS_RANGE_DMA_INFIFO=0x10000
216 BASE_ADDRESS DMA WM=0x40410000
»1» ADDRESS_RANGE_DMA WM=0x10000

248

249

250

252

253

254

255

256

257

258

259

260

accelerator=None
infifo_buffer_transfer=None
output_fifo_buffer=None
weight_buffer=None

csr_buffer=None

overlay=None

driver_csr=None

driver_wm=None

driver_fifo_in=None
driver_fifo_out=None

HEHHBHH AR H B H AR AR AR R
DESIGN DEPENDENT DEFINITION
HEHHHHH AR R

2s0 WMEM_SIZE=16384 # 1Mbytes

262

263

264

CSRMEM_SIZE=1024
INFIFO_SIZE=2048 #1Kbytes
OUTFIFO_SIZE=2048 #1Kbytes

265 ROWS=0
266 COLUMNS=0

267

268

269

270

271

277

278

279

280

281

282

283

284

285

286

287

DATAWIDTH=64

BUFFER_DEPTH=2

output_size=0

input_size=0

tot_size_weight=0
tot_size_input=0
tot_size_output=0
curr_data_precision=INT8
curr_bitwidth_data_computation=8

—> signed upper case—> unsigned
DTYPE_NP=np.uint8
FP=False
BFP=False
size tot=0
num_weight=0

7« PACK_TYPE="b" # default is 1 byte signed for integer lower case

global_iteration=1 ## at least one execution of the tensor

accelerator
global_iteration_shift_wm =[]
weight_tensors =[]
input_tensors =[]
output_tensors =[]
output_tensors_p =[]

Francesco Angione Politecnico di Torino

XXV

288

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

A. Accelerator library

weight_buffer_multiple =[]
index_wm=0
class Tensor:
def __init__ (self ,data, tot_dim,size |I):
self.tot_dim=tot_dim
self.data=data
self.size_l=size_|
filter_height=0
filter_width=0
HHHBHUFHRHUHHRH R H AR
time probes
HHHHHBHHRHBFH R H R HRHHSEH
avg_hw_execution=0.0
n_execution=0
avg_hw_execution_internal=0.00
n_execution_internal=0
HHHHHBH R H AR H AR
####H#E XADC ######H#H##
HHHHHBF RS HBF AR AR
xadc_mon=None
HHHHHBH SR H RS A
Retrieve and display power consumption
Supply sensor: Vccint,Vccaux, Vccbram H#H###
HHH#H Vcepint, Vccpaux, VecOddr HHH#H
Nominal values of resistances and Vcc
HHHBHBHHHHBHHHHBHHHHRHHHHRH R HRH R HRH R H RS
from vivado report power
[V]
vce_pl_int_nom=1.00
vce_pl_aux_nom=1.80
vce_pl_bram_nom= 1.00
vce_ps_int_nom=1.80
vcc_ps_aux_nom=1.80
vcc_ddr_nom=1.50

equivalent series resitstances of capacitor —> worst case

[omh]

r_pl_int=225

r_pl_aux=300

r_pl_bram=225

r_ps_int=225

r_ps_aux=400

r_ddr= 0.005

n_sample=1

ps_power=0

pl_power=0

mem_power=0

ps_power_max=sys. float_info.min
pl_power_max=sys.float_info.min
mem_power_max=sys. float_info .min

XXVI Politecnico di Torino

Francesco Angione

A. Accelerator library

337 pS_power_min=sys. float_info .max

335 pl_power_min=sys. float_info .max

330 mem_power_min=sys. float_info .max

s10 tmp_max=sys. float_info .min

s tmp_min=sys. float_info .max

342 tmp_avg=0.00

343

210 def sample_power(threadName, delay):

315 global ps_power

s16 global pl_power

si7 - global mem_power

sis global n_sample

s19 global xadc_mon

50 global vec_ps_aux_nom

551 global ps_power_max

52 global pl_power_max

555 global mem_power_max

s+ global ps_power_min

global pl_power_min

s global mem_power_min

57 global tmp_max

55 global tmp_min

ss0 - global tmp_avg

360 while True:

361 time.sleep(0.8/1000)

362 vcc_pl_int=(xadc_mon.read (VCC_INT) & O0x0000FFF0) >> 4

363 vcce_pl_int= (vcc_pl_int+ vcc_ps_aux_nom) / 4096

364 vcc_pl_aux=(xadc_mon.read (VCC_AUX) & O0xO000FFF0) >> 4

365 vce_pl_aux= (vcc_pl_aux=+ vcc_ps_aux_nom) / 4096

366 vcc_pl_bram= (xadc_mon.read (VCC_BRAM) & O0x0000FFF0) >> 4

367 vce_pl_bram= (vcc_pl_bram= vcc_ps_aux_nom) / 4096

368 vcc_ps_int= (xadc_mon.read (DEV_CORE SUPPLY) & 0x0000FFFO)
>> 4

369 vcc_ps_int= (vcc_ps_int« vcc_ps_aux_nom) / 4096

370 vcc_ps_aux=(xadc_mon.read (DEV_AUX CORE_SUPPLY) & 0x0000FFFO
) >> 4

371 VCC_pS_aux= (vcc_ps_auxs vcc_ps_aux_nom) / 4096

372 vcc_ddr= (xadc_mon.read (DEV_CORE MEM SUPPLY) & 0x0000FFFO0)
>> 4

373 vcc_ddr= (vcc_ddr= 3) / 4096

374 n_sample+=1

375 ps_power_i=((vcc_ps_int_nom-vcc_ps_int)/r_ps_int)«
vcc_ps_int_nom + ((vcc_psS_aux_nom—vcc_ps_aux)/r_ps_aux) =
VCC_pS_aux_nom

376 pl_power_i= ((vcc_pl_int_nom—vcc_pl_int)/r_pl_int)«
vce_pl_int_nom + ((vcc_pl_aux_nom—vcc_pl_aux)/r_pl_aux)=
vce_pl_aux_nom + ((vcc_pl_bram_nom-vcc_pl_bram)/r_pl_bram
)=vcee_pl_bram_nom

377 mem_power_i=((vcc_ddr—vcc_ddr_nom)/r_ddr)=vcc_ddr

Francesco Angione Politecnico di Torino XXVII

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

401

402

403

404

405

406

407

408

409

410

4

1

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

A. Accelerator library

update max

if pl_power_i > pl_power_max:
pl_power_max=pl_power_i

if ps_power_i > ps_power_max:
pS_power_max=ps_power_i

if mem_power_i > mem_power_max:
mem_power_max=mem_power_i

#update min

if pl_power_i < pl_power_min:
pl_power_min=pl_power_i

if ps_power_i < ps_power_min:
pS_power_min=ps_power_i

if mem_power_i < mem_power_min:
mem_power_min=mem_power_i

update values for the averages

pS_power+=ps_power_i

pl_power+=pl_power_i

mem_power+=mem_power_i

temperature

tmp=(xadc_mon.read (TEMPERATURE) & O0x0000FFF0) >> 4

tmp=(tmp+* 503.975)/4096 — 273.15
update max
if tmp > tmp_max:
tmp_max=tmp
update min
if tmp < tmp_min:
tmp_min=tmp
tmp_avg+=tmp

HHHBHBH R HBHHBHBH R HBHHBHBHHRHBHHRH RS H
#H####H#####E LOAD DESIGN #########HH#H#
HHHBHBHHBHBHHBHBHHBHBHHBHBHHRH BB HRSH

@ffi.def_extern ()

def load_overlay():
global accelerator
global overlay
global xadc_mon
global ROWNS
global COLUMNS
global ps_power
global pl_power
global mem_power
global ps_power_max
global pl_power_max
global mem_power_max
global ps_power_min
global pl_power_min
global mem_power_min
global tmp_max

XXVIII Politecnico di Torino

Francesco Angione

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

455

456

457

458

460

461

462

463

464

465

466

467

468

469

A. Accelerator library

global tmp_min

global tmp_avg

modify this part for choosing a different overlay and
recompile the library

f_clk="30mhz"

datawidth="only_integer8"

mxu_size="mxu_8x8"

ROWS=8
COLUMNS=8
print ("Hardware design space points" , f_clk," ", " ", mxu_size,

" ", datawidth)
overlay = Overlay("/home/ xilinx /dtpu_configurations/"+
datawidth+"/"+f_clk+"/" + mxu_size+"/pynqz2.bit") # itcl is
also parsed
overlay.download () # Explicitly download bitstream to PL
if overlay.is_loaded():
Checks if a bitstream is loaded

if DEBUG_PRINT: print (" [DEBUG- PYTHON] ——overlay is loaded
H)
else :
if _DEBUG_PRINT: print("[DEBUG- PYTHON] —— overlay is not
loaded——")
exit(—1)

if overlay.monitor is not None:
xadc_mon=overlay.monitor.xadc_wiz_0_0
xadc_mon. write (SRR,0x0000000A) # reset

else:
print ("ERROR NO XADC")

if overlay.dtpu is not None:
accelerator=overlay .dtpu. axis_accelerator_ada

else:
print ("ERROR NO ACCELERATOR")
exit(—1)

overlay.reset()
clean power variable

n_sample=1
ps_power=0
pl_power=0

mem_power=0

ps_power_max=sys. float_info.min
pl_power_max=sys.float_info.min
mem_power_max=sys. float_info .min
ps_power_min=sys. float_info .max
pl_power_min=sys. float_info .max
mem_power_min=sys. float_info .max
tmp_max=sys. float_info.min
tmp_min=sys. float_info .max
tmp_avg=0.00

Francesco Angione Politecnico di Torino XXIX

A. Accelerator library

470

w1 @ffi.def_extern ()

a2 def Init_p(tot_tensors ,input_tens_size ,output_tens_size):
w75 global accelerator

w2 global overlay

w5 global size_tot

476 global input_size

w7 global output_size

ws global avg_hw_execution
479 global n_execution

480 global avg_hw_execution_internal

481 global n_execution_internal

182 global tmp_avg

483 if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— Init p function
—")

81 ## soft reset and accelerator configuration

w5 accelerator.write (CTRL,0x0000001)

16 accelerator.write (CTRL,0x0000000)

w7 accelerator.write (IARG_RQT_EN,0x000000007) ## all data
avialable csr, weights and data

488 accelerator.write (OARG_LENGTH MODE,0x00000001) # software mode

480 accelerator. write (OARGO_LENGTH, OUTFIFO_SIZE) # size outfifo

w0 accelerator.write (ISCALAR_RQT_EN,0) # NO input SCALAR

491 accelerator.write (OSCALAR_RQT_EN,0) # no output scalar

w2 accelerator.write (OARGO_TDEST,0) # only one output

193 size _tot=tot tensors

404 if _DEBUG_PRINT: print (" [DEBUG-PYTHON]-—— total tensors",
size_tot ,"—")

1495 input_size=input_tens_size

496 if DEBUG _PRINT: print("[DEBUGPYTHON]-—— int tensors",
input_size ,"—")

w07 output_size=output_tens_size
198 if _DEBUG_PRINT: print (" [DEBUG-PYTHON]-—— out tensors",

output_tens_size ,"—")
499 n_execution=0
so00 avg_hw_execution=0.00
501 avg_hw_execution_internal=0.00

502 n_execution_internal=0

503 tmp_avg=0.00

504 return True

505

506

507 @ffi.def_extern()

s0s def SelectDataTypeComputation_p(data_type):
509 global curr_data_precision

5.0 global curr_bitwidth_data_computation
si1 global PACK_TYPE

512 g|0b8.| FP

513 gIobaI BFP

XXX Politecnico di Torino Francesco Angione

A. Accelerator library

global DTYPE_NP
if _DEBUG_PRINT: print("[DEBUG — PYTHON] —
SelectDataTypeComputation DTPU class ——")

if data_type!=0:
#case switch
if ((data_type)&0x00000f)==INT8:
curr_data_precision=INT8
curr_bitwidth_data_computation=8
if (data_type&0x00100)==SIGNED:
PACK TYPE="b"
DTYPE NP=np.int8
else:
PACK TYPE="B"
DTYPE_NP=np.uint8
elif ((data_type)&0x00000f)==INT16:
curr_data_precision=INT16
curr_bitwidth_data_computation=16
if (data_type&0x00100)==SIGNED:
PACK TYPE="h"
DTYPE_NP=np.int16
else:
PACK TYPE="H"
DTYPE_NP=np.uint16
elif ((data_type)&0x00000f)==INT32:
curr_data_precision=INT32
curr_bitwidth_data_computation=32
if (data_type&0x00100)==SIGNED:
PACK TYPE="i"
DTYPE_NP=np.int32
else:
PACK TYPE="1"
DTYPE_NP=np.uint32
elif ((data_type)&0x00000f)==INT64:
curr_data_precision=INT64
curr_bitwidth_data_computation=64
if (data_type&0x00100)==SIGNED:
PACK_TYPE="q"
DTYPE_NP=np.int64
else:
PACK TYPE="Q"
DTYPE_NP=np. uint64
else:

print ("ERROR PYTHON! Setting the Data type of computation”

)
floating point check

if ((data_type & 0x000060)>> 5)== ACTIVE_FP:

FP=True
BFP=False
PACK TYPE="f"

Francesco Angione

Politecnico di Torino

XXXI

578

579

580

581

582

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

A. Accelerator library

elif

DTYPE_NP=np. float32

FP=True
BFP=True
PACK _TYPE="e"

((data_type & 0x000060)>> 5)== ACTIVE_BFP:

DTYPE _NP=np.uint16 ## accroding to tensorflow bfpl16

representation

else:
FP=False
BFP=False
else:

curr_data_precision=INT8
curr_bitwidth_data_computation=8

FP=False
BFP=False
if DEBUG_PRINT:

print (" [DEBUG-PYTHON-———precision default 8 bit signed "
)

print (" [DEBUGPYTHONJ-—— Signed :" ,PACK TYPE.islower () ,"
type: ",curr_data_precision, " —>",
curr_bitwidth_data_computation ,"—")

return True

@ffi.def_extern ()
def push_input_tensor_to_heap(tensor,size,dim_size):
global input_tensors

global tot_size_input

#push the tensor to the heap for handling their

the Prepare_p
tot_size=1
if not(FP) or not(BPF):
if PACK_TYPE.islower (): # signed

if curr_data_precision==INT8:
tensor_i=ffi.cast("int8_t «" tensor)
elif curr_data_precision==INT16:
tensor_i=ffi.cast("int16_t =" tensor)
elif curr_data_precision==INT32:
tensor_i=ffi.cast("int32_t =" tensor)
else: # int64
tensor_i=ffi.cast("int64_t =" tensor)

else: #unsigned

if curr_data_precision==INT8:
tensor_i=ffi.cast("uint8_t =" tensor)
elif curr_data_precision==INT16:
tensor_i=ffi.cast("uint16_t «", tensor)
elif curr_data_precision==INT32:

transfefr in

tensor_i=ffi.cast("uint32_t «" tensor)
else: # int64
tensor_i=ffi.cast("uint64_t «",tensor)
XXXIT Politecnico di Torino Francesco Angione

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

A. Accelerator library

else:
if BFP:
tensor_i=ffi.cast("uint16_t «" tensor)
else:
tensor_i=ffi.cast("float =" ,tensor)
size_i=ffi.cast("int «", 6 size)

tot_size=1

size_|l=4+[1]

data_p =[]

for i in range(dim_size):

size_I[i]=sizei]
tot_sizex+=size[i]
tot_size_input+=tot_size

if _DEBUG_PRINT: print (" [DEBUG-PYTHON]————— size of tensor
input " ,tot_size_input,"—")
for i in range (tot_size):

data_p.append(tensor_i[i])

input_tensors.append(Tensor(data_p,tot_size ,size_1))

@ffi.def_extern ()

def push_output_tensor_to_heap(tensor, size,dim_size):

global output_tensors
global tot_size_output
global output_tensors_p

#push the tensor to the heap for handling their transfefr in
the Prepare_p
tot _size=1
output_tensors_p.append(tensor)
if not(FP) or not(BPF):
if PACK_TYPE.islower (): # signed
if curr_data_precision==INT8:
tensor_i=ffi.cast("int8_t «" tensor)
elif curr_data_precision==INT16:
tensor_i=ffi.cast("int16_t =" tensor)
elif curr_data_precision==INT32:
tensor_i=ffi.cast("int32_t =" tensor)
else: # int64
tensor_i=ffi.cast("int64_t =" tensor)
else: #unsigned
if curr_data_precision==INT8:
tensor_i=ffi.cast("uint8_t =" tensor)
elif curr_data_precision==INT16:
tensor_i=ffi.cast("uint16_t «",tensor)
elif curr_data_precision==INT32:
tensor_i=ffi.cast("uint32_t «",tensor)
else: # int64
tensor_i=ffi.cast("uint64_t «" tensor)
else:
if BFP:
Francesco Angione Politecnico di Torino XXXIIT

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

A. Accelerator library

tensor_i=ffi.cast("uint16_t «" tensor)

else:
tensor_i=ffi.cast("float =", tensor)
size_i=ffi.cast("int «", 6 size)
tot_size=1
size_|=4+[1]
data_p =[]
for i in range(dim_size):
size_l[i]=size[i]
tot_sizex+=size[i]
tot_size_output+=tot_size
if _DEBUG_PRINT: print (" [DEBUG-PYTHON]————— size of tensor
output ", tot_size ,"—")
for i in range (tot_size):
data_p .append(0)
output_tensors.append(Tensor(data_p,tot_size ,size_Il))
@ffi.def_extern ()
def push_weight_to_heap(tensor,hsize ,dim_size):
global weight_tensors
global tot_size_weight
#push the tensor to the heap for handling their transfefr in
the Prepare_p
tot_size=1
if not(FP) or not(BPF):
if PACK TYPE.islower(): # signed
if curr_data_precision==INT8:
tensor_i=ffi.cast("int8_t «",tensor)
elif curr_data_precision==INT16:
tensor_i=ffi.cast("int16_t =", tensor)
elif curr_data_precision==INT32:
tensor_i=ffi.cast("int32_t =", tensor)
else: # int64
tensor_i=ffi.cast("int64_t =" tensor)
else: #unsigned
if curr_data_precision==INT8:
tensor_i=ffi.cast("uint8_t =", tensor)
elif curr_data_precision==INT16:
tensor_i=ffi.cast("uint16_t «",tensor)
elif curr_data_precision==INT32:
tensor_i=ffi.cast("uint32_t «",tensor)
else: # int64
tensor_i=ffi.cast("uint64_t «" tensor)
else:
if BFP:
tensor_i=ffi.cast("uint16_t «" tensor)
else:
tensor_i=ffi.cast("float =" ,tensor)
size_i=ffi.cast("int «", size)
XXXIV Politecnico di Torino Francesco Angione

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

733

A. Accelerator library

tot_size=1

size_l=4+[1]

data_p =[]

for i in range(dim_size):
size_|l[i]=size[i]
tot_sizex=size[i]

tot_size_weight+=tot_size

if _DEBUG_PRINT: print (" [DEBUG-PYTHON]-———— size of tensor
weight " tot_size_weight ,"—")
for i in range (tot_size):

data_p.append(tensor_i[i])
weight_tensors.append(Tensor(data_p,tot_size ,size_1))

@ffi.def_extern ()
def Prepare_p (weight_num):

global output_fifo_buffer
global infifo_buffer_transfer
global weight_buffer

global csr_buffer

global overlay

global driver_wm

global driver_csr

global driver_fifo_in

global driver_fifo_out
global num_weight

global global_iteration
global global_iteration_shift_wm
global curr_data_precision
global weight_tensors

global filter_height

global filter_width

global weight_buffer_multiple
global index_wm

if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— Prepare p of
DTPU class ——")

if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— in size",
input_size ,"output size",output_size ," —")

if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— weigth size",
weight_num," ——")

#allocate buffers for data transfer

num_weight=weight_num

filter_height=num_weight«[0]

filter_width=num_weight+«[0]

symmetric input/output fifo

output_fifo_buffer=allocate (shape=(INFIFO_SIZE ,) ,dtype="u8")
weight_buffer=allocate (shape=(WMEM SIZE,) ,dtype="u8")
csr_buffer=allocate (shape=(CSRMEM_SIZE,) ,dtype="u8")
infifo_buffer_transfer=allocate (shape=(INFIFO_SIZE,) ,dtype="u8

")

Francesco Angione Politecnico di Torino XXXV

A. Accelerator library

=3 driver_wm=overlay.axi_dma_weight_mem
744 driver_csr=overlay .axi_dma_csr_mem
745 driver_fifo_in=overlay.axi_dma_infifo
746 driver_fifo_out=overlay.axi_dma_outfifo
747 #
HEH IR H AR R

s HE##H#HA#HE populate buffers pack depending on the precision
H#H##HHHHH#
749 #
HHHAREHHH AR H AR

750 if _DEBUG_PRINT:

751 print (" [DEBUG — PYTHON] —— Prepare p of DTPU class ",
num_weight, "weight to transfer ——")

752 for i in range(num_weight):

753 tmp=weight_tensors|[i]

754 print (" [DEBUGPYTHON] —— weight " i ,"—")

755 print (" [DEBUG-PYTHON] size " ,xtmp.size_I| ,"—")

756 for j in range(tmp.tot_dim):

757 print (tmp.data[j],end=" ")

758 print("",end="\n")

50 index_wm=0# it eats the first data ?

760 shift=int (64/curr_bitwidth_data_computation)

761 iter=int (tot_size_weight/(WMEM_SIZE+(64/
curr_bitwidth_data_computation))) # if it fits in th
eaccelerator memory

e2 # always 4D tensors

763 # assumptio is that the filter sizes always fit the
accelerator

764 if False:

765 weight_buffer_multiple=1

766 for w_ind in range(1): # pack only the weight for deep wise

convolution

767 tmp=np.array (weight_tensors[w_ind].data, dtype=DTYPE_NP)

768 tmp=tmp.reshape (»weight_tensors[w_ind]. size_I)

769 filter_height[w_ind], filter_width [w_ind]=tmp.shape[1:3]

770 for i in range(len(tmp)):

71 for | in range(weight _tensors[w_ind].size |[3]):

772 global_iteration_shift_wm .append(index_wm)

773 for j in range(len(tmp[i])):

774 # boundary check

775 shift=int(64/curr_bitwidth_data_computation)

776 if shift > len(tmp[i]):

777 shift=len (tmp[i])

778 weight_buffer[index_wm]=np.uint64 (int.from_bytes(
tmp[i,j,0:shift ,|],byteorder="1ittle " ,signed=
False))

779 index_wm+=1

XXXVI Politecnico di Torino Francesco Angione

A. Accelerator library

780 for j in range (ROWS-len (tmp[i])):

781 weight_buffer[index_wm]=0

782 index_wm+=1 # padding with zeros

783 else:

784 #print ("it requires multiple iterations for the weight

matrix") # multiple iteration on total weight 1MB should
be enou—gh

785 weight_buffer_multiple =[]+*np.uint64 (0)

786 for w_ind in range(1): # pack only the weight for deep wise
convolution

787 tmp=np.array (weight_tensors[w_ind].data, dtype=DTYPE_NP)

788 tmp=tmp.reshape (»weight_tensors[w_ind]. size_I)

789 filter_height[w_ind], filter_width [w_ind]=tmp.shape[1:3]

790 for i in range(len(tmp)):

791 for | in range(weight_tensors[w_ind]. size_I[3]):

792 global_iteration_shift_wm .append(index_wm)

793 for j in range(len(tmp[i])):

794 # boundary check

795 shift=int (64/curr_bitwidth_data_computation)

796 if shift > len(tmp[i]):

797 shift=len (tmp[i])

798 weight_buffer_multiple .append(np.uint64 (int.

from_bytes(tmp[i,j,0:shift,l],byteorder="
little " ,signed=False)))

799 index_wm+=1

800 for j in range (ROWS-len (tmp[i])):
801 weight_buffer[index_wm]=0

802 index_wm+=1 # padding with zeros
803 if _DEBUG_PRINT:

804 for i in range(10):

805 print (hex(weight_buffer[i]))

so6 HHHHHBFHBHHARFHBEH AR B FH B HA RS
sor H###H#E transferring data #######
sos HHHHAHHHHHAH R AR AR
809 Weight_buffer.flush()

sio return True

811

> @ffi.def_extern ()

s15 def Invoke_p (only_conv2d,input_shift):
sia - global infifo_buffer_transfer
15 global driver_csr

si6 global driver_wm

817 global driver_fifo_in

sis global driver_fifo_out

sio global csr_buffer

20 global weight_buffer

821 global output_fifo_buffer

s22 global accelerator

23 global global_iteration

8

—

Francesco Angione Politecnico di Torino XXXVII

A. Accelerator library

824 global global_iteration_shift_wm
825 global curr_data_precision
826 global input_tensors

827 global output_tensors

22 global filter_width

s20 global filter_height

s30 global tot_size_output

831 global tot_size_input

s32 global output_tensors_p
833 global avg_hw_execution
s32 global n_execution

835 global avg_hw_execution_internal
ss6 global n_execution_internal

37 global weight_buffer_multiple
838 #

HEHHHHBHBHHBHBH AR HBHHHHBHBHHBHBHHBHBHHBHBH AR HBHHEHBHHEHBHRHHBHBHHBH RS H

ss0 H###H##H###E populate buffers pack depending on the precision

HEHAHBHIH
840 #
HHHA R H A AR
841 tmp =[]
842 if _DEBUG_PRINT:
843 print ("[DEBUG — PYTHON] —— Invoke p of DTPU class",
input_size—num_weight,"input tensors to transfer —")
844 for i in range(input_size—num_weight):
845 tmp=input_tensors[i]
846 print (" [DEBUGPYTHON] —— input tensor ",i,"—")
847 print (" [DEBUGPYTHON] —— size " ,«tmp.size_|,"—")
848 for j in range(tmp.tot_dim):
849 print (tmp.data[j],end=" ")
850 index=0

851 shift=int (64/curr_bitwidth_data_computation)

ss2 # check if it fits the inputs

ss3 # always 4D tensors

ssa # assumptio is that the filter sizes always fit the
accelerator

ss5 #then compact

sss ## split the input shape into submatrices equalt to filter
sizes

57 applyed_weight=0

sss #over allocate input_fifo_buffer

859 input_fifo_buffer = []*np.uint64 (0)

sso for w_ind in range(len(input_tensors)):

861 tmp=np.array (input_tensors[w_ind].data, dtype=DTYPE_NP)
862 tmp=tmp.reshape (»input_tensors[w_ind]. size_I)

863 for batch in range(len(tmp)):

864 for channel in range(tmp.shape[—1]):

XXXVIII Politecnico di Torino Francesco Angione

865

866

867

868

869

870

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

A. Accelerator library

tmp_s=tmp[batch ,:,:,channel]
#iteration for the whole matrix
for i in range(len(tmp_s)—filter_height[applyed_weight])

for j in range(len(tmp_s[i])—filter_width[
applyed_weight]) :
tmp_ss=tmp_s[i:i+filter_height[applyed_weight],j:j+
filter_width [applyed_weight]]
for row in range(len(tmp_ss)):
shift=int (64/curr_bitwidth_data_computation)
if shift> len(tmp_ss):
shift=len (tmp_ss)
input_fifo_buffer.append(np.uint64 (int.from_bytes(
tmp_ss[row,0:shift],byteorder="1little " ,signed=
False)))
index+=1
input_fifo_buffer=np.array(input_fifo_buffer ,dtype="u8")
input_fifo_buffer=np.reshape(input_fifo_buffer ,newshape=(index
»))
_DEBUG_PRINT:
for i in range(10):
print (hex(input_fifo_buffer[i]))
#iterate on the output matrix with also multiple weight
iteration and inputs
assumption is that the output tensor is always one!
getting the output matrix structure
#accelerator.write (CMD, (0x0000000 |(CMD_EXECUTE CONTINOUS
<<16)))
output_matrix=np.array (output_tensors[0].data, dtype=DTYPE_NP)
output_matrix=output_matrix.reshape («output_tensors[0].size_I)
point_wise=np.array (weight_tensors[1].data, dtype=DTYPE_NP)
HUHHURHHBHHHRFH B HH R H AR H AR F AR H AR
#######E deepwise convolution #######H##H
HUHHHBHHBHHHRFH B FHBHH AR FH AR HH RS H B R HH
if _DEBUG_PRINT:
print (" [DEBUG-PYTHON] ——————— deepwise convolution
—")
if _TIME_PROBES:
start_time=time.time ()
for shift_w in range(math.ceil (len(weight_buffer_multiple)/
WMEM _SIZE)) :
HEHHBHHHRHH B H AR FH B H AR FH B R R H AR R H
program the dma for the weight
HEHHBHHHRHH B H AR FH AR H AR EH B H R H AR R
if _DEBUG_PRINT: print (" [DEBUG-PYTHON]-—— transfering weight
buffer ——")
weight_buffer[0:len(weight_buffer_multiple [WMEM_SIZE « (
shift_w) :WMEM_SIZE+(shift_w+1)])]J=weight_buffer_multiple [
WMEM_SIZE« (shift_w) :WMEM_SIZE+(shift_w+1)]

if

Francesco Angione Politecnico di Torino XXXIX

A. Accelerator library

901 driver_wm .sendchannel.transfer (weight_buffer)

902 driver_wm .sendchannel. wait ()

903 for batch_i in range(input_tensors[0].size_I[0]):

904 for channel_i in range(input_tensors[0].size_I[—-1]):

905 HUH SRR
906 ###### program the dma for the csr reg #######H##

907 HUHH RS R R R
908 if _DEBUG_PRINT: print (" [DEBUG-PYTHON]-—— transfering
csr buffer for weight——")

909 csr_buffer [ARITHMETIC_PRECISION]=(
global_iteration_shift_wm[channel_i]<<32) | ((NO_FP
<<8)) | (ACTIVATE_CHAIN<<4)| (curr_data_precision)

910 #csr_buffer.flush ()

011 driver_csr.sendchannel.transfer(csr_buffer)

912 #driver_csr.sendchannel. wait ()

913 for infifo_shift in range(math.ceil (input_fifo_buffer.
size /INFIFO_SIZE)) :

914 S e e e b

915 ###### program the dma for the in/out fifos #######H##H

916 HHHBHBHHBHBHHBHBHHBHBH RS HBH RS HBH R HBH BB H R R H RS RS
917 if _TIME_PROBES:

918 start_time_i=time.time ()

919 if _DEBUG_PRINT: print (" [DEBUG-PYTHON|-—— transfering
input buffer",infifo_shift ," ")

920 infifo_buffer_transfer[0:input_fifo_buffer[INFIFO_SIZE

«(infifo_shift) :INFIFO_SIZE+«(infifo_shift+1)]. size
l=input_fifo_buffer[INFIFO_SIZE=«(infifo_shift):
INFIFO_SIZE«(infifo_shift+1)]

921 driver_fifo_in.sendchannel.transfer (
infifo_buffer_transfer)

922 #driver_fifo_in.sendchannel.wait ()

923 accelerator. write (OARGO_LENGTH, OUTFIFO_SIZE) # size
outfifo

924 accelerator.write (CMD, (0x0000000 |(CMD_EXECUTE STEP
<<16)))

925 accelerator.write (CMD, ((CMD_UPDATE_OUT_ARG<<16)|(1)))

926 driver_fifo_out.recvchannel.transfer(
output_fifo_buffer)

927 if DEBUG _PRINT: print (" [DEBUG-PYTHON————— getting
output data ")

928 driver_fifo_out.recvchannel.wait ()

929 if _T"VlE_PROBES

930 end_time_i=time.time ()

931 avg_hw_execution_internal+=end_time_i—start_time_i

932 n_execution_internal+=1

933 if DEBUG_PRINT: print(output_fifo_buffer)

934 accelerator.write (CMD, ((CMD_UPDATE_IN_ARG<<16)|(4))) #

update input fifo
935 #

XL Politecnico di Torino Francesco Angione

936

937

938

939

940

941

942

943

944

945

946

947

948

949

959

960

961

962

963

A. Accelerator library

HEHHH R HHH AR H B AR H B R B H R B H AR H AR H B AR H B AR RSB R R H

####### unpack the output buffer depending on the
precision ########
#
HHHRHHHH AR AR R

get values from output fifo buffer and put them
into an array in order to sum all the data
for i in range(output_matrix.shape[1]—1):
for j in range(output_matrix.shape[2]—1):
tmp_sum=np. zeros (shape=(ROWS, int (64/
curr_bitwidth_data_computation)) ,dtype=DTYPE_NP
)
tmp_data=output_fifo_buffer[channel_i«(RONS+
COLUMNS) + i ROWS+ j «COLUMNS: channel_i « (RONS+«
COLUMNS) +(i +1) *ROWS+(j +1) *COLUMNS]
tmp_sum=np. frombuffer (tmp_data.tobytes () ,dtype=
DTYPE_NP)
#reshuffle and check if it is worth it
#if tmp_data.size >0:
for row in range(len(tmp_data)):
if row in tmp_data:
tmp_sum[row]=np.frombuffer (tmp_data[row].
tobytes () ,dtype=DTYPE _NP)#convert (tmp_data[row
1)
output_matrix[batch_i,i,j,channel_i]=np. multiply (
tmp_sum.sum(dtype=DTYPE_NP) ,point_wise [
channel_i],dtype=DTYPE_NP)
accelerator.write (CMD, ((CMD_UPDATE_IN_ARG<<16)|(1))) #
update csr
accelerator.write (CMD, ((CMD_UPDATE_OUT_ARG<<16) | (1)
accelerator.write (CMD, ((CMD_UPDATE_IN_ARG<<16) [(2)))
update w memory
#if _DEBUG_PRINT:
print (" [DEBUG-PYTHON-—————— point wise convolution
————————— ")
if _TIME_PROBES:
end_time=time .time ()
avg_hw_execution+=end_time—start_time
n_execution+=1
accelerator.write (STATUS,0x00000003) ##clear status
#accelerator.write (CMD, ((CMD_UPDATE_IN_ARG<<16)|(1))) # update
csr
#accelerator.write (CMD, (0x0000000 |(
CMD_STOP_EXECUTE_CONTINOUS<<16))) # stop accelerator
HHBHHH AR B R FHH AR FH AR FH AR H AR R HA RS
H######SE point wise convolution ########### moved inside
previous loop

))
#

Francesco Angione Politecnico di Torino XLI

A. Accelerator library

o6s HHBHHHHBHBHHRHBHHHHBHHFHRH R R AR AR HHH

ss #for batch_i in range(len(output_matrix)):

s # for i in range(len(output_matrix[batch_i])):

o67 # for j in range(len(output_matrix[batch_i,i])):

ses H# for channel_i in range(len(output_matrix[batch_i,i,j]))

969 # output_matrix[batch_i,i,j,channel_i]=output_matrix|
batch_i,i,j,channel_i]~weight_tensors[1].data[channel_i]

970 if _DEBUG_PRINT: print (" [DEBUG —PYTHON] accelerator done

ll)
971 if _DEBUG_PRINT:
972 print (" [DEBUG-PYTHON] ——— final output data to tensorflow
ll)
973 print (output_matrix)

ora # copy the output matrix to tensorflow environment ffi.memmove
(dest,src,nbytets)

975 ffi .memmove(ffi.buffer(output_tensors_p[0],output_matrix.
nbytes) ,output_matrix , output_matrix.nbytes)

o76 # save the pointer to the output and then substitute the
values into the point wise convolution

or7 #clean up input/output

o7 input_tensors =[]

oo output_tensors =[]

980 tot_size_input=0

081 tot_size_output=0

982 del input_fifo_buffer

983 return True

oss @Ffi. def_extern ()

ss6 def ResetHardware_p () :

os7 global accelerator

oss global overlay

989 if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— Reset hardware p
function ——")

90 overlay.reset()

991 accelerator.write (CTRL,0x0000001)

9902 accelerator.write (CTRL,0x0000000)

993 return True

994

905 @fFfi.def_extern ()

906 def destroy_p():

o7 global infifo_buffer_transfer

9908 global output_fifo_buffer

990 global csr_buffer

1000 gIobaI weight_buffer

v global accelerator

1002 gIobaI overlay

wos global global_iteration_shift_wm

woe global weight_tensors

XLIT Politecnico di Torino Francesco Angione

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

A. Accelerator library

global input_tensors
global output_tensors
if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— destroying the

buffers —")
infifo_buffer_transfer.freebuffer ()
output_fifo_buffer.freebuffer ()
csr_buffer.freebuffer ()
weight_buffer.freebuffer ()
del accelerator
del overlay
del global_iteration_shift_wm
del weight_tensors
del input_tensors
del output_tensors

return

True

@ffi.def_extern ()
def CopyFromBufferHandle_p () :

if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— the from
delegate and buffers ——")
return True

025 @Ffi.def_extern ()
26 def CopyToBufferHandle_p () :

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— copying to the
delegate and buffers ——")
return True

@ffi.def_extern ()
def FreeBufferHandle_p () :

global output_fifo_buffer

global csr_buffer

global weight_buffer

global driver_csr

global driver_wm

global driver_fifo_in

global driver_fifo_out

global accelerator

if _DEBUG_PRINT: print("[DEBUG — PYTHON] —— freeing buffers
—")

output_fifo_buffer.freebuffer ()
csr_buffer.freebuffer ()
weight_buffer.freebuffer ()

del accelerator

del driver_csr

del driver_wm

del driver_fifo_in

del driver_fifo_out

1010 @Ffi. def_extern ()

Francesco Angione Politecnico di Torino XLIII

A. Accelerator library

ws0 def start_power_consumption () :
1051 global xadc_mon

1052 if _DEBUG_PRINT: print (" [DEBUG-PYTHON] ——— start measurement
of power consumption ——")

1053 if xadc_mon is not None:

1054 try:

1055 _thread.start_new_thread(sample_power, ("Sampling power",

0.5)) # every 1ms
1056 except:
1057 print("Error: unable to start thread")

1058 return True

1059

weo @TFfi.def_extern ()

o1 def print_power_consumption_p () :

1062 gIobaI xadc_mon

wes global ps_power

1064 gIobaI pI_power

wes global mem_power

1066 if _DEBUG_PRINT: print (" [DEBUG-PYTHON] ——— printing power
consumption from xadc readings ——")

w67 HRABFHBHHHRFHBEH AR AR H AR

wes ### Retrieve and display current temperature ###

1060 HHBFHBHFHBHHBHFHBHH A H R H AR

w0 tmp=(xadc_mon.read (TEMPERATURE) & O0xO000FFF0) >> 4

1071 tmp=(tmp+ 503.975)/4096 — 273.15

1072 print ("Current temperature:",round(tmp,3)," C")

1073 print ("Average execution temperature:", round(tmp_avg/n_sample
3)." C")

1074 print ("Max temperature:", round(tmp_max,3) ," C")

o5 print("Min temperature:", round(tmp_min,3) ," C")

w7 # printing power consumption

w77 tot_power=ps_power+pl_power+mem_power

wrs print ("Average power consumption=", round(tot_power=1000/
n_sample,5)," mWatt")

1079 print ("———> Processing System:" ,round(ps_power=1000/n_sample
,5)," mWatt")

woso print ("———> Programmable Logic:",round(pl_power=1000/n_sample
,5)," mWatt")

1081 print ("——— Memory:" ,round (mem_power=1000/n_sample,3) ," mWatt"

)

sz print ("Maximum power consumption")

wss print ("———> Processing System:",round(ps_power_max=1000,5),"
mWatt")

1084 print ("-——— Programmable Logic:" ,round(pl_power_max«1000,5),"
mWatt")

w0ss print ("———> Memory:" ,round (mem_power max=1000,3) ," mWatt")

wse print ("Minimum power consumption")

ws7 - print ("———> Processing System:" ,round(ps_power_min=1000,5),"
mWatt")

XLIV Politecnico di Torino Francesco Angione

A. Accelerator library

1088 print ("———> Programmable Logic:" ,round(pl_power_min=1000,5),"
mWatt")

1089 print("———> Memory:" ,round(mem_power_min«1000,5) ," mWatt")

1090 return True

1091

w02 @fFfi.def_extern ()

093 def activate_time_probe_p (activate):

1094 gIobaI _T"VlE_PROBES

1095 if _DEBUG_PRINT: print (" [DEBUG-PYTHON]—-—— activating time
probe in python ")

o 1f not(_TIME_PROBES) and activate:

1097 print ("Time probes activated")

1098 _TIME_PROBES=True

1099

1100 @ffi.def_extern()

nor def print_python_time_probes () :

1102 if _DEBUG_PRINT: print (" [DEBUG-PYTHON———— printing python
time probes ")

o3 print ("Hardware execution time and rebuilding output matrix:",
avg_hw_execution/n_execution," [s]")

1104 print ("Hardware execution time:", avg_hw_execution_internal/
n_execution_internal ," [s]")

05 #print ("Hardware calls:",n_execution_internal)

1106 return True

Francesco Angione Politecnico di Torino XLV

A. Accelerator library

XLVI Politecnico di Torino Francesco Angione

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

//

//
//
//
//
//
//

//
//
/7

//
//
//

B

Top level entity of DTPU core

Filename : dtpu_core.v

Created On : 2020-04-22 17:05:56
Last Modified : 2020-05-20 15:03:03
Revision

Author : Angione Francesco

Company : Chalmers University of Technology,Sweden
- Politecnico di Torino, Italy

Email : francescoangione8Qgmail.com

Description : Cogitantium, the dumb tensor processor

unit ,top level enity of the accelerator

‘timescale 1ns / 1ps
“include "precision_def.vh"

//

‘define DUMMY

module dtpu_core
#(parameter DATA_WIDTH_MAC=64,

ROWS=3 ,

COLUMNS=3,
SIZE_WMEMORY=8196,
ADDRESS_SIZE_WMEMORY=32,
ADDRESS_SIZE_CSR=32,
SIZE_CSR=1024,
DATA_WIDTH_CSR=8,
DATA_WIDTH_WMEMORY=64,
DATA WIDTH_FIFO_IN=64,
DATA_WIDTH_FIFO_0UT=64,
MAX BOARD _DSP=220

)

Francesco Angione Politecnico di Torino XLVII

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

B. Top level entity of DTPU core

input wire clk,
(* X_INTERFACE_INFO = "xilinx .com:signal:reset:1.0

aresetn RST" x)

(* X_INTERFACE_PARAMETER = "POLARITY ACTIVE_LOW" %)
input wire aresetn,

input wire test_mode,

input wire enable,

/171177777717 7777/7777777777/
////// CSR INTERFACE ///////
/177177777777 7777/7777777777/

(+ X_INTERFACE PARAMETER = "MASTER TYPE BRAM CTRL,MEM ECC

(* X_INTERFACE_INFO = "xilinx.com:interface:bram_ rtl:1.0

no,MEM_WIDTH 8 ,MEM_SIZE 1024 " =)

csr_mem_interface EN" x)

output wire csr_ce,
(¥ X_INTERFACE_INFO = "xilinx.com:interface:bram_rtl:1.

input wire [

csr_mem_interface DOUT" x)
: 0] csr_dout,

(* X_INTERFACE_INFO = "xilinx.com:interface:bram_rtl:1.

csr_mem_interface DIN" x)

output wire [:0] csr_din,
(* X_INTERFACE_INFO = "xilinx.com:interface:bram_rtl:1.

csr_mem_interface WE" x)

output wire csr_wve,
(* X_INTERFACE_INFO = "xilinx.com:interface:bram_rtl:1.

output wire [

csr_mem_interface ADDR" x)
] csr_address,

(* X_INTERFACE_INFO = "xilinx.com:interface:bram_rtl:1.

csr_mem_interface CLK" x)

output wire csr_clk,
(* X_INTERFACE_INFO = "xilinx.com:interface:bram_rtl:1.

csr_mem_interface RST" x*)

output wire csr_reset,

[177777777777777777777777777

////// WEIGHT MEMORY ///////

[17177777777777777777777777

(x X_INTERFACE_PARAMETER = "MASTER TYPE BRAM _CTRL,
MEM_ECC no,MEM WIDTH 64 ,MEM_SIZE 8192 " x)

(* X_INTERFACE_INFO = "xilinx.com:interface :bram_rtl
:1.0 weight_mem_interface EN" x)

output wire wm_ce,

(* X_INTERFACE_INFO = "xilinx.com:interface :bram_rtl
:1.0 weight_mem_interface DOUT" =x)

input wire [:0] wm_dout ,

(* X_INTERFACE_INFO = "xilinx.com:interface :bram_rtl
:1.0 weight_mem_interface DIN" x)

XLVIII

Politecnico di Torino Francesco Angione

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

B. Top level entity of DTPU core

output wire [:0] wm_din,

(* X_INTERFACE_INFO = "xilinx.com:interface :bram_rtl
:1.0 weight_mem_interface WE" x)

output wire wm_we ,

(* X_INTERFACE_INFO = "xilinx.com:interface:bram_rtl
:1.0 weight_mem_interface ADDR" x)

output wire [:0] wm_address,

(* X_INTERFACE_INFO = "xilinx.com:interface :bram_rtl
:1.0 weight_mem_interface CLK" x)

output wire wm_clk,

(* X_INTERFACE_INFO = "xilinx.com:interface :bram_rtl
:1.0 weight_mem_interface RST" x)

output wire wm_reset,

[17177
/////////// INPUT DATA FIFQ ////////////////
[177
/////////// using stream axi

(* X_INTERFACE_INFO = "xilinx.com:interface:
acc_fifo_read:1.0 input_fifo RD_DATA" =x)
input wire [:0] infifo_dout,
(* X_INTERFACE_INFO = "xilinx.com:interface:

acc_fifo_read:1.0 input_fifo RD_EN" =x)
output wire infifo_read,
(* X_INTERFACE_INFO = "xilinx.com:interface:
acc_fifo_read:1.0 input_fifo EMPTY_N" =x)

input wire infifo_is_empty,

L1777 777777777777777777777777777777777777777
/////////// OUTPUT DATA FIFQ ///////////////
L1777 777077777777777777777777777777777777777
/////////// using stream axi

(* X_INTERFACE_INFO = "xilinx.com:interface:
acc_fifo_write:1.0 output_fifo WR DATA" x)
output wire [:0] outfifo_din,
(* X_INTERFACE_INFO = "xilinx.com:interface:

acc_fifo_write:1.0 output_fifo WREN" x)
output wire outfifo_write,

(x X_INTERFACE_INFO = "xilinx.com:interface:

acc_fifo_write:1.0 output_fifo FULL_N" %)

input wire outfifo_is_full,

L1077 7 777777777777 7777777777777777777777777
/////////// CONTROL FROM/TO PS /////////////
L1717 777777777777777777777777777777777777777

(* X_INTERFACE_INFO = "xilinx.com:interface:
acc_handshake_rtl:1.0 control_interface ap_start”
*)

Francesco Angione Politecnico di Torino XLIX

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

B. Top level entity of DTPU core

input wire cs_start,

(* X_INTERFACE_INFO = "xilinx.com:interface:
acc_handshake_rtl:1.0 control_interface ap_ready"
*)

output wire cs_ready,

(* X_INTERFACE_INFO = "xilinx.com:interface:

acc_handshake_rtl:1.0 control_interface ap_done" x)
output wire cs_done,

(* X_INTERFACE_INFO = "xilinx.com:interface:
acc_handshake_rtl:1.0 control_interface ap_continue
" *)

input wire cs_continue,

(* X_INTERFACE_INFO = "xilinx.com:interface:

acc_handshake_rtl:1.0 control_interface ap_idle" x)
output wire cs_idle,

// debug state

output wire[3:0]state,
output wire[3:0]d_out
)

L1711 777 777777777 77777777777777777777777777

/] /] kKK kkkkokokkokkkkkkkkkkkkkkkkkkkkkkkkkkx///

/171]] —=======- Cogitantium -------- /1117
///// the dumb tensor processing unit ////
/ /[% % %k 5k %k 5k %k %k %k %k %k %k %k %k %k k k kK kK kkkkkkkkkkkkkxx///

L1711 177 777777777 77777777777777777777777777

wire [:0]
weight_to_mxu;

wire [:0] input_data_to_mxu

wire [: 0]

output_data_from_mxu;
wire enable_deskew_ff_i,enable_enskew_ff_ ij;
wire [:0] data_precision;
wire enable_i;
wire enable_load_array;

wire [:0]Jread_weight_memory;
wire [:0]enable_load_activation_data;
wire [:0]enable_store_activation_data;

wire enable_cnt;

wire 1ld_max_cnt;

wire enable_cnt_weight;
wire ld_max_cnt_weight;
wire enable_chain;

wire ld_weight_page_cnt;
wire [1:0]enable_fp_unit;

wire [:0]start_value wm;

L Politecnico di Torino Francesco Angione

147

148

149

150

151

152

153

154

155

156

157

158

160

161

162

164

165

166

167

168

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

191

192

193

194

B. Top level entity of DTPU core

wire [:0lmax_cnt_from_cu;
wire [:0]lmax_cnt_weight_from_cu;
wire reset_i;

assign d_out=data_precision;

assign reset_i=~aresetn;

L1717 77777777777777777777777777777777777777
////// MATRIX MULTIPLICATION UNIT //////////
L1717 77077777777777777777777777777777777777777

mXu_wrapper
#(.M(ROWS), // matrix row -> weights
.K(COLUMNS), // matrix columsn -> input data
.max_data _width (DATA _WIDTH MAC),// it must be a
divisor of 64

.MAX_BOARD_DSP (MAX_BOARD_DSP)

) engine (
.data_type(data_precision),
.reset (reset_1i),
.clk(clk),
.enable (enable_1i),
.enable_chain(enable_chain),
.enable_fp_unit(enable_fp_unit),
.enable_in_ff (enable_enskew_ff_i),
.enable_out_ff (enable_deskew_ff_i),
.test_mode (test_mode),
.input_data(input_data_to_mxu),
.weight (weight_to_mxu),
.y(output_data_from_mxu)

)

L1177 777777777777777777/7777777777777777777777
///////////// CONTROL UNIT ///////////////////
L1717 77
control unit #(.DATA WIDTH FIFO IN(DATA WIDTH FIFO_IN),
.DATA_WIDTH FIFO_OUT(DATA_WIDTH_FIFO_OUT),
.DATA_WIDTH WMEMORY (DATA WIDTH_ WMEMORY),
.DATA_WIDTH_CSR(DATA_WIDTH_CSR),
.ROWS (ROWS) ,
.COLUMNS (COLUMNS) ,
.ADDRESS _SIZE CSR(ADDRESS SIZE CSR),
. ADDRESS_SIZE_WMEMORY (ADDRESS_SIZE_WMEMORY))
cu (
.clk(clk),
.reset(reset_1i),
.test_mode (test_mode),
.glb_enable (enable),
.enable_mxu(enable_i),
.csr_address (csr_address),

Francesco Angione Politecnico di Torino

LI

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

236

237

238

239

B. Top level entity of DTPU core

.csr_dout (csr_dout),
.csr_ce(csr_ce),
.csr_reset (csr_reset),
.csr_we(csr_we),
.wm_ce(wm_ce),
.wm_reset (wm_reset),
.wm_we (wm_we) ,
.infifo_is_empty(infifo_is_empty),
.infifo_read(infifo_read),
.outfifo_is_full(outfifo_is_full),
.outfifo_write(outfifo_write),
.cs_continue (cs_continue),
.cs_done(cs_done),
.cs_idle(cs_idle),
.cs_ready(cs_ready),
.cs_start(cs_start),
.state_out (state),
.enable_deskew_ff (enable_deskew_ ff i),
.enable_enskew_ff (enable_enskew_ff_i),
.enable_fp_unit(enable_fp_unit),
.enable_chain(enable_chain),
.enable_load_array(enable_load_array),
.data_precision(data_precision),
.read_weight_memory (read_weight_memory),
.enable_load_activation_data(
enable_load_activation_data),
.enable_store_activation_data(
enable _store_ activation _data),
.enable_cnt (enable_cnt),
.1d_max_cnt (1d_max_cnt),
.enable_cnt_weight (enable_cnt_weight),
.1d_max_cnt_weight (1d_max_cnt_weight),
.1d_weight_page_cnt(ld_weight_page_cnt),
.start_value_wm(start_value_wm),
.max_cnt_from_cu(max_cnt_from_cu), // it depends on
the current bitwidt [$clog2 (COLUMNS) :0]
.max_cnt_weight_from_cu(max_cnt_weight_from_cu) //I[
$clog2 (ROWS) : 0]

)

/1717177777777 7777777777777777777777777777777
///////// LOAD AND STORE ARRAY /111171117
/1717177777777 7777777777777777777777777777777
“ifndef DUMMY

ls_array
#(.ROWS (ROWS),

LIT Politecnico di Torino Francesco Angione

B. Top level entity of DTPU core

240 .COLUMNS (COLUMNS) ,

241 .data_in width (DATA WIDTH FIFO_IN),

242 .data_in_mem (DATA_WIDTH_ WMEMORY),

243 .address_leng_wm (ADDRESS_SIZE_WMEMORY),

244 .size_wmemory (SIZE_WMEMORY)) 1ls_array_inst

245 (

246 .clk(clk),

247 .reset (reset_1i),

248 .enable_load_array(enable_load_array),

249 .data_precision(data_precision),

250 .read_weight_memory (read_weight_memory),

251 .infifo_read(infifo_read),

252 .outfifo_write(outfifo_write),

253 .input_data_from_fifo(infifo_dout), //[data_in width-1:0]

254 .data_to_fifo_out (outfifo_din), //[data_ in width-1:0]

255 .data_from_weight_memory (wm_dout), //[data_in mem-1:0]

256 .data_from_mxu(output_data_from_mxu), //[data_in_ width*ROWS
-1:01]

257 .data_to_mxu(input_data_to_mxu), //[data_in_width*COLUMNS
-1:01]

258 .weight_to_mxu(weight_to_mxu), //[data_in_width*ROWS-1:0]

259 .wm_address (wm_address), //laddress_leng wm-1:0]

260 .enable_load_activation_data(enable_load_activation_data),

261 .enable_store_activation_data(enable_store_activation_data)

262 .enable_cnt (enable_cnt),

263 .1d_max_cnt (1ld_max_cnt),

264 .enable_cnt_weight (enable_cnt_weight),

265 .1d_max_cnt_weight (1d_max_cnt_weight),

266 .1d_weight_page_cnt (ld_weight_page_cnt),

267 .start_value_wm(start_value_wm),

268 .max_cnt_from_cu(max_cnt_from_cu), // it depends on the
current bitwidt [$clog2 (COLUMNS) :0]

269 .max_cnt_weight_from_cu(max_cnt_weight_from_cu) //[$clog2(
ROWS) : 0]

270)

271

272

273 ‘endif

274

275

276

277 ‘ifdef DUMMY

278 always @(posedge(clk)) begin

279 if (reset_i) begin

280 input_data_from_fifo<=0;

281 weight_from_memory<=0;

282 end else begin

283 if (enable_load_array && infifo_read) begin

Francesco Angione Politecnico di Torino LIII

284

285

287

288

289

290

291

292

293

294

296

297

298

299

300

B. Top level entity of DTPU core

input_data_from_fifo<=infifo_dout;
weight_from_memory<= wm_dout;

end

end
end

// dummy assignment for 3 columns and rows

assign outfifo_din=(outfifo_write 7 input_data_to_fifo:64’

b0) ;

‘endif

// same clock for bram interface

assign csr_clk=clk;
assign wm_clk=clk;

endmodule

LIV

Politecnico di Torino

Francesco Angione

Results for different frequencies

60,00%
50,00%
40,00%

30,00%

20,00%
RPN ‘h-. 0 —

0,00%
Clocks Signals Logic BRAM XADC
H3x3 MW4x4 m5x5 6x6 W7x7 M8x8 M10x10

M 12x12 W 14x14 W 16x16 W 18x18 M 20x20 W 22x22 W 24x24

Figure C.1: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 50 MHz and integer 8 PEs

60,00%
50,00%
40,00%
30,00%
20,00%

10,00%

“Mmm_m_

Clocks Signals Logic BRAM XADC

0,00%
H3x3 m4x4 m5x5 6x6 M7x7 mM3x8 mWM10x10
W 12x12 m14x14 B 16x16 B 18x18 W 20x20 W 22x22 W 24x24

Figure C.2: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 80 MHz and integer 8 PEs

Francesco Angione Politecnico di Torino LV

C. Results for different frequencies

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

-'_
Clocks Signals Logic BRAM 1/0 XADC

0,00%

H3x3 W4x4 m5x5 6x6 MW7x7 mM8x8 mW10x10

H12x12 W 14x14 B 16x16 W 18x18 M 20x20 W 22x22

Figure C.3: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 100 MHz and integer 8 PEs

50,00%
45,00%
40,00%
35,00%
30,00%

25,00%
20,00%
15,00%
10,00% '.
5,00%
s s 2 ‘h I e

0,00%
Clocks Signals Logic BRAM XADC
H3x3 W4x4 m5x5 6x6 MW7x7 mM8x8 mWM10x10

H12x12 W 14x14 B 16x16 W 18x18 M 20x20 W 22x22

Figure C.4: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 120 MHz and integer 8 PEs

LVI Politecnico di Torino Francesco Angione

C. Results for different frequencies

60,00%
50,00%
40,00%

30,00%

20,00%
o ||‘ |||| ||‘ “““‘ |‘ | |‘
0,00% | | ||I ——— III IIIII.I LB T

Clocks Signals Logic BRAM DSP XADC

H3x3 mA4x4 m5x5 m6x6 M7x7 WM8x8 WM10x10 m12x12 m14x14 m16x16 m18x18

Figure C.5: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 50 MHz and integer 16 PEs

60,00%
50,00%
40,00%

30,00%

20,00%
- | | ‘ “‘ ““‘l‘ |‘ ‘ |‘
0,00% | | ||I - mm III IIIIIII [[BT [T

Clocks Signals Logic BRAM DSP XADC

H3x3 H4x4 m5x5 6x6 M7x7 M8x8 M10x10 M12x12 M 14x14 m16x16 M 18x18

Figure C.6: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 80 MHz and integer 16 PEs

Francesco Angione Politecnico di Torino LVII

C. Results for different frequencies

60,00%
50,00%
40,00%

30,00%

20,00%
0,00% I I - lllllll [L ERT T

Clocks Signals Logic BRAM DSP XADC

H3x3 W4x4 m5x5 mox6 m7x7 m8x8 M 10x10

Figure C.7: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 100 MHz and integer 16 PEs

70,00%
60,00%

50,00%

40,00%

30,00%

20,00%

~ Ul

0,00% I IIIIIII --lllll lllll-- (T

Clocks Signals Logic BRAM XADC

H3x3 W4x4 m5x5 mox6 m7x7 mM8x8 M 10x10

Figure C.8: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 50 MHz and integer 32 PEs

LVIII Politecnico di Torino Francesco Angione

C. Results for different frequencies

60,00%

50,00%

40,00%

30,00%

20,00%

= 10 0

0,00% IIIIII --llll llllll [[T T T

Clocks Signals Logic BRAM XADC

H3x3 H4x4 m5x5 m6x6 Em7x7 M8x8

Figure C.9: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 80 MHz and integer 32 PEs

60,00%

50,00%

40,00%

30,00%

20,00%

M

0,00% IIIIII -=unllll lllll- EEEsmm

Clocks Signals Logic BRAM XADC

H3x3 HM4x4 M5x5 m6x6 H7x7 H8x8

Figure C.10: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 100 MHz and integer 32 PEs

Francesco Angione Politecnico di Torino LIX

C. Results for different frequencies

40,00%
35,00%

30,00%
25,00%
20,00%
15,00%
10,00%
21
0,00% I l [pe——

Clocks Signals Logic BRAM XADC

M 3x3 Hm4x4 m5x5

Figure C.11: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 50 MHz and integer 64 PEs

40,00%
35,00%

30,00%
25,00%
20,00%
15,00%
10,00%
ST
0,00% I . .. [p——

Clocks Signals Logic BRAM XADC

H3x3 m4x4 m5x5

Figure C.12: Post Implementation Dynamic Power Consumption per entities in
Programmable Logic with a clock frequency of 60 MHz and integer 64 PEs

LX Politecnico di Torino Francesco Angione

