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Abstract

In the context of heavy simulations, which need, therefore, to be performed on HPC architec-
tures to have more computing power than the one provided by a normal PC, since the resources
these systems can o�er are also limited, it is useful to try to understand how much time passes
between the moment in which the job is subdued and the one in which it starts the execution.
This is because with this knowledge it would be possible, in the future, to design processes
that can de�ne the execution time of simulations, in order to use this information to create
procedures that can optimize the resources requests, drastically reducing the waiting times of
the results.
The objective of this thesis project, carried out at the Iveco headquarter (Italy) under the su-
pervision of the Politecnico di Torino, is therefore to succeed to implement a prediction system
able to estimating the time that a job will have to wait before the necessary hardware resources
are supplied for its execution.
To do this, an analysis of the available data was initially carried out to increase its descriptive
capacity and to provide guidance on how to proceed.
Later, feature engineering techniques were applied to extract other information to better de-
scribe the analysis situation. In fact, in this case, variables were created to try to characterize
the context of the HPC cluster at the time of submission of the job, data that were not con-
tained within the dataset available.
Once the information and variables deemed necessary for the execution of this activity have
been obtained, we moved to an experimental phase in which supervised machine learning al-
gorithms were used to perform various predictions, modifying the classes, their number and
also the quantity of models used to obtain a single result. In fact, at the beginning, multi-class
classi�cation experiments were carried out with intervals of the same frequency and others with
custom ranges. At a time when it was found these tests yielded low results, binary classi�-
cations were analysed, i.e. only using two prediction intervals, to study the behaviour of the
algorithms and to �nd, therefore, those thresholds that allow to obtain appreciable results.
From the knowledge acquired through these two types of experiments, it was �nally decided to
try a hierarchical approach in which several models were used in cascade based on the predic-
tion results obtained in previous levels.
Doing so, a solution was found which presented better results compared to those of the various
tests executed. However, the values of the indices obtained in the prediction of the classes show
that the system is still improvable. Therefore, the work done during this period will continue
with the aim of further improving this system, modifying it and possibly integrating it with
other techniques to be analysed in the future.
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1. Introduction

The Machine Learning (ML), known also as automatic learning, is a sub-�eld of Arti�cial Intel-
ligence that uses algorithms to automatically extract models from the data available. Systems
composed by trained algorithm, data and operating parameters (used to adapt the algorithm
to the speci�c environment in the best way possible) are called models. These are very ef-
fective in identifying common features or some trends inside the huge amount of data, taking
into account a number of variables that no human being would be able to evaluate or notice,
variables subsequently inserted within a single functioning algorithm.
A machine learning model doesn't follow explicit and prede�ned rules, but constantly learns
by its experience. This is possible thanks to the availability of a large amount of data which
allows you to improve ML techniques that are not only used to train models but, mostly, to
extract hidden patterns within the data used to do the training.

The term Machine Learning was coined for the �rst time in 1959 by Arthur Lee Samuel,
American pioneer scientist in Arti�cial Intelligence �eld, even if, to date, the most accredited
de�nition by the scienti�c community is the one provided by another American, Tom Michael
Mitchell, director of the Machine Learning department of Carnegie Mellon University: �A pro-
gram is said to learn from a certain experience E, with respect to a class of tasks T obtaining
a performance P, if its performance in carrying out the tasks T, measured by the performance
P, improves with experience E �.

Unlike systems based on prede�ned rules, which will perform the activities each time in the
same way, the performance of an ML system can improve through learning, using huge amount
of data as di�erent as possible. From that it can be deduced that results of an ML model
are never sure, indeed they are always associated with an accuracy percentage of the model.
Based on the application �led, it's up to the user of these algorithms the minimum percentage
of con�dence to be used [6].

A fundamental aspect in machine learning is to have the starting database as good as pos-
sible. With database, or dataset, we mean a series of information collected over time and saved
inside �les and/or databases (DB) with an appropriate shape and structure. However, data or
part of it is not always available immediately and is for this that starting information is ana-
lyzed in depth to extract missing data, but also to delete that information (called also outliers)
that could compromise the algorithm's learning.

If normally the programmers are called to de�ne deterministic functions that, given a cer-
tain input, return always the same output, therefore following the mathematical representation
y = f(x), with machine learning this doesn't happen. In fact, in this �eld are used general
mathematical and statistical algorithms which, exposed to a series of data during the training
phase and passing through a second phase of evaluation of the results with some parameters
optimizations, create autonomously the function. This function, not always known or available
for the programmer, is able to predict, given a series of input data, the most probable value of
y associated also with the accuracy of the prediction made. In other words, function f(x) is
automatically derived without the need for the programmer to de�ne the rules [25].
This way of acting completely change the programming idea, moving from a traditional and
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deterministic style, in which programs were written to automatize tasks, to another more au-
tomatic but probabilistic. In short, ML create the program (i.e. the model) that adapt to the
training data and through the knowledge gained, considering also the input data, returns the
most accurate probable value.

Machine Learning is made up of three macro-categories:

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

The �rst one group all the algorithms whose purpose is to learn from data, whose output, also
called label, is already known from the beginning. Doing so, the model adapts to these and try
to predict in the best possible way the data label, to which it is not yet associated.
Di�erently from the supervised learning, unsupervised includes that have to work with data
whose structure or label you want to predict is unknown. Their aim is to explore data structure
to get the most important information enclosed within it.
As for reinforcement learning, the purpose of its algorithms is to create a system, also called
agent, that improves its performance, based on interaction with the environment. Considering
that the data, gathered through these interactions, also contains some �reward signals�, it's
possible to consider this category as a subset of the supervised. A classic example of reinforce-
ment learning is the chess game where, in this case, the agent takes decisions based on the state
of the chessboard and the reward can be de�ned as the victory or the defeat at the end of the
game. Broadly speaking, the agent will always try to maximize the rewards through a series of
interactions with the environment. [47]

Figure 1.1. Macrocategories of machine learning algorithms with some usages [25].
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Considering these macro-categories, the �rst two were widely used in the context of this thesis
and the last one will be the subject of a future research grant to continue in the implementation
and improvement of the model, overall objective of the project.

Last machine learning improvements have made its techniques more �exible and resilient
about being able to be applied to various real-world scenarios, ranging from extraordinary to
mundane chases. One need only thinking to machine learning applied to spam �ltering which,
every day, enhance user experience of millions of users, blocking unwanted or even dangerous
emails.
There are many other examples in real-world where these automatic learning rules are applied.
Automatic translation of languages is now widely used in the world, with some couple of lan-
guages that work better than others. Face recognition is broadly employed for unlocking most
of the mobile phones on the market, but also to identify people through security images, thing
that is creating privacy issues. In the �eld of medicine, these techniques are starting to be used
to help, not replace, doctors and radiologists in the classi�cation of diagnostic images and to
detect certain types of abnormalities [6, 25].

Large companies, including Google, use these arti�cial intelligence algorithms to improve
the usage of available resources and this leads to a reduction of response times and therefore of
obtaining requested results. It's in this context that the subject of this thesis is classi�ed: we
want to try to optimize, as much as possible, the resources (intended, as explained in section
1.2, as number of CPU and computation licences ) of the High Performance Computing Cluster
(HPCC, treated in section 1.3.1) to get the best trade-o� between response times and resources
used for the operations done.

1.1 The company

Iveco (Industrial Vehicles Corporation) is an industrial vehicle manufacturing company present
all over the world and based in Turin. It was founded in 1975 from the union of �ve di�erent
companies:

1. Fiat Industrial Vehicles (Italy)

2. OM (Italy)

3. Lancia Special Vehicles (Italy)

4. Magirus-Deutz (Germany)

5. Unic (France)

These �ve manufactures joint their skills to create one of the major players in the global trans-
port sector. Today, Iveco is entirely controlled by CNH Industrial and is an international
leader in the development, manufacturing and servicing of a vast range of light, medium and
heavy commercial vehicles. It also manufactures city and intercity buses and special vehicles
for military uses, for civil protection and for speci�c missions like, for example, �re-�ghting and
o�-roads.
It has 27 production plants, 6 research centers and 5.000 stores and points for assistance dis-
tributed in Europe, China, Russia, Australia, Africa, Argentine and Brazil. It counts more
than 25.000 employees all around the world. The global production reaches about 150.000
commercial vehicles per year with a turnover of about 10 billion Euro.
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Figure 1.2. Iveco commercial vehicles gamma [27].

1.2 Terminology

It's important, before starting the explanation of the work done, to introduce some fundamental
terminology to fully understand what is explained in this document:

� Discipline : it represents an application �eld of simulations of the same type executable
by the company users. Considering Iveco examples of disciplines are Acoustic, Computa-
tion Fluid Dynamic or CFD, Multi-body, Safety, Structural and Vibration.

� Job: it's the set of complex operations executed on the HPC computational nodes. They
can be of di�erent type, considering also the discipline they belong to.

� Queue : it's a group of HPC computational nodes assigned for the execution of speci�c
jobs, depending also on the need of the job itself. In the subsection 1.3.1 will be explained
how HPC nodes are divided for each queue, also specifying the reasons for the choices
made.

� Software Name : it's the name of the application, speci�ed by the user, in charge to
execute the job and return some results.

� Resources : both concern hardware and software side. Indeed, they are the number
of CPU or core needed or requested but also licences of a speci�c software required to
execute jobs.

� Pending Time : it's the time that a job wait until resources it needs will be free and are
assigned to it by PBS.

� Run Time : it's the e�ective time that a job holds the resources given by PBS. To be
more clear, it's the time that the software needs to return some results, independently if
they are positive or negative (some sort of errors or if the job is stopped by the user that
launched it).

Before going further, there is still the need to clarify that the jobs can be of two di�erent types:
explicit and implicit. Both are a possible type to resolve simulation problems and di�er in the
approach to time increment.
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Solvers needed to execute implicit tasks use �step by step� algorithms. Here an appropriate
convergence criterion allows continuing or not the analysis reducing the time increment, de-
pending on the accuracy of the results at the end of each step. The problem with these jobs is
that each time increment have to converge and this can require too much time.
On the other hand we have the explicit jobs which don't have any non-convergent problems at
each increment because the time increment is de�ned at the beginning and remains constant
during the computation. It's important to notice that, to receive an accurate solution, the time
increment must be minimal. Therefore, typically, explicit tasks are faster, considering models
characterized by many degree of freedom. As well as they haven't problems with convergence,
they have also the possibility to overcome issues related to non-linearity of contact and collision.

1.3 Application area

Within the framework of automotive industries, the usage of HPC for the resolution of complex
physical simulations has allowed a great improvement of production processes. These tech-
nologies allow avoiding high computation time and the prototyping need of every vehicular
component. Thus, helps enormously on the resolution of problems like, as example, the ones
of Computation Fluid Dynamic, also called with the acronym of CFD, or also some of Finite
Element Analysis, abbreviated as FEA, but also many other types.

Considering that inside this document will be covered the implementation of a machine
learning algorithm whose purpose is to improve the performance of Iveco's HPC cluster, it's
fundamental to describe the hardware and software components which form the system to be
analysed. Regarding that, data extracted from a code manager called PBS (dealt with in
section 1.3.2) were processed. This software component takes charge of the jobs that the user
wants to execute and, furthermore, manage the sorting of hardware resources between the jobs
waiting to be scheduled.

1.3.1 HPC

The High Performance Computing expression, in jargon HPC, is used to describe the use of
high power systems realized combining a large number of computational servers, also called
compute nodes. These structures are employed for the processing of a big amount of data, but
also for the execution of complex computation like mathematical calculation or even crash and
stress test simulations (types of job launched on the HPC taken into account in this project).
To give a more explicit representation of how much powerful these systems are, it is possible
to make a practical example: a normal PC executes about three billion (3 · 109) operations per
second while an HPC can make like 1024 operations per seconds.
Within these structures, therefore, parallel processing is widely used, that is the possibility that
each node has to execute di�erent tasks in parallel with others execute on other nodes. This
makes possible to perform tasks requested by the user in the most advanced and e�cient way,
providing a result as soon as possible [13].

The set of computational nodes is also called HPCC, or High Performance Computing
Cluster, and usually is interconnected with a Data Cluster where the calculation outputs of the
di�erent jobs executed are saved. Obviously, each node within the cluster must work optimally
because as long as even one of them has a problem to compromise the performance of the entire
HPCC [38].

5



CHAPTER 1. INTRODUCTION

In its most simpli�ed form, an HPC cluster is made up of one front-end node, used by
the user as interface for accessing to the computational part of the system, and from the set
of numerous compute nodes. Normally, the front-end node can be realized through a virtual
machine or a web interface while computational nodes are physical hosts to boost performances
as much as possible. In more complex systems, however, there is the possibility of clustering
the front-end to balance the user's access load [43].

Depending on the chosen architecture there are two traditional approaches for its realization:

� Cluster Computing : it is the simplest approach and combine the computational ca-
pacity of a set of computers that can also work independently.

� Massive Parallel Processing : de�ned also MPP, it combines the computational power
of hundreds of processors that, linked together, are placed within the same physical
system.

Commercial solutions tend to prefer much more the �rst approach to achieve high density
systems in which to host large amounts of server rank connected together. An architecture
example is reported in the �gure 1.3 representing part of the CERN system.

Figure 1.3. HPCC at the CERN of Ginevra [13].

In the case of Iveco's HPC cluster resources have been grouped together in sub-cluster (that
within this document are de�ned as �queues�), speci�c for certain solvers, to try to minimize
con�icts between jobs during the acquisition of resources. Indeed, each queue has a de�ned
number of nodes associated which implies a di�erent availability of cores and memory disk.
Inside table 1.1 are reported all the values to give a complete description of the system.

Table 1.1. Distribution of Iveco's HPC cluster resources

Queue
Number
of nodes

Cores
per node

Total cores
Memory per
node [TB]

RAM per
Core [GB]

CFD 15 16 240 0.999 128
FEA 14 16 224 0.999 128

Front-end 2 12 24 6.4 64
Highper�o 1 12 12 2.2 256
Implicit 3 16 48 2.2 256
Mesh 2 16 32 0.2 256

Veiprod 1 16 16 2.8 128
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The amount of associated resources for each queue depend on the need of jobs that will be
launched above, thus trying to minimize the burden of hardware errors as a memory over�ow
for example. To avoid this type of problems a further rule has been added for the queue called
highper�o, where it is limited to two the number of jobs which can be executed at the same
time. The two nodes of front-end, normally, are not used for the execution of the jobs but
contain, one at a time, all the users home directories. Thus, only one of them will hold all the
folders. In fact, the second node is used just in case the other one has some technical issue.
Doing so, there will be simply the need of changing the identi�cation of the reference node,
without users realizing it.

1.3.2 PBS

The Portable Batch System, also abbreviated with the acronym PBS, is a batch job and com-
puter system resource management package. It accepts batch job, shell script and control
attributes. Preserve and protect the jobs until they will be executed and, lastly, deliver output
back to the submitter.

It is composed by four principal components [52]:

1. Commands : PBS supplies both command line operations and a graphical interface. These
are used to execute, monitor, modify and also delete jobs. Commands only can be run if
there are the necessary permissions to do so (user commands can be run by anyone while
other commands can be run only by an administrator or an operator).

2. Job Server : it is the central focus of PBS, the reference server with which it communicates
via an IP network. The server's main function is to provide the basic batch services such
as the reception, creation, modi�cation and execution of batch job, but also protection
from possible system crashes.

3. Job Executor : it is the daemon, called also pbs_mom, which actually places the job into
execution and return the output to the user (if requested by the server).

4. Job Scheduler : it is another daemon which contains the site's policy controlling which
job is run and where and when it is run. Because each site has its own ideas about
what is a good or e�ective policy, PBS allows each site to create its own Scheduler. The
scheduler can communicate with the various pbs_mom to learn about the state of the
system resources and with the Server to learn about the availability of jobs to execute.

The main functions that PBS provides to the users are the addition and removal of a job but
also the opportunity to monitory its execution in a way that is possible to modify or block it
and then restart it, changing the number of resources requested. In addition to the services
available to each single user for the management of jobs, PBS autonomously execute the re-
search of accessible nodes to launch the job, reinforces the code policies in case there is the
need of insert precise rules and o�er also access control functions for possible statistical analysis
regarding the usage of the HPC and the system in general.

Inside the thesis project PBS is used to manage the submission of jobs on the speci�c HPC
queues, handling the resources for each one of them and deciding on what nodes launch the
execution as soon as the requested resources will be available.
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1.3.3 How HPC cluster and PBS work together

In this section will be treated and analysed brie�y how the two components, discussed previously
(see section 1.3.1 for what is about HPC and section 1.3.2 for what is about PBS), work together
to o�er the computing and simulation services to users.

Figure 1.4. Representation of the architecture used by Iveco to submit jobs.

As it is possible to see in �gure 1.4, the Iveco architecture of the job submission system
consists of three main parts. The �rst one, i.e. the TWS cluster Windows, it is the set of all the
technical workstation (from this the acronym TWS) of the users based on Windows operating
system. The second component is the PBS server that handles both the transfer of input �les
from Windows system to Linux one and the steps concerning the execution of the job itself.
Lastly there is the HPC cluster that, under Linux environment, group all the computational
nodes to perform the required operations. The two clusters are logically separated but linked
through the same PBS server.
The operations that the user can perform are three and usually in the following order:

1. Stage In: it is the transfer, by the user, of the input �les necessary for the execution of
the job from TWS Windows to his own home directory inside the front-end nodes.

2. Job execution via command line: the user submit the job through the command line
specifying the solver to be asked for the execution, the queue (i.e. the set of nodes of
the HPC) that will take care of it and also the name of input �les from which take the
necessary information.

3. Stage Out : it is the opposite of the Stage In. It is the transfer on the user personal
machine of the �les, containing the result of the simulation, present on the front-end
nodes to not occupy all their dedicated memory space.

So, as �rst operation, the user performs a stage in of the input �les and run the job via command
line. At this point it is the PBS server that take the situation control and executes the speci�c
custom script of the solver previously chosen. After that, the control is passed to the scheduler
to �rstly make a check on the availability of requested resources. In case these resources can
be provided the information received are transferred to compute nodes to execute the job on
pbs_mom installed above. Otherwise, the job is queued until resources will be released. At the
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end, when the job execution is completed (whether positive or negative), the results are written
on �les that later are transferred on the personal home directory of the user. From here on,
there is the possibility to perform a stage out so there will be the possibility to analyse and,
also, store the obtained solutions.

1.4 Thesis objective and document organization

Considering the data obtained from the interactions between HPC cluster and PBS, described
in section 1.3.3, the objective of this thesis is to de�ne a prediction model that can compute,
in the best possible way, the waiting time of each job submitted on the HPC cluster Iveco. To
do this, data-driven techniques will be used �rstly to understand the internal structures of the
data and then to do the training and testing of the model in order to �nd the solution that
return the best accuracy values.
In order to tell the experience lived in the company and describe the various activities carried
out, this document is organized in �ve chapters distributed as follows:

1. Introduction : in this chapter it is provided some basic knowledge to help understand
the document. In fact, �rstly some information about machine learning at high-level are
given, de�ning the area of use and possible applications. Additionally, some explanations
about applied terminology are o�ered for a better understanding of the topics covered in
this thesis. Thereafter, it is provided the main notions regarding the HPC cluster (what
it is, what it is for and how it is organized), specifying also the characteristics of the one
used by the company, and PBS, explaining also how these two components work together.

2. State of the Art : in this chapter the concept of KDD (Knowledge Discovery in Database),
extremely useful process in the machine learning �eld, will be discussed quite in depth.
Subsequently, the various statistical techniques and graphical representations used to un-
derstand the data (analysing the internal structures) will be explained. The chapter closes
with two detailed sections on machine learning and, more precisely, on the types of algo-
rithms concerning Supervised and Unsupervised Learning (Classi�cation and Regression
algorithms for the �rst one and Clustering and Dimensionality Reduction algorithms for
the second one), to understand how these work and how they can return certain values.

3. Case study and proposed methodologies : in this chapter, the initial dataset is de-
scribed. In the second section, data cleaning and feature engineering operations are
analysed; the last ones are used to extrapolate new variables useful for the pending time
prediction process. The third section deals with data exploration analysis applied to ac-
counting and context data, to better understand their internal structures. Finally, in the
last section the choices made in the selection of classi�cation algorithms are justi�ed and
the structure of the best solution is presented.

4. Experimental results : this chapter reports all the results of experiments conducted to
�nd out the best possible prediction solution. Firstly, the results obtained by regression
techniques and, then, those obtained by classi�cation ones are discussed.

5. Conclusions and Future Work : in this chapter the results of the experiments carried
out are analysed and, subsequently, the future tasks with which we will proceed to work
for the project are introduced.
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2. State of the Art

In this chapter I want to introduce the main concepts to be able to fully understand the
work done told within this document. First of all, the notions about Data Mining and KDD
(Knowledge Discovery in Database) which groups the various stages to get a complete knowledge
of the data taken into account. Afterwards, to understand the structure and the most important
information hidden within them, all the statistical analysis carried out to achieve this goal will
be treated. Lastly, will be analysed two of the macro categories that make up the Machine
Learning, the algorithms of Supervised Learning and those of Unsupervised Learning, essential
elements for the implementation of the procedure in order to optimize the use of hardware and
software resources of Iveco HPCC.

2.1 Data Mining

Advances in digital data acquisition, distribution, recovery and storage technologies have led
to the creation of huge databases. One of the main challenges to be faced is to transform
these immense data collections, rapidly expanding, into accessible and usable knowledge that
can be used later for decision-making support. Attempts to tackle this challenge have brought
together researchers from di�erent �elds, such as statistics, machine learning, databases and
many others, creating a new research area called Data Mining. This term is generally used to
indicate one of the fundamental steps of the KDD (Knowledge Discovery in Databases). This
is an iterative process, because each step can correct the possible errors made in the previous
ones, but also interactive because it is left to the user the limitation of the workload carried
out by the system, in order to deal only with the relevant aspects within the research [48].

With the term Data Mining are represented all those analysis techniques that allow to auto-
matically extract important information hidden within datasets. The application of statistical
analysis and di�erent search algorithms produces a certain amount of models developed through
data, always taking into account acceptable limits of computational e�ciency [48]. The aim
is to identify clear and meaningful patterns, which are de�ned trough the usage of di�erent
algorithms.
Data Mining is usually divided into two main categories:

� PREDICTIVE : focuses on particular properties or attributes, called target attributes or
object, of the data. Considering a number of instances such that these attributes are
known, the goal is to create a �predictive� model which is able to determine the output
value for a new tuple [4, 48]. In case the attribute is nominal, a classi�cation model will
be created, while if it is numerical, a regression model will be obtained. Examples of
these models are the SVM (Support Vector Machines) and also the neural networks.

� DESCRIPTIVE : in this case, di�erently from the previous one, there is no speci�c target
variable. What we are looking for is a way to describe the important systematic rules
present within the data [4, 48]. In this way, can be created models able to express the
existing associations between the attributes, clusters to describe similar data subsets or
even probabilistic models in order to represent the probabilistic dependence between the
attributes. Clustering algorithms are part of this category.
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Figure 2.1. Representation of the KDD process with all its main steps [3].

The term KDD was coined to emphasize that �knowledge� is the end product of a data-
driven discovery.
The KDD focuses on the research for understandable patterns useful for the interpretation of
data, thus enhancing the work done with large amounts of real-world information. This process
has much in common with statistics, especially as regards the methods used for exploratory
data analysis. The knowledge of this �eld allows us to quantify the intrinsic uncertainty asso-
ciated with the results when trying to infer general patterns, derived from a subset of data, to
the entire population. To ensure that this uncertainty is minimized as much as possible, thus
increasing the accuracy of the associations made, all steps are repeated in several operations.

This search process has been de�ned as a �non-trivial process of identifying valid, novel,
potentially useful and ultimately understandable patterns in data� [18]. In this statement the
data is a set of cases contained within the databases while the patterns are speci�c rules that
can be applied to that subset of data. As for the adjectives used, instead, with �non-trivial� it
wants to indicate the necessary involvement of researches and inferences, meaning that it is not
a simple calculation of prede�ned quantities as could be the one about the mean value of a set
of numbers. Discovered patterns should be �valid� on new data with some degree of accuracy.
In addition, it is also required that these must be �innovative� and �potentially useful� to bring
some bene�ts to users or subsequent operations. Lastly, it is required that the results obtained
are �understandable�, if not immediately after some post-processing operations at least, so that
they can be really used
So, the KDD �is the process that, starting from the data inside the databases, along with any
selection, preprocessing, subsampling and transformation required, and through the applica-
tion of data mining algorithms to extract all the patterns of interest available, allows evaluating
which of these models can really be considered as `knowledge' �[18].

Data mining performance depends on both the format and the accessibility of the data.
In fact, usually, the attributes that in�uence the accuracy of the result are selected and/or
calculated �rst, in the way of �lling the di�erences that there are between the format of the
data as they are saved at the source and the one required by the algorithms. This step is the
main key to the success of these techniques, all enclosed within what is later called preprocessing.
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In addition to this, there are other phases that make up the KDD, as can be seen in �gure 2.1,
analysed below:

1. Selection: in this step the main purpose is to select the useful data, compared to the
information we want to search for, from the various sources available (such as databases).
The selection can be made either horizontally, which means going to choose only tuples
that meet speci�c conditions, or vertically, thus deciding to consider only some of the
available variables.

2. Preprocessing : is a phase of fundamental importance within the process because it allows
to increase the descriptive power of the results obtained from the selection, going to
improve the �nal accuracy of the extracted patterns. It takes into account both data
cleaning operations, designed to clean data from possible outliers (by making a clear
distinction between these and noise), which could compromise the �nal result of the
process, as well as data integration, to �x possible con�icts within the data after the
integration from various sources but also to incorporate necessary data which, however,
are not present but can be computed (for example, you can �nd ways to manage outliers
without necessarily deleting them or to manage existing missing values).

3. Transformation: it brings together all the necessary operations to reorganize the data
before they are fed into data mining algorithms for pattern extraction. In practice, we go
to build datasets starting from the semantic aspect, based on the previous data collection,
going then to work on the syntactic one, which apply some transformations (as, for
example, the dimensionality reduction) necessary to �t the algorithm to the data. This
emphasizes the main features depending on the �nal expected results.

4. Data Mining : is the step in which some of the available data mining methods are eval-
uated, trying to decide which one suits in the best way to the data, and, subsequently,
where the extraction of the patterns of interest is performed.

5. Interpretation: is the �nal stage of the process in which the obtained results are assessed
taking into account three main factors. First of all, we need to make sure that everything
has been technically successful. Secondly, it is necessary to examine the validity of the
solutions obtained from the point of view of data mining. Finally, it is fundamental to
verify that all the necessary conditions have been adequately considered.
In order to perform this analysis of the results in the best way, usually, graphic represen-
tations are also created, able to visualize on speci�c graphs the models extracted from the
data, drawing its conclusions in as much detail as possible but also as simply as possible.

At the end of the entire process, all the acquired knowledge is usually incorporated into the
system in order to improve its performance [4, 18, 48].

Nowadays, data mining techniques are widely employed in many contexts of the economic
and digital world. Examples of this are the analysis of texts used for the extraction of useful
information within the documents, the researches carried out on clinical data, the o�er of
services to users through the usage of their location obtained by the GPS devices or even the
comprehension of their behaviour on websites to understand their interests and o�er customized
solutions (think about what happens, for example on e-commerce sites), the analysis of data
from social networks and many other di�erent situations.
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2.2 Statistical Analysis

The �rst step of all the statistical analysis consists in organizing and summarizing the data
which are composed by the information gathered on the statistical units that make up the
sample.

In addition to supporting the assumptions of the initial work, the exploratory analysis al-
lows to guide the study towards the formulation of new hypothesis and is useful both to verify
qualitatively the existence of appropriate assumptions on the considered variables and also to
suggest any parametric models to be used for the inferential purposes.

In this section will be touched both the graphical representations, widely used to make
incisive and rapid reading of the statistical information (especially in the presence of large
databases), and all the tests executed on the single variables values to extract as much infor-
mation as possible useful for understanding the data structure.

2.2.1 Graphical Representations

The human eye, or more precisely the human brain, is remarkably adept at handling visual
information in large quantities and complex formats. This goal is achieved by taking shortcuts,
making assumptions and interpreting what we see in relation to our experience. This way of
treating data, however, can lead to a lack of understanding of what we see, even losing some
very signi�cant details within the analysis [7, 12, 53].

The purpose of the graphical presentation of scienti�c data is to communicate, in the most
e�cient and immediate way possible, the information contained inside. This is important both
for how we tell the results to third parties and for our comprehension and analysis of the data.
In fact, some patterns, which could go unnoticed if only statistical analysis were used, are often
revealed through graphs [7, 12, 53].

Mainly in this section will be discussed some types of graphs that can be used, within also
in this thesis project, for the extrapolation of information from the available data, trying to
explain also in general when these representations should be used.
The visual graphs available to us are very numerous and each one highlights some aspects while
shadowing others. Given the e�ectiveness and immediacy of these diagrams to communicate
information, it is advisable to carefully choose the type of representation that better �ts the
message intended to be conveyed or the feature that must be highlighted.

In the case of continuous quantitative variables it is a good idea to use histograms while
for categorical variables bar charts are used. Both are bar diagrams that allow to visualize the
variability of a phenomenon, making it easier to interpret the data. These two types of graphs
are composed of rectangles built on a Cartesian plane in which the modes are usually reported
on the x-axis (or the possible values that the variable in question can take) while on the y-axis
the frequencies (or the absolute number of cases). To build these two types of diagrams four
elements are needed:

1. Class : is the single bar linked to a speci�c mode.

2. Class limits : are the minimum and maximum values of each class.
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3. Class width: is the interval between class limits (in the case of bar charts this value is the
same for each class).

4. Frequency : is given by the number of observations belonging to speci�c classes.

(a) Example of Histogram (b) Example of Bar Chart

Figure 2.2. Both examples are created using the seattle weather dataset.

These graphs are extremely useful in case there is the need to study variability, through the
analysis of the shape of the distribution, the average value and the spreading. In addition, they
make it possible to assess the extent of the discrepancies between the expected results and the
ones actually obtained, allowing in this case to identify the possible reasons of the deviations
[11, 16, 39].

To describe a distribution of a data sample through the quantiles is used the box plot, a
type of graph invented by John Tukey that allows to view at a single glance all the available
elements.

Figure 2.3. Graphic explanation of the main components of a boxplot.

The box ends are de�ned by the �rst and third quartiles (Q1 and Q3 respectively) while the
inner line is the median. The di�erence given by Q3˘Q1, also called interquartile distance
(IQR), coincides with the amplitude of the range in which at least the 50% of the data is
found. Whiskers correspond to the minimum and maximum values of the data in case there
in no interest in identifying the presence of possible outliers. Otherwise, the values of the two
whiskers are calculated taking into account the IQR through the following formulas:

xmin = Q1 − 1.5 · IQR (2.1)

xmax = Q3 + 1.5 · IQR (2.2)

In this case, values below xmin and those above xmax are considered outliers and are reported
as separate individual points.
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This type of graphical representation allows to immediately visualize the distribution of the
variables, highlighting the measure of the dispersion, the presence of any anomalous values and
its symmetry or asymmetry. A distribution, therefore, can be de�ned as [11, 16, 39]:

� Symmetric in case the arithmetic mean coincides with the median, thus allowing in this
case to deduce the value of the arithmetic mean directly from the graph.

� Asymmetric in case the arithmetic mean is less or greater than the median (depending
on whether it is negative or positive asymmetry respectively) and the two whiskers are of
di�erent sizes.

In case the modalities of a variable of interest are numerous, the Pareto diagram is
particularly useful. This type of graph is also composed of vertical bars in which all the values
of the variable taken in analysis appear in descending order with respect to the frequencies, all
combined with a cumulative polygon in the same scale.

Figure 2.4. Graphic example of a possible pareto diagram created by some data involving
defection of an assembly line.

The main advantage of these diagrams is the immediate ability to visually separate the modes
associated with a frequency (absolute or relative) higher than those less represented in the data.
To put it simply, the few relevant cases are clearly separated from the numerous irrelevant ones.
Doing so, it clearly catches the eye what are the values that need to be focused on.
The Pareto Principle, also known as the 80/20 law, can be applied to the information obtained
from this graph. This principle can be summarized by the following statement: �on large num-
bers, most e�ects are due to a minority of causes�. In summary, in the event that there is a
high amount of data, 80% of the problems that have to be solved is usually generated only by
the �rst 20% of the values of the variable taken in analysis. So, ultimately, we want to say that
most of the problems can be solved by going to analyse only a small part of the sample taken
into consideration [11, 16, 39].
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The above-listed representations are usually used to perform analysis on a single variable of
interest at a time. In case, instead, there is the need to identify any relationship between two
variables measured with the metric scales (discrete or continuous) we use the scatter plots.

Figure 2.5. Graphic example of a scatter plot created by the data inside the seattle weather
dataset.

As can be seen in the �gure 2.4, in the scatter graph the pairs of variables x and y are represented
as points of a Cartesian plane. The explanatory variable is commonly found on the x-axis while
the response variable on the y-axis (ordinates axes). Every single point represented is equivalent
to a statistical unit while the cloud of points visually describes the relationship between the two
variables. It is customary to use these representations to outline areas of high, medium, low
density, to analyse the possible correlations present, but also to highlight possible irregularities
in the datasets.

2.2.2 Position indices and variability

As well as the graphical representation, in the numerical variables' analysis it is useful to have
at disposal also numerical indexes of synthesis that allow to describe synthetically the main
characteristics of the observations.

The position index or central trend index is de�ned as a measure that describes the
order of magnitude of the values observed, namely its �centre�. It is therefore a single value
that can be considered �central� to the frequency distribution.
The main position indices are summarized in �gure 2.6.
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Figure 2.6. Summary of the principal positional indices in statistic

Through these position indices an attempt is made to synthesize a statistical distribution, with
the aim of collecting the relevant parts of the information contained inside. However, these
indices are not su�cient to fully represent the distribution because one important aspect would
be overlooked: variability. This value expresses the tendency of statistical units to manifest
themselves in di�erent ways. Therefore, the analysis of this trend is fundamental especially
when comparing di�erent distributions, this is because, with the same average, they can be
di�erent in terms of spreading. The computation of variability can be performed through
several indices but the most used for quantitative variables is variance.
This index measures the distance of the data from the arithmetic mean, calculated through the
squares of the di�erences. Since the unit of measure of the variance is given by the square of the
unit of measure with which the data have been collected, to obtain an index of variability on
the same scale of the original data is taken into account its square root, also called standard
deviation [11, 16, 39].

2.2.3 Tests for checking data normality

Many of the statistical procedures, belonging to the group of parametric tests, are based on the
hypothesis that the data follow a normal or Gaussian distribution. Since it is of fundamental
importance to study the data distribution curve, which explicitly expresses the frequencies (ab-
solute and relative) of the values of the variable under consideration, it is necessary to analyse
how well this distribution can be approximated to the normal one [21, 40].

More precise information can be obtained by using certain normality tests to determine
whether the sample under examination belongs to the population of normal distributions. These
tests, generally, are complementary to the graphical techniques of visualization of the distribu-
tion.
Among the most famous tests used in these situations there is the one of Kolmogorov-Smirnov
(KS), the one of Lilliefors that is a correction of the KS, the one of Shapiro-Wilk (SW), the
one of Anderson-Darling, the one of D'Agostino-Pearson and many others.
These methods compare the results of the sample with a set of values normally distributed with
the same mean and the same standard deviation. In this case the null hypothesis states that
�the sample distribution is normal�. Considering this assertion, if the value obtained from the
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test is signi�cant then the distribution will not be normal.
In the case of small databases the normal tests have less power in rejecting the null hypothesis
while, for large samples, a signi�cant result would be obtained even in the case of a small
deviation from the normal, despite this small gap would not a�ect the parametric test results.
To achieve a better interpretation of the results, the p-value is also calculated, useful to de�ne
with more clarity when the null hypothesis is rejected or accepted, which must be compared
with a certain level of signi�cance, called α, usually set to 0.05. This parameter indicates the
percentage of risk of getting a false positive from the normality test, i.e. accepting the null
hypothesis when instead it had to be rejected. Ultimately, we can have two speci�c cases when
comparing these two values [21, 40]:

� p-value ≤ α: in this case the null hypothesis is being rejected, reaching the conclusion
that the data do not follow a normal distribution.

� p-value > α: in this case it can be deduced that the data do not follow a normal distri-
bution, failing to reject the null hypothesis. This means that we do not have su�cient
evidence to conclude that the data do not follow a normal distribution but, however, we
cannot even conclude that their distribution is normal.

Normality tests can be classi�ed into regression and correlation based tests (Shapiro-Wilk),
empirical distribution based tests (Kolmogorov-Smirnov, Lilliefors correction, Anderson-Darling
and Cramer-von Mises) and, lastly, moment-based tests (D'Agostino-Pearson test) [56]. The
main features of these tests will be discussed below.

The Kolmogorov-Smirnov test (also abbreviated as KS) is a statistical test belonging to
the most important class of EDF statistics (Empirical Distribution Function), in which the
hypothetical cumulative distribution function is compared with the one obtained with the
empirical data. In essence, this analysis compares the cumulative distribution of the data with
a predicted normal cumulative distribution and calculates the associated p-value taking into
account the greater discrepancy between the two distributions.
All what has been said is written as:

D = supx|F ∗(x)− Fn(x)| (2.3)

where F ∗(x) is the hypothetical normal distribution function with a speci�ed mean µ and a
standard deviation σ while Fn(x) is the EDF of the data. The larger the value of D the more
the distribution of the data will not be normal.
This test, however, works only in some particular cases where the parameters of the hypothetical
distribution (mean and standard deviation) are fully known. To overcome this problem Lilliefors
slightly modi�ed the previous test, estimating these two parameters through the available data.
Doing so, the formula that encloses these hypotheses, considering a sample of n observation, is:

D = maxx|F ∗(X)− Sn(X)| (2.4)

where Sn(X) is the cumulative distribution function of the selected sample and F ∗(X) is the
normal cumulative distribution function having µ = X̄, the sample mean, and s2, the sample
variance, de�ned by denominator n− 1.
Although the LF test is virtually identical to the KS test, the table for critical values is di�er-
ent, leading to di�erence conclusions regarding the normality of the data [40, 49].
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Another test, widely used to de�ne whether some data follow a normal distribution, is the
one of Shapiro-Wilk, which is based on the correlations between the data and the corresponding
normal scores. It provides greater ability to detect whether or not a sample belongs to a non-
normal distribution compared to the KS test, despite Lilliefors correction. For this reason, the
Shapiro-Wilk is the most commonly used test by researchers. The formula that allows us to
compute the value from which to subsequently extract the conclusions regarding the normality
of the data is:

W =
(
∑n

i=1 aix(i))
2∑n

i=1(xi − µ)2
(2.5)

where n is the number of observations, xi represents the ordered sample values while x(i) rep-
resents the i-th smallest value of the sample and ai are the tabulated constants calculated from
the covariance matrix and the mean of the sample compared to a normally distributed sample.
The value of W is always within the range [0, 1] and, if it is low, indicates that the sample is
not normally distributed (thus rejecting the null hypothesis) [40, 49].

The Anderson-Darling test is also used to verify that the distribution of a certain sample
of data is normally distributed. In this case it is computed how much the data �t to a speci�c
normal distribution function. This analysis belongs to the quadratic class of the EDF because
the calculations carried out have to do with the quadratic di�erences. The Anderson-Darling
coe�cient is calculated as follows:

W 2
n = n

∫ ∞
−∞

[Fn(x)− F ∗(x)]2ψ(F ∗(x))dF ∗(x) (2.6)

where ψ is a non-negative weight function and F ∗(x) and Fn(x) regard the same distribution
functions discussed before. This test, being a modi�cation of the Cramer-von Mises test in
which ψ = 1, di�ers for the fact that it gives more weight to the tails of the distribution.
Keeping in mind this detail it is possible to explain the formula of the Cramer-von Mises test
as [40, 49]:

CVM = n

∫ ∞
−∞

[Fn(x)− F (x)]2F (x)dF (x) (2.7)

Finally, the D'Agostino-Pearson test which, as �rst thing, analyses the data to determine
the skewness (which quanti�es the asymmetry of the distribution) and the kurtosis (which
quanti�es the shape of the distribution). After that, it computes both how much each of these
two values di�ers from the expected values, considering a normal distribution, and a single
p-value from the sum of the quadratic di�erences. All this is formulas can be expressed in the
following way:

K2 = Z2(
√
b1) + Z2(b2) (2.8)

where Z2(
√
b1) and Z

2(b2) are the standard normal deviations equivalent to observation of
√
b1

(skewness) and b2 (kurtosis) [40].

2.2.4 Connection and Correlation Tests

When the main objective is the prediction of the value of a certain variable of interest, it is
absolutely necessary to observe how much and how (positively or negatively, when possible)
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the values of other characteristics are related to it. Moreover, it is also interesting to look for
possible relationships between pairs of input variables to rule out those that provide the least
information. This problem can be addressed by analysing the data obtained from the study of
the association between two possible variables (X and Y ). In this case, X and Y are said to
be �connected� when, under one mode of the �rst, the one of the other is arranged in a special
way. The types of associations available are mainly three and di�er from each other by the
type of variables that it is needed to be compared:

1. both variables are qualitative.

2. both variables are quantitative.

3. the couple is composed by both types, creating a pair of mixed variables.

Analysing the �rst case, if there are numerous sets, it is appropriate to distribute the data
in a double entry table called contingency table. These are generally used in statistics to rep-
resent the joint frequencies of variables, dividing the total absolute frequency (N) into R row
categories and C column categories, adding also an extra row and column to represent the
marginal frequencies, that are the sum of the column and row values respectively. Since the
variables taken into account in this case are of a qualitative type, the most popular indepen-
dence test used in the scienti�c �eld is the non-parametric test (meaning that is independent
from the distribution) of χ2 (pronounced Chi-squared) [9, 23, 31, 57]. This test is based on the
observed frequencies, which can be enclosed within the contingency tables, and compares them
with the expected frequencies calculated according to the statistical rules, under the condition
of independence relationship and therefore of non-association, thus returning important infor-
mation both on di�erences and on the categories that represent them exactly [23]. Basically,
the expected frequencies represent an estimate of how the cases would be distributed if there
were no disruptive e�ects.
Like any non-parametric test, χ2 also has conditions that must be met in order to be usable
and to obtain truthful results [31]:

a. the data to be analysed must be only frequencies or case counts rather than percentages
or other possible transformations.

b. the assignment of a case (also called subject) to a category (representing a cell of the
contingency table) must be unambiguous to verify the independence of the cases.

c. the contingency tables shall contain at least 80% of the cells with frequency values greater
than 5, at most 20% of the cells with values below 5 and no zeros.

d. the data sample must be large enough as the test is based on the approximate approach.

Suppose that in a particular sample it has been observed that a set of possible events E1, E2, . . . , Ek

show up with observed frequencies o1, o2, . . . , ok and that, according to the rules of probability,
there is a second set of possible events with theoretical or expected frequencies e1, e2, . . . , ek.
From here we can de�ne the χ2 test by the following formulation:

χ2 =
n∑

i=1

(oi − ei)2

ei
(2.9)

Relying on quadratic di�erences, if these are high, they will consequently result in a high value
of χ2, thus implying that the independence hypothesis applied to the calculation of the expected
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values is irrelevant to the observed ones. Ultimately, the null hypothesis of independence be-
tween variables is rejected when the value of χ2 is higher than a speci�c critical threshold
available in the distribution table of χ2, taking into account also how many degree of freedom
are associated with the case in analysis [23, 57].
The advantages of this test include the robustness of the data distribution, the ease of com-
putation, the detailed information that can be obtained, its �exibility in the data processing
from multiple groups and the fact that it can be employed in studies that do not meet the
assumptions of parametric tests. Nevertheless, the χ2 test also has limitations such as the
need for numerous samples and the di�culty of interpretation when there are large amount of
categories in dependent or independent variables.
This test, in some cases, can also be applied to continuous data only if the values are discretized
by grouping them in intervals on a continuous scale. Doing so, the χ2 can be performed after
identifying the frequency diagram. The result of the test depends strongly on the width of the
intervals and is considered relevant only if the constraint on the frequency value speci�ed in
each cell of the contingency table is respected (hypothesis c, explained previously) [32].

Since the χ2 test returns a value that is di�cult to be interpreted, being always a number
greater than 0 and sometimes also of 1, it is generally associated with a strength statistic (i.e.
a correlation calculations) able to give a fairly immediate representation of the result. One of
the most widely used strength statistic in science is Cramer V, applied to test data when a
signi�cant value of χ2 has been obtained [31]. It can be easily calculated by the formula:

V =

√
χ2

n(k − 1)
(2.10)

where n is the size of the whole sample and k is the minimum size of the dimensions of the
contingency table (the minimum value of the number of attributes available in the two variables
compared). The values of this statistic always belong to the range [0, 1]. One of the major
problems of this index, however, is the tendency of returning relatively low values despite the
relevance of the results computed with χ2 but it is the one most used given its ease of appli-
cation in almost all situations, unlike the other two strength tests (the φ and the Odds ratio)
that are used only in presence of 2× 2 contingency tables.

In case, instead, the variables of the pair taken in analysis, to understand whether they are
independent or not, are both characterized by quantitative values should be used the correla-
tion coe�cients. These statistics, in addition to expressing the intensity of the bond present in
the pair, also show the direction and, in fact, it is for this reason that their value belongs to
the range [−1, 1]. The result, therefore, varies from a perfect inverse correlation (meaning that
to the growth of one variable the other one decrease) up to a perfect direct correlation, passing
through the value 0 representing its total independence.
The term correlation is usually used to express any form of relationship, association and con-
nection between two variables. In reality this term refers only and exclusively to a reciprocal
relation of linearity and it is for this reason, therefore, that a mathematical relation present
between two characteristics does not imply the presence of correlation [36].

One of the most important correlation indices is the Pearson coe�cient, used to compare
quantitative variables with a normal bivariate distribution [24]. This index measures how much
the relationship between the two variables approaches the ideal case, in which each point of the
dispersion diagram lies exactly on a straight line. It is represented with ρP for a population
parameter and with rP for a sample statistic. Of this coe�cient it is possible to express, �rst
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of all, a graphical explanation (shown in �gure 2.7). Suppose there is the need to calculate the
association between n pairs of continuous data ((yi, xi) with i = 1, 2, . . . n). To perform this
analysis two di�erent regression lines have to be drawn: the �rst (l1) corresponds to the linear
regression of y on x while the second (l2) corresponds to the linear regression of x on y. They
intersect at the point having as coordinates the mean values of the observed yi and xi values,
respectively, creating an angle θ which expresses the force of the association between the two
variables. In fact, geometrically, the Pearson coe�cient is the geometric mean of the slopes of
the two lines, which corresponds to cos θ. For this reason, in the case of total independence,
the two lines will be perpendicular (θ = 90◦) while if there is complete association, regardless
of whether it is positive or negative, the two lines will overlap (θ = 0◦) [2].

Figure 2.7. Geometrical Interpretation of the Bravais-Pearson correlation coe�cient [2].

From a purely mathematical point of view, Pearson's correlation coe�cient is expressed by the
following formula:

rP =

∑n
i=1(xi − x̄)(yi − ȳ)√

[
∑n

i=1(xi − x̄)2][
∑n

i=1(yi − ȳ)2]
(2.11)

where xi and yi are the i-th values of the two variables whose correlation is to be studied.
The numerator is called covariance and the denominator is the product of the mean quadratic
deviations of the variables x and y. The covariance represents the level of dependence between
the two variables and can take the value 0, in the case where varying one of it the other remains
constant, the maximum value in positive absolute value when the points are all aligned on a
rising straight line or the maximum value in negative absolute value when the points are all
aligned on a decreasing straight line.
The Pearson coe�cient is highly in�uenced by extreme values, which can overstate or dampen
the strength of the relationship, and therefore is inappropriate when even one of the variables
is not normally distributed. In the case where a large population operates only over a narrow
range of data, the correlation coe�cient tends to decrease in absolute value. Hence, it is very
di�cult to interpret a statistic calculated from selected data based on the values of a variable.
It is of paramount importance to note that, if the assumptions associated with the index are
not met, the probability statements on correlations can highly in�uence the magnitude of the
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result obtained.

When the variables to be analysed are quantitative, but do not have a normal bivariate dis-
tribution, two other coe�cients are used: the Spearman correlation coe�cient and the Kendall
correlation coe�cient.

The Spearman's rank correlation coe�cient was among the �rst to be processed. It is
a non-parametric technique that evaluates the monotonic relationship, linear or not, present
between the two variables under consideration. It is usually represented with ρS for a population
parameter or with rS when dealing with a sample statistic [36]. From a geometrical point of
view, the Spearman coe�cient is calculated in the same way as the Pearson one, but it implies
a simple transformation. In fact, instead of using the i-th couple of the collected values, the
pairs of assigned ranks are considered, taking into account their relative magnitude. This
transformation allows to combine the data according to the same scale of measure, the so-
called scale of ranks, compared to the original one. Since the ranks do not follow a normal
bivariate distribution, the correlation, in this case, can be interpreted geometrically as was the
Pearson coe�cient. In fact, the one of Spearman is an indication of the monotonicity of the
present relationship. This means that, after replacing yi and xi with the corresponding ranks,
the monotonicity of their relationship does not imply a linearity between the corresponding
grades. Such index assumes value 1 when to the increment of the �rst variable increases also
the second one and −1 when to the increment of the �rst the second decreases, but without
that these increments are constant like in the straight line [2].
From the mathematical point of view, the Spearman coe�cient is expressed by the formula:

rS = 1− 6
∑
d2i

n(n2 − 1)
(2.12)

where di = Xi−Yi, Xi and Yi values are respectively the ranks of the variables xi and yi and n
is the number of observations present in the sample. The magnitude of these di�erences gives
an idea of the relationship between the two sets of tanks. A perfect association would be ob-
tained in case

∑
d2i = 0, thus obtaining an rS = 1 and therefore a perfect correlation. Instead,

the larger the di�erences between the ranks, the less perfect the correlation between the two
variables. The most important defect inherent in the computation of this coe�cient is the fact
that the result is estimated in excess if, for at least one variable, there are many equal ranks
(meaning if there are many equal values). Beyond that, the characteristic that distinguishes
the coe�cient of Spearman from the Pearson one is the robustness in presence of extreme values.

The Kendall's rank correlation coe�cient, also known as Kendall's τ (Tau), is applicable, as
non-parametric measure, to the same type of data as the one of Spearman. It is used to de�ne
the degree of similarity between two sets of ranks, taking into account the same set of objects.
Given a pair of variables X and Y , in order to calculate the τ of Kendall it is necessary to order
the values couple (xi, yi) according to the increasing order of X. Subsequently, for every yi both
the greater and the smaller values that follow it are counted, de�ning smax

i and smin
i respectively.

If there is one of the following values equal to yi, the count of both the corresponding smax
i and

smin
i is increased by 0.5.
By mathematical formulae, the Kendall's rank coe�cient can be expressed as:

τ =
2S

n(n− 1)
(2.13)

where n is the number of couples and S is computed as Smax − Smin, that is the di�erence
between the higher total values (Smax =

∑
smax
i ) and the lower total values (Smin =

∑
smin
i ).
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From the formula can be deduced that τ is the di�erence between Smax and Smin expressed
as a fraction of n(n−1)

2
, that is the total number of ways in which n units can be compared

two at a time. It is important to notice that for this test is always checked the equality
n(n−1)

2
= Smax + Smin.

The di�erences between Spearman coe�cient and Kendall Tau are mainly three:

1. the reliability of con�dence intervals, which are minor in the �rst one.

2. the ease of computation, which is always greater in the �rst one.

3. Kendall tau shall be from the lack of excessive estimation of the result in the case of a
high presence of equal ranks.

Furthermore, these coe�cients use di�erent scales of assessment and are not directly compa-
rable numerically. However, they have the same ability to detect the presence of association
relations within the population, using the same amount of information present in the data.

Finally, to be able to analyse the last possible type of association, need to be treated the case
when there is the need to calculate the degree of connection between a quantitative variable
and a qualitative one. In this case, it is useful to study the average dependence that exploits
the additional information in having a quantitative character.
Considering a qualitative variable Y and a quantitative one X, there is independence on av-
erage when the conditioned averages are identical to the marginal average, that is when the
conditioned averages of X with respect to Y are equal, denoting that Y does not in�uence the
mean of X.
To compute this statistic, starting from a mixed distribution, it is necessary to create a con-
tingency table in which we break down the overall variability of the quantitative character
with respect to the modalities of the qualitative one, thus performing the so-called variance
decomposition. At this point the total variance of the X is expressed as the sum between the
mean value of the conditioned variances and the variance of the conditioned averages that in
formulas can be represented as:

V [X] = E[VX|Y ] + V [EX|Y ] (2.14)

where the �rst addend is the unexplained internal variance, given by the sum of the variances of
the individual conditional distributions of X with respect to the modes of Y , and the second one
is the explained variance, equivalent to the variance of the conditioned averages with respect
to the general mean of X.
To measure the strength of the dependency bond, the correlation ratio η2 (eta-squared) is used,
a normalized index that exploits the variance splitting property. This is an asymmetric index
obtained by comparing subordinate distributions of X with Y modes. In formula, it can be
expressed as:

η2 =
V [EX|Y ]

V [X]
(2.15)

This index assumes values in the range [0, 1]. With the value 0 there is a total independence in
average, meaning the variability of X does not depend on the modes of Y , while with value 1
the dependence in average is maximum, meaning a total dependence between the two variables.
Finally, it is important to notice that, being an asymmetric index, the eta-squared allows to
verify the relationship between X and Y, but nothing can be said about the inverse relationship.
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2.3 Supervised Learning Algorithms

When dealing with a huge amount of data it is desirable to have a certain type of automation
or data-driven process that can extract the �knowledge� to use, in turn, for future predictions
[17]. In these cases, there is the possibility to use Supervised Learning algorithms that are
employed when the data already have the target variable, that is the feature that have to be
predicted. The term �supervised� refers to the training dataset in which this variable is already
known and, therefore, supervises the learning of the algorithm [8, 47, 50]. In fact, the starting
idea is that the data provide the model with examples of situations similar to those to which
it will be subjected in the future [54]. These algorithms create, therefore, a certain function f
able to map the values of the input variables (x) into the values of the output variables (y, i.e.
the target variable). The goal is to approximate this function so well that, when there are new
data, there is the chance to predict the y with the greatest accuracy possible, considering that
this value will never reach 100% [8, 17].
Models follow an iterative learning process because, whenever the algorithm makes a prediction,
feedbacks or corrections are provided to improve performance which, once acceptable accuracy
thresholds have been reached, are the condition of termination.

When choosing a supervised learning algorithm, some important aspects need to be con-
sidered. First of all, it is essential to study the main characteristics of the data to understand:
how they are distributed, how precise are the associated values, how to �nd some irregularities
inside and, �nally, see if there is a certain linearity. In addition, it is also necessary to consider
the complexity of the model or of the function that the system must learn [50]. One of the
major drawbacks of using these algorithms is the need of large amount of data available for
training the model in the best way possible.

Figure 2.8. General pattern for the creation of a supervised learning model [47].

Generally, the �rst thing to do is to separate the data into two distinct groups, the training
set and the test set, both of which have the target variable associated. This separation is neces-
sary because, usually, the training is carried out with the data belonging to the �rst group and,
subsequently, to understand the degree of reliability of the model, the second group is used to
calculate its performance. In this way it is possible to estimate whether the selected algorithm
can adapt to the available data and, also, �nd possible violations, such as the use of features
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not useful for the purpose, bad choices in the selection of algorithm parameters and insu�cient
training data [17].

Figure 2.8 summarizes in general the main steps for the creation of a predictive model of
supervised learning. In fact, the input variables and labels, which together compose the labelled
data, are passed to an algorithm able to extrapolate from the data the f function necessary
to mathematically connect the two characteristics. This creates a predictive model that can
provide predictions for new data not yet associated with a target variable [47].

Depending on the type of the target variable, two categories of algorithms can be distin-
guished:

� Classi�cation algorithms

� Regression Algorithms

The �rst (classi�ers) will be treated in section 2.3.1 while the others (regressors) will be treated
in section 2.3.2.

At the beginning, it is considered a good practice to train more than one algorithm and
then choose the one that best suits the data, using performance measures. In the case of clas-
si�cation algorithms, the evaluation metrics that can be used are confusion matrices, accuracy,
prediction, recall and F-measure.
The Confusion Matrices are computation methods used to study the performance of classi�-
cation algorithms. They are tables able to compare the real values of the target variable and
those generated by the model. In this way it is possible to visualize in a very simple way the
values associated with True Positive, True Negative, False Positive and False Negative [37]. In
general, for n × n matrices (where n is the number of classes), these values can be calculated
as follows:

� True Positive (TP): for each class, it corresponds to the speci�c cell belonging to the
main diagonal of the matrix.

� True Negative (TN): for each class, it is the sum of the cells in the main diagonal, except
for TP.

� False Positive (FP): for each class, it is the sum of all values in the corresponding column,
except for the TP.

� False Negative (FN): for each class, it is the sum of the values in the corresponding row,
except for the TP.

The Accuracy is used to calculate the number of correct predictions (regardless of class) com-
pared to the total of those performed [4, 17].

Accuracy =
Number of corrected classi�ed objects

Number of classi�cations
=

TP + TN

TP + TN + FP + FN
(2.16)

It is a very simple measure to understand and calculate but it is not appropriate in case there is
a di�erent concentration of classes or when they have no homogeneous relevance, corresponding
to cases where some are more than others.
The Precision is the number of correct predictions compared to all those performed to which
has been assigned the same class.

Precision =
Number of objects correctly assigned to a class

Number of objects assigned to that class
=

TP

TP + FP
(2.17)
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The Recall, instead, is the number of correct predictions assigned to a certain class compared
to all those performed that belong to that speci�c class.

Recall =
Number of objects correctly assigned to a class

Number of objects belonging to that class
=

TP

TP + FN
(2.18)

These last two measurements, however, alone do not provide any real information about the
performance of the algorithm [4]. Therefore, it is more commonly to use a metric that summa-
rizes and uni�es the precision (p) and recall (r) values called F-measure or F1 score.

F-measure =
2rp

r + p
=

2 · TP
2 · TP + FN + FP

(2.19)

It represents the harmonic mean between precision and recall and takes values within the range
[0, 1]. The harmonic mean tends to approach to the smallest of the two numbers considered
and, therefore, if it assumes a high value then also precision and recall are high.
In the case of multi-class classi�ers, it is necessary to compute accuracy, precision, recall and
F-measure for each individual class. The arithmetic averages of each of these metrics give an
overview of the model, returning four values that characterize it.

In the case of regression algorithms, two speci�c measures can be used: the mean squared
error (MSE) and the correction of the Determination coe�cient (adjusted R2). These measures
estimate the level of agreement between the predictions made by regression algorithms and the
actual values assumed by the values of the target variable.
TheMSE indicates the mean quadratic di�erence between the expected and actual data values.
In Formula, it is represented as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.20)

This measure has the advantage of being easy to understand, but it has the disadvantage of
having an unlimited scope, as it is possible to get a value that may even be greater than 1, and
for this are required some tabular references to draw conclusions.
The adjusted R2, on the other hand, measures the percentage of data variance that the regres-
sion model can explain and takes values within the range [0, 1] [17].

Model validation techniques may also be used to understand whether an algorithm �ts well
or not the data. Such validation is the useful process to understand how acceptable the results
are. Usually, an estimate of the error is made immediately after the creation of the model, giv-
ing only an idea of how well this works. In fact, the model could have learned from over-�tting
or under-�tting situations, thus failing to give a precise indication of how it will behave with
new data [4, 22]. In order to make the validation phase more e�ective, partitioning techniques
are applied, which includes the various types of cross-validation such as holdout, k-fold and
leave-one-out.

The Holdout is a method that provides a �xed division of the dataset, reserving two-thirds
of the data for the training set and the remaining one-third for the test set. It is appropriate
for large datasets but is conditioned by the presence of a high variance, since it is not known a
priori which data become part of the train set and which of the test set. In case it is repeated
several times, mixing each time the data, it is called repeated holdout.
The K-Fold is usually used when there are not enough data to get a good training phase. In
fact, by reducing the size of the train set there is the risk of losing important information, thus
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increasing the �nal error. Using this method the data are divided into k folds, of which k − 1
are used as the train set and the remaining one is used as a test set, all repeated k times so
that all groups can be used as test. In this case, the estimated error is equal to the average of
all the k relative errors computed. This reduces the bias signi�cantly, since most of the data
is used for �tting, as well as variance, since all folds are used as test set at least once. It is a
method that provides a good estimate of the model but is computationally expensive in case
there are a lot of data. Usually, as values of k are commonly used k = 5 and k = 10 and it is
possible to notice how the case with k = 3 is extremely similar to holdout. Nevertheless, the
choice of this value depends very much on the case being analysed.
Finally, there is the Leave-one-out cross validation (LOOCV). This technique is a particular
case of the K-Fold in which k = n, meaning that only a record at a time is part of the test set.
This method returns very exhaustive results but there is the problem that the process is heavy,
computationally speaking, reason why it is usually used for very small datasets [4, 22].

2.3.1 Classi�cation Algorithms

The classi�cation is a subcategory of Supervised Learning that aims to predict discrete labels
of new records, based on rules extracted from previously collected data. Prediction classes are
discrete, unordered or even enumerative values that can be seen as a peculiar characteristic of
a speci�c group. In case the classes to be predicted are only two, we will talk about binary
or dichotomous classi�cation, otherwise we have to deal with a multi-class classi�cation [25, 47].

Training data are used to obtain better boundary conditions which, in turn, determine the
rules for grouping each target class. Once the boundary margins are de�ned, then, the next
task is to predict the class to be associated with new data [44]. Among the most commonly used
algorithms there are the Logistic Regression and Naïve Bayes classi�ers, both of which are part
of linear models, Decision Tree, Random Forest classi�er, K-Nearest Neighbors, Support Vec-
tor Machines and also some arti�cial neural network algorithms like Multi-layer Perceptron [25].

The Logistic Regression, despite its name, is a classi�cation algorithm that tries to pre-
dict discrete values by using independent input variables. In short, it predicts the probability
with which a certain event manifests itself, adapting the data to a logit(p) function also de-
�ned as ln( p

1−p), where p is the probability that the characteristic of interest presents itself [44,

47]. This algorithm allows to understand the in�uence that some variables have on the target
one but introduces the problem to work well only in the situations of predicting dichotomous
variables [20, 41].

The Naive Bayes classi�er is an algorithm based on both the assumption of independence
between the input variables and of the conditioned probabilities, going to create trees based on
the possibility that certain events occur [14, 44]. Such classi�er assumes that the presence of
a particular characteristic in a class excludes the presence of any other characteristic. In this
way, there is the possibility to build a Bayesian model, so-called due to the fact that is based
on the Bayes theorem, which is simple and functional in case of huge datasets. These are al-
gorithms known for their prediction speed, but also for their poor accuracy statistics [20, 41, 44].

The Decision Tree is a very versatile algorithm that divides the dataset into two or more
homogeneous sets based on the most signi�cant attributes, to make the groups as distinct as
possible. In this way, a model, able to predict the values of the target variable using simple
decision rules deduced from the characteristics of the data, is created [41, 44]. Each tree is
made up of nodes, each one representing a speci�c attribute in a group, branches, each of one
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is equal to the values that certain attributes can take, and leaves, representing classes that can
be assigned to an instance. In fact, the new records are classi�ed with a top-down approach,
starting from the root of the tree and going down to a speci�c leaf [14, 42].
Initially, the attribute that best divides the train set is to be searched, going to use methods
such as the Gain or the GINI index. The same procedure is then repeated later for the creation
of the other nodes, thus creating subtrees until all the features have been analysed and all the
leaves have been generated.
As there is the possibility of over�tting the algorithms on training data, there are two approaches
used to avoid this situation:

1. Stop the algorithm before getting to the point where the model perfectly �ts the data.

2. Pruning the branches to delete those created by induced decisions.

In case two decision trees have the same type of controls and the same accuracy, we choose the
one that has the least number of leaves and, therefore, the simplest at decision level and more
understandable algorithm [42].
One of the most important advantages about Decision Tree, besides the easy visualization, is
the comprehensibility since it is so easy to understand how certain classes have been assigned
to an instance, through a path inside the tree. On the other hand, there is the problem that
large trees created would not generalize in the best way, since even only a small variation of
the values could imply totally di�erent results [20, 42].

The Random Forest is a meta-estimator that adapts to a series of decision trees on various
sub-samples of the dataset and uses the mean to improve the predictive accuracy of the model,
thus also controlling over�tting situations [20]. Each tree within the group is constructed from
a sample extracted by replacement from the training set. Also, when splitting each node during
the building of the tree, the best separation is searched between all or only a part of the input
variables. This will reduce the variance of the model. In fact, individual decision trees typically
show high variance, thus creating over�tting situations. Doing so, decision trees with uncoupled
predictive errors are produces and, by averaging these predictions, some errors can be undone.
In this way, these algorithms achieve reduced variance by combining di�erent trees. In practice,
the reduction of variance is often signi�cant and, therefore a better overall model is obtained
[41]. Compared to normal decision trees, Random Forest reduces over�tting and is generally
more accurate, but is a di�cult and complex algorithm to implement and, in addition, is slow
in real time predictions [20].

The K-Nearest Neighbors (KNN) is a classi�cation algorithm based on learning by
analogy, using the de�nition of similarity between tow objects such as distance functions (in-
cluding the Euclidean, Minkowski and Hamming ones) [28, 42].
The dataset is described by numerical attributes that can be represented in an n-dimensional
space. The moment there is the need of predict the class for a new record, the �rst operation
performed is the selection of the k nearest records. At this point, to the new data will be
assigned the most frequent class within the selected k points. This hyper-parameter k is used
to regularize the algorithm and, usually, is selected via cross-validation. If k = 1 then there is a
particular case where the class is assigned taking into account only the closest point to the new
record, while if k = n the classes of all the points are taken into consideration, regardless of
distance, thus creating problems in the situations of unbalanced classes (despite high k values
however help in the reduction of the noise e�ects). It is a good rule, in general, to select an odd
value for this parameter to avoid draws for the label association [10, 28, 42, 44]. The choice for
the value of k is generally very di�cult and depends mainly on the data and, therefore, on the
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situation being analysed.
The KNN is among the easiest algorithms to implement, is very robust to the presence of noise
inside the train set and is very e�ective for large datasets, being able to �nd patterns even very
complex, but, keeping stored all the available cases, is very heavily, computationally speaking,
compared to other algorithms and its results are di�cult to interpret [10, 20, 42, 44].

The Support Vector Machines (SVM) are widely used algorithms based on margin
delineation able to separate groups of data of di�erent classes. In fact, we represent, as �rst
thing, all the points belonging to the dataset in a n-dimensional space, where n is the number
of input variables. In case this number is greater than two, the separation lines will become
hyperplanes, although the algorithm steps do not change [10, 14, 44].
The main problem of these algorithms, then, is to de�ne what are the boundary that best split
the data, searching for those that maximize the width, minimizing the classi�cation error. The
points that lie on these boards are called support vectors and are the only ones that in�uence
the position of the separation line (the one parallel to the margins and placed in the centre of
them) [10, 44].
So, in case the classes are linearly separable, the wider are the boundaries the higher will be the
prediction accuracy of the classi�cation model, thus showing that the classes have low similarity
to each other. The problem, however, is that most real datasets are not linearly separable and
any split line would involve prediction errors. Indeed, a margin is de�ned as being violated
when a given record is wrong classi�ed or, although the classi�cation is correct, it is within the
margins [10]. When linear separations are not available it is possible trying to split the data
into classes through polynomial or any other type of functions, thus de�ning Kernel SVMs in
which it can be speci�ed the type of separation to adopt.
In SVMs, the boundaries are also chosen as minimization of the equation 1

m
+C

∑
pi , where m

is the width of the margins, pi is the penalty for each single point and C is a hyper-parameter
(like k for the KNN) used to balance the trade-o� between margin width and classi�cation
errors. When C is very low the classi�cation penalties become irrelevant. Its value can also be
chosen through cross-validation [10].
This type of algorithms is very e�ective when dealing with multi-dimensional spaces, requiring
little computing power and o�ering a simple model interpretation and memory e�cient, since
it uses only part of the training points within the decision function. They allow, however, to
identify a limited set of patterns, despite the use of Kernel SVMs, and do not directly provide
estimates of probabilities, which can be calculated using an expensive 5-fold cross-validation
[20, 41].

TheMulti-layer Perceptron (MLP) is the most widely used model in the �eld of neural
networks and is based on the back-propagation algorithm to perform the training. The main
components, represented in �gure 2.9, that make up a neural network are essentially three:

1. Neurons : where, in turn, the results of the previous neurons are processed and, sub-
sequently, the output is de�ned according to a speci�c activation function. A set of
unconnected neurons at the same depth is de�ned as layer.

2. Connections : connect neurons belonging to di�erent layers. These connections can be
weighted in such a way that the output of previous units follows speci�c rules for the
operation of the network.

3. Activation Function: determines the behaviour of the neuron based on its excitation level,
which corresponds to the sum of the values received in input by other neurons.
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Figure 2.9. Representation of the components that constitute a neuron [1].

The MLP or, more in general, all the algorithms belonging to neural networks are composed of
three types of layers: input, output and hidden layer. The �rst two are usually unique, while
the number of the last one may vary depending on the problem in analysis [46]. The number of
neurons in the input layer is equal to the number of input variables while the one of the output
layer depends on the number of classes that could be predicted.

Figure 2.10. General representation of the architecture of an arti�cial neural network, in
which the possible layer types are highlighted [19].

The architecture of the MLP and, more generally, of the neural networks, shown in �gure 2.10,
is extremely important, as the lack of a connection can make the network unable to solve the
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problem of calibration of coe�cients, while an excess of connections can cause an over�tting
on the training data [46].
MLP tries to lean a function f(·) : Rm → Rn by training on a dataset, considering m input
variables and n di�erent classes that can be predicted. Each neuron within the hidden layers
transform the values from the previous layers, using a weighted linear sum, followed by a non-
linear activation function g(·) : R→ R that decides the output to be sent to the next neurons.
The learning process of this algorithm concerns the adaptation of the weights of each individual
connection between neurons, to obtain a minimal di�erence between the predicted output and
the desired one.
It is considered a good algorithm as it is able to learn real-time models, also characterized by
non-linear functions. The problem, however, is that the hidden layers of the MLP have a loss
function that can have more than a minimum local, requiring several random initializations of
weights to try to improve accuracy. It is also required to tune some parameters including the
number of hidden layers, neurons inside them and iterations. Finally, the MLP is also sensitive
to feature scaling [41].

2.3.2 Regression Algorithms

In case the target variable to be predicted is a continuous numerical value, regression algorithms
are used, based on a number of predictors (input variables) and an output variable, to try to
determine a mapping function as precise as possible [25, 47].

The simplest and fastest algorithms in this �eld are those belonging to linear regression (like
the method of least squares), but they return, in the vast majority of cases, some mediocre
results [25]. They group together models used to predict the target variable where there is a
linear relationship between the target variable and the input ones [47].
This kind of algorithms can be divided into three categories: simple, multiple and polynomial
linear regression. The �rst is the simplest and concerns only those models in which the variable
to predict depends exclusively on a single predictor. The resolution of these problems is usually
entrusted to the computation of the inclination of a line with the formula y = w0 +w1x1. The
second is an extension of the previous one and is used to solve problems where the output
depends on several input variables, following the function y = w0 + w1x1 + w2x2 + · · ·+ wnxn,
selecting only those features that best help in the prediction to be executed. In these two
cases, the result always concerns the delineation of a straight line that best approximates all
the data. However, if these methods are not accurate enough, polynomial functions, de�ned
as y = w0 + w1x1 + w2x

2
1 + · · · + wnx

n
n, are used. These are anyway part of linear regressions,

although the function is not, because there is a linear combination of coe�cients. In order to
use this last type of algorithms, however, it is �rst necessary to preprocess the data to calculate
all the exponents of the needed variables [30].
Regression of the Ordinary Least Squares (OLS) is a statistical method of analysis that
estimates the relationship between some independent variables and the dependent one. The
least squares estimators allow to minimize the sum of the square of the di�erences between the
observed and the expected values of the target variable, to create a straight line that crosses
the values of the features of interest. When, however, some model variables are related, the
error estimation becomes very sensitive to possible outliers, thus creating situations of multi-
collinearity [41].
Ridge regression solves some OLS problems by imposing a coe�cient size penalty. To do this,
a hyper-parameter α is used. The larger this value, the more robust the coe�cient will be to
the collinearity [41].
The Lasso algorithm is a linear model used to estimate sparse coe�cient. It is adopted in
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cases where are preferred solutions with fewer non-zero coe�cients, thus reducing the number
of features on which the solution provided will depend [41].
Another commonly used linear model is the ElasticNet. This algorithm is trained by regu-
larizations in accordance with l1 and l2 coe�cients. This combination allows learning sparse
model, where few weights are di�erent from zero, as in Lasso, while maintaining the regular-
ization properties of the Ridge algorithm. It is useful when there are many related features [41].

In addition to this kind of regressions there are other algorithms, used in classi�cation
problems, which can also be adapted to work with regression problems. Among these it is
possible to �nd some algorithms already discussed in section 2.3.1.
As for the Decision Tree, the general principle is the same used in the classi�cation, but with
a single change: after having followed all the rules for the creation and having crossed the
entire tree, it gets a speci�c leaf that, in this case, contains not the class to be assigned but a
multitude of values whose average is the result of the prediction [30].
The Random Forest algorithm, as in the classi�cation, is the combination of multiple decision
trees to improve its accuracy statistics but, if used for regression, the result of the prediction
is computed as the average of the values obtained in each individual tree [30].
The KNN is also an algorithm that can be applied to the regression problems by modifying the
calculation method of the target variable for a speci�c record to which is assigned the mean of
the values of the k nearest points instead of the most frequent class. In these cases, however,
the contribution of each record is weighted according to the distance [28].
Also SVMs can be used for regression problems, taking the name of Support Vector Regressor
(SVR). In this case, the same principles as the SVM classi�ers are employed and adapted for
predicting continuous values. In fact, error margins (ε = prediction − realvalue) are de�ned.
This value determines the error region and the number of support vectors. Boundaries are
drawn in parallel to the separation hyperplane, with a distance varying according to the ε
value. Only the points outside the margins will contribute to the computation of the �nal cost,
not considering those points whose value is close to the exact prediction. As in SVM classi�ers,
various kernel functions can be applied, depending on the type of relationship between the
variables [15, 41, 51].
The Multi-layer Perceptron is also an algorithm that lends to both classi�cation and regression
problems. Here, again, the basic principle of the algorithm, speci�ed in section 2.3.1, remains
the same, applying the back-propagation in both the cases, but the activation functions in the
output layer are no longer available. Thus, the quadratic error is used as a loss function and
the output consists of a set of continuous values [41].

2.4 Unsupervised Learning Algorithms

Di�erently from Supervised Learning, in Unsupervised the algorithms work with data that is
not known a priori neither the values associated with the target variable nor their internal
structure. In fact, the term �unsupervised� is used precisely because there is no help from the
outside to arrive at certain solutions. Algorithms are left to themselves to discover and present
the fundamental structures present in the data [5, 8, 47].
The main purpose of these algorithms is to explore the structure to obtain information about
di�erent patterns present and extract important notions, in order to increase the e�ciency of
the decision process [5, 47].

This kind of algorithms is usually grouped into two large categories that will be analysed
respectively in the sections 2.4.1 and 2.4.2:

34



CHAPTER 2. STATE OF THE ART

1. Clustering : allows to divide the data into groups containing similar records.

2. Dimensionality Reduction: allows selecting only the most relevant information for solving
speci�c machine learning problems.

2.4.1 Clustering Algorithms

Clustering can be considered one of the most important problems of Unsupervised Learning
and tries to �nd structures within a collection of data that do not have labels, as was in the case
of supervised learning. More generally, it is a technique of data exploration that can organize
them in various subgroups (called clusters) without having any previous knowledge [34, 47]. The
creation of these clusters depends on the notion of similarity which, in most cases, coincides with
the distance between two points. In fact, two points will be as much similar as their distance
will be minimal and, therefore, the creation of the groups will happen in such a way that the
intra-cluster distance (the one between points belonging to the same cluster) is minimal, while
the inter-cluster distance (the one between points belonging to di�erent clusters) is maximum.
Doing so, the widest possible separation margins will be de�ned [26, 34, 47]. Finally, it is
possible to say that a cluster is a set of records �similar� to each other and the most �dissimilar�
possible from records belonging to other groups.

Figure 2.11. Example of a clustering process on 2D data representation [55].

The ultimate goal of clustering is to determine the internal grouping in an unlabelled dataset.it
can be shown, in this sense, that there is no better criterion than others that is independent
of this objective. Consequently, it is the user who decides which is the most suitable type of
grouping its needs.

These techniques can be divided mainly into four distinct categories [4, 26, 34]:

1. Exclusive Clustering, where the data are grouped in exclusive way, making each record
belong to a single cluster.

2. Overlapping Clustering, in which, unlike the exclusive, clusters can be overlapped, imply-
ing that records may belong to multiple groups at the same time.
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3. Hierarchical Clustering, in which clusters are organized with a hierarchical structure,
using dendrograms for their visualization.

4. Probabilistic Clustering, where a fully probabilistic approach is used.

The most used algorithm for clustering operations is de�nitely the k-Means, which is the
easiest to implement and belongs to the exclusive clustering category.
The de�nition of the number k of clusters to be searched within the data is up to the user and,
from the arrangement of the initial centres, depend the �nal results returned by the algorithm.
Usually, the centroids are chosen in such a way that they are as far away as possible from each
other.
The �rst phase of this algorithm, in addition to the de�nition and arrangement of the cen-
troids, also provides for the assignment of each point to a speci�c cluster, going to compute
the distance from each centroid and choosing the one with the least distance. This step can be
said to be concluded when all the points are assigned to a single group. At this point, there
is the calculation of the new centroids as barycentres of the clusters created, as average of the
points belonging to the same group. After that, the assignment of points of all the clusters is
performed again, repeating the process until there is a stabilization of the groups, meaning that
the di�erence between the old and the new centroids (considering two consecutive iterations) is
below a certain tolerance threshold [34]. This minimizes the quadratic error within the clusters
and creates groups of equal variance.
K-Means is a very e�cient and easy to implement algorithm but is extremely sensitive to ran-
dom selection of initial barycentres. In fact, it may happen that one of these does not present
any point in the neighbourhood thus creating an empty cluster, since the various iterations
would not change the content. It can be shown that, although the algorithm always �nds a
result, global convergence cannot be guaranteed and therefore, usually, multiple executions are
made even with di�erent initialization centroids (both by position and by number). Finally,
it is important to notice that the algorithm returns circular and separable clusters and is very
sensitive to both outliers and clusters with di�erent shapes and densities [4, 26, 34].

Another type of clustering widely used is the hierarchical one employed in those situations
in which there is the need to look for structures regarding connections existing between data.
Two types of hierarchical clustering can be de�ned [26]:

1. Agglomeration: groups are built with a bottom-up process starting from as many clusters
as the individual data, iterating until there will be only one cluster.

2. Divisive: it is characterized by the reverse process, top-down, starting from a single cluster
and iterating until there will be a cluster for each single data.

Between the two types, the �rst is the one most used as it is simple to implement. Given
a set of n elements to classify and an n × n similarity matrix, the process starts always by
assigning each record to a di�erent cluster to have n clusters. After that, the two most similar
(and therefore closest) clusters are selected and jointed to create a new one and decrease by one
the total number, also updating the similarity matrix. This process is repeated several times
until there will be a single group [34].
This type of data partitioning also has a speci�c graphical representation called dendrogram
where all the possible groupings are represented. A horizontal cut inside this graph represents
a set of possible clusters and allows visualizing, in simple way, the maximum distance between
points belonging to the same cluster in that speci�c situation (the vertical distance between
the individual points and the cut) [4].
Even this algorithm is quite used as it is not necessary for the user to de�ne the number of
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clusters to be created, since the algorithm return all possible solutions. However, they can only
be applied in those cases where the dataset is very small, as hierarchical clustering takes a lot
of time to complete (with a complexity O(n2)) and also a lot of memory resources.

In general, clustering problems are very time-consuming, more or less, when dealing with
large datasets. In addition, besides depending on the de�nition of distance, these algorithms
return results that can be interpreted in di�erent ways, depending on the analysed situation
and on the context [34].

2.4.2 Dimensionality Reduction Algorithms

The dimensionality reduction is an unsupervised learning problem that requires the model to
reduce the number of features within the dataset used, deleting or combining variables that
would have a limited or null e�ect on the result [25, 45]. Doing that the dimensionality of the
data would be reduced, thus allowing a better visualization. Just think that the human being
can see up to a maximum of three dimensions, while, normally, the data that are analysed far
exceed this value.
The dimensionality reduction algorithms allow, therefore, to remove those variables that have
many missing values or outliers and to eliminate the characteristics having low variance, which
would not contribute to the understanding of the data or, even, would compromise it, thus
simplifying its internal structures. Therefore, a data cleaning process must always be done
before performing any other analysis [5, 25].
These operations are extremely useful since curse of dimensionality must always be taken into
account. Often, in fact, the data used have high dimensionality, wherein each observation is
characterized by a large number of variables, creating major complications in case the storage
space is limited and there is low computing power to run a machine learning algorithm [47].
The curse of dimensionality is a huge problem that a�ects the entire �eld of machine learning
and is based on the fact that, as the variables of interest increase, increases proportionally also
the number of records useful for the representation of all possible combinations of values. In
addition, the more features to be used, the more complex the model will be, even creating
potential data over�tting problems. There is also to consider that, as the number of variables
increases, the data become increasingly scattered within the space they occupy, thus decreasing
the de�nitions of density and distance between points [4, 45].
The main purpose of dimensionality reduction, therefore, is to avoid over�tting and to select
only those features that bring important information to the model, thus also reducing the e�ects
of the curse of dimensionality. In fact, by doing so, it reduces the time and space required by
data mining algorithms, as well as allowing a better visualization of data and the elimination
of redundant variables [4, 45, 47].

Techniques that can be used for dimensionality reduction include Aggregation and Sam-
pling. The �rst one is a process that allows to combine two or more attributes into a single one.
This is done to reduce the number of variables on which the model would depend but also to
stabilize the data, since aggregated attributes usually have less variability. This creates smaller
representations in volume, providing anyway similar results for the same analysis. The second,
indeed, is used when working with very large dataset. With this technique, in fact, is selected
only a highly representative sample, that is a part of data that contains approximately the
same properties as the original dataset, on which to perform the various studies. In doing so,
it is possible to achieve appreciable results, which would di�er slightly from those that would
be calculated if would be used the entire dataset, but saving time and resources [4].
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Finally, there are two other techniques worth mentioning. The �rst is called Feature Selec-
tion and is the process of identi�cation and selection of important variables to be taken into
account within the dataset [45]. This is a technique that, like the others, allows to decrease the
dimensionality of the data, removing those variables that would not bring any more information
to execute speci�c predictions, reducing therefore also the training time of the algorithms. In
addition, there is a reduction in the complexity of the model which also implies a greater in-
terpretation of the results. The selection of these characteristics is usually carried out through
the computation of certain statistical values such as variance, correlation coe�cients or the
Chi-squared, in order to have useful data to derive some conclusions.
The second techniques, however, is the Feature Engineering that allows to generate new fea-
tures from those already existing, applying some transformation or speci�c calculations [45].
This method, combined with the previous one, allows to increase the accuracy of prediction,
creating new variables that can bring more information to the model, slightly increasing its
complexity. Usually, therefore, a certain trade-o� between the two operations is needed so it is
possible to get the best possible result without having to increase too much the waiting time
and the required resources.
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3. Case study and proposed methodology

Inside this chapter the steps of the KDD process are analysed in order to obtain appreciable
results of pending time prediction for each individual job submitted.
The �rst section describes the database and, subsequently, all the attributes present inside
the original dataset are discussed, to understand the use within this thesis project. In the
second section all the individual steps of the data cleaning process performed on the data are
explained, in order to clean them up of all the possible outliers present. Additionally, it will
also analyse the feature engineering process used to extrapolate information, from the starting
data, that are able to describe the context at the exact moment of submission of each individual
job on the architecture. The third section deals with all the statistical and graphic analyses
carried out both on the accounting data, present within the source data, and on the context
variables, in order to broaden the overall view of the available data and to understand its
intrinsic aspects. Finally, the fourth section explains the choices made to conduct the various
experiments, reported in chapter 4, and illustrates the best solution obtained to be able to
predict the pending time with the greatest possible accuracy.

3.1 The proposed methodology

The proposed methodology follows the KDD main steps, starting from the analysis of the
available data up to the implementation of a model able to predict, more or less precisely, the
time interval of the target variable.

Figure 3.1. Schema of the proposed methodology.

In �gure 3.1 the steps that have allowed a �rst realization of the prediction model, objective of
the thesis plan, are reported.
As it is possible to see this schema follows a precise colour code, grouping the blocks in two
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main categories: the blue phases belong to the o�-line process, that is executed with data pre-
viously collected and historicized, while those in orange characterize the online process, which
works on data created in real time. However, the model is not yet integrated into the man-
agement processes of the HPC cluster Iveco but, in case of new and well-structured data, the
implemented algorithm would still be able to return a response.

Given the small amount of information on the data made available by the company, Data
Integration, Data Cleaning, Feature Engineering and Data Exploration operations have been
carried out which are extremely useful respectively for organizing and cleaning up the data,
extract new ones and then perform statistical analyses to get a broader view of the problem.
Then we moved on to the experimental phase, called Validation in the schema reported in
�gure 3.1, where several tests were carried out to understand the behaviour of ML algorithms.
Thanks to this phase we arrived at the implementation of the model that will be later presented
in section 3.5.1.

3.2 Data Structures

In order to carry out this thesis activity, the company provided a database containing various
tables having inside all the information about the hardware components of the di�erent HPC
cluster, the submission of jobs and also other details about both hardware and software resources
(such as the licences required for the job execution). Among all the tables, it has been considered
only the one with the accounting data de�ned by all those variables useful to characterize the
submission of a job within the HPC cluster Iveco, which are reported and described below:

� job_id : is equivalent to a sequential number assigned by PBS to a speci�c job when it is
submitted to the HPC cluster. As will be explained in section 3.3, this attribute is part
of the primary key that will be assigned to the dataset.

� user : is a unique alphanumeric identi�er by which it is possible to recognize the user
who requested the submission of the job.

� ncpu : represents the number of CPUs that the user requires during the job submission
procedure to run it.

� que : is equivalent to the user-speci�ed queue on which to execute the job. Users choose
di�erent queues based on the discipline to which the job belongs. The technical charac-
teristics of each queue, and thus the distribution of the hardware resources of the Iveco
HPC cluster, have already been reported in the table 1.1.

� submit, start and end : represent respectively the dates of submission, start and end
of the job in UNIX format, indicating the number of seconds elapsed from the time of
Epoch (January 1, 1970).

� d_submit, d_start and d_end : are the equivalent of the times previously described
but represented as a formatted string. Then, in section 3.3, it will also be explained why
d_submit has been chosen as the second attribute that, together with job_id, composes
the primary key of the dataset.

� pend_time : is the time between the moment the job is submitted and the one it is
executed. Within this thesis it represents the target variable that the algorithm will try
to predict in the best way possible.
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� run_time : is the period of time the job appears in a running state on the HPC cluster,
ending when the results are returned to the user.

� whole_time : is the total time between the moment the job is submitted and the one
when the results are returned to the user. In essence, it is the sum of the two pend_time
and run_time variables described above.

� dim_inp and dim_out : are attributes which, technically, should contain respectively
the size of the input �les and the output results.

� cluster : is the tag associated with the HPC cluster used, since the company has several
HPCCs, in such a way there is the possibility to track jobs performed on speci�c clusters.

� softname : represents the name of the software with which the user wants the job to be
executed. Usually, the choice of the solver to be used is highly connected to the type of
discipline to which the job belongs and, consequently, to the queue on which it will be
launched.

� numlic0, numlic1 and numlic2 :they indicate how many licences, belonging to a spe-
ci�c type, are used to ensure that the job can be executed correctly.

Only some variables listed above will be used speci�cally to try to achieve the intended purpose,
other ones will be totally ignored or even deleted while others could be used in future works to
complete the entire project that provides for the optimization of both hardware and software
resources of the HPCC and also of the scheduling of jobs in the various queues.

3.3 Semi-Supervised Data Labelling

Starting from the dataset provided, containing 105 thousand records, some data cleaning oper-
ations were necessary to delete some possible errors within the data. In a �rst phase we tried to
better understand the type of data available and make it easier to identify possible outliers or
entire records that did not provide useful information for the purpose of the project and that
could even compromise its �nal results.
Following, there are all the steps implemented for the data cleaning procedure represented
within �gure 3.1:

1. The �rst concerns the removal of entire attributes that do not provide any useful detail
for the prediction of the target variable. The �rst two deleted variables, as mentioned
in section 3.2, are dim_inp and dim_out, because, for each record, they always present
the same value, that is 0. This is because, initially, with these attributes there was
the intention to save the size of the input �les and their relative output ones, but then
the procedure to perform these operations was no longer implemented and the variables
remained meaningless.
A further attribute deleted from the dataset is cluster, which contains the name of the
system on which the job was launched. The problem is that the records within the
table taken into consideration were all launched on the same HPCC and therefore the
tag is constant for each record. In fact, the di�erentiation between records, based on
the architecture that was used for execution, was made at database level, using di�erent
tables containing jobs executed on speci�c clusters.
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2. Three other variables which do not provide any useful information are numlic0, numlic1
and numlic2. As explained in section 3.2, these attributes contain the number of licences
of three di�erent types used to execute the job. The main problem, however, is that only
a small part of these records is associated with the correct values, while most have only
0 as it. This is due to a bug in the procedure used to save this data, that can �nd this
information only for speci�c solvers.
These variables have not been completely eliminated, as the three previous ones, because,
although they do not provide information for the case study analysed in this thesis and
present a majority of outliers, it may be possible in the future to make changes by going to
search for the correct values directly in the �les generated by PBS during the submission
of jobs (also called �raw� �les because they save the data in a very compact format that
is also di�cult to read). For these reasons, these three variables will not be considered at
this stage.

3. After performing some graphs to better understand the type of variables available, it
was noted that, as regards the softname attribute, the categorical values contained were
case-sensitive strings when it was expected to �nd unique names for each software avail-
able. To solve this problem all the values of this variable have been transformed to the
corresponding ones containing only lowercase characters. These changes, in addition to
others that will be described below, can be noted in the �gure 3.3, where the situation
before and after the data cleaning process is reported.

4. Again with regard to the softname attribute, there were two other cases on which it
was necessary to take action. The �rst concerns the presence of records associated with
software no longer used, such as �re and permas. In fact, all the records having one of
this software as the value of the variable have been deleted, being no longer used by the
used and not bringing, therefore, useful information for the development of the plan. The
second case concerns all records having as softname value the string �unde�ned�. The
data, in the �rst period of use of the system (2014-2016), had associated this string when
a software was requested whose name was not present in a speci�c list. Initially, we tried
to save these records by de�ning speci�c conditions based on the launch queue, trying to
assign the real name of the solver who had executed the job. The problem found is that,
going on, it was noticed that these rules could not generalize well all the present cases,
not giving therefore the certainty that the assigned software was really the used one, with
the risk of adding an error component to the prediction system. So, later, it was decided
to delete all these records, cancelling a good part of the original dataset.

5. Also with regard to the que attribute have been carried out cleaning operations similar
to those previously analysed for the softname. In fact, following the exploratory analyses
and the graphs in the �gure 3.2 reported in section 3.4.1, were deleted all those records
presenting as value the strings �permas_bm�, �fast� and �workq�, as these queues are no
longer present within the architecture now being considered. In addition, it was also
necessary to take actions for a further possible value of this variable, that is �normal�.
This concerns the �rst year of use of the architecture (2014-2015) in which, initially, there
was no subdivision of resources by queues and then there was a single queue, subsequently
renamed �normal�. As a result, the tuples associated with the latter case have also been
eliminated, as it was not possible to create conditions such that these data could get back
inside the correct values.

6. By carrying out exploratory analyses within the dataset, two di�erent cases of data du-
plication were also noted. The �rst concerns the exact copy of all the attributes of some
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records repeated several times. This was due to an error in the data collection script
that did not perform any check during the database saving operations. To overcome
this problem only one tuple per group was held, deleting the other duplicate records.
The second case is the duplication of only job_id values that were initially believed to be
unique within the table. Analysing this situation, it was found that this attribute was not
considered unique, as it was a value assigned by PBS, whose variable was easily alterable
in case of technical problems. In fact, the problem of this last duplication occurred due
to a shutdown of the system in the �rst half of 2015 that reset the PBS counter. Since
all the records a�ected by this error technically could be considered as useful data, it was
decided to use as primary key of the table the pair (job_id, d_submit), as announced
in the section 3.2, thus eliminating the problem of non-uniqueness in the identi�cation of
records.

7. During the descriptive analyses carried out for each variable of interest, discussed in the
section 3.4.1, it was noted that some records in the dataset had run_time = 0. This
was a problem because it implied that the job had never been executed. In fact, later, it
was understood that these situations were due to jobs performed on nodes with technical
problems, which were seen by PBS as free nodes, and therefore usable in the scheduling
phase, but which, in truth, were not able to perform any operation.
Continuing the exploratory analysis speci�cally for this attribute it was found that many
tuples had extremely low run_time values, a sign that the solver stopped the execution
due to errors within the model to simulate, as con�rmed by users. To overcome this
problem, considering that there was no variable available (even in PBS raw �les) that
could say with certainty whether the execution of the job had ended correctly or not,
it has been de�ned, together with the users, a reasonable threshold such that jobs with
run_time less than that value could be considered as wrong. This threshold has been set
at 900 seconds (15 minutes), as, for execution times below this limit, users are used to
launch simulations locally instead of occupying the resources of the HPC cluster.

8. The last step of the data cleaning procedure was designed to �nd out, in some way, which
jobs were successful and those that had encountered errors both at the software level
(errors in the model) and at the hardware level. During this search it has been noticed
that in the raw �les of PBS exists a variable, called Exit_status, to which are associated
numerical codes able to put in relation the single job with a speci�c event (the meaning
of each code can be found online at the NASA page [35]). Although these codes did
not have the meaning we hoped for (that is categorizing the job in general as concluded
correctly or not), as they only explain the work done by PBS but do not give information
on the execution by the solver, through this step it was possible to delete only a part of
the jobs that did not return the expected results. In addition, all the jobs performed in
2014 and the �rst half of 2015 were completely deleted due to the lack of PBS raw �les
for this period, thus making impossible to �nd this information.

Starting from about 105 thousand records, after having applied all these data cleaning opera-
tions, we have arrived at a fairly clean dataset containing a little more than 25 thousand records,
minimizing the possibility of prediction errors caused by external contamination. Among these
steps, the one that most contributed to this marked cut inside the dataset was the threshold
set at 900 seconds with regard to run_time values that, alone, allowed the deletion of more
than half of the data available. The second most useful step in terms of cleanliness was the
elimination of sofname = ”undefined” which counted about 27 thousand records, of which,
however, 16 thousand already met the condition of the 15 minutes on run_time.
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Inside the database, to make some clarity on the available hardware resources for each indi-
vidual queue, has also been added a table containing all the relevant information, which have
already been reported in the table 1.1, so to have a �xed and stable reference.

The main problem, however, after performing the entire cleaning procedure, is that in the
current table there is no reference to variables that can describe the status of the HPC cluster
at the submission time of each individual job. Having only the target variable available but not
the input attributes, it is extremely di�cult to reach the goal set for this thesis. Therefore, a
feature engineering process, as represented in �gure 3.1, was carried out to compute variables
able to de�ne the context of the architecture when a job is taken over by PBS.
Following are reported the new variables identi�ed:

� jobs_in_queue : is the number of jobs that, when a new job is submitted, are waiting
for resources to be able to run.

� jobs_running : is the number of jobs that are considered running when a new job is
submitted.

� time_in_que_tot : considering all the jobs waiting for resources to be executed, it is
the sum of the individual waiting times, that is the sum of the time intervals that go from
when these jobs were submitted to the taken over, by PBS, of the new job. To simplify
and clarify the concept, if at the time a job is submitted there are two jobs waiting, one
from an hour and the other from 30 minutes, the value of this variable will be equal to 1
hour and 30 minutes, that is their sum.

� time_running_tot : considering all the jobs de�ned in running, it represents the sum
of their execution times, that is the sum of the time intervals that go from the moment
in which these have been executed to the one in which the new job has been submitted
on the HPC cluster.

� cores_available : this attribute allows to identify the number of available cores on the
HPCC, limited to the queue on which the job is executed. Always accept only integer
values since the number of cores allocated to a system can never be decimal, being physical
components.

� nodes_available : de�nes the number of nodes currently available on the HPC cluster for
the speci�c queue on which the job was executed. Depending on the queue considered,
this attribute can take a decimal value since, in some cases, several jobs can be run
consecutively on the same node.

� state : this is a variable that can de�ne what happened to the job at the time it was
submitted. In fact, it can only take two types of values, �RUNNING� and �QUEUE�,
which, respectively, de�ne whether the job will immediately get the resources it needs to
be executed or whether it will have to wait for them to be released before being assigned
to it.

The feature engineering process, to extract the variables listed above, uses information about
both the queue on which the job was launched, since each has a di�erent resource availability,
and both submit, start and end times associated with its execution. To perform this process,
however, almost all the available data were used, applying only part of the data cleaning
operations previously analysed, as the jobs considered as wrong also occupied the resources
of the HPC cluster and therefore conditioned the times of other jobs submitted later. More
precisely, the data cleaning operations used also in this phase are the selection of the data with
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a value of que not present in the table 1.1, the deletion of the columns dim_inp and dim_out,
the transformation of all the softname values in order to obtain unique values for each usable
software, the elimination of those jobs with run_time and pend_time equal to 0 and, �nally,
the deletion of duplicates explained in point 7 of the previous list.
The �rst part of the process iterates on all the que values available in the HPCC, allowing to
select only jobs executed on a speci�c queue and to initialize the variables representing the
technical speci�cations. After that, it is cycled on every single job selected, called jx, and, for
everyone, it is searched separately those jobs, submitted previously, that could be considered
as running or waiting for resources. To identify the �rst category of jobs (those in running) the
following conditions were used:

1. d_submit < d_submitjx

2. d_start < d_submitjx

3. d_end > d_submitjx

In this way it was possible to identify all those jobs launched before the job considered was
submitted but concluded after that time. Instead, the following conditions were used for the
selection of the records considered as in pending:

1. d_submit < d_submitjx

2. d_start > d_submitjx

3. ncpu ≤ ncpujx

The �rst one is the same as in the previous case, the second serves to de�ne the waiting state of
a job, while the last is used to take into account the execution policies de�ned by the company
for the speci�c architecture. This is because, among the pending jobs, those that require less
resources will always be executed �rst.
This procedure has allowed us to compute the context variables, previously analysed within
this section, for about 90 thousand records of the original dataset, that is about 90% of the
entire amount of data. Only later were selected the information belonging to those records
considered corrected and whose primary keys were presented within the cleaned dataset.

3.4 Data Exploration

The analysis phase of the available data is extremely important to understand in depth the
information with which to work. As can be seen from the schema shown in �gure 3.1, these
operations have been carried out both on accounting and context data. With this process it is
intended to extract as much knowledge as possible to be able, then, to use it when there is the
need to make choices for the composition of the prediction algorithm. This extraction, in this
case, takes place mainly through statistical analysis and graphical visualizations.

3.4.1 Analysis on accounting data

The �rst statistical analyses, after the data cleaning procedure, were carried out on the ac-
counting data since they were available from the beginning.
We began to study the distribution of categorical variables, in this case represented by que and
softname, to understand more deeply the type of data available to us. In the �gures 3.2 and
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3.3 are reported the distribution of the attributes in question both before and after the data
cleaning operations, so that it is possible to notice the changes discussed in the section 3.3.

(a) Jobs distribution by queue before data cleaning (b) Jobs distribution by queue after data cleaning

Figure 3.2. Distribution of jobs considering the di�erent queues available both before and
after data cleaning operations.

As for the distributions shown in �gure 3.2, it can be noted that, despite the cleaning operations,
the queues maintain more or less the same proportions, and therefore the frequency of use
remains constant.
The same thing can be noted in the case of the distribution of software available, shown in
�gure 3.3, used for the execution of jobs. In fact, the cleaning operations halved the types of
software available, but only because these were repeated.

(a) Jobs distribution by softname before data cleaning (b) Jobs distribution by softname after data cleaning

Figure 3.3. Distribution of jobs considering the di�erent softwares available both before and
after data cleaning operations.

From the graphs reported in the �gure 3.3 it can also be noted how the application of the data
cleaning has caused the drastic, but necessary, cancellation of 27 thousand records united by
the value �unde�ned�. Despite this, also for the variable softname it can be noticed that the
proportions do not change and, therefore, also in this case the frequencies of use of the software
for the execution of the jobs remain constant.

After having extrapolated information from the categorical variables available, it was de-
cided to study the level of correlation present among the numerical variables belonging to the
dataset, and, to do this, it was necessary to examine its distribution since this is a fundamental
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condition for deciding the correlation index most suited to the situation under analysis. Pre-
cisely for this reason it was decided to use the Shapiro-Wilk normal test, analysed in the section
2.2.3 since it is the one generally most in use. Through this test the results of W and p-value
are obtained as shown in the table 3.1.

Table 3.1. Results of the Shapiro-Wilk normality test for some accounting variables

Variable W p-value
ncpu 0.6766 0
submit 0.9725 0
start 0.9726 0
end 0.9725 0

run_time 0.3261 0
pend_time 0.2577 0
whole_time 0.3777 0
numlic0 0.7703 0
numlic1 0.4039 0
numlic2 0.0158 0

Looking at the results of this test we would say that the null hypothesis, that is that the
distribution of data for the these variables is normal, is completely rejected since the p-value
is 0 for all variables and therefore below the threshold value (by convention equal to 0.05)
indicating the level of signi�cance of the test. The problem is that one of the conditions of
the Shapiro-Wilk test, regarding the dataset's size, in this case is violated as there are more
than 5000 records inside the dataset. To overcome this problem the distribution charts of the
variables of interest were generated, shown in �gure 3.4.

Figure 3.4. Distribution of the most important accounting variables.

As can be seen, these graphs con�rm the assumptions previously made through the p-value.
From the representations none of the variables has a distribution that follows the normal trend.
From this information it was understood that, in order to calculate the correlation matrix

47



CHAPTER 3. CASE STUDY AND PROPOSED METHODOLOGY

between the numerical variables, it was not possible to use the Pearson coe�cient, which sets
as a condition the normal distribution of the variables on which the computation is to be carried
out. Therefore, between the Kendall ranks coe�cient and the one of Spearman it was decided
to use the �rst, given its reliability, thus obtaining the matrix shown in the �gure 3.5. The
values reported were derived from the data after the cleaning procedure, to �nd possible real
relationships and not caused by the e�ect of outliers.

Figure 3.5. Correlation matrix representing the level of correlation between couples of ac-
counting variables.

These values show how the submit, start and end times are extremely interrelated. In addition,
these three variables are also perfectly correlated with the job_id, a sign that, after cleaning
the data, there were no more failures that could have changed the value of the PBS counter,
but instead made it a sequential and increasing value to every job submission.
Another relationship that jumps to the eye is the one present between the variables whole_time
and run_time. This is quite normal since the �rst one is given by the sum of the second with
the pend_time. In addition, the discrete correlation between whole_time and pend_time sug-
gests that the values of this last one are generally lower than run_time values and therefore,
in most cases, they will contribute less to the �nal whole_time value.

Considering that this type of matrix is used to display correlation indices for numerical
variables, it was decided to calculate χ2 (Chi-squared) and its related Cramer's V for pairs of
categorical attributes or containing discrete numerical variables. The results of this statistic,
reported in the table 3.2, always refer to the data cleaned up.
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Table 3.2. Results of the Chi-squared index and its relative Cramer's V for some couples of
accounting variables

Variable 1 Variable 2 χ2 Cramer's V
que softname 49100.571 0.621
ncpu que 46619.146 0.605

softname ncpu 41968.350 0.485

From these values it emerges that all the pairs of variables present a medium correlation. The
lowest of the three is the last, which means that there is no great relationship between the
number of CPUs required and the software used. As for the second pair it is possible to see
a slightly higher value for the value of Cramer's V, which fully re�ects the situation since the
number of CPUs is also required according to the technical characteristics of the speci�c queue,
reported in the table 1.1, as well as depending on the complexity of the job to be executed.
The result of the �rst pair, however, highlights a situation in which the rules, de�ned by the
company, in which the solvers can use only some queues available according to the type of
discipline to which the job belongs, are more or less respected.

For what regard the pair of mixed variables, that is those with a categorical attribute and a
continuous numeric one (not discrete because otherwise χ2 with the relative Cramer's V would
have been applied), the index of η2 (Eta-squared) was used. The results of these analyses are
reported in the table 3.3 and are always computed from the cleaned data.

Table 3.3. Results of the Eta-squared index for some couples of accounting variables

Variable 1 Variable 2 η2

que run_time 0.067
que pend_time 0.028
que whole_time 0.064

softname run_time 0.101
softname pend_time 0.072
softname whole_time 0.113

As can be seen from these values, none of the three continuous numerical variables taken into
accounting has a relationship with the two categorical attributes. This means that the job
times do not depend in any way on the queue on which it is launched or on the software used
for its execution. Most likely, these attributes will depend on the properties of the model itself,
which are not currently available, and the context of the HPC cluster characterized, nowadays,
by the context variables described in section 3.3.

After the calculation of these indices, we wanted to search for the most used solvers and
queues by users, to identify, considering the law of 80/20 analysed in section 2.2.1, those that
would allow solving most of the problems by acting in a targeted way on a small sample.
Therefore, Pareto's graphs have been realized both for the software used by the users and for
the queues used for the execution of the jobs.
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Figure 3.6. Pareto chart about submitted jobs considering the software employed for the
execution of the operations.

In �gure 3.6 it is possible to see the Pareto diagram speci�cally for the �rst case. From this
representation we can notice that to satisfy about 80% of the problems we would have to act
directly on the �rst three highlighted software, that are Abaqus, Nastran and Starccmp. With
a similar reasoning we can also say that, always in this case, it would be pointless or unfruitful
to solve problems for software such as Lsdyna, Actran and Adams which, together, are less
than 2% of the performed work on the HPC cluster.

Figure 3.7. Pareto chart representing the distribution of the jobs considering the queue where
they were submitted on.

About queues, however, the trend of the Pareto diagram, shown in �gure 3.7, presents a quite
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di�erent situation from the one previously analysed. As can be seen, it is true that 80% of the
cases are always concentrated in the �rst three classes, but, in this case, even the subsequent
classes have an appreciable relevance compared to, instead, the result for the softname case.
Later, when the implementation strategy of the prediction process was de�ned, it was decided
to use all the jobs belonging to the cleaned dataset anyway, to avoid further resizing of the data.

After that, all variables that could provide useful information were selected, like ncpu,
run_time, pend_time and whole_time, on which descriptive analyses were carried out to obtain
the values of the most relevant position indices such as quartiles, mean, standard deviation, in
addition to the minimum and maximum value of the variables.
This kind of analysis was performed both before and after data cleaning so that it is possible
to make a comparison and make visible the changes made. In the table 3.4 are reported the
statistics, associated with the selected attributes, computed on the data before performing the
cleaning process.

Table 3.4. Results of the descriptive analysis using the accounting data before the execution
of the data cleaning process

Variable mean std min 25% 50% 75% max
ncpu 23.5 25.5 1 16 16 32 240

run_time 9325.3 39618.8 0 64 660 2642 2144795
pend_time 2249.1 13671.9 0 6 14 41 867451
whole_time 11574.4 43771.1 0 104 846 3735 2144812

As mentioned in the section 3.3, it immediately catches the eye a value within the table 3.4 that
it would be expected di�erent. In fact, the minimum value equal to 0 associated to the run_time
variable means that some jobs, present inside the dataset, have never entered in execution and,
therefore, cannot be used for our purpose because they do not bring useful information. From
this came the need to enter the run_time = 0 condition to select all those records to be
deleted. Another value that aroused, initially, some suspicion was the minimum value equal
to 0 of the pend_time variable, because, at the time when the HPC cluster has the resources
to run a job, PBS still needs a few seconds to select the nodes, initialize them and �nd the
necessary licences. Despite this, users have reported that these cases are completely acceptable
considering the cases when the PBS server is unloaded, thus performing these operations so
quickly that can be considered as instantaneous.

Table 3.5. Results of the descriptive analysis using the accounting data after the execution of
the data cleaning process

Variable mean std min 25% 50% 75% max
ncpu 26.3 27 1 16 16 32 240

run_time 19320.6 53059.7 900 1887 3743 12815 2144795
pend_time 3899.3 15812.8 2 9 24 582 313975
whole_time 23219.9 57263.4 904 2157 4883 16744.5 2144812

Comparing the results of the analyses obtained on the cleaned data, reported in the table 3.5,
and those obtained from the starting data, reported in the table 3.4, shows how the values
of some indices, concerning the ncpu variable, remain completely identical while two present
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few changes. This means that data cleaning operations did not change the distribution of this
attribute. It can also be noted that the minimum value of the run_time attribute respects the
rules imposed, while, as for the pend_time, this value re�ects the general situation in which the
resources are immediately available, but that minimum amount of time is required to organize
them and make them usable. An ulterior aspect to evidence is given from the fact that the
quantiles referred to the three times change, but they are always distributed in the low part of
the values associated to these variables, such that the 25◦, 50◦ and 75◦ percentiles are smaller of
the mean value (also low compared to the maximum value). Finally, we can see how the values
of the indices for run_time and whole_time di�er little, con�rming therefore the hypothesis
that, despite the cleaning process, the �rst variable contributes more in the �nal value of the
second one.

To deepen the study of the distribution of the values of pending time a clustering technique
has been applied. In fact, these data have been divided into nine separate clusters, visible in
the �gure 3.8, to facilitate the understanding of the knowledge contained inside.

Figure 3.8. Visualization of the 9 clusters created to analyse the distributtion of the pending
time values.

In the graph are represented the centroids (indicated with+) and, with di�erent colours, all the
records belonging to the di�erent clusters created. Through this information it was possible to
generate the bar chart and the boxplots shown in the �gure 3.9, thus allowing a more in-depth
analysis.

(a) Bar chart representing the absolute and relative
frequency of each cluster.

(b) Boxplots representing the distribution of the values
of each cluster.

Figure 3.9. Representations of the clustering process over the pend_time attribute.
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As it is possible to see in the var chart shown in the �gure 3.9(a), the vast majority (just over
85%) of the available data fall within the �rst cluster. From the relative boxplot, present in
�gure 3.9(b), we can notice another important aspect, that is the excessive presence of outliers
inside the cluster, which means that the boxplot is completely crushed on the low values of the
graph. From this it can be inferred that the descriptive indexes related to the cluster 0 are all
concentrated on the bottom side of the range considered, which is con�rmed by the data in the
table 3.5.
About the other clusters, one information that can be derived is that most of the values be-
longing to each cluster tend to be concentrated all around the median. From the analysis of
the boxplots, in addition to the dispersion of the data around the median, it is also clear that
there is a higher frequency of the medium-low values within the clusters, which explains the
downward displacement of the box. This con�rms the presence of a positive asymmetry, as
already highlighted by the bar chart in �gure 3.9(a).
Following the data previously analysed, it was decided to carry out a further process of clus-
tering speci�cally on the data belonging to cluster 0. This time, to try to obtain a better
distribution, it was decided to use twelve clusters instead of nine. The results extracted from
this further analysis are shown in �gure 3.10.

(a) Bar chart representing the absolute and relative
frequencies of each sub-cluster.

(b) Boxplots representing the distribution of the values
of each sub-cluster.

Figure 3.10. Representations of the clustering process over the values belonging to cluster 0
of the pend_time attribute.

As can be seen from the bar chart in �gure 3.10(a), the situation was quite similar to the
previous case. In fact, about 70% of the total data are grouped in the lower part of the interval
(belonging therefore to cluster 0.0 as represented in �gure 3.10(a)). In addition, it is impor-
tant to point out that the percentages reported on the bar chart columns refer to the relative
frequency calculated with respect to the entire dataset and not only to the data belonging to
cluster 0.
From the boxplots shown in the �gure 3.10(b) it can be observed that, although the data have
been further subdivided into sub-clusters, the cluster 0.0 still has outliers whose values are
therefore higher than the descriptive index Q3, as explained in section 2.2.1. As for the other
clusters generated, they all have internal values to their descriptive indices and grouped around
the median. In addition, the averages of these clusters tend to have values nearly to the medians.

The deepening of the study of the distribution through the clustering techniques has been
successively applied also to the run_time attribute. Considering the general process applied to
the entire dataset, the information found was practically identical to the information related to
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the pend_time. Also for the run_time, the data were divided into nine clusters and just over
75% of them belonged to cluster 0. From this subdivision, the boxplot related to cluster 0 is not
completely crushed, but it still has several outliers whose values are above the Q3 threshold.
As for the pend_time, also for the run_time, due to the high numerosity, it was decided to apply
an additional clustering procedure only for the data belonging to cluster 0, but, compared to
the analysis made for the �rst, in the second nine clusters seemed more than enough to recover
some information quite accurate, as can be seen from the results reported in �gure 3.11.

(a) Bar chart representing the absolute and relative
frequencies of each sub-cluster.

(b) Boxplots representing the distribution of the values
of each sub-cluster.

Figure 3.11. Representations of the clustering process over the values belonging to cluster 0
of the run_time attribute.

Also in the case of run_time, the percentages represented in the chart in �gure 3.11(a) refer to
the relative frequency calculated in relation to the total data available.
The scenario depicted by this further subdivision into nine sub-clusters is quite di�erent from
the situation previously seen for the pend_time. It is interesting to notice that the distribution
of values is not concentrated entirely on a single group but divided into several clusters. This
trend is con�rmed by the relative boxplots, represented in the �gure 3.11(b), which have no
outliers and the data are grouped around the median. From the analysis of the boxplots it
can be deduced not only the dispersion of the data around the median, but also how the
distributions turn out to be asymmetrically positive, con�rming what already highlighted by
the histogram. In fact, there is a higher frequency of the medium-low values, which explains
the downward of the box.

3.4.2 Analysis on context data

After the feature engineering procedure for the extrapolation of the context variables, statistical
and graphical analyses were carried out on these data to obtain all possible information.
As previously done for accounting data, we wanted to analyse the level of correlation present
between the numerical context attributes available within the dataset. Since a fundamental
condition for the decision of the correlation index to use is the normality of the distribution
of the variables, it was decided to apply the Shapiro-Wilk test �rst, discussed in section 2.2.3,
thus obtaining the values of W and p-value reported in the table 3.6.
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Table 3.6. Results of the Shapiro-Wilk normality test for some context variables

Variable W p-value
ncpu 0.6766 0

jobs_in_queue 0.2530 0
jobs_running 0.8920 0

time_in_que_tot 0.0977 0
time_running_tot 0.2376 0
cores_available 0.7733 0
nodes_available 0.7717 0

pend_time 0.2577 0

From the data found, looking only the value of the p-value for all the variables, it would be to
say that the null hypothesis can be rejected since this value is inferior to the threshold value
α (for convention equal to 0.05) that indicates the test signi�cance level. However, this value
cannot be taken into account as it is again violated one of the basic conditions associated with
the Shapiro-Wilk test, that is the dimensionality of the dataset, which must not exceed the
threshold of 5000 records. So, to overcome this problem, the distribution graphs of the context
variables were executed, obtaining the representations shown in �gure 3.12.

Figure 3.12. Distributions of the context variables.

As can be seen, these graphs con�rm, to a large extent, the assumptions made previously
through the p-value, showing that none of the variables of interest has a distribution that
follows a normal trend. From this it was concluded that it was not possible to use the Pearson
correlation index and, therefore, between the Kendall ranks correlation coe�cient and the one
of Spearman, it was decided to use the �rst one to maintain some continuity with the analyses
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performed on the accounting data, in addition to the fact that it is the most reliable of the two.
The correlation matrix obtained is shown in �gure 3.13.

Figure 3.13. Correlation matrix representing the level of correlation between couples of
context variables.

Within this representation, it is possible to see how the jobs_in_queue and time_in_que_tot
variables are highly correlated with each other. Although this value may seem plausible, it
is believed that this is altered by the presence of a bias, regarding the fact that many of the
values of these two attributes are associated with 0. This is because, in feature engineering
procedure analysed in section 3.3, at the time when a job was associated with the state �RUN-
NING�, meaning that the resources necessary for its execution were immediately available, the
jobs_in_queue and time_in_que_tot variables were assigned directly to 0. Since the number
of jobs associated with the state �RUNNING� is about 19 thousand compared to the total, this
may have caused this high correlation value between the two attributes.
Another extremely high value is the one present between the pair cores_available and nodes_available,
which is entirely justi�ed since, to compute both variables, a common feature is used based on
the queue taken into analysis.

Since these matrices are used only in presence of continuous variables, in case of categorical
attributes or discrete numerical one, χ2 (Chi-squared) is computed and, subsequently, the
relative Cramer's V. the results of this two statistics are shown in the table 3.7 below.

Table 3.7. Results of the Chi-squared index and its relative Cramer's V for some couples of
context variables

Variable 1 Variable 2 χ2 Cramer's V
que cores_available 49100.571 0.621
que state 645.097 0.159
que jobs_in_queue 999.697 0.089
que jobs_running 16682.036 0.362
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From these results it is possible to see that jobs_in_queue and jobs_running are not at all
related to the queue on which the job is executed. The only medium relevant result is the one
concerning the pair que and cores_available. This correlation is explained by the fact that
the value of the second variable depends on the physical characteristics of the queue, shown in
table 1.1, and therefore on the queue itself.

Subsequently, to highlight the level of relation present between mixed variables (containing
a discrete numerical or a categorical variable and a continuous numerical one), the η2 (Eta-
squared) was computed, the results of which are shown in the table 3.8.

Table 3.8. Results of the Eta-squared index for some couples of context variables

Variable 1 Variable 2 η2

que time_in_que_tot 0.011
que time_running_tot 0.044
que time_tot 0.047
que pend_time 0.028

Through these values it can be noticed that all the four times, put in correlation with the type
of queue on which the job is launched, have extremely low values of η2, sign this of a high
statistical independence between the attributes considered.

Finally, it was decided to better analyse the distributions of the two discrete numerical
variables, namely jobs_in_queue and jobs_running, to try to extract useful information to
improve the prediction process. The charts for these distributions are shown below in the
�gures 3.14 and 3.15.

Figure 3.14. Distribution of the values of jobs in queue, representing how much records have
a speci�c number of jobs waiting for resources when a new job is submitted.

57



CHAPTER 3. CASE STUDY AND PROPOSED METHODOLOGY

From the data reported in �gure 3.14 it can be noted that the frequency of appearance of a
certain event (understood, in this case, like number of times in which it has been found the
same number of jobs waiting for the resources) decreases to the increment of the number of job
in standby.

Figure 3.15. Distribution of the values of jobs running, representing how much records have
a speci�c number of jobs using resources to execute speci�c operations when a new job is
submitted.

Indeed, from the data reported in �gure 3.15, it is possible to see a completely di�erent trend
from the one associated to the attribute previously considered. Through this representation, in
fact, there is a more discontinuous trend that, compared to the �rst, is somewhat reminiscent
of the one of a Gaussian, thing that is con�rmed also by the relatively high value of W inside
the table 3.6.
The data used for these last two representations consider only those jobs that have associated to
the variable state the value �QUEUE�. This is because, for the jobs considered to be immediately
in running (state = ”RUNNING”), the value 0 has been assigned to the variables in question
and to the time_in_que_tot, since the information made, in this case, for the prediction
of pending time were entirely irrelevant. In fact, the pending time, for the jobs that have
undergone the resources necessary for its execution, currently depends only on the variable
cores_available (and, consequently, also nodes_available, since the two are highly correlated)
and none of the other variables computed by the feature engineering process.

3.5 Classi�cation Strategies

In this section, �rstly, the classi�cation model, implemented for the prediction of the time
interval to which belongs the pending time of a job, is analysed.
Subsequently, the steps implemented in the classi�cation �eld will be described and justi�ed, as
in the case of the discretization type (by frequency or by interval width) that are possible to be
applied. In addition, particular attention will be paid to the selection process of classi�cation
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algorithms also emphasizing the limits that each of them presents to justify the choices made
as part of the best solution among those analysed in the section 4.2.

3.5.1 The classi�cation approach

The following is an analysis of the best approach identi�ed as result of the various experiments
carried out, which are reported in section 4.2.
The solution found is part of the category known as hierarchical classi�cation in which more al-
gorithms are used to predict the class of belonging. In fact, the system created, whose schema is
shown in �gure 3.16, is composed of several prediction levels in which the training of algorithms
depends on the class predicted in the previous level. Only correctly classi�ed records are reused
for the algorithm training in later levels, resulting in a physiological decrease of records each
time you move to a following level (since it is not possible to expect a 100% correct prediction).
The classes' characterization for each classi�cation level is experimental-driven, meaning that
the choice of thresholds is based entirely on the results of experiments previously conducted,
the results of which are reported in the section 4.2.
For each type of classi�cation used to de�ne this prediction system the following input variables
have been used: que, ncpu, jobs_in_queue, jobs_running, time_in_que_tot, time_running_tot
and cores_available. Obviously, the que, before being used for the classi�cation process, has
been numerically categorized.

Figure 3.16. Schema of the best classi�cation solution found.

In �gure 3.16 we try to schematize, in the best way possible, the operation of the hierarchi-
cal process with which the best results have been obtained. Within this image are presented
the algorithms selected at each level to compose the �nal system, the ranges used, so that at
each level there are the best results, and, in the end, the �nal prediction classes associated with
their ranges (green boxes with orange labels). In essence, are depicted all the steps that the
system performs to get assign the most appropriate class, given the input variables provided.
The �nal result can be seen as the graph of a decision tree, in which, based on the values of
certain variables, it is possible to choose the path to follow to reach the prediction class. In this
case, the input attributes for this tree are the values of the predicted classes in the previous
classi�cation levels.
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The �rst decision concerns the binary classi�cation threshold applied in the �rst level. In-
deed, the 60 seconds threshold was chosen considering that, among all the binary experiments
performed and discussed in section 4.2.3, this was the one that presented the best results. After
that, analysing the results obtained from the evaluation of the models, the values of which are
reported in the table 4.28, the possible choices were the KNN or the MLP. With the same
initialization time, the MLP allows a better prediction in real time even for very complex func-
tions and, for this, it was chosen compared to the KNN.
As for the second level, �rst of all an evaluation of all the algorithms has been performed to
understand how these worked with the data available in case there is the need to predict two
intervals de�ned by the threshold of 3600 seconds, thus obtaining the data given in the table
4.11. This threshold has been designed in such a way that it can create speci�c classes that
can give fairly precise feedback, at the level of timing, to users. From the obtained results it is
evidenced that the MLP is the algorithm with the best values among all (con�rmed also from
the confusion matrices generated for each of them and brought back in the �gure 4.4) which is
why it was chosen for the prediction to be performed at the second level.
The third-level binary classi�cation associated with records of class 1.0 was divided considering
the results obtained in the prediction test where the threshold was set to 900 seconds. However,
given that the boundary situation, in this case, was di�erent from the experiment discussed
in section 4.2.3.1, in order to decide which model was the most accurate in the assignment of
records belonging to class 1.0, an evaluation of the algorithms has been carried out, obtaining
both the results reported in table 4.12 and the matrices in �gure 4.5. From the data obtained
it is noted that the most e�ective model in the prediction of these two classes is the Decision
Tree, whose choice is given by the fact that both classes were classi�ed fairly well compared to
the other algorithms, who tended to predict one class better that the other.
Finally, for the prediction of class 1.1 it was decided to apply a classi�cation to 3 classes, to ob-
tain 6 �nal classes of prediction, as happened in the experiment analysed in section 4.2.1.3 and
also to not compromise too much the results related to this classi�cation. All the algorithms
selected to decide which was the most suitable for this last step of prediction were evaluated
and the results reported in table 4.13 were obtained. Taking these values into account and
studying the confusion matrices shown in �gure 4.6, it was decided, also in this case, to use the
Decision Tree for the third level classi�cation of class 1.1, since it presents the best results in
almost all indicators computed.

It is important to note that all the algorithms that make up the hierarchical model are
interpretable, that is, starting from speci�c input values, it is clear the process for which a
certain value is returned. This is implicit for the Decision Trees used in the third level as they
are algorithms that can be interpreted by de�nition.
In the case, instead, of the two MLPs used for the classi�cation of the �rst and second level,
being these considered as black box, it was necessary an intermediate step of translation with
the use of Decision Trees: the latter are provided with the input variables of each MLP, while
as target variable, instead of using the real values, the predictions made by the MLP are used.
Following these tests, the results obtained are extremely signi�cant since the Decision Tree
employed for the �rst level explains the MLP to 99%, while the one employed in the second
level to 93%.

3.5.2 Discussion

Early evaluated classi�cation algorithms included Logistic Regression, Perceptron, SVM, KNN,
Decision Tree, Random Forest and MLP. The main characteristics that led to use of these mod-
els and also the problems encountered will be analysed below.
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Logistic Regression is a linear classi�cation algorithm that, although it is optimal in dichoto-
mous classi�cations cases, it has been possible to use it by setting the multi_class parameter to
multinomial, so that it can also be applied to predictions of more than two classes. As solver,
�lbfgs� was selected. Usually, this is used for small datasets but comparing it with other types of
solutors available, it was noticed that the values obtained did not show any signi�cant changes.
Therefore, it was decided to use it both for its robustness and for its speed of convergence even
with medium-large datasets.
The Perceptron is a simple classi�cation algorithm, also linear, which does not need a speci�c
learning rate, does not use penalties and is updated only when it makes a mistake. For this,
it is quite fast compared to other models but the results are usually not very accurate, as it is
possible to see from the data in tables 3.9 and 3.10.
The SVM has been selected because it is a very e�ective nonlinear algorithm when dealing
with multidimensional spaces and, in addition, requires little computing power and is easy to
interpret the result. The problem is that it generates limited models in prediction capability
despite the possibility of using various types of kernel, which does not make it usable in all
situations.
The KNN is always a classi�cation algorithm, selected for its robustness to outliers and for its
e�ectiveness when dealing with large datasets. Moreover, it is a non-parametric tool, meaning
it makes no assumptions about the distribution of the data it analyses. In other words, the
structure of the model is determined by the data and is rather useful because, in the real word,
most data does not obey to the typical theoretical assumptions (as happens, for example, in
linear regression models). Despite this, it is very computational heavy and is di�cult to im-
plement as well as initialize. In fact, for this last operation, it is necessary to tune the main
parameters, including the value k of points to be considered as belonging to the neighbourhood.
Decision Trees are widely used models for their easy visualization and understandability but
can create very large trees that are not able to generalize well the problem, as they are highly
sensitive to small variations in the values of the input attributes.
Random Forest is an algorithm that is mainly based on decision trees and, compared to the
these, tries to reduce over�tting, resulting, therefore, more accurate. However, being a combi-
nation of several trees is rather slow in real-time predictions.
Finally, The MLP has been selected for its ability to learn real-time models, regardless of
their complexity and although the function may also be non-linear. However, given that its
loss-function may have more local minimum, it is necessary to modify and adapt the weights
of the hidden layers several times. Considering this problem and taking into account the fact
that it is necessary a tuning phase for some parameters, such as the number of hidden layers
and nodes that compose them, this kind of models presents a slow initialization process that
however, once you �nd the right values for these features, it only runs once.

To be able to perform an accurate classi�cation it was also necessary to decide the dis-
cretization method (also called binning) initially more appropriate to use. In fact, both the
discretization for intervals of same width and for intervals of same frequency has been analysed,
thus going to evaluate also the algorithms selected in such a way to use only those that had the
best performance. This type of operation was applied by grouping the data into 20 di�erent
bins.
With the �rst type of binning (the one with intervals of same width) the diagram brought in
�gure 3.17 has been generated, to see the distribution of the various classes.
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Figure 3.17. Distribution of the records in the 20 classes created with the discretization using
intervals with same width.

In this diagram are reported, in fact, both the classes, with the minimum and maximum value
of the interval, and the numerosity of each of them.
The table 3.9 shows the results obtained from the evaluation of the algorithms after the dis-
cretization process of the target variable in 20 ranges of same width.

Table 3.9. Results of the algorithms evaluation using a discretization with intervals of same
width

Algorithm Accuracy F-measure
Logistic Regression 0.943789 0.086996

Perceptron 0.752752 0.070170
SVM Classi�er 0.951650 0.142131
KNN Classi�er 0.951651 0.266283
Decision Tree 0.946934 0.130014
Random Forest 0.946541 0.189119
MLP Classi�er 0.948506 0.166967

Despite the excellent results, regarding the accuracy, obtained during the evaluation of the
models, these do not respect the reality of the facts, as demonstrated by the low value of the
F-measure. In fact, these high accuracy values are linked to the fact that, using this kind of
discretization, the classi�cation problem would not be balanced since class 0 contains the 94%
of dataset records.
Therefore, it has been chosen the binning with intervals of same frequency, to have classes
containing more or less the same number of records (as it is possible to see in �gure 4.7). Using
this other type of discretization and performing a further evaluation of the algorithms, the
results in the table 3.10 have been obtained.
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Table 3.10. Results of the algorithms evaluation using a discretization with intervals of same
frequency

Algorithm Accuracy F-measure
Logistic Regression 0.115959 0.045421

Perceptron 0.042060 0.013653
SVM Classi�er 0.176887 0.130552
KNN Classi�er 0.218946 0.196251
Decision Tree 0.240959 0.208368
Random Forest 0.243711 0.223526
MLP Classi�er 0.243711 0.206632

Based on the results of the latter assessment, it was �nally decided to make a further selection
on the classi�cation algorithms to be used in the experiments reported in section 4.2, taking
into account only the SVM, the KNN, the Decision Tree, the Random Forest and the MLP,
substantially discarding all the linear models previously considered.
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4. Experimental Results

All the results of the experiments carried out to �nd an acceptable solution for the prediction
of pending time are reported in this chapter. In the �rst section, the data obtained by the
regression techniques and the reason for which classi�cation ones are then analysed in the second
section are discussed. As regards classi�cation, it was decided to subdivide the paragraph
into three sub-paragraphs: hierarchical, multi-class and binary classi�cation, to group the
experiments and increase their comprehensibility.

4.1 Regression Experiments

As the pending time is a continuous numerical variable, the �rst approach related to the pre-
diction process involved the use of regression techniques to try to identify a �nite value able
to get as close as possible to the �nal result, resulting in the error and the most accurate possible.

Initially, linear regression algorithms were evaluated to verify if there were assumptions for
creating a linear prediction model. Therefore, the input data was randomly divided into two
groups, one for the training and the other one for the testing, which were then used to perform
a prediction test. From these, the results obtained are expressed in the table 4.1.

Table 4.1. Evaluation of some linear regression algorithms

Algorithm Accuracy
Linear Ridge Regressor 0.191842

Lasso 0.191828
Elastic Net 0.188593

Bayesian Ridge Regressor 0.191310
Polynomial Regressor 0.316552

Later, non-linear regression algorithms were also selected to verify their performance with the
available data. Considering the same training and testing data used with linear models, the
results obtained from the evaluations carried out are reported in the table 4.2.

Table 4.2. Evaluation of some non-linear regression algorithms

Algorithm Accuracy
Support Vector Regressor -0.059722

KNN Regressor 0.378152
Decision Tree 1 0.270867
Decision Tree 2 0.267371
Decision Tree 3 0.238567
MLP Regressor 0.322663
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The three di�erent Decision Tree model di�er only for the max-depth parameter which respec-
tively, is set to 3,5 and 7 maximum depth levels.

Considering the results obtained from the evaluation of both the linear and non-linear
regression algorithms, only those with a su�ciently high accuracy were selected, although the
values obtained were still not acceptable. For the linear models, the only one selected was the
polynomial one, while for non-linear models the only one to be discarded was the SVR, which
even presented a negative accuracy.
To try to improve the performance of these algorithms and, therefore, obtain better results, a
k-fold cross validation with k = 10 was applied. From this attempt, the results obtained are
reported in the table 4.3.

Table 4.3. Results of the k-fold CV technique, with k = 10, using all the variables available

Algorithm Max Accuracy Mean Accuracy
Polynomial Regressor 0.533203 0.231085

KNN Regressor 0.400557 0.172242
Decision Tree 1 0.453951 0.273126
Decision Tree 2 0.495346 0.235226
Decision Tree 3 0.467555 0.002513
MLP Regressor 0.550093 0.328904

These data are the result, as explained at the end of the preamble of the section 2.3, of ten
separate tests using ten di�erent train and test sets of which it was wanted to highlight the
maximum and the mean value found.
From the �nal results, it can be noted that the Decision Tree with max_depth = 7 is charac-
terized by an extremely low mean value of accuracy. This means that, compared to the others,
this algorithm does not work at all well with the data available and, therefore it was decided
not to use it any more in experiments performed later.
In addition, regarding the correlation matrix related to context data, shown in �gure 3.13, it
was noted that the cores_available and nodes_available attributes are highly correlated and
have a common variable in their calculation process. For this reason, since the �rst attribute
provides more general and complete information, it was decided to remove the second from the
group of input variables.
Following these changes, it was decided to repeat the operations of k-fold cross validation, again
with k = 10, obtaining the results expressed in the table 4.4.

Table 4.4. Results of the k-fold CV technique, with k = 10, after having removed the
nodes_available attribute

Algorithm Max Accuracy Mean Accuracy
Polynomial Regressor 0.532658 0.235069

KNN Regressor 0.400554 0.172238
Decision Tree 1 0.453951 0.270740
Decision Tree 2 0.493425 0.177651
MLP Regressor 0.532969 0.325323

As it can be noted, comparing with the data shown in the table 4.3, most of the values remain
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more or less unchanged, a sign that this variable does not provide any useful information to
improve the performance of the models.
To try to improve the results obtained, we tried to perform the k-fold cross validation again,
but, in this case, with k = 20 to try to improve the performance of prediction models. From
this attempt the values obtained are reported in the table 4.5.

Table 4.5. Results of the k-fold CV technique, with k = 20, after having removed the
nodes_available attribute

Algorithm Max Accuracy Mean Accuracy
Polynomial Regressor 0.551733 0.006580

KNN Regressor 0.581727 0.080216
Decision Tree 1 0.533837 0.200991
Decision Tree 2 0.571285 0.173368
MLP Regressor 0.630281 0.220024

As it is possible to see, this technique has improved, even if slightly, the performance of mod-
els on speci�c data groups, but, for the most of them, these have worsened given the drastic
decrease in average values.

Finally, as a last shot to try to improve the accuracy of prediction of the selected models,
given the high number of records available, it was decided to apply the holdout technique,
also analysed in the �nal part of the preamble of section 2.3. The results obtained from this
technique can be viewed in the table 4.6.

Table 4.6. Results of the Holdout technique, using all the variable except the nodes_available

Algorithm Accuracy
Polynomial Regressor 0.217887

KNN Regressor 0.119690
Decision Tree 1 0.199433
Decision Tree 2 0.149165
MLP Regressor 0.233375

Unfortunately, even this partitioning technique failed to improve the performance of the models,
as can be seen from the comparison with the results obtained with the k-fold cross validation
with k = 10 shown in the table 4.4.

4.2 Classi�cation Experiments

Since the accuracy values obtained from linear and non-linear regression models were not at
all acceptable, it has been decided to use classi�cation techniques to predict the time interval
of the real pending time when a new job is submitted. In this way, we try to de�ne the time
interval with the greatest accuracy possible, thus allowing, in the future, the execution of other
prediction techniques to �nally arrive at predicting the exact value of pending time.
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Classi�cation experiments were initially carried out with more than two prediction ranges,
the results of which are given in section 4.2.2. Doing so, we studied the behaviour of the selected
algorithms during the variation of the number of classes to be predicted and also the way these
classes are generated. Subsequently, we moved on to binary classi�cation experiments, reported
in the section 4.2.3, to be able to identify time periods so that the algorithms were able to predict
the class of belonging in the best way possible. Finally, on the basis of the knowledge acquired
through these tests, a hierarchical approach has been adopted, meaning that several prediction
levels are used, each of which depends on the results obtained from the classi�cations carried
out in the previous levels. These latest experiments are reported in section 4.2.1 where also the
results of the best approach analysed in section 3.5.1 are presented.

4.2.1 Hierarchical Classi�cation Experiments

This kind of experiment was used as a last approach to try to implement a classi�cation system
as accurate as possible. Indeed, the information obtained from the various tests carried out,
the result of which are reported in section 4.2.2 and 4.2.3, has been used to design useful
experiments and implement their various prediction levels. Finally, with the foreground, the
�nal system, presented in section 3.5.1, was de�ned with which the results discussed in section
4.2.1.4 were obtained.

4.2.1.1 Usage of two hierarchy levels with four �nal classes

Starting from the binary classi�cation with 900 seconds threshold, the results of which are
presented in section 4.2.3.1, it was decided to use the MLP as the algorithm for the �rst level
since, in addition to being one of the models with the best results in that test, it also has the
ability to learn any type of function in real time. This is extremely useful since the �nal purpose
of this project is precisely to create a prediction model that must give immediate answers, being
within a chain of submission.
The second level, as can be seen from the diagram in �gure 4.1, is characterized by two further
binary classi�cations. In this case the thresholds imposed in the second level were designed to
give realistic feedback to users. Considering that the second level uses for the training only those
records predicted correctly in the previous level, in this case, looking at the MLP confusion
matrix shown in �gure 4.23, 22762 records were used. Of these 18597 were used to predict the
classes 0.0 and 0.1, while 4165 for the other two.

Figure 4.1. Schema of the classi�cation strategy with 2 levels and 4 �nal classes.

To evaluate the performance of models in the prediction of classes 0.0 and 0.1, a strati�ed
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20-fold cross validation has been performed and the accuracy, precision, recall and F-measure
indices have been computed, the values of which are reported in the table 4.7.

Table 4.7. Results for the second level classi�cation of the class 0 related to the esperiment
with 2 levels and 4 �nal classes

Algorithm
Mean

Accuracy
Precision
Class 0.0

Precision
Class 0.1

Recall
Class 0.0

Recall
Class 0.1

F-measure
Class 0.0

F-measure
Class 0.1

SVM Classi�er 0.937893 0.941022 0.748344 0.995605 0.173180 0.967544 0.281269
KNN Classi�er 0.941550 0.951167 0.670846 0.987856 0.327969 0.969164 0.440555
Decision Tree 0.942948 0.949737 0.721014 0.991094 0.304981 0.969975 0.428648
Random Forest 0.940259 0.948451 0.674460 0.989533 0.287356 0.968557 0.403009
MLP Classi�er 0.944131 0.948309 0.782979 0.994101 0.281992 0.970665 0.414648

To calculate the performance of the models in the prediction of classes 1.0 and 1.1, instead, a
strati�ed 50-fold cross validation was performed, since the number of records available was quite
small, and the accuracy, precision, recall and F-measure indices were computed, the values of
which are given in table 4.8.

Table 4.8. Results for the second level classi�cation of the class 1 related to the esperiment
with 2 levels and 4 �nal classes

Algorithm
Mean

Accuracy
Precision
Class 0.0

Precision
Class 0.1

Recall
Class 0.0

Recall
Class 0.1

F-measure
Class 0.0

F-measure
Class 0.1

SVM Classi�er 0.749698 0.650624 0.765538 0.302653 0.933672 0.412197 0.841287
KNN Classi�er 0.712696 0.495717 0.768802 0.382645 0.840609 0.431903 0.803104
Decision Tree 0.738573 0.539700 0.781318 0.415702 0.854822 0.469654 0.816419
Random Forest 0.727449 0.527829 0.792355 0.470248 0.827750 0.497378 0.809666
MLP Classi�er 0.761790 0.625798 0.787108 0.404959 0.900846 0.491721 0.840145

4.2.1.2 Usage of two hierarchy levels with �ve �nal classes

To try to improve somewhat the classi�cation performance of the system it was decided to
slightly change the test schema discussed in section 4.2.1.1, transforming the binary classi�ca-
tion implemented for class 1 into a multi-class classi�cation with 3 distinct intervals. Since the
method applied to the �rst level has not changed, the number of records used for the training
of the various classes is the same. The general schema of this new test is shown in �gure 4.2.
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Figure 4.2. Schema of the classi�cation strategy with 2 levels and 5 �nal classes.

Considering the fact that the second level binary classi�cation applied to class 0 has not changed
compared to the experiment analysed in the section 4.2.1.1, the results of the accuracy, precision,
recall and F-measure indices are those shown in the table 4.7. Instead, with regard to the multi-
class classi�cation applied to class 1, to analyse the performance of the selected algorithms, a
strati�ed 50-fold cross validation has been performed to then calculate the accuracy, precision,
recall and F-measure indices, the mean values of which are given in the table 4.9.

Table 4.9. Results for the second level classi�cation of the class 1 related to the esperiment
with 2 levels and 5 �nal classes

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.612092 0.396542 0.483656 0.434300
KNN Classi�er 0.551632 0.484539 0.455373 0.455720
Decision Tree 0.593954 0.520826 0.514457 0.506964
Random Forest 0.558888 0.498518 0.495766 0.496920
MLP Classi�er 0.632406 0.575030 0.531690 0.522985

From these results, however, it can be noted that performance tends to slightly decrease com-
pared to the second level classi�cation applied to class 1 performed in section 4.2.1.1. This is
quite normal since there is the possibility to predict an extra class. The problem is that the
overall performance of the system is still low to be accepted.

4.2.1.3 Usage of three hierarchy levels with six �nal classes

To try to better characterize prediction intervals so that users can receive more truthful feed-
back, we have considered the diagram shown in �gure 4.1 and a third level of classi�cation,
related to class 1.1, has been added. For the execution of this new prediction 2662 records
were used (those correctly classi�ed as belonging to class 1.1 in the second level). This process
allowed us to obtain the diagram of the prediction system shown in �gure 4.3.
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Figure 4.3. Schema of the classi�cation strategy with 3 levels and 6 �nal classes.

Since this experiment is based on the schema analysed in section 4.2.1.1, the index results for
classes 0.0 and 0.1 are those given in the table 4.7. For class 1.0, however, the results are
already present in the table 4.8.
To analyse the performance of the classi�cation algorithms used in the third level to subdivide
the class 1.1, given the low availability of training records, a strati�ed 30-fold cross validation
was performed and the accuracy, precision, recall and F-measure indices were computed, the
mean values of which are reported in the table 4.10.

Table 4.10. Results for the third level classi�cation of the class 1.1 related to the esperiment
with 3 levels and 6 �nal classes

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.617581 0.439337 0.370283 0.323296
KNN Classi�er 0.596121 0.398759 0.395409 0.386362
Decision Tree 0.608189 0.473791 0.437790 0.435682
Random Forest 0.587153 0.464728 0.449098 0.452004
MLP Classi�er 0.613073 0.497023 0.440774 0.438479

Based on the results obtained in the previous table, it can be noted that this type of structure
for the hierarchical classi�cation is little usable since the values obtained for some classes are
too low signi�cant. It is for this reason that a completely new schema has been devised which
considers all the knowledge acquired. This is analysed in section 3.5.1 and its results will be
reported in section 4.2.1.4.

4.2.1.4 Results of the best solution proposed

Since the �rst level of this experiment, the diagram of which is shown in �gure 3.16, coincides
with the binary classi�cation experiment with 60 seconds threshold analysed in section 4.2.3.6,
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the results of the �rst classi�cation level are those given in the table 4.28.
For the prediction of the second level it was possible to use 5994 records that, as it can be
noted in the MLP confusion matrix reported in �gure 4.29, is the number of correctly predicted
records belonging to class 1. Also in the second level a binary classi�cation has been applied
using a threshold of 3600 seconds. After discretizing the target variable a second time using
the intervals generated with this threshold, a strati�ed 20-fold cross validation was performed
to assess the performance of the second level algorithms and the accuracy, precision, recall and
F-measure indices were computed, the values of which are shown in the table 4.11.

Table 4.11. Results for the second level classi�cation of class 1 related to the best classi�cation
approach

Algorithm
Mean

Accuracy
Precision
Class 1.0

Precision
Class 1.1

Recall
Class 1.0

Recall
Class 1.1

F-measure
Class 1.0

F-measure
Class 1.1

SVM Classi�er 0.673340 0.634847 0.718535 0.725892 0.626304 0.677324 0.669257
KNN Classi�er 0.648482 0.613054 0.689112 0.693395 0.608283 0.650754 0.646180
Decision Tree 0.676510 0.656513 0.695347 0.662310 0.689851 0.659398 0.692588
Random Forest 0.679847 0.662974 0.694618 0.655245 0.701865 0.659087 0.698223
MLP Classi�er 0.707040 0.671890 0.745378 0.742141 0.675624 0.705270 0.708789

These results can also be obtained manually from the generated confusion matrices shown in
�gure 4.4.
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Figure 4.4. Confusion matrices generated for each model during the evaluation of the algo-
rithms for the selection of the one to use in the second level of the best solution.

Considering the results of the MLP, 4238 records have been used for the training of the third
level that are equivalent to those correctly predicted both as class 1.0 and as 1.1.
For the third classi�cation applied to class 1.0, it was decided to perform a binary classi�cation
using a 900 seconds threshold, thus creating the two �nal classes 1.0.0 and 1.0.1. After the
discretization of the target variable with the generated ranges, to evaluate prediction models for
these two classes a strati�ed 30-fold cross validation was performed and, through the obtained
results, the accuracy, precision, recall and F-measure indices have been computed, the values
of which are given in the table 4.12.

Table 4.12. Results for the third level classi�cation of class 1.0 related to the best classi�cation
approach

Algorithm
Mean

Accuracy
Precision
Class 1.0.0

Precision
Class 1.0.1

Recall
Class 1.0.0

Recall
Class 1.0.1

F-measure
Class 1.0.0

F-measure
Class 1.0.1

SVM Classi�er 0.603522 0.549073 0.726708 0.819672 0.416000 0.657624 0.529112
KNN Classi�er 0.557830 0.524505 0.585814 0.515369 0.594667 0.519897 0.590207
Decision Tree 0.642075 0.598246 0.694069 0.698770 0.592889 0.644612 0.639501
Random Forest 0.582580 0.553863 0.604907 0.521516 0.635556 0.537203 0.619853
MLP Classi�er 0.587815 0.545230 0.646328 0.679303 0.508444 0.604927 0.569154

In �gure 4.5 it is possible to view the generated confusion matrices, related to this case, from
which the results in the table 4.12 can be derived.
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Figure 4.5. Confusion matrices generated for each model during the evaluation of the al-
gorithms for the selection of the one to use in the third level for the class 1.0 of the best
solution.

Finally, for the third level classi�cation applied to class 1.1 it was decided to perform a 3-class
classi�cation to de�ne the ranges (3600, 7200], (7200, 10800] and (10800, max], thus creating
classes 1.1.0, 1.1.1 and 1.1.2 respectively. To evaluate the performance of the algorithms in
the prediction of these 3 classes, after having discretized the target variable based on these
generated ranges, a strati�ed 30-fold cross validation was performed and, subsequently, the
accuracy, precision, recall and F-measure indices were computed, the mean values of which are
reported in the table 4.13.

Table 4.13. Results for the third level classi�cation of class 1.1 related to the best classi�cation
approach

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.671034 0.518335 0.382680 0.352399
KNN Classi�er 0.608797 0.402744 0.380130 0.373967
Decision Tree 0.666355 0.537390 0.459776 0.471808
Random Forest 0.632195 0.490659 0.459686 0.468268
MLP Classi�er 0.662611 0.531875 0.445390 0.455680

Also in this case has been generated the confusion matrices, one for each model, relative to this
speci�c step that are reported in �gure 4.6.
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Figure 4.6. Confusion matrices generated for each model during the evaluation of the al-
gorithms for the selection of the one to use in the third level for the class 1.1 of the best
solution.

As can be seen from these matrices, the poor results obtained by the last classi�cation are due
to the low number of correct predictions regarding the �rst two classes. In addition, it can
be noted that these two have a signi�cantly lower number of associated records than the ones
associated with the third class, leading to limitations in model training.

4.2.2 Multi-class Classi�cation Experiments

The multi-class experiments were the �rst to be carried out in such a way to de�ne a reasonable
number of classes both in terms of meaning and of correctness of classi�cation. The �rst tests
consider the subdivision of the target variable into several equal frequency ranges, since those
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of the same width have been discarded (as explained in section 3.5). In addition, in the last
four experiments described in this section, the ranges have been de�ned in a way to provide
acceptable feedback to the user, also considering the information obtained from the previous
tests.

4.2.2.1 Classi�cation experiments discretizing the target variable in 20 classes of
same frequencies

The �rst classi�cation experiment was carried out by trying to discretize the values of the
pending time in 20 di�erent classes, the distribution of which is shown in �gure 4.7.

Figure 4.7. Visualization of the 20 classes generated and the distribution of the records inside
them.

Using these intervals, a strati�ed 20-fold cross validation was performed so that each group had
more or less the same frequency of records belonging to the various classes. With the results
of this process, to evaluate the performance of the classi�ers selected, the accuracy, precision,
recall and F-measure indices have been computed and their mean values are reported in the
table 4.14.

Table 4.14. Results of the experiment with 20 classes with equal frequencies

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.170879 0.124497 0.159318 0.120080
KNN Classi�er 0.166713 0.157180 0.158591 0.143910
Decision Tree 0.213963 0.195345 0.197367 0.177636
Random Forest 0.196391 0.181803 0.182780 0.170767
MLP Classi�er 0.215417 0.202553 0.199668 0.179786

76



CHAPTER 4. EXPERIMENTAL RESULTS

In addition to these values, to better visualize how the records were classi�ed during the training
process, the confusion matrices were also produced for each individual model and they are shown
in �gure 4.8.

Figure 4.8. Confusion matrices generated for each model during the experiment with 20
classes with same frequency.

These matrices con�rm the results obtained. As it is possible to see, all classi�ers have problems
on the prediction of the classes. In fact, a lot of mistakes are made as demonstrated by the
fact that the cells of the various diagonals do not contain values close to the numerosity of the
speci�c class. In addition, from these matrices it is clear that models tend to go wrong more or
less in the same areas and that is why it was decided to do other experiments decreasing the
number of predictable classes.
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4.2.2.2 Classi�cation experiment discretizing the target variable in 10 classes of
same frequencies

Subsequently, it was decided to try a training process in which the target variable was divided
into 10 di�erent classes with same frequency. The intervals created and the respective absolute
frequencies are shown in �gure 4.9.

Figure 4.9. Visualization of the 10 classes generated and the distribution of the records inside
them.

As in the previous case, a strati�ed 20-fold cross validation was performed and the accuracy,
precision, recall and F-measure indices were computed, the mean values of which are given in
the table 4.15.

Table 4.15. Results of the experiment with 10 classes with equal frequencies

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.307088 0.272931 0.271401 0.250410
KNN Classi�er 0.275600 0.260910 0.250677 0.230243
Decision Tree 0.326821 0.310865 0.287534 0.272162
Random Forest 0.312119 0.289264 0.276104 0.265845
MLP Classi�er 0.341090 0.326092 0.300946 0.281455

As it is possible to see, the results have improved somewhat compared to the case analysed
previously in section 4.2.2.1. To show how the records have been classi�ed, also in this case
have been generated the confusion matrices reported in �gure 4.10.
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Figure 4.10. Confusion matrices generated for each model during the experiment with 10
classes with same frequency.

From these matrices it can be noted that, with these changes, the algorithms tend to make
errors less than in the previous case but not enough to make accurate prediction levels. In fact,
even here can be seen, regardless of the model considered, the areas of classi�cation denser than
the others. A clear example is the prediction of the last three classes, in which models struggle
to correctly assign records.

4.2.2.3 Classi�cation experiment discretizing the target variable in 7 classes of
same frequencies

Since results tend to improve by decreasing the number of predictable classes, it has been tried
to see how models behave in predicting 7 distinct classes with more or less the same frequency.
The generated intervals and their numerosity are represented in �gure 4.11.
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Figure 4.11. Visualization of the 7 classes generated and the distribution of the records inside
them.

As above, a strati�ed 20-fold cross validation was performed and the accuracy, precision, recall
and F-measure indices were computed, the mean values of which are reported in the table 4.16
to assess the performance of the various classi�ers selected.

Table 4.16. Results of the experiment with 7 classes with equal frequencies

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.382602 0.378283 0.360221 0.335620
KNN Classi�er 0.368882 0.375971 0.336808 0.318225
Decision tree 0.405244 0.409913 0.374159 0.365250
Random Forest 0.399269 0.403519 0.373465 0.370206
MLP Classi�er 0.418452 0.435021 0.390245 0.385226

It can be noted that, also in this case, the performance of the models has improved compared
to the previous cases but not enough. Below, in �gure 4.12, are shown the confusion matrices
generated to try to understand where the classi�cation errors were made, considering the poor
results obtained, and how to �x them.
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Figure 4.12. Confusion matrices generated for each model during the experiment with 7
classes with same frequency.

In all the generated matrices it can be noted that the selected models have problems distin-
guishing the �rst �ve classes, since all �ve are mostly predicted as class 0. Beyond that, it is
possible also to highlight another di�culty of prediction between the last two labels.

4.2.2.4 Classi�cation experiment discretizing the target variable in 4 classes of
same frequencies

Finally, it was decided to make a �nal try with 4 classes of the same frequency and, as in the
previous cases, a useful graph, shown in �gure 4.13, to display the distribution of the records
was generated.
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Figure 4.13. Visualization of the 4 classes generated and the distribution of the records inside
them.

Immediately after performing a strati�ed 20-fold cross validation, the accuracy, precision, recall
and F-measure indices were computed for all the chosen algorithms, to evaluate their perfor-
mance. The mean values of these indices are given in the table 4.17.

Table 4.17. Results of the experiment with 4 classes with equal frequencies

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.508235 0.537935 0.459793 0.426678
KNN Classi�er 0.476041 0.467252 0.464447 0.419915
Decision Tree 0.514525 0.487938 0.480335 0.461583
Random Forest 0.497976 0.485055 0.469455 0.465651
MLP Classi�er 0.524863 0.514528 0.490659 0.470602

The results of this test, as it is possible to see from the data previously reported, improve a
little compared to those of the case analysed in the section 4.2.2.3, but, despite there has been
a signi�cant decrease in the number of the predictable classes (the number of these, in fact,
has been almost halved), these values, in most cases, do not exceed 50% of correctness in the
classi�cation execution of the records. To try understanding the reasons for what happened, it
is necessary to see the confusion matrices generated and reported in �gure 4.14.
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Figure 4.14. Confusion matrices generated for each model during the experiment with 4
classes with same frequency.

From these matrices it can be found more or less the same problem evidenced also in the other
tests, that is the models struggle to predict the classes in the extremities. Indeed, in this
case, class 3 is detected pretty well by the algorithms while the �rst two (0 and 1) are still
confused between them. Finally, it should be noted that class 2, compared to the others, is
rarely recognized.

4.2.2.5 Classi�cation experiment considering the discretization of the target vari-
able in 7 custom intervals

Since experiments with classes of the same frequency led to results that were not entirely
accurate and did not meet our expectations, it was decided to proceed by creating speci�c
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prediction intervals, considering the foreground. The classes and the respective distributions of
the records for this speci�c case are reported in �gure 4.15.

Figure 4.15. Visualization of the 7 custom classes generated and the distribution of the
records inside them.

It can be immediately pointed out that class 0 is extremely populous compared to the others.
To better evaluate the behaviour of the selected algorithms, a strati�ed 20-fold cross validation
has been performed in order to compute accuracy, precision, recall and F-measure indices,
whose mean values are shown in the table 4.18.

Table 4.18. Results of the experiment with 7 custom classes

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.567593 0.229631 0.255881 0.204707
KNN Classi�er 0.573686 0.326979 0.293869 0.275410
Decision Tree 0.588427 0.369179 0.322930 0.319689
Random Forest 0.570816 0.352834 0.319275 0.323275
MLP Classi�er 0.586187 0.356230 0.312460 0.305662

From the obtained values it can be noted that the di�erence between accuracy and F-measure is
increased compared to what happened in the experiments discussed in sections 4.2.2.1, 4.2.2.2,
4.2.2.3 and 4.2.2.4. To try to understand why this di�erence is increase, the confusion matrices
generated for this speci�c case are shown in �gure 4.16.
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Figure 4.16. Confusion matrices generated for each model during the experiment with 7
custom classes.

From these representations it is clear why certain results have been obtained. In fact, all
classi�ers manage to predict fairly well the �rst and partly even the last class. The same cannot
be said, however, for the remaining �ve central classes where the errors are many and therefore
lower the prediction indices shown in the table 4.18. Comparing with the case analysed in
section 4.2.2.3 in which there were also 7 prediction classes, the most marked di�erence is given
by the ranges associated with these and, consequently, the presence or lack of homogeneity
within them. In fact, it is entirely plausible that a model tends to predict more frequently the
class that has the most records associated with it.
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4.2.2.6 Classi�cation experiment considering the discretization of the target vari-
able in 6 custom intervals

Later, attempts were made to reduce the number of classes to be predicted, from seven to
six, also trying to make them more homogeneous. The new intervals and new distributions of
records used in the experiment are shown in �gure 4.17.

Figure 4.17. Visualization of the 6 custom classes generated and the distribution of the
records inside them.

A strati�ed 20-fold cross validation was performed for each model available and the accuracy,
precision, recall and F-measure indices were computed, the mean values of which are shown in
the table 4.19.

Table 4.19. Results of the experiment with 6 custom classes

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.492865 0.406168 0.369085 0.365455
KNN Classi�er 0.418295 0.349598 0.340961 0.323907
Decision Tree 0.502064 0.410488 0.386844 0.385265
Random Forest 0.490782 0.404485 0.377412 0.380419
MLP Classi�er 0.503164 0.407425 0.390228 0.390795

Through these data it is possible to say that the situation has improved compared to the pre-
vious case analysed in section 4.2.2.5, but not enough since the results are not yet satisfactory.
Figure 4.18 shows the confusion matrices related to this experiment, used to de�ne other case
studies to improve the prediction performance of models.
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Figure 4.18. Confusion matrices generated for each model during the experiment with 6
custom classes.

From these matrices it is evident that all models have problems in predicting class 2 while, as
for the other classes, errors are made considering the neighbouring classes. In fact, dense areas
are created at the �rst two and last three classes.

4.2.2.7 Classi�cation experiment considering the discretization of the target vari-
able in 5 custom intervals

To try to improve the results obtained in previous experiments, an attempt was made to reduce
the number of classes even further, also modifying the ranges of associated intervals. In this
way we created �ve distinct classes, whose intervals and distributions of records are shown in
�gure 4.19.
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Figure 4.19. Visualization of the 5 custom classes generated and the distribution of the
records inside them.

From this graph we can immediately notice that the �rst two classes are the most populous
and this could lead the algorithms to make mistakes during the classi�cation. To test the
performance of the models a strati�ed 20-fold cross validation has been performed, to be able
to compute the accuracy, precision, recall and F-measure indices whose mean values are reported
in the table 4.20.

Table 4.20. Results of the experiment with 5 custom classes

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.579347 0.431264 0.363045 0.317228
KNN Classi�er 0.588270 0.447292 0.399713 0.378983
Decision Tree 0.610794 0.511985 0.445486 0.444375
Random Forest 0.593380 0.475918 0.431792 0.436247
MLP Classi�er 0.606746 0.508933 0.440080 0.436944

The results, as it is possible to see, always tend to improve, but not enough. In fact, the value
of the average F-measure for each model is always below 50% which is still low as threshold.
Figure 4.20 shows the confusion matrices generated for this speci�c case in order to better
analyse the situation.
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Figure 4.20. Confusion matrices generated for each model during the experiment with 5
custom classes.

As already mentioned, it can be noted that algorithms have di�culty distinguishing between
class 0 and class 1, which implies that these two classes often have the same values in the input
variables used. In addition, central labels tend to be always the worst predicted, which leads
to the lowering of the general performance statistics.

4.2.2.8 Classi�cation experiment considering the discretization of the target vari-
able in 3 custom intervals

Finally, three distinct classes were generated, summing the ranges used in the experiment
discussed in section 4.2.2.7, to use the information provided by the models. The ranges and
their distributions are shown in �gure 4.21.
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Figure 4.21. Visualization of the 3 custom classes generated and the distribution of the
records inside them.

From this graph it can be noted that class 0 is the sum of the �rst two classes of the test
analysed in section 4.2.2.7, class 1 is the sum of class 2 and 3, while the last one remains the
same. To evaluate the performance of the models, a strati�ed 20-fold cross validation has been
performed to compute the accuracy, precision, recall and F-measure indices, whose mean values
are shown in the table 4.21.

Table 4.21. Results of the experiment with 3 custom classes

Algorithm Mean Accuracy Mean Precision Mean Recall Mean F-measure
SVM Classi�er 0.814655 0.713570 0.611150 0.632459
KNN Classi�er 0.811431 0.656376 0.627206 0.637632
Decision Tree 0.841149 0.732950 0.688357 0.706892
Random Forest 0.825937 0.702244 0.655989 0.673945
MLP Classi�er 0.848972 0.759848 0.695855 0.721240

The results, as can be seen, are greatly improved even if they still do not meet the desired
levels of correctness of prediction. Figure 4.22 shows the confusion matrices generated to try
to understand the reason for the results obtained.
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Figure 4.22. Confusion matrices generated for each model during the experiment with 3
custom classes.

What you can see from these matrices is that class 0 is predicted correctly in about 98% of
cases. Class 1 is the most confusing. In fact, about a third is correctly predicted, while the
two remaining are divided between the other two classes. Finally, the last class is correctly
classi�ed more than 60% of the time and is more confused with class 1. This means that
prediction intervals are not yet suitable to distinguish signi�cantly all generated classes.

4.2.3 Binary Classi�cation Experiments

Whereas the accuracy values obtained from the multi-class classi�cation experiments reported
in section 4.2.2 have not yielded the desired results, it was decided to study the performance of
selected classi�ers using them for binary classi�cations. Doing so, possible pending time values
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were identi�ed so that the prediction indices of the two classes were meaningful.
These studies also gave rise to the idea of using hierarchical approaches to improve the overall
performance of the prediction system. Indeed, as can be seen from the section 4.2.1, the �rst
level of each hierarchical approach discussed always starts from a binary classi�cation.

4.2.3.1 Experiment using a threshold at 900 seconds

A threshold of 900 seconds was chosen as the �rst binary classi�cation experiment. From this
subdivision two ranges have been derived: the �rst has 19619 associated records, while the
second the 5820 remaining.
To evaluate the performance of the models with these classes, a strati�ed 20-fold cross validation
has been applied to compute the accuracy, precision, recall and F-measure indices, whose values,
for each class, are reported in the table 4.22.

Table 4.22. Results of the experiment with a threshold at 900 seconds

Algorithm
Mean

Accuracy
Precision
Class 0

Precision
Class 1

Recall
Class 0

Recall
Class 1

F-measure
Class 0

F-measure
Class 1

SVM Classi�er 0.893431 0.902495 0.850507 0.966206 0.648110 0.933264 0.735641
KNN Classi�er 0.891741 0.922576 0.779540 0.938376 0.734536 0.930409 0.756369
Decision Tree 0.899800 0.928292 0.796770 0.942912 0.754467 0.935545 0.775042
Random Forest 0.894925 0.918875 0.801957 0.947398 0.718041 0.932919 0.757683
MLP Classi�er 0.894768 0.918280 0.802969 0.947908 0.715636 0.932859 0.756791

From these results it is evident that the �rst class is predicted better than the last. Most
probably this situation is due to the fact that class 0 is more numerous and therefore it has
been possible to do a more in-depth training compared to that for class 1. This aspect can
also be noticed from the confusion matrices, shown in �gure 4.23, generated for each individual
model.
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Figure 4.23. Confusion matrices generated for each model during the experiment with the
threshold at 900 seconds.

4.2.3.2 Experiment using a threshold at 1800 seconds

Another binary classi�cation experiment performed was the one with the threshold at 1800 sec-
onds and two intervals were created: the �rst with 20597 records associated, while the second
with the remaining 4842.
To evaluate the selected algorithms, a strati�ed 20-fold cross validation was performed to com-
pute the accuracy, precision, recall and F-measure indices. The values of these indices, some
also related to the class, are reported in the table 4.23.

Table 4.23. Results of the experiment with a threshold at 1800 seconds

Algorithm
Mean

Accuracy
Precision
Class 0

Precision
Class 1

Recall
Class 0

Recall
Class 1

F-measure
Class 0

F-measure
Class 1

SVM Classi�er 0.901490 0.918637 0.804802 0.963684 0.636927 0.940621 0.711091
KNN Classi�er 0.873580 0.922217 0.667422 0.921591 0.669352 0.921904 0.668386
Decision Tree 0.896183 0.920515 0.769137 0.954168 0.649525 0.937039 0.704289
Random Forest 0.889736 0.921651 0.734623 0.944070 0.658612 0.932726 0.694544
MLP Classi�er 0.902197 0.923365 0.790474 0.958780 0.661504 0.940739 0.720261

These results show excellent performance of models in predicting class 0, performance that
worsens when dealing with class 1. This di�erence in behaviour can be associated with the
inhomogeneity of classes, meaning that the number of records associated with them are clearly
di�erent. Figure 4.24 shows the confusion matrices generated for this speci�c case.
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Figure 4.24. Confusion matrices generated for each model during the experiment with the
threshold at 1800 seconds.

4.2.3.3 Experiment using a threshold at 3600 seconds

To con�rm what noticed in the cases analysed in section 4.2.3.1 and 4.2.3.2, it was decided to
bring the limit to 3600 seconds by creating two intervals: the �rst containing 21785 records
and the second the 3654 remaining. This accentuates the unevenness between the classes to
understand how models react to these kinds of events.
For the evaluation of the algorithms, a strati�ed 20-fold cross validation has been used to be
able to compute the accuracy, precision, recall and F-measure indices, whose values are brought
back in the table 4.24.
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Table 4.24. Results of the experiment with a threshold at 3600 seconds

Algorithm
Mean

Accuracy
Precision
Class 0

Precision
Class 1

Recall
Class 0

Recall
Class 1

F-measure
Class 0

F-measure
Class 1

SVM Classi�er 0.919612 0.933047 0.803929 0.976176 0.582373 0.954124 0.675447
KNN Classi�er 0.874091 0.916786 0.571656 0.938123 0.492337 0.927332 0.529040
Decision Tree 0.911710 0.938586 0.722503 0.959697 0.625616 0.949024 0.670578
Random Forest 0.898817 0.934422 0.662260 0.948405 0.603175 0.941362 0.631338
MLP Classi�er 0.915759 0.940285 0.741143 0.962773 0.635468 0.951396 0.684249

As can be seen from these data, comparing them with those obtained in the experiments
analysed in sections 4.2.3.1 and 4.2.3.2, the unevenness of the classes increases the results of
the indices with regard to the �rst class, while those of the second tend to decrease. Figure
4.25 shows the confusion matrices generated speci�cally for this experiment.

Figure 4.25. Confusion matrices generated for each model during the experiment with the
threshold at 3600 seconds.
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4.2.3.4 Experiment using a threshold at 24 seconds or 582 seconds

To better identify the reliable thresholds, it was decided to use the classes and the confusion
matrices of experiments discussed earlier in this chapter, summing the ranges of the various
classes, to obtain two which to apply a binary classi�cation.
The ranges of the �rst experiment of this type were generated from those used in the case
analysed in section 4.2.2.4. The �rst class is given by the sum of the �rst two intervals while
the second by the last two. Doing so, the threshold applied for this experiment is 24 seconds.
The �rst class has associated 14384 records while the second has the remaining 11055.
To evaluate the selected algorithms a strati�ed 20-fold cross validation has been applied to
compute the accuracy, precision, recall and F-measure indices, the values of which are shown
in the table 4.25.

Table 4.25. Results of the experiment with a threshold at 24 seconds

Algorithm
Mean

Accuracy
Precision
Class 0

Precision
Class 1

Recall
Class 0

Recall
Class 1

F-measure
Class 0

F-measure
Class 1

SVM Classi�er 0.789850 0.731910 0.979506 0.991518 0.527454 0.842161 0.685678
KNN Classi�er 0.800700 0.756810 0.909651 0.954116 0.601085 0.844086 0.723856
Decision Tree 0.805220 0.756935 0.930183 0.965587 0.596563 0.848624 0.726922
Random Forest 0.793231 0.754037 0.887315 0.941393 0.600670 0.837363 0.716383
MLP Classi�er 0.806164 0.754647 0.945188 0.973790 0.588060 0.850326 0.725032

In this case it can be noted that, although the threshold makes the classes more or less homo-
geneous, many of the records predicted as belonging to class 0 actually belong to class 1. This
can be seen through the confusion matrices generated and reported in the �gure 4.26.
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Figure 4.26. Confusion matrices generated for each model during the experiment with the
threshold at 24 seconds.

Again, starting from the case analysed in section 4.2.2.4, it was decided to make a second
attempt, summing the �rst three classes to create the �rst interval while the second corresponds
to the last class. Doing so, the threshold used was placed at 582 seconds. The �rst interval has
19082 records while the other 6357.
After having carried out a training of the algorithms through a strati�ed 20-fold cross validation,
the accuracy, precision, recall and F-measure indices have been generated and reported in the
table 4.26.

Table 4.26. Results of the experiment with a threshold at 582 seconds

Algorithm
Mean

Accuracy
Precision
Class 0

Precision
Class 1

Recall
Class 0

Recall
Class 1

F-measure
Class 0

F-measure
Class 1

SVM Classi�er 0.883447 0.885408 0.874393 0.970181 0.623093 0.925858 0.727657
KNN Classi�er 0.878502 0.930585 0.800605 0.934388 0.790782 0.932483 0.795663
Decision Tree 0.900900 0.927116 0.816920 0.941935 0.777725 0.934467 0.796841
Random Forest 0.890287 0.906888 0.828967 0.951420 0.706780 0.928620 0.763013
MLP Classi�er 0.899406 0.920197 0.828660 0.948119 0.753185 0.933949 0.789122

These data were found to be better than those obtained with the limit put to 24 seconds. In
this case, however, the problem is slightly more uneven, having the class 0 more records for
the training. Figure 4.27 shows the confusion matrices generated by this analysis case with the
limit to 582 seconds.
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Figure 4.27. Confusion matrices generated for each model during the experiment with the
threshold at 582 seconds.

4.2.3.5 Experiment using a threshold at 30 seconds

Considering the results obtained in the experiments analysed in section 4.2.3.4, since the �rst
case had a certain homogeneity of classes, it was decided to look for a threshold that was close
to 24 seconds. Therefore, the new ranges were generated from the test analysed in section
4.2.2.6. In this case, the �rst class is the sum of the �rst two of the previous experiment, while
the remaining two compose the second class. Doing so, the threshold is put to 30 seconds,
creating a �rst class with 15993 records and a second with the remaining 9446.
After performing a strati�ed 20-fold cross validation, the accuracy, precision, recall and F-
measure indices were computed to evaluate the performance of the models in this new situation,
obtaining the results reported in the table 4.27.
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Table 4.27. Results of the experiment with a threshold at 30 seconds

Algorithm
Mean

Accuracy
Precision
Class 0

Precision
Class 1

Recall
Class 0

Recall
Class 1

F-measure
Class 0

F-measure
Class 1

SVM Classi�er 0.837572 0.796599 0.988060 0.995936 0.569447 0.885184 0.722498
KNN Classi�er 0.860254 0.834751 0.929311 0.969674 0.674995 0.897168 0.781996
Decision Tree 0.869059 0.834655 0.968870 0.987307 0.668855 0.904586 0.791383
Random Forest 0.863910 0.833502 0.949790 0.979116 0.668855 0.900460 0.784943
MLP Classi�er 0.868666 0.834002 0.969688 0.987682 0.667161 0.904360 0.790468

These data allow us to say that, in this way, the classes are predicted better than the case
with the limit to 24 seconds (analysed in section 4.2.3.4), trying to maintain a minimum of
homogeneity of the classes, although in this case the two di�er by about 6000 units. In addition
to generating the values of the indices shown in the table 4.27, the confusion matrices, shown
in �gure 4.28, were also created for each individual algorithm used in the training process.

Figure 4.28. Confusion matrices generated for each model during the experiment with the
threshold at 30 seconds.
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4.2.3.6 Experiment using a threshold at 60 seconds

The classes of the last binary classi�cation experiment consider those used in the case discussed
in section 4.2.2.8. In fact, the �rst interval is identical to the �rst one generated in that test,
while the second is given by summing the last two. Doing so, the threshold was set to 60
seconds, thus creating a �rst class containing 17472 records, while the second contains the
remaining 7967.
To evaluate the performance of the chosen algorithms, a strati�ed 20-fold cross validation was
applied and the accuracy, precision, recall and F-measure indices were computed, the values of
which are shown in the table 4.28.

Table 4.28. Results of the experiment with a threshold at 60 seconds

Algorithm
Mean

Accuracy
Precision
Class 0

Precision
Class 1

Recall
Class 0

Recall
Class 1

F-measure
Class 0

F-measure
Class 1

SVM Classi�er 0.895515 0.879496 0.948320 0.976763 0.704782 0.925581 0.808612
KNN Classi�er 0.908408 0.899230 0.935290 0.976019 0.760136 0.936052 0.838665
Decision Tree 0.904910 0.894905 0.934796 0.976190 0.748588 0.933782 0.831393
Random Forest 0.902551 0.891687 0.935556 0.976763 0.739802 0.932288 0.826243
MLP Classi�er 0.908959 0.896712 0.945873 0.980369 0.752353 0.936676 0.838087

From these data we can see a remarkable improvement in the prediction of class 1, in which
we get about 83% of the correct predictions, while the one of the class 0 is stable around 93%.
Considering the above, this proved to be the best experiment among those performed. To
con�rm the data reported in the table 4.28, in �gure 4.29 are reported the confusion matrices
for each model, to be able to better understand how the errors are distributed.
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Figure 4.29. Confusion matrices generated for each model during the experiment with the
threshold at 60 seconds.

From these matrices it is more noticeable that prediction problems are mainly present in class
1. In fact, all algorithms still struggle to distinguish clearly the records belonging to this class,
classifying them as belonging to class 0.
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5. Conclusions and Future Work

From the accuracy, precision, recall and F-measure indices obtained during the implementation
of the solution analysed in section 3.5.1, it was noted that some classes are predicted better than
others. In fact, through the data reported in the tables 4.12, 4.28 and those obtainable from
the Decision Tree confusion matrix reported in �gure 4.6, class 0 is predicted correctly about
94% of the time, class 1.0.0 about 62%, class 1.0.1 about 63%, class 1.1.0 about 39%, class
1.1.1 about 23% and class 1.1.2 about 80% of the time. It is extremely clear that classes 1.1.0
and 1.1.1 have unacceptable prediction results as they do not even reach the 50% threshold.
Classes 1.0.0 and 1.0.1 are also not acceptable as they do not exceed 65% of correct classi�ca-
tions. Therefore, as already found in some classi�cation experiments discussed in section 4.2.2,
only the classes at the extremes (class 0 and 1.1.2) have optimal performances in the �rst case
and medium in the second.
Additional information, which can help you understand why there are switches between ex-
cellent performance and poor ones, is the number of records used for the prediction of each
class:

� Class 0, predicted through the �rst classi�cation level of the system implemented, presents
17472 records associated with it, allowing the system to understand how to correctly
distinguish jobs that have a pending time belonging to it.

� For the prediction of classes 1.0.0 and 1.0.1 only 2101 records are available, which must
then be further subdivided into the two classes. In fact, class 1.0.0 has 966 records
associated while the remaining 1125 are part of the other one.

� Finally, for the three 1.1.0, 1.1.1 and 1.1.2 it was only possible to use 2137 records. Of
these 574 belong to the �rst, 331 to the second and the remaining 1375 to the third.

As it is possible to see from the above data, it is clear that one of the main problems that
led to this disparity of performance between classes is the heterogeneity of these compared to
the total of records used for their training. There is, in fact, a lack of data availability, as the
records that were used to predict the last �ve classes are about a �fth compared to those used
to predict only the �rst.
Another aspect that has negatively a�ected the classi�cation capabilities of the system, regard-
ing speci�c classes, is the presence of a bias inside the data, found following interviews done to
users when trying to understand the nature of the data available. In fact, the main problem
is that, often, users performed checks on the HPC cluster status before submitting a new job,
which was subdued only if the resources needed to run it were available, with the result that
rarely the architecture was overloaded, i.e. many jobs are waiting to be executed. Doing so,
therefore, job waiting times for most cases turn out to be extremely low.
Moreover, it has been noted that the variables used for the multiple prediction levels, that make
up the system, fail to perfectly describe the situation and therefore the problem appears to be
under-modeled. This means that the variables used, for the prediction of job ranges, are not
su�cient to describe optimally the problem and therefore to the algorithms lack the essential
information to improve the classi�cation indices of the system. In this regard it was noted that
there are little data available that could describe the complexity of the job. From this, a lack
of information has arisen, for those jobs submitted subsequently, regarding the resources time
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of use.

Considering the prediction system implemented and analysed in section 3.5.1, it is possible
that in the future changes will applied to improve the performance of each individual class.
More speci�cally, the problem will be better analysed together with users and the architec-
ture technicians to identify additional variables able to describe both the jobs submitted, to
understand how long speci�c resources will be occupied, and the state of the HPC cluster. In
these meetings will be analysed also the way how these new data can be found, understanding
if these are extractable from the already available variables, through other feature engineering
processes, or by searching inside PBS raw �les or from input and output �les of the jobs. As
analysed in the article [29], in fact, it is possible to de�ne clustering methods able to unite the
various jobs, regardless the number of operations that make up the simulation. By doing so,
it is possible to de�ne other common variables that can characterize the records, thus trying
to use this information to modify and improve the prediction system discussed in this thesis.
Afterwards, we will also attempt to describe the processes of data collection to save the infor-
mation in the most optimal formats.
In addition, in this period, users were asked no longer to check the resources availability and
submit the jobs immediately. Doing so, can be possible to try to overload the architecture by
increasing the variability of the attributes currently used for prediction. These data will be
added to those still used, enriching the dataset information, allowing to improve the perfor-
mance of those classes that the implemented system fails to classify correctly.
We will also try to perform other tuning procedures to provide algorithms with the optimal
parameters able to make the most of their potential, trying to improve the prediction system
also from this point of view.
Finally, when the desired results are obtained, tests will be carried out by applying the pre-
diction process directly to the jobs submissions one. In this way, the di�erences resulting from
the employment of this system can be analysed, to understand whether or not this will bring
signi�cant bene�ts.
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