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Abstract

Freezing of gait (FoG) in Parkinson’s disease is “a brief, episodic absence or
marked reduction of forward progression of the feet despite the intention to
walk” [79]. It is a common symptom in 50-80% of the patients [79], occurring most
frequently during turning, when passing through narrow paths or overcoming an
obstacle, and is strongly affected by cognitive aspects such as attention, stress or
anxiety [61]. Having a strong correlation with falls [47], FoG is considered as one
of the most dangerous symptoms, with severe effects on autonomy and Quality
of Life (QoL). Due to the great variability of FoG features, treatments have to
be patient-specific. This aspect, together with the need of further investigating
its causes, requires to develop objective methodologies to assess FoG. Laboratory
assessment typically includes FoG eliciting in an artificial setting, with an altered
emotional state of the patient due to examination anxiety. Thus many literature
studies have been recently focused on home evaluation systems [8]. In this regard,
a popular option is based on a combination of data coming from wearable inertial
sensors with machine learning algorithms, trained in order to detect FoG events.
Although different, all these methodologies share a similar processing pipeline.
The aim of this study was to explore a new approach to the problem, perform-
ing additional offline preprocessing to identify “regions of interest” in the data,
where there is a higher probability to identify FoG. Such step was introduced to
increase time efficiency during the analysis and the precision of the final classifier
predictions. In this study, tri-axial acceleration data coming from two previous
experiments (defined as “Phase 1” and “Phase 2”), involving a total of 85 subjects
and a waist-mounted commercial smartphone for data collection, were employed.
Phase 1 data were used to design the algorithm for the selection of ”region of in-
terest”, based on Continuous Wavelet Transform (CWT). On the selected pieces,
a more traditional pipeline was implemented: the signals were segmented through
a sliding window; from each segment a set of relevant spectral and temporal fea-
tures was extracted and fed in input to several classifiers (K-NN, SVM, Random
Forest) to compare their performances. Both multiclass and binary classification
were explored. The best results were obtained using binary Support Vector Ma-
chine with RBF kernel, achieving accuracy, recall and precision of 95%, 84%, 90%
respectively in a 10-fold stratified crossvalidation. Furthermore, the use of the im-
plemented window of interest was found to increase specificity, in a false positive
test over non-freezer patients, by 35 percentage points (from 62% to 97%).
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1 Parkinson’s disease

Parkinson’s disease (PD) is a widespread neurodegenerative disorder character-
ized by a slow but irreversible progression. It affects a significant portion of the
elder world population, without distinction between races or cultures. Around 10
million people are affected worldwide, with most of them over the age of 60 and
one in ten under 50 [30]. Men seem to be slightly more affected than women [30].
PD involves the death of the dopamine1-producing neurons in a region of the brain
called substantia nigra, which results in an unbalance between inhibitory and ex-
citatory mechanisms. The trigger of this phenomenon is unclear, even though
several studies suggest both genetic and environmental causes. Patients with PD
suffer from bradykinesia (i.e. slowness of movement), rigidity, tremor and postu-
ral instability [91]; they shows progressive speech and swallowing impairment [88]
as well as several non-motor symptoms, including sleep disturbances, depression,
psychosis, autonomic and gastrointestinal dysfunction, and dementia [52]. There
are not exams available to identify PD prior to the manifestation of the symp-
toms [12]; the evaluation of the progression of the disease in a patient is performed
by physicians through a series of clinical tests, commonly scored by the Unified
Parkinson’s Disease Rating Scale (UPDRS). The most widespread treatment on
the market is levodopa, a drug designed to increase dopamine levels, which pro-
duces a temporary reduction of the symptoms [89]. However, adjusting levodopa
administration is not trivial and the progression of the disease reduces its benefits
(wear off). At the state of the art, no permanent solution for reverting the disease
effects or its progression was found, hence all treatments are focused on improving
the quality of life of the patients, relieving the symptoms [26].

1.1 Incidence

PD is the most common movement disorder besides essential tremor and the
second most common neurodegenerative disease [5]. It affects approximately 0.3%
of the world population, but this statistic increases to 3% in subjects above 65
years. In general, being related to aging, Parkinson’s disease is more widespread in
countries with an higher average age. Moreover, the number of people with PD is
expected to increase by more than 50% by 2030 due to rising life expectancy [28].
Indeed, over the past generation, the global burden of Parkinson’s disease has
more than doubled (from 2.5 million individuals in 1996 to 6.1 million in 2016) as
a result of increasing numbers of older people, with possible contributions from
longer disease length and environmental factors. [82] Early onset of sporadic PD
is rare, with about 4% of patients developing clinical signs of the disease before
50 years [5], which is compliant with a mean age of onset identified at 55 [25].
Much later is the mean age at diagnosis, 70 years both for men and women [107].
The incidence2 is around 8 to 18 per 100000 person-year, even though the value
varies observing different age intervals: it ranges from 0.5 per 100,000 in the 30-40
year category to 120 per 100,000 in the oldest age category (over 70) [107]. Also

1neurotransmitter required for a correct movement control [52]
2number of new cases per population at risk in a given time period
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sex seems to have a relevant role in the disease: in 2016, for instance, 6.1 million
people worldwide were affected by the illness, 2.9 million (47.5%) were women and
3.2 million (52.5%) were men [82]. The male/female ratio generally ranges from
1.37 to 3.7 and it increases with age, suggesting that twice as many men than
women suffer from PD [107]. Some studies have also investigated the variability
of incidence due to ethnicity: highest incidence was identified among Whites and
Hispanic [24] [107], whereas both prevalence3 and incidence are lower in Asians
than in Whites [72].

1.2 Pathogenesis

Parkinson’s disease is related to the death of dopaminergic neurons in the sub-
stantia nigra. By the time of death, this region of the brain has lost 50–70%
of its neurons compared with the same region in healthy individuals [26]. Sub-
stantia nigra is a part of the Basal Ganglia, which play a role in the initiation
of voluntary movements and in the comparison between motor commands and
feedback from evolving motion [7]. The cause behind the degenerative process in
substantia nigra is not clear. The most popular hypotheses in literature suggest it
could be due either to misfolding and aggregation of proteins or to mitochondrial
dysfunction [16] [110]. Another significant clinical trait of PD is the formation
of intracytoplasmic inclusions known as Lewy Bodies (LBs) that are present in
surviving neurons of the substantia nigra as well as in other affected brain ar-
eas [34]. These aggregates are made of abnormally folded proteins, in particular
α-synuclein, parkin and ubiquitin and they are thought to be generated by a mul-
functioning of the Ubiquitin-proteasome system (UPS), which is responsible for
the degradation of overaboundant proteins and cell waste products. This failure
in UPS is considered a possible culprit for the neurodegeneration caused by PD:
toxic accumulation of intracellular proteins and aberrant proteins could be detri-
mental to neuronal survival. Supporting this, the accumulation of misfolded and
aggregated α-synuclein is thought to be the primary pathogenic event in familial
PD linked to mutations or multiplication of the α-synuclein gene [59].

1.3 Symptomatology

Symptoms of PD are classified as motor and non motor. The former are the most
evident and well-known; most of the patients are identified only when the first
motor features arise, even though it was estimated that, at this point, up to 80%
of dopaminergic cells in the nigro-striatal system are already lost [99]. The cardi-
nal motor symptoms can be summarized by the acronym TRAP: Tremor at rest,
Rigidity, Akinesia (or Bradykinesia) and Postural instability. Also flexed posture
and Freezing of Gait (FoG- sudden motor blocks) have been added to the pecu-
liarities of parkinsonism, with PD being the most common form [52]. Non-motor
symptoms vary from patient to patient and are often under appreciated features
of PD, although they may manifest as pre-symptoms also 10 or more years be-
fore the diagnosis [1]. They are not directly related to alterations of dopaminergic

3proportion of population with a disease at a specific point in time
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pathways, therefore they may develop even in subjects where motor symptoms are
under control [59]. With the progression of PD, non-motor symptoms contribute
to severe disability, therefore dealing with them is crucial to improve patients’
Quality of life (QoL).

1.3.1 Motor symptoms

Tremor is the most visible manifestation of Parkinson’s disease. It is the pre-
dominant symptom for patients that are affected by so called “tremor-dominant
PD”, whereas it can be completely absent in others [7]. Resting tremor is usually
asymmetric with moderate amplitude, medium (4–6 Hz) frequency. It is charac-
terized by an agonist-antagonist alternate contraction pattern that arises at rest,
but disappears or decreases with action or during sleep. Overall, tremor tends to
appear in the distal part of an extremity, indeed it is often manifested in the form
of a “pill-rolling” movement of the hands, but it may also affect lips, chin, jaw
and legs. Instead, it rarely involves the neck/head or voice [52]. The pathophys-
iology of rest tremor is largely unknown, but it is considered in general different
from that of bradykinesia and rigidity; its magnitude is not related to dopamine
deficiency and it does not respond readily to dopaminergic medicament. It was
hypothesized a connection with altered activity in the basal ganglia circuit, which
is affected by dopamine neurons death, and the cerebello-thalamo-cortical circuit,
which is also involved in many other tremors [42]. In addition to rest tremor,
many patients with PD also have postural tremor that is more prominent and
disabling and may be the first manifestation of the disease. This type of tremor is
called “re-emergent tremor” and it is often delayed when the patient assumes an
outstretched horizontal position [52]. The occurrence of rest tremor varies among
patients and with disease stage. This symptom is observed clinically in 75 %
of patients with PD. Deep brain stimulation seems to provide positive effects on
tremor control [45].

Rigidity in Parkinson’s disease patients is characterized by increased muscle
tone to palpation at rest, decreased distension to passive movement, increased
resistance to stretching and ease of the shortening reaction [86]. Rigidity is per-
ceived throughout the full range of movement and it may be associated with pain:
a painful shoulder is a frequent initial manifestation of PD although it is often mis-
diagnosed as arthritis, bursitis or rotator cuff injury [52]. Similarly to tremor, no
direct correlation has been shown between dopamine deficiency and rigidity [86].
The clinical features of rigidity suggest a complex pathophysiological cause [86],
related to changes in the passive mechanical properties of joints, tendons and
muscles and aberrations in peripheral sensory inputs that may affect the response
to muscle stretch [87].

Bradykinesia is characterised by reduced speed when starting and perform-
ing a single movement and progressive reduction of its amplitude, up to total
cessation during repetitive simple movements [86]. It impairs in particular fine
motor activities: in fact, it is often evaluated asking the patient to perform tasks
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as opening and closing the hand, tapping thumb and index fingers, or tapping
the foot on the ground [63]. Due to its nature, this symptom has substantial ef-
fects on daily living and QoL. Bradykinesia also manifests as loss of spontaneous
movements and gesturing, drooling because of altered swallowing, monotonic and
hypophonic dysarthria, loss of facial expression (hypomimia) and reduced blink-
ing, and decreased arm swing during walk [52]. A peculiar trait of bradykinesia in
PD is that patients are still able to correctly perform motor tasks when receiving
a visual/auditory cue, for example catching a ball thrown at them. This phe-
nomenon (kinesia paradoxica) suggests that patients with PD have intact motor
programmes but struggle to access them without an external trigger [52]. Bradyki-
nesia is the symptom that best correlates with dopaminergic deficiency [36] and
the derived unbalance between inhibitory and excitatory mechanism in Basal Gan-
glia [86]. Although muscle weakness and other PD motor symptoms may con-
tribute, the principal deficit was identified in an insufficient recruitment of muscle
fibers during the start of movement [10].

Postural instability is a symptom that arises during the advanced stages of
the disease and it is caused by a loss of straightening reflexes [52]. It largely
contributes, together with FoG, to motor impairment, increasing the risk of falls
and hip fractures, in particular in elder patients. [61]. The pathophysiology of
axial postural abnormalities in PD is poorly understood, and several central and
peripheral causes have been proposed, including asymmetry of the Basal Ganglia
outflow, rigidity, dystonia, abnormal processing of vestibular or proprioceptive
afferents, abnormal spatial cognition, focal myopathy in the paraspinal muscles,
spinal and soft tissue changes, and side effects of dopaminergic and nondopamin-
ergic drugs. [61] To asses abnormal postural stability, pull test is employed: the
clinician quickly pulls the patient backward by the shoulders and quantifies the de-
gree of retropulsion. If the patient takes more than two steps backwards or does
not show postural response, this indicates an abnormal postural response [52].
Dopaminergic therapy and deep brain stimulation can improve some axial signs
but usually do not robustly ameliorate postural instability [52].

1.3.2 Non motor symptoms

Non motor symptoms can be classified in autonomic disfuction, cognitive and
neurobehavioral disorders, and sensory and sleep abnormalities [52].

Autonomic dysfunction may either arise before the diagnosis or be caused
by medications. It includes a variety of conditions, for example orthostatic hy-
potension, sweating dysfunction, sphincter dysfunction, bladder and erectile dys-
function. [52] Orthostatic hypotension affects 30–40% of patients and can produce
dizziness, visual disturbances and altered cognition that may precede loss of con-
sciousness when the patient is assuming the upright posture [99]. Sphincter and,
in general, gastrointestinal dysfunctions are due to slowing of mobility of the gas-
trointestinal tract; 70-80% of patients suffer from slow-transit constipation [54].
A relevant related issue is dysphagia which increases the risk for polmonite ab in-
geris, a common cause of death in PD patients [56]. Urinary control disturbances
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include urinary frequency, urgency and incontinence and are often correlated with
the progression of PD [109]. Erectile disfunction is common in male subjects [99].

Cognitive/neurobehavioural disorders cover a wide range of different psy-
chological pathologies as depression, apathy, dementia, anxiety, psychosis and
allucinations. They used to be underrecognized and undertreated, but awareness
of their impact on the quality of life of patients is growing. Depression is a very
common condition in patients with PD, with prevalence between 20% and 70%.
However, pharmacologic treatment with antidepressant medications and cogni-
tive behavioral interventions may significantly ameliorate its effects [14]. Apathy
is often associated to depression, even though in some cases it may represent
a separate phenomenon. It is defined as a lack of motivation, associated with
reduced goal-oriented behavior and emotional expression. Up to 40% of PD pa-
tients suffer from apathy, in particular older men with drastic motor impairment,
worse executive dysfunction, and a higher risk of dementia [14]. About dementia,
it is generally developed in later stages of the illness. Nevertheless, also earlier
symptoms related to impairment of cognitive ability (e.g. planning or organizing
goal-directed behaviour), visuospatial dysfunction, impaired speech fluency and
memory impairment are observed as precursors of PD [86]. Generalised anxiety,
panic attacks, and social phobias are common in PD, about 40% of patients have
anxiety that manifests as apprehensiveness, nervousness, irritability, and feelings
of impending disaster as well as palpitations, hyperventilation, and insomnia [86].
Psychosis in the form of hallucinations, delusions and paranoia can occur in up
to 30% of PD patients [26] and they may be associated with the assumption of
dopaminergic medications. These drugs are also considered responsible for obses-
sive–compulsive and impulsive behaviour shown by some subjects, such as craving
(especially for sweets), binge eating, hypersexuality, pathological gambling, com-
pulsive shopping and punding, characterised by obsession with repetitive handling,
examining, sorting and arranging of objects. These behavioural symptoms are re-
ferred to as “hedonistic homeostatic dysregulation” [52].

Sleep and sensory disturbances are common in PD patients. Nocturnal
sleep disturbances occur in 60–98% of patients and are related to disease severity
and levodopa intake. During daytime some patients, in extreme cases, experi-
ence sudden irresistible sleep attacks [26]. Among sensory disturbance, anosmia
or hyposmia are found in at least 80% of patients even many years before the
diagnosis [29]. 40–85% of the patient report sore limbs and experience different
types of pain: muscoskeletal, oral, thoracal, abdominal and genital [99].

1.4 Treatment

There is not a therapy, at the moment, capable of stopping Parkinson’s disease
progression, reversing its symptoms or producing a neuroprotective action on still
undamaged dopaminergic neurons [26]. Only symptomatic treatment is available
and it aims at improving the QoL of the patients: with a life expectancy from
diagnosis of 17 years [46], they should carefully plan with their doctors a long-
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term medical strategy. This strategy should take into account the age of the
patient, the presence of cognitive impairment, comorbidities and the response of
the subject to the therapy. The treatment should be designed not only to reduce
the motor symptoms, but also the non motor ones caused either by the illness or
the medications. In early PD the timing when to start the drug treatment is quite
complex to define and the decision should be taken, with direct involvement of
the patient, balancing physical impairment against the drug-related complications
[26]. The two most common therapy are the pharmacological therapy and the
surgical therapy, even though also muscolar rehabilitation and physioterapy prove
beneficial in alleviating symptoms and muscoskeletal pain [61].

1.4.1 Pharmacological therapy

The pharmacological therapy is designed to fix, even if temporary, the unbal-
ance between inibitory and excitatory mechamisms, compensating the drop in
dopamine levels due to the degeneration of dopaminergic neurons.

Levodopa or L-DOPA is a dopamine precursor that is extensively employed
in the treatment of Parkinson’s disease [26]. It is normally administered together
with carbidopa4 for reducing the induced side effects (e.g. nausea) and maximizing
levodopa transport into the central nervous system [68]. Levodopa was considered
for many years the gold standard because produces, in particular at early stages, a
good response in the patient. However, with the disease progression the majority
of subjects experience shorter duration of response to individual doses (wearing-
off symptoms), an alternation of good and poor response to the drug (on-off
symptoms), involuntary movements of the head, trunk or limbs (dyskinesias),
other motor side effects and psychosis [99].

Dopamin agonists and MAO-B inhibitor are a possible alternative to L-
dopa. Dopamin agonists, like apomorphine, proved to be less likely to produce
dyskinesias and the wearing-off phenomenon than levodopa, but they are are more
likely to cause hallucinations, confusion, and psychosis, especially in the elderly.
Moreover, levodopa produces overall greater symptomatic benefits [31]. MAO-B
inhibitors offer mildly improvements, can be administered together a levodopa
therapy [31] and were able to improve PD motor symptoms, with effects that
persist up to 7 years or more [50].

1.4.2 Surgical therapy

The most common surgical intervention is Deep Brain Stimulation (DBS), which
is normally performed at advanced stages of the disease, when severe impairments
to QoL are present. DBS requires an electrode to be inserted through the skull to
stimulate the globus pallidus, subthalamic nucleus, or thalamus. A peacemaker-
like stimulator is implanted under the skin and wires connect the device to the
electrode, in order to send, when necessary, impulses to reduce abnormal eletrical

4aromatic amino acid decarboxylase (AADC) inhibitor

6



signals in the brain. This procedure can reduce bradykinesia, tremor and rigid-
ity, but also drug-related motor complication. However, there is concern about
the increased incidence of psychiatric side effects, especially depression, following
DBS. Patients with cognitive impairment or significant depression are, therefore,
not suitable for this treatment [26].

1.4.3 Motor rehabilitation

Rehabilitation aims at maximizing motor and cognitive functions and minimiz-
ing secondary complications, in order to optimize independence, safety, and QoL
of the patient. Several rehabilitative approaches have been proposed, like non-
specific physiotherapy (e.g. muscle strengthening and stretching, balance and
postural exercises), occupational therapy, treadmill and robotic training, dance
and martial arts therapy, multidisciplinary approaches including speech and cog-
nitive therapy, motor imagery and action observation therapy, virtual reality and
telerehabilitation. Such treatments tend to produce short-term improvements and
cannot replace medicaments or surgery. Nevertheless, physical exercise is gener-
ally accepted as an adjuvant, because it has also a positive impact on non-motor
symptoms [61].

1.5 Rating scales

Parkinson’s disease (PD) is diagnosed and staged only on the basis of clinical
tests, that involve the evaluation of the motor and non motor symptoms shown
by the patient. A need for a unified international standard for the assessment
of the disease progression led to the definition of several rating scales, among
which Hoehn and Yahr (H & Y) scale and Unified Parkison’s Disease Rating scale
(UPDRS) are the most largely employed and acknowledged.

Hoehn and Yahr scale is commonly used to compare groups of patients and
to perform a gross estimate of disease progression, ranging from stage 0 (no signs
of disease) to stage 5 (wheelchair bound or bedridden unless assisted) [52]. H & Y
stages seem to correlate well with progression of motor complications, reduction of
QoL, and neuroimaging studies of dopaminergic loss [40]. Its main issues are [53]:

• it does not describe in details the motor impairment of the patient;

• it does not include any information about non motor symptoms;

• it is quite insensitive to changes in a patient’s clinical state, therefore it is
not suitable for individual use.

UPDRS is the most used rating scale for Parkinson’s disease and it consists in
a questionnaire divided into sections that is filled out by the doctor administering
the test and also the subject involved. It was defined in 1987, but it was revised
in 2001 to solve some ambiguities and the lack of detailed instructions in some
sections [40]. The current version (known as MDS-UPDRS) is organised in four
parts:

7



• “Evaluation of mental activity, behaviour and mood”, which evaluates non-
motor aspects and is filled out by the patient and/or the caregiver;

• “Self-evaluation of activities of daily living”, which evaluates motor aspects
of daily living and is filled out by the patient and/or caregiver;

• “Evaluation of motor function”, which evaluates the current motor condi-
tions of the patient according to a series of physical tests (e.g. pull test)
performed by the physician, who is in charge of filling out this part of the
questionnaire;

• “Evaluation of complications of therapy”, which is focused on assessing the
effects produced by the current therapy on the patients in the weeks prior
the test and it is compiled both according to the doctor’s observations and
information from patient and/or caregiver.

Each item in the test receives a score between 0 and 4, with a total score that can
range from 0 (no disability) to 199 (total disability). [96]
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2 Freezing of Gait

2.1 Introduction

Freezing of Gait (FoG) is an episodic and complex event related to gait5 impair-
ment in Parkinson’s disease patients. FoG in the literature is referred to as “a
brief, episodic absence or marked reduction of forward progression of the feet de-
spite the intention to walk” [79]. Such definition tries to convey the nature of a
phenomenon that is actually characterized by a high variability in its manifesta-
tion. Freezing of Gait can occur as an inability to start moving (start hesitation)
or an arrest while walking, as well as episodes of shuffling forward with steps that
are millimetres to a couple of centimetres in length [79]. Even though freezing
events can happen also while performing a straight walk in a comfortable setting,
it is more often triggered or worsened by challenging situations or provocative
environments, such as changing direction (turning hesitation), approaching nar-
row doorways (tight quarter hesitation) or destinations (destination hesitation),
moving into crowded spaces, walking on a slippery surface, crossing thresholds
or changes in floor, stepping into an elevator or entering a revolving door [61].
Moreover, dual tasking (e.g. walking and talking together) can increase the prob-
ability of freezing [98], as well as emotional factors such as stress or anxiety, due
to increased cognitive load [61]. FoG is one of the most debilitating motor symp-
toms of Parkinson’s disease (PD) as it may lead to a loss of independence and an
increased risk of falls [47], which are not only harmful for patients, but represent
a significant contribution to health care costs for society [13]. Freezing events
are generally regarded as a feature of late PD that involves 80% of subjects in
advanced stages [47]; however, it was observed that it may also occur in very
early stages, affecting up to 26% of patients not yet exposed to levodopa [13]. It
happens more frequently in men than in women and less frequently in patients in
which the main symptom is tremor [60]. Nevertheless, not all patient experience
FoG but the possibility that it will manifest in all advanced PD patients after a
long enough washout period from medications has never been ruled out [74]. Some
studies, however, criticise the division of patients in non-freezers versus freezers
because of the difficulties of an objective assessment and suggest, instead, to clas-
sify patients along a continuous spectrum of freezing severity, ranging from no
freezing at all at one end, to severe FoG at the other end [95]. Due to its episodic
and unpredictable nature, FoG assessment is a complex task. First of all, patients
are usually not well aware of how freezing verifies and this reduces the validity
of administered questionnaires [95] [78]. Moreover, they are less likely to exhibit
freezing in a controlled and unfamiliar setting like a hospital or a laboratory [95],
due also to the greater attention they pay to the motor task they are asked to per-
form [79]. The possibility of carrying out an objective at home evaluation would
be crucial to better study the mechanism underlying this phenomenon [8].

5locomotion achieved by motion of lower limbs

9



2.2 Clinical features and etiology

Freezing events are generally quite short: most episodes last less than 10 seconds
and only a few last more than 30 seconds [92]. They are more frequent during off
state, which is defined as a withdrawal from antiparkinson medication for at least
12 hours [13]. Some relevant features are observed in affected patients:

• the foot or toe does not leave the ground or only barely clears the support
surface during gait [79];

• inertial acceleration signals have a frequency spectrum content shifted to the
3-8 Hz band, with respect to normal walking band between 0.5-3 Hz [69].
This peculiarity is correlated to an alternate trembling of the legs during
the event [79];

• increase in cadence but shorter path length before FoG [79] [4];

• a feeling of being “glued to the floor” [13];

• the freezing event is commonly relieved by visual or auditory cues [61] [39];

• FoG can be asymmetrical, affecting mainly one foot or being elicited more
easily by turning in one direction [79].

In addition to these, patients with severe FoG have a generally impaired and
altered gait cycle, with higher variability both in stride timing and amplitude,
which are easily captured as abnormal variations in inertial signals [95] [74], as
shown in Figure 1. This phenomenon is amplified in particular for dual task tests,
remarking the importance of attention to walking in freezers [98].

Overall, three different manifestation patterns are identified: trembling in
place, shuffling forward and akinesia.

Trembling in place is, as already mentioned, an alternating tremor of the legs
(knees) [79] and it is associated to an effort to overcome the motor block. It is
the most frequent type [92].

Shuffling forward means that the patient is not able to take a normal-length
forward step, but performs a series of short steps. Walking with short steps was
also identified as a possible trigger for in-lab elicitation of fog [77].

Akinesia is an extreme form of bradikinesia that consists in complete absence
of movement of the limbs or trunk. It is actually the less frequent of the three [13].

Freezing can sometimes involve also gait-unrelated tasks: motor blocks have been
reported to occur in alternating repetitive movements of the fingers and during
speech. These events resemble FoG in severity and frequency content [79].
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Figure 1: Inertial signals of activities interrupted by FoG, measured from different
placements. Ref: [74]

Freezing of Gait etiology is poorly understood, but the trend has shifted toward
considering a multisystem disfunctioning at the base of this symptom, rather than
a pure motor-related disfunctioning. This was due to the raising awareness of the
impact of cognitive/psychological alterations on FoG elicitation [61] [47] [37]. Five
main hypotheses are being explored [79] [48]:

• Abnormal gait pattern generation, which is based on the observation of
altered gait rhythmicity and gait cycle coordination, as well as shortening
of steps, suggests that the main cause of FoG is due to abnormal output
from the central pattern generators of the spinal cord. This results in high-
frequency oscillations in both the lower and upper limbs during freezing
episodes;

• A problem with central drive and automaticity of movement, which
considers an impairment in automaticity and it is supported by the evidence
that dual tasking can elicit the freezing event. Hence, FoG may be the
result of disruption of the basal ganglia–supplementary motor area loop for
self-initiated movement and this would also explain the relieving effect of
video/auditory cues, which compensate this loss via the cerebellum–dorsal
premotor cortex to maintain a central drive for locomotion;
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• Abnormal coupling of posture with gait, which identifies the cause of
freezing events in an unbalance between the anticipatory postural adjust-
ment needed for shifting body weight in gait, and stepping. This hypothesis
is supported by the trembling observed in legs, which is interpreted as a
repeated but unsuccessful tentative of postural adjustment, caused by a
disrupted basal ganglia mechanisms for preparing a motor programme;

• A perceptual malfunction, which suggests an exaggerated response to
action-relevant visual information, due to the fact that patients affected by
FoG decrease their gait speed and stride length to a much greater degree
as a doorway is approached and tend to misjudge its size while walking.
However, such effect is absent when the patient is seated, therefore this
hypothesis requires further investigation and it is generally not regarded as
a possible single cause;

• A consequence of frontal executive dysfunction, which considers the
main cause of FoG to be an impairment in frontal executive functionalities,
such as set-shifting, attention, problem solving, and response inhibition. In-
deed, freezing is often triggered by challenging walking tasks that require the
aforementioned properties and a fast switch in motor programmes. Never-
theless, this hypothesis requires further revision because not all PD patients
with executive dysfunction show FoG.

2.3 Treatment

Designing an effective therapy for FoG, either pharmacological or surgical, is a
cumbersome task. FoG has a variable and complex response to levodopa. Overall,
three different FoG categories are identified:

• “OFF” FoG, which is the most common [78] and occurs when the patient is
in a withdrawal phase from levodopa, hence it generally improves increasing
the dosage or the frequency of administration of the medicament [48] [79]
[92];

• “ON” FoG, which seems actually to be levodopa-induced [48] [79].

• “levodopa-unresponsive” FoG, which does not respond to the treatment and
can verify both in OFF and ON state [48].

Differentiating between OFF and ON FoG is fundamental for tuning the drug
therapy [95]. Dopaminergic agonists as an alternative to levodopa for “levodopa-
unresponsive” FoG produced disappointing results and they could also worsen ON
FoG [78]. MAO-B inhibitors have been associated with a decreased likelihood of
developing FoG in a large randomised, controlled study, but they rarely reduce
freezing once it has developed [79]. Also for DBS, available results are character-
ized by a great variability, are fairly small and limited, with a brief follow-up (on
average 1 year after surgery) [78]. One study [76] showed that freezing severity
improved in DBS-treated patients after 1 year, but in different subgroup of pa-
tients with PD, FoG was actually induced by surgery [32]. Some patients develop
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or have worsened FoG and other axial motor problems several years after elec-
trodes were implanted, however this could be a result of natural disease progres-
sion [78]. Adjusting the stimulator settings (e.g. decreasing stimulation voltage
or frequency) improved the results in some cases [78]. Physiotherapy and physical
exercise, as for other symptoms of Parkinson’s disease, can ameliorate FoG. Even
patients with mild freezing should be educated about the phenomenon, especially
about the risk of falls, various provoking circumstances, and preventive measures
to follow, like conscious movement strategies to increase step amplitude, retaining
stepping rhythm, making lateral weight shifts, directing attention to gait, and
making wide arcs when turning [78]. A relevant rehabilitation strategy is related
to the use of visual, auditory or somatosensory external cues that, as previously
mentioned, can prevent or unlock freezing episodes [39] [84]. This mechanism
could be exploited also for real-time FoG prevention, when combined with models
for automatic detection [100]. Instruments for this kind of approach include laser
projecting canes, metronome-like signals sent through headphones, smartglasses
and headsets, tactor-stimulating sensors, often included as single components in a
more complex assessment system [100]. The main drawback observed is the wear-
off of the benefits due to the subject getting used to the continuous stimulation,
hence the importance of avoiding cuing due to false positive events [100].

2.4 Assessment

Because of its clinical features, assessing Freezing of Gait is a challenging task
for physicians. Besides its episodic and unpredictable nature, which requires to
develop ad hoc protocols and instruments for its evaluation, freezing is character-
ized by a great variability among patients and several factors that can ameliorate
(e.g. attention to gait, levodopa ON state), or worsen its occurrence (dual tasking,
stress, anxiety, levodopa OFF state) [8] [47]. Assessment can be either performed
in laboratory or at the patient’s house.

In laboratory assessment allows to evaluate FoG in patients both in ON
and OFF state [57] and the usage of complex motion capturing systems such as
multiple video recordings, optoelectronic sensors, floor sensors [73]. The main
limitation of in-lab assessment is that the likelihood of a FoG manifestation is
strongly reduced due to the artificial setting: wide halls or laboratories of hospitals
are often unlike the patient’s house, where most of the freezing events occur. The
inhibitory action of increased attention on gait and other emotional components
like anxiety or stress contributes as well to this phenomenon [78].

At home assessment is based on either an evaluation made by the patient
and/or the caregiver through questionnaire or diaries or on an objective evalua-
tion through the usage of low-cost, low-consumption and portable sensors, among
which wearable inertial sensors are a popular option [15]. The latter approach is
very promising when combined with machine learning models trained on features
extracted from inertial signals, but still largely under investigation [8]. This will
be further discussed in section 2.5. At home evaluation allows to observe FoG
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during so-called Activities of Daily Living (ADL) performed by the patient. Dis-
tinguishing the freezing events with respect to these activities is challenging, but
it is of fundamental importance when aiming at designing FoG assessment (and
prevention) solutions [8]. Moreover, given the familiar setting and its natural ob-
stacles, the probability of observing freezing is much higher with respect to the
in-lab methodology.

Moreover, FoG assessment methods can be generally classified as subjective or
objective [8].

2.4.1 Subjective methods

Subjective evaluations are based on information coming from the patient or his/her
caregiver and observations made by a qualified examiner. Some of them can be
performed at home (diaries), others require the interaction with a physician in
hospital (history-taking, scales and questionnaires, clinical examination).

History-taking is a preliminary assessment approach that consists in an inter-
view with a clinician, who asks the subject to do a self evaluation of FoG. The
patients are usually not familiar with the terminology, so alternative approaches
should be employed: asking if he/she has ever felt a “glued-to-the-ground” feel-
ing or if he/she has experienced sudden blocks while walking; showing video or
performing a demonstration of what FoG looks like; asking about falls frequency,
being the two events often related [8] [95].

Scales and questionnaires are another common approach that can be used by
the clinician to evaluate FoG severity in a patient. The revised version of UPDRS
contains a section about about the presence and severity of FoG both OFF and
ON medication. However, it only allows the examiner to get some insight into the
presence and burden of FoG in daily life, and not to finely characterize its features
[8]. Two specific questionnaire about FoG known as FOGQ [38] and NFOGQ [75]
were defined to solve the aforementioned issues. The FOGQ can help clinicians
screen for the presence of FoG, and also to assess the subjective severity [95]. The
NFOGQ is very useful as it measures the severity of FoG in terms of frequency
of occurrence, intensity and duration of the longest FoG episodes, and subjective
impact on QoL and activities of daily living [8]. However, these questionnaires only
assess FoG during turning and gait, and no other circumstances that commonly
cause FoG, such as negotiating narrow passages or performing a dual task. In
addition, they do not document the the environment in which FoG occurs. Finally,
the treatment effect (ON or OFF state) in which FoG predominantly occurs is
not scored [95].

Diaries can be used by patients as a powerful and cheap instrument for keeping
track of FoG in daily living. A well structured diary records information about
episodes such as time of day, triggering conditions (e.g. walking through a door-
way), and whether the episode led to a fall or a near-fall. All these data can be
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exploited to tune the medical treatment. The main drawback is that only patients
with intact cognitive abilities can keep a diary and, depending on the purpose and
duration over which it needs to be filled, it requires followup by a researcher or
therapist every week to ensure correct completion [8].

Clinical examination is performed in-lab. The patient is asked to perform
some motor activities, for example Timed Get Up and Go (TUG), in which he
has to get up from a sitting position, walk a short distance, turn around, walk back
to the chair and sit down again [73], or the even simpler Six Minute Walking Test
(6MWT). Such tests are usually complicated to elicit FoG, using different tricks
as dual tasking, either motor (e.g. carrying an object while walking) or cognitive
(e.g. talking while walking), surpassing obstacles, turning of a wide angle, passing
through narrow paths [13].

2.4.2 Objective methods

Objective methods employ different kind of sensors (non wearable and wearable)
and instrumentation for recording and evaluating FoG episodes, in most of the
cases in a laboratory setting [8].

Video recordings are the gold standard for offline FoG recognition, because
they allow to capture the event during the walking tests and study it later [8],
applying if necessary image processing techniques for extracting further informa-
tion [73]. Viewing the patient from multiple angles simultaneously may also be
helpful in understanding the patient’s gait patterns [21]. Video tapes are often
used in combination with the other techniques.

Floor sensors are placed along the floor on the so called “force platforms” or
instrumented walkways, in which gait is measured by pressure or force sensors
when the subject walks on them. There are two types of floor sensors: force plate
and pressure measurement systems [73]. Force plates measure the force applied
to the ground by the feet; not only the downward force exerted, but also braking
and acceleration force and force directed mediolaterally [21].

EMG systems measure electrical manifestation of muscle during voluntary or
involuntary contraction. If the posture of the patient or his movement dynamics
are altered, it follows that the mechanics of movement will be abnormal too; hence,
the electrical activity driving that movement will also be altered. However, muscle
activity can be effectively assessed only in conjunction with a motion-capture
system or force-plate data [21].

Wearable sensors are employed in several studies for gait analysis and FoG
evaluation [101] [94], with a rise in their popularity due to the fact that they
represent the most promising technique also for objective at home assessment.
They include inertial sensors (accelerometers, gyroscopes, magnetometers), pres-
sure and force sensor, piezoeletric sensors. Table 1 shows a summary of advantages
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and disadvantages of wearable with respect to non-wearable sensors. This kind
of systems are commonly coupled with ad hoc algorithms, often involving either
shallow or deep machine learning techniques, using features extracted from their
output signals to classify or predict motor activities [85].

Smartphones are receiving researchers’ attention because they already embed
inertial sensors like accelerometers and gyroscopes able to study human motion.
Moreover, patients are usually not comfortable while wearing complex and heavy
instrumentation, but they are used to carrying around a smartphone in their
pocket. Several activity recognition systems have been recently developed for
smartphone [33] [19] [9]. Smartphone use in FoG detection was explored in sev-
eral studies [18] [44] [67] [15] [44] achieving performances comparable to other
type of sensors.

Table 1: Comparison between Non Wearable (NWS) and Wearable (WS) systems
from [73]

System Advantages Disadvantages

NWS

-Allows simultaneous analysis of multiple
gait parameters captured from different
approaches
-Non restricted by power consumption
-Some systems are totally non-intrusive
in terms of attaching sensors to the body
-Complex analysis systems allow more
precision and have more measurement ca-
pacity
-Better repeatability, reproducibility and less
external factor interference due to controlled
environment.
-Measurement process controlled in real time
by the specialist.

-Normal subject gait can be altered due to
walking space restrictions required by the
measurement system
-Expensive equipment and tests
-Impossible to monitor real life gait outside
the instrumented environment

WS

-Transparent analysis and monitoring of gait
during daily activities and on the long term
-Cheaper systems
-Allows the possibility of deployment in any
place, not needing controlled environments
-Increasing availability of varied miniaturized
sensors

-Wireless systems enhance usability
-In clinical gait analysis, promotes autonomy
and active role of patients

-Power consumption restrictions due to
limited battery duration
-Complex algorithms needed to estima-
te parameters from inertial sensors
-Allows analysis of limited number of
gait parameters
-Susceptible to noise and interference of
external factors not controlled by specialist

2.5 Inertial methodologies for FoG recognition

Inertial Measurement Units (IMUs) are one of the most widely used type of sen-
sors in gait and FoG analysis, being low-cost, low-consumption, often wireless and
easily miniaturizable [73]. Optimal type, number and placement are still argument
of debate and different study propose different solutions [94]. Tri-axial accelerom-
eters are the most used, either as a single sensor [3] [83] [112], or combined with
gyroscopes [44] [27], or magnetometers [23]. Both one location and a combination
of two or more locations have been used. The shin [23] [27] and waist [112] [18]
were the most common choice, and could be used as single location. When two
or more locations are considered, sensors were applied also on feet [70], knee [55],
thigh [6], chest [105] or wrist [64]. Even if different approaches are used, a com-
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mon pipeline can be identified among the different studies using inertial sensors
for automatic FoG recognition. First of all, data are acquired, in lab or at home,
through different protocols, either standard like TUG [70] [71] [62], 6MWT [15] or
fog-elicitation-designed [106] [3]. Raw acceleration data (fig. 2) are usually filtered
below 20-15 Hz using bandpass or lowpass filters, in order to remove noise and
focus on the relevant components of the human motion spectrum [15] [17] [90] [85].

Figure 2: a)anterior, b)vertical, c)lateral acceleration signals from tri-axial ac-
celerometer in a smartphone.

Further preprocessing to fix errors due to instrumentation can be applied [105],
[15]. At this point, the signals are segmented using a sliding window with a given
size and stride. Window size is a relevant parameter because the temporal res-
olution of the algorithm, i.e. the capability of identifying short-duration FoG
episodes, is inversely proportional to the window duration [15]. Common win-
dows in the literature range from 1 to 4s [85] [90] [69] [17] [58], usually with a half
window length stride (50% overlap between consecutive segments). To knowledge
of the writer, no approach for further reducing the input signals to relevant com-
ponents prior segmentation has been tested. From each window, a set of temporal
and spectral features are extracted, exploiting the peculiarity of inertial signals
containing FoG, such as increased frequency content in the freezing band (3-8Hz)
vs the walking band (0-3Hz) (fig. 3), abnormalities in gait (fig. 1) before and after
the event (e.g. increase of peaks in acceleration due to shuffling steps, variations
in the standard deviation of the signals). The choice of optimal features can be
performed using different feature selection strategies, some exploit Pearson corre-
lation [15], or mutual information to target [111]; Principal Component analysis
is sometimes used for dimensionality reduction [85]. Eventually, the extracted
features are employed to identify if a certain window contains FoG. The most
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straightforward and simpler methods define a threshold on the extracted features
(or on a single so called spectral “freezing index” [69] [83]), whereas more com-
plex and performing solutions rely on machine learning models like Support Vector
Machine [3], Naive Bayes [105], K-Nearest Neighbours [15], Decision Trees [105],
Hidden Markov Models [90] or Neural Networks [90] [15] [17]. Threshold methods
are less computational expensive, but overall achieve lower performances because
it is complex to identify a threshold value valid for all the cases, due to FoG in-
trinsic variability in manifestation. Learning models reach better results in terms
of specificity and sensitivity and can adapt better to variability, but a balance
between computational burden and performance should be reached, in particular
when designing real-time recognition systems [85].

Figure 3: Spectrum of different activities compared to FoG. A clear shift to the
3-8Hz range can be appreciated. Ref: [69]
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3 Proposed detection algorithm

3.1 Introduction

As described in section 2.5, many approaches for FoG assessment have been pro-
posed which combine inertial sensors, in dedicated hardware or smartphones, and
machine learning. As highlighted, all of them share a similar processing pipeline
for the data, in particular regarding the segmentation of the inertial signals in
consecutive windows. The aim of this study is to propose a new approach to the
problem, which involves a further preprocessing step, to identify regions of inter-
est where there is a higher probability to identify a FoG event. This additional
operation was deemed important for two main reasons:

• time efficiency, because recorded signals can be quite long and reducing
the analysis only to relevant portions can speed up significantly the compu-
tations;

• precision, because eliminating activities that could be misunderstood for
FoG (false positive) could improve this metric.

About the second point, many studies report high values of accuracy and sen-
sitivity in FoG classification, but they often do not include information about
either precision or specificity, which could hinder that relevant results with re-
spect to these two complementary metrics are not easily achieved [15]. However,
the importance of false positive depends also on the type of application: if the
monitoring is performed to produce a diary recording FoG episodes, to assess their
frequency and duration, a lot of false positives have a great impact and could mis-
lead physicians when designing the therapy; on the other hand, for a real time
cueing application, a false positive would produce a non requested but innocu-
ous stimulation, which could be accepted in order to catch as many episodes as
possible (higher sensitivity). Nevertheless, whatever the application is, it is good
practice to aim at both high precision and sensitivity, hence the importance that
the proposed approach could have on the problem. In the following sections, the
data employed in this study and the proposed algorithm pipeline will be described
in details.

3.2 Data description

The data were collected in two different previous experiments [15], here defined
for simplicity Phase 1 and Phase 2, performed in laboratory at University Hos-
pital “Città della Salute e della Scienza”, Turin, Italy. In both, a commercial
smartphone (Samsung Galaxy Mini s5) was mounted at the waist (around the
third lumbar vertebra) of the subject as shown in Figure 4 and inertial signals
from the internal accelerometer and gyroscope were recorded. Table 2 shows a
summary of the characteristics of the two sensors.
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Table 2: Characteristics of inertial sensors in Samsung Galaxy s5 mini. Ref: [15]

Sensor type Range Resolution Sample frequency

Accelerometer ±2g 40 mg 200 Hz
Gyroscope ±2000 dps 60 dps 200 Hz

Figure 4: Positioning of the smartphone employed for data recordings. Ref: [15]

Using Matlab, the raw outputs of the sensors were recalibrated to remove
contributions from gravity, filtered by a forth-order zero-lag bandpass filter to the
band 0.5-15Hz and the different activities they contained were recognised (and
the corresponding time samples labeled) according to video recordings performed
during the tests [15]. Finally, for each patient a Matlab matrix with a row for
each time sample and the following columns was produced:

• x-axis acceleration

• y-axis acceleration

• z-axis acceleration

• x-axis angular velocity

• y-axis angular velocity

• z-axis angular velocity

• activity label

These output matrices were the starting point for this study.
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3.2.1 Data Phase 1

Phase 1 contains data from 38 PD patients. The subjects were asked to perform
a 6 Minutes Walking Test along a 10-meter hospital corridor at their preferred
pace, possibly using their usual walking aids, then to turn 180◦ (alternating ei-
ther direction) and return back to the starting point. This exercise was repeated
for 6 minutes to increase the probability of eliciting a freezing event. No pause
was planned during the test execution; nevertheless, the participants were free
to quit or take breaks and later resume the exercise. To ensure safety, the tests
were all performed under the supervision of clinical personnel. In addition to this,
neither dual tasking or obstacle negotiation were included in the protocol [15].
Patients performed the test when different time has elapsed from their last lev-
odopa in-take, so no neat distinction between on and off FoG was considered [15].
Figure 5 reports 1 minute of the recorded signals (after the previously mentioned
preprocessing) from a patient with FoG.

Figure 5: 1-minute extract of recorded inertial signals from freezing patient. a)
Acceleration from accelerometer by components versus time; b) angular velocity
from gyroscope by components versus time; c) activities recognised from video
recordings versus time

From these data, four main activities can be identified: walk (label 1), turn
(label 2), stand (label 3), FoG (label 4). In addition to these, label 6 represents
short hesitations or brief FoG episodes: these events, as further discussed in 3.3.3,
will be considered FoG as well. Finally, label 0 represents a mixture of pieces
from different activities (walking, standing, smartphone positioning) that were
not considered relevant; this label was maintained during selection of regions
of interest, but discarded when training the final classifier. Figure 6 shows an
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example of the most significant signals during the four main activities. Some
relevant properties can be directly observed from the signals [15]:

• peaks in x-axis acceleration correspond to steps;

• peaks in z-axis acceleration correspond to steps as well and for this reason
are often synchronized with peaks on x-axis component;

• turning is associated to increase of x-axis angular velocity;

• during standing all signals are practically 0;

• during FoG acceleration signals appear distorted and in general freezers have
more irregular gait cycles.

Figure 6: Most relevant inertial signals during a)walk, b)turn, c)stand, d)FoG.
During walk, peaks of acceleration on x and z are synchronized; during turn
angular velocity on x and z increases, acceleration on x decreases; in stand all
signals are almost 0; during FoG altered signals are registered

Overall, only 5 patients showed FoG, in particular of the “trembling of legs”
type, for a total duration of around 2 minutes. Table 3 contains some statistics
about the length of the episodes, whereas Figure 8 shows histograms about the
distribution of episodes length. As it can be appreciated most of the them are
shorter than 4 s. Phase 1 data were used to design the proposed recognition al-
gorithm and provide a first rough evaluation of its performances.
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Table 3: Statistics about FoG episodes duration

N. of
episodes

Max
length [s]

Min
length [s]

Avg
length [s]

STD
[s]

Total recorded
length [s]

30 19.1 0.465 3.85 4.58 115.68

3.2.2 Data Phase 2

Phase 2 involved 47 patients. The experiment was conducted in a manner similar
to Phase 1, but the recorded data include some additional activities and are
generally longer. Figure 7 shows an example of about 1 minute of signals recorded
for a freezer patient.

Figure 7: 1-minute extract of recorded inertial signals from freezing patient in
Phase 2. a) Acceleration from accelerometer by components vs time; b) angular
velocity from gyroscope by components vs time; c) activities recognised from video
recordings vs time

The additional activities performed include:

• Stand up (label 5);

• Sit down (label 6);

• Retropulsion test (label 7);

• Tapping (label 8);

• Mix of daily living activities (e.g. taking a book, washing hands) (label -2);
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The signals recorded in this phase are therefore more complex, but closer to the
ones that could be recorded in actual daily living conditions, but for the physi-
cal tests (7-8) that indeed were not considered by the proposed FoG classifiers.
Also in this case, only 5 patients manifested FoG during the test, but around 4
minutes of freezing events were identified. Table 4 contains some statistics about
episodes duration, whereas Figure 9 shows histograms about the distribution of
their length.

Table 4: Statistics about FoG episodes and their duration in Phase 2

N. of
episodes

Max
length [s]

Min
length [s]

Avg
length [s]

STD
[s]

Total recorded
length [s]

38 21 0.9 6.39 5.5 243

As it can be appreciated most of them are shorter than 8 s. However, with
respect to the previous experiment longer events were overall observed. Phase 2
data were employed to improve the robustness of the classification models trained
with Phase 1 data and provide a less variance-affected evaluation of their perfor-
mances in validation and test. Moreover, non-freezers were employed for a false
positive test with the aim of assessing the improvement in classification provided
by the proposed pipeline.

Figure 8: Distribution of duration of
FoG episodes in Phase 1

Figure 9: Distribution of duration of
FoG episodes in Phase 2
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3.3 Proposed algorithm pipeline

Figure 10: Pipeline used for training the proposed FoG recognition algorithm

Figure 10 reports the training pipeline for the proposed FoG recognition algorithm,
which exploits only the tri-axial acceleration signals of the patients. First of
all, acceleration data from Phase 1 were used to design the Regions of Interest
Extractor (1). This was then applied to Phase 1 patients themselves and its
output, for each subject, was segmented in windows of 2s (2). A set of FoG-
related features was defined to characterize each window, as well as a class label
representing the activity involved, needed for training of the final classifiers (3).
A reduced dataset was defined starting from the data extracted from all patients
and feature selection through mutual information was used to highlight the most
significant features among the ones proposed in step 3 (4). The reduced dataset
with the selected relevant features was eventually used to train, validate and test
three different machine learning classifiers, whose performances in FoG recognition
were compared (5). Once the whole algorithm was tuned and the best classifier
was selected, the pipeline for processing and classifying new data reduced to the
one in Figure 11.

Figure 11: Testing pipeline for the proposed FoG recognition algorithm
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3.3.1 Regions of interest extractor (RIE)

As discussed in Chapter 2, FoG occurs when a patient is walking (or starting
to) and in particular when he/she is turning, hence an episode will be very likely
identified close to these kind of activities. For the purpose of this study, a Region
of Interest (RI) for FoG recognition was defined as a region of body acceleration
containing either walk or turn. Several approaches exist in literature to identify
gait or turning [102] [104] [108], but they are often rather complex [80] or require
signals coming from more than one sensor [43] [35]. In this study, a continuous
wavelet transform approach has been used for RI detection.

Continuous Wavelet Transform (CWT) is a mathematical transformation
which allows to obtain a time-frequency representation of a signal, using a local
wavelike function [2]. Such function, also known as the mother wavelet, can be
scaled and shifted: each scaling represents a specific frequency, proportional to the
centre frequency of the wavelet. In CWT, different scaled versions of the wavelet
are shifted and convolved with the input signal, producing a map of coefficients,
representing at each time instant which frequencies are more relevant. In a more
formal definition, the CWT of a time window of acceleration signal a(t) is defined
as a function of both scale s and translation time τ

C(s, τ) =

∫ window

0

a(t)Ψ∗(
t− τ
s

)dt (1)

in which C(s, τ) are the CWT coefficients of a(t) in window and Ψ is the chosen
mother wavelet [83]. Such wavelike signal can be either real or complex, hence
the need of the symbol of complex conjugation * in the formula. The frequency
Fs associated to a certain scale s can be easily computed as

Fs =
Fc

s∆
(2)

in which Fc is the centre frequency of the wavelet, ∆ is the sampling time of
the input signal ( 1

200
s in this study). It can be trivially observed that the scale

is inversely proportional to the frequency, hence bigger scales will correspond to
smaller frequencies. Figure 12 shows how equation 1 works in practice. CWT
has recently found a number of applications for processing signals coming from
different engineering and medical fields, among which gait analysis [11] [80] and
FoG recognition [83], due also to its ability to detect abrupt discontinuities [2].
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Figure 12: Schematic representation of CWT. A wavelet is scaled, shifted and
convolved with a signal at a certain time. The resulting coefficient is mapped on
a location(time)-scale(frequency) plane. Ref: [2]

In the proposed Regions of Interest Extractor, CWT was used to identify
RIs as time portions of acceleration of patients having an high frequency content
in the band 0.5-8 Hz, which is the band related both to walking (0.5-3Hz) and
freezing. Actually only the x component of acceleration (ax(t)) was employed be-
cause it is the component which provides the most relevant information about gait
and steps. A combination with z-axis component was considered but not imple-
mented, after observing that also in terms of CWT, the two components provide
almost identical results, only differently scaled. As mother wavelet, “Mexican
Hat” (fig. 13) function was chosen

Ψ(t) = (1− t2)e−
t2

2 (3)
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Figure 13: Mexican hat wavelet. Ref: [2]

This kind of wavelet is a fairly standard choice for CWT and its shape is similar
to the spiky behaviour observed in ax(t) while walking; also other continuous
wavelets (e.g.“Morlet” wavelet), were evaluated, but “Mexican Hat” seemed to
provide the best results. The set of scales to consider was defined from equation
2 in order to span all frequencies between 0.5-8Hz with a 0.5 step (e.g. 0.5, 1, 1.5,
2...), a choice which provided good results in [83]. Figure 14 reports the scalogram
obtained when applying CWT to ax(t) of a freezing patients from Phase 1.

Figure 14: Scalogram of ax(t) of a freezing patient. On y-axis both scale and the
corresponding frequency are reported. As it can be appreciated, white pieces cor-
respond to walking and turning. The red line corresponds to separation between
walking and freezing band.

A scalogram is a plot having on x-axis the time reference and on y-axis the
value of scale s considered, which can be easily converted in a corresponding
frequency value from equation 2. The colour of the points in the plane is shaded
according to the absolute value of the corresponding CWT coefficients. By visual
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inspection of the scalogram, it is trivial to identify regions where the patient is
“active”; more complex is the automatic identification of such time intervals from
CWT coefficients. The following procedure, represented in Figure 15, was used:

1. for each time instant t, an average coefficient is computed as

Cavg(t) =
1

|S|
∑
s∈S

C(t, s) (4)

in which S is the set of considered scales and |S| its cardinality, C(s, t) the
CWT coefficient of ax(t) at time t for scale s;

2. on the signal made by average coefficients Cavg(t), a moving average of
window w is used to compute signal Cma(t), in which short-term fluctuations
are smoothed out. Specifically, a window w of 1 s was selected, which seemed
a reasonable value, considering that a patient will likely perform a certain
activity for a much longer period of time;

3. on Cma(t), thresholding is applied to distinguish between time intervals
corresponding to RI and non-RI;

4. RIs are extended of a time length l in order to include FoG that verifies at
their beginning or end.

5. from all the three components of acceleration ax(t), ay(t), az(t), the extended
RIs are extracted to be provided in input to the subsequent steps of the
overall pipeline.

Figure 15: Internal pipeline of RIE. The numbers on the arrows correspond to
steps listed in the text.

For thresholding, three alternative approaches were compared:
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• a single fixed threshold

• a double fixed threshold (hysteresis)

• a patient-tailored threshold

Single and double fixed threshold were empirically estimated from the data.
The moving averages of all the patients in Phase 1 were concatenated and optimal
thresholds were searched through an exhaustive search, considering values between
the minimum and maximum of the signal, with a 0.1 step. The optimal selected
threshold, or pair of thresholds, was the one that included in the extracted RIs as
much as possible walk,turn and FoG, while leaving out unwanted activities (stand,
label 0). For single threshold, the identified value was 1.9, whereas for hysteresis
the best pair was (1.5, 1.54). Hysteresis was explored to make the system more
robust to residual fluctuations in moving average that could interrupt a continuous
RI.

A patient-tailored threshold was considered because the intrinsic variability
of gait parameters among individuals, especially for PD patients, limits the pos-
sibility of identifying a threshold that would be optimal in every case. Therefore,
for each subject, a random window W containing walk was extracted from ax(t);
the moving average of the CWT coefficients of this window, defined as CWma(t),
was estimated. The tailored threshold for the subject was defined as

Ttailored = C̄ − σ(C) (5)

in which C̄ is the average and σ(C) the standard deviation over time of CWma(t).
Table 5 compares the three approaches in terms of walking samples included in
RIs with respect to the total walking samples (walk percentage) and an error term,
defined as the portion of non relevant activities included in RIs (label 0, stand) di-
vided by the total duration of RIs (RIE error). As expected the tailored-threshold
allows to recognize all walking segments, even though producing a slightly larger
error. However, in order to generalize as much as possible the algorithm, the
hysteresis approach was selected.

Table 5: Comparison of thresholding methods for RIE

Method Walk percentage
[%]

RIE Error [%]

Single fixed threshold 93 20
Hysteresis 98 23

Patient-tailored threshold 100 25

Finally, the RIs are enlarged at their borders of a length l: this is done be-
cause a FoG event could verify not only while walking or turning, but also at the
beginning or end of such activities, hence at the limits of a RI. For l an empiri-
cal “supervised” approach was used: considering for all Phase 1 subjects, all the
instants of the signals labeled as FoG but not included in a RI, l was defined as
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the average distance between these time instants and the closest RI. This value
was found to be l = 1.75 s. Figure 16 shows the RIs on ax(t), extracted with the
proposed technique, for four different patients.

Figure 16: Regions of interest extracted from four different patients

3.3.2 Windowing

Only on the extracted RIs, windowing was applied. Windowing consists in sliding
a time window of fixed size w over a continuous signal, to partition it into smaller
segments. This process is done in order to obtain local information (features) from
each segment, to evaluate where in time a FoG event is verifying. The window
slides over the signal with a stride s, which can be chosen in the range 0 < s ≤ w:
larger its value, smaller will be the overlap between consecutive windows. Some
overlap is necessary to avoid loss of information [85]. As already mentioned in
section 2.5, several window sizes and strides have been explored in the literature,
with values normally ranging from 1 to 5 s and 50% or lower overlap. Window
size is inversely proportional to the time-resolution of the recognition system [15],
meaning that a smaller window will better identify short episodes, even though if
too small, it could badly affect specificity [70]. Moreover, if the application is a
real time cueing system, its latency6 depends on the window size, thus this should
be as short as possible. The final choice in this study was w = 2 s and s = 1 s,
which provided good results when applied in [15] on the same data.

6time delay between an event and its recognition
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3.3.3 Features extraction

From each time window, a set of temporal and spectral numerical features, related
to FoG recognition, were extracted. A number of options are available in the liter-
ature, Table 6 and Table 7 report respectively the temporal and spectral features
that were selected. Freezing indeces are reported in spectral features because they
are defined from spectral properties of the signals. They were extracted for each
acceleration component separately, for a total of 48 distinct values: at this point
of the pipeline, each patient window can be regarded as a point in 48-dimensional
space.

Table 6: List of temporal features
extracted from each window.

Feature Name Source

Mean [85]
Standard Deviation [85]

Variance [81]
Root Mean Square [111]
Zero crossing rate [15]
Number of peaks [15]

Average Absolute Variation [22]
Correlation between axes [85]

Table 7: List of spectral features
extracted from each window.

Feature Name Source

Freezing index [66]
Kurtosis [85]
Skewness [85]

Dominant frequency [15]
Freezing ratio [15]

CWT Freezing ratio [83]
0.5Hz average CWT *

Total Power [90]

As it can be observed, the list includes both standard temporal and spectral
features of signal processing (e.g. mean, variance, kurtosis, dominant frequency,
total power), but also ad hoc FoG features, as the freezing indeces coming from
studies in which a thresholding solution for FoG recognition was employed (freez-
ing index and CWT freezing ratio). About CWT freezing ratio, it was defined
in [83] and was included also to exploit the CWT coefficients already computed
for the RIE. The feature denoted by * in the column “Source” was added in the
current study, observing that the average value of the coefficient corresponding to
frequency 0.5 Hz is often small during FoG.
In order to train and test supervised machine learning models, a label for each
window had also to be defined together with the features. Each window was
classified as the most frequent activity it contains, but for the case of FoG: a win-
dow is labeled as FoG only if it contains at least 60% of time samples that were
classified so by clinicians. This is done to avoid windows with half FoG and half
walking or turning, whose mixed characteristics would affect in a negative manner
both the subsequent feature selection and classifier training. Table 8 reports the
mapping between class labels and activities. Activity marked as 6 in Phase 1
data (“short hesitance or FoG”), was classified as FoG as well, to avoid the loss of
brief episodes due to uncertainty, considering also that few freezing windows were
available. Windows containing activity “0” were discarded because, as previously
mentioned, they actually contain a mix of activities, hence are not considered
relevant for the analysis and could even confuse the classifiers during training.
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Table 8: Mapping between activities and class labels

Activity Class Label

Walk 1
Turn 2
Stand 3
FoG 4

3.3.4 Training set creation & feature selection

Table 9 illustrates the number of windows per activity that were obtained pro-
cessing all patients from Phase 1. As it can be observed, FoG recognition is an
unbalanced problem: the number of FoG windows with respect to the most fre-
quent windows (walk and turn) is almost two order of magnitude smaller. This
condition could badly affect the classifiers, making their predictions biased to-
ward the most frequent classes and, in addition to this, using all these data for
several models would require a lot of computational effort. To cope with this issue,
undersampling of the two most frequent classes was performed to obtained a re-
duced training set, a procedure that is quite common and well established [20] [15].
To preserve the statistical variability of the data, undersampling was applied se-
lecting randomly 9 windows (or the maximum available, if smaller than 9) for
each of walk or turn, for each patient. All FoG and stand windows, instead, were
included. Table 10 reports the obtained reduced dataset. About stand, the small
number of windows was not considered an issue for two reasons:

• the goal of the final classifiers was the correct recognition of FoG, not of the
other activities involved;

• the reduction of stand is an effect of RIE, hence stand was removed because
considered irrelevant (or even harmful) for FoG recognition.

Once the reduced dataset was defined, it was employed to perform feature selec-
tion.

Table 9: Windows extracted from
Phase 1

Activity N. of windows

Walk 4686
Turn 1267
Stand 29
FoG 88

Table 10: Windows in Phase 1
reduced dataset

Activity N. of windows

Walk 342
Turn 311
Stand 29
FoG 88

Feature selection consists in identifying among the extracted features the more
relevant to the problem [41], in order to:

• reduce the dimensionality of the input data;
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• decrease the computational effort in training;

• remove attributes of the inputs that could be irrelevant or even misleading;

• reduce the probability of overfitting the training data.

For FoG recognition, different approaches are used; they are often filter methods7

based either on Pearson’s correlation [15] [85] or Mutual Information (MI) [111] of
each feature fi to the target class label l. In this study, Mutual Information was
selected. Considering both fi and l as two random variables, their MI is defined
as

MI(fi; l) = H(fi)−H(fi|l) (6)

in whichH(fi) andH(fi|l) are respectively entropy of feature fi and its conditional
entropy when observing class label l. This metric was chosen because it is capable
of catching any kind of statistical dependence, not only linear, even though it
requires as much sample as possible to be accurate (it has to estimate probability
density functions) [93]. About this aspect, a relevant issue is related to when
perform feature selection with respect to train&test split8 of the dataset. On the
one hand, performing feature selection on the whole data would produce more
accurate results, considering also that MI works better with additional samples
(and FoG samples are limited). Moreover, the set of the most significant features
would very likely change considering different splits. On the other hand, this
approach is generally not recommended, because it would exploit also test data,
that should be completely unseen by the classifier prior testing, to provide a
statistically relevant evaluation. To reach a compromise between these two sides,
a “crossvalidation-inspired” method was defined as follows:

1. perform k = 10 different train&test splits (random, stratified, without re-
placement) of the reduced dataset with a 7:3 proportion;

2. for each obtained training set Tk, compute MI(fi; l) for fi ∈ F (F the set
of all features) and add the 15-top-scoring features to set S;

3. for each the feature fj ∈ S, compute a relevance metric R defined as

R = njMIavg(fj; l) (7)

in which nj is the number of time the feature was included in S among the
different splits and MIavg(fj; l) is the average mutual information that fj
scored in the splits where it was included in S;

4. select as optimal, features with R ≥ 1.5

Figure 17 shows a plot of metric R versus the features that were included in S.
The 1.5 threshold was chosen because it is more or less the mean value between
the maximum and the minimum assumed by R in the experiment.

7selection methods that do not consider the final classifier [41]
8procedure of preprocessing in which the available data are divided in two sets, one for

training a model and the other one for testing it
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Figure 17: Relevance R vs features in optimal set S. In the red box, the features
scoring more than half the maximum value observed.

Table 11: Feature set after selection

Feature Relevance R

Dominant frequency (z) 2.96
CWT freezing ratio (z) 2.74
CWT freezing ratio (x) 2.45

Freezing ratio (y) 2.43
Freezing index (z) 2.40

Zero crossing rate (z) 2.38
Freezing ratio (z) 2.23

CWT freezing ratio (y) 1.82
Total Power (x) 1.58

Table 11 contains the final 9 features that were selected. The selection seems
to highlight the importance of spectral features and freezing indeces with respect
to temporal attributes, in particular from ax(t) and az(t); it is also worth noticing
that the introduced CWT freezing ratio seems to be a quite relevant discriminat-
ing parameter for FoG recognition.
At these point of the algorithm, each window can be represented as a vector
x ∈ RF , with F = 9 and a label y ∈ {1, 2, 3, 4}; the whole reduced dataset can
be written as a matrix X ∈ RP,F , with P = 770 (total number of windows) and
a vector of labels y ∈ RP . Hence, Matrix X was divided into a training matrix
Xtr and a test matrix Xte, using a stratified train&test split with 70% of the
data in training and the remaining 30% left out for test. The two matrices were
standardized, meaning that each row vector x ∈ Xtr, Xte was transformed in a
vector z such that

z =
x− x̄tr

σtr
(8)

in which x̄tr and σtr are respectively the vectors containing the means and the
standard deviations of the features, evaluated from Xtr only. This operation, also
known as “Z-Score” standardization, was done because it ensures that all features
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are in the same scale. This aspect is relevant when evaluating distance metrics be-
tween data points, for example in Principal Component Analysis and in classifiers
like K-NN and SVM, that will be later employed. Moreover, standardization is
considered a good practice in machine learning, which often improves the training
phase [51].

Principal Component Analysis (PCA) was also considered to explore if it
was possible to further condense the information coming from the selected fea-
tures. PCA is an unsupervised9 technique that is used to perform dimensionality
reduction and features decorrelation. [51] It consists in finding a projection of the
data in a lower dimensional space, preserving most of their variance (which is
related to information content): indeed the data are projected with respect to the
directions associated to the maximum variation. These directions are called the
principal components. To apply PCA, the following operations over Xtr (after
standardization, which is a requirement) must be performed:

• compute the sampled covariance matrix

Σ = XT
trXtr (9)

Σ is a symmetric FxF matrix hence it can be eigendecomposed;

• compute the eigenvalues λi and eigenvectors ui of the sampled covariance
matrix, sort them in descending order according to the eigenvalues magni-
tude. The eigenvalues represents a measure of the variance explained by the
associated direction;

• select the first K eigenvectors such that

K∑
i=1

λi >= β
F∑

k=1

λk 0 < β < 1 (10)

meaning that only a fraction of the total variance, decided by parameter β,
will be maintained;

• the selected eigenvectors form a basis of the space where the data will be
projected. Collect them in a matrix W and compute the projection of the
original data with respect to this new space as X̃tr = XtrW .

Figure 18 shows how the variance is distributed among the identified principal
components. As it can be appreciated, the first component already accounts
for most of the variability (almost 60%), which could be explained by the fact
that several of the selected metrics are correlated to similar spectral properties
of the data; however, to preserve around 90% of the original variance, the first 4
components were selected.

9statistical method that does not exploit the information about class label of the data
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Figure 18: Distribution of training data variance among the computed principal
components. In blue the cumulative variance, in red the variance explained by
each component.

Figure 19 represents how the training windows, divided in FoG vs non-FoG,
are scattered with respect to the first 3 principal components, the maximum
dimension that can be used to observe them in a plot. It is evident that after the
remapping some separation between the two classes is possible.

Figure 19: Scatter plot of training data with respect to principal components
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3.3.5 Machine learning models

Three classification models were compared:

• K-Nearest Neighbours (KNN)

• Support vector machine (SVM)

• Random Forest (RF)

KNN and SVM are two shallow supervised approaches that are common in the
literature of FoG recognition, the latter in particular [15] [3] [85]. RF is instead
an ensemble method based on a set of simpler decision trees, which are often
employed for classification problems in the medical field [65] [15]. For all the
models, both a binary and a multiclass version was implemented: in the binary
case, windows were labeled either as FoG (label 1) or non-FoG (label 0), which
includes walk, turn and stand windows. In the multiclass case, the classifiers
assigned the labels in Table 8. While KNN and RF are suitable for both types
of classification, in the case of SVM, which is designed for binary classification
only, a One-vs-One approach was used: as many SVMs as all possible pairing of
classes were trained and the final classification results were obtained by combining
the outcomes of each single model. Moreover, both binary and multiclass models
were trained once on the 9 features selected using MI and once on the projection
of the data with respect to their principal components, to perform a comparison
between these two feature sets.

KNN is the easiest machine learning algorithm for classification. It is based on
assigning to an unlabelled data object the same label of the closest K objects. K
is an hyperparameter10 to tune; it is good practice to choose an odd value: when
K > 1, the most common strategy to select the correct label is majority voting,
hence such choice prevents ambiguities. To define the K-closest objects, different
concepts of distance can be employed, in this study the following were considered
(x,y being two vectors in RF,1)

• Euclidean:

d(x,y) =

√√√√ F∑
i

(xi − yi)2 (11)

• Manhattan:

d(x,y) =
F∑
i

|xi − yi| (12)

• Chebyshev:
d(x,y) = max

i
|xi − yi| (13)

10parameter of a classifier that cannot be learned but must be defined by the user
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KNN can identify non linear decision boundaries, as shown in Figure 20, and
it actually does not require any proper training phase, because as soon as a new
unlabeled point is available, a prediction can be performed. However, this requires
to store all the training points (memory occupation could be a problem for limited
memory devices) and test time can be very long if too many distances have to be
computed. Moreover, it may sometimes overfit11 the training data.

Figure 20: Example of KNN algorithm. Ref: [51]

SVM is a common choice for FoG recognition, achieving often accuracy, pre-
cision and sensitivity above 90% [15] [3]. In its most strict definition, known
as “hard margin”, SVM consists in finding the hyperplane that separates two
classes of points (labels -1, +1) with the largest margin, where the margin is
defined as the distance between such hyperplane and the closest points from the
two classes (figure 21). Such points are known as the support vectors and
they are the only training points needed to define the decision boundary. Indeed,
solving the optimization problem associated to SVM formulation, the separating
hyperplane can be written as

f(x) =
P∑
i=1

αix
Txi (14)

in which P is the number of training samples, xi is a training sample and αi its co-
efficient obtained from the optimization problem. Support vectors are the training
samples for which αi 6= 0. Classification consists simply in replacing in equation 14
an unlabeled point: when the result is > 0 the point belongs to the positive class,
otherwise to the negative one. If the classes are not perfectly linearly separable,
however, the algorithm does not reach convergence and also when converging it
may easily overfit. To relax the condition on margin, a “soft definition” exists,
which includes in the optimization problem “slack” variables ξ weighted by an
hyperparameter C, sometimes called the “cost of misclassification”: smaller

11condition in which a classifier has a very low bias, but an high variance, hence it is not
general enough to adapt to test data
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Figure 21: A representation of hard margins SVM. Ref: [51]

its value, more samples will be allowed to fall in the margin or even on the
wrong side of the hyperplane. Further improvement to the performances of the
classifier can be achieved using a kernel trick, to transform the linear decision
boundary in a nonlinear one. The idea is to map training points in an higher
dimensional space were they are more linearly separable, through a mapping func-
tion φ(x). Such function is theoretically complex to identify, however in practice
it is sufficient to identify a kernel function K(x, x) such that

K(x, x) = φ(x)Tφ(x) (15)

and replace with it the scalar product of equation 14, to get

f(x) =
P∑
i=1

αiK(x,xi) (16)

which corresponds to a nonlinear decision boundary in the original space of train-
ing data. Common kernels are the polynomial kernel and the Radial Basis Func-
tion (RBF) kernel; both were considered in this study.

Random Forest is an ensemble technique that combines predictions made
by several decision trees. A decision tree is a machine learning model that
is constructed partitioning the feature space RF in J decision regions, which
are usually hyperdimensional rectangles. When a data object falls in one of the
regions, it is classified according to which class the majority of the samples in
that region belong to. The partition is performed considering once at a time each
feature and performing a binary (also multinomial is possible) split over the range
of its values. Once all the attributes have been considered or another stopping
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condition is met, the algorithm stops and the tree is complete. The attributes for
splitting are selected using a greedy approach based on some “relevance” criterion:
a common choice is considering first the features that provide the largest decrease
in “impurity” in the resulting regions, being impurity defined as a measure of
the heterogeneity of the class labels. A region with samples belonging all to the
same class is completely pure, hence no more splits over that region are required.
RF improves simple decision tree through boosting and feature sampling. In
boosting, many smaller training subsets are defined and each one is used to build
a simple decision tree. A data object to be classified is analysed by each tree
and the final outcome is chosen through majority voting. This mechanism is
further improved using feature sampling: each time a tree is grown, for each split
to perform, only a subset of m features, among all the available, is considered.
Generally m =

√
F . The main hyperparameter to tune for RF is the number of

basic learner to train.

3.4 Validation & Test

Considering binary classification and FoG as positive class, the prediction provided
by a classifier on a single window can be:

• True Positive (TP), the data object was correctly recognized as FoG, this
is also known as a hit ;

• False Positive (FP), the data object was wrongly recognized as FoG, this
is also known as type I error ;

• True Negative (TN), the data object was correctly recognized as non-
FoG, this is also known as correct rejection;

• False Negative (FN), the data object was wrongly recognized as non-FoG,
this is also known as type II error ;

The distribution of such results is often reported in the form of a matrix, called
the confusion matrix. From it, a number of metrics for evaluating the quality of
a classifier can be defined. The most common is accuracy, which is defined as

accuracy =
TP + TN

FP + FN + TP + TN
(17)

and provides an overall evaluation of the classifier, without an insight of the
performances in the single classes to recognize. Because of this lack of detailed
information, it is not meaningful when dealing with an unbalanced dataset: if the
model simply classifies all points with the most frequent class label, the value of
accuracy will be high, even though the less frequent class samples are all wrongly
labeled. Being the problem under study an unbalanced problem, other per-class-
specific metrics were employed together with accuracy:

• Precision or Positive Predicted Value, which is the number of correctly
classified positive examples divided by the number of examples labeled by
the system as positive [97]

Precision =
TP

TP + FP
(18)

41



• Recall or sensitivity, which is the number of correctly classified positive
examples divided by the number of positive examples in the data [97]

Recall =
TP

TP + FN
(19)

• F1 − score or F-measure, which is the harmonic mean between precision
and recall [103]

F1 − score = 2
Precision×Recall
Precision+Recall

(20)

• Specificity or True Negative Rate, which is a measure complementary to
precision and represents the proportion of the negative samples that were
correctly classified [103]

Specificity =
TN

TN + FP
(21)

As discussed in the previous section, during training, the considered machine
learning models require hyperparameters tuning. This procedure was performed
through grid search.

Grid search is common practice when dealing with few hyperparameters be-
cause it is performed training a model for every joint values in the Cartesian
product of the set of values for each individual hyperparameter. The experiment
that yields the best validation score provides the optimal hyperparameter set [49].
The values to explore, provided for each hyperparameter, should lie in a reason-
able range, whose cardinality will affect the duration of the search. Too many
hyperparameters or too many values to explore would make such kind of search
unfeasible in time [49]. In this study, grid search was combined with 5-fold cross-
validation, so that the validation score associated to each experiment was as less
as possible data-dependent. Moreover, the F1−Score of class FoG was employed
as optimization metric, as it is more meaningful with respect to accuracy when
dealing with unbalanced datasets.
For KNN the following hyperparameters were considered:

• distance (euclidean, manhattan, chebyshev)

• value of k (range [1,23] with a step of 2)

For SVM:

• kernel (RBF, polynomial)

• Cost of misclassification C (logarithmic range between 10−3 to 103)

• kernel related parameters

– for RBF kernel, parameter γ (logarithmic range between 10−3 to 103)
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– for polynomial kernel, degree of the polynomial (range [2,10] with a
step of 1)

For RF:

• number of estimators to train (range [1,200] with a step of 20)

• maximum number of features to consider during a split (
√
F or log2F )

As previously described, the reduced data set was divided into a training matrix
Xtr and a test matrix Xte. To validate the optimal models found through grid
search, stratified k-fold crossvalidation was performed on Xtr.

K-fold Crossvalidation consists in randomly dividing the set of observations
into K groups, or folds, of approximately equal size. The first fold is treated as
a validation set, and the method is fit on the remaining K − 1 folds [51]. The
“stratified” attribute implies that the different folds contain the same distribution
of classes present in the complete dataset. The chosen metrics are evaluated on
each trained model and they are averaged to provide an estimate of the perfor-
mances that should be less affected by the variance of the data. In this study K
was chosen equal to 10, which is a recommended value in the literature [51].

The results coming from validation were also compared to the the one obtained
by applying the optimal models to the samples in Xte. Due to the reduced di-
mension of the dataset, testing outcomes could be influenced by a large variability
(reason why validation was performed), nevertheless it was considered relevant to
provide also the results obtained from data that were never seen by the models.
In addition to this, Phase 2 data were employed for testing. First of all, the ini-
tial and the final 40 s of each the acceleration record were removed, to discard
recordings related to the montage of the smartphone or to the explanation of the
experiment to patients. Then, they were used as follows:

1. all the Phase 2 patients were used to tune the RIE for this new type of data
(new double thresholds were selected);

2. only data from freezer patients were segmented and added to Phase 1 data,
discarding windows related to physical tests (label 7 and 8), which are not
considered common of daily living. Activities labeled as -2, 5, 6 and some
piece of the “undefined” activity 0, which could occur in daily living, were
maintained to perform an analysis closer to an “at home” evaluation. How-
ever, they were all mapped, for the multiclass recognition task, to a common
class label 0, because they are in a small number after segmentation and are
absent in Phase 1 data;

3. a new reduced dataset from this mixture of Phase 1 and 2 was defined;

4. feature selection was performed again exploiting the additional data;

5. models were trained and validated, as previously discussed, on 70% of the
new reduced dataset, whereas again a 30% was left out for testing;
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6. a false positive test was performed on non-freezer patients of Phase 2 using
the retrained models.

The new reduced dataset is described in Table 12.

Table 12: Reduced dataset from Phase 1 and Phase 2

Activity N. of windows

Mix of -2,0,5,6 (0) 150
Walk (1) 504
Turn (2) 451
Stand (3) 42
FoG (4) 277

As it can be observed, mixing the data from the two phases, the number of FoG
windows triplicates. This provides a better insight in the characteristics of freez-
ing event; for this reason on the reduced dataset, the same previously described
procedure for feature selection was performed and 10 optimal features were identi-
fied (Table 13). Instead, always the first four principal components were retained,
because they still contained 90% of the explained variance.

Table 13: Optimal features from feature selection

Feature Relevance R

Freezing index (z) 3.38
Dominant frequency (z) 3.26
CWT freezing ratio (z) 2.81

Freezing ratio (z) 2.68
CWT freezing ratio (x) 2.23
Root mean square (x) 2.17

Total power (x) 2.16
Variance (x) 2.16

Standard deviation (x) 2.15
Zero crossing rate (z) 1.64

From Table 13 it can be observed that most of the features were confirmed as
relevant also on the increased dataset (Freezing index (z), Dominant frequency (z),
CWT freezing ratio (z), Freezing ratio (z), CWT freezing ratio (x), Total power
(x), Zero crossing rate (z)) whereas few temporal features were added (Root mean
square (x), Variance (x), Standard Deviation (x)). Still spectral features and
freezing indeces/ratios seem to be the most relevant characteristics to distinguish
FoG.
About the false positive test on Phase 2 non-freezers, it was conducted in this
way:

1. for each non freezer patient, the testing pipeline in Figure 11 was applied,
once with the RIE on and once with the RIE off;

2. a comparison between the performances in terms of number of False Positive
and specificity with and without extraction of RIs was performed.
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4 Results and discussion

The pipeline described in Chapter 3 was implemented in Python 3.7 using Scipy
library for signal processing and linear algebra, Pywavelet library for CWT and
Scikit-Learn library for data processing and machine learning models training and
test. The code was executed on a commercial HP laptop with Intel i7 7th genera-
tion core and 8 GB of RAM memory while no other significant resource-consuming
application was running.
First, general results about the Regions of Interest Extractor and its effects on
performances in terms of execution time and included/excluded activities are dis-
cussed. Then, validation and test results are organised per phase.

4.1 Statistics on RIE

As stated in Chapter 3, one of the goal of introducing a RIE in the traditional
pipeline for FoG recognition was to improve time efficiency of the system: in the
perspective of a daily living usage, it would be required to process very long sig-
nals, with likely only few portions of the recordings that are relevant. Table 14
reports some statistics related to average execution time of RIE for one patient
and its effects on the subsequent steps of windowing and feature extraction on
data from the two phases.

Table 14: Execution time statistics.

Execution time Phase 1 Phase 2

Regions of Interest Extractor 65 ms 84 ms
RIE off RIE on RIE off RIE on

Windowing & feature extraction 8.05 s 5.65 s 12.27 s 2.96 s

As it can be appreciated, the average execution time of the RIE is in the or-
der of ms for processing the whole 6 minutes coming from 6MWT in Phase 1. For
Phase 2, the slight increase is justified by the fact that, as already mentioned,
this data are generally longer (some recordings are over 10 minutes). In Phase 1,
the time improvement in windowing and feature extraction is of about 2 s and a
half; much bigger is the improvement in Phase 2, with a reduction of almost 10 s.
This is explained by the fact that Phase 1 data have an higher “concentration” in
terms of significant activities performed (walk or turn) hence more pieces have to
be maintained and processed. In Phase 2 recordings, there are longer intervals of
inactivity or non-relevant activities which are removed by the RIE, reducing the
load for windowing; this characteristic of Phase 2 data make them more similar
to daily living recordings, where it is expected that a patient will not walk or
turn all the time. Thus, it is reasonable to expect that also on these kind of data
similar improvements could be achieved. Tables 15 and 16 contain a summary of
the activities that were removed and maintained in the two phases using the RIE.
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Table 15: Percentages of activities selected by RIE in Phase 1

activity tot (s) removed (s) removed % maintained %

undefined (0) 3934.79 1301.07 33.07% 66.93%
walk (1) 4624.68 9.86 0.21% 99.79%
turn (2) 1225.91 19.47 1.59% 98.41%
stand (3) 1041.77 972.99 93.40% 6.60%
fog (4) 77.83 2.93 3.76% 96.24%

hesitation (6) 37.86 11.85 31.30% 68.70%

Table 16: Percentages of activities selected by RIE in Phase 2

activity tot [s] removed [s] removed [%] maintained [%]

daily living mix (-2) 1221.38 588.50 48.18% 51.82%
undefined (0) 15660.28 12544.29 80.10% 19.90%

walk (1) 997.32 4.11 0.41% 99.59%
turn (2) 571.98 21.75 3.80% 96.20%
stand (3) 1474.00 1411.51 95.76% 4.24%
fog (4) 215.61 7.41 3.44% 96.56%

stand up (5) 250.25 51.41 20.54% 79.46%
sit down (6) 461.76 135.01 29.24% 70.76%

retropulsion test (7) 456.93 24.12 5.28% 94.72%
tapping (8) 595.93 528.74 88.73% 11.27%

In both phases, almost all FoG episodes are retained by the RIE, only less
than 4% of seconds classified as proper FoG by clinicians are discarded. In Phase
1, 30% of activity 6 is lost but, as already mentioned, it was not possible to
understand if this activity corresponded to FoG or to a simple hesitation, hence
the removed part could also be irrelevant or even confusing for FoG recognition.
About walk and turn, they are maintained with a very high percentage, as desired
when designing the RIE. About the other activities, more than 90% of stand in
both phases is removed, again as desired. In Phase 1 some pieces marked as
0 are removed, but a 66.90% is kept: this could be explained by the fact that
this undefined activity often contains inside pieces where the patient was walking
or performing an active task. In Phase 2, instead, it was much largely reduced
(80.10%). Tapping (8) was also largely reduced, with respect to the retropulsion
test (7) which was instead retained for the most; however these two activities
are not relevant because they do not correspond to actions that a patient would
normally perform in daily living. About daily living, the mix of activities marked
as -2 was halved by the RIE; less effective is the reduction of stand up and sit
down which are both maintained in more than 70% of the cases. Overall it is
evident that selection of RIs reduces a lot the data to process in Phase 2 with
respect to Phase 1, thus the great improvement in execution time of windowing
for this phase.
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4.2 Results on Phase 1 data

The results of validation and test of models trained on Phase 1 data only, as
described in section 3.4, are organised in four tables: Table 17 with results from
multiclass models trained on the 9 features from feature selection; Table 18 with
results from multiclass models trained on the first 4 principal components of the
training data; Table 19 with results from binary models trained on the 9 features
from feature selection; Table 20 with results from binary models trained on the
first 4 principal components of the training data. Precision, recall and F-score
refers to class FoG only, which is the relevant to our analysis.

Table 17: Results of validation & test of multiclass classifiers trained on selected
features

Classifier
Validation Test

Accuracy [%] Precision [%] Recall [%] F-score [%] Accuracy [%] Precision [%] Recall [%] F-score [%]

KNN 70.0 94.0 92.0 92.0 69.0 82.1 88.5 85.2
SVM (RBF) 75.0 93.0 93.0 93.0 73.0 88.5 88.5 88.5

random forest 74.0 89.0 85.0 86.0 75.0 77.4 92.3 84.2

Table 18: Results of validation & test of multiclass classifiers trained on principal
components

Classifier
Validation Test

Accuracy [%] Precision [%] Recall [%] F-score [%] Accuracy [%] Precision [%] Recall [%] F-score [%]

KNN 70.0 94.0 92.0 92.0 69.0 81.5 84.6 83.0
SVM (RBF) 73.0 93.0 92.0 92.0 74.0 79.3 88.5 83.6

random forest 68.0 89.0 89.0 88.0 70.0 84.6 84.6 84.6

Table 19: Results of validation & test of binary classifiers trained on selected
features

Classifier
Validation Test

Accuracy [%] Precision [%] Recall [%] F-score [%] Accuracy [%] Precision [%] Recall [%] F-score [%]

KNN 98.0 92.0 90.0 91.0 99.0 100 88.5 93.9
SVM (RBF) 98.0 94.0 87.0 90.0 97.0 95.4 80.7 87.5

random forest 97.0 90.0 84.0 86.0 98.0 95.6 84.6 89.7

Table 20: Results of validation & test of binary classifiers trained on principal
components

Classifier
Validation Test

Accuracy [%] Precision [%] Recall [%] F-score [%] Accuracy [%] Precision [%] Recall [%] F-score [%]

KNN 97.0 89.0 89.0 88.0 98.0 95.6 84.6 89.8
SVM (RBF) 97.0 92.0 85.0 88.0 98.0 95.6 84.6 89.8

random forest 97.0 90.0 82.0 85.0 97.0 91.6 84.6 88.0

First of all, a brief comment on accuracy. In multiclass, accuracy is very low:
this is due to the fact that the selected features are relevant for FoG recognition,
which is proved by the good results in terms of precision and recall, but not for
distinguishing among the other classes. However, the goal was to classified cor-
rectly class FoG, not all the activities, hence it is not considered an issues. Indeed
in binary classification, where only a distinction between FoG and non-FoG is
required, also values of accuracy are high. Overall, multiclass models seem to
perform slightly better in validation, but during test their performances exhibit a
drop of 5 percentage points, which suggest some degree of overfitting. This effect
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is less evident in binary models, even though it should always be considered that
the test set is quite small so test results could be affected by an high variability.
Some test results are better than validation: this is explained by the fact that a
single train&test split was considered, hence this could produce an optimal test
subset for that specific model and that metric. However, has already mentioned,
validation is the more statistically significant evaluation and should be considered
first with respect to test. Precision, which was one of the goal to achieve, is quite
high in all models, with acceptable values of recall as well. The usage of principal
components provide slightly worse results, but it should also be considered that
the whole problem is reduced to 4 features only, from the original 48 extracted.
Both KNN and SVM with RBF kernel provide comparable results and outperform
Random Forest.

4.3 Results on Phase 2 data

4.3.1 Validation and test results of retrained models

The results of validation and test of models trained on Phase 1 and 2 are organ-
ised in four tables: Table 21 with results from multiclass models trained on the
9 features from feature selection; Table 22 with results from multiclass models
trained on the first 4 principal components of the training data; Table 23 with
results from binary models trained on the 9 features from feature selection; Table
24 with results from binary models trained on the first 4 principal components of
the training data. Precision, recall and F-score refer again only to class FoG.

Table 21: Results of validation & test of multiclass classifiers (Phase 1+2) trained
on selected features

Classifier
Validation Test

Accuracy [%] Precision [%] Recall [%] F-score [%] Accuracy [%] Precision [%] Recall [%] F-score [%]

KNN 68.0 85.0 86.0 85.0 62.0 82.0 87.9 84.9
SVM (RBF) 70.0 87.0 89.0 87.0 66.0 88.5 92.8 90.6

random forest 67.0 82.0 88.0 84.0 67.0 84.0 95.2 89.3

Table 22: Results of validation & test of multiclass classifiers (Phase 1+2) trained
on principal components

Classifier
Validation Test

Accuracy [%] Precision [%] Recall [%] F-score [%] Accuracy [%] Precision [%] Recall [%] F-score [%]

KNN 67.0 84.0 83.0 83.0 58.0 83.9 81.9 82.9
SVM (RBF) 67.0 84.0 87.0 85.0 64.0 85.8 87.9 86.9

random forest 66.0 84.0 86.0 84.0 60.0 82.9 87.9 85.3

Table 23: Results of validation & test of binary classifiers (Phase 1+2) trained on
selected features

Classifier
Validation Test

Accuracy [%] Precision [%] Recall [%] F-score [%] Accuracy [%] Precision [%] Recall [%] F-score [%]

KNN 94.0 88.0 83.0 85.0 94.0 86.2 83.1 84.6
SVM (RBF) 95.0 90.0 84.0 86.0 94.0 86.4 84.3 85.3

random forest 93.0 86.0 80.0 82.0 95.0 88.9 86.7 87.8
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Table 24: Results of validation & test of binary classifiers (Phase 1+2) trained on
principal components

Classifier
Validation Test

Accuracy [%] Precision [%] Recall [%] F-score [%] Accuracy [%] Precision [%] Recall [%] F-score [%]

KNN 94.0 88.0 80.0 83.0 93.0 83.9 81.9 82.9
SVM (rbf) 94.0 89.0 79.0 83.0 93.0 84.4 78.3 81.2

random forest 93.0 85.0 79.0 81.0 95.0 87.0 89.1 88.1

Also in this case, the same discussion done in the previous section about ac-
curacy in the multiclass models is valid. Results in validation are slightly worse
with respect to Phase 1 only, but two important considerations must be taken
into account:

• A bigger dataset was used for training, hence these results are more statisti-
cally relevant because they involve more variability; indeed the gap between
the results in validation and in test is reduced with respect to Phase 1 only;

• The additional activities (-2,0,5,6) that are provided as a single label 0 to
models can be mistaken for FoG more easily with respect to the activities
provided in Phase 1; however they are deemed important because they would
certainly appear in a usage of the algorithm in daily living conditions.

Nevertheless, all the metrics are above 80% and often closer to 90%. Overall, bi-
nary models perform better in terms of validation precision, which was considered
as a relevant metric in this study. Binary SVM with RBF kernel is the model
that performs better in terms of precision, with 90% score. In this case the gap
of KNN and SVM versus RF is reduced, more or less the three classifiers have
similar performances. Models trained on principal components provide slightly
smaller figures, but again with the advantage of considering only 4 features.

4.3.2 False positive test results

False positive test was carried out on non freezing patients from Phase 2, once
processing their data with a pipeline without RIE and once with a pipeline in-
cluding RIE. This double procedure was done to evaluate the effect of the RIE
on false positives and specificity (larger specificity implies also that the classifier
was more precise). In the ideal case, the algorithm should identify 0 FPs and
specificity=1, considering that no freezing events are recorded in these patients.
The results were computed patient-wise and so are reported in Table 25. For the
sake of brevity, only the results obtained using binary SVM trained on selected
features from Phase 1 and 2 are reported in the table. This model was chosen
because it is the best performing in terms of precision in validation.
As it can be observed, the introduction of RIE produces for all patients a drastic
reduction of the false positives, hence an increase of specificity, which is above
90% in all the cases but 3 and often with value 100%. Without segmentation in
RIs, the average specificity is quite low (61%), possibly because a lot of activities
that confuse the classifier or that were not present enough in the training data
are observed. When the RIE is introduced, most of these activities are removed
and the classifier is capable of understanding that none of the remaining windows
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contains FoG, with an increase of specificity to an average value of 97%. Figure
22 contains pie charts of which activities were mistaken as FoG with and without
RIE.

Figure 22: Type of windows that produced false positives in false positive test: a)
the FP distribution in test without RIE; b) the FP distribution in test with RIE.
Undefined activity 0, daily living mix -2 and stand 3 are responsible for most of
the false positives.

As it can be observed from the pie charts, three are the types of window
that mainly produce false positives: the undefined activity (0), the mix of daily-
living-like activities (-2) and stand (3). When the Regions of Interest Extractor
removes most of them, the specificity is boosted; indeed, with RIE on, most of the
False Positives come from the the residual of those three activities, but for few
exceptions that are negligible considering the large number of classified windows.
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Table 25: Results of false positive test on non freezers from Phase 2

Patient ID
SVM (RBF)

NO RIE RIE

FP Specificity [%] FP Specificity [%]

1 548 39.8 17 86.0
2 325 71.4 4 95.3
3 15 97.0 0 100.0
5 40 73.3 0 100.0
6 1 99.5 0 100.0
7 35 74.2 0 100.0
8 372 29.0 8 91.6
10 184 49.0 1 99.0
11 210 26.6 1 98.3
12 467 28.4 4 94.2
13 324 50.2 19 86.8
14 227 55.1 3 96.5
15 250 44.0 0 100.0
16 5 96.5 1 98.1
17 725 45.9 0 100.0
18 225 42.2 2 98.2
19 267 37.2 38 76.1
20 211 48.0 0 100.0
21 286 36.0 4 95.9
22 74 84.6 8 93.1
23 93 79.2 2 98.9
24 510 42.9 14 92.1
25 485 36.9 1 98.9
26 267 68.6 0 100.0
27 360 29.7 0 100.0
28 246 40.4 6 95.8
29 54 75.4 1 99.0
30 40 83.1 1 98.9
31 1 98.6 0 100.0
32 13 94.6 8 95.4
33 47 85.7 0 100.0
35 23 77.7 0 100.0
36 87 58.3 0 100.0
37 5 96.9 2 97.9
38 153 57.5 5 93.7
39 931 23.5 0 100.0
40 305 39.1 3 95.7
41 259 50.3 1 98.9
42 32 76.8 0 100.0
43 64 58.1 0 100.0
44 16 86.9 0 100.0
47 6 91.2 0 100.0

51



5 Conclusions

5.1 Achieved goals

The proposed processing pipeline was designed for two goals: increasing time
efficiency and precision in FoG recognition, reducing as much as possible false
positives. From the results described in Chapter 4, it is reasonable to affirm that
both were achieved. In terms of time efficiency, even adding the time required by
RIE to run, the time for extracting the windows and their features for a patient
is still smaller than processing the whole signals. About precision values, good
results were achieved in validation of Phase 1 and 2 together, with the best results
for binary SVM with RBF kernel. Also recall, which in general has an opposite
behaviour with respect to precision, remained largely above 80%. Moreover, a neat
reduction of FPs was observed when employing the RIE, which is relevant for an
at home monitoring where many activities (as observed in Phase 2 data) could
provide false alarms. Time efficiency and precision were achieved without losing
too many FoG episodes: indeed, in both phases, selection of RIs maintained 96%
of seconds classified as FoG. Furthermore, it must be considered that the following
system was implemented using only acceleration signals coming from one single
sensor; using data coming from multiple sensors in different locations could allow
to design a more sophisticated RIE with even better performances.
Different models, both binary and multiclass were trained and compared. SVM
was confirmed as a very promising shallow method for FoG recognition, but also
KNN proved to be effective, either in the multiclass or the binary case. About
models trained on principal components, it was observed that the features needed
for FoG recognition can be condensed in a small set, at the expense of some
reduction in performances. However, this could be exploited when a trade off
between performances and dimension of feature set is required, for example for
systems with limited memory.
Some limitations, however, must be taken into account: the pipeline was designed
for an offline application and some effort would be required for its translation
into an online system. In addition, it should be considered that the results were
obtained from a dataset which contains overall few FoG episodes and only of the
“trembling of leg” type, hence their statistical validity is reduced. Additional
data would be required to provide a more thorough training and evaluation of the
proposed pipeline.

5.2 Future improvements

About possible future improvements to this study, a number of options are avail-
able. First of all, about the data, it would be interesting to leverage also angular
velocity signals provided by gyroscope, both for improving the RIE and to define
some additional features useful for FoG recognition, which are generally related
to properties of acceleration signals only. Moreover, collecting more data contain-
ing FoG events would be crucial to generalize the proposed algorithm as much as
possible. A different approach would be to tailor the proposed pipeline for each
single patient, as partially explored when studying the options for thresholding
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in RIE. This could be done collecting data from a patient at his own home, with
recordings spanning the whole day: in this way a number of freezing episodes
could be observed, surrounded by daily living activities. On this data only, the
whole pipeline could be trained and tested; it is reasonable to expect that the
performances would be largely improved by this approach, considering the results
that were obtained mixing data from different patients with different gait char-
acteristics. About the pipeline itself, a step that offers room for improvements is
feature selection. For example, a more structured approach could be implemented
using a wrapper method, in combination with a final SVM, a classifier that proved
efficient in the current study. In addition to this, it would be interesting to de-
fine additional features from CWT coefficients, considering that the feature CWT
Freezing ratio was found quite relevant in the classification task. Finally, consid-
ering that the RIE worked in the order of ms for an offline extraction over signals
with an average length of 6 minutes, it would be interesting to adapt it for an
online system, working on real time windows of few seconds.
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[64] S. Mazilu, U. Blanke, and G. Tröster. Gait, wrist, and sensors: Detect-
ing freezing of gait in parkinson’s disease from wrist movement. In 2015
IEEE International Conference on Pervasive Computing and Communica-
tion Workshops (PerCom Workshops), pages 579–584, 2015.

[65] S Mazilu, A Calatroni, E Gazit, D Roggen, J M Hausdorff, and G Tröster.
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Català, Joan M.Moreno Arostegui, Joan Cabestany, Àngels Bayés, Sheila
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Costa, and Alejandro Rodŕıguez-Molinero. Home detection of freezing of
gait using Support Vector Machines through a single waist-worn triaxial
accelerometer. PLoS ONE, 12(2):e0171764, 2017.

[86] Maria C Rodriguez-Oroz, Marjan Jahanshahi, Paul Krack, Irene Litvan,
Raúl Macias, Erwan Bezard, and José A Obeso. Initial clinical manifesta-
tions of Parkinson’s disease: features and pathophysiological mechanisms,
2009.

[87] J C Rothwell, J A Obeso, M M Traub, and C D Marsden. The behaviour
of the long - latencey stretch reflex in patients with Parkinson’s Disease.
Journal of Neurology, Neurosurgery, Psychiatry, 46:35–44, 1983.

[88] Sapir S., Ramig L., and Fox C. Speech and swallowing disorders in Parkinson
disease, 2008.
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