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Abstract

The ability to sense external mechanical loads (touch), movements within mus-
cles (proprioception) and internal organs (visceral sensation) is shared by all
animals. Their ability stems from specialized neurons encapsulated in the
skin, muscle, joints, and internal organs, which sense mechanical loads. Those
sensations are crucial for communication, controlled locomotion, bodily home-
ostasis; in humans, their disruption by disease or chemotherapy, can lead to
acute or chronic peripheral sensory neuropathy, gastrointestinal distress, and
cardiovascular dysfunction. Touch sensation depends on the coupling between
mechanoreceptor neurons and the material properties of the embedding tis-
sues, which provides for a most appealing link between biology and physics,
namely elasticity and viscoelasticity.

Although much has been learned separately on mechanosensitive channels
and on tissue mechanics, our understanding of their integration in the sense of
touch is still in its infancy. In particular, our grasp of how mechanical stim-
uli are conveyed through the tissues and a�ect the neural sensory processing
is still rudimentary. Underlying this knowledge gap is the lack of integrated
approaches that combine experimental devices for the delivery and the quan-
titative assay of controlled mechanical stimuli with predictive physical models
for the transmission and the sensing of those stimuli. The main goal of this
work is to develop models and biomechanical simulations.

We speci�cally consider the roundworm Caenorhabditis elegans, which is
ideal for touch sensation studies because it allows to record currents in iden-
ti�ed mechanoreceptor neurons in their native tissue environment. The pore-
forming subunits of the mechano-electrical transduction (MeT) channels that
convert mechanical stimuli into electrical signals are known and the MEC-4-
dependent, ASIC-like sodium channel of C. elegans was the �rst MeT com-
plex to be identi�ed in any animal.MeT channels decorate six Touch Receptor
Neurons (TRNs), which run along the body of the worm. The TRNs extend
long (ca. 500µm), straight sensory dendrites that are encapsulated within the
epidermis and are positioned within 200nm of the skin. Like other C. elegans
neurons, the TRNs express voltage-gated potassium and calcium channels, but
lack voltage-gated sodium channels. They generate neither evoked nor spon-
taneous action potentials. Because the TRNs are nearly isopotential, action
potentials are not needed to transmit signals along their length. This feature
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also enables high-quality voltage-clamp recordings of currents activated along
the length of the TRN sensory dendrites.

Previous work ([1],[2]) developed a new theoretical model for the coupled
process by which loads applied to the skin of the worm are transduced through
the tissue and TRNs are activated. The worm is modeled as a cylindrical shell
under internal pressure, which is indented by a spherical ball, as in the ex-
perimental set-up. The transmission of mechanical stimuli through the tissue
is obtained via simulations of nonlinear equations for elastic media. As for
the gating of the neuron, the gating mechanism is supposed to be provided
by tangential stimuli on MeT channels, which are read out as an increased
probability of channel activation. This di�ers from previous models for hair
cell bundles, where the gating is perpendicular. The model accounts for the
observed adaptation and the symmetry of the response between onset and o�-
set of the applied force, which was a long-standing mystery, and reproduces
existing response data to various stimuli.

The current state of the model is that only spatially localized stimuli have
been considered so far. In reality, the worm is subject to stimuli that are
spatially extended over its entire body and involve the response of multiple
neurons. Furthermore, experimental possibilities of extended stimulation are
becoming available with ultrasound techniques poised to stimulate the entire
body of the worm.

We built upon the existing model and generalized it by considering those
more realistic conditions and stimulations. As the �rst analysis, we estab-
lished the necessity to simulate the nonlinear equations for elastic media. We
investigated, in particular, a stimulus directly coming from the nematode's en-
vironment, such as constricting rings which are used by carnivorous fungi that
feed on the worm and other kinds of stimuli. The expected fast adaptation
and symmetry of the neural response was recovered again. The importance of
the position of the trapping ring-like stimulus was established and the multiple
activations of di�erent neurons linked to it.
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Chapter 1

Introduction

Animals feel themselves and the environment around them through mechanore-
ceptor neurons that are embedded in their body and transform mechanical
stimuli into electrical ones.

The human body has thousands of these neurons that have di�erent pur-
pose, e.g. there are the ones that are used to detect sound, the ones used to
feel the position and the movement of our body, there are others that allows us
to feel strong air �ows when they impact on our body. These are just a small
numbers of examples of what we can perceive. The human body is complex
and has many di�erent types and experimental manipulations are hampered
by ethical reasons.

In order to reduce the reduce the complexity of the number of neurons
and the di�erent types of receptors, one looks for a organism which has a
small number of mechanoreceptor neurons, which is suited for molecular bi-
ology. One of these organisms is the nematode Caenorhabditis elegans which
has around 300 neurons that are completely mapped.

Di�erent kinds of mechanical stimuli are processed by the organism with
di�erent kinds of receptors. All kinds of stimuli need to be converted and
transduced into electrical signals in order to be elaborated. The nature of
transmission of the signals depends on the nature of the stimuli. In the case
of mechanical stimuli the transduction is very rapid compared with the other
senses where the transducton is chemical, which is a signature of mechanical
activation.

The various stimuli that the organism receives elicit responses on di�erent
time scales, such as adaptation and habituation. Di�erent stimuli are processed
by a large variety of receptor cells, and in the case of touch sensation the iden-
ti�cation of these receptors is a non trivial problem. This is due mainly to the
fact that the same structure is involved in di�erent functions, their role in sen-
sory transduction is di�cult to distinguish from other functions. Those that
have been identi�ed di�er in the range of force they respond to, the frequen-
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CHAPTER 1. INTRODUCTION

cies of these forces, the structure and their position inside the organisms' body.

We will focus on the adaptation phenomenon which is de�ned as the recep-
tors property of not responding to an external stimulus after its being applied
for some time. The time by which the receptor stops responding classi�es the
receptors as rapidly adapting or slowly adapting.

1.1 Caenorhabditis elegans

Caenorhabditis elegans is a small nematode with fast life cycle. The size of a
grown nematode is around 1mm and that of a larva is around 0.25mm, [3]. In
nature, the nematode is present either as hermaphrodite or male, which di�er
from each other by the presence of a specialised tail in the male. Its lifespan,
size and easily modi�able features make it a perfect candidate for molecular
biology studies.

The nervous system of the nematode is completely mapped and an adult
hermaphrodite has 302 neurons, around 30 of which have been classi�ed as
MechanoReceptor Neurons(MRNs). The MRNs of the C.elegans di�er from
each other mainly in the dendrites' structure and the kind of force they are
specialised to detect [3]. These mechanoreceptor neurons contain, as a sub-
class, the Touch Receptor Neurons (TRNs) which are six, ALML1, ALMR2,
PLML3, PLMR4,AVM5 and PVM6, [3], and extend approximatively half the
length of the body of the nematode. These TRNs are in close proximity of the
nematode's skin(cuticle) and are specialized to detect external stimuli.

The TRNs of the C. elegans are rapidly adapting, analogous to the mam-
malian Pacinian corpuscles7 which are not present in the worm.

A widely-studied behaviour of C. elegans, e.g [4], analyses how the nema-
tode escapes the traps of carnivorous fungi, e.g D. doedycoides. This study
suggested that pressures imposed by this predators on the nematode have
shaped their evolution, since both of these organism share the same habitat
[5]. The nematode tries to escape backward if touched on the nose or the ante-
rior part of the body, and escapes forward quite quickly when touched on the
posterior part of the body. What actually is quite astonishing is that the head
movements of C. elegans are present when touched on the nose or posterior

1Anterior lateral microtubule cell,left
2Anterior lateral microtubule cell,right
3Posterior lateral microtubule cell,left
4Posterior lateral microtubule cell,right
5Anterior ventral microtubule cell
6Posterior ventral microtubule cell
7Pacinian corpuscles are one of the main mechanoreceptor cell in mammals, they are

surrounded by a �uid �lled with lamellae. They are rapidly adapting and have symmetric
response.



1.2. THE MATHEMATICAL MODEL

part of the body, but they are not if touched on the rest of its body. These
head movements are used as escaping techniques when the fungi try to catch
them. Nematophagous fungi use di�erent kinds of traps, such as constricting
and non-constricting rings, adhesive nets and others. The ring unin�ated has
an average diameter between 10µm and 25µm. When the worm passes through
the ring and sets the trap on, the ring starts to in�ate. The ring completely
in�ates in a time around 0.1s [4], but the time between the worm entering the
ring, which sets on the trap ring, and the in�ation of the ring is around 5s.
This leaves the possibility to the worm to escape.

1.2 The mathematical model

We will use the mathematical model developed in [1] and [2]. It is based
on the hypothesis that the dynamic connection between the Mechanoeletrical
Transduction channels (MeT) and their surrounding tissue is brought by a
visco-elastic element, featuring an elastic �lament and viscous damping. The
cuticle itself is seen as a viscoelastic medium in which one of the extremes of
the �lament, connected to a mass point, moves in. The e�ect of the �lament on
the channel can be seen as an e�ective coarse-grained model of the interaction
between the channel and the phospholipid bilayer.
When the worm's skin deforms under the application of an external force, this
causes a relative displacement of the �lament, which favours the opening of the
channels. This strongly depends on the velocity of application since the mass
point moves in a viscoelastic medium which brings it back at equilibrium. This
model explains the symmetry in the experimental observation of the on/o�
response of the channels.

From a mathematical modelling point of view, we see the worm's skin as
a pressurized cylindrical membrane. We simulate the deformations using [6],
which solves numerically the three-dimensional elastic problem [7] :

∂

∂xj

(
∂(xk + uk)

∂xi
σij

)
+ ρgk = 0 , (1.1)

where σij is the Piola-Kircho� stress tensor of the second type, see Chapter(2),
ui is the displacement. In [2] it was observed that a linear stress-strain relation,
from Hookean elasticity, was enough to describe the deformations

σij =
E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
, (1.2)

and also the strain-displacement relation is given by the nonlinear Green-
Lagrange expression

2εij =
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

. (1.3)
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We use the same notation as [2], and denote by rf,c respectively the unde-
formed position of the channel and the endpoint of the �lament connected to
the mass point. In the same way, ∆rf,c will be the respective displacement.
On the mass point acts the elastic force due to the �lament, with potential

V (x) =
k

2
x2 +

k4

4
x4 + · · · ,

where x = ∆rf − ∆rc. As done in [1] and [2], we retain only the �rst term.
Moreover, the mass point moves in the viscoelastic medium, so it feels a friction
of the following form

F friction = −γ d(∆rf − u(r′))

dt
,

where r′ is the initial position of the mass point, and u(r′) is the deformation
from Equation (1.1). Since the neural tissue is inside the hypodermis, near
the cuticle, it is reasonable to assume that it deforms in the same way as
the membrane, so this yields ∆rc = u(rc). De�ning r′ as the position of the
material point that coincides with the location of the tip, i.e rf + ∆rf =
r′ + u(r′). Assuming that the gradients of u are small, one can approximate
u(r′) ' u(rf ). This allows us to replace u(r′) with u(rf ) in the friction force.
Since the overdamped approximation is valid at the microscopic scale, the
equation of motion for the elongation of the �lament becomes

dx

dt
+

1

τ
x =

dΓ

dt
=
d(u(rf )− u(rc))

dt
, (1.4)

where τ is the relaxation time. The dynamics of Γ is determined by the defor-
mation u from Equation(1.1). The left-hand side of this equation is the Kelvin
viscoelastic model, i.e. a spring in parallel with a dashpot. The adaptation
and symmetry features, observed experimentally, are captured by this model.
Indeed, the left-hand side is proportional to the time derivative of the defor-
mation, so for a constant deformation, which will result in a Γ = const, we
will have that x goes to zero, which is adaptation.

The movement of the �lament is constrained due the fact that it can move
only in the vertical direction, i.e. on top of the channel. This constraint is im-
plemented by de�ning a local basis on top of the channel, ŵi. This local basis
is de�ned as a function of the neural membrane's local basis ê′i in such a way
that ê′y coincides with the deformed local basis of the cylinder, running from
head to tail, and ê′z is orthogonal to the neural membrane, and ê′x = ê′y ∧ ê′z.
Then the local basis of the channel is a rotation of the ê′i in such a way that if
the channel is rotated around ê′y, it becomes ŵ′1 = cos(θ)ê′x−sin(θ)ê′z , ŵ2 = ê′y
and ŵ′3 = sin(θ)ê′x + cos(θ)ê′z. So the constraint is imposed as ŵ3 · x ≥ 0.

Concerning the opening and the closing mechanism of the channels, it has
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been observed [8], that there are several sub-conducting states. Since the in-
troduction of a single sub-conduction state is enough to capture the e�ects,
[2], we will introduce only one as well, in order to minimise the free parameters
of the model. In this way we have a 3-state Markov chain,

C 
 S 
 O , (1.5)

with the following master equation

d

dt

PcPs
Po

 =

−Rcs Rsc 0
Rsc −(Rsc +Rso) Ros

0 Rso −Ros

PcPs
Po

 , (1.6)

where one putsRoc = Rco = 0 in order to reduce the number or free parameters.
We want that the channels open only due to mechanical stimuli, we require
that they work at equilibrium and detailed balance is satis�ed, which implies

P eq
s

P eq
c

=
Rcs

Rsc

= e−β∆Gsc ,
P eq
o

P eq
s

=
Rsc

Ros

= e−β∆Gos , (1.7)

where one uses a statistical physics description, where β−1 = kkT and ∆Gij

is the free energy di�erence between the state i and j. With this assumption,
the equilibrium transition probabilities become

P eq
o =

1

1 + e−β∆Gco + e−β∆Gso
, P eq

s =
1

1 + e−β∆Gos + e−β∆Gcs
, (1.8)

with P eq
c = 1−P eq

o −P eq
s from the normalization condition. The deformation of

the neural membrane is the same as the deformation of the elastic membrane
of the worm (the skin), in the proposed model, the free energy is a function of
the displacement, ∆G(x). The expression of the free energy proposed in [2], is

β∆Goc = g0 − g1F , (1.9)

where F is the modulus of the tangential components of the elastic force, with
F1 = F elas · ŵ1 and F2 = F elas · ŵ2. For the free energy of the transition o→ s
and c→ s, one assumes that the free energy is of the form

∆Gos = a∆Goc, ∆Gsc = (1− a)∆Goc, (1.10)

with one additional parameter a ∈ [0, 1].
The distribution of the channels is in spots along the neural membrane and

the spacing between two successive channels is log-normal [9]. As in [2], we
assume that each spot contains a single channel. With this description the
mean current along the TRN is the sum of the currents of each channel, i.e.

〈I〉 = io
∑
k

Po(k) + is
∑
k

Ps(k) , (1.11)
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with io the current that passes through the channel when it is open and is when
it is in the sub-conducting state. The current of the single channel in the open
state was measured experimentally in [10], and its value is io = −1.6±0.2 pA.
Conversely, the is in one of the free parameters.

The model parameters were inferred from numerical data in [2]. As stated
before, we will use the same model, with the same parameters. The transition
rates are written as

Rsc = rcse
(1+b)(1−a)β∆Goc , Rcs = rcse

b(1−a)β∆Goc , (1.12)

Ros = rsoe
(1+d)β∆Goc , Rso = rsoe

daβ∆Goc , (1.13)

in which rcs and rso control respectively the rate of transition between the
closed and sub-conducting and open and sub-conducting state. The parameters
d, b ∈ [−1, 0] control the global shift of the transition rates.

The free parameters are obtained from di�erent realisations of the channels'
position and the di�erent direction of the �lament, [2], then they were averaged
and the values obtained are

τ = 1.4ms, gh = 1.4 · 10−3,
gs
gh

= 0.09, rcs = 1/69.5ms

b = −0.75, rso = 1/18ms, d = 0.56,
is
io

= 0.71
, (1.14)

where g0 = gh/gs and g2 = g−1
s .



Chapter 2

Rudiments of Elasticity

Continuum mechanics theory sees physical objects as continuous bodies with-
out taking into consideration their atomic structure. In this frame all the
physical quantities are space and time varying �elds. Our physical body is
de�ned as a di�erentiable submanifold, B, whose elements are called (mate-
rial) particle, and one assumes that there is a di�erentiable embedding of the
manifold in a bounded, open, connected subspace Ω ⊂ R3, with su�ciently
smooth boundaries.

Since B is a di�erentiable manifold, for each X ∈ B there exist a local chart
(U, φ) such that φ(X) = (x1(X), x2(X), x3(X)) gives the local coordinates of
the chart. Through this mapping one can de�ne a measure on B, such that

µ(U) =

∫
φ(U)

ρ(x)dV , (2.1)

where ρ is the density, i.e. the mass per unit volume.
The main ingredient in our theory is the deformation �eld. We �x an

orthonormal basis {ei} in R3, and identify B with Ω. A deformation �eld of
the reference con�guration Ω is a vector �eld φ : Ω → R3, that is smooth
enough, injective and orientation preserving. This last condition translates
into the request that det(∇φ) > 0 for ∀x ∈ Ω. From the deformation �eld
one de�nes the displacement �eld, u, which is the more-frequently used and
de�ned as u : Ω→ R3 such that φ = id|Ω + u.

All that we de�ned until now is in the so-called reference con�guration.
But when a body gets deformed, its shape changes through the deformation
�eld. The image of the body Ω when one applies the deformation �eld is called

the deformation con�guration, i.e. Ω
φ

= φ(Ω) 1. Clearly one can de�ne a new
local coordinated system through {∂iφ}. When a body deforms, the volume
and surface elements get deformed too, the relation between the deformed and

1We will use the same notation in [11], since the author of this work �nds it clearer than
any other notation.

15



CHAPTER 2. RUDIMENTS OF ELASTICITY

undeformed volume and surface elements are given by

dV φ = det
(
∇φ
)
dV, dσφ = |Cof

(
∇φ
)
n̂|dσ , (2.2)

where n̂ is the outward normal to the surface element2 .
We can derive two equivalent equations of equilibrium for deformable con-

tinuum bodies, one stated in the reference con�guration and one in the de-
formed con�guration. From a mathematical point of view these two formula-
tions are completely equivalent, they are connected by a pull-back (or push-
forward) between the two manifolds de�ned by the reference and deformed
con�guration.

Before going into the mathematical formulation of the theory we are build-
ing up, let us introduce the basic concepts of the di�erent kind of forces that
can act on a continuous body. These forces are divided in two groups, inter-
nal and external forces. The external forces are those such that their sources
are located outside the considered body. The external forces acting on the

deformed body Ω
φ
are of two types

a. Body forces de�ned by a density of force per unit volume in the deformed
con�guration, i.e.

f
φ

: Ω
φ → R3 , (2.3)

or similarly if ρφ is the density of the body in the deformed con�guration

one can de�ne h
φ
a density of force per unit mass, in such a way that

f
φ

= h
φ
ρφ.

b. Surface forces de�ned by a force density per unit surface in the deformed
con�guration, i.e.

gφ : Γφ → R3 , (2.4)

with Γφ a measurable subset of ∂Ωφ.

Let us consider now a partition of the body Ω
φ
in elementary volumes. Let

V φ
1 and V φ

2 be two neighbouring elementary volumes. On the sub-volume V φ
1 ,

acts the external forces and also the reaction force of V φ
2 on V φ

1 . It is assumed
that this interaction between an elementary volume, at point x, and its neigh-

bours are statistically equivalent to a force t
φ
(x, n̂φ)dσφ, applied on the surface

with the normal to the surface in the outward direction. Mathematically this
force is formulated by saying that for each oriented surface in the continuum,

there is a force t
φ
(φ)dσφ as de�ned above. This means that, for each point of

a given surface in Ω
φ
there exists a linear3 mapping from R3 to itself. This is

2We will indicate with σ and σφ the stress tensor respectively in the reference and de-
formed con�guration and the distinction between the surface element will be clear from the
context. If eventually the distinction will not be clear, we will clarify explicitly.

3The fact that this mapping is linear is shown in [12], we will not replicate the proof.



expressed as t
φ
(nφ) = σφ

[
nφ
]
where σ is a second order tensor.

In order to show that this mapping exists and it is unique, we need to put
down some axioms.

Axiom 1. Each arbitrary part of a continuum body is at equilibrium if and only if
the whole body is at equilibrium.

Axiom 2. The necessary condition for the equilibrium of an arbitrary part of the
continuum are the ones the rigid body.

Axiom 3. Stress principle of Euler and Cauchy

Let us consider a a deformed body Ω
φ
subjected to external forced per

unit volume and surface, f
φ
and gφ. Then there exists a vector �eld

t
φ

: Ω
φ × S2 → R3 , (2.5)

called the Cauchy stress vector �eld such that

1. for ∀V φ ⊂ Ω
φ
and for ∀x ∈ ∂Ω

φ ∩ ∂V φ where the unit other normal
vector n to ∂Ω

φ ∩ ∂V φ exists and

t
φ
(x, n) = gφ(x) . (2.6)

2. For any subset V φ ⊂ Ω
φ
the force balance holds, i.e.∫

V φ
f
φ
dV φ +

∫
∂V φ

t
φ
(x, nφ)dσφ = 0 , (2.7)

where nφ denotes the normal to the surface.

3. For any subset V φ ⊂ Ω
φ
the moment balance holds, i.e.∫

V φ
r ∧ fφdV φ +

∫
∂V φ

r ∧ tφ(x, nφ)dσφ = 0 . (2.8)

Observation: In the stress principle, it is assumed that the element surface force de-
pends on the element via the normal nφ. One should not rule out the
possibility that there is some dependence on the curvature of ∂V φ or
other geometrical characteristics.
Noll, [13], when he builds the mathematical theory of elasticity, assumes
that the the stress depends on boundary of the subdomain under consid-
eration, without considering explicitly properties of this boundary such
as normal vector or curvature. Then he showed [13], that the dependence
on the curvature or any other local property of the boundary at given
point is impossible.



CHAPTER 2. RUDIMENTS OF ELASTICITY

In order to derive the equilibrium equations, we need to show that the linear
mapping σφ exists and it is unique. This mapping is called the stress tensor,
and in order to prove its existence, thanks to the axioms we are adopting, we
need the following few theorems.4

Theorem 1. Let f
φ
,gφ and t

φ
be the external and internal forces acting on

Ω
φ
, with Ω

φ
bounded, then for any unit vector nφ the following holds

t
φ
(n̂φ) = −tφ(−n̂φ)

Proof. From the balance of linear momentum we have∫
∂V φ

t(n̂φ)dσφ +

∫
V φ
f
φ
dV φ = 0 ∀V φ ⊂ Ω

φ
. (2.9)

Since Ω
φ
is bounded, and from the continuity of f

φ
we have that

C = sup
x∈Ω
| fφ(x) | (2.10)

is �nite. From this observation we have that

|
∫
∂V φ

t
φ
(n̂φ)dσφ |≤ Cµ(V φ) , (2.11)

where µ is the Lebesgue measure on R3. Now let us �x x0 ∈ Ω
φ
, a normal

vector k̂, and P ≡ P (ε) where P (ε) is a rectangular parallelepiped centred in x0

with height ε2,the other two dimension equal to ε, and k̂ parallel to the sides of
the parallelepiped. The top and bottom sides, Σ+ and Σ−, have normal k̂ and
−k̂. The sides of P (ε) can be written as ∂P (ε) = Σ+∪Σ−∪Σε with respective
measures equal to µ(P (ε)) = ε4, µ(Σ±) = ε2 and µ(Σε) = 4ε3. Applying this
result to the previous observations, we have

1

ε2
|
∫
∂P (ε)

t
φ
(n̂φ)dσφ |= Cε2

ε→0−−→ 0 (2.12)

Since t
φ
(n̂φ) is continuous for a �xed n̂φ, we conclude that

1

ε2

∫
Σ±
t
φ
(±k̂)dσφ → t

φ
(x0,±k̂) , (2.13)

and thus we have
t
φ
(k̂) + t

φ
(−k̂) = 0 , (2.14)

which completes the proof since k̂ and x0 are arbitrary.

4These theorems are the stationary cases from [14].



Theorem 2. Let σ be a class C1 tensor �eld on Ω
φ
with σ and divφ(σ) con-

tinuous on Ω
φ
. Then ∀V φ ∈ Ω

φ
the following holds∫

∂V φ
r ∧
(
σφ[n̂φ]

)
dσφ =

∫
V φ
r ∧ divφ

(
σφ
)
dV φ + 2

∫
V φ
skew(σφ)dV φ (2.15)

Now we present the main theorem, that links the forces that act on a body
with a tensor �eld called the stress tensor, this tensor is the linear application
we have been referring to in the past. We present in a certain sense a weaker
version of the Cauchy-Poisson theorem, just to point out that there exists, [14],
a stronger version of this theorem of the form "if and only if".

Theorem 3. Let f
φ
and t

φ
be the volume forces and the Cauchy stress vector

�eld acting on the deformed body Ω
φ
.

If f
φ
is continuous on Ω

φ
and

t
φ

: Ω
φ × S1 → R3 (2.16)

is C1 on Ω
φ
and C0 on S1 then there exists

σφ : Ω
φ → R3 ⊗ R3 (2.17)

a C1(Ω
φ
tensor �eld such that

1. t
φ
(x, n̂) = σφ(x)[n̂] for ∀x ∈ Ω

φ
and ∀n̂ ∈ S1,

2. −divφσφ = f
φ
for ∀x ∈ Ωφ ,

3. σφ = (σφ)T for ∀x ∈ Ω
φ
,

4. σφn̂ = gφ for ∀x ∈ Γφ

Proof. Let 〈ei〉 be an orthonormal basis for R3, let k̂ be a unit vector di�erent
from the elements of the basis and x0 an arbitrary point of Ωφ. Consider the

tetrahedral P (h) ⊂ Ω
φ
with sides Σ and Σi having linear dimensions h and

normals respectively k̂ and k̂i = −
[
sgn(ei · k̂)

]
ei, and whose faces intersect

at x0. The areas of the sides on the tetrahedral are dependent on the linear
dimension h and will be denoted as µ(h) and −µ(h)k̂ · k̂i.

By hypothesis, t
φ
(x, n) is continuous on Ω

φ
for ∀n ∈ S1, and in the limit

of h→ 0, and by using Theorem 1, we have

1

µ(h)

∫
Σ

t
φ
(x, n)dσφ → t

φ
(x0, k̂) , (2.18)
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1

µ(h)

∫
Σi

t
φ
(x, n)dσφ → −(k̂ · k̂)t

φ
(x0, k̂) = −(k̂, ei)t

φ
(x0, ei) , (2.19)

where there is no sum on the index i in the last expression. Also from Theorem
1 we have

1

µ(h)

∫
∂P (h)

t
φ
(x, n)dσφ → 0 , (2.20)

and this yields

t
φ
(x0, k̂) =

∑
i

(k̂ · ei)t
φ
(x0, ei) = (t

φ
(x0, ei)⊗ ei)k̂ , (2.21)

which is the �rst point of the theorem, if one de�nes σφ = t
φ
(x0, ei) ⊗ ei.

Now if one uses the Stress principle of Euler and Cauchy, we have∫
V φ
f
φ
dV φ +

∫
∂V φ

σφndσφ = 0 , (2.22)

and, by using the divergence theorem, one has∫
V φ

(f
φ

+ divφσφ)dσφ = 0 . (2.23)

Since this is true for every V φ ⊂ Ω
φ
this means that

−divφσφ = f
φ
, (2.24)

which is the second point of the theorem.
The third point of the theorem in the same way comes from the Stress

principle of Euler and Cauchy together with the Theorem 2. The last property

is a direct consequence of the de�nition of σφ and the de�nition of t
φ
.

The tensor σφ is called the Cauchy stress tensor. It is useful to underline
that σφij represents the i-th component of the Cauchy vector stress along the
j-th direction.

Thanks to this Theorem one can de�ne the equilibrium equations in the
deformed con�guration:

Problem 1. Given Ωφ ⊂ R3, f
φ
and gφ functions de�ned respectively on Ω

φ

and Γφ ⊂ ∂Ωφ, �nd the tensor �eld σφ such that

−divφ(σφ) = f
φ

in Ωφ , (2.25)

σφ = (σφ)T in Ωφ , (2.26)

σφ[n] = gφ in Γφ . (2.27)



This formulation of the problem is not easy to solve, since we usually do
not know the domain Ωφ, which is actually what we want to know. A more
handy, but equivalent, formulation of the problem to solve is in the reference
con�guration. This formulation that we will give is actually more convenient,
since it allows us to formulate a weak form of the problem5 that allows us to
use numerical methods. This weak form is what actually our numerical scheme
uses to solve.

We need to �nd a way to formulate the problem in the reference con�gu-
ration, where the geometry is known. The transformation that allows us to go
in the reference con�guration is the Piola transformation, and it is de�ned as
the following one.

De�nition 1. Let φ be a deformation of Ω that is injective on Ω, so that the
matrix ∇φ is invertible at all points of the reference con�guration. Let T φ(xφ)

be a tensor �eld for ∀xφ ∈ Ω
φ
. We associate with T φ(xφ) a tensor �eld T (x)

de�ned as

T (x) = det(∇φ)T φ(xφ)(∇φ)−T = T φ(xφ)Cof(φ), ∀xφ = φ(x) . (2.28)

Remarks: The new tensor de�ned through this transformation has one index in the
reference con�guration one in the deformed con�guration. Also it has
the following property6

div(T (x)) = (det(∇φ(x))divφT φ(xφ) ∀xφ = φ(x), x ∈ Ω . (2.29)

Using now the Piola transformation to Cauchy stress tensor σφ one obtains
a new stress tensor called First Piola-Kirchho� stress tensor. The advantage
of this tensor is the relation with the divergences of the two tensors. This will
allow to write the equilibrium equations in a similar "divergence structure".
As we already pointed out, the �rst Piola-Kirchho� stress tensor has one index
in the reference and one index in the deformed con�guration, which makes it
meaningless to ask if the tensor is symmetric. Instead, if we denote the �rst
Piola-Kirchho� tensor with Σ the following holds

1.

div(Σ(x)) = (det(∇φ(x))divφ(σφ(xφ)) ,

2.

ΣT = ∇φ(x)−1Σ∇φ(x)−T .

5Also in this form we can give a weak formulation but it is of no use, since our integrals
are over Ωφ that we usually do not know.

6See [11] for a proof.



CHAPTER 2. RUDIMENTS OF ELASTICITY

The constitutive relation that we will introduce later, will assume a simpler
form if we have a symmetric stress tensor also in the reference con�guration.
In order to have a symmetric tensor, we have to transform the index of Σ that
is still in the deformed con�guration. We de�ne the new tensor, called second
Piola-Kirchho� stress tensor as

σ(x) = ∇φ(x)−1Σ(x) = (det(∇φ(x))∇φ(x)−1σφ(xφ)∇φ(x)−T ∀xφ = φ(x) .
(2.30)

The tensor de�ned in this way is indeed symmetric.
The last question we need to address before formulating our problem in the

deformed con�guration, is to see how the force density �elds transform when
we go into the reference con�guration. Given a force density per unit volume
�eld in the deformed con�guration, one de�nes a force density per unit volume
�eld in the reference con�guration requiring that the force acting on a volume
element is the same, i.e.

fdV = f
φ
dV φ ∀xφ = φ(x) , (2.31)

which yields f(x) = det(∇φ)f
φ
(xφ). Analogously for the force density per unit

area �eld, should be related in such a way that

g(x)dσ = gφdσφ ∀xφ = φ(x) ∈ Γφ , (2.32)

which gives us the following relation g(x) = det(∇φ) | ∇φ(x)−1n̂ | gφ(xφ).
We are ready now to formulate our problem in the reference con�guration.

Theorem 4. Let Ω ⊂ R3 be a bounded and su�ciently regular subset, and
let φ(x) be a deformation �led for Ω. Then the second Piola-Kirchho� stress
tensor σ(x) satis�es the following equations in the reference con�guration Ω:

1. −div(∇φ(x)σ(x)) = f(x) ∀x ∈ Ω,

2. σ(x) = σ(x)T ∀x ∈ Ω,

3. ∇φ(x)σ(x)n̂ = g(x) x ∈ Γ.

These are the equilibrium equations in the reference con�guration. They
can be put also in a weak form that is useful for the �nite element method
techniques, but we will not go into that formulation.

The next quantity we need to introduce is the strain tensor. Let Ω and Ωφ

be the body in the reference and deformed con�guration. Let P and Q be two
neighbouring points in space with local coordinate xi and xi+dxi respectively.
The distance between the two points is

ds2 = dxidxi = gijdx
idxj , (2.33)



where one de�nes the metric tensor gij. After the deformation, the points
will be mapped in P ′ and Q′ with global coordinates given by the following
relation,φi(x1, x2, x3). The distance between the P ′ and Q′ is given by

ds′2 = φk,iφ
k
,jdx

idxj = g̃ijdx
idxj , (2.34)

the main point here is that one assumes that the local coordinate xi remains
the same, i.e dṽi = dvi, this is what characterizes the Langrangian description.
The di�erence between this two distances is given by

ds′2 − ds2 = (g̃ij − gij)dxidxj = 2εijdx
idxj , (2.35)

where one de�nes the strain tensor as

εij =
1

2
(g̃ij − gij) . (2.36)

As already stated, the deformed and undeformed con�gurations are con-
nected by φi, which are related to the deformation vector through φ = id+ u.
In this way, one obtains that the strain tensor, as a function of ui has the
following form

2εij = ui,j + uj,i + uk,iu
k
,j , (2.37)

where εij are the components of the strain tensor along the xi expressed as a
function of the local frame of reference vi. Clearly the strain tensor is sym-
metric, and covariant, so it transforms in the following way

ε∗ij = hk,ih
p
,jεpk (2.38)

with hi being the mapping between two global frame of references.

We introduce two more principles needed to de�ne the constitutive rela-
tion. We take the same approach as in [15]. The stress tensor7 characterizes
the contact forces acting on each part V ⊂ Ω; its de�nition at a certain point
depends on the contact forces acting on an in�nitesimal volume containing that
point. Also the causality principle implies that the con�guration at a certain
time is determined only by its past history. In the development of the theory,
we assume that the stress tensor is su�cient to describe all mechanical inter-
actions and we discard all non mechanical quantities. With these observations
one introduces the following two principles

1. The stress in a body is determined by the history of the motion of the
body.

7From now one, when we refer to stress tensor we mean the second Piola-Kirchho� stress
tensor, if not said otherwise.
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2. In determining the stress of a given particle X ∈ Ω, one can discard the
motion outside a neighbourhood of this particle.

This two principles translate into saying that there exists a functional Ft
with the following properties:

a) In every possible kinematic process the stress σ, at time t is related to
the motion u(t) of the body Ω by

σ = Ft(u) , (2.39)

b) For any two motions u and u∗ that coincide in some neighbourhood U(x)
for ∀τ ≤ t, the values of Ft is the same. Formally

Ft(u) = Ft(u∗) . (2.40)

One must observe that the functional F is constrained by the Galilean co-
variance. So, all the functionals de�ned by (a), with the restriction (b) and
Galilean covariance, de�ne the general constitutive equation for purely me-
chanical theories of continuum media. With these requests, one obtains the
most general form for the constitutive equation. The functional F is called
response functional at the particle X.

Di�erent materials have di�erent kind of behaviour, which are linked to
di�erent constitutive equations. We will deal only with Hookean elasticity, i.e.
materials whose response functional is linear and time independent, but may in
principle be space dependent. In the Hookean elasticity the response functional
is a linear relation between the stress and strain tensor. From a mathematical
point of view this means that the response functional is an isomorphism on
the space of symmetric rank 2 covariant tensors, this means that it can be
represented as a rank 4 tensor, i.e. Aijkl. Thanks to representation theory
such automorphism on R3 ⊗ R3, this tensor can be expressed as 8

Aijkl = sym(ei ⊗ ej)A[sym(ek ⊗ el)] , (2.41)

and this tensor is clearly symmetric in in the i,j and k,l exchange, i.e

Aijkl = Ajikl = Aijlk , (2.42)

which brings down the unknowns from 81 to 36, and the general constitutive
relation in Hookean elasticity becomes

σij = Aijklεlk , (2.43)

where the isomorphism is called elasticity tensor and its components are called
elasticities.

8See [15].



We are interested in isotropic materials. A material is called isotropic if
and only if its symmetry group is the orthogonal group, O(3,R). We are not
going to show how to obtain the form of Aijkl, which is present in any book of
representation theory or elasticity, and the form we will report is a necessary
and su�cient condition for the body to be isotropic.

A material is isotropic at point x if and only if its elasticity tensor have the
following form

Aijkl = µ
(
δikδjl + δjkδil

)
+ λδijδkl , (2.44)

I follow the approach in [16], which I �nd most clear. Thanks to this the
equilibrium problem, in terms of the displacement �eld, becomes

Problem 2. Let Ω be a domain in R3 with boundary ∂Ω = Σ0 ∪ Σ1 with
Σ0 ∩ Σ1 = ∅. Let f i ∈ L2(Ω) and hi ∈ L2(Σ1) for i = 1, 2, 3, be two functions
that are respectively the force density per unit volume and unit surface applied
on the volume Ω.
Find u : Ω → R3, u ∈ W (Ω) = {v ∈ W 1,4(Ω)|v = 0onΣ0〉, where u
is the displacement vector in Cartesian coordinates, it satis�es the following
displacement-traction problem:

1. −∂j(σjk + σji∂iu
k) = fk in Ω,

2. ui = 0 on Σ0,

3. (σij + σjk∂ku
i)n̂j = hi on Σ1.

where
σij = Aijklεlk , (2.45)

2εij = ∂iuj + ∂jui + ∂iuk∂juk . (2.46)

This problem can be put in an equivalent weak form, where one considers
that ∀v ∈ W (Ω) the following equation holds∫

Ω

(σik + σji∂iu
k)∂jvkdV =

∫
Ω

fkvkdV −
∫

Σ1

hkvkdσ , (2.47)

or equivalently as a variational problem as

Ê(u) = inf
v∈W (Ω)

Ê(v) , (2.48)

where Ê(v) : W (Ω)→ R is the three dimensional energy in Cartesian coordi-
nates de�ned as

Ê(v) =
1

2

∫
Ω

{λ(εkk)
2 + 2µεijεji}dV − {

∫
Ω

fkvkdV +

∫
Σ1

hkvkdσ} . (2.49)
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In order to be able to introduce the thin shell theory, in which the various
quantities are expressed in terms of the curvilinear coordinates, we need to
express the previous equations in terms of three dimensional curvilinear co-
ordinates. This means that having a domain Ω1 ⊂ R3 and a smooth enough
injective mapping θ : Ω → R3 such that θ(Ω1) = Ω and the vectors gi = ∂iθ
are linearly independent at each point of the domain.
So we want to express the previous quantities in terms of curvilinear coordi-
nates x = θ(w1, w2, w3), and this transformation will be actually done on the
variational formulation of our problem and not on the PDEs, this choice is due
to the fact that we already know how volumes and surface integrals transform
under such change of variables.

Theorem 5. Let Ω be a domain in R3 such that ∂Ω = Σ0∪Σ1 with Σ0∩Σ1 = ∅.
Let f̂ i ∈ L2(Ω) and ĥi ∈ L2(Σ1 be two functions that represents respectively the
force density per unit volume and surface acting on our body Ω. Let û ∈ W (Ω)
be the minimizer of the energy functional E(v) over the space W (Ω).

Let now Ω1 be a domain in R3 and let there exist θ a C2−di�eomorphism of
Ω1 into Ω = θ(Ω1), such that the three vectors gi = ∂iθ are linearly independent
over all the domain.
Let de�ne the vectors gi such that gi · gj = δij, g(x) = det(gi · gj) and gij(w) =
gi · gj.
Then the vector �eld u : Ω1 → R3 de�ned by

ûiê
i := uig

i ∀x = θ(w) w ∈ Ω1 , (2.50)

satis�es the following minimisation problem overW (Ω1) := {v ∈ W 1,4(Ω1)|v =
0 on Σθ

0},
E(u) = inf

v∈W (Ω1)
E(v) , (2.51)

where

E(v) :=
1

2

∫
Ω1

Aijklε̃kl(v)ε̃ij(v)
√
gdV θ − {

∫
Ω1

f ivi
√
gdV θ +

∫
Σθ1

hivi
√
gdσθ} ,

(2.52)

where Σθ
0 ∩ Σθ

1 = θ
−1

(Σ0) ∩ θ−1
(Σ1) = ∅, and the functions f i ∈ L2(Ω1) and

hi ∈ L2(Σθ
1) are de�ned by

f̂ i(x)êidV =
√
g(w)f i(w)gi(w), x = θ(w), w ∈ Ω1 , (2.53)

ĥiêidσ =
√
g(w)hi(w)gi(w)dσθ, x = θ(w), w ∈ Σθ

1 , (2.54)

the components of the elasticity tensor Aijkl = Ajikl = Aijlk ∈ C1(Ω1) are
de�ned by

Aijkl = λgijgkl + µ(gikgjl + gilgjk) , (2.55)



and �nally, the strain tensor in terms of the curvilinear coordinates and the
transformed �led assumes the following form

ε̃ij(v) =
1

2
(Djvi +Divj + gmnDivmDjvn) (2.56)

where

Djvi = ∂jvi − Γpijvp, with Γpij =
1

2
gpl(∂jgil + ∂igjl − ∂lgij) = Γpji ∈ C0(Ω1)

(2.57)
is the covariant derivative.

Recall that we de�ned the strain tensor as the change of metric tensor. It
can be shown that the same de�nition still holds, in fact the components of
the strain tensor are sometimes called covariant components of the change of
metric tensor.

In order to obtain the equations of equilibrium one can show that E(v) is
weakly di�erentiable, and determine the Gateaux derivative, which determines
the weak formulation of the problem, from which one obtains at the end the
equilibrium equations.





Chapter 3

Thin shell theory

In the following chapter, we will develop the elasticity theory for thin elastic
shells. There are many di�erent approaches to derive a thin shell theory. All
of these theories are based on the concept of dimensional reduction, which
allows us to go from three dimensional to two dimensional theory. The author
of this work prefers the approach taken by Niordson in [17]. This approach
has the advantage that is variational by constriction and allows to increase or
decrease the complexity of the formulation as needed. Moreover it allows to
know exactly the error committed in the approximation in a given theory, as
we shall see when recovering the Love's linear theory of cylindrical shells.

When a body is delimited by two outer surfaces Σ+ and Σ−, and there
exists a surface Σ, called middle surface, such that its normal intersects the
two outer surfaces Σ± at ±h

2
, then the body is called a shell of thickness h (in

principle non constant).
The dimensional reduction we were talking about before, starts from the

three dimensional stress expressed in curvilinear coordinate (u1, u2, z), where
uα with α = 1, 2 are the intrinsic coordinates of the middle surface with para-
metric relations xi = gi(u1, u2) . These quantities are reduce to statically
equivalent forces and moments acting at the middle surface, for which one
obtains two dimensional equilibrium equations.

Let us consider now a connected set Γ ⊂ Σ, of the middle surface, with
smooth boundary ∂Γ. The boundary ∂Γ is characterized by two dimensional
vector uα(s), which are the curvilinear coordinates of the surface and s is the
arclength of ∂Γ. We recall that we can de�ne three mutually orthogonal vector,
tα,nα and Xα, where

tα =
duα

ds
, (3.1)

is the tangent to the curve,

nα = a1/2eαβtβ , (3.2)

29
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where eαβ is the alternating tensor in two dimension, and �nally

Xα = a−1/2eαβγn
βtγ , (3.3)

where eijk is the Levi-Civita symbol or the alternating symbol in three dimen-
sions. Now regarding the the statically equivalent formulation of the stress.
We consider σij(u1, u2, z) in normal coordinates, and let ni(z) be the normal
to the surface element dszdz. Let us consider a unit parallel vector �eld Ai,
i.e. DjA

i = 0, that de�nes a given direction. As it is well known fact, Γ3
3k = 0

in normal coordinates, and one of the equations, j = i = 3, that de�ne the
parallel vector �eld is

∂3A
3 = 0 , (3.4)

this means that the third component of this �eld must be z independent. It's
therefore customary to consider two separate parallel �eld, the �rst one having
A3 = 0 and the second cone having A1 = A2 = 0. In the �rst case, one can
easily determine the z dependence of Aα, which is the one we need in order
to integrate over the thickness. one of the equations that de�ne the �led is
D3A

α = 0 which equivalently

∂3A
α = Γα3kA

k = Γα3γA
γ , (3.5)

and one can easily show that in normal coordinates and for a point which is
not too far from the surface,gαβ = aγδ(aαγ − dαγz)(aβδ − dβδz), and gαδΓ

3
3k =

dεγ(aδε − dδε), where aαβ is the surface metric tensor and dαβ is the curvature
tensor of the surface. So thanks to this relations, one obtains

(aδε − dδεz)(aεα − dεαz)∂3A
α = dεγ(aδε − dδεz)Aγ . (3.6)

From the basic geometric theories of surfaces, we know that det(aδε − dδεz) =
(ag)1/2 6= 0, we have the following equation

(aεα − dεαz)∂Aα = dεγA
γ , (3.7)

which is equivalent to

∂3((aεα − dεαz)Aα) = 0 , (3.8)

which trivially yields the solution we were looking for

Aα = (aβα − dβαz)Ãβ , (3.9)

with Ãβ := Ãβ(u1, u2, 0). In the second case, we don't have to determine the
dependence of z of the parallel �eld since there is no such dependence.

In the �rst case, the normal to a similar boundary curve ∂γ, at a small
distance z from the middle surface is given by nα = g1/2eαβ

duβ

dsz
, and the



resultant,RA, of the force acting on a arclength ds of the boundary ∂Γ, in
the direction Ai is given by

RAds =

∫ h
2

−h
2

σαβg1/2eαδdu
δ(aγβ − d

γ
βz)Aγdz . (3.10)

The resultant stress tensor is denoted usually by Nαβ and is de�ned in such a
way that RAds = nαAγN

αγds, is the resultant force component acting on the
element ds in the direction Aγ. The normal to the element ds has been de�ned
previously and thus the tangential components of the stress tensor have the
following form,

Nαβ =

∫ h
2

−h
2

σαγ(δβγ − dβγz)(1− 2Hz +Kz2)dz , (3.11)

where we have used (g/a)
1
2 = 1−2Hz+Kz2 with H and K being respectively

the mean and Gaussian curvature.
Analogously, in the case of the normal parallel �eld Ai having only the

i = 3 di�erent from zero. One has directly that the stress component, denoted
by Qα where one implies that the other index is equal to 3, is equal to

Qα =

∫ h
3

−h
2

σα3(1− 2Hz +Kz2)dz . (3.12)

One needs to observe is that Nαβ is non symmetric, and this means that we
have in principle 4 + 2 unknown statically equivalent stresses to �nd. But as
we'll see, thanks to the virtual displacement principle, these quantities will not
be independent from each other.

The next quantity we need to de�ne is the statically equivalent moment
what acts on the middle surface. The statically equivalent moment that lies in
the tangential plane to the middle surface is decomposable in twisting moment
along the normal to the boundary and in bending moment along the negative
of the tangential direction to the boundary. In completely analogous way one
can de�ne the moment tensor Mαβ:

Mαγ = −
∫ h

2

−h
2

σαβ(δγβ − d
γ
βz)(1− 2Hz +Kz2)zdz , (3.13)

and from this the bending and twisting moments are naturally de�ned as

MB = Mαβnαnβ , MT = Mαβnαtβ . (3.14)

The total momentum that lies in the tangential plane to the middle surface is

Mγ = MTnγ −MBtγ = eγβM
αβnα . (3.15)
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The loads that are applied to the shell, are formulated in an equivalent way to
statically equivalent loads applied to the middle surface. The in-plane stati-
cally equivalent loads are

Fα =

∫ h
2

−h
2

f δ(δαδ −dαδz)(1− 2Hz+Kz2)dz+
∑

{Σ+,Σ−}

(fα)±h
2
(1∓Hh+

1

4
Kh2) ,

(3.16)
the normal statically equivalent load1 is

p =

∫ h
2

−h
2

f 3(1− 2Hz +Kz2)dz +
∑

{Σ+,Σ−}

(f 3)±h
2
(1∓Hh+

1

4
Kh2) . (3.17)

The forces contribute also to the momentum equilibrium which is ∂γg
ieγβmβ

where

mα = −
∫ h

2

−h
2

fγ(δαγ−dαγz)(1−2Hz+Kz2)zdz−
∑

{Σ+,Σ−}

(Fα)±h
2
(1∓Hh+

1

4
Kh2)(±h

2
) .

(3.18)

3.1 Equilibrium equations

In order to have equilibrium one requires that for any subdomain Γ ⊂ Σ the
resultant force vanishes on the boundary, i.e.∫

Γ

(∂αg
iFα +X ip)dA+

∮
∂Γ

(∂βg
iNαβnα +X iQαnα)ds = 0 , (3.19)

using the divergence theorem and the fact that this equation must hold for
∀Γ ⊂ Σ we have the following equilibrium equations

Dα

[
∂βg

iNαβ +X iQα
]

+ ∂αg
iFα +X ip = 0 , (3.20)

projecting this equations on the local frame of reference one obtains{
DαN

αβ − dβαQα + F β = 0, (3.21)

DαQ
α + dαβN

αβ + p = 0, (3.22)

these are 3 equations in the 4+2 unknown stresses. In completely analogous
way, writing the moment equilibrium �rst in the cartesian frame of reference
and then projecting on the local frame of reference one gets the following
equations {

eαβ(Nαβ − dβγMγα) = 0, (3.23)

DαM
αβ +Qβ +mβ = 0. (3.24)

1We denote it as p for pressure.
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one can use the last equation to eliminate Qα from the previous equations.
With this last equations we get 6 equations in the 10 unknown quantities
Nαβ,Qα andMαβ. Moreover, statically equivalent stresses and momentum are
not symmetric so we cannot relate them through one-to-one correspondence
with the strain and curvature tensors, i.e. εαβ and kαβ.
Starting from the equilibrium equations for the three dimensional problem in
the deformed con�guration one can derive an equation for the virtual work
principle. This equation can be expressed in terms of the reduced quantities,
from which one can de�ne obtain e�ective symmetric stress and moment. We
will not derive this quantities, but their expressions are given by

{
Ñαβ = Nαβ − dβγ(Mγα + eγαΦ), (3.25)

M̃αβ = Mαβ − eαβΦ, (3.26)

where Φ is a scalar function and eαβ the alternating tensor in two dimensions.
Assuming that the membrane as a loading T i = ∂αg

iTα+X iT on the boundary,
and rewriting the equilibrium equations in terms of the e�ective quantities,
they assume the following form with the given boundary conditions:

DαÑ
αβ + 2dβγDαM̃

γα + M̃γαDαd
β
γ + F β + dβαm

α = 0 in Σ, (3.27)

DαDβM̃
αβ − dαγdγβM̃

αβ − dαβÑαβ +Dαm
α − p = 0 in Σ, (3.28)

M̃αβnαnβ = MB on ∂Σ, (3.29)

T − ∂MT

∂s
= −(DαM

αβ)nβ −
∂

∂s
(Mαβnαtβ) on ∂Σ, (3.30)[

Nαβ + (2dαγ − dαρnρnγ)Mβγ
]
nβ = Tα on ∂Σ. (3.31)

(3.32)

Where s is the curvilinear coordinate of the ∂Σ.

Observation: One needs to observe that these equations are in the deformed con�gu-
ration.

3.2 Energy and stress-strain relation

For a material that obeys Hook's law, we know that the problem can be for-
mulated in a variational way where one minimises an energy functional which
is quadratic in the strain.

The stress-strain energy density per unit area is given by

W =
1

2

∫ h
2

−h
2

σijεij(g/a)
1
2dz . (3.33)
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Now we want to formulate our elasticity problem for thin shells in analogous
way. The state of the middle surface is completely determined by the strain
tensor εαβ and the bending tensor καβ. The most general dimensionless ex-
pression in terms on εαβ,καβ, ν,H,K and E is

W

Eh
= Cαβγδεαβεγδ +Dαβγδεαβκγδ + Fαβγδκαβκγδ +Q(εαβ, καβ, ν,Hh,Kh

2) ,

(3.34)
where the last term Q contain the covariant derives of εαβ and καβ. The energy
must be invariant with respect to any coordinate transformation of any given
transformation. This means that each of the four order tensor, and the other
terms, have to be invariant, and be functions of h,ν,K,H,aαβ and dαβ, since
this quantities characterise the middle surface.

The strain and bending tensor are symmetric quantities, this means that
Cαβγδ,Dαβγδ and Fαβγδ are symmetric. The most general expression for the
�rst term is of the following form

Cαβγδ = C1a
αβaγδ+C2a

αγaβδ+C3ha
αβdγδ+C4ha

αγdβδ+C6h
2dαβdγδ+C6h

2dαγdβδ ,
(3.35)

where C1, . . . are constant dependent on the following dimensionless quantities
ν,Hh and Kh2, and the factor h has been introduced in order to make the
constants dimensionless.

If the normal to the surface changes, the terms containing and even number
of times the curvature tensor, will change sign. The only quantity that changes
sign is Hh and in order to avoid the sign changing all the constants can be
de�ned as follows

C1(ν,Hh,Kh2) = C1(ν, (Hh)2, Kh2), (3.36)

C2(ν,Hh,Kh2) = C2(ν, (Hh)2, Kh2), (3.37)

C3(ν,Hh,Kh2) = HhC3(ν, (Hh)2, Kh2), (3.38)

C4(ν,Hh,Kh2) = HhC4(ν, (Hh)2, Kh2), (3.39)

C5(ν,Hh,Kh2) = C5(ν, (Hh)2, Kh2), (3.40)

C6(ν,Hh,Kh2) = C6(ν, (Hh)2, Kh2). (3.41)

One can assume that these constants are smooth enough in the constants,
and one can expand in terms of h/R, whereR is the smallest radius of curvature
at a given point. We rain only terms up to h

R
and discard hither order terms.

The �rst two terms, can be expressed as C1,0(e1 + e2)2 + C2,0(e2
1 + e2

2) where
e1 and e2 are the principal strains such that |e1| ≥ |e2|, and the constants are
the zero order expansions.

Let us show that the third and forth term are of order (h/2)2. Using that

|dγδεγδ| ≤ 2 |e1|
R

|C3ha
αβdγδεαβεγδ| ≤ |C3,0Hh

2(2
|e1|2

R
)2| ∼

(
h

R

)2

, (3.42)
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using the same property we have that also the �fth and sixth term are of order(
h
2

)2
. So the �rst tensor, retaining only the terms up to �rst order in h/R

becomes
Cαβγδ ' C1,0a

αβaγδ + C2,0a
αγaβδ . (3.43)

The third tensor is similar to the �rst. The particular one is the second
tensor. Since the tensor εαβκγδ changes with the direction of the normal vector
and thus also Dαβγδ must change sign. So we can write is as

Dαβγδ = D1,0Hh
2aαβaγδ+D2,0Hh

2aαγaβδ+D3,0h
2aαβdγδ+D4,0h

2aγδdαβ+D5,0h
2aαγdβδ ,

where we neglected the higher order terms. Multiplying by εαβ, κγδ one obtains

D1,0Hh
2 (e1 + e2) (k1 + k2) +D2,0Hh

2εαβκ
β
α +D3,0h

2(e1 + e2)dαβκ
β
α+

+D4,0h
2(k1 + k2)dαβε

β
α +D5,0h

2dαβε
β
γκ

γ
α , (3.44)

we compare the terms of this sum one by one, in order to do so we need the
following inequality valid for any a, x and y,

|2axy| ≤ |a|√
bc

(bx2 + cy2) b > 0 c > 0 .

The �rst tern is

|D1,0Hh(e1 +e2)(k1 +k2)| ≤ |D1,0|
2
√
C1,0F1,0

(C1,0(e1 +e2)2 +h2F1,0(k1 +k2)2)|Hh| ,

which shows that the �rst tern is of order h
R
, for the other terms



|D2,0Hh
2εαβκ

β
α| ≤

|D2,0|
2
√
C2,0F2,0

(C2,0e
2
1 + h2F2,0k

2
1)|Hh| (3.45)

|D3,0h
2(e1 + e2)dβακ

α
β | ≤

|D3,0|√
C1,0F2,0

(C1,0(e1 + e2)2 + h2F2,0k
2
1)|h/R| (3.46)

|D4,0h
2(k1 + k2)dαβε

β
α| ≤

|D4,0|√
C2,0F1,0

(C2,0e
2
1 + h2F1,0(k1 + k2)2)(h/R) (3.47)

|D5,0h
2dαβε

β
γκ

γ
α| ≤

2|D5,0|√
C2,0F2,0

(C2,0e
2
1 + h2F2,0k

2
1)(h/R) (3.48)

Indeed, this shows that the term Dαβγδεαβκγδ is at most or order h/R.
One can do the exactly same procedure and obtain that the third tensor

become

Fαβγδ ' F1,0a
αβaγδ + F2,0a

αγaβδ .
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Covariant derivatives are of the order (h/L)2 where L is the deformation
pattern and we neglect them too. The energy density with this approximation
becomes

W = Eh[
(
C1a

αβaγδ + C2a
αγaβδ

)
εαβεγδ +Dαβγδεαβκγδ+

+
(
F1a

αβaγδ + F2a
αγaβδ

)
καβκγδ] +O

((
h

R

)2

+

(
h

L

)2
)
. (3.49)

This is the most general for under this approximation. The constants are
usually determined comparing the energy of known solution of the three di-
mensional problem with this solution. The stress-strain and moment-bending
relation are given by the functional derivative of the energy, i.e.

δW =
∂W

∂εαβ
δεαβ +

∂W

∂καβ
δκαβ = Nαβδεαβ +Mαβδκαβ . (3.50)

One needs to observe that if we neglect also the term εαβκγδ, the constitutive
relations are decoupled. The mixed term adds a coupling between stress and
bending as well as between moment and strain.

Just for the sake of completeness we will derive the constitutive relations
starting from the Equation (3.50), but in the following we will use the ones
obtained neglecting the mixed term. Let us derive now the relations.

Nαβ =
∂W

∂εαβ
,

the derivative can be split in two pieces, the quadratic in strain and mixed
term. Let us now evaluate the �rst term

∂

∂εαβ

(
C1ε

γ
γε
σ
σ + C2ε

γ
σε
σ
γ

)
= 2C1

∂εγγ
∂εαβ

εσσ + 2C2
∂εγσ
∂εαβ

εσγ = 2C1a
αβεγγ + 2C2ε

αβ ,

in the same way the second term yields

∂(Dγδσξεγδκσξ)

∂εαβ
= Dαβγδκγδ ,

and putting everything together the relation becomes

Nαβ = Eh
(
2C1a

αβεγγ + 2C2ε
αβ
)

+ EhDαβγδκγδ , (3.51)

This is the constitutive relation that links stress tensor with the strain and
curvature tensor. In analogous way performing the functional derivative with
respect to καβ we obtain the following relation

Mαβ = EhDαβγδεγδ + Eh3
(
F1a

αβκγγ + F2κ
αβ
)
. (3.52)
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We now consider the case where one neglects the mixed term, and the
dimensionless energy becomes

W = Eh[
(
C1a

αβaγδ + C2a
αγaβδ

)
εαβεγδ+

+
(
F1a

αβaγδ + F2a
αγaβδ

)
καβκγδ] +O

((
h

R

)
+

(
h

L

)2
)
, (3.53)

where we introduce an error of the order h
R
. In this case the constitutive

relations become {
Nαβ = Eh

(
2C1a

αβεγγ + 2C2ε
αβ
)
, (3.54)

Mαβ = Eh3
(
F1a

αβκγγ + F2κ
αβ
)
, (3.55)

in this case it's easy to determine the coe�cients. We compare the energy of
the three dimensional rectangular body problem with the obtained energy.

The strain and bending tensor, de�ned respectively as the change in metric
and curvature tensor, are given by

εαβ =
1

2
(Dαvβ +Dβvα)− dαβw +

1

2
(Dαv

γDβv
γ − dβγwDαv

γ+

− dαγwDβv
γ + dαγd

γ
βw

2 + dαβdβδv
γvδ + dαγv

γw,α + w,αw,β) , (3.56)

instead the exact expression of the bending tensor is too cumbersome and we
will not report it here, it can be found in [17], instead the linearised approxi-
mation is

καβ ' DαDβw + dαγDβv
γ + dβγDαv

γ + vγDβdγα − dβγdγαw (3.57)

Pure tension: v1 = εu1, v2 = −νεu2, w3 = −νεz
In this case strain and stress are

ε =

ε 0 0
0 −νε 0
0 0 −νε



σ =

Eε 0 0
0 0 0
0 0 0


And the three dimensional energy is given by

W3D =

∫ h
2

−h
2

σijεjidz =
1

2
Eε2h .
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In the two dimensional case, the covariant derivatives become ordinary
derivatives and the energy is

W2D =
(
C1(1− ν)2 + C2(1 + ν)2

)
Ehε2 .

so we get the �rst equation that we need in order to determine the
coe�cients.

Pure shear: v1 = γu2, v2 = γu1, v3 = 0
In this case the strain and stress are

ε =

γ γ 0
γ 0 0
0 0 0



σ =
Eν

1 + ν

1− ν γ 0
γ 0 0
0 0 0


And the three dimensional energy becomes

W3D =

∫ h
2

−h
2

σijεjidz =
1

1− ν
γ2 ,

and similarly the two dimensional energy is

W2D = 2C2γ
2 ,

we gent the second equation needed in order to determine the constants.

We can now determine the �rst two constants which are given by
C1 =

1

2

ν

1− ν
, (3.58)

C2 =
1

2

1

1− ν
. (3.59)

In order to determine the constants F1 and F2 we consider pure bending and
twist, in this cases the strain tensor of the two dimensional problem vanishes,
and the bending tensor is non zero.

Pure bending: v1 = −2ku1z, v2 = 0, v3 = k(u1)2

In this case the three dimensional stress and strain are

ε =

−2kz 0 0
0 0 0
0 0 0

 (3.60)
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σ = −2Ekz

1−ν
1+ν

0 0

0 − ν
(1+ν)(1−2ν)

0

0 0 − ν
(1+ν)(1−2ν)

 (3.61)

and the three dimensional energy is

W3D =
1

6

Eh3

1− ν2
k2 ,

instead the two dimensional energy is given by

W2D = 4Eh3k2(F1 + F2) ,

which gives the �st equation we need:

F1 + F2 =
1

24

1

1− ν2
. (3.62)

Pure twist: v1 = φu2z, v2 = φuiz, v3 = −φu1u2

In this case the three dimensional strain and stress are given by

ε =

 0 φz 0
φz 0 0
0 0 0



σ =
E

1 + ν

 0 φz 0
φz 0 0
0 0 0


with three dimensional energy

W =
1

12

h3

1 + ν
Eh3φ2 ,

instead the two dimensional energy is

W2D = 2Eh3F2φ
2 .

We are able now to determine the coe�cients F1 and F2, they are given by


F1 =

1

24

ν

1− ν2
, (3.63)

F2 =
1

24

1

1− ν2
. (3.64)

So the energy density per unit area of the membrane with the introduced
error and the constitutive relations become
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

W =
Eh

2(1− ν)

(
νεααε

β
β + εαβε

β
α

)
+

Eh3

24(1− ν2)

(
νκαακ

β
β + καβκ

β
α

)
, (3.65)

Nαβ =
Eh

1− ν
(
(1− ν)εαβ + νaαβεγγ

)
, (3.66)

Mαβ =
Eh3

12(1− ν2)

(
(1− ν)καβ + νaαβκγγ

)
. (3.67)

We arrived at the end of the derivation of the theory. We are able now
to formulate a well-posed mathematical problem. using the expression of the
strain and bending tensor in terms of the displacements vα and w, one can
obtain three di�erential equations with the boundary conditions.

Even with the various simpli�cations we introduced in the formulation of
the theory, it is nonlinear and analytical solutions are not available except for
particularly simple cases. We will formulate our problem in the case of thin
shells of revolution.

3.3 Cylindrical thin shell

Let us now derive the theory of cylindrical thin elastic shells. There is a lot
of well known works done for this geometry. A cylindrical shell is described
in cylindrical coordinates and the azimuthal and angular coordinates coincide
with the intrinsic coordinates of the surface, thus the parametrisation of the
surface is 

x1 = x, (3.68)

x2 = R sin

(
φ

R

)
, (3.69)

x3 = R cos

(
φ

R

)
, (3.70)

with metric and curvature tensor given by

a =

(
1 0
0 1

)
, (3.71)

d =

(
0 0
0 − 1

R

)
, (3.72)

with Christo�el symbol vanishes and the covariant derivatives become ordinary
derivatives.



3.3. CYLINDRICAL THIN SHELL

3.3.1 Love's linear equations of cylindrical shell

Love equations' for elastic cylindrical linear shell were derived from the Kirch-
ho� hypothesis, see [18]. We will go with di�erent way. We start from the
quadratic energy density where we retain the mixed term, but written in the
following way

(1− ν2)Dαβγδ = d1
h2

R
aαβaγδ + d2

h2

R
aαγaβγ + d3h

2aαβdγδ+

+ d4h
2(aβδdαγ + aαδdβγ) + d5h

2aγδdαβ , (3.73)

where the d1, . . . are dimensionless functions of ν.
The equations of equilibrium are given by

N11
,1 +N21

,1 + F 1 = 0, (3.74)

N12
,1 +N22

,2 −
2

R

(
M21

,1 +M22
,2

)
+ F 2 = 0, (3.75)

M11
,11 + 2M12

,12 +M22
,22 −

1

R2
M22 +

1

R
N22 − p = 0. (3.76)

The constitutive relations are given by
Nαβ =

Eh

1− ν
(
(1− ν)εαβ + νaαβεγγ

)
+

Eh

1− ν2
Dαβγδκγδ, (3.77)

Mαβ =
Eh3

1− ν2

(
(1− ν)καβ + νaαβκγγ

)
+

Eh

1− ν2
Dαβγδεγδ, (3.78)

with linearised strain and bending tensor which are given byεαβ =
1

2
(Dαvβ +Dβvα)− dαβw, (3.79)

καβ = DαDβw + dαγDβv
γ + dβγDαv

γ − dβγdγαw, (3.80)

where expressing in matrix form and using the convention v1 = u and v2 = v
we get

ε =

 ∂u
∂x

1
2

(
∂u
∂φ

+ ∂v
∂x

)
1
2

(
∂u
∂φ

+ ∂v
∂x

)
∂v
∂φ

+ w
R

 (3.81)

κ =

(
∂2w
∂x2

∂2w
∂x∂φ
− 1

R
∂v
∂x

∂2w
∂x∂φ
− 1

R
∂v
∂x

∂2w
∂φ2
− 2

R
∂v
∂φ
− w

R2

)
(3.82)

If one substitutes the expressions of the stress and moment as functions of the
displacement �eld, one gets the following equations

(d1 + d2)
h2

R

(
∂3w

∂x∂φ2
+
∂3w

∂x3

)
+

∂2u

∂2x2
+

1− ν
2

∂2u

∂φ2
+

+
1 + ν

2

∂2v

∂x∂φ
+
ν

R

∂w

∂x
+

1− ν2

Eh
Fx = 0, (3.83)
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(
d1 + d2 − d5 −

1

6

)
h2

R

(
∂3w

∂x2∂φ
+
∂3w

∂φ3

)
+

1− ν
2

∂2v

∂x2
+

∂2v

∂2φ2
+

+
1 + ν

2

∂2u

∂x∂φ
+

1

R

∂w

∂φ
+

1− ν2

Eh
Fφ = 0, (3.84)

(
d1 + d2 − d5 −

1

6

)
h2

R

(
∂3v

∂φ3
+

∂3v

∂x2∂φ

)
+ (d1 + d2)

h2

R

(
∂3u

∂x3
+

∂3u

∂x∂φ2

)
+

+

(
2d1 − 2d5 −

1

6
ν

)
h2

R2

∂2w

∂x2
+

(
2d1 + 2d2 − 2d5 −

1

6

)
h2

R2

∂2w

∂φ2
+

+
ν

R

∂u

∂x
+

1

R

∂v

∂φ
+

w

R2
+
h2

12
∆2w − 1− ν2

Eh
p = 0, (3.85)

where one has set d3 = d4 = 0 since they do not contribute to any simpli�ca-
tion. Here we have also omitted terms that appear twice but with higher order
in h/R, e.g. the term ∂w

∂x
in the �rst equation turns to be ν/R+ d1h

2/R2, and
we omit the term of order h2/R2. One can set d1, d2 and d5 in such a way that
simpli�es the di�erential equations. Clearly setting d1 = −d2 and d5 = −1

6
the

third order derivatives vanish. Further simpli�cation is obtained if one sets
the coe�cients in front of the terms ∂2w

∂x2
and ∂2w

∂φ2
equal to each other one bets

that d2 = 1
12

(1− ν). With this simpli�cations the equations become

∂2u

∂x2
+

1

2
(1− ν)

∂2u

∂φ2
+

1

2
(1− ν)

∂2v

∂x∂φ
+

ν

R

∂w

∂x
+

1− ν2

Eh
Fx = 0, (3.86)

1

2
(1 + ν)

∂2u

∂x∂φ
+

1

2
(1− ν)

∂2v

∂x2
+
∂2v

∂φ2
+

1

R

∂w

∂φ
+

1− ν2

Eh
Fφ = 0, (3.87)

ν

R

∂u

∂x
+

1

R

∂v

∂x
+

w

R
+

h2

12R2

(
R∆ +

1

R

)2

w − 1− ν2

Eh
p = 0. (3.88)

These are the Morley-Koiter equations originally derived by Love in 1888.
Koiler showed that these equations are the simplest possible within a �rst-
approximation theory, for a cylindrical thin shell. From the original system
one can obtain the boundary conditions to apply to the system.

3.3.2 Twistless linear theory

From the previous equation we can derive a set of ordinary di�erential equa-
tions for the case in which the cylindrical shell is of revolution also in its
reference state. More speci�cally we consider axisymmetric, twist-less defor-
mation. By assumption the displacement has zero azimuthal component, i.e.
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v2 = v = 0, and the radial, axial and forces does not depend on φ. The
strain-displacement relation becomes

ε11 =
du

dx
+

1

2

(
dx

dx

du

dx
+
dw

dx

dw

dx

)
, (3.89)

ε12 = 0, (3.90)

ε22 =
w

R
+
w2

R2
. (3.91)

The variational free energy we write it as

δW =

∫ l2

l1

(
Nαβδεαβ +Mαβδκαβ

)
2πRdz+

+

∫ l2

l1

(Fzδu+ pδw) 2πRdz +
2∑
i=1

2πR (p(li)δw + Fz(li)δu) , (3.92)

where we included the potential energy of the external load.
Depending on the approximation that one wants to use, we can derive

a linear, quasi linear and non-linear theory for twistless shells. The linear
theory, can be obtained from the previous equations, where one puts the d1, . . .
coe�cients to zero or from the Morley-Koiter equations, where one uses the
hypothesis of v = 0 and displacement being independent of φ. The two ways
produce similar equations with a slight change in the constant coe�cients in
the ODEs.

We now want to consider a quasi-linear theory. This consist of retaining
second order terms in w wherever �rst order are not present, but neglecting
second order terms in u. This means that the strain tensor becomes in this
approximation

ε =

(
du
dx

+ 1
2

(
dw
dx

)2
0

0 w
R

)
(3.93)

Regarding the bending tensor, it is trickier to evaluate, since the linear ap-
proximation we have, Equation (3.57), does not contain all the needed terms.
One can do some trivial but long algebra using the expression given in [17],
and obtain that the diagonal terms of the tensor are given by

κ11 =

√
1

(2ε11 + 1)(2ε22 + 1)

(
d2w

dx2
+
du

dx

d2w

dx2
+
w

R

d2w

dx2
− dw

dx

d2u

dx2

)
, (3.94)

κ22 =

√
1

(2ε11 + 1)(2ε22 + 1)

(
− 1

R
− 1

R

du

dx
− 2w

R
− w

R2

du

dx
− w2

R3

)
+

1

R
,

(3.95)
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and in the quasi-linear approximation the tensor becomes

κ =

(
d2w
dx2

0
0 − 1

R
du
dx
− 2u

R2

)
, (3.96)

one can observe that these expressions are equal to the ones in [7] but with the
reverse sign for the bending tensor due to how one de�nes the local coordinate
system.

In order to derive the equations of equilibrium we need to express the
variation δεαβ and δκαβ as variation of δu and δw. This is quite easy since
we know the expression of the strain and bending in term of the displacement
�led. 

δε11 =
dδu

dx
+
dw

dx

dδw

dx
, (3.97)

δε22 =
δw

R
, (3.98)

δκ11 =
d2δw

dx2
, (3.99)

δκ22 = − 1

R

dδu

dx
− 2δu

R2
, (3.100)

as it clearly appears we weed to to some derivation by parts where we have the
total derivative of the displacement variation. Let us now isolate the terms in
two parts, the ones that will end up multiplying δu and the ones δw.

1.Variation for δu: ∫ l2

l1

(
N11 d

dx
δu− M22

R

d

dx
δu+ Fzδu

)
2πRdz +

2∑
i=1

2πRFz(li)δu = 0 ,

(3.101)
which integrated by parts becomes∫ l2

l1

(
−dN

11

dx
+

1

R

dM22

dx
+ Fx

)
2πRdx+

[
N11(l2)− M22(l2)

R
+ Fx(l2)

]
2πRδu(l2)+

+

[
−N11(11) +

M22(l1)

R
+ Fx(l1)

]
2πRδu(l1) = 0 , (3.102)

which must be true for any variation δu, so we have the �rst equilibrium
equation with the boundary conditions.

dN11

dx
− 1

R

dM22

dx
= Fx, (3.103)

N11(l2)− M22(l2)

R
+ Fx(l2) = 0, (3.104)

N11(l1)− M22(l1)

R
− Fx(l1) = 0. (3.105)
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We have implicitly assume that the boundary conditions are linearly
independent. This helps when one implements a shooting method for
solving the �nal system.

2.Variation for δw:

∫ l2

l1

(
N11dw

dx

d

dx
δw +

N22

R
+M11 d

2

dx2
δw

)
2πRdx+

2∑
i=1

2πrp(li) = 0 ,

(3.106)
integrating by parts few times, we get

∫ l2

l1

(
− d

dx

(
N11dw

dx

)
+
N22

R
+
d2M11

dx2
+ p

)
δw2πRdx+

+

[
N11(l2)

dw(l2)

dx
− dM11(l2)

dx
+ p(l2)

]
2πRδw(l2)+

+

[
−N11(l1)

dw(k1)

dx
+
dM11(l1)

dx
+ p(l1)

]
2πRδw(l1)+

+

[
M112πR

d

dx
δw

]l2
l1

= 0, (3.107)

which gives the following set of ODE with boundary conditions



d2M11

dx2
+
N22

R
− d

dx

(
N11dw

dx

)
+ p = 0, (3.108)

N11(l2)
dw(l2)

dx
− dM11(l2)

dx
+ p(l2) = 0, (3.109)

−N11(l1)
dw(k1)

dx
+
dM11(l1)

dx
+ p(l1) = 0, (3.110)

M11(l1) = 0, (3.111)

M11(l2) = 0. (3.112)

We see that in the twistless case the partial di�erential equations become
ordinary di�erential equations, that we can express in term of the displacement
�eld thanks to the constitutive relations. Now we can either use the uncoupled
constitutive relation and the coupled constitutive relations. Let us proceed in
a classical point of view, where we use the uncoupled constitutive relations,
Equations (3.66) and (3.67). Substituting everything, one obtains the following
di�erential equations
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d2u

dx2

(
Eh

1− ν2
+

Eh3

R2(1− ν2)

)
+
dw

dx

d2w

dx2

Eh

1− ν2
+

+
dw

dx

Ehν

R(1− ν2)
− d3w

dx3

Eh3ν

R(1− ν2)
+

+
du

dx

2Eh3

R3(1− ν2)
= Fx (3.113)

d4w

dx4

Eh3

12(1− ν2)
− du

dx

d2w

dx2

Eh

1− ν2
− 3

2

Eh

1− ν2

(
dw

dx

)2
d2w

dx2
− d2u

dx2

dw

dx

Eh

1− ν2
+

− d3u

dx3

Eh3ν

12R(1− ν3)
+
du

dx

Ehν

R(1− ν2)
−
(
du

dx

)2
Ehν

2R(1− ν2)
−wd

2w

dx2

Ehν

R(1− ν2)
+

+
w

R2

Eh

1− ν2
− d2u

dx2

2Eh3ν

12R2(1− ν2)
+ p = 0 , (3.114)

with the six boundary conditions given by

Eh

1− ν2

[
du

dx
+

1

2

(
dw

dx

)2

+
ν

R
w

]
x=l1

+

+
Eh3

12R(1− ν2)

[
1

R

du

dx
+

2u

R
− ν dw

2

dx2

]
x=l1

− Fx(l1) = 0, (3.115)

Eh

1− ν2

[
du

dx
+

1

2

(
dw

dx

)2

+
νw

R

]
x=l1

+

− Eh3

1− ν2

[
d3w

dx3
− ν

R

d2u

dx2
− 2ν

R2

du

dx

]
x=l1

− p(l1) = 0, (3.116)

[
d2w

dx2
− ν

R

du

dx
− 2ν

R2
u

]
x=l1

= 0, (3.117)

Eh

1− ν2

[
du

dx
+

1

2

(
dw

dx

)2

+
ν

R
w

]
x=l2

+

+
Eh3

12R(1− ν2)

[
1

R

du

dx
+

2u

R
− ν dw

2

dx2

]
x=l2

+ Fx(l2) = 0, (3.118)
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Eh

1− ν2

[
du

dx
+

1

2

(
dw

dx

)2

+
νw

R

]
x=l2

+

− Eh3

1− ν2

[
d3w

dx3
− ν

R

d2u

dx2
− 2ν

R2

du

dx

]
x=l2

+ p(l2) = 0, (3.119)

[
d2w

dx2
− ν

R

du

dx
− 2ν

R2
u

]
x=l2

= 0. (3.120)

We obtained a system of two nonlinear ordinary di�erential equations, that
is of a forth order in w and second in u with six boundary conditions. The
author of this work has not tried to solve this system analytically. The system
can be solved computationally using shooting methods in standard libraries
that are able to implement these kinds of boundary conditions.





Chapter 4

Constricting ring-like stimulus

4.1 Numerical validation of the Hookean elas-

ticity

As we previously said, the Hookean relation between stress and strain is jus-
ti�ed if the components of the strain tensor are small with respect to unity.
Since we have a symmetric deformation, we will consider the behavior of the
gradient along the longitudinal direction.

4.2 Validation of the algorithm in the linear elas-

tic regime and the necessity of non-linear

simulations

First we validate the algorithm through the analysis of the variation of the
volume, radius and thickness of the cylindrical shell in the linear regime, due
to the presence only of a constant internal pressure. Thanks to the axisymmetri
of our model, we can easily compute the various displacements and stresses.
The 3D elasticity equations in cylindrical coordinates and with the assumption
σrz = σrθ = σzθ = 0 read 

∂σrr
∂r
− σrr−σθθ

r
= 0

1
r
∂σθθ
∂θ

= 0
∂σzz
∂z

= 0

, (4.1)

with the initial boundary conditions

σrr(r = Rin) = −p, σrr(r = Rout) = 0, σzz(z = ±L/2) = 0 , (4.2)

where Rin = R−h/2,Rout = R+h/2 are the internal and external radii or the
cylindrical shell and L is its length. As we said, our system is axisymmetric,
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thus we can assume that our quantities depends only on r and z. Thus from
the second equation of Equation(4.1) we have that the stress σθθ is a function
of r and z only.

From the third equation of the of Equation(4.1) and the boundary con-
ditions, we have σzz = 0 this means that the strain-stress relations reduces
to {

σrr = E
1−ν2 (εrr + νεθθ)

σθθ = E
1−ν2 (εθθ + νεrr)

, (4.3)

where the strain components have the following displacement dependence,

εrr =
∂ur
∂r

, εθθ =
ur
r
, εzz =

∂uz
∂z

. (4.4)

Using this relations, and the stress-strain relations, the equilibrium equa-
tions reduces to {

d2ur
dr2

+ 1
r
dur
dr
− ur

r2
= 0

duz
dz

= − ν
1−ν

(
dur
dr

+ ur
r

) , (4.5)

the �rst equation ha a solution of the form ur(r) = ar−1 + br, and the solution
of the second equation is uz(z) = − 2bν

1−ν z+c. Imposing the boundary conditions
and the z 7→ −z symmetry, we obtain the following solutions

ur(r) = P

E

(
R2
out
R2
in

−1

) ((1 + ν)
R2
out

r
+ (1− ν) r

)
uz(z) = −ν P

E

(
R2
out
R2
in

−1

)z
uθ = 0

. (4.6)

From this expressions we can obtain the relative change in length, radius
and thickness, which are given by the following expressions

∆L
L

= −ν P

E

(
R2
out
R2
in

−1

) '
h
R
�1
−ν

2
PR
Eh

∆R
R

= ur(R)
R

'
h
R
�1

PR
Eh

(
1 + (ν − 1) h

2R

)
∆h
h

= ur(Rout)−ur(Rin)
h

'
h
R
�1
−PR

Eh

(
ν + (1− ν) h

2R

) . (4.7)

We observe, from Figure(4.1) that in the limit of small values of P/E,
smaller than 0.01 the simulations agrees well enough with the linear model.
As P/E increases the nonlinear behaviour becomes important and one should
take into account the nonlinear terms of the strain tensor. Observing that the
expressions of the quantities in Equation(4.7) in the limit h

R
� 1 are linear in

PR
Eh

, plotting the data from the simulations against this quantity we see that
the points collapse on a single curve. It is evident that this property extends
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also to the nonlinear region. In [2] this observation was used to determine
an analytic expansion that well describes the numerical simulation also in the
nonlinear region.

Figure 4.1: E�ect of internal pressure on a cylindrical membrane. Relative
change in the length L (A), radius R (B) and thickness h (C) of the cylindrical
shell. The scattered points are obtained from simulations with the reported val-
ues of thickness and radius, the lines are the expressions of the Equation(4.7).
The plots (D,E,F ) are obtained plotting the same quantities as functions of
PR
Eh

, and the straight lines are the expressions of Equation(4.7) in the h
R
� 1

limit.

In the case of the nematode, Young modulus, internal pressure, radius and
thickness are such that PR

Eh
' 0.2. This value shows us that we actually need

a non-linear simulation, rather than a linear one.

4.3 Validation of the numerical scheme using

the elastic theory of axisymmetric shells

We are describing the mechanical properties of the nematode as the ones of a
thin pressurised elastic cylindrical shell. The only way we have to approach
this problem in it is full generality is through numerical simulations, this is due
to the geometric nonlinearities which are intrinsic to the problem. We want
to go deeper into the validation of the numerical simulations and we will do
it using some results of the this shell of revolution, in particular the case of
axisymmetric, twistless deformations.
As we developed the equations in 3.3.2, where one assumes that the azimuthal
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displacement is zero, and the radial and axial displacement are independent
on the azimuthal coordinate. We consider the case of small applied pressure,
where we use a quasilinear theory.

We consider a thin cylindrical shell with free edges under uniquely a ra-
dial load. Under this assumptions, our system is axially symmetric and the
equations we need to solve are given by1{

d2Ms

ds2
− Nθ

ρ
+ d(Nsv′s)

ds
+ fr(s) = 0

1
ρ
dMθ

ds
+ dNs

ds
= 0

, (4.8)

with the following boundary conditions
dMs

ds

∣∣∣
s=s1

+Nsv
′
s

∣∣∣
s=si
− F i

r(si) = 0

Ns(si) + Mθ(si)
ρ

= 0

Ms(si) = 0

, (4.9)

where in our case s1 = −L/2 and s2 = L/2 with L being the length of the
worm. The stresses and moments are linked respectively to the strain and
curvature strain through the following relations{

Ns = Eh
1−ν2 (εs + νεθ) , Nθ = Eh

1−ν2 (εθ + νεs)

Ms = D (ks + νkθ) , Mθ = D (kθ + νks)
, (4.10)

where in the quasi-linear approximation, that we're considering here, the strain
and the curvature strain in terms of the radial and axial displacement are given
by {

εs = v′z + 1
2

(
dvr
ds

)2
, εθ = vr

ρ

ks = −v′′r , kθ = v′z
ρ

. (4.11)

Inserting the stress and bending expressions in the Equation(4.8), adi-
mensionalization and using the boundary conditions, we obtain the following
boundary value problem

d4v
dξ4
− d2v

dξ2

(
A1 + A2

(
dv
dξ

)2

+ A2v

)
− dv

dξ
dv
dξ

+ v = A4fr(Bξ)

dvz
ds

= Dνρ(1−ν2
Ehρ2+D(1−ν2)

d2vr
ds2
− Ehρ2

Ehρ2+D(1−ν2)

(
1
2

(
dvr
ds

)2
+ ν

ρ
vr

)
d2v
dξ2

∣∣∣
ξ=ξi

+ ρνA2

A

(
dv
dξ

)2∣∣∣
ξ=ξi

+ 2ρν
A
v(ξi) = 0

d3v
dξ3

∣∣∣
ξ=ξi
− dv

dξ

∣∣∣
ξ=ξi

(
A1

2
+ A2

3

(
dv
dξ

∣∣∣
ξ=ξi

)2

+ A3v(ξi)

)
= 0

vz(0) = 0

, (4.12)

1The following relations change in the case of the radius depending on arc length s. We
consider the case of constant radius.
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where the non dimensional quantities are de�ned as

vr = Av, s = Bξ,

A =
2ρ

ν

Ehρ2 +D(1− ν2)2

EhB2
,

B4 =
ρ2

Eh

D(Ehρ2 +D(1− ν2)2

Ehρ2 +D

, (4.13)

A1 = − 2Ehν2B2

Ehρ2 +D(1− ν2)2
, A2 =

3

2

EhA2

Ehρ2 +D(1− ν2)2
,

A3 =
ν

ρ

EhB2A

Ehρ2 +D(1− ν2)2
, A4 =

Ehρ2 +D(1− ν2)

Ehρ2 +D(1− ν2)2

B4

A
,

(4.14)

Here we considered the s 7→ −s symmetry of out system, in the general
case, one must consider the second equation being a second order ODE and
the whole system will be a proper boundary value problem where the second
boundary condition is on the �rst derivative of w.

We can easily integrate this system with numerical methods, we used the
MATLAB function 'bvp5c' for vr and a numerical integration for vz. This way
we obtain the radial and axial displacement. in particular we considerate a
pressurized cylinder with a pressure applied on the region (−rind, rind) with
rind = 2µm, where fr(s) has the following expressions

fr(s) =


p ifs ≤ −rind
p− f if− rind < s < rind

p ifs ≥ rind

. (4.15)

We determine the mechanical response of a thin pressurized cylinder, where
the pressure f is applied on the external surface and p on the internal one. The
numerical methods are solving directly the three dimensional elastic equations.
And we confront the simulations with the solutions we obtain solving the one
dimensional equation for the this shells of revolution.

We show in Figure 4.2 the result of di�erent mesh size. Clearly the defor-
mation pro�le is captured by our simulations even with a not quite �ne mesh
size.
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Figure 4.2: Mechanical response of a pressurized thin cylindrical shell to a
radial pressure on symmetric region. (A) Radial displacement along the axial
direction. (B) Axial displacement along the axial direction. The numerical
solution (black line) is well approximated by the numerical simulation as the
mesh becomes �ner, where h is the shell thickness and the mesh size is given
in terms of h. The parameters of the simulations are h/R = 5 · 10−2, h =
1.0708µm, p/E = 10−4, and f = 10−2µN/µm2

4.4 Channel's response as function of the �la-

ment's orientation

Until now we analysed the validation of the numerical scheme. Now we analyse
the mechanical response of the neural channel as function of the �lament ori-
entation. Since the opening probability depends on the tangential components
of the forces acting on the channel, i.e. Equation(1.9), we want to see now
how this components depends on the initial orientation of the �lament.

In [2] is shown that the numerical data are described better if the initial
orientation of the �lament is along the axial direction. We will assume that all
the �laments are oriented axially, but before that we see the tangential com-
ponents of the force acting on the �lament at di�erent orientation, in order to
see if our results are consistent with the one shown in [2].

The �rst consideration comes from thin shell theory. In this theory, the
terms εxz and εyz are assumed to be small compared to the other components.
The direct consequence of this hypothesis, using the relation dr′1·dr′2−dr1·dr2 =
2εijdr1,jdr2,j, that vectors initially normal to the surface remain normal also
after the deformation. This is important since the neural membrane deforms
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in the same way as the nematodes surface, so the normal components remains
normal also after the deformation. The only available rotation in this case are
the ones around the normal, but as we see from Figure(4.3B), the strain is
essentially diagonal so also εxy is negligible.
A single channel is subjected to an elastic force F elastic = kx, where x =
∆rf − ∆rc. The tangential components of the force are non negligible if the
elastic �lament is oriented in the tangential plane to the channel and are neg-
ligible if it is in the orthogonal direction. We can observe in Figure(4.3), that
the force have di�erent sign if the �lament is oriented in the w1 or w2, but
the amplitude is quite di�erent. This is totally consistent due to the fact that
the applied stimulus is neither globally or locally invariant by rotation of π/2
around the normal.
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Figure 4.3: Mechanical stimuli of the channel due to a step. (A) Stimulus
pro�le due to a step. (B)Diagonal components of the strain tensor and its
eigenvalues. (C) The two tangential components of the force acting on a single
channel for the stimulus in panel A, with �lament orientation respectively along
w1,w2 and w3.
The parameters of the simulations are P/E = 10−2, pexternal = 5·10−2µN/µm2,
cylinders radius R = 20µm, length of the application region r = 4µm.

The type of stimulus we are considering gives analogous force components
as observed in [2], and since we do not have experimental data to determine
the best orientation of the �lament, we can orient them parallel to the neural
membrane.
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4.5 Mechanical and neural response dependen-

cies

As shown in [2], the mechanical and neural response strongly depend on the
radius of the indenting beam. Here we will do a similar analysis, where we
will look at the length of the application region and the values of the pressure
we're applying.
We concentrate in particular on the PVM touch receptor neuron, and apply
the pressure at the middle of the worm. In this way the neuron membrane ex-
tends roughly the same size in both directions. For now we neglect the neural
response to the other neighbouring TRNs, and we will take them into account
subsequently.

The radial displacement for di�erent values of the the application region's
length, r, are shown in Figures (4.4A,4.5A, 4.6A). As one can notice the max-
imum displacement and the pro�le of the deformation strongly depend on the
value of r. In Figures (4.4B, 4.5B, 4.6B) are shown the pro�les of the mean cur-
rent for di�erent values of r due to a stimulus pro�le of the form of Figure4.7A.

The displacement pro�le for small values of r are similar, indeed one can
verify that the displacement at the origin as function of r is a linear one;
likewise does the current. One can observe this growth in the Figure(4.7B)
for the maximum average current �owing inside the neuron as function of r.
For values or r ≤ 11 one can see a change of behaviour in the mean current,
Figure(4.4B,4.5B,4.6B), and the maximum current, Figure(4.7B). This change
of behaviour is strongly re�ected in the gating probability, Figure(4.4C,4.5C,4.6C).
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Figure 4.4: Mechanical and neural behaviour for di�erent values of the appli-
cation region. (A)The deformation behaviour depends on the length of the
application region, r. (B)The mean neural current response to a step. (C-
E)Gating probability for an individual channel for di�erent r. The position of
the channel is respectively at z = 0,z = r/2 and z = 5r, where the frame if
reference is set in such a way that the application region is (−r/2, r/2).
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Figure 4.5: Mechanical and neural behaviour for di�erent values of the appli-
cation region. (A)The deformation behaviour depends on the length of the
application region, r. (B)The mean neural current response to a step. (C-
E)Gating probability for an individual channel for di�erent r. The position of
the channel is respectively at z = 0,z = r/2 and z = 5r, where the frame if
reference is set in such a way that the application region is (−r/2, r/2).
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Figure 4.6: Mechanical and neural behaviour for di�erent values of the appli-
cation region. (A)The deformation behaviour depends on the length of the
application region, r. (B)The mean neural current response to a step. (C-
E)Gating probability for an individual channel for di�erent r. The position of
the channel is respectively at z = 0,z = r/2 and z = 5r, where the frame if
reference is set in such a way that the application region is (−r/2, r/2).

Figure 4.7: (A)Application pro�le for a step stimulus. (B) The maximum
current for a given r for a step stimulus. The current is normalized by its
value for r = 10.

As stated in [19], the PVM by itself does not mediate a noticeable touch
response, i.e. the worm will not have a forward/backward escape behaviour.
From this observation we want to see if the proposed model, captures the
inability of the PVM to distinguish between front or back stimulus. We will
analyse the current in the PVM as function of the distance between the center
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of the stimulus and the end of the neuron. We show the results in Figure(4.8)
and one can observe that the neural response is statistically the same from left
and right, so the PVM cannot distinguish the same stimulus if it's applied on
the posterior or anterior part of the nematode.

We present another quantity which is the local current normalized by it
is maximum value i0. We can observe similar behaviour between the various
curves for small values of r. For large values of r the normalized local current
changes drastically behaviour. This way one can obtain the range over which
a stimulus of this kind is felt by a single channel.

Figure 4.8: (A)Maximum current in the PVM against the distance of the
stimulus, respectively on the left and right. (B) Log-log plot of the absolute
di�erence between the left and right mean current vs the distance from the
neuron's end.

Figure 4.9: Local current behaviour. (A-C) Normalized local mean current
versus the distance from the center or the application region.
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4.6 Multiple neuron response

Until now we considered the neural response only of the PVM touch receptor
neuron. Now we look at di�erent neurons with a step stimulus of the type
in Figure(4.7A), where the stimulus is applied in the anterior part and the
posterior part of the nematode. The results for di�erent touch receptor neurons
are shown in Figure(4.10) and Figure(4.11).

One can observe that the PVM reacts in the same way for an anterior or
posterior stimulus. The ALMs responds to an anterior stimulus and the PLMs
responds to a posterior one.

We were not able to analyse the dependence between various neurons. As
stated in [19], the ALML and ALMR work independently during in an early
larva stage but then the AVM develops, which connects to the ALM cells. This
connection between various neurons make the neuronal circuit more complex,
and may be important in the C.elegans development, since the structure of
the single neuron is simple.

Figure 4.10: Neuron response of di�erent neurons for various values of the
application region. The step stimulus is applied on the anterior part of the
worm.
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Figure 4.11: Neuron response of di�erent neurons for various values of the
application region. The step stimulus is applied on the posterior part of the
worm.
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