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Abstract

This Master’s thesis aims to study, via massive numerical simulations and analytical
considerations, the dynamical properties of the 2d Ferromagnetic Potts model,
after extremely rapid quenches to sub-critical temperatures. In particular, we are
interested in the case in which the model has a large number of states q (interesting
results are obtained for q ≥ 103) and it is built on a square lattice topology. The
starting point is a fully disordered configuration with completely uncorrelated spins
(infinite temperature, T → ∞). The quench mechanism, drives the large q-Potts
model trough a 1st order ferromagnetic-paramagnetic phase transition (FOT ).

We want to understand how the final temperature T and the number of states
q influence the dynamical behaviour of the relaxation towards equilibrium process.

It is known that, depending on q, this model shows different kinds of critical
behaviour [1] and, consequently, different dynamical properties. In 2d, for a Potts
model with q ≤ 4 there is a 2nd order phase transition (SOT ) and the dynamical
properties are related, for not too small temperatures, to the world of coarsening
of domains. For very low temperatures, instead, blocked states are observed.

Regarding the case deepened in this thesis, with q very large and a FOT, the
dynamical properties are more complex. In fact, varying the two parameters T
and q, different dynamical behaviours are found. In particular, it is known, for
a FOT, that order and disorder coexist close to the transition. This results, in a
certain range of temperatures, in the birth of metastable states. After a quench
below Tc disordered metastable states are observed. These can survive for a rather
long time. This, then, gives rise to many phenomena concerning nucleation and
coarsening dynamics. Blocked states are found, again, in the large q case.

We study these dynamical behaviours with Monte Carlo numerical methods
and analytical considerations. The heat-bath transition rates have been brought
into play to define the stochastic dynamics in the Continuous time Monte carlo
algorithm.

The most important result is that, while studying how the equilibrium config-
uration is reached, an universal behaviour of the dynamics, in T and q has been
sought and found for some large q value and in a particular final temperature T
range. The universal behaviour in T,q certifies that, for any large q-Potts model
quenched to any final temperatures T (belonging to that particular range), the
dynamics is the same for each of them.

Beyond the numerical description of the metastable states, we attack the problem
also analytically: using a large q expansion for the heat-bath dynamics it is possible
to obtain some interesting information about this phenomenon. In particular we
have found a range in which, for sub-critical quenches and in the infinite q limit,
the metastable states are never escaped. In the finite but large q case, instead, the
very same range is the unique one in which the these particular states are observed.
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A paper presenting the results contained in this master’s thesis and other features
of the dynamics of the large q-Potts model is in progress [2].
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Chapter 1

Introduction to the Potts
model at equilibrium

1.1 The Potts model
The Potts model [1, 3] is a mathematical model describing interacting spins
on a lattice, with a certain coordination number and a certain topology. It is
characterized by the fact that each spin has q ∈ N possible states1. It was
introduced by Potts in his thesis research in 1951 and, even if at first it was not
deeply considered, it has gained an incredible importance now. It is used as an
important testing ground for the study of methods and approaches suitable to be
applied in the analysis of Phase transitions.

Indeed, its critical behaviour2 is extremely rich: for different values of q we have
two kinds of phase transitions: 1st and 2nd order paramagnetic-ferromagnetic phase
transition3. The critical behaviour could be modified also by the eventual addition
of disorder. Above all, the Potts model is a generalization of the renowned Ising
model to an arbitrary number of states q of the spin variables si. Below, the energy
functions of these two models:

HIsing
J ({si}) = −J

Ø
<i,j>

sisj with si ∈ {−1,1}, i ∈ {1, . . . , N} (1.1)

HPotts
J ({si}) = −J

Ø
<i,j>

δsi,sj
with si ∈ {1, . . . , q}, i ∈ {1, . . . , N} (1.2)

1Usually, a colour is associated to each state.
2Behaviour in the "vicinity" of the transition.
3See chapter 2.
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Introduction to the Potts model at equilibrium

Where N is the number of spins on the lattice and q
<i,j>

means that the sum is
restricted to the nearest neighbours of each spin avoiding double counting.

The Potts model is mapped into an Ising one doing these steps :

• Choose q = 2.

• Translate the "colour" interval in order to have si ∈ {−1,1}.

• Use the identity: δsi,sj
= 1

2(1 + sisj).

• Discard a meaningless constant.

• Call J Í = J

2 .

HPotts
J ({si}) = −J

Ø
<i,j>

δsi,sj

= −J
Ø
<i,j>

1
2(1 + sisj)

= −J

2 − J

2
Ø
<i,j>

sisj

= const− J Í Ø
<i,j>

sisj

= −J Í Ø
<i,j>

sisj

= HIsing
J Í ({si})

(1.3)

The Potts model is widely studied since it can be applied to describe not only
ferromagnetic systems but also several phenomena regarding very different topics:
from soap foams [4] and metallic grain systems [5] to FOT of the quark-gluon
plasma in heavy ion collision [6] but also biological morphogenesis, active cell
movement [7], protein folding [8] and eventually real world social networks [9]. It is,
also, the ideal model to numerically simulate thermal first order phase transitions.

2



Introduction to the Potts model at equilibrium

Figure 1.1: Example of a generic configuration of the Potts model defined on a
square lattice with side L = 1000, N = L2 spins each one with q = 25 possible
colours.

In this thesis we will study a Potts model defined on a 2d square lattice with
coordination number4 cnumber = 4, side L and periodic boundary conditions. There
are N spins5 on the lattice which are coupled by means of a nearest neighbours
ferromagnetic interaction: J > 0. This kind of interaction, as could be inferred by
the form of the Hamiltonian, favours the "alignment"6 of neighbouring spins. In
particular, neighbouring spins with the same colour interact between each other
lowering the energy of the system by a value −J . If two neighbouring spins do
not have the same value, the Kronecker delta, in the energy function, gives zero
and the energy is not lowered. This lets the ferromagnetic-paramagnetic phase
transitions happen.

4i.e. the number of nearest neighbours and it is related to the topology of the lattice.
5With N = L2.
6Two spins are aligned if they have the same colour i.e. si = sj .
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Introduction to the Potts model at equilibrium

Let us write the canonical7 partition function for this model:

Z =
Ø
{si}

e−βHP otts({si})

=
Ø
{si}

e
+βJ

q
<i,j>

δsi,sj

=
Ø
{si}

Ù
<i,j>

eβJδsi,sj

(1.4)

where q
{si}

means sum over all the possible spin configurations and e−βJ with β =
1

kBT
is the so called Boltzmann weight, crucial in the definition of the canonical

ensemble with pdf :
Pcanonical({si}) = 1

Z
e−βHP otts({si}) (1.5)

The Potts model could be also defined in the anti-ferromagnetic version [10,
Chapter 8.13], simply choosing a coupling constant J < 0 which favours the
non-alignment of the spins8.

The 2d-Potts model has not yet been analytical solved9. Nevertheless, some
important features could be extracted, at the critical point and for certain lattices
(like the square one), by some duality arguments. Indeed, with a particular mapping,
that goes beyond the purpose of this thesis, it can be shown the Potts model is
nothing but an Ice-type one [10]. Thus, the exact position of the critical point for
the square lattice can be extrapolated:

Tc = J

ln(1 + √
q) Ä 2J

ln(q) in the large q limit (1.6)

We will often use physical units in which J = 1 but it is important to emphasize
the coupling strength dependence of the critical temperature. Exactly at this point
the 2d Potts model undergoes a paramagnetic-ferromagnetic phase transition in
temperature which is of the 1st order if q > 4 and of the 2nd order if q ≤ 4.

7It is the statistical ensemble which represents the possible states of a system in thermal
equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the
heat bath, so that the states of the system can differ in total energy.

8Choosing βJ = −∞ we have a mapping between q-Potts and the q-colouring problem, very
famous in computer science. For some particular q values and for some special graphs the
q-colouring problems are solvable in polynomial time (P class). Nevertheless, the vast majority of
them are contained in the N P − complete class.

9For q /= 2, since for q = 2 we have Ising which is solved by Onsager in 2d [11], [12].
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Introduction to the Potts model at equilibrium

1.1.1 Analytical solution of the 1d Potts model
To warm up and become familiar with this model, we solve the 1d version of it.
We calculate the canonical partition function Z and the free energy density f with
different boundary conditions.

Open boundary conditions

Let us solve the 1d Potts model withN spins, q states and coordination10 cnumber = 2
on an open chain:

HOBCs
1d−Potts = −J

N−1Ø
i=1

δsi,si+1 (1.7)

Z =
Ø
{si}

e−βHOBCs
1d−P otts

=
Ø
{si}

e
βJ

N−1q
i=1

δsi,si+1

=
Ø
{si}

N−1Ù
i=1

eβJδsi,si+1

=
qØ

s1=1

qØ
s2=1

· · ·
qØ

sN =1
eβJδs1,s2eβJδs2,s3 . . . eβJδsN−1,sN

=
qØ

s1=1

qØ
s2=1

eβJδs1,s2

qØ
s3=1

eβJδs2,s3 · · ·
qØ

sN =1
eβJδsN−1,sN

(1.8)

Now if we consider the following sum:
qØ

s2=1
eβJδs1,s2 = eβJδs1,1 + eβJδs1,2 + · · · + eβJδs1,q (1.9)

We notice that, depending on the s1 value, only one term of the sum is equal to
eβJ while the other q − 1 terms are equal to e0 = 1.

At this point we can write:
qØ

s2=1
eβJδs1,s2 = eβJ + q − 1 (1.10)

10To avoid double counting we let each spin interact with the one on its right.
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Introduction to the Potts model at equilibrium

and the same could be written for the sum on s3 . . . sN . Thus, going back to Z we
can write:

Z =
qØ

s1=1
(eβJ + q − 1) · (eβJ + q − 1)...(eβJ + q − 1)

= (eβJ + q − 1)N−1
qØ

s1=1
1

= q(eβJ + q − 1)N−1

(1.11)

Straightforwardly, we can evaluate the free energy density in the thermodynamic
limit:

f = lim
N→∞

F
N

= lim
N→∞

− 1
N
kBT lnZ

= lim
N→∞

− 1
N
kBT ln

è
q(eβJ + q − 1)N−1

é
= lim

N→∞
−(N − 1)

N
kBT ln

è
(eβJ + q − 1)

é
− kBT

N
ln(q)

= lim
N→∞

−kBT ln
1
eβJ + q − 1

2
+O(1/N)

Ä −kBT ln
1
eβJ + q − 1

2

(1.12)

where the thermodynamic limit N → ∞ justifies the fact that we neglect the term
proportional to 1/N .

f = −kBT ln
1
eβJ + q − 1

2
in the thermodynamic limit. (1.13)

Periodic boundary conditions

Let us solve the same model with the periodic boundary conditions i.e. s1 = sN+1

HPBCs
1d−Potts = −J

NØ
i=1

δsi,si+1 (1.14)

6
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To calculate the canonical partition function Z we use the transfer matrix method:

Z =
Ø
{si}

e−βHP BCs
1d−P otts

=
Ø
{si}

e
βJ

Nq
i=1

δsi,si+1

=
Ø
{si}

NÙ
i=1

eβJδsi,si+1

=
qØ

s1=1

qØ
s2=1

· · ·
qØ

sN =1
eβJδs1,s2 . . . eβJδsN ,s1

(1.15)

Let us introduce the transfer matrix :
âT = Ts,sÍ = eβJδs,sÍ with s, sÍ ∈ {1, . . . , q} (1.16)

âT =



Ts=1,sÍ =1 Ts=1,sÍ =2 Ts=1,sÍ =3 . . . Ts=1,sÍ =q
Ts=2,sÍ =1 Ts=2,sÍ =2 Ts=2,sÍ =3 . . . Ts=2,sÍ =q
Ts=3,sÍ =1 Ts=3,sÍ =2 Ts=3,sÍ =3 . . . Ts=3,sÍ =q

... ... ... . . . ...
Ts=q,sÍ =1 Ts=q,sÍ =2 Ts=q,sÍ =3 ... Ts=q,sÍ =q

 (1.17)

Specifying the entries values we get:

âT =



eβJ 1 1 . . . 1
1 eβJ 1 . . . 1
1 1 eβJ . . . 1
... ... ... . . . ...
1 1 1 . . . eβJ

 (1.18)

which can be rewritten as11:
âT = (eβJ − 1)âIq×q + âUq×q (1.19)

We can write the partition sum as:

Z =
qØ

s1=1

qØ
s2=1

...
qØ

sN =1
Ts1,s2Ts2,s3 . . . TsN−1,sN

TsN ,s1 (1.20)

11âIq×q is the identity matrix and âUq×q is a matrix made of entries all equal to 1: Ui,j = 1 ∀i, j.

7



Introduction to the Potts model at equilibrium

where Tsi,sj
, with i, j ∈ {1, . . . N}, are the N equal q × q transfer matrices.

Now considering that, saturating the final sum, we have:
qØ

sN =1
TsN−1,sN

TsN ,s1 = T 2
sN−1,s1 (1.21)

we can iterate, obtaining:

Z =
qØ

s1=1
TNs1,s1 = Tr( âTN) = λN1 + λN2 + λN3 + · · · + λNq (1.22)

where λi is the ith eigenvalue of the transfer matrix. The invariance property of
the trace has been used in the last step.

Now we can calculate the free energy density:

f = lim
N→∞

F
N

= lim
N→∞

− 1
N
kBT ln

1
λN1 + λN2 + λN3 + · · · + λNq

2
= lim

N→∞
− 1
N
kBT ln

è
λNmax

1
( λ1

λmax
)N + ( λ2

λmax
)N + · · · + ( λq

λmax
)N

2é
= lim

N→∞
− 1
N
kBT ln

1
λNmax

2
− 1
N
kBT ln

è
( λ1

λmax
)N + ( λ2

λmax
)N + ..+ ( λq

λmax
)N) + 1

é
Ä lim

N→∞
− 1
N
kBT ln

1
λNmax

2
Ä −kBT ln

1
λmax

2

since lim
N→∞

1 λi
λmax

2N
→ 0 ∀i ∈ {1, . . . , q} excluding λmax of course. Thus, the free

energy density in the thermodynamic limit is:

f = −kBT ln
1
λmax

2
(1.23)

To go on we need only to calculate the eigenvalues of the matrix âUq×q since the
eigenvalues of the identity matrix are already known:

λmax = (eβJ − 1 + λmaxu ) (1.24)

To do so, let us consider: âUq×q · þv = λu · þv (1.25)

8
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
1 1 1 . . . 1
1 1 1 . . . 1
... ... ... . . . ...
1 1 1 ... 1





v1
v2
...
...
...
vq


= λu



v1
v2
...
...
...
vq



where v =
1
v1; v2; ... vq

2T
is a generic eigenvector of the âUq×q matrix. Since

the matrix has rank 1, being all rows (columns) linearly dependent, we have that
there are q − 1 degenerate eigenvalues equal to 0. Just one eigenvalue is different
from 0.

This, is easily found: consider v =
1
1; 1; ... 1

2T
We have clearly that:


1 1 1 . . . 1
1 1 1 . . . 1
... ... ... . . . ...
1 1 1 ... 1





1
1
...
...
...
1


= λu



1
1
...
...
...
1


The associated linear system is12:

qØ
i=1

1 = λu1

→ q = λu

(1.26)

Since we are looking for λmax we take only λmaxu which is clearly equal to q. The
maximum eigenvalue of the complete âT matrix is:

λmax = eβJ − 1 + q (1.27)

At the end we can write free energy density:

f = −kBT ln(q + eβJ − 1) (1.28)

Which is exactly the same of the free energy density calculated in the open
boundary conditions case, demonstrating that in 1d and in the thermodynamic limit
these two kinds of boundary conditions give the same solution of the model.

12We have the same linear system for each raw of the matrix.
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Chapter 2

Phase transitions and out of
equilibrium Potts model

2.1 Phase transitions: few concepts
Phase transitions are crucial and ubiquitous in the world of statistical physics. They
are collective phenomena in which interactions among particles are essential. To
describe phase transition in an actual thermodynamic system, we need to involve a
huge number1 of particles. For this reason, they are described by the branch of
physics called Statistical physics who deals with large particle interacting systems
and whose basic principles are stated in [13, Chapter 3], for example. For our
purposes, we are going to use some ensemble physics concepts and, in particular,
the canonical ensemble.

With the tools given by this kind of physics, we can study phenomena rang-
ing from the "simple" gas-liquid transition to the Bose Einstein condensation in
ultra-cold atoms [14, Chapter 12] but also percolation [15] and paramagnetic-
ferromagnetic phase transition [14, chapter 14] which is extremely important in this
thesis. These phase transitions happen when, modifying a control parameter2, a
phase becomes unstable (in the given thermodynamic conditions) and we observe a
sharp change of some order parameter at a certain critical point or line. This order
parameter describes and characterizes the features of the phases3. During a certain

1Infinite in the thermodynamic limit.
2Parameter to be varied to move from one phase to the others i.e. temperature, magnetic

field, occupation probability and so on...
3Important observables i.e. magnetization, mass density, probability to be in a percolating

cluster etc...

10



Phase transitions and out of equilibrium Potts model

transient a phase is gradually transforming into another one. For temperature
activated phase transitions4, the order parameter has a vanishing thermal average5

on one side of the critical point and a non vanishing one on the other. Greater
is the value of such thermal average deeper we are in that phase. It follows an
example of phase diagrams6 showing the two kinds of phase transition cited before:

(a) Discontinuity of the mass density (order pa-
rameter) during a FOT.

(b) Cusp of the magnetization density (order
parameter) during a SOT .

Figure 2.1: Phase diagram for the liquid-gas FOT and for the ferromagnetic-
paramagnetic SOT in the Ising model.

4Thermal phase transitions.
5Statistical average w.r.t. the pdf which defines the ensemble.
6Control parameter on the x vs. order parameter on the y.
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Phase transitions and out of equilibrium Potts model

PT s are found mathematically in the thermodynamic limit, namely infinite
volume and infinite number of particles or spins: V → ∞, N → ∞ with V

N
= O(1)

(the same reasoning holds for all the intensive quantities e.g. density of energy,
density of magnetization...).

At the critical point, due to the thermodynamic limit, the thermodynamic
potentials, (e.g the free energy density) which are derivatives of the partition
function7 Z, are non-analytic. In particular, for a 1st order phase transition the
first derivative of the chosen thermodynamic potential is non-analytic while for a
2nd order transition the second derivative of the thermodynamic potential (also
called response function) is non-analytic. It can be shown that these derivatives
are strictly related to the order parameter which indeed changes abruptly.

We can also notice a particular feature of the order parameter : it is related to
the symmetry of the Hamiltonian, that is spontaneously broken during the PT 8.

For example, the O(1) symmetry (spin-up, spin-down symmetry) broken in the
ferromagnetic-paramagnetic transition, happening in the Ising model defined on a
2d square lattice with N spins and nearest neighbours ferromagnetic coupling. Let
us use this model to deepen some features of the PT phenomenon:

Hext
Ising({si}) = −J

Ø
<i,j>

si · sj − h
NØ
i=1

si (2.1)

In this model we see a 1st order phase transition w.r.t the control parameter h
and a 2nd order phase transition w.r.t the control parameter T (β).

To see mathematically the PT 9, in the Ising model, a magnetic pinning field10

h is needed. Indeed, it is required something to model the spontaneous breaking
[16] of the O(1) symmetry of the Hamiltonian: HIsing({si}) = HIsing({−si}). This
SSB drives the system to the selection of one of the two possible ground states:

• Ordered state with all the spins up.

• Ordered state with all the spins down.

7Depending on the chosen ensemble the partition function has different formulation i.e., in
the canonical ensemble, the sum of the Boltzmann weights: e−βH({si}) of each possible spin
configuration.

8For transition with SSB.
9Experimentally a transition between the two phases is observed. Of course, experimental

physicists do not see the singularity of the measured order parameter, since the thermodynamic
limit is not applicable in laboratory. Anyway, even if they deal with a finite number of elementary
elements, the theoretical description is perfectly coherent with experiments.

10It models a small residual magnetic field not detectable by instruments and normally present
during the experiments.
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Phase transitions and out of equilibrium Potts model

Without this mathematical trick, we would have a vanishing order parameter in
the ordered phase too. We sent h to zero after the thermodynamic limit to come
back to the Ising model without external field: For this model, the magnetization
density m =< si > is the order parameter.

lim
h→0

lim
N→∞

< si >h= m /= 0 in the ordered phase.

Calling the Boltzmann factor β:

β = 1
kBT

(2.2)

we have that the magnetization density is computed as following:

m = 1
N

NØ
i=1

si = 1
βN

∂ln(Z)
∂h

= − 1
N

∂F
∂h

(2.3)

with:

Z =
Ø
{si}

e−βHext
Ising({si}) (2.4)

the partition function in the canonical ensemble and:

F = − 1
β
ln(Z) (2.5)

the Helmholtz free energy11.
We know that, on the right of the critical point, the configuration is completely

disordered and the order parameter is vanishing due to the O(1) symmetry:
< si >= 0. There is, on average, the same number of spin up and down. Below Tc,
instead, the configuration is ordered and the magnetization is no more vanishing
even if there is not a magnetic field which selects one of the two possible ground
states: < si >/= 0, the O(1) has been broken: spontaneous symmetry breaking12

[16].

11Notice that, the order parameter is the derivative of the Helmholtz free energy w.r.t. h. m(h)
as a jump, thus the transition is a discontinuos one.

12This does not happen in a FOT.
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Phase transitions and out of equilibrium Potts model

(a) Above Tc. (b) Below Tc.

Figure 2.2: Disordered and ordered configuration in the 2d ferromagnetic Ising
model with nearest neighbour interaction.
We used the Wolff algorithm [17] to obtain the equilibrium configuration.

We can deal, also, with phase transitions which manifest themselves without
order parameter. These kind of transitions are called topological phase transitions
and the most important example is the Berezinsky-Kosterlitz-Thouless transition
[16] [18, 19] [20, 21] in the 2d XY-model defined by:

HXY ({si}) = HXY ({θi}) = −J
Ø
<i,j>

si · sj = −J
Ø
<i,j>

cos(θi − θj)

where si lives on the unitary circle so si = (cos(θi), sin(θj)). In the XY-model the
appearance of spin-vortex excitations lead to the this particular phase transitions.

Another important kind of PT s are quantum phase transitions. These happen
at T = 0 and are due to quantum fluctuations. An interesting example is the
Sperfluid-Mott Insulator phase transition in the Bose-Hubbard model [22, 23]. The
model is defined by:

ĤBH =
Ú
dr3

è
− ~2

2mψ̂†∇2ψ̂ +W (r)ψ̂†ψ̂ + U0

2 (ψ̂†)2ψ̂2
é

where Uo is a constant energy, ψ̂† and ψ̂ are the quantum field operator which
create or annihilate a boson and W (r) is the harmonic plus the periodic confining
potential which traps the bosons in different wells.
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Phase transitions and out of equilibrium Potts model

2.1.1 Phase transitions in 2d Potts model
At Tc, in 2d, the Potts model has a paramagnetic-ferromagnetic phase transition
[1] which can be continuous or discontinuous depending on the parameter q: this
is fundamental for this thesis. For q ≤ 4 there is a 2nd order or continuous phase
transition. Instead, for q > 4 the transition is a 1st order or discontinuous one. An
important feature of 1st order phase transitions is that, at the critical point, the
two different phases involved coexist in the so called mixed phase region. From
the equilibrium statistical mechanics point of view, this means that the system
is composed by a certain fraction of one phase and a complementary fraction
of the other phase. Analyzing this phenomenon from the out of equilibrium13

point of view, instead, we can say that we have a dynamical equilibrium between
the two phases. This coexistence gives rise to an interesting phenomenon: the
metastability. One particularly meaningful example of this phenomenon is the
disordered metastable state found in the 2d ferromagnetic Potts model. Another
peculiarity of 1st order phase transitions is that, with the addiction of quenched
disordered the FOT becomes a 2nd order one [24]. Quenched disorder is that kind of
disorder given by the randomness of some quenched/frozen observable. Due to the
fact that they are frozen, these stochasticities, do not evolve with time. In the Potts
case we can introduce quenched disorder by means of the couplings Jij . Indeed, we
can sample them from a certain probability distribution function. There are, so,
random ferromagnetic or antiferromagnetic interactions for each spin couple14.

13Defined in sec.(2.2.1).
14Evidenced by the site dependence of the coupling strength: Jij .
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Phase transitions and out of equilibrium Potts model

2.2 A dynamical point of view

As said before, quenching the 2d ferromagnetic Potts model to a sub-critical
temperature, we made it undergoing a ferromagnetic-paramagnetic phase transition.
Let us simulate it: we start from a disordered configuration (T → ∞) and then we
update following the heat bath rules15 with the new temperature. Time after time,
we see gradually the appearance of some bigger and bigger clusters of spins with
the same colour until we reach the equilibrium configuration. That, is usually16,
made of big islands with flat and stable interfaces or, if the temperature is really
close to 0, a completely ordered state made of spins with the same colour. In
fig.(2.3) we show an example of evolution, by means of snapshots of the lattice at
the initial and final time.

(a) Initial disordered configuration after 10
Monte Carlo steps.

(b) Evolved configuration with cluster of aligned
spin and some flat interfaces after 3 ·106 Monte
Carlo steps.

Figure 2.3: Example of initial and final configuration for a Potts model with
q = 104, T = 0.98Tc and L = 1000.

This is a dynamical process. We study how the equilibrium is reached, passing
through the different dynamical behaviours17 of this model. To explore all of them,
T and q have to be varied. Understanding how these parameter influence the
dynamics is the central topic of this thesis.

15Defined in chapter 3.
16It depends on q and T/Tc and It will be formalized in the next chapters.
17Analyzed in details in the following paragraph.
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Phase transitions and out of equilibrium Potts model

2.2.1 Out of equilibrium Statistical Physics
Passing rapidly from T → ∞ to T < Tc means that the system undergoes a "shock"
and needs to stabilize. To do so, it reorganizes itself in order to minimize its
free energy in the new phase. Since the quench is very rapid, the system can
not equilibrate without exploring some out of equilibrium steady states18. This
kind of phenomena are studied by a branch of statistical mechanics called Out
of equilibrium statistical physics. There are different approaches to this kind of
physics, we will deepen the numerical one, which is crucial to our goal.

Monte Carlo-Markov chain approach

A Markov process is a, continuous or discrete, time dependent stochastic process.
For the sake of simplicity, let us introduce it in the discrete formulation. The
process is represented by a state variable:

xt where t ∈ {1, ...T} and xt ∈ Ω (2.6)

where Ω is the space of all the possible configuration that can be explored by
our stochastic process (i.e. Ω = 2N for the Ising model or Ω = qN for the Potts
model). The main feature that discriminates the Markov process from the other
stochastic processes, is the memorylessness or Markovianity i.e.

Pi,j = Pi→j = P(xt+1 = j|xt = i, xt−1 = it−1, ..., x0 = i0) = P(xt+1 = j|xt = i)
∀t, i, j, it−1, ..., i0 allowed

(2.7)

This means that the probability to change from the current state xt, to the
subsequent one in time xt+1, depends only on xt (i.e. on the current state). Notice,
also, that Pi,j is a pdf on j. The Pi,j probabilities can be grouped in a non negative
matrix âP whose rows sum up to one19.

âP =



P1,1 P1,2 P1,3 . . . P1,N
P2,1 P2,2 P2,3 . . . P2,N
P3,1 P3,2 P3,3 . . . P3,N
... ... ... . . . ...

PN,1 PN,2 PN,3 . . . PN,N

 (2.8)

18Doing a quasi-static transformation (i.e. changing very slowly the control parameter) the
system finds its final configuration going trough only equilibrium states and these phenomena
are usually analyzed by equilibrium statistical mechanics and thermodynamics. We are, instead,
doing a very rapid transformation, so out of equilibrium physics is needed.

19 âP is a stochastic matrix.
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Phase transitions and out of equilibrium Potts model

•Pi,j > 0 ∀i, j (2.9)

•
Ø
j

Pi,j = 1 ∀i (2.10)

For a spin model like the Potts one we call π(t) the time dependent20 configuration
probability.

At equilibrium, this is described by the ensemble physics:

πeq({si}) = 1
Z
e−βHP otts({si}) in the canonical ensemble. (2.11)

Markov chains are crucial in the building of Monte Carlo numerical methods.
In statistical physics, very few models are analytically solvable. The vast majority
of them are simulated, with extremely meaningful results. As the name could
suggest, these methods are strongly related to the use of pseudo-random number
and thus they are useful to sample pdf like the one defining the canonical ensemble,
being perfect for our aim. The Monte Carlo Markov chain samples the canonical
ensemple pdf by means of an ergodic21 random walk on the space of the possible
configuration reachable by the system. These kind of stochastic processes follow
some mathematical rules which characterize the dynamics and make the system
reach the, theoretically predicted, equilibrium configuration. The simplest way
to ensure convergence, of our numerical MCMC method with the equilibrium
Boltzmann distribution is defining the dynamical rules in a way to fulfill a particular
condition called detailed balance condition [25].

Detailed balance condition:

πeq({si})P{si}→{sÍ
i} = πeq({sÍ

i})P{sÍ
i}→{si} (2.12)

Where:

• {si} and {sÍ
i} are two spin configurations which have just one spin in a different

configuration.

• P{si}→{sÍ
i} is the transition probability to go from the configuration {si} to

{sÍ
i}.

20Time dependence because the dynamics will modify the set {si} at each update with i ∈
{1, . . . N} and si ∈ {1, . . . q} ∈ N.

21Each possible configuration will be explored by the walker.

18



Phase transitions and out of equilibrium Potts model

The Potts or the Ising model do not have a defined dynamics, so we need to
explicit it in a way to fulfil (2.12) (for simplicity) and ensure the reaching of the
right final state after the quench. We will use some microscopical rules which define
the so called Heat bath dynamics22 [26, 27] for the MCMC s. This inherits its name
from the fact that it simulates the dynamics of a system coupled with a source
of heath much bigger than the system itself: an heat reservoir. At each proper
time unit, a spin is randomly chosen and eventually modified. For a system with
N spins, one Monte Carlo step is made by N updates. Let us define rigorously the
heat bath rules:

1. Chose randomly and uniformly a spin k between the N available.

2. Regardless of its current value, choose a new values sk with a probability
proportional to the Boltzmann weight. The values are drawn from a so called
heat bath. We give the spin a value n lying between 1 and q with a probability

P{si}→{sÍ
i} = Pn(sk = n) = e−βEn

qq
m=1

e−βEm

(2.13)

Where:

• {sÍ
i} = {s1, .., sk = n, .., sN}, the transition probability depends only on

the state in which sk = n;
• En = HPotts({s1, .., sk = n, .., sN}) is the energy of the system if the kth

spin has the value n ∈ {1, .., q} ∈ N.

Notice that:

• The transition probabilities depends only on the final state.

• The algorithm is a single spin flip one. Indeed, at each update, only one spin
has been changed.

• The probabilities add up to one and so a spin is modified for each step, even
if it is possible to choose again the old colour23.

22With heat bath we avoid the problem of slowing down for large q found in the Metropolis
algorithm (which is one of the most common algorithms). Indeed, the heat bath algorithm does
not loose time looking for the right colour among the q ones. This, will be treated rigorously in
sec.(3.2).

23This corresponds to a "rejection" in Monte Carlo worlds. Though, this is incredibly improbable
in the large q case except for some particular situations in which we have ordered and stable
states.
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• This dynamic is a non conservative one. Indeed, modifying the colour of the
spins for each update, we necessarily modify the magnetization.

It can be proven that the heat bath dynamics fulfils the detailed balance condition
and this ensures the convergence of the numerical method to the right equilibrium
state.

• To move from a state in which sk = n to a state with sk = nÍ we have a
probability PnÍ(sk = nÍ).

• To move back to the state with sk = n we have a probability Pn(sk = n).

πeq({s1, .., sk = nÍ, .., sN})Pn(sk = n) = πeq({s1, .., sk = n, .., sN})PnÍ(sk = nÍ)
e−βEÍ

n

Z

e−βEn

qq
m=1

e−βEm

= e−βEn

Z

e−βEÍ
n

qq
m=1

e−βEm

(2.14)

Continuous time Monte Carlo methods

There is another important feature to be added to our algorithm to avoid that
the it gets too slow in some particular situations. We can, indeed, define the
Continuous time Monte Carlo method [28, 29, 30]. This is extremely helpful to
simulate systems at low temperatures. Indeed, once the system reaches one stable
configuration, and T is very close to 0, the algorithm will evolve very slowly due
to the fact that it rejects24 almost every proposed spin-change. This because for
T → 0 or β → ∞, the Boltzmann factor e−β → 0 and the algorithm, basically
wastes time doing nothing while it tries to choose randomly how to update the
configuration. After a large number of Monte Carlo steps the system could evolve,
but it is rapidly attracted back by the starting stable state, in which it falls again.
These states make the algorithm visit all the possible configuration of the system
in an extremely slow way. This dynamical behaviour, is of course reasonable for a
system cooled down to low temperatures. The important fact is that, simulating
this, we do not want to loose an incredibly large amount of computer time. To
makes things simpler and to speed up the algorithm, we can say that the system
is going to spend a certain time25 in the current stable state before moving to an
excited one, skip all the useless time-steps and move straight to the time in which
the excitation is reached. In this method, the time step changes depending on how
long we need to wait before the system moves to the next state.

24With the Heat bath algorithm this means choosing again a spin with the same colour.
25Sampling it from a suitable pdf.
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2.2.2 How to recognize the dynamical regimes: the grow-
ing length R(t)

A very important observable, that will help us in the purpose of understanding
the dynamics of this model, is the growing length26 R(t). This is, on average, the
linear typical size of a spin domain. We can measure it, in d dimensions, using
the energy. By construction the energy is associated to the total interface between
different clusters and the background.

This is done:

• Calling Ndiff the number of couple of neighbouring spins not aligned.

• Considering the fact that these are placed on the interfaces between the Ncluster

clusters of ordered phase and the "sea" made by the disordered phase.

We can say that:

Ndiff ∝ NclustersR(t)d−1 since the unaligned spins live on the clusters’surfaces

Nclusters ∝ N

R(t)d since there are N spins and a cluster has a tipical size of R(t)d

Ndiff ∝ N

R(t)

R(t) ∝ N

Ndiff

(2.15)

Now we can realate this with the quantity excess of energy:

Eexc = e(t; q, T/Tc) − e(t → ∞; q, T/Tc) ≥ 0 (2.16)

Where:

• e(t; q, T/Tc) = HPotts({s(t)
i })

N
is the density of eneregy related to the {si}

configuration at time t.

• e(t → ∞; q, T/Tc) = eeq(q, T/Tc) is the equilibrium energy per spin.

Eexc is proportional to the surface tension created by the clusters interfaces
which is proportional to Ndiff which is, in turn, proportional to R(t)−1 and thus:

R(t) ∝ E−1
exc (2.17)

26Time is measured in Monte Carlo steps units and we imply the q and T/Tc parametric
dependence of R(t; q, T/Tc).
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Normalizing (the excess energy) we can write the definition of the growing
length27:

R(t) = e(t → ∞; q, T/Tc)
e(t → ∞; q, T/Tc) − e(t; q, T/Tc)

(2.18)

For this kind of quenches, on the square lattice, we have that28 :

e(t → ∞; q, T/Tc) Ä −2, ordered phase.
e(t = 0; q, T/Tc) = 0, completely disordered phase.

(2.19)

Measuring R(t) we can understand which dynamical regimes are explored by the
system. This very is useful for us to know when we are in the disordered metastable
state and for how long the system is stuck there. Indeed in this regime we have
straightforwardly that:

R(t) Ä 1 (2.20)

since in the disordered state e(tdisordered; q, T/Tc) Ä 0
It is also known that the coarsening regime29 [31, 32] is characterized by:

R(t) ∼ t1/2 (2.21)

The nucleation phenomenon30 [33] is instead depicted by a rapid increase of R(t).

When R(t) is constant, but different from 1, for relatively long times, the system is
trapped in a blocked state31 [34].

The ordered phase, instead, is found when the linear size of the lattice is reached
by R(t).

In fig.(2.4), we can clearly see the main dynamical regimes. A metastable state
survives until t Ä 100. At this time there is a rapid jump of R(t) form 0 to a value
close to 20. This is the witness of the nucleation regime. The coarsening regime
appears after nucleation and brings the system to a quite ordered configuration.
At t Ä 106 the system is found in a blocked-striped32 state.

27R(t) is meaningful until it is ≤ L. So, it is bounded by 0 and L, R(t) ∈ {0, L}.
28We put J = 1.
29See paragraph 2.3.3.
30See paragraph 2.3.2.
31See paragraph 2.3.4.
32A striped state is a kind of blocked state. Its name derives from the particular striped geometry

of the lattice.
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Figure 2.4: Example of R(t) for the Potts model defined on a square lattice:
q = 104, L = 1000 with snapshot of the lattice to characterize the different regimes.
The dotted line is t1/2.

The growing length is also useful in the case in which q = 2 for the geometrical
analysis of spin-cluster at very low temperatures. Indeed it is possible to find, with
finite probability some particularly interesting striped33 states which eventually
percolate [35].

2.3 Dynamical regimes
Before entering into details of the analysis of the dynamics let us give a small
definition and description of the dynamical regimes.

33This name follows from the striped geometry of the clusters.

23



Phase transitions and out of equilibrium Potts model

2.3.1 Metastable regime

Again, since we are considering two different phases separated from a FOT we
know, that there will be a mixed phase region in the vicinity of Tc. This coexistence
of ordered and disordered phase close to the critical point gives rise to metastability.
Indeed quenching from high to low T (and conversely from low to high T)34 we
clearly see that a disordered state (ordered for the upper quench) survives for long
times35. An example of metastable regime is showed in the following figure, by
means of the plot of R(t) vs. t for q = 104, L = 103 and different temperatures.

Figure 2.5: Generic disordered metastable state and R(t) vs. t for q = 104 with
L = 103 at different temperatures given in the key.

To describe properly this phenomenon, it is very helpful to use the Gibbs-Dhuem
criterion [36, Chapter 1] . Let us analyze this in general. To be in an equilibrium
configuration it must hold that36:

Gibbs-Dhuem criterion:

∆U +W − T∆S ≥ 0 (2.22)

34High to low T → lower quench. Low to high T → upper quench.
35In particular cases, it can happen that this state will never be escaped.
36U is the internal energy of the system, W is the work, S is the entropy.
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where ∆ represents a variation of some thermodynamic quantities from the equi-
librium state. Strictly speaking, this criterion is related to the fact that given a
thermodynamic potential, suitable for the description of the phase transition, we
have a stable configuration when this is minimum. The Helmholtz free energy for
example:

F = U − TS (2.23)

is minimized at finite temperature maximizing the entropy and minimizing the
internal energy. The minimum of the free energy, must be so for all the infinitesimal
variation of each phase space variable. Let us write ∆F in series of infinitesimal
variations, near an equilibrium point:

∆F = δF + 1
2δ

2F + 1
3!δ

3F + 1
4!δ

4F + ... (2.24)

To be in the equilibrium configuration the condition:

δF = 0 (2.25)

is needed.
If in addition we have:

δ2F , δ3F , δ4F , ... > 0 (2.26)

the equilibrium is stable i.e. we are in the absolute minimum of the free energy. If,
instead, we have that:

δ2F > 0 but δ3F , δ4F ... < 0 (2.27)

the equilibrium is said to be metastable. This means that we are in a relative
minimum and the absolute one could be reached with some thermal perturbation.
A certain barrier must be stepped over to reach the stable equilibrium configuration
and this can take extremely long times37.

If:
δ2F < 0 (2.28)

the equilibrium is said to be unstable i.e. we are in a maximum of the free energy
and a very small perturbation can make the system collapse in a more stable state.

37Maybe infinite.
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Figure 2.6: Metastable, stable, unstable equilibrium. Taken from [37].

The condition δ2F = 0 defines the spinodal curve. This curve tells us a
particularly important information. Indeed, if we have a system prepared in
an equilibrium state, which lies on the spinodal curve, and we apply to it a
thermodynamic transformation, this, will pass from metastability to instability and
we notice the emergence of a phase transition. For this reason, the spinodal curve
gives the "metastability limit of the equilibrium" [36, Chapter 1].
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2.3.2 Nucleation regime
The nucleation phenomenon is crucial in the description of the 1st order phase
transitions. Indeed, it is one of the mechanisms useful to escape from the metastable
state and reach eventually the equilibrium.

It consists of the emergence of some nuclei38 of the new phase in the old one.
These nuclei can shrink and disappear soon or, if some critical radius has been
reached, grow and fill the "ocean" of the old phase with the new one. For the Potts
model we have a multi-nucleation [33] phenomenon: indeed, we can clearly see the
appearance of more than one phase, each one associated with one colour, as shown
in fig.(2.8).

(a) t=10 (b) t=150

(c) t=200 (d) t=250

Figure 2.7: Potts model with q = 104, T = 0.85Tc, L = 1000.

From fig.(2.8), where we show R(t) vs. t, we can see that the nucleation

38Thanks to some thermal fluctuation, for example.
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phenomenon starts around t = 100 and indeed, we have the appearance of the
nuclei, evident in fig.(2.7-b).

Figure 2.8: R(t) vs. t at T = 0.85Tc for a Potts model with q = 104 and L = 103.

The critical radius is the one related to the droplet of the new phase who makes
the system more stable (i.e. minimize the energy). In particular, some volume vs
surface considerations have to be done to understand this mechanism. Indeed, let
us say that we have the appearance of some droplets of ordered phase (all spin
with the same colour) in the disordered configuration. These droplets excitations
are favoured by the fact that the internal energy contribute lowers the total energy
(volume contribute) but, between the droplets and the old phase, there are interfaces
which are disadvantaged energetically (surface contribute). So, the competition
between surface and volume contributes makes the nuclei shrink or grow and lets,
eventually, the system escape from the metastability.

Let us deepen this argument in d dimensions, for a general lattice model with
spins si. To do so we need some concepts about field theories.

Statistical field theory: few concepts

If we are not interested in the single micro-state but we need to study in a broadest
way the phenomenology of the model, then we can change approach and gain some
meaningful insights.

We are interested in studying the PT, thus, we concentrate on the description
of the system close to the critical point.

A very important variable, for our aim, is the correlation length ξ [38, Chapter 31],
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[39]. This, is the typical length scale over which the correlation function39

C(r) =< sisj > − < si >< sj > (2.29)

is different from zero40.
Close to the critical point the correlation length ξ, is huge41: in particular

ξ >> a, where a is the lattice spacing.
During a PT there are fluctuations of thermal quantities at each scale. This

is due to the fact that the system is made of parts completely correlated at each
length scale. This evidences a statistical fractal nature. The fact that close to
criticality ξ >> a makes possible to develop the following approach: indeed let us
divide the lattice into boxes of linear size λ such that:

a << λ << L (2.30)

and let us take the spatial average of observables defined on our lattice (e.g. the
magnetization). These boxes are centred in some points x at which we associate
the value of the average operation. So, at each x point there is a value of the new
continuous order parameter which, by construction, is a smooth field φ(x). Indeed,
choosing a << λ << L in a region in which ξ is big enough is sufficient to ensure
the smoothness property of φ(x).

This operation is called coarse graining. With this approach we obtain informa-
tions about the system not from a microscopical point of view but from a coarser
one.

Doing this, we have built a formulation of the statistical physics, close to the
critical point, in which the order parameter is a continuous field with values on
each point x. We gain a continuous description of the lattice model: Statistical
field theory. With this approach phase transitions, can be studied using some well
developed QFT tools like the Feynman Diagrams.

Within this formulation, to analyze the nucleation phenomenon, we can use the
Ginzburg-Landau potential. It has the following features:

• It is minimum at the thermodynamic equilibrium.

39The correlation function depends on r which is the cartesian distance between the i-th and
the j-th spins.

40In other worlds, is the length scale, characterizing the system, over which thermal fluctuations
of the spin variables are correlated.

41Diverges exactly at the critical point in the thermodynamic limit for a SOT. Instead, on a
finite lattice of linear size L, ξ ∼ L at Tc.
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• Close to the transition it is assumed to be expandable analytically in power of
the order parameter with temperature dependent coefficients42.

The Ginzburg-Landau theory is a mean field one so it is approximated. The mean
field approximation is obtained by neglecting terms of second order in fluctuations
of the spin variables. For example for the Ising model:

sisj = (si− < si >)(sj− < sj >)+ < si > sj+ < sj > si− < si >< sj >

Ä< si > sj+ < sj > si− < si >< sj >

= m(si + sj) −m2
(2.31)

and thus neglecting the constants we have:

HIsing = −4Jm
Ø
i

si (2.32)

which is, actually, an Hamiltonian describing an interaction between each spin and
the effective field −4Jm.

Now let us come back to a general formulation. Let φ(x) be the coarse-grained
order parameter for our lattice model:

φ(x) = 1
λd

Ø
i∈λ(x)

si (2.33)

Where λd is the hypercube centered in x.
And let F[φ(x)] be the Ginzburg Landau free energy43:

F[φ(x)] Ä
Ú
ddx

1
2r(T )φ2(x) + 1

2c(T )(∇φ(x))2 + φ4(x) (2.34)

r(T ) and c(T ) characterize the model. They are theoretically unknown and ap-
proximated by means of an expansion with experimental coefficients.

Thanks to equation (2.34 ), we are ready to develop the classical nucleation
theory (CNT).

Classical theory of nucleation

Let us say that we are in state A of the free energy plotted in fig.(2.7): a metastable
state. We want to analyze with the CNT formalism how and if this state is escaped.

42This is a wrong assumption so the Landau approximation is not completely exact but for the
sake of describing the PT s this is sufficiently adequate.

43Ä because is a truncated expansion.
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As said in the previous paragraph, the metastable state is in thermodynamic
equilibrium. This, is true, until a big enough thermal fluctuation drives the system
out of the potential well. At this point, the system becomes "aware" of the existence
of a state with lower energy and the escaping process starts. To describe this
process, with the CNT, some assumptions have to be done:

1. The fluctuations that make possible to abandon the metastable state have to
be considered as equilibrium fluctuations close to the local minimum of the
free energy44.

2. The droplets of the new phase are considered isolated and non-interacting,
thus, we can treat them as fluctuations around the metastable equilibrium.

3. The droplets are compact and this means that their volume V scale as the
linear size elevated to the spatial dimension:

V ∼ Ld (2.35)

4. There is a surface tension, σ, between the new and the old phase. This does
not feel the influence of the final temperature of the quench.

5. The free energy density of the bulk of the droplets is the one of the stable
phase.

With these we can calculate the free energy difference between the metastable
state and the one with nucleating droplets:

∆F = −|∆f |rd + σrd−1 (2.36)

Where σ is the surface tension, r is the droplet radius and ∆f is the difference of
the interior45 free energy density between the metastable and the droplet state.

Again we notice that there is a competition between surface and volume contri-
bution:

• The bulk term, proportional to the droplet volume, favourites the nucleation.

• The surface term, describing the interfaces between the new and the old phase,
makes the droplet creation disadvantageous.

44This is correct if the state is escaped after a certain time needed to reach some metastable
equilibrium.

45Inside the droplet.
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∆F change sign at the critical radius, indeed after rc the nucleation process is
favourable energetically:

rc = d− 1
d

σ

∆f (2.37)

and
∆Fc ∝ σ

∆fd−1 (2.38)

is the free energy cost needed to create a critical droplet. This, has r = rc and
has the same probability to grow and to shrink. Droplets with r > rc will grow
and help the system to escape from the metastable state while droplets with r < rc
will shrink and the system remains stuck.

The probability to find a droplet with r = rc is proportional to the inverse of
the time spent in the metastable state:

Pc ∝ τ−1 = exp(β∆Fc) (2.39)

This holds as long as the droplets are non interacting which, unluckily, is not
always true. In that case, there are more refined methods like the Becker-Doring
theory [40] that describe properly the situation.
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2.3.3 Coarsening regime
Another fundamental dynamical regime, for the Phase ordering kinetics theory of
spin system, is the coarsening one [31, 32]. In general, the class of phenomena in
which there is a driven growth process of a new phase inside the old one are called
coarsening phenomena. In the Potts case, coarsening is determined by a surface
tension mechanism. When a subcritical quench has been done, the system is forced
to start ordering46. When we have coarsening, the interior part of the new domains
is thermodynamically at equilibrium. The dynamical game is all played by the
interfaces between new and old phase. These are not always stable, indeed for a
spin system we have that47:

• An interface is stable if is flat.

• An interface is unstable if a curvature is present.

The following figure, by means of a snapshot of the lattice, shows an example of
flat and curve interfaces.

Figure 2.9: Example of flat and curve interfaces.

There will be a curvature driven process who leads to the "ordering" of some
paramagnetic phase and stabilization of the system. During this process, R(t)
grows until it becomes as big as the lattice side L. R(t) Ä L is the witness of the
fact that the system has reached the equilibrium.

46If it is not stuck in metastable states.
47In the next chapters this will be explained properly.
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(a) t=575 (b) t=1500

(c) t=235000 (d) t=1250000

(e) t=1570000 (f) t=2210000

Figure 2.10: Coarsening of domains for a Potts model with q = 103, T = 0.80Tc,
L = 1000.
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Fig.(2.10-a), fig.(2.10-b), fig.(2.10-c), fig.(2.10-d) corresponds to the coarsening
regime, as showed by the following figure.

Figure 2.11: R(t) vs. t at T = 0.80Tc for a Potts model with q = 103 and
L = 1000.
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Dynamical scaling hypothesis

In the studying of coarsening dynamics, an important hypothesis has to be done.
This is called Dynamical scaling hypothesis and it states that:

"A long time after the quench, if we study the system properties in the scaling
limit48 r >> ξ, these can be described by an unique proper length scale: R(t)".

R(t) is universal in this regime and follows an algebraic law in t: R(t) ∼ t1/zd ,
where zd is called dynamical exponent and characterize the kind of dynamics49 [41].
[32]. The exponent is universal and thus, independent of the parameters defining
the model, which enter all in a prefactor. Also, measuring distances in R(t) units,
we notice that the structures of spin clusters are statistically equivalent at different
times. This holds if R(t) is smaller than the linear size L and, above all, for R(t)
much greater than the lattice spacing a:

R(t) << L (2.40)

R(t) >> a (2.41)

The growing length can be measured numerically50 or analytically. For spins system
like Ising or Potts and non conservative dynamics51 we have that:

R(t; q, T/Tc) Ä [aq(T/Tc)t]1/2 (2.42)

Where aq(T/Tc) is the prefactor in the Potts model case. To make the notation not
too heavy we imply the q, T/Tc dependence of the growing length, saying simply
that: R(t) ∼ t1/2, in this regime.

48r is a generic distance and ξ is the correlation length.
49e.g. zd = 1/3 for the Ising model with conservative Kawasaki dynamics
50By means of the relation with the interfaces energy (surface tension) for example
51A group of dynamics, like the Glauber [35] one, in which the order parameter is not conserved
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2.3.4 Blocked states regime

Blocked states are really important for the study of the dynamics of the Potts
model [42]. These states are highly symmetric ones corresponding to a relative
minimum of the free energy. Of course, they "block" the dynamics and make the
relaxation towards the ground state slower. These kinds of states are strictly related
to flat interfaces, T-junctions52 [34] and corners. Indeed when the system is in such
configurations, the dynamics is slowed down because the spins on the flat part of
the interface, on the corners or in T-junctions are aligned with the majority of their
nearest neighbours. This is favourable energetically53. Thus, a rather big amount
of time will be needed in order to find the right thermal fluctuation and manage to
escape from one of these states. To recognize a blocked state, again, we use the
growing length R(t). Indeed when R(t) remains constant54 for a wide amount of
time we are in a blocked state. Such situation is shown in fig.(2.13) for q = 104,
L = 103 and T = 0.4Tc.

Figure 2.12: R(t) vs. t at T = 0.4Tc for a Potts model with q = 104 and L=1000.

52They are called in this way because the interfaces of 3 different rectangle shaped spin clusters
form a "T".

53This will be explained rigorously in the next sec.(3.2) and sec.(3.5).
54Different from 1 or L which are related to other kinds of states.
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Fig.(2.13) shows an example of blocked state configuration using snapshot. In
particular, it is evident, by the magnified lattice, the presence of particular kinds
of interfaces: T-junctions, flat interfaces and corners.

(a) Blocked state at R(t) = 3.7 (b) Blocked state at R(t) = 3.7; zoomed in-
deed we can see only a 100 × 100 section of
the lattice.

(c) Blocked state at R(t) = 3.7; zoomed in-
deed we can see only a 10 × 10 section of the
lattice.

Figure 2.13: Snapshots of the lattice to see a blocked state for the Potts model at T = 0.40Tc
with q = 104, L = 1000. The last two figures have been zoomed to see better the interfaces. In
fig.(c), the presence of T-junctions, flat interfaces and corners it is evident.
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In fig.(2.14), another kind of blocked state is showed. This, is found at late
time after nucleation and coarsening. For this reason, some relatively big domains
appear and this, results in blocked states slightly different from the ones found at
early times. Indeed, in this case we do not have highly symmetric small domains
with flat interfaces, corner and T-junctions but relatively big ones.

(a) R(t) vs. t at T = 0.85Tc for a Potts model with q = 104 and L = 1000

(b) Blocked state for the Potts model with q = 104, T = 0.85Tc, L = 1000
at t = 1.5M .

Figure 2.14: Another kind of blocked-striped state.
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Chapter 3

Theoretical consideration
and numerical simulation of
the bidimensional large q
states Potts model

3.1 Introduction
The vast majority of the work about the dynamics of the Potts model after
subcritical quenches, focus on the ordering process. This, is developed in the
coarsening regime which leads the system to one of the q possible ground states.
The parameters, for the simulations of those works, are set in a way to avoid to
freeze in the long lived blocked and metastable states and to concentrate on the
ordering kinetics process [43], [42].

Our interest go further: we give the needed importance to the avoided regimes, in
order to try to give a complete scenario of the dynamics for this model. Indeed, we
want to deepen the freezing and metastability of the dynamics and also, understand
how and when there is the (eventual) crossover with the usual coarsening regime.

To do so, at first, we have characterized the complete dynamical behaviour of
the model after rapid quenches from T → ∞ to T < Tc. To pursuit our aim, many
simulations at fixed (large) q with a variable T/Tc and viceversa with fixed T/Tc
and varying the number of states q have been launched. Then, from the analysis
of the various R(t) obtained, we have chosen the "zone" to be better investigated.
This has been done setting, not only the parameters q and T/Tc, but also the
temporal length of the simulation and the times at which we take snapshots. For
example setting these parameters in a clever way we were able to take snapshots
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in the vicinity of the jumps of R(t) to see the appearance of nucleating domains.
Also, with other simulations and different settings we took some other snapshots in
the blocked state to analyze the geometrical properties of spin clusters and so on...

Some bounds, delimiting the temperature region in which the metastable state
are never escaped, have been found with a mixture of theoretical and numerical
methods. In particular we concentrate on the analysis of the heat bath transition
rules in some particular limits of the parameters q and T/Tc.

From the R(t) plots, we have noticed a particular feature of the dynamics.
Studying the growing length in the regime T/Tc < 1/2, with a critic eye and with
a smart rescaling of the times, we have found the main result of this work: a
universal behaviour of the dynamics, in q and T/Tc, associated to a blocked state.
Indeed, simulating Potts, for any q large enough (q ≥ 103) and for all the reduced
temperatures in this regime, we obtain the very same dynamical behaviour for each
one of them.

In the "work in progress" paper [2] the study of the dynamics has been done
also on honeycomb and triangular lattices in order to check if the universality of
the dynamics holds also on different lattice topologies1.

3.2 Heat bath dynamics for the Potts model
The Metropolis microscopic dynamics is usually used to simulate spin models. Let
us rapidly define it:

1. Call:
ei = HPotts({s1, ..., si, ...sN})

N
(3.1)

the density of energy related to a particular spin configuration {si}.

2. Chose at random a spin si between the N = L2 ones available.

3. Try to change the value of the selected spin choosing randomly between the
q − 1 left and calculate the new local energy eÍ

i

eÍ
i = HPotts({s1, ..., s

Í
i /= si, ...sN})

N
(3.2)

4. The move is accepted if the new local energy eÍ
i is lower than the old one ei:

eÍ
i < ei

1We found that the dynamics on the honeycomb and on the square lattices have the same
behaviour, while the triangular lattice develops different dynamical properties.
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5. Otherwise it is accepted with probability

PMetropolis ∝ e−β(eÍ
i−ei) (3.3)

This is very slow in the large q case. It happens that, at very low temperatures2,
the algorithm wastes time trying to choose randomly a new q value to update the
configuration. For these temperatures, indeed, the algorithm accepts basically only
configurations with lower energy wrt the starting one, all the others are rejected.
This happens because the Boltzmann factor is very small:

e−β(eÍ
i−ei) << 1 (3.4)

It is slow to find among the q >> 1 values the one which makes the energy decrease
and, consequently, the acceptance ratio is very close to 0 too. So, there are many
Monte Carlo steps in which basically the algorithm does nothing.

Luckily, another kind of microscopic dynamics is available. This speeds up the
algorithm and allows, also, a detailed analytical treatment: the heat bath dynamics
[26, 27]. Let us analyze, in details, this stochastic dynamics for the large q-Potts
model. We recall the algorithm, already written in chapter (2):

1. Pick a random spin sk uniformly between the N ones lying on the lattice.

2. Extract a new value n ∈ {1, ..., q}, for the kth spin, from the heat bath and
give it to this spin with a probability:

Pn(sk = n) = e−βen

qq
m=1

e−βem

= wk(sk = n)
qq

m=1
wk(sk = m)

(3.5)

which depends only on the target state.

We have used:

• en = HPotts({s1, s2, ..., sk = n, ..., sN})
N

= En
N

, the energy per spin if the kth
spin has value n i.e. sk = n with n ∈ {1, ..., q}.

• wk(sk = n) = e−βen , the weight associated to the chosen configuration.

•
qq

m=1
wk(sk = m), the normalization factor.

2Like the one we have used in the simulations.
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At this point, considering that our kth spin is surrounded by other 4 spins3, we
are ready to write a small example on how to calculate the transition probabilities
for the updates, as it was done recently in [44]. Let us say that our spin k has
value 1:

sk = 1

and its neighbouring spins are equal to:

snordk = 1
ssudk = 2
sestk = 1

sovestk = 3

Figure 3.1: Example of spins configuration.

To calculate the transition probabilities for the kth spin, the weights, written in
units in which J = 1, are very useful:

wk(sk) = exp (β
Ø

(i,j)∈N (k)
δsi,sj

)

where N (k) means that the sum is restricted to the neighbours of the kth spin.
wk(sk = 1) = e2β

wk(sk = 2) = eβ

wk(sk = 3) = eβ

wk(sk = j) = 1 with j ∈ {1, ..., q}\{1,2,3}, there is so a q − 3 degenerancy.

3In the chosen topology: square lattice with coordination number equal to 4.
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Thus, to obtain the transition probabilities for the central spin, we normalize the
weights and we get:

T1→1 = e2β

e2β + 2eβ + q − 3

T1→2 = eβ

e2β + 2eβ + q − 3

T1→3 = eβ

e2β + 2eβ + q − 3

T1→j = 1
e2β + 2eβ + q − 3

(3.6)

For all q ≥ 5 it is easy to enumerate all the local configurations4 and all the
update probabilities for the central spin. To do so, we count how many neighbouring
spins have the same value as the central one and we call this number n1. Then, we
call n2 the number of the most present spin value (different from the central one)
among the neighbours of the central spin, n3 the number of the 2nd most present
spin value (different from the central one) among the neighbours of the central spin,
and so on... It is easy to notice that there are only 12 local configurations5 [44]:

Figure 3.2: All the 12 possible local configurations, taken from [44].

4These are called vertex and are made of a central spin and its 4 nearest neighbours (in the
square lattice).

5Each one with its degenerancy.
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Here we list all the ni different form zero and all the reachable configurations,
starting from each kind of vertex:

(0) has n1 = 4 and can go in → (0); (7)
(1) has n1 = 3, n2 = 1 and can go in → (1); (4); (8)
(2) has n1 = 2, n2 = 2 and can go in → (2); (2); (9)
(3) has n1 = 2, n2 = 1, n3 = 1 and can go in → (3); (5); (10)
(4) has n1 = 1, n2 = 3 and can go in → (4); (1); (8)
(5) has n1 = 1, n2 = 2, n3 = 1 and can go in → (5); (3); (10)
(6) has n1 = 1, n2 = 1, n3 = 1, n4 = 1 and can go in → (6); (11)
(7) has n1 = 0, n2 = 4 and can go in → (4); (1); (8)
(8) has n1 = 0, n2 = 3, n3 = 1 and can go in → (8); (1); (4)
(9) has n1 = 0, n2 = 2, n3 = 2 and can go in → (9); (2)
(10) has n1 = 0, n2 = 2, n3 = 1, n4 = 1 and can go in → (10); (3); (5)
(11) has n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 1 and can go in → (11); (6)

• The (11) configuration is called sand and represents the disordered state

• the (0) configuration is the ordered state.

After this reasoning, we can use the fact that the (1) configuration (n1 =
3 and n2 = 1) is present in a flat interface.

Figure 3.3: Flat interface configuration, the spins with a yellow background
corresponds to a (1) vertex.

Indeed, we can understand how and why this particular geometry influences
the dynamics and justify the assumption done in the previous chapters. To do so,
let us calculate the transition probabilities from this configuration. With a single
spin flip, from (1), we can stay in (1) or we can go in (4) and in (8). We can, thus,
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write the configuration transition probabilities:

P1→1 = e3β

e3β + eβ + q − 2

P1→4 = eβ

e3β + eβ + q − 2

P1→8 = q − 2
e3β + eβ + q − 2

(3.7)

Now, let us consider the probability P1→4 (which is the probability to broke the
interface with a "tip") in the large q limit. Before doing this let us notice that in
this limit6:

lim
q>>1

eβ = lim
q>>1

e
1
T

= lim
q>>1

eβcTc/T

= lim
q>>1

e
Tc
T
ln(1+√

q)

= lim
q>>1

(1 + √
q)Tc/T

Ä q
Tc
2T

(3.8)

and thus:

lim
q>>1

P1→4 = lim
q>>1

eβ

e3β + eβ + q − 2

Ä q
Tc
2T

q
3Tc
2T + q

Tc
2T + q − 2

Ä 1
q

Tc
T + 1 + q1− Tc

2T

→ 0 ∀T ≤ Tc

6We put kB = 1.
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In the same way, the probability to remain in the (1) configuration, P1→1 in the
large q limit tends to:

lim
q>>1

P1→1 = lim
q>>1

e3β

e3β + eβ + q − 2

Ä q
3Tc
2T

q
3Tc
2T + q

Tc
2T + q − 2

Ä 1
1 + q− Tc

T + q1− 3Tc
2T

→ 1 ∀T ≤ Tc

For normalization, the probability7, P1→8 → 0 for q >> 1.
Resuming:

lim
q>>1

P1→1 Ä 1

lim
q>>1

P1→4 Ä 0

lim
q>>1

P1→8 Ä 0
(3.9)

In conclusion we can say that the "breaking-interfaces" updates are very improb-
able in the large q limit8!

7This is the probability to broke the interface with a tip creating an (8) vertex.
8Impossible for q infinite, of course.
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Now we list all the possible configuration transition probabilities:

P0→0 = e4β

e4β + q − 1 P0→7 = q − 1
e4β + q − 1

P1→1 = e3β

e3β + eβ + q − 2 P1→4 = eβ

e3β + eβ + q − 2 P1→8 = q − 2
e3β + eβ + q − 2

P2→2 = 2e2β

2e2β + q − 2 P2→9 = q − 2
2e2β + q − 2

P3→3 = e2β

e2β + 2eβ + q − 3 P3→5 = 2eβ
e2β + 2eβ + q − 3 P3→10 = q − 3

e2β + 2eβ + q − 3

P4→4 = eβ

eβ + e3β + q − 2 P4→1 = e3β

eβ + e3β + q − 2 P4→8 = q − 2
eβ + e3β + q − 2

P5→5 = 2eβ
2eβ + e2β + q − 3 P5→3 = e2β

2eβ + e2β + q − 3 P5→10 = q − 3
2e2β + e2β + q − 3

P6→6 = 4eβ
4eβ + q − 4 P6→11 = q − 4

4eβ + q − 4

P7→0 = e4β

e4β + q − 1 P7→7 = q − 1
e4β + q − 1

P8→8 = q − 2
e3β + eβ + q − 2 P8→1 = e3β

e3β + eβ + q − 2 P8→4 = eβ

e3β + eβ + q − 2

P9→9 = q − 2
2e2β + q − 2 P9→2 = 2e2β

2e2β + q − 2

P10→10 = q − 3
e2β + 2eβ + q − 3 P10→3 = e2β

e2β + 2eβ + q − 3 P10→5 = 2e2β

e2β + 2eβ + q − 3

P11→11 = q − 4
4eβ + q − 4 P11→6 = 4eβ

4eβ + q − 4

We can notice, that these probabilities are independent from the system size
L. Also, we can highlight the fact that basically Pi→j and Ta→b are the same. The
only difference, is the fact that Pi→j refers to the vertices configuration transitions
while Ta→b refers to the single central spin transition.
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Those probabilities become much more simple if we pass to the infinite q limit.
Indeed thanks to the fact that eβ Ä q

Tc
2T we have9:

P0→0 = 1 P0→7 = 0
P1→1 = 1 P1→4 = 0 P1→8 = 0
P2→2 = 1 P2→9 = 0
P3→3 = 1 P3→5 = 0 P3→10 = 0
P4→4 = 0 P4→1 = 1 P4→8 = 0
P5→5 = 0 P5→3 = 1 P5→10 = 0
P6→6 = 1; 4/5; 0 P6→11 = 0; 1/5; 1
P7→0 = 1 P7→7 = 0
P8→8 = 0 P8→1 = 1 P8→4 = 0
P9→9 = 0 P9→2 = 1
P10→10 = 0 P10→3 = 0 P10→5 = 1
P11→11 = 0; 1/5; 1 P11→6 = 1; 4/5; 0

The initial disordered state is made of only (11) vertices, which are stable for
T > Tc/2: P11→11 = 1 and P11→6 = 0. The system will, thus, remain disordered
forever in this limit. Instead, if T < Tc/2 the (11) states change with probability
P11→6 = 1 into a (6) ones. In this situation, it could happen that a spin, already
connected to another spin and forming a (6) state, becomes a (3) one. There
will need only few iterations to make the system made of only (0), (1), (2) and
(3) quasi-stable states. These, inherits this name because they evolve only if a
neighbour is flipped. The dynamics is similar for T = Tc/2 but a little bit slower.
Indeed a (6) state, which is "more ordered" than an (11), could become an (11)
with finite probability: P6→6 = 4/5 making the ordering process less efficient.

9When there are 3 values it means that the first value is referred to T < Tc/2, the second one
to T = Tc/2, the third one to Tc/2 < T < Tc. When there is only one value it means that it is
the same for each case.
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3.3 Characterization of the dynamics

Before concentrating in the metastable and blocked regimes, let us characterize in
general the dynamics of the Potts model, thanks to the analysis of R(t) vs. t as
could be seen from fig.(3.14). We analyze and plot the growing length for different
values of q (large but finite) and T/Tc, on a square lattice with side L = 1000. We
use the notion explained in chapter (2) to read the following plots:

• R(t) Ä 1 → disordered state.

• R(t) = R /= 1 for relatively long times → blocked state.

• R(t) Ä L → ordered state.

• R(t) ∼ t1/2 → coarsening regime.

• R(t) jumps abrubtly → nucleation regime.

(a) R(t) vs. t for q=100
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(b) R(t) vs. t for q=103

(c) R(t) vs. t for q=104
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(d) R(t) vs. t for q=106

(e) R(t) vs. t for q=109

Figure 3.4: R(t) vs. t for L = 103 at fixed (large) q increasing from top to bottom
at different reduced temperatures T/Tc, given in the keys, for the characterization
of the dynamics.
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From fig(3.4) we can say that for the Potts model defined on the square lattice
we have:

• For T/Tc ≤ 1/2 a blocked state with constant10 R(t) = R Ä 3.7. This state
is escaped after a time tb which becomes bigger as the ratio T/Tc becomes
smaller. Once escaped the system equilibrates by means of coarsening of
domains.

• For T/Tc > 1/2 there is a metastable state, with R(t) = R = 1, which is
escaped after a time te increasing with T/Tc. Later on when t > te there is
a rapid jump towards a value Rm which grows in a similar way as te. Then
R(t) grows slowly, for relatively small q, until the coarsening regime is finally
reached. For very big q there is a plateau which substitutes the slow growth
before the crossover with coarsening regime.

By now, we have noticed that the dynamics for this model can be divided into
two regimes: T ≤ Tc/2 and T > Tc/2. This is related to the fact that for subcritical
quenches the transition probability11 P11→6 in the infinite q limit is equal to 0 until
T = Tc/2 is reached. Here it has a jump to a value equal to 4/5 and then becomes
equal to 1 for T < Tc/2. For finite, but large q values12, the probabilities are very
close to the asymptotic ones. This is, of course, reflected in the R(t) behaviour
highlighting very different dynamical behaviours on the right and on the left of
Tc/2 in this case too. Since the (11) states are the most13 present in the starting
configuration [44] this phenomenon strongly influences the dynamics. A better
explanation can be found in sec.(3.4)

10This will be analyzed better in the section concerning the universality of the dynamics:
sec.(3.6).

11As could be seen in sec.(3.2).
12as the one we have used in these simulation
13Unique in the infinite q limit.
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3.4 Metastability and dynamics for T > Tc/2
with the heat bath rules

As stressed in the previous sections, the fact that there is a FOT between an
ordered and a disordered phase, at Tc, makes possible the existence of metastable
states. Indeed, due to this phenomenon, it is not ensured that starting from a
disordered configuration and quenching sub-critically we would see, after some short
or long transient, an ordered state. The same holds for the other kind of quenches
i.e. starting from an ordered configuration and driving the system abruptly to
supercritical temperatures. Again, in this case, the dynamics does not always bring
the system into a disordered final state because an ordered metastable state could
stop the disordering process.

This phenomenon seems to contradict thermodynamics and what we have
previously written about PT and Tc. Indeed, in thermodynamics it is found
analytically a Tc at which a transition happens leading the system to an uniform
ordered phase. This is not happening when the system falls in a metastable14 and
it is not able to escape it. When we add dynamics to our models15 we should be
careful about ergodicity. Indeed, equilibrium statistical physics is constructed on
the ergodic hypothesis:

< O >= 1
2τ

Ú t+τ

t−τ
dtÍO(tÍ) with t0 << τ << t (3.10)

Where O is a generic observable, < · > is the statistical average over ensambles,
t0 is the proper, microscopic time of the dynamics16, t is a time generic value and
τ is the time interval over which we average.

With dynamics we have a phenomenon called ergodicity breaking [16, 45]. Indeed,
the time interval τ , is big but is not infinite. So the statistical and time average
can not be equal. This, because the system does not have enough time to visit
all the possible available configuration. To obtain an equality we need to send τ
to infinity so the system manage to span all its phase-space. Another thing we
can do to not broke the ergodicity is that we have to average (statistically) only
on configurations that can explored by the system in that particular finite time
interval τ . It is easy to understand this, in the 2d-Ising case.

If we "prepare" an Ising configuration at equilibrium in its ground state we
notice that:

14Called also glassy state, even if there is not disorder in the model.
15Ising and Potts do not have a proper incorporate dynamics.
16i.e. the time needed to flip a spin.
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• Calculating the statistical average of the magnetization we obtain17 m = 0.

• Doing a temporal average, instead, we obtain mt = 1 or mt = −1 depending
on which ground the system is into.

This is because we have not given enough time to the system to experience a,
very unlikely but still possible complete spin flip.

Indeed, thermodynamics is obtained from Statistical physics doing the ergodic
limit (τ → ∞) before the thermodynamic one which is not done in our case [45].

3.4.1 Infinite q case
Let us explain what happens to the system in the limit in which q → ∞ for a
subcritical quench18. In this limit the critical temperature for the square lattice is:

Tc Ä 2J
ln(q)

This can be expressed also as19:

q1/2 Ä eJβc (3.11)

For these kinds of quenches the initial state is chosen to be a fully disordered
one. Since q → ∞ there are infinitely many colours, so, we can safely say that
each spin is chromatically different from any other one at t = 0. Given the Potts
Hamiltonian, is easy to notice that:

E(t = 0; q → ∞, T/Tc) = E = (tdisordered; q → ∞, T/Tc) = Edisordered = 0 (3.12)

This state is found with a probability:

Pdisordered = 1
Z
e−βEdisordered = 1

Z
(3.13)

When we bring the system out of equilibrium the heat bath dynamics starts its
work. One of the N available spins tries to align with one of its 4 neighbours and
with probability:

Pexcitation = 1
Z

e−βEexcitation

q
= 1
qZ

eβJ (3.14)

17Spin up and down are equiprobable and we sum over all the configurations.
18An analogous reasoning holds for the supercritical quench.
19We put kB = 1.
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it manages to do it20

To make the ordering phenomenon starts it must hold that:

Pexcitation
Pdisordered

≥ 1

eβJ

q
≥ 1

(3.15)

This implies:
eβJ ≥ q Ä e2βcJ (3.16)

where in the last step we have used the approximation of Tc in the infinite q limit.
This inequalities holds for:

β ≥ 2βc or T ≤ Tc/2 (3.17)

For subcritical quenches at T > Tc/2 and q → ∞ we can safely say that there
the disordered metastable state is never escaped and the system is frozen21.

Another way to see this aspect is considering the transition probabilities [44] in
the infinite q limit. Emphasizing again what it is written at the end of sec.(3.2),
we have that in the starting disordered configuration the vast majority22 of the
spins are in the (11) state. From the (11) state it is possible to stay in (11) or to
go into the (6) state with probability:

P11→6 = 4eβ
4eβ + q − 4

Ä 4qTc/2T

4qTc/2T + 1 for q → ∞

= 1
1 + 1

4q
1−Tc/(2T )

(3.18)

underlining again the important role played by Tc/2. We know that:

P11→6 = 1 at T < Tc/2; 4/5 at T = Tc/2; 0 at T > Tc/2

This means that with q → ∞:

20The excited state has energy Eexcitation = −J .
21In a subcritical quench the other bound is always given by T ≤ Tc.
22A more precise "count" is done in [44].
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• For T < Tc/2 the (11) state will for sure transform into a "more ordered" (6)
one and there is no metastability.

• For T = Tc/2 the (11) state will transform into a "more ordered" (6) one with
an high probability, thus the disordered metastable state can be escaped.

• For T > Tc/2 the (11) state will never transform into a "more ordered" (6)
one. The disordered metastable state is never escaped.

One important result of this work is that we have found a finite interval of
temperatures Tc/2 < T ≤ Tc in which for infinite q the model is always found in
the disordered metastable state.

3.4.2 Finite but large q case
For finite, but large23 enough, q the scenario is not so different [44]. Of course we
do not see the abrupt change of behaviour at T = Tc/2 and the system can be
found in an ordered state even after a quench at T > Tc/2. What is still true is the
fact that the metastable states can be found only in the region in which T > Tc/2.
For finite q and for subcritical quenches the metastable states are escaped, at a
q dependent time: te(q), up to a certain q dependent temperature Tm(q). For
quenches at T > Tm(q) it follows that te(q) → ∞ and the metastable state is never
escaped. It is convenient to parametrize te(q) in function of T/Tc:

te(q) = T/Tc (3.19)

Thus, for T/Tc > te(q) corresponds to the situation in which the system get rid
of metastability and does not manage to get to the ordered phase. For example

te(q = 103) Ä 0.98 [44], it means that:

• For T/Tc < 0.98 te is finite and the ordering dynamics can start for t > te;

• For T/Tc ≥ 0.98 the ordering dynamics is never activated and the system is
metastable forever.

It can be seen that, bigger is q smaller is the temperature ratio at which we observe
the metastability phenomenon forever. This ratio, would eventually reach 0.5 in
the infinite q limit [44]:

lim
q→∞

te(q) → 0.5 (3.20)

23q ≥ 103.
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Here, we show two examples of the evolution of the system by means of some
snapshot of the lattice. We are in the T > Tc/2 regime, after a subcritical quench.
Due to the finiteness of q and since T/Tc ≤ te(q) the system manages to escape
from a relatively long disordered metastable state, in both cases.

(a) Equilibration, from left to right the snap-
shot are taken at times: 7, 53, 100, 667,
1107, 15573, 97846, 1.05·106, 3 · 106.

(b) R(t) vs. t.

Figure 3.5: Snapshots of the lattice for T = 0.80Tc, q = 104 and L = 103 at
various times and R(t) vs. t to see the escaping from the metastable state.

(a) Equilibration, from left to right the snap-
shot are taken at times: 50, 400, 750, 900,
1250, 5500, 81500, 450·103, 3 · 106.

(b) R(t) vs. t.

Figure 3.6: Snapshots of the lattice for T = 0.80Tc, q = 106 and L = 103 at
various times and R(t) vs. t to see the escaping from the metastable state.
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3.4.3 More precise characterization of the dynamics in the
T > Tc/2 regime

Giving more details on what is already written in sec.(3.3) we can say that, the
dynamics in the T > Tc/2 regime is strongly characterized by the presence of a
metastable state.

This, for finite q, is escaped at a time te(q) which increases with q and with
T/Tc. At a particular temperature Tm(q) > Tc/2, which decreases with q and
reaches Tc/2 in the infinite q limit, the metastable state is never escaped since
te(q) → ∞. In the finite q case, we do not know if the metastable state will survive
the to thermodynamic limit N = L2 → ∞. From the simulations, a small lattice
size dependency is detected, but we still have to investigate this aspect.

For very big q, when t > te(q), R(t) jumps, thanks to the nucleation phenomenon,
on a plateau. The value of this plateau increases with q and T/Tc. The growing
length spends a certain time there before crossing over with the coarsening regime
characterized by R(t) ∼ t1/2. For relatively small q the behaviour of R(t) is the
same as the very big q case. The unique difference is that the plateau is substituted
by a slow growth which ends in the usual coarsening regime.

3.5 Equilibration for T ≤ Tc/2
After the reasoning about metastability, we know that in the T/Tc < 1/2 regime
the ordering process is not troubled by a disordered metastable state. Thus, an
ordering process will surely start. In any case, this does not ensure the reaching of
a uniform phase. Indeed, we should consider also the fact that dynamics can freeze
into blocked state with a particular shape.

3.5.1 Geometry of the clusters for infinite q
In this regime, each spin tries to align with one of its neighbours creating a bond.
After a certain number of Monte Carlo steps24 some spin creates one or more bonds
with some of its neighbours. At the next step these bounds can be broken if one of
the bonded spin changes its value to create a link with another of its neighbours in
order to have a more stable configuration (for example a configuration in which
it has two neighbours with the same colour rather than one). In this way, after a
certain time, the dynamics creates some spin clusters with a particular shape.

24For a lattice with N spins one Monte Carlo step corresponds to the N attempt of updating
the spins.
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Geometrically speaking, we can say that the spins living on the interfaces
between different clusters can be divided into two groups:

• The spins living on the flat part of the interface.

• The spins living on the corner between the interfaces.

We can notice that the "corner spins" have 2 neighbours with the same colour,
while the "flat" ones have 3 aligned neighbours. This simple argument, in addition
to what is written in sec.(3.2) about the stability of the flat interfaces explains why
we see in the snapshots clusters with a squared or rectangular geometry.

In particular, in the infinite q limit, the probabilities25 P1→1 and P2→2, i.e. the
probabilities to remain respectively in a flat and in a corner configuration, are equal
to 1. This means that these configurations are completely stable and the uniform
phase is never reached in this limit.

(a) L = 10, T < Tc/2 (b) L = 100, T < Tc/2

Figure 3.7: Snapshot of the lattice after equilibration with q → ∞ at T < Tc/2
with L = 10 for fig.(a) and at T < Tc/2 with L = 100 for fig.(b) to show the
squared/rectangular shaped clusters.

25See sec.(3.2).
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3.5.2 Dynamics at finite T ≤ Tc/2 with infinite q and at
finite q but zero temperature: the blocked states

From fig.(3.8), it can be easily extrapolated an important feature of the dynamics
of the Potts model.

1

2

3

4

5

6

7

8

100 101 102 103

Sq. Lat., QI, T< Tc/2
Sq. Lat., QI, T=Tc/2

Sq. Lat, Q=1000, T=0
Hon. Lat., QI, T< 2 Tc/3
Tri. Lat., Q=1000, T=0

Figure 3.8: R(t) vs. t in lattices with L = 103 to show the similitude between the
dynamics with infinite q and finite T ≤ Tc/2 and the dynamics with finite q and
zero temperature. R(t) is averaged over 10 samples. We plot also curves related to
the honeycomb and triangular lattices.

Indeed, the dynamics, with the heat bath microscopic rules, is characterized by
the fact that the simulations made with infinite q at finite temperature T ≤ Tc/2
result very similar to the ones done with finite (but large) q and zero temperature.
As could be seen in fig.(3.7), the dynamics of the Potts model with infinite q and
T ≤ Tc/2 is characterized by blocked states made of rectangular shaped clusters.
fig.(3.8) ensures that the very same blocked states are found simulating the model
at zero temperature with a large enough26 but finite q. These blocked states are
characterized by a constant growing length:

R(t) = Rb Ä 3.7 (3.21)

We can explain analytically, by means of the heat bath transition rules, why this
similitude appears. Indeed, it is easily noticeable the fact that the transition

26We observe that for q < 100 the two curves do not collapse on themselves anymore.
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probabilities in the infinite q limit written in sec.(3.2) do not change if we keep q
finite and we let β going to infinity (T going to 0). The only difference is that in
the zero temperature case, since q is finite, the initial configuration is not made of
only (11) state. This difference vanishes for q > 103, indeed, we see that only a
negligible fraction of the spins is in (i) /= (11), making the two dynamics extremely
similar.

Even if this go beyond the aim of this thesis, in fig.(3.8) we plot the behaviour
of the growing length in the honeycomb and triangular lattice too. We can notice
that in the honeycomb case, the dynamics is similar to the one found on a square
lattice. The only difference is that the plateau, at which R(t) remains constant, is
slightly bigger. Regarding the triangular lattice, instead, the dynamics is completely
different. Indeed, we do not observe the presence of a blocked state. We can claim
that this behaviour is linked with the coordination number of the lattices:

• nhoneycombc = 3

• ntriangularc = 6

This topic will be deepened in the "work in progress" paper [2].
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3.6 Dynamics in the T/Tc ≤ 1/2 regime: the uni-
versal behaviour

In this section we argue the existence of a very important feature of the dynamics of
the bidimensional Potts model with many states, q > 103, in the low temperature
regime T ≤ Tc/2. As always, the growing length R(t) is crucial to reach the goal
of the analysis. In the general characterization of the dynamics (sec.(3.3), fig.(3.4))
we have seen that the dynamics is characterized by blocked state at constant
R(t) = Rb Ä 3.7. The system is frozen in this state for a certain time tb as far
as the crossover with the coarsening regime is reached. This, happens when the
constant trend connects with the power law t1/2 [31]. The model remains frozen for
a time tb that increase as we decrease the ratio T/Tc. The reached blocked state
represents the physics at zero temperature with finite q or infinite q and finite
T , as explained in sec.(3.5.2). At this point, to better appreciate the dynamical
behaviour in this regime, the R(t) data, are plotted again versus a rescaled time:

t/ts(q, T/Tc) = aq(T/Tc)t (3.22)

Where aq(T/Tc) is the prefactor associated to the growing length. In particular, the
rescaling has been done using the time needed to reach the middle of the plateau
at R(t) Ä 3.7 at T = 0.6Tc as reference27:

ts(q, T/Tc = 0.6) = a−1
q (T/Tc = 0.6) (3.23)

In the following plots we give a new version of the R(t) vs. t plot:

R(aq(T/Tc)t) vs. aq(T/Tc)t or
R(t/ts(q, T/Tc)) vs. t/ts(q, T/Tc)

27The choice of this value has been done simply because after some trials it does the required
job.
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(a) R(t/tS) vs. t/ts for q=100

(b) R(t/tS) vs. t/ts for q=103

64



Theoretical consideration and numerical simulation of the bidimensional large q states Potts model

(c) R(t/tS) vs. t/ts for q=104

(d) R(t/tS) vs. t/ts for q=106
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(e) R(t/tS) vs. t/ts for q=109

Figure 3.9: R(t/tS) vs. t/ts for L = 103 at fixed (large) q, increasing from top
to bottom and specified in the caption. The different final temperatures of the
quenches are given in the keys. A dotted line in correspondence of the plateau has
been plotted in addition to the usual one representing t1/2.

From fig.(3.9) it is evident28 (and we stress it again) that, the division of the
dynamics into two region, one on the right and one on the left of Tc/2, is needed to
characterize in a meaningful way the dynamics. Indeed, on the left of Tc/2 we can
see how the curves collapse perfectly on themselves, evidencing the fact that the
dynamics is the same for each value of T in this range. In particular, after reaching
all the same plateau, the curves have an inflection point at the very same rescaled
time tb/ts(q, T/Tc) which connects the blocked state regime to the coarsening one.
This means that we can declare that the blocked state is escaped in a universal
way at the same rescaled time. To be precise, in the regime T ≤ Tc/2, with q large
enough, and after a short transient needed to reach the blocked state, we can claim
the existence of a particular function aq(T/Tc) such that29:

R(t;T/Tc, q) = f(aq(T/Tc)t) = f(t/ts(q, T/Tc)) (3.24)

28In particular for extremely large q values.
29Of course the time scale is arbitrary, since we have done a particular choice for the rescaling

of the times.
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with f(x) an universal function:

f(x) Ä

3.7, for x « 1
x1/2, for x » 1

(3.25)

To highlight the universal behaviour of the dynamics, we have simulated the
model at fixed T/Tc varying q. The following plots30 represent a rescaled version31

of R(t) vs. t at fixed T/Tc for different q values, given in the keys. Moreover the
following growing lengths have been averaged over 10 samples, thus we add error
bars to the plots:

Figure 3.10: T/Tc = 0.30

30In the usual temperatures regime, of course.
31The rescaling is done again using a generic value as reference in order to make the curve

collapse on themselves.
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(a) T/Tc = 0.40

(b) T/Tc = 0.50

Figure 3.11: R(t/ts) vs. t/ts, for L = 103 at fixed T/Tc equal to 0.30,0.40,0.50
(from top to bottom) for different q, averaged over 10 samples.

We see, again, the same dynamical behaviour, confirming our claim about
universality. From this plots we can see also the fact that the universality is no
more valid for value of R(t) greater than 102. This is explained by the fact that
after a long time, when R(t) is close to L and the equilibration is quite complete,
in some sample could happen that there are clusters which are completely stable.
This affects the average value of R(t), as showed in the figure, and justifies the
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deviation from the common behaviour.

A final plot, showing the behaviour both with fixed and large q varying T/Tc in
the usual regime and with fixed T/Tc ≤ 0.5 varying q (with q > 103) confirms in
an evident way our claim.

Figure 3.12: Universal behaviour for L = 103 both in q and T/Tc, the legend
gives information about the various values of q and T/Tc used in the simulations.

The only thing left to do, is to determine the parameter dependence of the
rescaling factor ts(q, T/Tc) = a−1

q (T/Tc). To do so, we need to introduce the
characteristic time:

tR(t)=R∗ time needed for the system to reach R(t) = R∗. (3.26)

We have computed this quantity for R∗ = 5,20,40,80 at fixed q = 102,103,104,105

in function of T/Tc, as can be seen in the following plots:
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(a) tR(t)=5 (b) tR(t)=20

(c) tR(t)=40 (d) tR(t)=80

Figure 3.13: tR(t)=R∗ vs. T/Tc for L = 103 at fixed q, given in the legend, averaged
over 10 samples.

From the figure, we can see that these characteristic times diverge for very low
reduced temperatures. The dotted line in the plots represents the best fit32 of this
time in the form33:

tR(t) = aeb(T/Tc)c + d (3.27)

where a, b, c, d are the parameters to be determined by the fitting. In each case
we found that c Ä −1. At this point, the fit has been done again. But now, we
insert c = −1 and we neglect d which is needed only for large T/Tc which are not
considered in this case:

tR(t) = aeb(Tc/T ) (3.28)

32Very good results are obtained for small T/Tc.
33We put J = 1.
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From this new fit we found that:

• bTc Ä 1 for each R∗

• a = 0.3 for R = 5

• a = 12 for R = 20

• a = 48 for R = 40

• a = 150 for R = 80

Thus, the functional form of the characteristic time becomes simply:

tR(t)=R∗ = ae1/T in units in which J = 1, kB = 1. (3.29)

We can also repeat the fitting operation keeping T/Tc fixed and considering the
characteristic time as a function of q:

Figure 3.14: tR(t)=5 vs. q−1 for L = 103 at T/Tc = 0.40 averaged over 10 samples.

For R∗ = 5 and T/Tc = 0.4 we found a power law behaviour with exponent 1.25:

tR(t)=R∗ Ä 0.3q1.25 (3.30)
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which is basically equal to what we have found for the other kind of fitting at
R∗ = 5 and T/Tc = 0.40, indeed:

0.3e1/T = 0.3eTc/Tβc

= 0.3eTc/(T log(1+√
q))

Ä 0.3qTc/2T in the large q limit.
= 0.3q1/0.8

= 0.3q1.25

(3.31)

To resume and to emphasize the main result of this work let us write, in a
compact way, how the dynamics behaves. We have found a universal behaviour of
the dynamics of the 2d-Potts model both in q and in T/Tc in the T ≤ Tc/2 regime
and for q ≥ 103:

• After a short transient the system falls into a blocked state with R(t) = Rb Ä
3.7.

• Then after a time aq(T/Tc)t = tb = e1/T this is escaped in a universal way.

• The equilibrium is reached by means of the usual coarsening regime, which
starts after the inflection point at tb = e1/T .

In formula, with the help of the universal function f(x), we have:

R(t;T/Tc, q) Ä f(e−1/T t) with f(x) Ä

3.7, for x « 1
x1/2, for x » 1

(3.32)
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3.7 Snapshots and geometrical properties of the
clusters

We show some snapshots of the system (fig.(3.15-3.17)) to underline the fact that,
at fixed R(t), the model exhibits very similar geometrical properties. We have
worked with L = 102 and q = 102,103,104. For each q value, we took a snapshot
when R(t) = 5,10,20,40,80 as it is shown in the figure (from left to right). From
top to bottom, instead, we have the snapshots at different temperatures. To be
more precise we add also two tables. The tab.(3.1) shows, for q = 102 and L = 102

(upper part) and q = 102 and L = 103 (lower part), the characteristic time related
to R(t) = 5 and also the number of clusters Ncl, the number of clusters in which
there is only a single spin N(1), the area of the largest cluster maxA, the number
of clusters containing more than 10 spins N(A > 10) and the number of colours
related to this characteristic time. The tab.(3.2) reports the same measurement
but for q = 104 and L = 102 (upper part) and q = 104 and L = 103 (lower part).

Figure 3.15: Snapshots with q = 100 and L = 102 at R(t) = 5,10,20,40,80 from
left to right with T/Tc = 0.20,0.25,0.30,0.40,0.50,0.60,0.70,0.80 from top to bottom.
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Figure 3.16: Snapshots with q = 103 and L = 102 at R(t) = 5,10,20,40,80 from
left to right with T/Tc = 0.25,0.30,0.40,0.50,0.60,0.70,0.80 from top to bottom.

Figure 3.17: Snapshots with q = 104 and L = 102 at R(t) = 5,10,20,40,80 from
left to right with T/Tc = 0.3,0.40,0.50,0.60,0.70,0.80 from top to bottom.

From the snapshots, it is evident that, at fixed R(t) the various lattices looks
like the same both for different T/Tc that for different q. This is an evident sign of
the universality w.r.t these parameters.
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T/Tc time Ncl N(1) maxA N(A > 10) Ncol

0.20 30906 (60) 461.9 (1) 0.14 (1) 261 (2) 292.9 (1) 99.21 (1)
0.25 2865 (5) 460.9 (1) 0.19 (1) 254 (1) 293.35 (9) 99.17 (1)
0.30 629 (1) 457.5 (1) 0.41 (1) 235 (1) 294.83 (8) 99.14 (1)
0.35 236 (1) 450.5 (1) 1.13 (1) 209 (1) 297.48 (8) 99.07 (1)
0.40 124.5 (2) 440.75 (5) 3.17 (2) 184.7 (5) 300.78 (8) 98.98 (1)
0.45 81.4 (1) 430.95 (5) 8.35 (3) 166.6 (4) 303.20 (7) 98.86 (1)
0.50 61.27 (5) 424.71 (5) 19.77 (5) 155.3 (4) 302.92 (7) 98.81 (1)
0.60 45.66 (3) 440.0 (1) 79.7 (1) 149.0 (3) 286.32 (6) 98.96 (1)
0.70 45.91 (3) 525.7 (2) 225.4 (2) 166.2 (4) 238.21 (6) 99.56 (1)
0.80 64.07 (4) 722.4 (2) 487.7 (2) 232.2 (5) 156.59 (5) 99.94 (1)
0.20 31313 (214) 45719 (28) 0.5 (3) 1322 (250) 29117 (25) 102

0.25 2942 (8) 45608 (21) 6.9 (7) 784 (32) 29180 (20) 102

0.30 645 (3) 45233 (23) 26 (2) 652 (69) 29336 (30) 102

0.35 240 (2) 44586 (25) 108 (3) 551 (40) 29542 (33) 102

0.40 127.6 (4) 43606 (20) 334 (5) 384 (13) 29889 (20) 102

0.45 83.4 (3) 42601 (17) 862 (9) 331 (18) 30138 (24) 102

0.50 62.3 (2) 42029 (18) 2040 (21) 284 (7) 30083 (17) 102

0.60 46.7 (2) 43666 (26) 8120 (21) 266 (12) 28366 (20) 102

0.70 47.0 (1) 52420 (41) 22853 (55) 279 (8) 23540 (21) 102

0.80 65.1 (2) 72727 (53) 49472 (70) 395 (11) 15542 (18) 102

Table 3.1: Measurements of some interesting geometrical observables for q = 102

and L = 102 and L = 103.
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T/Tc time Ncl N(1) maxA N(A > 10) Ncol

0.30 1508100 (5197) 442.7 (2) 0.11 (1) 177 (2) 303.1 (3) 433.1 (2)
0.35 167197(578) 442.4 (2) 0.13 (1) 176 (2) 303.7 (3) 432.9 (2)
0.40 31442 (113) 442.5 (2) 0.11 (1) 176 (2) 303.5 (3) 433.0 (2)
0.45 8251 (30) 441.0 (2) 0.16 (2) 172 (2) 305.4 (3) 431.5 (2)
0.50 2591 (10) 438.8 (2) 0.37 (2) 165 (2) 308.5 (3) 429.6 (2)
0.60 329.5 (14) 434.5 (2) 7.3 (1) 144 (1) 315.9 (3) 425.4 (2)
0.70 66.1 (2) 489.0 (4) 112.7 (5) 134 (1) 292.5 (3) 477.4 (4)
0.80 109.9 (2) 1097.8 (9) 940 (1) 367 (2) 98.8 (2) 1039.8 (8)
0.30 1500748 (3098) 44269 (15) 0.4 (2) 448 (25) 30351 (16) 9881 (4)
0.35 165760 (294) 44252 (17) 0.5 (3) 384 (19) 30389 (37) 9876 (3)
0.40 31578 (114) 44221 (18) 0.7 (3) 399 (32) 30399 (26) 9883 (4)
0.45 8259 (28) 44108 (20) 7 (1) 415 (25) 30569 (30) 9878 (4)
0.50 2589 (13) 43892 (20) 36 (2) 407 (42) 30882 (27) 9876 (3)
0.60 327.7 (6) 43571 (11) 895 (11) 258 (18) 31573 (18) 9875 (5)
0.70 66.4 (1) 49034 (34) 11437 (44) 206 (7) 29239 (18) 9928 (3)
0.80 110.0 (2) 109863 (56) 94186 (60) 572 (20) 9897 (15) 9999.8 (2)

Table 3.2: Measurements of some interesting geometrical observables for q = 104

and L = 102 and L = 103.

Reading these tables we can say that:

• The time that the system needs to reach R(t) = 5 is independent from the
linear size L.

• Ncl gains a factor 102 in the L = 103 case w.r.t the L = 102 one.

• N(1) gains a factor 102 in the L = 103 case w.r.t the L = 102 one.

• maxA increases since there are much more clusters in the L = 103 case.

With these data we can ensure the absence of finite size correction for the chosen
physical quantities.
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Chapter 4

Conclusions and future
research

To conclude, let us resume all the result found in this research work which aims in
the description of the bidimensional large q-Potts model. Beyond the well known
general characterization of the dynamics, we found a finite temperature region
Tc/2 < T ≤ Tc in which, the q → ∞ model, is never able to escape the disordered
metastable state which, thus, survives forever. In this region but in the finite q case,
the metastable states can last forever or can be also escaped, even if this process
could be incredibly long. Indeed, to escape, is needed a q dependent time, te(q).
But, this time, diverges at a q dependent temperature Tm(q), making impossible the
ordering process. The most interesting result is, instead, found in the 0 ≤ T ≤ Tc/2
region for q ≥ 103. For quenches with final temperature falling in this interval, the
model rapidly jumps into a blocked state with R(t) Ä Rb = 3.7 describing the zero
temperature or the infinite q physics1. At finite temperature and finite q these
blocked states are escaped universally at a rescaled time tb Ä e1/T giving way, in
the coarsening regime, to the final ordering process. We have also obtained the
parameter dependence of the rescaling factor2:

ts(q, T/Tc) Ä aeJ/T Ä aqTc/(2T ) with a constant.

Using the rescaling factor, we can conclude highlighting the universal behaviour
of the growing length. Let us do it in a compact way, by means of an universal

1Which lasts forever only if q → ∞ or T = 0.
2Restoring J .
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function f(x):

R(t;T/Tc, q) Ä f(e−1/T t) with f(x) Ä

3.7, for x « 1
x1/2, for x » 1

These results will be improved in the PhD thesis, analyzing in a more critic way
the T > Tc/2 regime. The aim is to found an eventual rescaling which can light up
some particular behaviour of the dynamics. The same analysis could be extended
to the tridimensional Potts model, exploring the influence of the spatial dimension
on the dynamics. Moreover, the dynamics could be interestingly deepen on other
kind of lattices and with conservative-order parameter.

The most interesting feature, to be deepen for the Potts model, is the influence
of the quenched disorder on the dynamics. A claim of superuniversality has been
recently done in [46] and this could be tested. Also since the FOT becomes a SOT
it could be pleasing to check the new critical exponents for different q. Another
stimulating aspect, to be analyzed in the presence of disorder, is the study of critical
interfaces (i.e. geometrical cluster interfaces at the critical point) to determine the
fractal dimension.
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