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Abstract

Building a successful portfolio is a challenging task requiring thoughtful choices of financial assets and

contracts that best meet investors’ risk profiles. Due to their characteristics, securities like zero-coupon

bonds represent an attractive asset class for a wide range of investors. Nonetheless, securities are not

riskless since they are characterized by a certain probability of default. Moreover, building larger

profitable portfolios, relationships between firms, and correlations between different contracts can

not be neglected. In our work, we leveraged on these three aspects (default probability, correlation,

and risk attitudes) to help investors in making wiser decisions within the complexities of the real

economy and sustainable finance perspectives. After the Paris agreement, signed in December 2015, the

community of financial supervisors and central banks agrees that climate changes must be considered

while assessing the soundness of both corporate and governmental bonds investments. Financial

risks could result from the sign of a new agreement or the adoption of a different climate policy

aiming at encouraging sustainable business strategies. We discovered that correlation can play a

crucial role in fostering an endogenous transition to a low-carbon economy, changing the status quo of

portfolio management. The impact of a transition on business and portfolio strategy is then assessed

by a scenario-based approach, exploiting different risk metrics and portfolio selection models (e.g.

Markowitz portfolio theory, expected utility maximization, stochastic dominance ordering). In the

last part of this work, we highlighted advantages and limitations of the mixture model approach in

evaluating the repercussions of shocks stemming from the disordered introduction of new climate

policy, both on bonds’ expected values and their default probability distributions.
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Chapter 1

Introduction

Decision Theory refers to the study of a rational agent that chooses among a set of options. In decisions

under risk, the outcome of a choice depends on which state of the world turns out to be the actual one.

The choice is said to be risky since the decision-maker, when choosing, knows only the probability of

the possible outcomes. As an example of a decision-maker, an investor building a portfolio chooses the

financial contracts that best meet her risk profile. Generally, a certain level of correlation between the

contracts is present, positive or negative depending on the existing relationship between the firms under

analysis. After the Paris agreement, signed in December 2015, the community of financial supervisors

and central banks agrees that climate changes must be considered while assessing the soundness of

both corporate and governmental bonds investments. Although the low-carbon transition is a hot topic

on the international agenda, to date, the status quo of investment portfolios is still largely focused

on conventional assets, mainly related to carbon-intense activities.In the financial context, brown is

referred to contracts mainly related to carbon-intensive businesses such as high industrial and mining

sectors. Conversely, green is addressed to contracts that foster low-carbon activities. A low-carbon

transition concerns a shift towards an economy based on a low-carbon production and consumption

system, reducing CO2 emissions into the atmosphere; in addition, it requires massive investments

in low-carbon technologies. If on one hand, the transition could be promoted by the adoption of a

climate policy, for instance, issued by the EU, on the other, such a policy could be a potential source

of financial risk. Adding capital into green activities, boost people to develop new climate-related

projects, therefore improving the technology and reducing production costs. Thus, other investors,

more skeptical at the beginning, are persuaded to invest too, de-facto promoting the transition. To

this end, it is crucial to assess the implications of the transition on the current economy as well as to

comprehend the correlation structure between green and brown contracts.
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2 CHAPTER 1. INTRODUCTION

The purpose of this thesis is to investigate through a probabilistic approach the role of the corre-

lation in portfolio management within the context of the low-carbon transition.

In Chapter 2, we start making a review of the mathematical tools necessary to appreciate the

result of our study. Then, in Chapter 3, we present the state-of-the-art in Decision Theory; the

most widespread economic theories and portfolio selection models letting the investor achieve an

optimal portfolio are therefore shown and exploited. In particular, we leverage on Markowitz Portfolio

Theory and Expected Utility Maximization theory. We consider a portfolio of zero-coupon, defaultable

corporate bonds with maturity T , modeled as binary variables with default probability qi. To study the

optimal portfolio allocation we start by considering the situation of two investments and one investor

and we analyze how the portfolio is affected by three parameters: correlation, default probability, and

investor’s risk attitude.

During the study, the Copula function is employed to calculate the joint probability distribution

between bonds. However, applying the Gaussian Copula, the correlation coefficient between the Gaus-

sian test variables changes with respect to the Bernoulli ones of our interest. An in-depth investigation

of this implicit link is delineated in Chapter 4. In addition, in the same chapter, we outline also

the correlation coefficient upper and lower bounds. Starting with the next chapter, the number of

bonds addressed becomes N. In Chapter 5 we contribute to analytically respond to the investors’

concern about choosing the most efficient portfolio among two, simply by knowing the probability of

win/fail of individual bonds. The last step is to include the correlation between bonds. In Chapter

6 we proceed by exploiting the Mixture Model: the correlation comes again into play, but it is driven

by an exogenous macroeconomic variable. We thus outline some hypotheses on how the correlation

changes according to the exogenous parameter. Besides, we discuss also the asymptotic limit of a

portfolio with n→∞. Then, we assess how a shock (focusing in particular on a Climate policy shock)

can impact on the portfolio risk. Finally, we point out the limitations of this model concerning our

objectives and develop some further insights.



Chapter 2

Theoretical Background

In this chapter, we consider a portfolio of defaultable corporate bonds with maturity T . For sake of

simplicity, we focus on zero-coupon bond, modelled as binary variables with default probability qi.

We consider both the case of independent bonds as well as the case of correlated bonds. Then, we

consider a situation with multiple future scenarios, where each scenario is characterized by different

default probabilities qi of individual bonds. Finally, we describe the evolution of portfolio value and

portfolio payoff. Relying on known mathematical tools such as convolution, generating functions, and

copulas we analyse under which conditions such tools are suitable to study our portfolio of bonds.

2.1 Convolution and Generating Functions

Convolution is useful since it is a tool, through which the probability density function (pdf) of a sum

of random variables can be computed, starting from the single pdf. For instance, let us a portfolio

of k corporate bonds, where the payoff of each bond is distributed according to a specific pdf. The

probability density function of the entire portfolio’s payoffs changes under the following different

situations:

A. Every payoff index is independent and identically distributed;

B. Every payoff is independent of the other, but they are distributed according to different pdf;

C. The payoffs are correlated among themselves.

For cases A and B the convolution is crucial to find the probability density function of the portfolio.

We start analyzing case B, since knowing this, the other one (case A) could be easily derived. Every

bond payoff is considered as a mutually independent random variable Xi. By consequence, the value

3



4 CHAPTER 2. THEORETICAL BACKGROUND

of the total portfolio Y will be the linear combination of these k random variables:

Y =
k∑
i=1

biXi (2.1)

each one weighted according to a specific weight bi, corresponding to the percentage of the total wealth

invested in the i-th index. If the variables are normally distributed with a mean µi and a variance σ2
i ,

the probability distribution of Y remains a Gaussian with E[Y ] =
∑k

i=1 biµi and var[Y ] =
∑k

i=1 b
2
iσ

2
i .

Precisely thanks to their mathematical tractability and to the possibility of obtaining analytical results,

usually in literature, financial variables are assumed to follow a Gaussian distribution. With Gaussian

variables, for instance, the convolution product is obtained for free, since no calculation are needed.

In all the other non-Gaussian cases, we need to compute explicitly the convolution product to get the

distribution of Y. Sometimes, solving the convolution integral is not easy, therefore, to get the result,

one can exploit the generating or the characteristic functions, depending on if the single index payoff

has a discrete or continuous distribution, respectively. The generating function GX(z) of a discrete

random variable X is defined as the expected value of zX :

GX(z) = E[zX ] =

∞∑
n=0

pX(n)zn (2.2)

Therefore, for the random variable Y defined in Equ. 2.1 with bi = 1 ∀i, the generating function

becomes

GY (z) = GX1+X2+...+Xk
(z) = E[zY ] = E[zYi=

∑k
i=1Xi ] =

k∏
i=1

E[zXi ] =
k∏
i=1

GXi(z) (2.3)

where Xi are independent. If the Xi are also identically distributed the expression simplifies even

more: GXi(z) = GX(z) ∀i, and hence GY (z) = [GX(z)]n. On the contrary, if X is a continuous

random variable, one can choose to adopt either the characteristic function

φX(t) = E[eitX ] =

∫ +∞

−∞
dxpX(x)e−itx (2.4)

or the moment generation function

MX(t) = E[e−tX ] =

∫ +∞

−∞
dxpX(x)e−tx (2.5)
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Usually, characteristic function is preferred because, corresponding to the Fourier transform, it is al-

ways calculable, while the moment generation one, which can be seen as the Laplace transform, might

lead to a non-convergent integral. The idea behind the use of these transforms is to make the calcula-

tions easier. If independent, convolving variables in Fourier or Laplace space is straightforward since

the convolution product corresponds to a standard multiplication. However, after having obtained

the generating or characteristic function of a sum of random variables, one has to perform the reverse

transformation to get the joint probability distribution, which corresponds to the n-th term of the

series. Sometimes it is easier cause convolving variable of the same type return still a variable of that

type. However, when the variables are not i.i.d or does not follow a standard distribution we can get

some help from complex analysis. Starting from the definition of generating function of Equ. 2.2 one

can observe that this is no more than a Taylor’s expansion. Multiplying both sides by 1
zn+1 we obtain

1

zn+1
GX(z) =

∞∑
n=0

pX(n)
zn

zn+1
=
∞∑
n=0

pX(n)
1

z
. (2.6)

The right-hand side is now a Laurent’s series. Hence, we know that the coefficient of the 1/z term i.e.

a−1 corresponds to the n-th term of the original Taylor’s series:

a−1 = pX(n) =
1

2πi

∮
GX(z)

zn+1
dz (2.7)

then, performing the complex integration we have back the n-th term, and hence the probability

distribution of the sum.

2.1.1 Convolution of Bernoulli-like bonds

In the following, we try to figure out some results for the case of a portfolio of corporate bonds with

maturity T. Following the notation of Battiston and Monasterolo (2019) the bond value is defined as

a binary variable, which can default with probability qi

Bond Value = vi(T ) =

{
Ri = 1− LGDi, w.p. qi

1, w.p. 1− qi

Xi(T ) =

{
Ri = 1− LGDi, w.p. qi

xi, w.p. pi = 1− qi

where Ri is the Recovery Rate, i.e. the percentage of notional recovered upon default, which corre-

sponds to 1−LGD, that is Loss Given Default, i.e. the percentage of losses. Consequently, one define
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the bond loss as 1-the bond value

Bond Loss = li(T ) =

{
LGDi, w.p. qi

0, w.p. 1− qi

Then, we sum every gain and every loss of the k bonds in the portfolio by weighting them with wi,

i.e the amount (as a percentage of the entire wealth) of i-th bond purchased, obtaining:

Portfolio Value = Z(T ) =
k∑
i=1

viwi (2.8)

Portfolio Loss = Y (T ) =
k∑
i=1

liwi (2.9)

To tackle the issue of writing the full probability distribution of the portfolio (ptf) we start by com-

puting the generating function of the portfolio loss. We choose the generating function since we are

dealing with discrete random variable, while we take the ptf loss instead of the ptf value since it would

return a formula similar to the generating function of a binomial

GY (η) = E[ηY ] =
∏
i

[
qiη

LGDiwi + 1− qi
]

=
∏
i

1

wi

[
qiη

ui + 1− qi
]

(2.10)

where defining ui = LGDi · wi we get

p(ui)dui = p(li)dli =⇒ p(ui) =
p(li)

wi
=
qi
wi

As said before, the trickiest part of this approach is getting back the probability density function,

which corresponds with the n-th term of the series. Although the variables we are dealing with in the

present dissertation are not so different from Bernoulli’s rv, they can’t be considered as such. Hence,

to obtain some analytical results it is suggested to approach the problem via complex analysis solution

and then plot the result. Otherwise, and this is what we did to check it, the sum can be computed

numerically and then, plotting the histogram, the shape of the distribution is shown. Considering

m (number of simulations) large, one can find that the normalized sum of n (number of bonds)

independent variables tends to a Gaussian distribution. Getting this result, even if the single variables

are not Gaussian, makes sense because it is a direct consequence of the Central Limit Theorem.
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2.2 Correlated Random Variables

A quite different story happens when variables are correlated with each other (case C). Indeed, as

said above, for two independent random variables, the probability density function of their sum is the

convolution of the density functions of single addends. While, if we consider the case of two correlated

random variables, the situation is a bit trickier. Let consider, for instance, two correlated random

variables X and Y, where their sum is Z = X + Y . If one intends to compute the probability density

function of z = g(x, y), the ordinary strategy is to integrate the joint density function pXY (x, y)

throughout the domain where g(x, y) < z. In this way, the cumulative distribution PZ(z) is obtained.

Then, differentiating with respect to Z, the density function pZ(z) is obtained.

PZ(z) =

∫
D

∫
pXY (x, y)dxdy =

∫ ∞
−∞

[ ∫ z−x

−∞
pXY (x, y)dy

]
dx (2.11)

pZ(z) =
dPZ(z)

dZ
=

∫ ∞
−∞

pXY (x, z − x)dx (2.12)

When X and Y are independent, the joint density function separates into a product of the two marginal

density functions pX(x) and pY (y), and the procedure we are about to describe, using the inverse

relation y = z − x, leads directly to the convolution. But now we are considering X and Y to be

correlated, so the joint cannot factorize and this no longer leads to the convolution. In general, the

mean is unaffected by the correlation, whereas the variance is made larger or smaller according to

whether the correlation is positive or negative, respectively

σ2
z = σ2

x + σ2
y + 2ρσxσy (2.13)

Again, in the special case of Gaussian distributed random variables, given the mean and the variance

we can easily find the distribution of the sum, even in presence of correlation. For the other cases, in

order to find the joint probability, a new tool becomes effective: the copula function. Thanks to the

copula, we can get the joint probability and therefore, deriving it with respect to Z, we will have the

pdf of the entire portfolio.

2.3 Copula function

“The “era of i.i.d.” is over: and when dependence is taken seriously, copulas naturally come into play.

It remains for the statistical community at large to recognize this fact. And when every statistics text

contains a section or a chapter on copulas, the subject will have come of age.” - Schweizer (2007)
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In the following, a bit of theory about copula has been summarized, whereas a exhaustive discussion

of the topic can be found looking at Sklar (1996), Schweizer (1991) and Nelsen (2006).

As one can grasp, the word “Copula” reminds the grammatical expression linking subject and predi-

cate. Sklar (1959) himself argued that it would be a suitable name also to define a function connecting

the multidimensional distribution of d ≥ 2 variables to their one-dimensional marginals, and from there

this name was officially adopted in Probability Theory and Statistics.

Definition 1 (d-dimensional Copula). For d ≥ 2, a d-dimensional Copula (in short, d-copula) is a

d-variate distribution function from I = [0, 1]d to [0, 1] whose univariate marginals are uniformly

distributed on I. It satisfies the following properties:

1. C(1, 1, am, 1, · · · , 1) = am, ∀am in [0, 1], with m ≤ d

2. C(a1, a2, · · · , ad) = 0, if am = 0 for any m ≤ d

3. C is d-increasing

Equivalently, a d-copula may be seen as a d-dimensional cumulative probability distribution func-

tion whose domain is Id and whose one-dimensional margins are uniform on I. In Sklar (1959), the

author present what can be seen as the most important theorem about copula functions.

Theorem 1 (Sklar’s Theorem). If H is a d-dimensional probability distribution function with one-

dimensional margins F1, · · · , Fd, then there exists a d-dimensional copula C such that, ∀xi in R

H(x1, · · · , xn) = C(F1(x1), · · · , Fd(Xd)) (2.14)

If H is continuous, then C is unique; while for what concerns discrete random variables, C is

uniquely determined on the Cartesian product (RanF1)X(RanF2)X(RanFd). The theorem can be

applied also in reverse: if C is an d-dimensional copula and F1, · · · , Fd are one-dimensional distribution

functions, then the function H defined in by a d-dimensional probability distribution function with

univariate marginal F1, · · · , Fd. For example, given two (d=2) random variables X, Y with joint

pdf pXY (x, y) and distribution H(x, y) =
∫ x

dx′
∫ y
dy′pXY (x′, y′), the Copula is thus defined by the

identity

H(x, y) = C(FX(x), FY (y)) (2.15)

with marginals FX(x) and FY (y) respectively. The idea is that the mapping

(X,Y ) −→ (U = FX(x), V = FY (y)) (2.16)
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transforms the original random variable (rv) into another rv having uniform marginal. Consequently,

letting F−1 denotes the inverse function of F, defined by

F−1(u) = sup{x : F (x) < u} (2.17)

it is straightforward that:

C(u, v) = H(F−1
X (u), F−1

Y (v)) (2.18)

Therefore, finding the multivariate joint distribution is reduced to the study of the copula C(u, v),

which contains information on statistical dependence of U and V. The main advantage of copula func-

tion is that it enables to specify the marginal univariate distributions separately from the specification

of the dependence structure among the variables, which is provided by the type of copula chosen.

It is important to underline the distinction between the concept of dependence embedded in copula

function and the concept of linear correlation, i.e. the standard Pearson’s correlation coefficient ρ.

Although the linear correlation represents the standard tool used in risk management to measure

the comovement of markets, it may turn out to be a flawed instrument to capture any non-linear

relationships among the variables. As regards the dependence structure proper of the copula, it is

scale-invariant, which imply that any measure of dependence right based on copula is non parametric

and does not depend on the type of distribution of the original variables. Some examples of non

parametric measures are: Spearman’s rho, Kenndall’s tau, and Blomqvist’s beta. For a complete

discussion have a look at Schmid and Schmidt (2007). These parametric measures are called rank

correlations and they measure to what extent large and small values of one rv are associate with large

and small values of another one. In the following two of those are reported to evidence that they

do not depend on the original marginal probability distributions, but they are directly linked to the

copula.

ρS =12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3 (2.19)

τ =4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 (2.20)

Since the copula is bounded both from above and below

Max(FX(x) + FY (y)− 1, 0) ≤ H(x, y) ≤Min(FX(x), FY (y)) (2.21)

it may be proved that substituting in the equations 2.19 and 2.20 the maximum and minimum copulas

gives values of -1 and 1 respectively. Differently from the linear correlation measure, where this is

not verified, here we obtain 1 for both Spearman’s and Kendall’s if the two variables are perfectly
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dependent, while -1 corresponds to a perfect negative dependence.

2.3.1 Gaussian Copula

There are many parametric copula families available, which are characterized by specific parameters

that control the strength and the structure of dependence. One of the most popular parametric copula

is the Gaussian, which is frequently used to model the trend of credit portfolios and also to study its

risk. To have a clearer view of this concept let us consider again the example of a bivariate copula,

but taking here the Gaussian one. We take two random variables X and Y of which we know the

probability density function (pdf) and the cumulative distribution function (cdf); the aim is to find

the joint FXY (x, y). The idea is to map both X and Y into two standard normal variables T1 and T2

with a correlation ρ12 and a cdf FT1T2(t1, t2) which is a bivariate Gaussian distribution which can be

written knowing means, variances and correlation. Then, thanks to the normalization property of pdf,

the area under the curve stays the same even the variables change, leading to the following equality

FX(x) = FT1(t1) = N (t1) (2.22)

where N stands for a standard normal distribution. At this point, we can invert the previous relation

obtaining

t1 = N−1(FX(x)) = N−1(u) (2.23)

t2 = N−1(FY (y)) = N−1(v) (2.24)

Finally, since we know the cdf of T1 and T2, to get the joint probability distribution of X and Y, we

need just to substitute t1 and t2 obtaining

FXY (x, y) = C(FX(x), FY (y)) (2.25)

= CGauss(u, v) (2.26)

:= N (t1, t2) (2.27)

= N (N−1(u),N−1(v)) (2.28)

= N (N−1(FX(x)),N−1(FY (y))) (2.29)

Usually, since the securities are normally distributed, one can go also further, considering the so-called

1-factor Gaussian copula. This is very useful, in particular, in case we deal with N random variables.

The core of this approach is performing a change of variable from the rv modeling a bond in the

portfolio Xi to an expression that allows reducing the number of variables needed to estimate the
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correlations among the assets: Xi = aiM +
√

1− a2
iZi. Indeed, assuming that M and Zi are normally

distributed, and the loading factor ai belongs to [0, 1], the correlation among two different assets Xi

and Xj is totally encoded in

Corr[XiXj ] =
σXiXj

σXiσXj

=
E[XiXj ]− E[Xi]E[Xj ]

1
= E[XiXj ] = aiajE[M2] = aiaj (2.30)

Finally, to estimate the correlation among all the assets, one need to know just N values, which are the

ai of every asset, instead of from N(N−1)
2 , i.e. the number of entries of the initial symmetric correlation

matrix.

As one can expected, the Gaussian copula is not the only example of copula family existing in literature,

although it is the most used. There exist in fact many other parametrizations, such as Gumbel,

Student-t, Clayton and so on. They do not differ so much in the grade of association between variable

they provide, but more in which portion of the distribution the correlation is stronger. For example,

to model crisis periods in the financial market, the correlation between big losses, i.e. in the right

tail of the distribution, needs to be remarked. In this case, a Student-t copula is preferable to a

Gaussian one, since it better catches this peculiarity. An interesting discussion about some drawbacks

of Gaussian copula can be found in Donnelly and Embrechts (2010), where the authors analyse the

mathematical models used by the finance industry in the aftermath of the 2007-2008 financial crisis.

2.3.1.1 Numerical Simulation

During the simulation performed in this work, the dependence between corporate bonds (which are

modelled as binary variables) is expressed via a Gaussian Copula. The steps below describe the

effective construction of what is known as a bivariate Gaussian copula.

1. Generate pairs of values from a bivariate normal distribution. The statistical dependence be-

tween these two variables is determined by the Pearson’s ρ correlation parameter.

2. Apply the normal cumulative distribution function Φ to the original standard normal random

variables Ni with i = 1, 2. It results in a random variable U = Φ1(N1) that is uniform on the

interval [0,1]. Notice that by computing the linear correlation between the marginals we obtain

the rank correlation coefficient of Spearman among the original normals

ρ
(Normal)

Spearman
=

Cov(Φ1(N1),Φ2(N2)√
V ar(Φ1(N1))V ar(Φ2(N2))

(2.31)

=
Cov(U, V )√

V ar(U)
√
V ar(V )

= ρ
(Uniform)

Pearson
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3. Perform with respect to every variable U and V the inverse transformation of Equ. 2.17, by

exploiting the desired function, i.e. those whose joint distribution we intended to find.

In general, because the transformation works on each component separately, the two resulting random

variables need not even have the same marginal distributions. Following these steps we create depen-

dent random variables with arbitrary marginal distributions. In our case we transform the uniform

random variables got after step 2 in Bernoulli exploiting a threshold. In this way, maintaining the de-

pendence structure of the Gaussian copula, we address the problem of joining the discrete distributions

of two correlated random variable.



Chapter 3

Decision Theories under Comparison -

The Two Horses Race

In this section we present and exploit the main economic theories and portfolio selection models

and rules such as Markowitz Portfolio Theory, Expected Utility Maximization, Stochastic dominance

ordering. To study the optimal portfolio allocation we consider the situation of two investments and

one investor and we work on three parameters: correlation, default probability, and investor’s risk

attitude. Our contributions result in analyzing how an optimal portfolio is affected by those three

parameters. In particular, the results obtained are interpreted under a sustainable finance perspective,

in order to figure out the most suitable conditions to promote the low-carbon transition.

3.1 Markowitz Portfolio Theory

The standard problem of portfolio optimization aims to subdivide the initial budget into the activities

available for the investment. The optimization is made respect to the vector of weights that define

how the portfolio is constituted. A pioneer in this research was Markowitz, who modeled it as a

two-objectives optimization problem, i.e. looking for the portfolio that simultaneously maximizes the

return and minimizes the risk. However, since the two criteria conflict with each other, such a portfolio

does not exist. The idea is therefore to fix one of the two objective to a specific value, which is strictly

related to the degree of risk one is willing to take, while optimizing the other.

min
~w

1

2
~wTC~w with ~wT ~µ = η; ~wT1 = 1 (3.1)

max
~w

~wT ~µ with ~wTC~w = ξ; ~wT1 = 1 (3.2)

13
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where ~w is the vector of weights, ~µ of means values, C the covariance matrix; moreover, η and ξ are the

values for mean and variance respectively that the investor is willing to accept and thus they depend

on the risk aversion of the investor. These trade-off portfolios are usually called efficient portfolios and

their mapping to the expectation/variance space is the efficient frontier. Thanks to its mathematical

tractability, Markowitz’s portfolio theory, also known as the mean-variance analysis, is one of the most

popular theories of asset allocation. Some of the assumptions at the basis of this theory are extracted

directly from Markowitz (1952) and may be summed into:

1. The risk of a portfolio is based on the volatility of returns;

2. The markets are efficient, a short sale is not allowed;

3. The information on returns and risk, known by the investors, are fair and correct;

4. Only one single period of investment is considered;

5. The investors are rational, meaning that they want to maximize their utility, which is concave

and increasing;

6. The investors are risk-averse and try to minimize the risk and maximize the return;

7. Investors base decisions on expected returns and variance (or standard deviation) of these returns

from the mean;

As regard of point 2, the volatility coincides with the standard deviation. It involves possible deviations

of the obtained returns from their expected value, hence a high standard deviation is intuitively named

as high risk. As a simple and intuitive risk measure, it is widely accepted among professional investors

as well as academics. Although, it too has its drawbacks. The main one is that it consider both the

good and the bad deviations from the mean as risky. Thus, the only way to increase the return on

the portfolio is to increase the level of risk that the investor is willing to accept. An investor can

reduce the risk if his portfolio consists of combinations of instruments that are not perfectly positively

correlated. Diversifying, in this case, brings the same expected return for the same portfolio, but with

reduced risk. Consider for instance to have one investor and two assets, the variance of the resulting

portfolio results into:

var[Z] = var[wAA+ wBB] = w2
Avar[A] + w2

Bvar[B] + 2ρwAwB
√
var[A]

√
var[B] (3.3)

where Z = wAA + wBB is the 2-assets portfolio payoff and A and B are the variables modeling the

singe assets.

If they correlate 0 (i.e. they are unrelated) the variance of the portfolio is the sum of all the individual
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asset variances, weighted by the square of the amount invested in each of them. If they correlate 1 (i.e.

they are positively correlated), the standard deviation of the portfolio yield is the sum of the standard

deviations of the fraction-weighted assets returns held in the portfolio. The definition of an efficient

portfolio, contained in Markowitz (1959) says that: a portfolio is efficient if it is not possible to obtain

a greater expected return without increasing the standard deviation or, in other words, reducing the

standard deviation without giving up the return. Within the set of portfolios defined as efficient,

several sub-sets can be defined according to the level of risk expressed by the investor. To sum up,

through Markowitz’s optimization, one can find all the feasible portfolios offering the best compromise

between risk and return. From a computational point of view, the most common approach is one that

seeks to minimize the variance with respect to the weights, while the mean is constrained to have

a certain value between the minimum and the maximum return, which are the two known points of

the efficient frontier. The variance is indeed a quadratic function of the weights and, for this reason,

the problem can be solved in the field of quadratic programming. Moreover, if the objective to be

optimized has a convex function, as happen for the variance, the efficiency of the algorithm increases.

However, even if with higher computational cost, one can do also the opposite, maximizing the return

with the volatility set at a certain value. In this case, one can exploit linear programming algorithms

with quadratic constraints.

3.2 Horses Race with Mean-Variance

In the simulation performed, we deal with the case of one investor and two projects on which she decides

to allocate her wealth. For simplicity of discussion, the optimal investment problem is modeled as a

hazardous bet on horse racing. Every horse has a probability of success pi and consequently a certain

return if the bet is successful (for example, the bettor wins twice as much as invested) and a recovery

rate ∈ [0, 1) if the project fails. For the purpose of this exercise, we allow the correlation coefficient

ρ to take any values in the range [−1, 1]. This means that, if they are positively correlated, they

cooperate to win, while, if they are negatively correlated, when one wins the other has a higher chance

of losing. The goal is to understand how the bettor’s optimal portfolio allocation changes as the

external parameters (default/failing probability, correlation, risk attitude of the investor) change too.

It may happen, for instance,that after a change in correlation, the bettor decides to drastically change

her investment strategy, moving from a diversified investment to mono-horse one. In the next we

display the optimization formula, here in the “version” aiming at maximizing the expected return but

at fixed variance. Even if it is characterized by a high computational cost, through this version every

term of the expression below is more easily interpretable. Indeed, with the Lagrangian multiplier

λ one can settle the “importance” given to the variance, with respect to the mean. A higher and
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positive λ lead to a shrinkage of the difference between E[Z] and 1
2λvar[Z], reflecting the behaviour

of a risk-averse investor.

max
~w

{
E[Z]− 1

2
λvar[Z] : ~wT · ~1 = 1

}
= max

wi∀i

{
wiµi −

1

2
λwiσ

2
ijwj :

∑
i=1

wi = 1

}
(3.4)

where Z is the portfolio payoff, ~µ is the vector of the expected value of the horses racing payoffs and

σ2
ij is the ij element of the covariance matrix.

3.2.1 Calibration of the setting: issues and insights

Before going into details we briefly mention some issues we faced in performing the simulation and some

insights gathered from the calibration of the setting. First, since our horses are correlated, we exploit

a Gaussian copula to calculate the joint probability distribution between the Bernoulli’s variables.

In particular, as anticipated at the end of the previous chapter, the procedure starts by generating

two gaussian vectors with correlation coefficient ρ, that is the correlation coefficient only among the

gaussians. Then, taking the marginals of each of the two gaussians variable (i.e. of each column of

the matrix) we obtain a nx2 matrix U of uniformly distributed variables which are still correlated,

although the correlation coefficient is changes. The link between the two correlation coefficient see

Equ. 4.12. Finally, to create two vector of drowns made by the realization of the two correlated

Bernoulli variables A and B, we exploit a threshold. Since in U the numbers are uniformly distributed

the probability to draw a number bigger than pA, which is the probability that A wins, corresponds

to pB, the winning probability of horse B. We make some considerations about how the correlation is

transferred from Gaussian to Bernoulli in the following Chapter.

Second,we wondered how could we quantify the risk aversion of an investor, in other words, which

values assign to lambda. We discovered that there exist numerous qualitative psychological test to help

the investor determines her psychological profile. For instance, the PASS test by W.G. Droms, the

Baillard, Biehl and Kaiser test (which distinguish investors on a scale from ”confident” to ”anxious”

and ”careful” to ”impetuous”) that of Barnewal test which distinguishes between passive and active

investors, or the Bonpian test, with eight types of investor. Leveraged on their suggestion we assigned

to λ a number from 1 (lowest risk aversion) to 5 (highest risk aversion) to an investor.

Third and last, concerning the investor attitude towards risk, we handled the parameter λ in order

to test if we could describe also a risk lover behaviour. As expected (since part of the Markowitz’s

hypotheses), the model fails. Indeed we discovered that the risk lover does not provide significant

results because increasing the points of the probability, a gap is formed, which is an indication of an

issue. This is because there is a point beyond which risk lover is so fond of risk that she prefers a lower

expected return in order to have more variance. Such a choice cannot be defined as efficient precisely
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because a lower return should be accepted in exchange for a lower risk, but not for the contrary. This

risk lover can be defined colloquially blinded by risk. Another problem related to the risk lover that

led us to exclude it from this first analysis is the fact that its behaviour is influenced by the initial

guess; since there are two equivalent maximum to the extremes of the domain, the algorithm chooses

which of the two to prefer according to the initial point.

3.2.2 Case study: Comparisons between Three Risk Averters

In the following we illustrates the result of the mean-variance analysis applied to a portfolio of two

bond (or horses) having different probability of success pi with i ∈ {A,B}, but same payoff. The

payoff of B in case of winning is computed to be inversely proportional to the probability of winning,

i.e xBwins = 1/pBwins ≈ 1.11. As concerns of the recovery rate, it is fixed at zero, meaning that if the

horse loses, the investor loses all the money invested in it. Then, since we want the two payoffs equal,

xAwins = xBwins ≈ 1.11. Hereafter, the objective function of the optimization procedure is displayed:

f(w) = E[Z]− 1

2
λvar[Z] (3.5)

= wE[A] + (1− w)E[B]− 1

2
λ

(
w2var[A] + (1− w)2var[B] + 2ρw(1− w)

√
var[A]var[B]

)
Here pA, i.e. the probability of horse A wins is varied from 0.8 to 0.95, while pB is fixed to 0.9. In

every subplot of Figure 3.1 a different investor behaviour is shown.

• λ = 0 corresponds to a risk neutral investor;

• λ = 2 refers to an investor that is risk averse but not so conservative;

• λ = 6 is a risk averter very conservative.

The behaviour for a risk neutral is easily explicable. Having λ = 0 the variance doesn’t enter the

optimization, hence the bettor chooses only based on the expected value. Needing only to maximize

the expected value, she would funds her money in the horse having the highest mean. In our example

the horses are modeled as Bernoulli variables. This means that, given the same payoff, the expected

value of A would be higher than B, as soon as the probability of A overcomes the one of B. Look-

ing at Figure 3.1, as long as pA < 0.9, the investor will put everything on B, then for pA = 0.9 he

will equidistribute his wealth, according to the initial guess given to the optimization algorithm. For

pA > 0.9, as expected, the investor will move his wealth to A. In general, B remains advantageous as

long as A is less likely than B. For what concern the two risk averters, the two plots (top-right and

bottom-left) are quite similar even if the severity of the riskiness of the investor changes.
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Figure 3.1: Optimal weight found by mean-variance method as the correlation coefficient varies,
with λ fixed. Every curve in each subplot corresponds to a specific probability value pA, while
pB = 0.9.

Looking at how the brownish curves changes varying the correlation, one can see that they are ap-

proximately constant as long as the value of the correlation coefficient does not exceed a certain value,

which is higher if the probabilities of winning are similar. From this point on, the curves more or

less slowly go to 1 or 0 depending on whether pA is greater or less than pB, respectively. Besides, if

we have a look at the graph with λ = 6 it can be seen that the investor will maintain a diversified

portfolio for more time. This behaviour is consistent with his very conservative attitude which led

him to diversify. It is interesting for our analysis highlighting that when the correlation diminishes

the investor modifies her portfolio towards a more diversified one. This behavior is emphasized for a

more conservative risk averter. Indeed, observing the bottom right subplot in Figure 3.2, one can see

that, even the investment A has a bigger probability of success than B, decreasing the correlation the

most conservative investor is propelled to diversify his wealth. If we think about these results in light

of a sustainable finance perspective, assuming for a moment that A and B are no longer the horses
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participating in a race but two bonds, an attitude of this kind may support a low-carbon transition.

From the current composition of investment portfolios emerges a predominance of carbon-intense cor-

porate bonds, i.e. bonds that are somehow related to intensive CO2 production. Therefore, it is

reasonable to think that conventional bonds most of the time are preferable. Now imagining that the

correlation between low and high carbon intense bonds is > 0.5 and that brown bonds have a higher

probability of success. Figures 3.1 and 3.2 show that if there exists an external event able to change

the correlation between investments, decreasing it, at that point we could see a shift in capital towards

more sustainable investments. Hence, we can think about a decrease in correlation as a positive fact

in support of the sustainable investments. A stronger connection with market data and conditions is

illustrated in the following subsection.
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Figure 3.2: Optimal weight found by mean-variance method as the correlation coefficient varies,
whereas pA fixed. Three risk trends are shown in each subplot: λ = 0 (Risk neutral), λ = 2 (Risk
averse, less conservative), λ = 6 (Risk averse, very conservative).
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3.2.3 Market Equilibrium Condition

We consider now to be at market equilibrium meaning that

• xAwins = 1/pAwins

• xBwins = 1/pBwins

It follows that the expected values of A and B are equal, whatever the probability of winning: E[A] =

E[B] = 1. To analyse this case, we consider pBwins = 0.9 fixed, as the previous analysis, whereas

can moves in a wider range pAwins ∈ (0, 1]. By assuming again to deal with market data instead of a

betting, the values chosen for pAwins and pBwins acquire new meaning. B is chosen in a way that could

represent a common sovereign bond, hence 10% of return with probability 0.9. A, instead, embodies

the behaviour of bonds with low probability of default. Indeed, a low winning probability may model

the sales conditions of very unstable bonds, such as the Argentinian Tango bonds. Generally speaking,

unstable bonds are usually linked to states that risk to bankrupt, which, especially during economic

crisis such as the current devastating one caused by the Covid-19 pandemic, navigate in more and

more stormy waters. Similarly, a pretty low pAwins could represent a corporate bond issued by a

company that may attempt the so called “gambling for resurrection” to save itself from bankruptcy.

With only two variables (A and B) the solution can be calculated analytically. The expected value of

the portfolio return is

E[Z] = wE[A] + (1− w)E[B]

but having E[A] = E[B] it will be

E[Z] = E[B] = 1 , always.

(3.6)

Therefore, the mean-variance optimization (see Equ. 3.5) results into the simple minimization of the

variance without any constraints on the mean. Moreover, as one can see from the formula above,

the optimal weight w∗ assigned to A is unaffected by λ. This means that the w∗ will be the same

for any risk-averse investor, regardless of her more (λ > 5) or less conservative (λ < 5) nature. For

what concern the risk neutral investor, i.e. with λ = 0, the expected utility results in E[f(w)] =

E[Z(w)] = E[B] = 1. It follows that here any portfolio can be said “optimal”, since they are all

equivalent. That means that, in the numerical simulation, the initial guess chosen, will also represent

the optimal investment. These behaviours are shown in Fig. 3.3. Let’s now look again the picture

from right to left, that is as the correlation decreases. As hint before, when the correlation is very

large and positive, it is not convenient to diversify and therefore the investor will invest in the asset

with less variance, since the optimization method chosen (mean-variance) at market equilibrium, as

mentioned earlier, depends only on the variance. Decreasing the correlation, the tendency is to invest
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Figure 3.3: Optimal weight found by mean-variance method at market equilibrium as the corre-
lation coefficient varies, whereas λ fixed. Here we are considering pB = 0.9

.

more fairly in the two investments. As one could see in section 4.1.2 the upper and lower bounds of

the linear correlation coefficient change according to the probabilities of the two variables. Therefore,

some values are not attainable and this is the reason why the curves, representing the probability of

A to win, have different existence domains. The presence of different domains is evident also from

Figure 3.4. For instance, the value ρ ≈ 1 can be attained only when the two horses behave the same,

i.e. pA = pB = 0.9. Every curve represents indeed a value of Pearson’s ρ. One can see that going

from a lighter brown to a darker brown curve, at fixed value of probability of A to win, the correlation

decreases. This lead to an increase of the amount set up on A. Besides, as one can expect, growing

with the probability of A to win, at fixed ρ ,the amount in A grows too.
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Figure 3.4: Optimal weight found by mean-variance method at market equilibrium as the prob-
ability of A wins, whereas λ fixed. Here we are considering pB = 0.9

.
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3.3 Expected Utility Maximization

The investor, defined rational on the basis of a certain number of axioms contained in Von Neumann

and Morgenstern (1947), is faced with several options, each characterized by a certain level of risk,

among which she must make a choice. To do so, the decision-maker uses a utility function that weights

each possible result. In the end, her choice will fall on the decision that leads her to reach the maximum

possible utility, i.e. her weighting function. For what concern the marginal utility, it corresponds to the

slope of the utility function at that wealth level. Chosen a level of utility U(x*), and given the expected

mean µ and the standard deviation σ, one can define the indifference curve in (µ, σ) plane, that is the

locus of points (µ, σ) with constant expected utility, i.e. equal to U(x*). The utility function satisfies

the basic hypotheses presented by Von Neumann and Morgenstern (1947), i.e. it is determined up to

linear transformations, it is not decreasing, and the objective is to maximize its expected value. The

utility is a function of the wealth, but in our case, of the expected portfolio payoff. The probability

distribution of the portfolio can be of any type, discrete or continuous, with finite or infinite support.

One way to estimate the investor’s degree of risk aversion is thought the certainty equivalent, i.e. the

amount of money an investor would accept to avoid the risky investment. To calculate the certainty

equivalent, CE, one has to simply take the inverse image (or preimage) of the expected utility. In

the case of risk aversion, this CE results to be less than the expected value of the portfolio payoff.

Another fundamental concept to describe risk aversion is the risk premium. It is defined as the

difference between the expected value and the certainty equivalent of the same investment. The risk

premium is the maximum amount that the individual would pay for the investment to be risk-free.

The larger and more positive this difference is, the greater the concavity of the utility and the more

the investor will prefer to get a lower but certain return, rather than take some risk. Another way

to measure her risk attitude is through Arrow-Pratt’s risk aversion coefficient. It is also how we are

going to account risk in this section. There exist two form of the risk coefficient. One is the Absolute

Risk Aversion coefficient (ARA),

ARA = λ = −U
′′(Z)

U ′(Z)
(3.7)

With Equ. 3.7 one can easily find whether and how risk aversion varies as wealth increases, by

analyzing if the absolute risk aversion coefficient is an increasing, constant or decreasing function of

wealth. The other coefficient is the Relative Risk Aversion one

RRA = −ZU
′′(Z)

U ′(Z)
(3.8)

where Z is the portfolio payoff.
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3.3.1 Classes of Utility Functions

Generally, among the classes of utility functions available in the literature (see for instamce Brun-

nermeier (2015)), the most used is the one that present HARA (Hyberbolic Absolute Risk Aversion).

This class includes utility functions called CARA, CRRA, and quadratic utility functions. The choice

falls on this class because of its mathematical tractability. A utility function exhibits HARA if its

absolute risk aversion is a hyperbolic function, as

λ = −
U ′′HARA(w)

U ′HARA(w)
=

r

1 + αE[W ]
(3.9)

depending on the values of r and α, the utility function changes. By varying only these two coefficients

it is possible to describe all possible psychological profiles of the investor. Setting r positive, (=1 for

simplicity), null or negative, we are considering an investor respectively risk averse, risk neutral and

risk lover. Then, once r is chosen, by varying α you change the concavity of the utility function,

increasing or decreasing the risk. The next two paragraphs formalizes some definition regarding the

different risk attitudes.

3.3.1.0.1 Risk Aversion A risk averter investor can be defined throughout different ways. Here-

after two of them are presented. For a more detailed discussion see pag. 89 of Levy (2015) to more

details.

1. A risk averter will not play a fair game;

2. A risk averter will be ready to pay a positive risk premium to insure their wealth.

3.3.1.0.2 Risk Seeking utility function The utility function, whose expected value is maxi-

mized, is convex for a risk-seeker. The effect of the concavity takes the decision-maker to choose,

between two options with the same expected return, the one more spread, i.e. with higher variance.

This concept rely on the mean-preserving spread, which is recalled at section 3.4.0.1).

3.3.1.1 CRRA or CARA?

As shown in Equ. 3.9, in the most general version of the HARA utility function two free parameters

have to taken into account. To simplify, we investigate the different 1-parameter subclasses to choose

the best ones for our dissertation. CARA (= Constant Absolute Risk Aversion) is a convenient

assumption, in particular if the return are normally distributed. However, most agree that absolute risk

aversion is not constant, but decreases with the level of wealth, i.e. it presents DARA (= Decreasing

Absolute Risk Aversion). This means that richer people are willing to take a greater risk. It makes
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sense if you think that a wealthy person, even when faced with a large loss, will not feel the same

effect as a less wealthy person. For this reason, CARA functions are rejected in favor of DARA

ones. A family of function belonging to the DARA class, is the one having Constant Relative Risk

Aversion (CRRA). According to Chiarella et al. (2008), fundamentalist traders use constant relative

risk aversion utility function (CRRA) to evaluate their propensity to the risk. For these reasons, we

turn our choice to this function, exploiting here its power version

U(Z) = Zη, (3.10)

where

Risk Attitude =


Aversion, if 0 < η < 1

Neutral, if η = 1

Seeking, if η > 1

Below we show either that the absolute risk aversion coefficient is decreasing or that the relative one

is constant. Then, we compute the first and second derivatives of a power utility.

U ′(Z) = ηZη−1

U ′′(Z) = η(η − 1)Zη−2
(3.11)

Keeping in mind that we defined λ as the absolute risk aversion coefficient, we will have:

ARA = λ = −U
′′(Z)

U ′(Z)
= −η(η − 1)Zη−2

ηZη−1
=

1− η
Z

(3.12)

which, as expected, is a decreasing function of Z, i.e. the portfolio payoff. By consequence, the relative

risk aversion coefficient will be

RRA = −ZU
′′(Z)

U ′(Z)
= −Z η(η − 1)Zη−2

ηZη−1
= 1− η (3.13)

3.3.2 Direct Maximization of a CRRA Utility Function

We decide now to move forward, setting up an original experiment where the efficient portfolio is

found by direct optimization of the utility function. As mentioned at the beginning of this section, the

efficient portfolio is found by deriving directly the maximum of the expected power utility function,

defined in Equ. 3.10. In order to analyze the problem from each of its perspectives, we tune again

(as was done for the mean variance) the 3 parameters available to us: the probability of the bond

A to receive the premium, the linear correlation coefficient between the two bonds; investor’s risk
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attitude. Then, we combine them obtaining 6 different experiments. The set up of each experiment

is the following

• The market is at equilibrium;

• The risk attitude is defined by the parameter η proper of the power utility. Remember that

– Risk Aversion: 0 < η < 1

– Risk Neutral: η = 1

– Risk Seeking: η > 1

• pB = 0.9;

• pA takes each value in the range [0.05, 1], with an increasing step of 0.05;
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Figure 3.5: Optimal weight found by expected utility maximization at market equilibrium as the
probability of A to win and the correlation are varying, whereas η is fixed. Here we are considering
pB = 0.9.

The subplots in Figure 3.5 trace the behaviour of the ones in the previous sections. Since the utility

of a risk neutral investor (η=0)is equal to the payoff itself, maximizing the expected utility coincides

with performing the expectation value of the portfolio payoff at market equilibrium, which return one

as illustrates in Equ. 3.6. Therefore, for her any portfolio can be said “optimal”, since they are all

equivalent. Here the optimal weight turn to be 0.5, which corresponds exactly to the initial guess
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of the algorithm. Regarding the risk lover, she always make a sharp choice: all in A or all in B. In

particular here, differently from Fig. 3.3 she is more prompt to invest in the bond with highest payoff,

although the tiny probability of winning. The behaviour of the risk averter is fully investigate in Fig.
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Figure 3.6: Optimal weight found by expected utility maximization at market equilibrium as the
probability of A to win and the correlation are varying, whereas η is fixed. Here we are considering
pB = 0.9 and only risk averse investors (from the less conservative, having η = 0.8 to the most
one η = 0.1)

3.6. It can be seen that the line describing a less conservative attitude (η = 0.8) is less clear than

the one of a more conservative decision-maker (η = 0.1). The overall fashion follows Fig. 3.3 and

reinforces the fact that this may be the crucial point dominating the interplay between correlation

and financial contracts. Indeed, decreasing the correlation, the tendency is to invest more fairly in the

two investments, leading to a strong alteration of the status quo of portfolio management. Besides, as

happens in the previous sections, some values of the correlation are not attainable and this is the reason

why the curves, representing the probability of A to win, have different existence domains. Looking

at the Fig. 3.7 stands out that the change in the allocation arises in a tiny range of correlation. This

can suggest that it may exist a “threshold” value for the correlation among the Bernoulli’s variables

below which, a fixed pA the portfolio totally changes its aspect, favouring a diversified one. As always,

the most interesting cases (which in the end are also those most likely to happen in reality) are those

related to a risk averse investor. The three subplots relative to this attitude show a trend equal to

that of Figure 3.8 and consequently also the considerations are similar.
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Figure 3.7: Optimal weight found by expected utility maximization at market equilibrium as the
risk attitude, related to η, and the correlation are varying, whereas pAwins is fixed. Here we are
considering pB = 0.9.
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Figure 3.8: Optimal weight found by expected utility maximization at market equilibrium as the
probability of A to win and the correlation are varying, whereas η is fixed. Here we are considering
pB = 0.9 and 5 risk attitudes.
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The three figures (one for each risk attitude) coming next, display the optimal allocation of a

portfolio made up by two bonds (supposing one green and the other brown). The probability of A

to win and risk attitudes are varying, whereas linear correlation ρ is fixed. pB = 0.9 as usual. One

can notice that either the correlation is positive or negative increasing pA the amount invested in A

increases too.
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Figure 3.9: Optimal weight found by expected utility maximization considering only risk averse
investors (from the less conservative, having η = 0.8 to the most one, with η = 0.1)
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Figure 3.10: Optimal weight found by expected utility maximization considering only a risk neutral
investor, η = 1.
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Figure 3.11: Optimal weight found by expected utility maximization considering only a risk seeking
investor, η > 1.
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With the next two pictures a few last insights are gained. Observing the Figure 3.12 you can see

that while changing risk attitude, i.e. moving moving towards the right on the x-axis, you pass from

a mono-asset portfolio to a diversified one. Moreover, at fixed value of ρ the weight assigned to A

increases with its probability of success, while it is practically constant changing only the predisposition

of the averter towards the risk.
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Figure 3.12: Optimal weight found by expected utility maximization at market equilibrium as
the risk attitude (embodied in η) and the correlation coefficient ρ are varying, whereas ρ is fixed.
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Figure 3.13 illustrates that a larger and more positive correlation corresponds to a less balanced

distribution of funds between A and B. So if pA < pB the optimal weight of ρ = 0.4 is less than ρ = 0.2.

This makes sense because the more the two horses/bonds are positively correlated the more it seems

to have only one bond rather than two. Hence, since their behavior in response to external events will

be the same, the greater weight will go on the safer, though less profitable, investment. The precise

value of the weight will depend on the balance between higher gain and lower risk performed by the

Von-Neumann optimization.
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Figure 3.13: Optimal weight found by mean-variance method at market equilibrium as the risk
attitude (embodied in η) and the probability of A to win are varying, whereas pAwins is fixed.
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3.3.3 Markowitz encounters Expected Utility

In this subsection we are going to investigate how to link the two optimization methods presented

above. You will discover that you don’t always directly maximize the function that describes the

utility, but you can proceed with an approximation. Thus, we start expanding the utility function

around the point Z∗, i.e the wealth wished. The only hypothesis you need to perform the expansion

is that U(Z) is smooth in Z, where Z is the level of wealth of the investor, which in our case coincides

with the portfolio payoff.

U(Z) ≈ U(Z∗) + U ′(Z)
∣∣
Z=Z∗

· (Z − Z∗) +
1

2
U ′′(Z)

∣∣
Z=Z∗

· (Z − Z∗)2 + o(Z2)

= U(Z∗)− U ′(Z∗) · Z∗︸ ︷︷ ︸
costant

+U ′(Z∗) · Z +
1

2
U ′′(Z∗) · (Z − Z∗)2 + o(Z2)

= cost. + U ′(Z∗) ·
[
Z +

1

2
U ′′(Z∗) · (Z − Z∗)2

]
+ o(Z2)

(3.14)

From Equ.3.7 we get U ′′(Z) = −λ(Z) · U ′(Z) and thus follows

U(Z) ≈ U ′(Z∗) ·
[
Z − 1

2
λ(Z∗) · (Z − Z∗)2

]
+ cost. (3.15)

In our exercise the point around which the Taylor’s expansion is performed is the expected value of

the portfolio payoff, i.e. E
[
Z
]
. Now, taking the expectation of the Formula 3.15 and, neglecting the

constants, we get

E
[
U(Z)

]
∝ E

[
Z
]
− 1

2
λ · E

[
(Z − E

[
Z
]
)2
]

= E
[
Z
]
− 1

2
λ · var

[
Z
] (3.16)

The latter (Equ. 3.16) illustrates the same result of the Equation 3.5 in section 3.2.2. This implies that

as long as the utility function can be said to be smooth in its argument, one can always approximate

the expected utility optimization with the mean-variance one. For what concerns finding a perfect

match between the two methods of portfolio optimization, the accordance between expected utility

theory and mean-variance principle appears only under specific assumptions regarding the utility

function of the investor and/or the probability distributions of the target variable, here the portfolio

payoff. The two theories perfectly match either in case of normally distributed return and negative

exponential expected utility or when the utility is quadratic, no matter about the portfolio return

distribution. For the latter, the expected value of a quadratic utility will be a linear function of the

expected portfolio payoff and the expected value of the payoff squared (which is equal to the portfolio
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variance plus the expected value squared). In this case, the expected utility has not the standard form

usually used in the mean-variance optimization. Despite so, it still remain a function of the variance,

therefore, for any given expected return an investor with quadratic utility wishes to minimize variance

and hence chooses a mean-variance efficient portfolio. For the former, the reason lies in the fact that

the Gaussian distribution has only the first two moments different from zero. Therefore, by doing a

Taylor’s expansion of the exponential utility, it will be naturally truncated at the second order. As

reported by Markowitz (2014) himself, there is some confusion in the literature about this. It is often

thought that mean-variance analysis is only valid in the two cases listed above. But this is not the

case. Having Gaussian return distributions or quadratic utilities is only a sufficient condition for the

use of mean-variance, but not necessary. This means that even if we are not in those two cases, the

mean-variance is still valid. Indeed, Markowitz (1959) observes that if the utility function can be

approximated by its Taylor’s expansion, truncated at second order (which turns out to be a quadratic

function), then, taking its expected value, we get a function that depends only on the mean value and

the variance. In Markowitz (2014) the author tries to answer the question “Why not just maximize

the expected utility?” (i.e avoiding any kind of approximation?). The answer lies in the fact that the

mean-variance analysis is a practical way to approximately maximize the EU since:

1. It has a lower computational cost;

2. It does not impose to specify further parameters of the probability distributions of returns, apart

from the average value and the variance (in case the utility function is known and the Taylor

expansion is used to approximate it);

3. It does not require the investor to specify the functional form of his utility. Choosing a mean-

variance efficient portfolio the decision-maker will select a portfolio with a maximum or the

nearly maximum expected utility (Levy and Markowitz (1979)).

In Kroll et al. (1984) the author presents either the classes in which the approximation works well or

some improvements to the theory. It says that the approximation works in case of a log utility (the

one proposed by Bernoulli (1954)) or a power (Cramer). Besides, in the same article a study about a

higher-order moment utility expansion done by Errington is presented.

3.4 Stochastic Dominance as a Criterion for Efficiency

This section illustrates how stochastic dominance can be exploited to find an efficient portfolio. We

start by reporting the concept of dominance from Hanoch and Levy (1969). Then, several condition

(both necessary and sufficient) for efficiency are listed.
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We take two random variables X and Y, with cumulative distribution F and G, respectively. One can

say that X dominates Y (or alternatively that F dominates G) if the expected utility of X is greater

than the expected utility of Y, for every utility, as long as it is increasing. The key point linking

dominance and efficiency is that “every sufficient condition for dominance is an efficient criterion”

(Hanoch and Levy (1969)). This implies that any investor who is willing to maximize her portfolio,

will choose a dominant investment. For the mean-variance analysis, the variable having larger mean

and smaller variance will be always chosen by risk averse investors. However, Markowitz’s criterion is

neither sufficient nor necessary for dominance, while we are maximizing the Expected Utility (EU).

The only two counterexamples, showing that the mean-var criterion is a sufficient condition (even if

not necessary) for dominance, are the ones mentioned in the previous section and presented in Hanoch

and Levy (1969):

• Normal returns;

• Quadratic utility;

It is suggested that stochastic dominance rules do not replace the mean-variance rule but offer an dif-

ferent approach, complimenting rather than substituting it. In the following we report some theorems

defining the efficiency criterion for dominance, under different risk attitudes.

Theorem 2 (First order Stochastic Dominance). Let F and G two cumulative distributions and U(x)

a non decreasing function. A necessary and sufficient condition for FSD of F over G is:

F (x) ≤ G(x), for every x and F (x0) < G(x0) for some x0.

Hence, if the two cumulative distributions intersect, the above statement will not be met. From the

condition of F always less than G follows EFX > EGY , which is a necessary condition for dominance

for any variance and any risk aversion level. The only constraint here is to have a non-decreasing utility

function. In Levy (2015) “an optimal decision rule is defined as a decision rule, which is necessary and

sufficient for dominance”. The FSD rule is the optimal rule for U, since it is a sufficient and necessary

condition for dominance. Thus, considering the subset of increasing utility function an optimal rule

is defined as: EFU(X) > EGU(X)⇐⇒ FDG. For the second stochastic ordering, the applicability is

restricted to the utility functions which are concave, i.e. those that refer to a risk averter.

Theorem 3 (Second order Stochastic Dominance). Let F and G two cumulative distributions, which

differ at least in one point. A necessary and sufficient condition for SSD, for every U(x) non decreasing

and concave is:∫ x
−∞[G(t)− F (t)]dt ≥ 0

Proof. Both theorems are proved in Hanoch and Levy (1969).
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It means that the two functions F and G can intersect more than once; the important thing is

that the area subtended by F up to x is always smaller than the area subtended by G. Like before,

EFX > EGY is a necessary condition for dominance of X over Y, and, again, there are no restrictions

for variance. The variance of X does not to smaller than the variance of Y, for any concave function.

A particular case of the Theorem 3 is when there is only one point of intersection. In this case, in

fact, a necessary and sufficient criterion to have stochastic dominance of F over G, is having F < G

below the intersection point, given EFX ≥ EGY . The only case in which the variance is a necessary

condition for dominance, even though not sufficient, is when the two random distributions have equal

means, i.e. EF (X) = EG(X). In this case to say that “F dominates G at second order” one needs:

σF < σG. Moreover, there exists also higher order stochastic dominance and special rule for all risk

seeker investors. The rule defining second order stochastic dominance, only in the case of risk seeking,

is given below.

Theorem 4 (Risk seeking Stochastic Dominance). Let F and G be two investments whose density

functions are f(x) and g(x), respectively. Then F dominates G by SSD, i.e. at second order and for

all risk seekers, if and only if∫ x
b [G(t) − F (t)]dt ≥ 0, for all x ∈ [a, b] and there is at least one x0 for which there is a strict

inequality.

Proof. See pages 217-218 of Levy (2015)

One might erroneously think that if F dominates G by SSD then G dominates F by SSD. This is

incorrect, and the proof can be found in Levy (2015). To summarise, the theorems presented so far

ensure that whatever the investor is (risk-averse or risk-loving), if the sufficient conditions are met,

she will choose the dominant investment.

Sufficient conditions

FSD
F (x) ≤ G(x)
minF (x) ≥ maxG(x)

SSD

∫ x
a [G(t)− F (t)]dt ≥ 0

FSD

SSD
∫ x
b [G(t)− F (t)]dt ≥ 0

Table 3.1: Sufficient Conditions for Dominance

3.4.0.1 Which Investment is the Riskiest?

In this last paragraph we deal with a common question in quantitative risk management: “How can

one state that one investment is riskier than an other?”. In Rothschild and Stiglitz (1970) the authors
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made a list of answers to this question. They are all based on the assumption that X and Y have the

same expectation value. According to the authors all the following definition are equivalent in stating

that Y is riskier than X.

1. if Y is equal to X plus noise;

2. if the investor is risk averse and E[U(X)] ≥ E[U(Y )];

3. if Y has heavier tails than X.

This is called the “fat tail criterion”. It is based on the definition of the mean preserving spread

(MPS), which is a step function with the aim to shift the density from the center to the tails,

increasing its risk. If the difference between the pdf (or pmf) of Y and X is a MPS, than Y the

riskiest variable.

All these three approaches result in the same answer to the question of who has a higher risk, and also

define a partial order between the random variables. The fourth approach is related to variance. In

fact, oftentimes in literature, it is found that Y is riskier than X if the variance of X is less than that

of Y. This is true, even if not for all the risk averter, if X and Y have the same mean value. However,

the order given to the variables based on the criterion of the variance is a total order and not partial

as before. This means that if E(X) = E(Y ) the variables can always be ordered according to their

variance. Nevertheless, it is important to repeat that even if X has a smaller variance than Y, this

does not mean that its expected utility is greater than Y. This may happen for some investors, but

not for all. As reported before, in fact, in the case of equal mean value, the condition on the variance

is necessary, but not sufficient to the dominance and therefore will not define an optimal rule.
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Chapter 4

Correlation Bounds

The purpose of this chapter is to characterize the minimum and maximum correlation coefficients

between two random variables, given their marginal distribution. In particular, we focus on the

case of discrete random variables. Applying the Copula function, in fact, the correlation coefficient

between the Gaussian test variables is different with respect to the Bernoulli ones of our interest. The

relevance of the following analysis emerges precisely in investigating and understanding this implicit

link. Leveraging on the studies of Hoeffding and Fréchèt, we contribute to characterize analytically the

case of two Bernoulli random variables. For the said case, either the bound for the linear correlation

coefficient (Pearson) or the rank one (Spearman) are outlined. The analytical findings are then checked

numerically and compared to some results in the literature.

4.1 Upper and Lower Bounds for a Two Variable Distribution

Based on Whitt (1976), we consider H = (F,G) to be the set of all the cumulative distribution

functions on R2, having F and G as marginal cumulative distribution function (cdf) and finite variance.

It is straightforward H* and H*, that are the distribution functions having maximum and minimum

correlation, respectively belong to the set H.

Theorem 5 (Hoeffding). In Π there exists for all (x, y) ∈ R2

H*(x,y)=min[F(x),G(y)] and H*(x,y)=max[0, F(x)+G(y)-1].

Theorem 6. For any marginal cumulative distributions F and G with positive variances, the pair of

random variables

[F−1(U), G−1(U)] has cdf H* whereas the pair [F−1(U), G−1(1− U)] has cdf H*

Proof. Both theorems are proved in two different ways at pages 1282-1283 of Whitt (1976).

39



40 CHAPTER 4. CORRELATION BOUNDS

Thanks to these results, one can compute the upper and lower bounds of the correlation raising

between two random variables we call X1 and X2. Indeed, given X1 and X2 two random variables

with finite variance and cdf F1 and F2 respectively, we can find the correlation bounds simply by using

the marginal distributions, and thus avoiding dealing with the original variables. Hereafter, U is a

uniform random variable and F−1
i is the inverse of the cdf Fi,∀i = 1, 2. The upper and lower bounds

are thus defined

ρ := max
X1,X2

corr(X1, X2) = corr(Y1, Y2), (4.1)

where Y1 = F−1
1 (U), Y2 = F−1

2 (U),

ρ := min
X1,X2

corr(X1, X2) = corr(Y1, Ỹ2), (4.2)

where Ỹ2 = F−1
2 (1− U).

In the following, relying on the discussion of Leonov and Qaqish (2017), we provide some analytical

findings for Pearson’s correlation among bivariate discrete distributions. In particular we start with

the most general case and then we focus on the Bernoulli-Bernoulli one.

4.1.1 Discrete Bivariate Case

Let consider X1 which takes values in A = {a1, . . . , am} e X2 which, on the other hand, takes values

in B = {b1, . . . , bn}. A and B are sorted. Now, given the marginal α = P(X1 = ai) and β =

P(X2 = bj), we calculate the joint that maximizes the corr(X1, X2). We create two sets of values

S1 and S2. S1 = {0} ∪ {FX1(ai), i = 1, . . . ,m} defines a partition of the interval [0,1] in m-1 subsets

[0, f1), (f1, f2], · · · (fm−1, 1], where f1 = α1 and fi = fi−1 + αi. On each of these sub-intervals, the

function F−1
X1

is constant and takes the value ai in the i-th interval. Similarly, S2 = {0}∪{FX2(bj), j =

1, . . . , n}, splits the interval [0, 1] in n-1 subsets [0, g1], (g1, g2], · · · (gj−1, 1], where g1 = β1, and gj =

gn−1 + βj . Again, across any of these sub-intervals, the function F−1
X2

is constant and assumes the

value bj in the j-th interval.

Then, considering S = S1 ∪ S2, the range [0,1] is divided into K intervals, with max(m,n) ≤ K ≤
m+ n− 1, which represents the different K combinations of the events’ realizations X1 and X2. Each

interval Ik thus corresponds to the event {X1 = ai, X2 = bj} whose probability is simply the length

of the interval itself. At this point, to get ρ you only need to calculate E[X1, X2], which will be:

E[X1, X2] =

∫ 1

0
F−1

1 (u)F−1
2 (u)du (4.3)
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4.1.2 Bernoulli Distribution

We now focus on the case in whichX1 = Bern(p1) eX2 = Bern(p2). We wish to derive the relationship

existing between the marginals and the correlation, in order to calculate, given certain p1 and p2, the

maximum range in which ρ can take value. Referring to Equ.4.1 and 4.2 we define

Yi = Bern−1(u) = 1(U > 1− pi) = 1(U > qi) ∀i ∈ {1, 2} (4.4)

and

Ỹ2 = Bern−1(1− u) = 1(1− U > 1− p2) = 1(U < p2) (4.5)

As the linear correlation coefficient between two variables, for example considering Y1 and Y2, is defined

as:

ρ =
E[Y1Y2]− E[Y1]E[Y2]√

var[Y1]var[Y2]
(4.6)

the only element to know is E[Y1Y2]. Indeed, the first and the second moment of the distribution are

known, being Yi a Bernoulli. Then, exploiting Equ. 4.3 we obtain

E[Y1Y2] =

∫ 1

max
i
qi

du = 1−max
i=1,2

qi

= 1 + min
i=1,2

(−qi)

= min
i=1,2

(1− qi)

= min
i=1,2

pi

(4.7)

Therefore from Eq. 4.1 we compute the maximum correlation:

ρ =
min pi − p1p2√

p1(1− p1) · p2(1− p2)

=

√
(min pi)2(1−max pi)2

p1(1− p1) · p2(1− p2)

=

√
(min pi)2(1−max pi)2

min pi · (1−min pi) ·max pi · (1−max pi)

=

√
min pi
max pi

· 1−max pi
1−min pi

(4.8)
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While, through Eq. 4.2, we get the minimum ρ. In this case we need to consider two different situations

depending on whether the intersection between Y1 and Ỹ2 is empty or not.

1. If p2 < q1, then the overlap region is zero, as well as E[Y1Ỹ2] = 0. So:

ρ =
0− p1p2√

p1(1− p1) · p2(1− p2)

= −

√
(p1p2)2

p(1− p1) · p2(1− p2)

= −
√

p1

1− p1
· p2

1− p2

(4.9)

2. If p2 > q1, then the region will be p2 − q1 long and therefore E[Y1Ỹ2] = p2 − q1. Then:

ρ =
p2 − (1− p1)− p1p2√
p1(1− p1) · p2(1− p2)

= −

√
(p2(1− p1)− 1(1− p1)

p(1− p1) · p2(1− p2)

= −
√

1− p1

p1
· 1− p2

p2

(4.10)

So finally, we discover that in the case of two Bernoulli random variables, the Pearson coefficient varies

between -1 and +1 if and only if the two variable X1 and X2 are of the same type. Being of the same

type, as explained in Haught (2016), means that one is function of the other: X1 = aX2 + b with a >

0, b ∈ R. Adapting this concept to the case of two binary variables results in the need to have same

probability, but not necessary same domain. Notice that, ρ = -1 is attained if and only if X1 and -X2

are of the same type; whereas ρ = 1 is obtained when X1 and X2 are of the same type.

4.1.2.1 Exercise: Numerical Checking of the bounds

With the following exercise, we pursue to check by a numerical simulation the validity of the results

already achieved. To achieve our purpose, we consider again a horse racing between two horses A and

B. The upper and lower bounds for the correlation coefficient between the Bernoulli are computed

numerically while the probabilities p1 = pAwins and p2 = pBwins change. As one can see in Figure

4.1 the curves, concerning either ρ or ρ, are symmetrical to the point (0.5, 0). We notice that, when

the variables A and B have equal distributions, i.e. equal probability of winning, the maximum

correlation coefficient is 1. This result is coherent with the definition of “same type” given some lines

above. Similarly, every time the probability of one to wins coincides with the probability of the other to
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loose, we reach ρ = −1. In all the other intermediate cases the upper and lower bounds are calculated

by Equ.4.8 and Equ.4.9 or 4.10, respectively. In the next we focus for a moment to the case of horses
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Figure 4.1: Bernoulli upper and lower bounds. Every point in the graph corresponds to a pair
(pAwins , pBwins). Every line shows how ρ (ρ) evolves in the upper (lower) plane, varying pAwins , but a
pBwins fixed.

with the same chance of winning, p = 0.9 and the same payoff 1
p . The theory says that the maximum

possible correlation in this case (calculating through Equ. 4.8) turns out to be 1. This makes sense

because the two variables are of the same type and they may be perfectly positively related. To obtain

the minimum coefficient we use the Equ. 4.10 since, being p1 + p2 = 0.9 + 0.9 > 1, we are in case 2,

and we get ρ = −0.11. This value can be justified because the “winning” event is much more likely

than the opposite for both horses. Indeed, to see ρ = −1 here, we should have a situation where

every time the A horse wins, B looses and vice versa. Here, however, but the probability of obtaining

simultaneously a winning of A and a losing of B is very low, since the “loss” event has a probability

of happening only 0.1.

To sum up, this easy exercise ensured us that there exists a match between how we employed the

copula function to simulate the behaviour of two correlated Bernoulli variables.
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4.2 From ρGaussian To ρBernoulli

As anticipated in the setting of the Horse-racing experiment, we make now some considerations about

how the correlation is transferred from Gaussian to Bernoulli. Hence, starting by looking at the

relationship between the two linear correlation coefficients, we pursue to understand how the use

of the Gaussian copula affects the final result. We first investigate the Formula 4.6, noticing that

ρGaussian enters only in the calculus of expected value of the product of variables. We then define

Y1 = Bern−1[Φ(Z1)] = 1[Φ(Z1) < p1], where U of Equ. 4.6 corresponds intentionally with Ψ(Z1), i.e.

the Gaussian marginal distribution of Z1. The same is repeated for Y2. To compute E[Y1Y2] one has

to solve the integral ∫ ∞
−∞

∫ ∞
−∞

1[Φ(z1) < p1]1[Φ(z2) < p2]φ(z1, z2, ρG)dz1dz2 (4.11)

where φ(z1, z2, ρG) is the bivariate gaussian distribution with correlation ρG. Being a function of

ρG, the Equ. 4.11 provides the relation between the two coefficients and therefore the shape on the

curve in Figure 4.2. In this figure the two linear correlation coefficients, ρGaussian and ρBernoulli, are

compared. The yellow curve in the picture derives from the integration, while the purple one is found

by exploiting the Copula function. In the simulation we compute ρBernoulli while ρGaussian is varied

between [-1,+1]. As expected (and discussed in the previous section), ρBernoulli is limited above and

below by the ρ and ρ calculated above. The picture show the case of two identical binary variables

with probability to succeed p = 0.9, however the increasing trend is maintained the same even for

other values of p. In the displayed case, the relationship between Bernoulli and Gaussian coefficient

appears exponential-like. It means that fitting the curve we can find the functional form that better

approximate describes the curve. Although, we decided not to pursue this way since we discovered

that the functional form of ρBernoulli changes according to the probability the two random variable.

4.3 Spearman’s Rho Bounds for Discrete Distributions

In the case of the rank correlation coefficient Spearman’s rho, the limits between X1 and X2 can

be deduced thanks to the relation existing between ρPearson and ρSpearman. As shown by Equ. 3.1,

the Spearman correlation coefficient arising between two random variables is equal to the linear cor-

relation existing between the marginal F1(X1) and F2(X2) of the same RVs. Additionally, if the

two distributions are continuous, the limits of Spearman’s correlation are always +1 and -1. This is

because the marginal cumulative function of any continuous random variable is a uniform variable

distributed over the range [0,1]. So, whatever the distribution of X, the linear correlation coefficient
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Figure 4.2: Relationship existing between the two linear correlation coefficients: ρ Gaussian and
ρ Bernoulli. Here ρG is taken to assume 61 different values in the range [-1,+1].

between two marginal functions corresponds to the linear correlation coefficient between two uniforms

U1 and U2. Since both U1 and U2 and U1 and −U2 can be called of the same type, the range between

which ρS can move coincides with the maximum, always -1, 1. This is one of the advantages that

explain why Spearman’s coefficient is preferable to Pearson’s. Moreover, it depends only on the family

of the chosen copulation function and it is independent under monotonic transformations. However,

for two discrete distributions, this is no longer true because the marginal cumulative distribution is

discontinuous. If the two variables under examination have the same cdf, the upper limit is 1 taking

X1 = X2. Otherwise, the general considerations presented in subsection 4.1.1 can be used to compute

E[F1(X1)F2(X2)] and, thus, the upper and lower bounds for ρS . In the following, we are going to show

those bounds for two Bernoulli random variables. Knowing the cdf for the Bernoulli, we compute the

probabilities of the following three events:

1. F (Xi) = 0 −→ P(F (Xi) = 0) = 0;

2. F (Xi) = qi −→ P(F (Xi) = qi) = qi;

3. F (Xi) = 1 −→ P(F (Xi) = 1) = 1− qi = pi;

The result is still a binary variable which, with probability pi takes value 1, while with probability

qi takes value qi. To compute the maximum joint cdf we follow the procedure presented in subsec-

tion 4.1.1. The result is shown in figure 4.3. The three intervals correspond to: I1 = mini qi, I2 =
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|q1 − q2|, I3 = mini pi. Therefore applying the method of finding the overlapped region we get

E[F1(X1), F2(X2)] = q1q2 · I1 + max qi · I2 + 1 · I3 (4.12)

Then, using the general definition for the linear correlation coefficient (e.g. Equ.4.6), the upper bound

for ρS is found. Analogously, the computation of the lower bound is straightforward.

Figure 4.3: Graphical way to compute E[X1X2]. Partitioning of the [0, 1] interval used to
implement Equ. 4.3 in subsection 4.1.1. The pmf of X1 is α = (qmin, pmax) whereas of X2 is β =
(qmax, 1 − pmin). Each of the three subintervals Ik, k = 1, 2, 3 corresponds to unique (i, j) pair and
event {X1 = ai, X2 = bj} , and together for the maximum joint pmf.



Chapter 5

From Two to N Bonds - Zero

Correlation

In this chapter we move to a portfolio of n bonds, which are independent. We consider two investors

owning each a portfolio of n independent and identically distributed bonds, modeled with n Bernoulli

variables. As the portfolio grows (passing from 2 of the previous sections to n) the investors’ concern

is a fortiori finding the dominant portfolio, in order to suffer the least loss possible. We contribute

to analytically respond to the investors’ concern about choosing the dominant portfolio, simply by

knowing the probability of win/fail of individual bonds. The default probability is p1 in the case of

portfolio 1, while it turns out to be p2 if they belong to portfolio 2. Since we are dealing with a sum

of n i.i.d. Bernoulli random variables (as zero correlation is present), the distribution of the portfolio

is a Binomial. The analytical solutions proposed are two: first through a formal discussion about

first-order stochastic dominance, then leveraging on the coupling method.

5.1 First Order Stochastic Dominance

Being B(n, p2) and B(n, p1) the Binomial distribution modeling the two portfolio, we aim at proving

that B(n, p2) dominates B(n, p1) iff p2 > p1. We begin by recalling the definition

Definition 2 (First order Stochastic Dominance). Let F and G two cumulative distributions and

U(x) a non decreasing utility function. A necessary and sufficient condition for which F first-order

stochastically dominates G is: F (x) ≤ G(x), for every x and F (x0) < G(x0) for some x0.

In the following we call G the cumulative function of X (X ∼ GX = B(n, p1)) and F the cumulative

function of Y (Y ∼ FY = B(n, p2)). Then, to demonstrate that the sufficient condition for dominance

is met if and only if p2 > p1, we study the monotony of the binomial cumulative function with respect

47
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to p. If the distribution function is decreasing or not increasing with p, we will have the dominance

of F over G.

In fact, if we look at the Figure 5.1, one can see that the green curve, let’s call it F, dominates the

blue curve, G because “it is underneath”, verifying the condition of the Definition 2. The dominant

distribution, as expected, has higher probability: pgreen > pblue. Let us now consider the cumulative
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Figure 5.1: Binomial cumulative distributions varying p

function of a binomial variable:

F (k;n, p) =

n∑
i=n−k

n!

i!(n− i)!
(1− p)i · pn−i (5.1)
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By calculating the derivative with respect to p you get its point-wise variation with respect to p:

∂F (n, k, p)

∂p
=

n∑
i=n−k

n!

i!(n− i)!
(1− p)i−1 · pn−i−1 · (−ip+ (n− i)− np+ ip)

=
k∑
t=0

n!

(n− t)!t!
(1− p)n−t−1 · pt−1 · (t− np) [t = n− i]

=

bnpc∑
t=0

n!

(n− t)!t!
(1− p)n−t−1 · pt−1 · (t− np)

+

k∑
t=dnpe

n!

(n− t)!t!
(1− p)n−t−1 · pt−1 · (t− np)

= A+B.

(5.2)

As long as k ≤ np, where np corresponds to the mean value of the distribution, the sum is negative.

When k > np instead, we can break the derivative in two terms, one ranging from 0 to bnpc (let’s

call it A), the other ranging from dnpe to k (B). The limit case occurs when k = n. A is a sum,

as mentioned above, of terms that are all negative, while B is a sum of positive terms. Therefore,

the derivative does not change sign (becoming positive) until B is lower in absolute value than A. To

prove that the monotony remains constant, we take the limit case. In fact, if even in the limit case

the derivative is not positive, then, a fortiori, it will not be positive for any values np < k < n.

A = − n!(1− p)n−bnpcpbnpc(bnpc+ 1)

(1− p)(n− (bnpc+ 1))!(bnpc+ 1)!

= −n!(1− p)n−bnpc−1pbnpc(bnpc+ 1)

(n− (bnpc+ 1))!(bnpc+ 1)!

= −Γ(n+ 1)(1− p)n−bnpc−1pbnpc

Γ(n− bnpc) · Γ(bnpc+ 1)

= −Γ(n+ 1)(1− p)n−dnpepdnpe−1

Γ(n− dnpe+ 1) · Γ(dnpe)
(bnpc+ 1 = dnpe)

B =
n!(1− p)n−dnpepdnpe−1dnpe

(n− dnpe)!dnpe!

=
Γ(n+ 1)(1− p)n−dnpepdnpe−1

Γ(n− dnpe+ 1) · Γ(dnpe)

An easier way to further check the result, showing that A and B cancel out in the limit case of k = n,
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is presented in the following. For k = n, Equ.5.1 coincides with the normalization condition proper of

every pdf. Indeed, the probability density function is non negative everywhere, and its integral over

the entire space is equal to 1. Therefore, Equ.5.1 results to be a constant, precisely equal to 1, that

derived with respect to p, as in Equ.5.2, gives 0, as aimed to show.

5.2 Coupling Method

Another way to prove the claim is through coupling. Coupling is a probabilistic technique with a

wide range of applications. In probability theory, coupling is a proof technique that allows one to

compare two unrelated variables by “forcing” them to be related in some way. The idea behind the

coupling method is that, to compare two unrelated probability measures, it is sometimes more useful

to construct a “ad-hoc” joint probability space with same marginal of the original space.

Let’s consider now our two investors with binomial probability distribution B(n, p1) and B(n, p2).

The binomial distribution describes the number of hits in a Bernoulli process, i.e. the random variable

Sn = X1 + X2 + · · · + Xn which sums n independent Bernoulli random variables Ber(p). We can

represent the investors as binomial since we are assuming they own a portfolio with n bond, which

can default with probability 1 − p1 and 1 − p2, for Investor 1 and 2 respectively. Moreover, every

bond is a Bernoulli variable and it contributes in equal weight to forming the portfolio, since the same

amount of money is invested in each bond. Hence, if both investors have the same number of bonds

in the portfolio, the investor with the highest p, i.e. the probability that a bond does not default (in

our case the highest is p2) will succeed more often than the other. More specifically, this means that,

for any fixed k (that is the number of bonds which have not default), the probability that Investor 1

produces at least k successes should be less than the probability that Investor 2 produces at least k

successes. Coupling simplifies this problem.

• Investor 1 trial:

Xi =

{
1, p1

0, 1− p1.

• Investor 2 trial:

Yi =

{
1, p2

0, 1− p2.

where 0 < p1 ≤ p2 < 1 without loss of generality. In the new probability space defined by the coupling,

the sequence of Xi remains unchanged, so Xi = X ′i, while for the second investor, I define a new binary

sequence Y ′i such that:

• if Xi = 1 =⇒ Y ′i = 1, w.p. 1;
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• if Xi = 0 =⇒ Y ′i = 1, w.p. p2−p11−p1 .

One of the property of the coupling is that the marginal probability distribution of the new Y ′i is equal

to the original Yi one. This is checked in the following, where we will neglect the subscript i.

P (Y ′ = 1) =
∑
x

P (X = x, Y ′ = 1)

= P (Y ′ = 1|X = 1) · P (X = 1) + P (Y ′ = 1|X = 0) · P (X = 0)

= 1 · p1 +
p2 − p1

1− p1
· (1− p1)

= p2. (5.3)

As a result, using the chain rule for probability, the joint and the marginal probability become:

X = 1 X = 0

Y ′ = 1 1 · p1
p2−p1
1−p1 · (1− p1) p2

Y ′ = 0 0 1− p2 1− p2

p1 1− p1

Now, since we are dealing with Bernoulli rv, we can list all the combinations of X and Y ′, where

Y ′ ≥ X. It can be seen that the sum of the probabilities of all those events returns 1.

P (Y ′i ≥ Xi) = 1 i.e. Y ′i ≥ Xi a.s. (5.4)

Indeed, the only combination with X > Y ′ is when X = 1 and Y ′ = 1, but it has probability 0, as

shown in Table 5.2. This makes sense also intuitively because for every bet where Investor 1 gets 1,

Investor 2 always wins, but even when Investor 1 loses, Investor 2 will still have a chance of winning

which depends on the difference between p2 and p1.

In the new probability space defined by the coupling, X and Y ′ are coupled ∀i, so they can be compared

on every game. From Equ.5.4 we have:

P (Y ′i −Xi ≥ 0) = P (αi ≥ 0) = 1 (5.5)

Then we define: S′n :=
∑n

i=0 Y
′
i , Sn :=

∑n
i=0 Yi and Tn :=

∑n
i=0Xi =

∑n
i=0X

′
i. Since there exists

a coupling between Xi and Y ′i for all i, as a result, considering both Xi and Y ′i to be i.i.d., there is

also a coupling among their sums. In the new probability space defined by the S′n and Tn variables,

the marginal probability distributions of Sn and S′n coincide. To show it we exploit the generating
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function tool

GS′n(z) = E[zS
′
n ] = E[z

∑n
i Y
′
i ] (5.6)

=
n∏
i=1

E[zY
′
i ] =

n∏
i=1

GY ′i (z)

i.i.d
=

(
E
[
zY
′])n

= (1− p2 + z · p2)n

=

n∑
k=0

(
n

k

)
pk2(1− p2)n−kzk =

n∑
k=0

f(k;n, p2)zk

GSn(z) = E[zSn ] = E[z
∑n

i Yi ] (5.7)

=
n∏
i=1

E[zYi ] =
n∏
i=1

GYi(z)

i.i.d
=

(
E
[
zY
])n

= (1− p2 + z · p2)n

After showing the relationship between S′n and Tn and the fact that the marginal ones remained

unchanged, now, we wish to show if such a coupling has the property:

P
(
S′n ≥ Tn

)
= 1 (5.8)

Equ. 5.8 is equivalent to:

P

( n∑
i=0

Y ′i ≥
n∑
i=0

Xi

)
= 1 (5.9)

P

( n∑
i=0

(Y ′i −Xi) ≥ 0

)
= 1 (5.10)

P

( n∑
i=0

αi ≥ 0

)
= 1 (5.11)

With the last equality we are seeking the probability of the event “sum of positive elements greater or

equal than zero”. Intuitively the probability of that event is one because of Equ. 5.5, which says that

the difference between Y ′ and X is always positive. αi ≥ 0 ∀i −→
∑n

i=0 αi ≥ 0. In the following, it

is shown in a more formal way. Indeed, one can see that

P

(∑
i

αi < 0

)
≤ P

(
at least one αi < 0

)
= 1− P

(
all αi ≥ 0

)
(5.12)
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Since the αi are assumed to be independent random variables, seeking the probability that all αi ≥ 0

means:

P (all αi ≥ 0) = P (α1 ≥ 0, · · · , αn ≥ 0) =
n∏
i=1

P (αi ≥ 0) = 1n = 1 (5.13)

=⇒ P

(∑
i

αi < 0

)
≤ 0 (5.14)

=⇒ P

(∑
i

αi < 0

)
= 0, since the probability is never negative (5.15)

=⇒ P

(∑
i

αi ≥ 0

)
= 1− P

(∑
i

αi < 0

)
= 1 (5.16)

To conclude the demonstration we report the Theorem 4.23 on page 163 of Roch (2015). The author

demonstrates that given two real random variables, one can state that Y stochastically dominates X

if and only if there is a coupling (X ′, Y ′) of X and Y such that Y ′ > X ′ almost surely. In our case,

the coupling is defined by (S∗n, Sn). The relationship between coupling and stochastic dominance is

widely described in Whitt (2014). Thus, given Equ. 5.8, for every k ≤ n, we have the domination of

S∗n over Sn, that is:

P (S∗n ≤ k) ≤ P (Sn ≤ k) (5.17)

P (Y ′1 + · · ·+ Y ′n ≤ k) ≤ P (X1 + · · ·+Xn ≤ k)

F (k;n, p2) ≤ G(k;n, p1)

The final inequality is exactly what we were seeking: given p2 > p1 the distribution of the variables

having probability p2 dominates the other one.
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Chapter 6

N Bonds and Correlation - A Mixture

Model Approach

We now turn the discussion to a portfolio of n bonds, exhibiting a correlation. Since we pursue

to manage the risk related to the low-carbon transition, in this chapter, the portfolio of investment

is identified by its loss distribution. One option to model the dependence between the variables of

the said portfolio is through the Copula function, following the procedure in section 2.3.1. However,

since we are interested in obtaining some analytic results, we proceed by exploiting another method:

the Mixture Model. With this method, the correlation between bonds is introduced through an

exogenous factor Ψ, which outlines multiple future scenarios, each one characterized by different

default probabilities pi(ψ) of individual bonds. Our contributions result, firstly, in addressing how the

correlation changes according to the exogenous parameter. Then, leveraging on the Mixture Model

approach, the impact of a shock (focusing in particular on a Climate policy shock) on the portfolio

risk is assessed. Additionally, we examine the asymptotic limit of a portfolio with n → ∞ bonds,

providing some personal reflections on how it can be joined to the correlation. Finally, we point out

both the limitations and the advantages of this model concerning our objectives.

6.1 Introduction to Mixture Model

Mixture Model is a model to manage credit risk, i.e. the risk that the value of a portfolio changes due

to unexpected changes in the credit quality of issuers or trading partners (McNeil et al. (2005)). In

literature, Mixture Models are argued as the most useful way of analyzing and comparing one-period

portfolio securities. Surely, one of the biggest concerns in managing the credit risk of a portfolio (as one

may guess by looking at the previous chapters) is dealing with bonds dependence. Default dependence

55
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between two or more firms is supported by valuable economic reasons, which can be clustered into

two groups:

1. Firms are affected by common macroeconomic factors. Their financial health fluctuates together

with systemic variables, such as changes in economic growth.

2. Firms have some direct economic links between them, such as a strong borrower–lender relation-

ship.

Typically in credit risk management is assumed that direct business relations are less significant in

explaining default dependence, because of the huge size of the standard portfolio loans (McNeil et al.

(2005)). On the other hand, dependence due to common factors is of crucial prominence and will be

a recurring theme in our analysis. The Mixture Model is precisely based on the assumption of default

conditional stochastic independence, knowing the realizations of the common underlying stochastic

factors. Thus, given a realization of the factors Ψ, the defaults of individual firms Yi = 1 are assumed

to be independent. The correlation between different obligors Yi arises only because the random

variables, we exploit to model them, are a function of a common stochastic variable Ψ. Known that,

they no longer share anything. Since of particular interest for us, the default correlation, i.e. the

linear correlation of the default indicators, is recalled hereafter:

ρ(Yi, Yj) =
E(YiYj)− E(Yi)E(Yj)√

var(Yi)var(Yj)
(6.1)

Dealing with binary variables we have

E[Yi] = E[Y 2
i ] = P (Yi = 1), (6.2)

var(Yi) = P (Yi = 1)− P (Yi = 1)2 (6.3)

E[YiYj ] = P (Yi = 1, Pj = 1) (6.4)

so the expression in Equ. 6.1 evolves into:

ρ(Yi, Yj) =
P (Yi = 1, Yj = 1)− P (Yi = 1)P (Yj = 1)√

P (Yi = 1)P (Yi = 1)2 · P (Yj = 1)(1− P (Yj = 1)2)
(6.5)

6.2 Bernoulli Mixture Model

Definition 3. Given some r < n and a r-dimensional random vector Ψ = (Ψ1, · · · ,Ψr), the random

vector Y = (Y, · · · ,Yn) follows a Bernoulli mixture model with factor vector Ψ if there are functions



6.2. BERNOULLI MIXTURE MODEL 57

pi : Rr −→ [0, 1],with 1 ≤ i ≤ n such that conditional on Ψ the components of Y are independent

Bernoulli rvs satisfying

P (Yi = 1|Ψ = ~ψ) = pi(~ψ) (6.6)

Therefore we have:

P (Y1 = y1, . . . , Yn = yn|Ψ = ~ψ) =
n∏
i=1

pi(~ψ)yi(1− pi(~ψ))1−yi (6.7)

while the unconditional joint default probability is obtained by integrating over the factor vector Ψ.

For simplicity in the treatment, from here on, we will focus only on the one factor case, i.e. having

r = 1. It means that we suppose to have only one external macroeconomic variable responsible for

the dependence among bonds. One useful formula which will frequently return throughout the entire

section is the Total Probability Rule. By applying it to our case, we find that the default probability

of company i is such that

P (Yi = 1) =

∫
Dom(Ψ)

P (Yi = 1|Ψ = ψ) · P (Ψ)dψ (6.8)

here in the case of an external factor continuously distributed. From Equ. 6.8 follows that:

P (Yi = 1) = E[P (Yi = 1|Ψ)] = E[p(Ψ)] (6.9)

6.2.1 Exchangeable Bernoulli Mixture Model

A farther simplification occurs when the variable Yi modeling the bonds are considered exchangeable;

this means that the conditional probability of default pi(ψ) is the same for every bond. Having a

homogeneous group of bonds suggests that we are no more interested in knowing which firm defaults,

but the number of firms defaulting in the portfolio. To count the number of default obligors at

maturity time T we define a new random variable:

N =
n∑
i=1

Yi (6.10)

Following McNeil et al. (2005) we introduce a simpler notation to indicate the default probabilities

which is worth for all the Exchangeable Mixture Models and not only for the Bernoulli’s one.

• Probability that bond i,∀i defaults:

π := P (Yi = 1) (6.11)
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• Joint probability that k bonds default together:

πk := P (Y1 = 1, · · · , Yk = 1) k < n (6.12)

Given these ingredients, since we are working with exchangeable variables, Equ. 6.5 becomes:

ρY = ρ(Yi, Yj) =
π2 − π2

π − π2
(6.13)

whereas the conditional probability that the bond i defaults after the realization of the exogenous

factor ψ (Equ. 6.6) changes into: P (Yi = 1|Ψ = ψ) = pi(ψ) = p(ψ) where we neglected the subscript i

since we are considering exchangeable rvs. To further simplify, the conditional probability of default,

which is a function of the exogenous rv Ψ, is defined as a new rv, called Q.

Q := p(Ψ) with df G(q) (6.14)

Then we have:∑
∀k-combination

P (Y1 = 1, Y2 = 1, . . . , Yk = 1|Ψ = ψ) = P (N = k|Q = q) =

(
n

k

)
qk · (1− q)n−k (6.15)

meaning that, conditional on Q = q, the number of defaultable bonds N is a rv distributed according

to a binomial with parameters n and q. Regarding instead the probability density function of the

number of defaults in the portfolio, it can be found by integration over all the possible realizations of

the external factor as follows

P (N = k) =

(
n

k

)∫ 1

0
qk · (1− q)n−kdG(q) (6.16)

With the change of variable displayed in Formula 6.14 and thanks to Equ. 6.9, the single and joint

probability of default (defined in Equ. 6.11 and Equ. 6.12 respectively) simplify:

π = P (Yi = 1) = E[Q] ∀i ∈ {1, . . . , n} (6.17)

πk = P (Yi1 = 1, . . . , Yik = 1) = E[Qk] {i1, . . . , ik} ⊂ {1, . . . , n}, 1 < k ≤ n (6.18)

6.2.2 Case study: Beta mixing distribution

Below, the case of a One factor Exchangeable Bernoulli Mixture Model is further investigated. Thus,

we consider a collection of bonds which belong to the same category, for instance, all labelled as green.

Then, given its handiness, we choose a Beta mixing variable Q, i.e with G(q) ∼ Beta(α, β). Indeed,
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leveraging on its recursion properties, as shown in McNeil et al. (2005), one can get interesting results.

Both the single and joint default probabilities are easily computable

π = E[Q] =
α

α+ β
(6.19)

π2 = E[Q2] =
α(α+ 1)

(α+ β + 1)(α+ β)
= π

α+ 1

α+ β + 1
(6.20)

as well as the default correlation

ρ =
var[Q]

E[Q](1− E[Q])
=

1

α+ β + 1
(6.21)

Now that we have all the elements to proceed we aim to inquire the connection between the parameters

proper of the mixing distribution and the correlation, providing an original interpretation. We start

by showing how the Beta probability distribution function changes while we tune its parameters α

and β. In Fig. 6.1 we just change α whereas β is considered fixed at the value of 1.5. One can notice

that by increasing α the biggest portion of the probability density moves more and more to the right,

i.e. towards 1. This means that high values of α lead to high conditional default probability q. On the
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Figure 6.1: Probability density function of the mixing variable Q. Every curve refers to a
different value for α while β remain fixed and equal to 2

other hand, by fixing α and varying β the density would be shifted toward zero. Similarly, a mixing

distribution with a high β corresponds to a situation where the conditional probability of default is

very low. One can question the reason why diminishing α and β we get a higher correlation. One
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answer can be found by looking at Equ. 6.19 and 6.20: in the limit of α and β tend together to

zero, it follows that π2 −→ π, because both α and β are negligible with respect to 1 in the parenthesis

both in the numerator and in the denominator. This means that it does not matter how many bonds

fail. Being in the limit perfectly co-monotonic, a portfolio formed by only one bond on which the

investor put all her wealth behaves exactly as a diversified portfolio of n bonds. This implies that if

one bond defaults all the bonds will default too and this happens with probability E[Q]. Whether a

large correlation is attainable when the Beta seems like a Bernoulli with mean 0.5 leads us to relate

the correlation to the variance of the mixing distribution. It appears that the higher is the variance

of Q, the largest the correlation. Indeed, a Bernoulli with mean 0.5 is the case having the largest

variance.

Figure 6.2 shows how the correlation and the unconditioned default probability change as α and

β varies. Looking at the full line displaying the behavior of the correlation, one can notice that,
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Figure 6.2: Dependence between correlation, single probability of default and the parameters
of the mixing distribution

inverting α and β the graph for the correlation would be the same since α and β are symmetrical in

Equ. 6.21. Besides, since the distributions with both α ≈ β << 1, as said, are the ones having the

highest variance, the correlation takes there the highest value and then decreases as α or β increase.

The lower bound for ρ is indeed met when both α and β tend to∞. A Beta distribution with both its
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parameters very large gathers the density around a single point which is the mean value of Q, which

leaves no more space to uncertainty. Therefore π = P (Yi = 1) = P (Yi = 1|Q = q) = q. Being only

one scenario attainable the default probability conditional to that scenario coincides exactly with the

unconditional one. The external factor does not provide us with more information about default and

does not result in a shock on the default probabilities. Since we guess that the uncertainty carries the

correlation, the fact of not having here a correlation is therefore justified. Given that the probability

of an individual default equals to q, once I know π the bonds in the portfolio are just i.i.d. random

variables. For what concerns the dashed curve, i.e. the ones related to the probability of default, we

see that, as expected, the probability of default increases dramatically from zero to a non-zero value

increasing α. This is expected behavior since the α parameter for the Beta distribution drives the

probability density towards high value for Q, which corresponds to bad states for the firm values. As

further evidence of what has been said above, we see that when both parameters go to zero with the

same rate, the probability of default is exactly 1/2, equally balanced between the worst-case scenario

(with q = 1) and the most desirable one(with q = 0). On the other hand, one can see that taking α

fixed, the correlation grows always of the same amount while β becomes bigger. Except for β = 0.01,

which makes sense since corresponds to a probability density concentrated around 1, whichever value

α takes.

6.2.2.1 Handling the Loss distribution

As mentioned at the beginning of this section, with the Beta distribution one can analytically find the

portfolio losses distribution

P (N = k) =

(
n

k

)
B(α+ k, β + n− k)

B(α, β)
(6.22)

where B(α, β) denotes the Beta function. Looking at the graphs of the probability density function of

the losses (Figure 6.3 and 6.4) we see that the curves follow perfectly the ones in Figure 6.1 (i.e. related

to the probability distribution of Q). Given a set of Beta opportunities, the shape of the unconditional

probability density function of losses is determined by how the probabilities of default of a single firm

conditional to a scenario q distribute, while the Beta distribution is changing. Therefore, selecting α

and β for the variable describing the factor, we are choosing the distribution of the portfolio loss.
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Figure 6.3: Beta-Binomial probability density function, with β = 1.5 and α < 1

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

Figure 6.4: Beta-Binomial probability density function, with β = 1.5 and α > 1
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Additionally, inspecting the cumulative distribution functions behaviour, one may see a relationship

of first order stochastic dominance (FSD) among the Beta distributions at fixed β (here equal to 1.5),

as displayed in Figure 6.5. In particular, the function with the biggest α, the yellow one, dominates

the others. Moreover, a relationship of FSD can be defined also between the distribution having

α = 1.5 and fixed whereas β varies (see Figure 6.6). Notice that, here, the function which dominates

the other corresponds to the best portfolio, which is foreseen to suffer fewer losses. Even it may seem

in contradiction with the discussion at Chapter 3, it is not since here the random variable Yi = 1

indicates default while in Chapter 3 the analysis is made by considering the portfolio payoff. Under

this perspective, here, one should prefer the dominated distribution rather than the dominant one.

The fact that the dominate function is the less risky is supported also by computing the c-quantile

of the different loss distribution by varying the scenario. Notice that here we use the notation of c-

quantile rather than the α-quantile to avoid blending in with the α parameter of the Beta distribution.

We consider then c = 10%, meaning that with the 10% of probability, the portfolio can suffer a total

number of defaults bigger than the preimage of 1− c, represented in the figures by a gray dashed line.
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Figure 6.5: Beta-Binomial Cumulative distribution function, with β = 1.5 fixed and α variable
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Figure 6.6: Beta-Binomial Cumulative distribution function, with α = 1.5 fixed and β variable
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Concerning the correlation, as one can guess looking at Figure 6.7 that it does not provide an

univocal rule to determine the shape of the loss distribution. Indeed, the two charts compare two

portfolio with an expected number of losses totally different. The right graph is a super-safe portfolio,

while the left one is dramatically bound to fail. This is caused by the fact that Equ. 6.21 is symmetric

and thus it is as not considering α and β as two separate parameters but as only one. The correlation

is not influenced from the outcomes of the exogenous factor itself but from the effect it provokes on the

default probability. Analyzing deeper Figure 6.7 we see that for α > β the probability density is peaked
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Figure 6.7: Symmetry of the correlation: probability density function of the portfolio having the
same ρ = 0.43, but with α and β reversed.

on the value k ' n, which means that it is more probable that the bonds default all together than to

default individually or in small groups. This makes sense since if we plot the mixing distribution g(q)

with those values for α and β it is clear that for α, β < 1 and α > β the default probability of a single

variable after the realization of the external factor has a higher peak near q ' 1 than near 0. Quite

the opposite occurs in the specular case: peak on q ' 0 and hence a higher probability that the joint

of the portfolio is unbalanced towards k ' 0. However, the values reached by the peaks in both plots

are very small. This is because the probability of the portfolio is nothing more than a beta-binomial

distribution spread on a domain [0, n], with n number of bonds in the portfolio, which is n times the

original one.
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Like many other mixing distributions, the Beta belongs to a two-parameter family. So, to specify

entirely the model, we can either fix the default probability π and the default correlation ρ or equiv-

alently the first two moments of the mixing distribution π and π2 (see Equ. 6.11 and 6.12). Setting

the correlation ρ and the probability of a single bond defaults π allows us to choose values that have

a clear and well-defined meaning, compared to setting α and β, which might see more like two empty

parameters. In this last paragraph, we wish to point out the effect of the external variable on the total
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Figure 6.8: Comparison between Beta-Binomial(ρ 6= 0) and Binomial(ρ = 0)

loss distribution. Figure 6.8 shows two curves: the blue curve corresponds to a Beta-binomial portfolio

loss distribution in case of a single probability of default π = 0.3815 and a correlation of ρ = 17513; on

the other hand, the red one represents a Binomial density function with n bonds and average in n · π.

The red curve draws the distribution of bonds once the external factor is known, which corresponds

also to the loss distribution with ρ = 0. The red curve, being much steeper than the blue one, tells

that the portfolio will suffer losses ranging from 20 to 60. It is evident that, although the correlation

is very small, the shape of the unconditional distribution (the blue one) flatten, and the portfolio has

a non zero probability to incur any losses in the interval varying from 0 to 90. The fact that the range

becomes broader increases the uncertainty on the effective loss of the portfolio, and lowering the peak

of 75%. Not knowing the distribution of the outcome therefore leads to a correlation that leaves much

more uncertainty about the performance of the portfolio at maturity.
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6.2.3 Numerical Evaluation of the Correlation caused by the Common Factor Ψ

The Mixture Model is based on the assumption that correlation across obligors in credit events is

driven by a common dependence on a set of systematic risk factors. In this section, we examine this

statement via numerical simulation. We select two bonds from a portfolio of exchangeable bonds. We

consider then that, depending on whether or not an external event takes place, the distribution of

returns has a particular shape. Setting of the problem:

• Two homogeneous bonds: let consider for instance two green bonds.

• The Exogenous factor is a binary random variable. We imagine that this factor correspond to a

Climate Policy or Agreement similar to the Paris Agreement; for this reason we will call it PA.

Thus, the old Ψ can take two values and we call it PA. If PA = 0 the agreement is not signed,

whereas PA = 1 means that the agreement is signed. Depending on the value taken on by PA,

the scenario changes. The probability density function which models the bond’s return changes

according to PA too.

• We consider two Scenarios, called HIGH or LOW depending on whether the mean of the dis-

tribution of returns is high (near 1), meaning agreement signed or low (near 0), agreement

unsigned.

• The Probability that a bond defaults Conditional to the external event is obtained throughout

a threshold on the distribution of returns.

• The Probability density function of the Returns conditional to the external event is supposed

to be a Beta with parameters α(PA) and β(PA). According to which scenario is realized, the

Beta distribution is more flatten to the right or to the left. Thus, the Beta models the return,

in a sense that given the scenario we know precisely if the variables are extracted from a low or

high mean distribution.

• The Beta distribution of returns may be envisioned as representing the health state of a firm.

• The Paris Agreement is signed with probability prealized, which can be seen as the bookmakers’

quotation on the probability with which the event may or may not happen.

• We call XMixed and YMixed the two random variable unconditional to the external factor, while

XLOW /YLOW and XHIGH/YHIGH are the variables, knowing which scenario is realized. The

“Mixed” variables, i.e. the ones which are not conditional, are created mixing HIGH and LOW

with a proportion imposed by prealized.
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• To get from the distribution of the returns the Number of bonds that Default one can use the

aforementioned threshold. This means that all the values of the returns below than a certain

fixed threshold are considered as default, i.e. Y = 1, whereas the ones above take Y = 0.

The numerical simulation provide us a proof for our intuition: the correlation between XMixture

and YMixture arises because every vectors’ element depends on the outcome of PA, which given its

uncertainty, contains some risk. Playing with the free parameters of the simulation, first of all, one

can see that the correlation changes while prealized is tuned. In particular, it reaches the maximum

when prealized = 1
2 . This condition can be compared to the one related to the Beta distribution having

maximum variance, and therefore maximum correlation. Having two equiprobable scenarios means

that the uncertainty and unknown on which scenario dominates increase, which leads to a larger

correlation between the outcomes. Conversely, if the bookmakers know, with probability almost 1, if a

generic Climate Policy will be signed or not, there is no more uncertainty about which scenario is full-

filled, and thus the impact on the bonds’ returns is known too. Secondly, the correlation is even more

influenced by the “severity” of the scenario, i.e. how bad is the scenario labeled as LOW and good

the scenario HIGH. The more the forecasts on the distribution of returns conditional to a scenario (i.e.

the beta distributions) are different, the higher the correlation between the bonds. Evidence of this

can be seen comparing Figure 6.10 with 6.12. Another way through which the value of the correlation

may be explained is by looking at the definition of Pearson’s linear correlation coefficient. One can

see that (XMixture − µX)(YMixture − µY ) is positive if and only if both XMixture and YMixture are on

the same side of the respective mean values. Figure 6.9 corresponds to a correlation of 0.75 between

the two green bonds. This number makes sense since most of the points stay in the top-right corner

or the bottom-left one, and represent values of returns that are respectively jointly above or below

the average. Thus, ρ > 0 whether Xmixture and Ymixture take simultaneously values that are larger or

smaller than the respective mean. On the other hand, ρ < 0 if when Xmixture is higher than its mean,

Ymixture is lower. Moreover, the higher is the trend to have the same behavior (both above and below

or one above e the other below) bigger is the absolute value of the coefficient. Concerning the case of

ρ = 0, as we can see from Figure 6.11 the points seem randomly scattered over the entire plane.

6.2.3.0.1 Testing with Negative Correlation In this paragraph we briefly display the case of a

couple of non Exchangeable bonds. The purpose is to test the simulation even for a non homogeneous

situation. This means that we are dealing with one brown and one green bond. Hopefully, the

introduction of a Climate Policy should influence positively the green bond and more negatively the

brown one. In the simulation, we model the carbon-intense bond by the variable XMixture. Differently

from before, for the brown bond, to an unsigned agreement is associated with the high scenario (thus

a high probability to have a higher return), while the probability conditional to the sign of the Climate
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agreement is defined by the low scenario. The last two figures (Figure 6.13 and 6.14) represent precisely

two bonds negatively correlated.
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Figure 6.9: Visual representation of Default correlation between two homogeneous bonds,
highly-positive correlated.
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Figure 6.10: Comparison between single default probabilities: (Red curve) conditional to the
high scenario, (Blue curve) conditional to the low one, (Dashed curve) with the scenario unknown.
ρ ≈ 0.75, the scenarios do not overlap.
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Figure 6.11: Visual representation of Default correlation between two homogeneous bonds,
weakly correlated.
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Figure 6.12: Comparison between single default probabilities: (Red curve) conditional to the
high scenario, (Blue curve) conditional to the low one, (Dashed curve) with the scenario unknown.
ρ ≈ 0.09, the scenarios overlap.
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Figure 6.13: Visual representation of Default correlation between one green and one brown bond,
hence negatively correlated.
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Figure 6.14: Comparison between single default probabilities: (Red curve) conditional to the
high scenario, (Blue curve) conditional to the low one, (Dashed curve) with the scenario unknown.
ρ ≈ −0.62, the scenarios do not overlap.
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6.3 Asymptotic result for Large Portfolios Loss distribution

We now present some of the most remarkable asymptotic results for large portfolios in One factor

Bernoulli Mixture Model. The derivation of these results is available in the paper of Frey and McNeil

(2003). The authors provide a tool to evaluate approximately the credit loss distribution in a large

portfolio of bonds or of other securities. In particular, the crucial point is that the tail of the loss

distribution is basically driven by the tail of the mixing distribution. Leveraging on this, we aim

at finding its implication on the optimal portfolio allocation. In particular, we first pursue the link

between correlation and loss distribution, and then we try to underpin the evidence that the stronger

the correlation, the lesser the benefit of diversification, which we studied, although considering only

two bonds, in Chapter 3 of this work.

Referring to Frey and McNeil (2003), we start by defining the asymptotic conditional loss function,

i.e. the loss that on average the portfolio can incur in the n (number of bonds in the portfolio) large

limit. To do so, we need first to define the loss of a single firm Li as the product between the positive

deterministic exposure ei, which refers to the amount of money that the investor has invested in a

particular security, the corresponding default indicator Yi and the percentages of losses related to the

company i, given that default occurs δi. In this framework the loss of portfolio of size n is given by

L(n) =
∑n

i=1 Li, where Li = eiδiYi is the of a single firm. This sequence is assumed satisfying a set of

assumptions,

[A1] li : R→ [0, 1]|Liare independent if conditional on ψand with mean li(ψ) = E(Li|Ψ = ψ)

(6.23)

[A2] ∃C <∞|
m∑
i=1

ei
i

2
< C ∀m (6.24)

Definition 4. [A3] The Asymptotic Conditional Loss Function is a function l̄ : Dom(Ψ) −→ R+ such

that

lim
n→∞

1

n
E[L(n)|Ψ = ψ] = lim

n→∞

1

n

n∑
i=1

E[Li|Ψ = ψ] = lim
n→∞

1

n

n∑
i=1

li(ψ) = l̄(ψ) ∀ψ ∈ R (6.25)

where we denotes the function li(ψ) : R −→ [0, 1] as li(ψ) = E(Li|Ψ = ψ). Besides, one can notice that

the case of LGD (Loss Given Default) of 100% and bond exposure 1 implies having Li = Yi, from

which it follows li(ψ) = P (Yi = 1|Ψ = ψ) = p(ψ) ∀ψ.

Besides, we consider a one-dimensional mixing variable Ψ with distribution function G(ψ). Then

we assume that the conditional asymptotic loss function l̄(ψ) is strictly increasing and right continuous
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and that G is strictly increasing at qc(L
(m)), i.e. the quantile of the distribution of Ψ. Then:

lim
n→∞

1

n
qc(L

(n)) = l̄(qc(Ψ)) (6.26)

To ensure that the assumption on the monotony of l̄ makes sense, we need to assume that low (high)

values of Ψ correspond to good (bad) states of the world, with conditional default probabilities and

losses given default lower (higher) than average. Therefore, from Equ. 6.26 follows that the tail

of the portfolio loss distribution in the case of a large portfolio is determined by the tail of the

mixing variable. Remember that the quantile function for a continuous random variable is the inverse

distribution function. Saying that the c-quantile = ψ̂ means that, with a probability of c%, the

portfolio may incur in a loss bigger than ψ̂. Thus, a bigger c-quantile means a fatter tail and then

a deeper loss. One easy example is the case of exchangeable variables with mixing distributions

Gi(q) = P (Qi < q), i = 1, 2. where of G1 has a heavier tail than G2; by consequence it is reasonable

to expect that the losses are large for the model 1 rather than the 2.

6.3.1 Tie together Correlation and Loss distribution

6.3.1.1 Link between Correlation and Moments of the distribution

For what concerns how the correlation and the loss distribution are linked, we start leveraging Equ.

6.21, defining the correlation in case of an Exchangeable Bernoulli Mixture model and reported here-

after:

ρ =
var[Q]

E[Q](1− E[Q])
=

var[p(Ψ)]

E[p(Ψ)](1− E[p(Ψ)])
=

σ2

µ(1− µ)
(6.27)

The equation envisages a relation between the correlation coefficient, the mean of the distribution of

p(Ψ) (which looking at Equ. 6.17 corresponds also to the unconditional probability distribution of

a single bond) and the variance of the mixing distribution. We see that any value in [0,1] can be

obtained by a suitable choice of the parameters characterizing the mixing distribution. No negative

value are allowed since the variables we are considering are exchangeable, thus they belong to the

same category as well as they react in the same way to the external factors.

In particular, ρ = 1 is obtained when π = π2, that is when the probability of default of one bond

is equal to the joint default probability of two firms taken together, and the distribution of Q has two

peaks: one in 0 and the other one in 1. Having a correlation of 1 under such conditions makes sense

since, π = π2 models a situation where, if one firm defaults, then necessarily two firms taken together

will also default. The mixing distribution is not concentrated around a single value, but is has two

peaks at the extremities of the domain. It contains maximal uncertainty about the outcome of the

scenario, given that the variance takes its maximum value. Once the bad scenario is realized, the
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probability to see Yi defaulting is 1, whereas no defaults are registered if the good scenario is attained.

Regarding the case of ρ = 0, it arises when all the density of the distribution of Q is concentrated

around a single point that coincides with the mean π. Intuitively, this means that there is one and

a scenario available, with probability π = p(Yi = 1|Ψ = ψ). Therefore, since Equ. 6.11 is true only

if p(ψ) = 1 the outcome of the external macro factor is known and no more uncertainty derives from

the outcomes of the scenario since basically only one of them can exist. Similarly, relying on the

assumption grounding the model, if π = p(Yi = 1|Ψ = ψ) is true and Yi = 1|Ψ = ψ are independent

random variables, then the independence structure is transferred back also to the Yi non conditional

and the correlation becomes zero.

Now, looking at equation 6.27 one can question how the correlation changes according to a variation

of either the variance or the mean. In the first place, the variance is linked to the mean by means

of its domain. Indeed, the standard deviation cannot exceed the distance between the mean and the

extremities of the set of departure of µ which, corresponding to the expected value of a probability,

is bounded between 0 and 1: σMAX = min{µ, (1 − µ)}. Therefore, σ2
MAX = min{µ2, (1 − µ)2} and

then:

0 ≤ σ2

µ(1− µ)
≤ min{µ2, (1− µ)2} (6.28)

0 ≤ ρ ≤ min
{

µ

1− µ
,
1− µ
µ

}
(6.29)

It follows, as expected, that the maximum of the correlation may be reached only when µ = 1
2 .

For a generic distribution of Ψ and a generic functional form of p, specifying the mean is not sufficient

to fully fix the variance. Considering the case of the mean µ fixed to a specific value, what we know

is that the variance is bounded by σMAX . Then, one can consider the correlation as proportional

to the variance. A large correlation can derive from a high variance, meaning that the probability

of one default conditional to a particular realization (let’s call it ψ1) of exogenous factor Ψ has the

same likelihood as the probability conditioned to all the other possible outcomes ψi with i 6= 1. The

correlation is driven by the uncertainty in the outcomes of Q. This can be somehow related to the

concept of mean preserving spread and other risk measure treated in Chapter 3. The portfolio is

riskier if the variance is high, at equal average value.

Analysing the correlation by using the variance as a floating parameter is found to be mathematically

easier to handle than the one with the mean. For this reason, in the next, we consider the mean only

to set an upper bound to the variance. One can see from the Figure 6.15 and 6.16 that, as expected,

the variance and the standard deviation take the maximum value exactly where also the correlation

reaches its maximum value. In those figures, we have on the X and Y axis the two parameters of the
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Beta distribution α and β respectively. The height corresponds to the default correlation coefficient

between two firms, whereas the color bar represent the standard deviation or variance. The smallest

ρ is reached when α = β = 5, i.e. the maximum value. We agree with this result since increasing α

and β the function squeezes around the mean (which is 1/2 every time α = β), meaning that the

exogenous factor can take just one value, and the correlation stretches more and more to zero. On

the other hand the maximum value of ρ is attained when both α and β tend to zero. As expected

that point corresponds also to the one having maximum standard deviation as well as variance, and

therefore the biggest uncertainty. Looking at the Figure 6.16, the colour scheme is more pronounced,

(as is expected given the square root) allowing to highlight some points in the larger blue zone. In

particular the points (α, β) = (5, 0), and (α, β) = (0, 5) i.e. those at the extremes of the domain

having an average value very close to the extremities clearly have the smallest variance.
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Figure 6.15: 3D representation of the relationship between Beta parameters, Default correlation
and Variance

Figure 6.16: 3D representation of the relationship between Beta parameters, Default correlation
and Standard deviation
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6.3.1.2 Link between Moments and c-quantile

The next step is understanding how the mean and the variance are linked to the c-quantile of the

distribution. There exist different methods in literature which compare empirically estimates for mean

and standard deviation, starting from the knowledge of the quantiles. We report in the following the

Extended Pearson-Turkey Method. This method is a three points approximation for continous random

variables having a two-parameter distribution. The Pearson curves are a convenient example of a

two-parameter family. Since a wide variety of distributions are close to a two-dimensional manifold,

those curves are suitable to approximate all these diverse-appearing distributions (Pearson and Tukey

(1965)). To provide the estimate of mean and variance three quantiles (equal to 0.05, 0.50 and 0.95)

have to be specify. Here the subscript correspond to a = 1−c since the quantile are computed starting

from the left tail.

µ = 0.630q0.5 + 0.185(q0.95 + q0.05) (6.30)

σ2 = 0.630(q0.5 − µ)2 + 0.185[(q0.95 − µ)2 + (q0.05 − µ)2] (6.31)

where the quantile q0.95 having a = 0.95 corresponds to the c-quantile representing the fact that with a

probability of 0.05, a loss larger than qc itself can incur (indeed, a = 0.95 =⇒ c = 0.05). What appears

clear is that, supposing to know q0.5 and q0.05 and to take the mean fixed, then the relation between

the variance and the c-quantile with c = 0.05 has a parabolic trend: σ2 = cost.+ q2
c − 2µqc. Since we

are looking for a quantile which is likely above µ, one can notice that the quantile is proportional to

the variance, which confirm our previous intuition.

6.3.2 Diversification

Equation 6.26 envisages the behaviour of the loss distribution of the entire portfolio, with losses

following a one factor Bernoulli Mixture model. Indeed, the quantile of the loss distribution

qc(L
(n)) ≈ n · l̄(qc(Ψ)) (6.32)

increases linearly in the size of the portfolio n. This means that when the portfolio becomes asymp-

totically large the diversification has no further effects. Usually, increasing the number of securities in

a portfolio diminishes the risk and then the losses. When n is large one cannot improve the situation:

the losses are proportional to the size times a function which is constant once the scenario (i.e. the

distribution of Ψ or Q) is known. One can achieve the same result by considering Equ. 6.25 as an

equation describing the loss in a 1/n-portfolio. Given the linearity of the expected value, we can take

the 1/n inside and ri-define the exposures ei, hidden in Li as e′i = ei
n . Now, if we consider the correla-
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tion fixed and positive, by increasing the number of bonds, we are reducing the individual investment.

In other words, what we are doing is to further diversify the portfolio. However, the portfolio loss is

not subject to any kind of risk-reduction: even with positive correlation, in the limit of large n having

one bond more does not improve the portfolio reducing its c-quantile. A different interpretation of

the Equ. 6.32 heads to find a quantitative connection between the correlation and a very diversified

portfolio (i.e having n large). Imagine to fix n, but to increase the correlation. We notice that, as

shown in the previous section, increasing ρ the c-quantile enlarges and, by consequence, the tail of the

loss distribution swells. Considering the same level of confidence c, but increasing ρ, implies, thus, a

larger quantile, meaning that the portfolio suffers a greater loss than with a lower correlation. Hence,

when the correlation grows up at fixed n, having a diversified portfolio loses any added-value.
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6.4 Effect of a Policy shock on a portfolio: a Mixture Model inter-

pretation

Finally, we simulate, throughout this simple exercise, how a Climate policy shock can impact the

portfolio risk, in particular, analyzing the consequences on the default probability of the single bonds.

The setting of the exercise follows the one at section 6.2.3; the only difference here is that we consider

a Partially-Exchangeable Model formed by two categories: Green and Brown. For sake of simplicity

we take one bond for each group. Then Setting of the problem:

• Two different bonds: one green and one brown.

• The Exogenous factor is a binary random variable, modeling a Climate Policy.

• We consider two Scenarios, called greenish and brownish. The effect of this two scenarios on

bonds’ returns is different depending on the “color” of the bond.

• With this choice of scenario, the correlation comes to be negative, which in general is not a

worrying result as there might be possible that the correlation may drop even under zero, in

particular when we deal with securities of different nature.

• The Probability that a bond defaults Conditional to the external event is obtained throughout

a threshold on the distribution of returns. Below the threshold, it is considered default.

• The Probability density function of the Returns conditional to the external event is supposed

to be a Beta with parameters α(Ψ) and β(Ψ). According to which scenario is realized, the Beta

distribution is more flatten to the right or to the left. The greenish scenario is imagined to

favor more the green than the brown; for this reason for the green bond the greenish scenario is

positive and results in favorable states, On the other hand, for the brown the greenish scenario

increases the probability of the bond to default. The situation is reversed is case the brownish

scenario is realized.

• The outcome of the Policy is not green with the pbrownish% of probability.

• The Yellow color should represent the current situation of the individual bonds, since it is the

unconditional behaviour.

In the following, exploiting this simple setting, we test the sensibility of the parameters under analysis:

α and β of the two scenarios, the threshold establishes under which return value (or health state of

the firm) there is the default. Different values of the parameters are assigned in each of the five
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cases, to investigate which and how the other elements of the model are affected, i.e. the correlation

among the return, the correlation among the Bernoulli, and the probability of default. The equations

underlying this simulation follow the ones presented at the beginning of this chapter, but generalized

to the Partially Exchangeable case. Although it may seem quite self-explanatory, with the subscript

G we refer to the green bond, while B represents the brown one. The exogenous factor causing the

shock is a binary variable: Ψ = G or Ψ = B, with probability pgreenish, pbrownish, respectively. As

said, the Beta distributions, in this section, are exploited to find the effective Bernoulli probability of

default. YG = 1|Ψ = G means the event: default of green bond conditional to the realization of the

greenish scenario.

P (YG = 1|Ψ = G) = pG(Ψ = G) (6.33)

then applying the threshold threshold and counting the number of points fall below one get the

Conditional Default probability p<tG . The same procedure is repeated for all the other combinations

P (YG = 1|Ψ = B) = p<tG (Ψ = B) (6.34)

P (YB = 1|Ψ = G) = p<tB (Ψ = G) (6.35)

P (YB = 1|Ψ = B) = p<tB (Ψ = B) (6.36)

Thus, for instance considering the individual default we have:

P (YG = 1) = P (YG = 1|Ψ = B) · P (Ψ = B) + P (YG = 1|Ψ = G) · P (Ψ = G) (6.37)

P (YG = 1) = p<tG (Ψ = B) · pbrownish + p<tG (Ψ = G) · pgreenish (6.38)

Then to compute the correlation inter-group, i.e. among one green and one brown, one has to compute:

P (YB = 1, YG = 1) = E[P (YB = 1, YG = 1|Ψ)] (6.39)

P (YB = 1, YG = 1) = P (YG = 1|Ψ = B)P (YB = 1|Ψ = B) · P (Ψ = B)+ (6.40)

P (YG = 1|Ψ = G)P (YB = 1|Ψ = G) · P (Ψ = G)

P (YB = 1, YG = 1) = p<tG (Ψ = B)p<tB (Ψ = B) · pbrownish+ (6.41)

p<tG (Ψ = G)p<tB (Ψ = G) · pgreenish

Here again the limitation on the bounds of the correlation a has to be taken into account. In the

Figure below the ρ displayed in the figure is correlation between the variable unknown before applying

the threshold. However, the correlation among the Bernoulli is shown in the table.
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CASE AND
RELATIVE
FIGURES

α param. for
brownish sc.
and green
bond

default corre-
lation

threshold pbrownish

0 Fig.6.17-6.18 4 -0.39 0.5 0.3
1 Fig.6.19-6.20 2 -0.37 0.3 0.65
2 Fig.6.21-6.22 2 -0.53 0.5 0.65
3 Fig.6.23-6.24 2 -0.58 0.5 0.3
4 Fig.6.25-6.26 2 -0.14 0.1 0.3

Table 6.1: Mixture Model to assess the effects of a Policy shock on a portfolio - Setting of
the Exercise

Case0 well represents the impact of a shock, but does not adequately capture the reality. Observing

real data, one can hardly think that today’s brown bonds can default with 0.5 of probability (honey-

colored column on the right of Figure 6.18) because of the unknowns about the future scenario. The

situation modeled is of a policy shock that 7 times out of 10 is achieved by favoring green investments.

This fact translates into a lower (but still high for securities) probability of default for green bonds,

precisely 0.2%. Case1 is linked to a more unprofitable situation for green bonds because the probability

of a greenish deal has dropped to 0.45 compared to 0.7 of Case0. Nevertheless, it reflects more the

actual situation as the probability of default is approximately the same for both brown and green.

This decrease is due to a lowering of the threshold from 0.5 to 0.3 and to an increase in the probability

of the brownish scenario to 0.65. To better evaluate the single parameters, we change only one at

a time, keeping the others fixed. This is what has been done from Case1 to Case4. From Case1 to

Case2 the threshold is the only parameter which increases. This implies an increase in the absolute

value of the correlation that can be explained by a shift of E[p<t(Ψ)] towards 0.5. So the question

about uncertainty comes back. The default probability also increases but is due to a greater width

of the default space because of the threshold. From Case2 to Case3, while the change in correlation

is considered negligible, favoring the greenish scenario increases the unconditional default probability

of brown bond, and diminishing the other one. Last, we inquire about changing the threshold but

having pbrownish fixed. What stands out moving from Case3 to Case4 is that the value for the default

correlation among the default indicators is increased. However, this should not be surprising since the

threshold drives the distribution of the exogenous factor. A lower correlation implies the existence of a

scenario such that conditional to that, the default is more probable than conditional to other scenarios.

To conclude, comparing the results, it emerges that the value of the probability distribution of the

scenarios (pbrownish/pgreenish) is what actually impacts the unconditional default probability of a single

bond. Besides, the correlation is more affected by how much the threshold is shifted to the right (or
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left). Indeed, it can be argued that the threshold in this experiment behaves like the distribution of

the mixing variable, in the case of an Exchangeable group at the beginning of this Chapter. However,

if before we had a Beta distribution, and therefore a continuous scenario, now we deal with a finite

number of scenarios, precisely two.
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Figure 6.17: Case 0 - Scenarios
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Figure 6.18: Case 0 - Default Probability shock
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Figure 6.19: Case 1 - Scenarios
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Figure 6.20: Case 1 - Default Probability shock
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Figure 6.21: Case 2 - Scenarios
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Figure 6.22: Case 2 - Default Probability shock
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Figure 6.23: Case 3 - Scenarios
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Figure 6.24: Case 3 - Default Probability shock
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Figure 6.25: Case 4 - Scenario
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Figure 6.26: Case 4 - Default Probability shock
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6.5 Model Limitations and Alternatives

In the context of Sustainable Finance, it is crucial to model future events characterized by uncertainty

to assess their impact on current events and trends. We wish to address this purpose by choosing

a model that allows us to obtain analytical results. One option is the Mixture Model, which has

been presented in this section. After having leveraged its useful properties, in the following, we show

some of its limitations. The first limitation of Mixture Model approach is a direct consequence of

the underlying basic hypothesis. The Mixture Model assumes conditional independence of defaults

given common stochastic factors. This means that once the exogenous factor is realized, defaulting

bonds are independent: the correlation is zero. Since we aim at studying how the correlation changes

depending on the severity of the scenario that appears, (think for instance to the agreement reached in

Paris in December 2015) the assumption of conditional independence is tightening for us. In the real

market, the correlation does not disappear after a climate-related event has occurred. Hence, with

this model, we can only study how the correlation arises from one or more exogenous factors and not

how it changes after the realization of those factors. The second limitation we faced is that a closed

mathematical form is obtainable only in the simplest case of a homogeneous, i.e. exchangeable, model.

Indeed, in the case of an Exchangeable Bernoulli Mixture Model, the default correlation takes values

between 0 and 1. This limits our freedom in the portfolio composition. As said, analytically we can

only address the situation of n bonds of the same color, which means belonging to the same category.

So, we are prevented from analyzing the correlation between two different bonds, let’s say one green

and one brown, born from the uncertainty outcome of an external factor. To manage this situation we

could exploit a partially-exchangeable model, where the bonds within the same exchangeable group

share the risk and behavior with respect to the scenario realized. However, this variation needs a

numerical simulation to be performed. Another difficulty arises when one has to grasp the identity of

the external factor. The model assumes the existence of a latent, unobserved variable that impacts

the distribution of the return of the assets in the portfolio. It may be a macroeconomic variable,

an indicator that influences the performance of the economy in general and which, depending on

its outcome, may produce a shock over the financial variables under analysis. Hence, being in the

Mixture model framework, we assume that the bonds are dependent only because influenced by the

same Climate policy or agreement (e.g. the Paris Agreement). However, although it seems a reasonable

choice, we have no evidence of that. This leaves open the possibility to make different choices and to

interesting research questions, that some recent articles have been started to address. In this regard,

we report some results of a study conducted by Broadstock and Cheng (2019). Even though not

exhaustive, it gives an overview of what are actually the macroeconomic variables that, belong their

analysis, cause most of the correlation between green and brown bonds. The authors first pursue to
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test if there exists some links among the estimated dynamic correlation patterns and the exogenous

factor. In particular, among these external factors they identified:

• changes in financial market volatility;

• economic policy uncertainty;

• daily economic activity;

• oil prices;

• uniquely constructed measures of positive and negative news-based sentiment towards green

bonds;

where each one has been represented by several benchmark indices. One of the most relevant results

for us regards the fact that from mid-2016 on, the macroeconomic variables OIL and ADS (that is a

measure of daily economic activity) start to affect more and more the correlation between green and

conventional bond price benchmarks. Moreover, another important point to clarify is what kind of

shock one can portray with this model. We may define shock in two ways: the common shock and

the idiosyncratic shock. We hypothesize that through the Mixture Model we can represent mainly

the latter: a shock defined as a deterministic event but how it is implemented and the reactions of

the stakeholders are uncertain and of different prominence. Through the Mixture Model, one may

not model a shock, understood as an uncertain event that might also not happen. For this reason,

trying to model an event such as the Paris Agreement may be done, but only under certain conditions.

Besides the incongruities for the correlation arise in the attempt of modeling the event “PA signed or

Not”, there is also the fact that “sign or not sign” means that the event may also not happen, which is

a perfect example of a common shock and as said cannot be tackle. Rather, the shock that can result

from an external event be seen as a variable that controls the performance of the economy, which can

be associated with the opinion of investors or economic policies and can result in idiosyncratic shocks

on the profitability of securities in the portfolio. One has not only to think of an event linked to

climate, but also of an international political event that affects the entire financial market, such as the

Brexit. The latter is a perfect example of a deterministic shock, that everyone knew it was coming, but

whose consequences caught unprepared the actors involved, generating idiosyncratic shocks. One last

detail concerning the fact that we have to make assumptions about the distribution of defaults that

may appear to come from above. As seen in the previous section, it was difficult to assign appropriate

values to α and β being that they seem more like two empty parameters. To tackle this problem, one

way can be exploiting a regression structure to study real market data in order to make a reasonable

hypothesis on that.
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In the following we show two Tables: in one we report the identified limitations and related effects,

in the other the advantages of the Mixture Model within our context.

Limitations Effects

Assumption of conditional independence. No analysis on how the correlation
changes according to an exogenous event.

Analytical evaluation only in the simplest
case of One factor Exchangeable Bernoulli
Mixture Model.

Less freedom in the portfolio composition.
We can only address the situation of n
bonds of the same “colour”, that means
belonging to the same category.

Existence of a latent, unobserved variable
that impacts the distribution of the port-
folio.

Difficult to give Ψ an identity. PA can-
not be the suitable choice since it is: too
less general; difficult making assumption
about the probability distribution of de-
fault conditional on PA; difficult assuring
that, conditional on PA, bond are inde-
pendent.

Shock, defined as uncertain event, is not
modelled. Shock happens, what is uncer-
tain are its implementation and the reac-
tions of the stakeholders.

If Ψ is deterministic, it does not model a
Yes/ No situation

Table 6.2: Limitations of Mixture Model method
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Opportunities

Easy way to approach a correlated portfolio linking the default correlation with an
exogenous factor.

Significant results find in the asymptotic limit: portfolio loss is driven by the tail of the
mixing variable; the effect of diversification is reduced

Numerically one can represent also an idiosyncratic shock, caused by the certain intro-
duction of a Policy whose effect are uncertain (see Section 6.4). It represents a super
simplified version of the reality, characterizing the economy trough two stages.

• Time 1: before the factor is realized;

• Time 2: after the realization of the factor; green and brown companies suffer a
productivity shock that is modulated by the outcome of policy introduced (ex-
ogenous factor). With shock in productivity we intend that the single probability
of default increase or decrease depending to the result of the factor.

Through statistical inference approach, one can exploit mixture model to fit data,
estimating the parameters of the distributions from which the data might come, as
well as the probability of coming from each of the mixed distributions. In this way,
important but undefined and unobservable variables, such as the already mentioned
state of the economy, may be quantified and estimated.

Table 6.3: Opportunities of Mixture Model
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Conclusions and Further Development

Managing the correlation is renewed to be a challenging task for the analytical investigation of portfolio

risk. In the present work, we investigated, throughout a probabilistic approach, the role of correlation

in current portfolio management. Among the methodologies used to model the dependence between

the financial contracts, we exploited the Copula function and the Mixture Model. In particular, in

Chapter 3 we tested the response of the optimal portfolio to different settings of portfolio param-

eters (correlation coefficient, default probability, and investor’s risk-tolerance). Then, in light of a

sustainable finance perspective, we inquired if a specific set of parameters could lead to a low-carbon

transition. Indeed, although the low-carbon transition is a hot topic on the international agenda, to

date, the status quo of investment portfolios is still largely focused on conventional assets, mainly

related to carbon-intense activities. Currently, since the investor with low risk-return profiles seems

to dominate the bond market and green contracts are seen as riskier, to invest in green securities

they require higher returns otherwise they are reluctant to invest. We modeled the bond as a binary

variable, assigning, while evaluating the graphs in Chapter 3, a higher probability of default to the

green bonds. The results of the simulations we carried out, shows that decreasing the level of cor-

relation between the bond outcomes leads to a shift in the optimal allocation from a less to a more

diversified allocation. Since green investments are often perceived as a novelty, which means higher

risk is attached to them, a change in correlation can thus turn to shift capital from brown towards

green projects, fostering the transition. The correlation among different securities could change due to

several factors; we focused on the impact that external events or policies could have on it. To this end,

in Chapter 6, we proceeded by exploiting the Mixture Model: the correlation comes again into play,

but it is driven by an exogenous macroeconomic variable. By the use of this method, the correlation

between bonds is introduced and controlled through an exogenous parameter, which describes multiple

future scenarios, and in a few circumstances, analytic results can be obtained. Among the hypotheses
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outlined we discovered that the exogenous shock impacts both the portfolio risk, varying the expected

losses, and the bond correlation. In particular, the correlation among an exchangeable (homogeneous,

e.g only green) group of bonds arises from the shape of the probability distribution of the default

conditional to the external factor. It does not have a strong dependence on the outcomes themselves

but on the effect these outcomes have on the probability of default. Modeling a heterogeneous group

(with both green and brown bonds) requires a numerical simulation since one cannot go further with

the analytical computation. In this case, the correlation between green and brown is influenced ex-

plicitly also on the probability distribution of the exogenous factor. Besides, we discussed also the

asymptotic limit of a portfolio with n→∞, proposing a way to link the correlation with the portfolio

loss throughout the external factor. Then we discussed the limitation of the model we faced and the

assumption we made to exploit the model. In conclusion, although little can be done analytically, it

is clear the importance of considering the climate risk in terms of financial risk as it would affect the

evaluation of the current investment portfolio, implying a different allocation. Future work can involve

a statistical analysis of financial data. Although current data is complex and fragmented, processing

market data is critical to figure out information on the actual value of the parameters involved. In

particular, it would be interesting to assess whether an indirect climate-related external event such as

the Covid-19 outbreak has been changing the dependence between green and brown bonds in a way

to facilitate the transition or make it harder to achieve. Similarly, a study comparing the different

shocks that have occurred in the economy (Paris agreement, Brexit, Covid-19) over the last 10 years

could be carried out in order to understand their impact on correlation and probability of default and

consequently on investments.
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