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Abstract

A data-set of 2251 songs released between 2020/01/15 and 2020/03/24 is analyzed
to formulate short and long term predictions of popularity using machine learning
techniques. These public data were collected from Spotify, the largest subscription
music streaming service with 96 million subscribers and 170 million users overall,
and from YouTube, one of the most popular online video-sharing platforms. The
first part of the work has a purely predictive character and makes extensive use of
machine learning, to solve classification and regression problems. In particular, we
detect the features which are the most informative for characterizing the Spotify
Popularity, an integer number in a range between 0 and 100 indicating the success
of the track inside the streaming-platform. Also, given a track and its related
video on YouTube, we build a neural network for inferring the number of views
at a given day taking into account all the information available from Spotify. As
last, the converse analysis is performed, i.e. the Spotify popularity is predicted
taking as input some of the YouTube statistics. Although machine learning models
achieve good performances, the brutal use of these algorithms does not allow to go
beyond the mere prediction. In the second part of the work, we then investigate the
interconnections present between the different time-series composing the data-set.
Thus, we quantify the amount of information transferred from the YouTube views
time-series to the Spotify popularity time-series, and viceversa. The final result
is a directed graph showing the flows of information between all the time-series
analyzed. The main achievements, as well as the drawbacks of the models adopted
are discussed.
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Chapter 1

Summary

In the last decade the transport capacity in the access networks to the Internet has
increased substantially, and streaming services are nowadays emerging faster than
ever. In 2006 YouTube, the well-known American online video-sharing platform,
was bought by Google for US $1.65 billion. In the same year the international
media services provider Spotify was founded. Both platforms offer a basic service
with advertisements and a premium package via paid subscriptions. One of the
pillars on which these streaming services are based is the system of advertising,
which values billions of dollars. In this setting, it is crucial to predict whether a
multimedia content will become successful, that is a measure for a product to reach
as many people as possible. Combining the increasing amount of data available
today, with the latest machine learning algorithms, it seems reasonable to try
predicting the main statistics associated to YouTube videos, like the number of
daily views, likes and dislikes.
The goal of this study is to understand to what extent such predictive task is
achievable, especially for the evolution of the Spotify Popularity - an integer index
varying in time ranging from 0 to 100 - and the number of daily views on YouTube.
Moreover, the use of machine learning techniques will enable the determination of
the most informative features for the binary classification popular vs. unpopular.
To this end, we first build a Random Forest model, able to classify if a track will
be more popular than the average. Secondly, we train Multilayer Perceptrons to
perform regressions and to understand if the info from Spotify are sufficient to make
predictions about the views on YouTube, and viceversa. Thirdly, we combine all
the information from the two streaming platforms to give long term predictions. As
we will show, even if it is possible to build models able to furnish some predictions
about the evolution of time-series describing the success of the music tracks on
Spotify and YouTube, it is not immediate to understand which are the drives and
the interdependencies between them. Therefore, in the second half of the work we
introduce the Transfer Entropy analysis and we apply it to build a directed graph,
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Summary

showing the flows of information between all the time-series present in the data-set.

The thesis is structured in six main chapters:

• Chapter 2: In this chapter we introduce the main music track data-sets we
use. Then, we describe all the features and information which are associated
to each track available on the Spotify platform. Finally, the data are explored
to provide insight on the main observables of interest.

• Chapter 3: We present a short and essential review of the state of art of the
machine-learning algorithms used in this work. We focus on the mathematical
definition of the algorithms, thus showing the metrics and the methods adopted
to quantify the quality of the classifications and regressions performed.

• Chapter 4: A short introduction of the main elements of Information Theory
is here provided in order to smoothly introduce Granger Causality and Trans-
fer Entropy. Here the main goals are to understand the analogies and the
differences between these concepts, and to understand how we apply them to
quantify the amount of information transferred between YouTube and Spotify
time-series.

• Chapter 5: In this chapter we compare Transfer Entropy and Granger
Causality on synthetic time-series already analyzed in the literature. We aim
at testing the code developed and getting acquainted with the results provided
from the causality inference techniques.

• Chapter 6 and 7: In these final chapters we apply all the tools developed
to the real time-series. The final goals are (1) to produce a heat-map and
the related graph showing the interdependencies between the time-series of
interest and (2) to understand which time-series have the strongest driving
influence on the others. All the results are commented and a final discussion
concludes the work.
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Chapter 2

Introduction to the data

The Internet’s capacity to reach millions of people around the world has brought
artists to take part in the streaming system. Today Spotify counts tens of millions
of music tracks, making the Swedish platform one of the most competitive reality
in its field[1]. Only a small minority of artists prefers to not be present in the
Spotify catalog, even if complaints about low revenues have not been absent in
the last years [2]. In fact, unlike physical or download sales, which pay artists a
fixed price per song or album sold, Spotify pays royalties based on the number of
artist streams as a proportion of total songs streamed. It distributes approximately
70% of its total revenue[3] to rights holders, who then pay artists based on their
individual agreements. Despite of the criticism moved by who argues that a fairly
renegotiation for the license deals is needed, the service offers to the paying users
a complete access to all the musical production on the platform. Users have also
the access to Playlist, i.e. a collection of songs of different artists. Playlists are
continuously updated by curators, and the success of tracks is also determined by
its presence (or absence) in the most popular playlists. There are teams all over
the world working on compiling Spotify playlists, using extremely sophisticated
information - e.g. how frequent a track is skipped, how many times a track is
listened to in its entirety, if it is added to the personal playlists of users, etc. - in
order to decide which songs must be replaced or added [4],[5].
Other parameters of interest to determine the global success of a track, and so the
economical business in the music industry, are the statistics related to the YouTube
platform. In the last decade we have assisted to a constant increase in the amount
of resource invested in the production of musical video, and streaming numbers
have became crucial to the pop music ecosystem as much as festival ticket sales [6].
In our analysis we have selected 134 popular playlists and we have built different
data-sets containing several info from 2251 songs that have appeared between the
15th January 2020 and the 24th March of the same year. The first data-set built
contains the following static features, which do not vary in time:
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• name: The name of the track;

• album_name: The name of the album the track belongs to;

• artist_name: The name of the artists/band associated to the track;

• disc_number: An integer number specifying the number of discs the album
is composed of [int];

• duration_ms: The duration of the track in milliseconds [int];

• explicit: A Boolean variable (True/False) indicating the presence of explicit
contents in the lyrics of the track;

• track_number: The number of the tracks inside the album [int];

• n_available_markets: The number of markets in which the track is avail-
able [int];

• album_total_tracks: The album total tracks [int];

• n_artists: The number of artists involved in the track [int];

• danceability: It describes how suitable a track is for dancing based on
a combination of musical elements including tempo, rhythm stability, beat
strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is
most danceable [float];

• energy: Energy is a measure from 0.0 to 1.0 and represents a perceptual
measure of intensity and activity. Typically, energetic tracks feel fast, loud,
and noisy. For example, death metal has high energy, while a Bach prelude
scores low on the scale. Perceptual features contributing to this attribute
include dynamic range, perceived loudness, timbre, onset rate, and general
entropy [float];

• key: The estimated overall key of the track. Integers map to pitches using
standard Pitch Class notation . E.g. 0 = C, 2 = D, and so on. If no key was
detected, the value is -1 [int];

• loudness: The overall loudness of a track in decibels (dB). Loudness values
are averaged across the entire track and are useful for comparing relative
loudness of tracks. Loudness is the quality of a sound that is the primary
psychological correlate of physical strength (amplitude). Values typical range
between -60 and 0 dB [float];

4



Introduction to the data

• speechiness: It detects the presence of spoken words in a track. The more
exclusively speech-like the recording (e.g. talk show, audio book, poetry),
the closer to 1.0 the attribute value. Values above 0.66 describe tracks that
are probably made entirely of spoken words. Values between 0.33 and 0.66
describe tracks that may contain both music and speech, either in sections
or layered, including such cases as rap music. Values below 0.33 most likely
represent music and other non-speech-like tracks [float];

• acousticness: A confidence measure from 0.0 to 1.0 of whether the track is
acoustic. 1.0 represents high confidence the track is acoustic [float];

• instrumentalness: Predicts whether a track contains no vocals. “Ooh” and
“aah” sounds are treated as instrumental in this context. Rap or spoken word
tracks are clearly “vocal”. The closer the instrumentalness value is to 1.0,
the greater likelihood the track contains no vocal content. Values above 0.5
are intended to represent instrumental tracks, but confidence is higher as the
value approaches 1.0 [float];

• liveness: Detects the presence of an audience in the recording. Higher liveness
values represent an increased probability that the track was performed live. A
value above 0.8 provides strong likelihood that the track is live [float];

• valence: A measure from 0.0 to 1.0 describing the musical positiveness
conveyed by a track. Tracks with high valence sound more positive (e.g.
happy, cheerful, euphoric), while tracks with low valence sound more negative
(e.g. sad, depressed, angry) [float];

• tempo: The beats per minuts (BPM) of the track [int];

• time_signature: An estimated overall time signature of a track. The time
signature (meter) is a notational convention to specify how many beats are in
each bar (or measure) [int].

In addition to these static features, a popularity index is associated to each track
and artist. It ranges between 0 and 100 and it varies in time. The algorithm used
by the streaming platform to compute the popularity indices is not public, but we
suppose to be strictly linked to the number of plays. Dedicated data-sets have been
created to daily store the the popularity indices, and to keep track of the number
of followers of the playlists and artists as they appear in the selected 134 playlists.
Finally, four more data-sets have been included to the analysis to keep track of
the numbers related to YouTube videos. For each track the YouTube statistics
of the associated video clip associated are recorded, by monitoring the number
of views, likes, dislikes and comments day by day. All the metadata, both from
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Spotify and YouTube, have been accessed through specific API web services, tools
that allow an automatic access to data. On the other hand, a sophisticated ad hoc
routine was realized to associate the correct YouTube video to a given track. After
searching the name of the track on the YouTube API tools, the most clicked video
is chosen to be the representative one. Our basic assumption is that users prefer to
watch the official video of a musical track rather than amateur remakes made by
other users, such as videos with the lyrics. In Figure 2.1, we plot the distribution
of the static features assigned to the tracks composing the data-set in order to
have a first insight about the subject of investigation. We clearly see that the
data-set is mostly composed by tracks characterized by high values of danceability,
loudness and energy, and low values of speechiness, acousticness, instrumentalness
and liveness. Concerning the so called dynamic features, we first remark that some
tracks from the data-set present a delay between the Spotify release day and the
day in which YouTube statics are available. This happens every time that a track
is added to one of the 134 playlist of interest some days after its release on the
market. Generally speaking, Figure 2.2 shows that for the majority of the tracks,
YouTube statistics are available at most 3 days after the publication. In Figure
2.4 we plot in log scale the YouTube views time series of the first class, the one
composed by the tracks whose statistics on YouTube are recorded with no delay.
We realize that not all the time series have the same length and that this class is
heterogeneous: we can find very popular track but also videos with few views after
several days from the release.

As a final remark„ the typical behaviour of the Spotify Popularity index is
highlighted in Figure 2.3. The main characteristic of this index is that normally it
reaches a plateau which can define the long term popularity of the track.
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Figure 2.1: Distributions of the static features.
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Figure 2.2: Distribution of the days of delay in recording the statistics from
YouTube. The day zero corresponds to the release day of the tracks.

Figure 2.3: Spotify Popularity time series for the track
’1V8XneTrX6kKeoxYbk4x6h’. The index reaches a plateau around 84 point of
popularity after 10 days.
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Figure 2.4: Cumulative Views for the tracks whose statistics are recorded from
the release day. The resolution of the time is daily, which means t takes only integer
values. t = 0 stands for the day of release which is not the same for all the tracks.
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Chapter 3

Success prediction with
Random Forest and Neural
Networks

In this chapter we discuss the mathematical formulations of the algorithms used in
chapter 4, the Random Forest Classifier (RF) and the Multilayer Perceptron (MP).
We will use the following notation:

• D: a data-set;

• L: the size of the data-set, i.e. the number of data-points forming the data-set;

• F : the set of features attached to any points;

• xi : the i-th data-point inside the data-set (i <= L);

• f i
j : the j-th features of the i-th data-point;

• ti: the target, i.e. the value to predict. If ti can assume only integer values, a
classification task is performed, otherwise a regression.

3.1 Random Forest
First introduced in 1995, the Random Forest is a feasible supervised algorithm,
which can perform both classification and regression tasks [7]. As the name suggests,
a Random Forest classifier is composed of an ensemble of Random Trees models.
To each node of such decisional structure a feature f ∈ F and a binary question q
are attached. Answering to a node-question has as effect the splitting of the subset
of D involved in that node in two groups, whose elements in general belong to
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different classes. If this is the case, the algorithm proceeds appending two more
nodes (one for every splitting) with the respective binary questions. The algorithm
stops as soon as a stopping condition is met, e.g. max_ depth, max_nodes, all nodes
are pure etc. The process of adding nodes can be visualized as a progressive adding
of linear classifications of a multi dimensional space, whose dimension corresponds
to the number of features. Once a tree is built, it is possible to classify data-points
of the train-set, just answering the stream of questions across the tree. It is evident
that it is needed a formal definition how to best split data. In order to quantify
the impurity Υj of the node j and to handle the splitting procedure, two kind of
measures are commonly used:

• Gini Criterium: each node is associated with the so called Gini Impurity,
that is the measure of how often a randomly chosen element from the set
would be incorrectly labeled if it were randomly labeled according to the
distribution of labels in the subset. Let K be the number of the classes and
pT,j the fraction of elements belonging to the class j at the node T ⊆ D, the
Gini impurity of the node T is then given by:

G(T ) =
KØ

i=1
pT,i

Ø
j /=i

pT,j =
KØ

i=1
pT,i(1 − pT,i) = 1 −

KØ
i=1

p2
T,i (3.1)

• Entropy: let T ⊆ D the subset of D forming a given node. The impurity of
such a node can be quantified as the entropy H(T ) (see Chapter 4 for more
details about entropy in the context of Information Theory).

Given a feature f we indicate with qf one of the possible binary question as-
sociated to f , and with a(x; qf) the Boolean variable coding the answer of
the data-point x to qf . Let S

qf

T = {x ∈ T ⊆ D|a(x; qf ) = True} and S
qf

F =
{x ∈ T ⊆ D|a(x; qf ) = False} be the partitioning of T ⊆ D generated by qf ,
the Information Gain associated to f is given by:

IG(f ; T ) = Υ(T ) − max
qf

I
|Sqf

T |
|T |

Υ(Sqf

T ) + |Sqf

F |
|T |

Υ(Sqf

F )
J

(3.2)

regardless of the choice made for computing Υ. Thus, at each step the feature
f ∗ that maximizes the Information Gain is chosen, i.e. f ∗ = argmax IG(f ; T ).
Although this learning model is flexible and it is not biased, it’s affected by high
variance. Indeed, the random tree decision model tends to overfit the data-set
since its great flexibility, resulting a high variance of the learning parameters as
the training data vary importantly. In order to cure this major drawback, in the
Random Forest scheme each tree is trained with different subsets of D and F ,
or in other words, each trees is susceptible to different groups of features. This
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Figure 3.1: Comparison between the Gini Index and the Entropy as measures of
impurity for K = 2 . On the x-axes p, the fraction of elements belonging to the
first class. As expected, for both the the measures the impurity is maximum for
p = 0.5.

kind of approach to the training, known as bootstrap aggregating (or bagging), is
aimed to improve the stability and accuracy, reducing variance and overfitting.
Once the training is complete, each prediction is the result of a pool among the
possible different classifications returned as output from the tree models forming the
forest. The output of the classifier is a vector poutput(c; x) providing a probabilistic
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Is the patient less than 30?
H: 28 – U: 10

Is the patient sporty?
H: 10 – U: 8

Does the patient drink 2 liters of
Water per day?
H: 18 – U: 2

Healthy: 0
Unhealthy: 2

Healthy: 18
Unhealthy: 0

Healthy: 10
Unhealthy: 0
Healthy: 10
Unhealthy: 0

Healthy: 0
Unhealthy: 8
Healthy: 0

Unhealthy: 8

Figure 3.2: An example of binary classification based on a Random Tree classifier.

information about the classification, e.g. poutput(c1; x) = Prob(x ∈ c1). To test the
quality of the classification, it is common usage to build the so called Confusion
Matrix. While an ideal machine learning algorithm is able to properly classify all
the elements in the testing set, in practice the classification on the test-set will
produce false positive(FP) and false negative(FN), as well as the true positive(TP)
and the true negative(TN). In the case of a binary classification, the confusion
matrix provides this information in a 2 × 2 table. In addition to the confusion
matrix the quality of a binary classification can be quantified using the Receiver
Operating Characteristic curve, also known as ROC curve. A classification can be
characterized by the following parameters:

• TPR = True Positive Rate/ = T P
T P +F N

• TNR = True Negative Rate/Specificity = T N
T N+F P

• FPR = False Positive Rate = 1 − TNR = F P
T N+F P

• FNR = False Negative Rate = 1 − TPR = F N
T N+F P

An ideal model would provide a classification with TPR = 1 and FPR = 0; 100%
of the actual positives are classified as such and no one among the negatives are
classified as positive. Therefore, the ROC curve is created by plotting the value of
the TPR compared to the FPR at various threshold settings, i.e. the threshold in
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probability for which an element is classified to belong to the positive class. Once
the ROC curve is plotted, it’s possible to compute the Area under the ROC, the
so called AUROC. If AUROC > 0.5 the model is able to perform a classification
more efficiently than random assignments of the items into the two classes.

3.2 Multilayer Perceptron
A Multilayer Perceptron (MLP) is a mathematical architecture composed of nodes,
also referred as neurons, displayed into at least three layers - the input layers, one
hidden layer and the output layer [8]. Nodes belonging to a layer communicate
to the neurons of the immediate nearest layers through direct connections, the
synapses. To each synapse is associated an activation weight, which stands for the
strength of the connection: we shall define wl

i,j the weight associated to the synapse
connecting the the node i in the layer l to the node j of the layer l + 1, and the
matrix W l

i the matrix storing all the weights between the node i of the layer l to
the nodes of the layer l + 1. Once the set of weights is specified, the activation of
a neuron is controlled by a non-linear activation function, g : R → R. The whole
model can be mathematically formulated as function M : Rd → Ro, with d being
the dimension of the input and o the dimension of the output:

M(þx) = s(þbh + Wh · þg(...(þb2 + W2 · þg(þb1 + W1 · þx)))), (3.3)

where h is the number of hidden layers, þg the natural extension to vector of the
scalar-to-scalar activation function g, þbi the bias associated to the i-th layer and
s the activation function that generates the final output of the network. Typical
choices for g include the hyperbolic tangent, the logistic sigmoid function and
the Rectified Linear activation function. In the case of multi-class classification,
class-membership probabilities can be obtained by choosing s as the softmax
function. As the RF model, the MLP can be trained to perform both regression
and classification task. In both case it’s needed to define a loss function, whose
optimization provides the learning of the parameter of the model θ = {{W}, {b}}.
A typical choice for the loss function is the squared error function:

L =
NØ
i

(ŷi − yi)2 (3.4)

with ŷi and yi indicating respectively the output of the model to the input xi and
the actual response of the system to the latter. To perform the learning is commonly
perform a gradient descent method, relying on a back-propagation scheme. Thus,
the update of the weights is given by

wji(n + 1) = wji(n) − η
∂L(n)

∂wji(n) (3.5)
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ReL g(x) =

0 for x ≤ 0
x for x > 0

Sigmoid g(x) = 1
1 + e−x

tanh g(x) = tanh(x) = ex − e−x

ex + e−x

Softmax gi(þx) = exiqJ
j=1 exj

with i indicating the class index

Table 3.1: Examples of activation functions.

  

x1

x4

x3

x2

Hidden Layers

In
pu

t

O
utupt

Figure 3.3: MP with 2 hidden layers and 3 neurons each. The input is a 4-
dimensional data-point and the output is a single-value number. The blue lines
represent the synapses. Bias are omitted.

where the integer n indicates the step of the iteration. While for the weights
associated to the output layers a derivation is straightforward, the analysis is more
difficult for the change in weights to a hidden node (see Appendix A). For a given
Training-Set, back-propagation learning may thus proceed in one of the two basic
ways:

• Sequential Mode: it’s also referred to as on-line, pattern, or stochastic mode.
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In this mode of operation weight updating is performed after the presentation
of each training example;

• Batch Mode: weight updating is performed after the presentation of all the
training examples that constitute an epoch. Here, for each epoch we define
the loss function as the average of (3.4) over all the examples.

In practical implementation stochastic gradient descent algorithms are preferred to
improve the efficiency of the learning.
To avoid overfitting it’s quite common to add a regularization term to (3.4). In the
case of a L2 regularization, the loss function becomes:

L =
NØ
i

(ŷi − yi)2 + λ
Ø

i

w2
i (3.6)

where λ is known as the penalty parameter. If we think to the loss function as
an energy function we aim to minimize, the regularization term can be viewed
as a constraint which controls the excessively fluctuating function such that the
coefficients don’t take extreme values, thus reducing the variance of the model,
without a substantial increase of its bias. In this framework, in order to quantify
the quality of a regression, the mean absolute error (MAE), the mean square error
(MSQ) and the coefficiente of determination (R2) are introduced:

MAE({y}, {ŷ}) = 1
n

nØ
i=1

|yi − ŷi|

MSE({y}, {ŷ}) = 1
n

nØ
i=1

(yi − ŷi)2

R2({y}, {ŷ}) = 1 −
qn

i=1 (yi − ŷi)2qn
i=1 (yi − ȳ)2 (3.7)

The coefficient of determination is a statistical measurement that describes the
proportion between the variability of the data and the correctness of the statistical
model used: given two models with the same square error on different data-sets,
this coefficient penalizes the model which is implemented on the data-set affected by
the smallest variance. Conversely, given two models trained on the same data-set,
the R2 indicates as the best model the one affected by the smallest square error on
the predictions. Therefore, it provides an indication of how well unseen samples are
likely to be predicted by the model, through the proportion of explained variance.
As such variance is data-set dependent, R2 may not be meaningfully comparable
across different data-sets. Best possible score is 1, but it can be negative (because
the model can be arbitrarily worse). A constant model that always predicts the
expected value of y, disregarding the input features, would get a R2 score of 0.
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3.3 Implementation
The models introduced are implemented on a Jupyter notebook, making extensive use
of Scikit-learn[9], a free software machine learning library for the Python program-
ming language. Largely written in Python, it uses the numpy library extensively
for high-performance linear algebra and array operations. Scikit-learn provides
intuitive and user friendly implementations of machine learning model. In few lines
of code it’s possible to build a RF importing the class RandomForestRegressor.
The most important tunable parameters are1:

• n_estimators: the number of trees in the forest;

• criterion: the function to measure the quality of a split;

• max_depth: the maximum depth of the tree. min_samples_split samples;

• min_samples_split: the minimum number of samples required to split an
internal node;

• min_samples_leaf : the minimum number of samples required to be at a
leaf node;

• max_features: the number of features to consider when looking for the best
split;

From the same library we import also the class MLPClassifier to implement the
MP. In this case the most important parameters to be set are:

• hidden_layer_sizes: tuple indicating the number of the neurons in each
hidden layers;

• activation: activation function for the hidden layer;

• alpha: L2 penalty (regularization term) parameter;

• learning_rate{‘constant’, ‘invscaling’, ‘adaptive’}, default=’constant’:
learning rate schedule for weight updates;

• max_iter: maximum number of iterations. The solver iterates until conver-
gence or this number of iterations.

1Look at https://scikit-learn.org/stable/ for a complete documentation.
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3.4 Random Forest for trend predictions.
We have seen in the previous chapter some typical trends of the popularity index
of Spotify. In Figure 3.4 we plot how the Spotify Popularity index related to 800
different tracks of the data-set (black lines) varies in time2 and the average trend
(red line). The question is: "is it possible to build a model able to predict if a track
will have a popularity above or below the mean trend, i.e. if its associated black
line will be above the red one ?". We know that a Random Forest algorithm can be
trained to perform this task. First, we assign to each track of the data-set a binary
variable φ = 0,1: if during the first week the track has a popularity greater than
the average value then φ = 1, otherwise φ = 0. If during the first week the index
results to be above the red line for some days and below for the remaining days,
the variable φ is assigned just on a majority criterion. We then split the data-set
into training and test set in a such way that the training set is made of 70% of the
tracks in the whole data-set. After performing a Grid Search, which is simply an

Figure 3.4: Spotify Popularity time series of 800 tracks of the data-set, in red
the average dynamic.

2t = 0 corresponds to the day of first appearing in one of the 134 playlists.
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exhaustive searching through a manually specified subset of the hyperparameter
space, we tune ’criterion’ = ’gini’, ’max_features’= ’auto’ and ’n_estimators’= 60.
We found that RF performs a good classification with this choice of the parameters3.
In particular, in Figure 3.5 and 3.6 we report respectively the ROC curve and
the Confusion Matrix built on the test-set with a threshold of 0.5. We obtain an
AUROC = 0.89 on the test set and in Table 3.2 we resume the values of the indices
before introduced for evaluating classification:

TPR 224
224+53 = 0.80

TNR 272
272+59 = 0.82

FPR 59
272+59 = 0.18

FNR 53
224+53 = 0.20

Table 3.2: TPR, TNR, FPR and FNR on the test set.

Finally but not less interestingly, we show the ranking of the 10 most significant
features. Indeed, to each features f is possible to associate a score ρf which is
updated every time that f is used in any node of any tree of the Random Forest.
As much the Gini impurity is reduced after the splitting generated by posing a
binary question about f , as ρf increases. At the end of the training all the ρi are
normalized to one and a ranking list can be produced. In Table 3.3 we report what
found for the classification task performed. Not surprisingly we find that the most
informative feature is the artist popularity at the day zero.

3The default values are used for the other parameters.
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Figure 3.5: In red the ROC curve, in dashed blue line the ROC curve of the base
model performing a completely random classification.

f ρf

1 artist_popularity 0.3123
2 loudness 0.0767
3 energy 0.0488
4 acousticness 0.0481
5 duration_ms 0.0438
6 instrumentalness 0.0422
7 dzGain4 0.0422
8 speechiness 0.0405
9 tempo 0.0377
10 danceability 0.0355

Table 3.3: Features’ ranking list.
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Figure 3.6: Confusion Matrix on the test-set. The uppercase letters T and P
stand respectively for True and Predicted so that Above(T)-Above(P) is the cell
for the tracks which are predicted to have a popularity above the mean trend and
indeed it’s true. The threshold is set to 0.5, which means that there is no bias in
the assignment of the data-points into the two classes.
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3.5 Regressions with multilayer perceptron

The good results provided by the Random Forest model classifier suggest that
a further refinement of success prediction is achievable. Therefore, we aim at
implementing a machine learning model able to furnish daily predictions about the
popularity of tracks on Spotify and the number of views on YouTube when the
same kind of information are known just for the first days after the release date.
First we build a MP trained to predict the Spotify popularity at day 14 after the
release taking as input the statistics from YouTube for the first 7 days. In order
to do that, we first prepare a data-set D including only the tracks whose statics
are recorded since their release on the market. After, for each track we associate
as input variables the number of daily Views(VW), Likes(LK), Dislikes(DLK),
Comments(CMM) as well as the cumulative values. We also introduce as inputs
the likeness defined as LK

LK+DLK
and the response, CMM

V W
. The architecture of the

multilayer involves three layers, each of them composed of 250 neurons, and we
tune max_iter = 1000, n_iter_no_change= 50.

Figure 3.7: Distribution of the Spotify Popularity at day 14 after the release.
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Figure 3.8: Convergence of the Loss Function. The time t is an integer number
standing for the iterations of the weight-updating.

In Figure 3.7 we show the distribution of the Spotify Popularity index at day
14 after the release of the track forming D; we clearly see that the sample is
heterogeneous in this sense, i.e. the Spotify Popularity values range approximately
from 20 to 90, covering almost the whole spectrum of possible values. Predicting
the popularity at day 14 means to furnish a prediction of the plateau, i.e. having a
guess for the long term success of a given track. How the loss function converges
is shown in Figure 3.8, while the general performance of the model is visually
illustrated by means of a scatter plot in Figure 3.9. In this plot the x-coordinate
of a point represents the actual value of the Spotify Popularity at day 14, while
the y-coordinate the prediction provided by the MP. We distinguish the tracks
constituting the training set with the ones in the test using two different colors,
and we plot the bisector in red: the better the performance of the model, the closer
the points will be to the bisector. Quantitatively we evaluate the model using three
metrics: MAE, MSQ and R2. On the test-set we find a R2 = 0.64 and a MAE ≈ 6,
meaning that on average the prediction is affected by an error of 6 points on a
value that can range between 0 and 100.
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Figure 3.9: Scatter plot between the actual value of the Spotify Popularity index
at day 14 (x axis) and its prediction (y axis). In blue the model on the train-set,
in orange on the test-set. The red line is the curve y = x.

The good results obtained by means of this model push us to implement the same
model but in a reverse fashion: predicting the number of views at day 14 taking as
inputs all the features provided by Spotify for the first 7 days. In particular we
pass as input the popularity of the track, the popularity of the artist, the number
of the followers and the following static features: ’disc_number’, ’duration_ms’,
’track_number’, ’n_available_markets’, ’album_total_tracks’, ’n_artists’, ’dance-
ability’, ’energy’, ’key’, ’loudness’, ’mode’, ’speechiness’, ’acousticness’, ’instrumen-
talness’, ’liveness’, ’valence’, ’tempo’. The target variable is the log of the number
of views, since in a such way the algorithm doesn’t tend to fit better only the tracks
with a large number of views. In Figure 3.10 we present the distribution of the
log(VW) at day 14 after the release and in Figure 3.11 the convergence of the Loss
Function.
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Figure 3.10: Distribution of the log(VW) at day 14 after the release.

Figure 3.11: Convergence of the Loss Function. The time t is an integer number
standing for the number of iteration.
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Like in the previous case, the goodness of the model is evaluate graphically by
the scatter plot in Figure 3.12 and quantitatively by the usual metrics. In this case
we find on the test set a R2 = 0.60 and a MAE ≈ 1.4 To conclude this section we

Figure 3.12: Scatter plot between the actual number of the YouTube views at
day 14 (x axis) and its prediction (y axis). In blue the model on the train-set, in
orange on the test set. The red line is the curve y = x.

propose a model for predicting entire time series starting from the first days of
recording. The implementation is straightforward: we gather all the information
available and for each day and for each time series a MP is trained to predict the
value of the next day. The latter is then used as starting input, together with the
whole time series until that day, and the regression goes on. The first 6 days of
statistic are given as input to the model. Since the error of a prediction is affected
by all the errors generated through all the previous predictions, this kind of model
is not robust, and so the goodness of the predicted time series strongly depends on
the time series itself. As an example, in Figure 3.13 and 3.14 three regressions of
this type are shown: the YouTube Views time series, the Spotify Popularity and
the Artist Popularity. For the track 6nxOW44RKSH3OBw6ZP8yuZ the accordance
between the actual time series and the predicted ones is quite good, while for
7iZGc02ejD2XfExCveq5I4 it’s evident the mismatching between the predicted
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YouTube time series and the recorded one.

Figure 3.13: Track_id: 6nxOW44RKSH3OBw6ZP8yuZ. Left panel: YouTube
Views time series regression. Central panel: Spotify Popularity regression. Right
Panel: Artist Popularity regression. In orange the actual time series, in blue the
regressions.

Figure 3.14: Track_id: 7iZGc02ejD2XfExCveq5I4. Left panel: YouTube Views
time series regression. Central panel: Spotify Popularity regression. Right Panel:
Artist Popularity regression. In orange the actual time series, in blue the regressions.
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Chapter 4

Detecting Causality:
Granger Causality and
Transfer Entropy

In this chapter we first remark some elements of Information Theory in order to
smoothly introduce the measure of Transer Entropy (TE) as tool for detecting the
flow of information between time series, first defined by Thomas Schreiber in 2000.
We also throw some lights on the concept of causality, presenting the definitions
proposed in 1969 by Clive W.J. Granger, Nobel Prize of Economics Science in 2003.

4.1 Elements of Information Theory
The key concept of this chapter and of the next analysis is the physical quantity
of entropy. It’s the measure of uncertainty associated to a random variable X. It
doesn’t depend on the actual values taken by X, but only on the probabilities. Let
X be a discrete random variable with alphabet X and probability mass function
p(x) = Pr{X = x}, x ∈ X , the formal definition of entropy is the following [10]:

H[X] = −
Ø
x∈X

p(x) log p(x) (4.1)

The log is meant to be in base 2 and entropy is expressed in bit. Moreover, since
adding terms of zero probability to the possible realisation of the random variable
does not change the state of knowledge about the random process, we will use the
convention that 0 log 0 = 0, which is also justified by continuity since x log x → 0
as x → 0. Although other definitions for the entropy has been provided, as the
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Tsallis Entropy1 , it is possible to show that 4.1 can be derived enforcing certain
simple and plausible requirements[11]:

• if ∀x ∈ X , p(x) = 1
|X | , then the information gained should be a monotonically

increasing function of |X |: wider is the range of possible outcomes, larger is
our lack of knowledge;

• if our systems is composed of two independent sub-system, then we should
be able to write the total information gained as the sum of the information
gained for the two sub-systems: additivity of the entropy for independent
random variables;

• for any partition of the set X into non overlapping subsets Θ , the optimal
number of questions H[X] to elicit X should equal the sum of the optimal
number of questions H[Θ] to elicit the subset Y where X belongs, and the
expected optimal number of questions H[X|Y ] to elicit X within Y .

The entropy H[X] of a random variable X can be regarded equivalently as the
information content gained once the value of X is elicited. Indeed, we remark that
4.1 can be formulated starting from the definition of the so called surprisal or
Shannon information content of an event x [12],

η(x) = − log p(x) (4.2)

and so H[X] = E[η(x)]. One can interpret the values of η(x), in bits, as the optimal
number of binary questions that one needs to ask (on average) to determine the
value of X when its outcome is x. Therefore entropy associated to a random
variable X corresponds to the minimal expected number of yes/no questions needed
to elicit the value assumed by the random variable. In a straightforward manner
equation 4.1 can be generalized for two variables, the joint entropy is simply:

H[X, Y ] = −
Ø
x∈X

Ø
y∈Y

p(x, y) log p(x, y) = E[η(X, Y )] (4.3)

and so for any number of variables. We also need the idea of conditional entropy,
the uncertainty left after we have taken into consideration some information. If
the outcome of the random variable Y is y and this result is known, the lack of
knowledge on X is possibly reduced (or in the "worst" case is the same) and it’s
given by:

H[X|Y = y] = −
Ø
x∈X

p(x|y) log p(x|y) (4.4)

1It’s a non-additive generalization of the Shannon Entropy: HT [p](q, k) = k
q−1 (1 −

q
i pq

i )
were k is a positive constant. 4.1 is recovered in the limit q → 1, fixing k = 1
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The conditional entropy is thus given averaging Eq. 4.4 over all the possible
realizations of Y :

H[X|Y ] =
Ø
y∈Y

p(y) H[X|Y = y] =

= −
Ø
y∈Y

Ø
x∈X

p(y)p(x|y) log p(x|y) =

= −
Ø
y∈Y

Ø
x∈X

p(x, y) log p(x|y) =

= EX,Y [η(X|Y )]

(4.5)

where we have introduced the η(x|y) = η(x, y) − η(y), the conditional Shannon
information content. Finally we introduce the concept of mutual information
between two random variables X and Y . It answers to question: " How much
information we gain about one of the two random variables when the other is
elicited?". If X and Y are independent we expect to gain no information about X
if we elicit Y , and vice versa must be true too. In [13] Fano proved that the only
expression satisfying certain constraints is:

I[X : Y ] = H[X] − H[X|Y ]
= E[η(X)] − E[η(X|Y )] =
= E[η(X) − η(X, Y ) + η(Y )] =

= E
C
− log p(X)p(Y )

p(X, Y )

D
= E [i(x : y)] =

=
Ø
x∈X

Ø
y∈Y

p(x, y) log p(x, y)
p(x)p(y)

(4.6)

where we have introduce the point-wise local mutual information i(x : y) =

log p(x, y)
p(x)p(y) . It’s immediate to realize that the mutual information is a symmetric

measure, i.e. it is invariant under the exchange X ↔ Y . This is completely
consistent to the fact that the two random variables provide the same amount of
information on the other. Moreover, this definition also satisfies the requirement
that for independent random variables I[X : Y ] = 0: in that case ∀(x, y) ∈

(X , Y), log p(x, y)
p(x)p(y) = 0.

The mutual information is strictly connected with the Kullback-Leibler Divergence
(KLD) [14], a measure of the distance between two distributions, p(x) and q(x) on
the same alphabet X :

D[p|q] =
Ø
x∈X

p(x) log p(x)
q(x) (4.7)
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Usually interpreted as distance between probability distribution, the relative en-
tropy D[p|q] is a non-negative 2 measure of the inefficiency of assuming that the
distribution is q(X) when the true distribution is p(X). For example, if we knew the
true distribution p(X) of the random variable X , we could construct a code with
average description length H[X]. If, instead, we used the code for a distribution
q(X), we would need H[X] + D[p|q] bits on the average to describe the random
variable [15]. In this framework Eq. 4.6 can be interpreted as the misleading
information gained considering X and Y to be independent each other.
In the case of a continuous random variable, a naïve generalization of Eq. 4.1 and
4.7 leads to

H [p] =
Ú

ΩX

p(x) log p(x)dx (4.8)

and
D[p|q] =

Ú
ΩX

p(x) log p(x)
q(x)dx (4.9)

where with ΩX we indicate the support of X. It’s important to stress that while
the entropy of a discrete distribution is a non-negative measure, invariant under the
transformation X → Y = f(X), in some case the 4.8 can assume negative values.
This is due to the fact that the number of expected binary questions needed to
elicit the value of a continuous random variables tends to infinity. To overcome
this issue, it’s possible to define the so called differential entropy. Given ∆ the
resolution at which the continuous variable is resolved, it’s possible to map the X
to its discrete version X̂ defining a probability mass function as

p(xi) =
Ú (i+1)∆

i∆
dxp(x) (4.10)

and to write the entropy associated to the quantized random variable as the sum
of two contributions

H
è
X̂
é

= −
Ø

i

p (xi) ∆ log [p (xi) ∆]

Ä h[X] − log ∆
(4.11)

with the fist term known as the differential entropy

h[X] = −
Ú

ΩX

dxp(x) log p(x). (4.12)

We conclude this paragraph remarking the link between the Shannon entropy and
the Gibbs entropy. It’s possible to show that, given a system described by an

2It can be easily proved using Jansen Inequality

31



Detecting Causality: Granger Causality and Transfer Entropy

Hamiltonian cost function H defined on the set of possible states of the systems
{ξi}, the Boltzmann distribution, i.e. the statistic describing a canonical ensamble,
can be derived looking for the distribution that maximizes the entropy, keeping the
average energy of the system E[H] = E fixed. Let Z being the canonical partition
function, if one defines the Helmotz free energy F = −kBT log Z, it’s immediate to
show the equivalence between the Shannon entropy and the Gibbs entropy S:

S = U − F

T
= 1

T

Ø
i

p(ξi)H(ξi) + kB ln Z
Ø

i

p(ξi) =

= −kB

Ø
i

p(ξi)
A

−H(ξi)
kBT

− ln Z

B
= −kB

Ø
i

p(ξi) ln p(ξi).
(4.13)
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4.2 Measure of causality in time series

4.2.1 Granger Causality on the VAR model

Detection and clarification of cause–effect relationships among processes, has been
a fundamental question in a wide variety of context: examples include neuroscience,
physiology[16], ecological modelling[17], information flow in stock market[18], fi-
nancial time series[19] and the emergence of collective behaviour[20]. Generally
speaking, causation is a relationship that holds between events and it is presumed
that the cause chronologically precedes the effect. Causality expresses a kind of a
“law” necessity, while probabilities express uncertainty, a lack of regularity. Despite
of these definitions, causal relationships are often investigated in non-deterministic
or deterministically chaotic systems. A first attempt to measure causality among
stochastic time series is due to Clive William John Granger, a British econome-
trician Nobel Memorial Prize in Economic Sciences in 2003. In [21] he proposes
some heuristic definitions of causality, shaping the so called Granger causality. We
shortly report the core ideas.
Given At a stationary stochastic process, let A∗t represent the set of past values
{At−j, j = 1, 2, ..., ∞} and A∗∗t be the set of past and present values {At−j, j =
O, 1, ...., ∞}. Further let A(k) be the set {At−j, j = k, k + 1, ..., ∞}. Denote the
optimum, unbiased, least-squares predictor of At using the set of values Bt by
Ât(B). Thus, for instance, X̂t(X∗) will be the optimum predictor of Xt using only
past Xt. The predictive error series will be denoted by Ôt(A|B) = At − Ât(B).
Finally, let σ2(A|B) be the variance of Ôt(A|B) and Ut be all the information in the
universe accumulated since time t − 1 and let Ut − Yt denote all this information
apart from the specified series Yt. We then have the following definitions:

CAUSALITY: If σ2(X|U) < σ2(X|U∗−Y ∗), we say that Y is causing X, denoted
by Yt ⇒ Xt. We say that Yt is causing Xt if we are better able to predict Xt using
all available information than if the information apart from Yt had been used.

FEEDBACK: If σ2(X|U∗) < σ2(X|U∗ − Y ∗) and σ2(Y |U∗) < σ2(Y |U∗ − X∗),
we say that feedback is occurring, which is denotedYt ⇔ Xt, i.e., feedback is said
to occur when Xt is causing Yt and also Yt is causing Xt.

INSTANTANEOUS CAUSALITY: If σ2(X|U∗, Y ∗∗) < σ2(X, U∗), we say
that instantaneous causality Yt ⇒ Xt, is occurring. In other words, the current
value of X, is better "predicted" if the present value of Y , is included in the "pre-
diction" than if it is not.

CAUSALITY LAG If Yt ⇒ Xt, we define the (integer) causality lag m to
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be the least value of k such that σ2(X|U − Y (k)) < σ2(X|U − Y (k + 1)). Thus,
knowing the values Yt−j, j = {0,1, ..., m − 1}, will be of no help in improving the
prediction of Xt. The definitions have assumed that only stationary series are
involved. In the non-stationary case, σ2(X|U∗) etc. will depend on time t and, in
general, the existence of causality may alter over time.
In [21] Granger propose to implement this formulation in a simple vector au-
toregression model (VAR), a stochastic process model used to capture the linear
interdependencies among multiple time series. VAR models generalize the uni-
variate autoregressive model (AR model) by allowing for more than one evolving
variable. Given two stationary stochastic time series Xt and Yt, formally we define
the VAR(m) model as follow:

Xt = qm
j=1 ajXt−j +qm

j=1 bjYt−j + Ôt

Yt = qm
j=1 cjXt−j +qm

j=1 djYt−j + ηt
(4.14)

where Ôt and ηt are taken to be two uncorrelated white-noise series, i.e., E[ηtÔs] =
0 ∀t, s and E[ÔvÔw] = E[ηvηw] = δv,w ∀v, w, with δ.,. being the Kronecker delta.
In 4.14 m can be regarded as a measure of the "memory" of the process. For a
non-markovian process m should tend to infinity but in practice, due to the finite
length of the available data, m will be assumed finite and shorter than the given
time series. The definition of causality given above implies that Yt is causing Xt

provided some bj is not zero. Similarly Xt is causing Yt if some ci is not zero. If
both of these events occur, there is said to be a feedback relationship between Xt

and Yt. If we assume a prori that the process are independent, the AR(m) model
can be implemented as the simplification of the VAR(m):

Xt = qm
j=1 ajXt−j + φt

Yt = qm
j=1 djYt−j + γt

(4.15)

, where, again, φt and γt are taken to be two uncorrelated white-noise series.
In order to detect the causality inside time series several types of tests can be
performed. The most common one is based on the Granger-Wald test. Let σ̂2

VAR
be the estimator of the variance of Ôt, σ̂2

AR be the estimator of the variance of φt,
and N the length of the time series, therefore we introduce:

GW = N
σ̂2

AR − σ̂2
VAR

σ̂2
VAR

. (4.16)

The GW statistic follows the χ2(m) distribution under the null hypothesis of no
causality [22].
Other approaches based on spectral methods are discussed in [21].
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4.2.2 Transfer Entropy
The major drawback of the Granger Causality is to be effective only in systems
where interactions between time series are linear. Moreover, Granger approach is a
parametric estimation in the sense that the analysis can be performed only once
the parameter m in Eq. 4.14 is fixed (one can also in principle use different values
of m for each terms in 4.14). To overcome these issues it is possible to perform
measures of Transfer Entropy. It was introduced by Thomas Schreiber in 2000
[16] and it’s designed as Kullback-Leibler distance of transitions probabilities. The
key idea is to extend the measure of Mutual Information (see Eq. 4.6), which is a
symmetric measure, to a measure that can detect the direction of the information
between two time-series, thus breaking the symmetry.
Consider a system that may be approximated by a stationary Markov process
of order k, that is, the conditional probability to find I in state in+1 at time
n + 1 is independent of the state in−k : p(in+1|in, ..., in−k−1) = p(in+1|in, ..., in−k).
Henceforth we will use the shorthand notation i(k)

n = (in, ..., in−k−1) for words of
length k. The average number of bits needed to encode one additional state of the
system if all previous states are known is given by the entropy rate:

hI = −
Ø

p(in+1, i(k)
n ) log p(in+1|i(k)

n ) (4.17)

where the sum is meant to run over all the possible realizations of k + 1 symbols.
The physical meaning of the entropy rate is just the quantification of the surprise to
see at time n+1 a given realization of the process I, once the previous k realizations
are known, indeed

hI = HI(k+1) − HI(k) (4.18)

Let’s now consider another Markovian process J . In the absence of any interaction
between I and J we have that p(in+1|ik

n, jl
n) = p(in+1|ik

n) and also p(jn+1|jk
n, il

n) =
p(jn+1|jk

n). Schrieber measure the incorrectness of this assumption making use of a
Kullback entropy by which he defines the Transfer Entropy:

TJ→I =
Ø

p
1
in+1, i(k)

n , j(l)
n

2
log

p
1
in+1 | i(k)

n , j(l)
n

2
p
1
in+1 | i

(k)
n

2 = H(in+1|i(k)
n )−H(in+1|i(k)

n , j(l)
n ).

(4.19)
We remark that TJ→I is not invariant under the exchange I ↔ J , which indeed
defines the TI→J . The net flow of information from J to I is naturally defined as:

ΦJ→I = TJ→I − TI→J . (4.20)

It is easy to check that ΦJ→I + ΦI→J = 0, thus the direction of the flow of informa-
tion can be assigned according to the signs of the net flows, e.g. if ΦJ→I > 0 then
the process J is said to drive the process I.
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Although the straightforward derivation of the Transfer Entropy starting from
basic requirements coming from information theory, it’s not an easy task extracting
information theoretic quantities from real observed data [23]. The goal of the
overall approach is to estimate probability distributions and then entropies. The
estimation gets even harder for continuous-state systems when there is not enough
data to reliably estimate the probability of each state sequence, especially for high
resolution measurements. The first naive attempt is to approximate probability
density functions (pdf) with histograms. The main drawback of histograms is that
they strongly depend on the number of bins and how they cover the support of the
Random Variable.

A more sophisticated tool for estimating pdf is the so called Kernel Density
Estimator (KDE) [24]. The key idea is to replace the concept of the fixed binning
to the advantage of an estimator which relies on the point xi of the data-set. To
each point xi, whatever its embedded dimension is, the KDE assigns a real positive
number which magnitude depends on the number of point on the data-set that are
"close enough" to xi. Given a dataset ({xi}), formally the KDE can be written as

f̂(x) ∝
nØ

i=1
K
3

x − xi

d

4
(4.21)

where K is the kernel, i.e. a function that given two points returns a real value
encoding their proximity, and d is the analogous of the bin-width diameter of the
kernel, i.e. the resolution at which the data are probed by the Kernel. In [16] the
author proposes a flat kernel

p̂r

1
xn+1, x(k)

n , y(k)
n

2
∝
Ø
nÍ

Θ

d −

--------


xn+1 − xnÍ+1

x(k)
n − x

(k)
nÍ

y(k)
n − y

(k)
nÍ


--------
 (4.22)

The norm | · | is simply the maximum distance but other norms and kernels can be
considered, while Θ(x) is the Heaviside step function, i.e. Θ(x) = 1 if x ≥ 0 and
Θ(x) = 0 if x < 0.
In Fig. 4.1 we show a comparison between histograms and KDE. We show estima-
tions based on a small sample of 20 data points drawn form the following bi-modal
distribution:

X ∼
I

N (0,1) with p = 0.3
N (5,1) with p = 0.7 (4.23)

where the standard notation N (µ, σ) for a Gaussian Distribution with mean µ and
standard deviation σ is used. While the underlying probability density function is
quite well visualized on the top left panel, the bi-modal nature of the probability
density function describing the random variable 4.23 is not enhanced on the top
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right panel. We remark that this is due only to a different choice of the positioning
of the binning and not on their width, which is fixed. In the low left and in the ow
right panels the pdf is estimated using respectively a flat kernel and a gaussian
kernel: in both cases the bi-modal nature of the distribution generating the small
sample is well visualized. Computing entropy from probability densities is done
using the resubstitution formula[25]:

H = − 1
N

NØ
i=1

log ρ(x(m)
i ) (4.24)

Figure 4.1: Top left: histogram estimation. Top right: histogram estimation.
Button left: KDE with flat kernel. Button right: KDE with gaussian kernel. Black
points represent the 20 data points forming the sample.

As an example, we illustrate in Figure 4.2 the reconstruction of a Gaussian
probability distribution with 0 mean and unitary variance starting from samples. In
blue the estimation of the probability density function and in red the actual pdf are
given. In Figure 4.3 we plot the estimator of the entropy Ĥ as the number of the
data-points on the sample increases. To be more precise, on the x-axis we report the
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Figure 4.2: KDE estimation for 4 samples of different size generated by the same
normal distribution. In red the normal distribution, in blue the estimated one via
a KDE method.

Figure 4.3: Ĥ vs log(#data−points). The green horizontal line is the true line in
the case of a Normal distribution. The black ticks graphically represent the draws.

38



Detecting Causality: Granger Causality and Transfer Entropy

logarithm in base 10 of the number of data-points forming the sample. We conclude
this section introducing the the partial transfer entropy [26]. Consider a stochastic
systems U = {X, Y, Z, W, ...} made of more than two stochastic time series. Since
in principle one time series can be driven by more than one of the others, one can be
interested in detecting the graph representing the causal connection between time
series. Therefore, given the time series Xt and Yt we can define the environment
in which they interact as E = U \{X, Y }. The partial transfer entropy is built
conditioning Eq. 4.19 on E, i.e.:

T̂X→Y = H(yn+1|y(m)
n , E(m)) − H(yn+1|y(m)

n , x(m)
n , E(m)) (4.25)

Partial transfer entropy addresses the issue of effective connectivity, being not
sensitive to the effects of indirect connections which are detected as causal relations
by the measure introduced by Schreiber.
In the next chapter we present some application of Granger Causality and Transfer
Entropy on synthetic data already analyzed in the literature. The aim is manifold:
first reproducing some results from other paper can guarantee the good functioning
of the code developed, second a better understanding of the measure is provided.
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Chapter 5

Transfer Entropy in
Controlled Environments

In this fifth chapter we reproduce some results from the literature. Synthetic
time series are generated and the TE between different stochastic processes is
analyzed varying the parameters that define the couplings between them. In the
first simulation we present we emphasize the importance of the diameter d of Eq.
4.21, while in the second one we remark the limit of the causality detection based
on the Granger analysis, i.e. we will show how non-linearity is not detected by
measures of Granger Causality. In the last two set up we introduce tests for the
significance of a TE measure and we will perform a measure of partial TE in a toy
model in order to show how it is possible to detect direct causality links between
processes, thus how standard TE measures are effected by the global interactions
among the processes living in the same stochastic environment.

40



Transfer Entropy in Controlled Environments

5.1 TE in chaotic logistics map
In [27] Hahs and Pethel analyze the following dynamical system:

xn+1 = f(xn), yn+1 = (1 − ξ)f(yn) + ξg(xn; α) (5.1)
where f(x) = rx(1 − x), r = 4, is the chaotic logistics map, ξ ∈ [0,1] is the coupling
strength, xn is the state of the drive process X, and yn is the state of the response Y .
The coupling function g(x; α) = (1 − α)f(x) + αf 2(x) includes a tunable parameter
α ∈ [0,1] that adjusts the relative strength of the anticipatory term in the coupling
function. Note that f 2 indicates that the map f is applied twice. Hence, when
α = 0 the Y system is driven towards the present X system output, and when
α = 1 the Y system is driven towards a prediction of the future X system output.
When the coupling strength is above the synchronization threshold (ξsync ≥ 0.5) the
manifolds yn = xn and and yn = xn+1 are stable for α = 0 and α = 1, respectively.

Figure 5.1: Time evolution of the dynamical system 5.1: α = 0.6 and ξ = 0.4.

For α between 0 and 1 there is mixture of anticipatory and non-anticipatory
chaotic dynamics. In all cases the drive and response dynamics are bounded in the
[0,1] interval. Because chaotic maps generate information[28] we can investigate
the information flow between the drive and response process in the dynamical
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system 5.1. Here, we wish to compute the transfer entropies TX→Y and TY→X as a
function of the kernel diameter d for the two limit cases α = 0 and α = 1, setting
ξ = 0.4 < ξsync. In the first case, due to the absence of any anticipatory drive, for
all the values of all the value of d used the measure of the transfer entropy well
detects the correct direction of the information flow, i.e. from the process X to
Y . Differently in the second case, the expected result is obtained for d / 0.34. In

Figure 5.2: Measures of TE in the anticipatory and non-anticipatory regime for
different values of d.

conclusion, we have shown that anticipatory dynamics strongly bias the transfer
entropies computed from observed time series. A good choice of the kernel diameter
is then crucial to accurately resolve the underlying probability distributions and
thus to regard the transfer entropy as an indicator of coupling direction rather than
a merely measure of where information first becomes measurable in the system.
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Figure 5.3: Phase space of the dynamical system 5.1. The dynamics for four
different values of the parameters α are shown. The coupling parameter ξ is set to
1, i.e xn+1 = f(xn) and yn+1 = g(xn; α).

Figure 5.4: Phase space of the dynamical system 5.1. The dynamics for four
different values of the parameters coupling parameter ξ are shown. The anticipatory
parameter α is set to 1, i.e xn+1 = f(xn) and yn+1 = (1 − ξ)f(yn) + ξf 2(xn).
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5.2 Non-linearity Detection
The goal of this section is to stress the major limit of Granger Causality, i.e. the
failure to detect nonlinear causality interconnection between time series.
Let first consider the following stochastic system:

x1(n) = 0.4x1(n − 1) + w1
x2(n) = 0.5x1(n − 1) + w2
x3(n) = −0.4x1(n − 1) + w3
x4(n) = −0.5x1(n − 1) + 0.25

√
2x4(n − 1) + 0.25

√
2x5(n − 1) + w4

x5(n) = −0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) + w5

(5.2)

where wi ∼ N (0,1) and xi(n − 1) indicates the state of the stochastic process Xi at
the iteration n − 1. Starting from random initial conditions, we run the iteration
for 1000 times. In Figure 5.5 we plot the last 100 values of the time series defined

Figure 5.5: The last 100 outcomes of the stochastic process 5.2.

by 5.2. The system’s dependencies are shown in Figure 5.6 which are not possible
to detect just by a visual inspection of the scatter plots.

In order to reconstruct the dependencies shown in 5.6, and so to detect which
series drives which other, we implement a Granger Test. Thus for each pair (xi, xj)
we train both an AR(1) and a VAR(1) and we compare the estimators of the
variance of the noise of such models, i.e. σ̂2

AR and σ̂2
VAR. Then we compute the

empirical index
GW = N

σ̂2
AR − σ̂2

VAR
σ̂2

VAR
. (5.3)
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Figure 5.6: On the left a graph showing how the time series are coupled, on the
right the scatter plots for each pair of time series.

Figure 5.7: On the left a graph showing how the time series are coupled, on the
right the scatter plots for each pair of time series.
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Figure 5.8: Granger Causality HeatMap for the system 5.2.

Figure 5.9: Transfer Entropy HeatMap for the system 5.2.
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measuring how much the VAR(1) model performs better than the AR(1) model,
which for the postulates proposed by Granger is a measure of causality.

Finally, we also estimate the TE between each pair of time series using a flat
kernel with d = 2, and fixing m = 1. The results of both the analysis are shown
in Figures 5.8 and 5.9. We can see how both the analysis succeed to detect all
the dependencies of the system: x1 is found to drive x2, x3, x4, and x4 and x5 to
drive each other mutually as shown in 5.6. Let now modify the linear system
5.2 adding some non-linear couplings between time-series, e.g. let consider the
following system:

x1(n) = 0.4x1(n − 1) + w1
x2(n) = 0.5x2

1(n − 1) + w2
x3(n) = −0.4x1(n − 1) + w3
x4(n) = −0.5x2

1(n − 1) + 0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) + w4
x5(n) = −0.25

√
2x4(n − 1) + 0.25

√
2x5(n − 1) + w5

(5.4)

As shown in Figure 5.7 a non-linear coupling is now set between x1 and x2 and x1

Figure 5.10: Granger Causality HeatMap for the system 5.4.

and x4. Again a visual inspection it doesn’t help to get some hints about drives.
But differently from the previous case, in Figure 5.9 we clearly see a different
response of the Granger Causality to the non-linearity added. This is not the case
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of the detection based on TE, which still measures a causality relation between x1
and x2, and x1 and x4.

Figure 5.11: Transfer Entropy HeatMap for the system 5.4.

We want to conclude this paragraph by showing the robustness of the Granger
Causality measure when a memory lag larger than necessary is chosen. This
robustness represents a great quality, since in general we do not know which is
the right lag m to use. Thus, we tend to choose the largest possible lag and it is
desired that the Granger Causality remains as constant as possible as the memory
lag is reached. Indeed, this is what we find. Let consider the following toy model:

Xt = aXt−1 + bYt−1 + bYt−2 + Ôt

Yt = 0.4Yt−1 + ηt
(5.5)

with the same notation before introduced. In this case, the Y time series drives
the X (this the direction in which we perform measures of GC), while the Y is
completely independent from the other. The memory lag is m = 2, but what
happens if we perform a Granger Causality Test using a memory lag larger than
two? In Figure 5.12 for different values of the ratio b

a
we plot the Granger Causality

index 4.16 for different values of the parameter m. Each point is obtained averaging
over 20 measures of GC obtained on time series of length 1000. It is evident
how the signal of causality increases as the ratio between the causal coefficient b
and the feedback coefficient a increases, but we can also notice how the measure

48



Transfer Entropy in Controlled Environments

doesn’t change for m > 2, once the ratio b
a
is kept fixed. From this we learn that

a significant measure of Granger Causality can’t decrease importantly as the lag
increases.

Figure 5.12: On the x-axis the ratio b
a
(see eq. 5.5, on the y-axis GCY⇒X .

Different lines correspond to measurements performed using different values for m.
is obtained averaging over 20 measures of GC obtained on time series of length
1000. The overlapping of the lines related to m > 2 are the of the robustness of the
measurement to the overestimation of the memory which characterizes the system.
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5.3 Partial Transfer Entropy: an application
In this last section we follow Vakorin, Krakovska and McIntosh [26]. The goal
here is to show how measure partial transfer entropy can be performed in a
stochastic system to detect direct driving links. Indeed, standard measures of
transfer entropies cannot be interpreted as direct causal-effect footprints when the
system is composed of processes which interact each other. To understand this, let
consider the following simple stochastic system:

x1(n) = 0.9x1(n − 1) + w1
x2(n) = ξx1(n − 1) + 0.9x2(n − 1) + w2
x3(n) = ξx2(n − 1) + 0.9x3(n − 1) + w3

(5.6)

with the same notation introduced before. Here ξ is meant to be a coupling
parameter. In Figure 5.14 we show a directed graph where the nodes represent the

Figure 5.13: Last 300 realizations of 800 iterations of the stochastic process
defined in 5.6 with ξ = 0.3.

time series and the edges the direction of the drive: X1 → X2 → X3. There is no
direct link between X1 and X3, but still a standard measure of TE detects a flow
of information from X1 to X3. Setting ξ = 0.3 and normalizing the time series such
that to have stochastic processes with mean zero and unitary variance, we analyze
the time series measuring the usual net flow of information ΦXi→Xj

and the partial
on ΦXi→Xj |Xk

for several values of the Gaussian KDE diameter. In Figure 5.15 we
can see that ΦX1→X3|X2 is zero for a large range of values of d. In Figure 5.16 we

50



Transfer Entropy in Controlled Environments

also test the estimation of the net flow of information for different values of the
coupling parameter ξ keeping fixed the diameter d. We can clearly see how the
measure is robust, i.e. ΦX1→X3|X2 = 0 regardless of the increase in magnitude of
the coupling χ.

Figure 5.14: Graph of the dynamical stochastic system 5.6. Nodes represent the
three time series, red edges couplings between time series and blue edges feedback
mechanisms.

5.4 The testing procedure
In this last section we present an ad hoc testing procedure to determine the
significance of a measure of TE. It is a crucial problem mostly when the analysis
is performed using very short time series, and it can be used to have a rough
idea about the amount of data needed to well estimate the transfer of information
between two stochastic processes. The second test of the procedure is more strict
but it will demand more time computation, and that is why we have preferred to
build a progressive test. For the first part of the procedure we follow [29]. Boba
et al stress that given two time series of length N (x1, x2, ..., xN ; y1, y2, ..., yN) the
transfer entropy must be regarded as a random variable. Thus, they compute the
so-called Z-score as follows:

Z(TE) = TE − TEs

σ(TEs)
(5.7)

where TEs is the arithmetic mean of a sample of values under a null hypothesis
of independence, and σ(TEs) is the respective standard deviation of the sample.
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Figure 5.15: Standard and partial net flow of information for different values
of the diameter d. Analysis performed using a Gaussian kernel on time series of
length 800 with ξ = 0.3 and m = 1.

Assuming a normal distribution of the TE values, Z-score corresponds to one-tailed
p-value. In this first part of the procedure the null hypothesis is detection of
random time-series we propose a computational null model in which the order of
elements in time-series is shuffled. Z < 0 or Z ≈ 0 implies that the TE of the
original data cannot be distinguished from pure random samples or shows in almost
all cases less information between X and Y than a randomized sample. Only if
Z > 0 we proceed with the second part of the test, otherwise we must conclude
that the measure is not significant.
The second test we propose relies on a bootstrap technique[30]. We remind that
the first step for measuring TE is estimating entropies, which requires a good
estimator for probability density functions. To be more precise, for a given value of
m one has to compute H(in+1, im

n ), H(im
n ), H(in+1, im

n , jm
n ) and H(im

n , jm
n ), and so

estimate the corresponding pdf. A way to test the significance of a non zero value of
transfer entropy, τ , is then to compare τ with the distribution of values τ̃ we obtain
performing the same measure on time series which are independent each other, but
that separately generate the same marginal probability distributions: this defines
our hypothesis zero H0. Let {xxm} and {yym} be the two sets of observations of
time-window of size m + 1 built from the time series X and Y , a value of t̃ can be
obtained with the following bootstrap procedure:
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Figure 5.16: Estimation of net flow of information between the time series X1
and X3 for different values of the parameter ξ (d = 1, m = 1).

• Step 1: sample with replacement N (with N being the size of {xxm} and
{yym}) time-windows from {xxm} and {yym} independently;

• Step 2: to each sampled xxm
i and yym

j sum a noisy vector η of the same size
of the time windows. Each entry of the vector is a random variable drawn
from a Gaussian distribution centred in zero, with standard deviation σ = d

2 ,
where d is the diameter of the Kernel used to estimate the pdf;

• Step 3: perform a measure of TE τ̃ on the new set {xxm}∗ and {yym}∗ and
repeat the entire procedure;

Step 2 guarantees that the marginal distributions of the two time series are not
modified, on the other hand adding independent noises to the two set of time
windows weakens any eventual drives. One can finally compares the estimation
of the information flow ΦX→Y with the distribution of the bootstrapped flow and
determine the achieved significance level of the test, abbreviated ASL. Having
observed a positive flow ΦX→Y , the ASL is defined to be the probability of observing
at last that large a value when the null hypothesis is true,

ASL = ProbH0{Φ∗X→Y ≥ ΦX→Y } (5.8)

The smaller the value of ASL, the stronger the evidence against H0:
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ASL < 0.10 borderline evidence against H0

ASL < 0.05 reasonably strong evidence against H0

ASL < 0.025 strong evidence against H0

ASL < 0.01 very strong evidence against H0
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Chapter 6

TE analysis on YouTube
and Spotify time-series

In this final chapter we finally approach real data. We analyze the time-series
associated to 751 tracks for which data from YouTube and Spotify are available
since their first appearance on the market. As for this kind of measure it is crucial
to have synchronized time-series, the 751 songs are those whose videos on YouTube
and tracks on Spotify were uploaded at the same day. The six time-series analyzed
are then:

• Spotify Popularity (SP)

• Followers of the Artist (FLL)

• Like on YouTube (LK)

• Dislike on YouTube (DLK)

• Views on YouTube (VW)

• Comments on YouTube (CMM)

Our hypothesis is that SP is a discrete time-series compared the others, which are
characterized by a richer dynamic. Therefore, we expect a net flow of information
from the indices of YouTube to the Spotify Popularity, which is meant to be an
index that is assigned by the Swedish platform recapitulating the interest for that
track and artist. The final goals are (1) to produce a heat-map and the related
graph showing interdependencies between all the time-series already introduced
and (2) to understand which time-series has the strongest driving influence on the
others.
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6.1 Causality Inference
Before performing any measure to detect drives we first normalize the data. We
remind that the Spotify Popularity index ranges between 0 and 100 assuming only
integer values, differently from the other indices which do not have any upper
bound. Therefore given a time-series X , e.g. the VW, we build the daily percentage
increment associated time-series Xdaily(t) = Xt+1−Xt

Xt

1. Moreover, in order to exclude
from the analysis the plateau which characterizes the Spotify Popularity index of
the majority of the tracks, we consider only the first 15 days. This is done for
each track. After that, we merge all the time-series relating to a given index into a
unique signal keeping in mind that sequences of different tracks do not "interact".
Indeed our assumption is that the processes according to which time-series are
mutually influenced are stationary on the time scale we analyze the data. In other
words, we assume that for any two time-series X and Y there is an interaction which
doesn’t vary in time and which does not depend on the music track is associated
to. It is also reasonable to assume that such an interaction is not deterministic
and that the process is affected by some noise.
For the first analysis we propose is a Granger Causality test. Therefore, for each
pair of time-series we implement both an AR(9) and VAR(9) model. We look then
for the coefficients in 4.14 that minimize the sum of the squares of the differences
between the observed dependent variables (values of the variables being observed)
in the data-set and those predicted by the models, i.e. we implement a simple
ordinary time least squares method. We remark that since our assumption of
universality of the function describing the responses between time-series, we are
not looking for a set of coefficients for each track, rather one that can fit the entire
data-set. In Figure 6.1 we show the analysis for two pairs of time-series. On the
left panels we plot the estimation of variance of the noise as function of m, for
both the VAR (solid line) and AR (dashed line) model. Just by looking at how
the solid lines overlapping the dashed ones, and the fluctuations of the Granger
Index, we can conclude that in all the cases VAR model doesn’t perform better
than an AR model. These evidences suggest that no linear relationships between
the time-series analyzed are present, and that we have to investigate for non-linear
interactions. Indeed, if any information flow is detected performing measures of
TE, we can safely conclude that this is not due to linear interactions, otherwise
Granger Analysis would have detected them.

1In the case of the FLL we multiply the associate daily percentage increment by 100 in order
to have a signal of the same magnitude of the others.
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Figure 6.1: Top left panel: estimated variance for the two predictive model as
function of m. Solid line are associated to VAR regression model, dashed line to
AR. Bottom left panel: Granger Index versus m. On the right side the coefficients
of the VAR(9) are plotted. Feedback and causing coefficients are referred to the
notation of Granger. The two plots are representative of the pairs (POP, CMM)
(upper panels) and (LK, POP) (lower panels).

In order to perform measure of TE it’s necessary to fix the size of the diameter
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of kernel d and the size of the time window m. Although it is always recommended
to use a large value for m since in principle for a non Markovian process m should
tend to infinite, there is no precise prescription in the literature about how to chose
the right value for d, only some rule-of-thumb recommendation. Given a kernel
diameter d and a pair (X, Y ), we measure TX→Y and TY→X for several values of
m (mmax = 11). If the measure pass the first step of the testing procedure, i.e.
the Z-score associated is positive, we compute the net flow ΦX→Y . We observe
that, after performing several shuffling and consequently measuring the information
flow, we find a value of the σ(TEs) of the order of 10−6. This means that as soon
the measure of transfer entropy on the original data is larger than the signal we
measure on the shuffled data, we can proceed with the bootstrap test. Graphically,
if the solid line falls above the dashed line, which is representative of the measures
performed on the shuffled sample, we say that the measure is valuable. In Figure
6.2 we plot the TE and TEF for the pair (VW, DLK) as m varies for a fixed
value of d. The same plot is presented in Figure 6.3 for the pair (POP, DLK).
In these cases we fix d = 0.06 and we see how the signal (solid line) is strongly
distinguishable from the signal that is obtained by shuffling the time-series. Once
the flow of information is measured for all the two direction, one can easily estimate
the net flow Φ.

In Figure 6.4 and 6.5 we plot for different values of the diameter d the TE in
both the directions for two pairs of time-series (CMM, DLK) and (DLK, LK).
The values of TE that do not result significant according to the Z-score test are
represented with empty markers. We find that in a range from 0.05 to 0.08 every
choice of the diameter leads to significant results for this first test.

In this range the value of TE doesn’t remain constant as it strongly depends on
the value of d, and generally speaking the direction of the net flow doesn’t change,
i.e., the sign of Φ remains constant. Thus we choose arbitrarily d = 0.08 and we
test via bootstrap all the measurements. We expect to find consistent results with
the first method based on the Z-score.

In Figure 6.6 and 6.7 we show for each of the 16 couples of time-series the
distribution of 100 bootstrapped estimates of TEF under the null hypothesis of
independence between the time-series, and the actual measured value of TEF (red
line). In almost all the cases the estimation of TEF is in magnitude greater than
all the elements in the bootstrapped sample, which means that the significance
of the measure is confirmed. The whole analysis is repeated taking into account
the environment YouTube+Spotify, i.e. implementing measure of partial TE.
In Figure 6.8 we show the heat-map where the TEF (m = 11, d = 0.08) are
reported for each pair of time-series. The rows are meant to drive the columns,
e.g. ΦDLK→P OP = 0.270. In Figure 6.9 the same result is reported using a directed
graph representation, where the thickness of the edges is set to be proportioned to
the TEF between the connected nodes.
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Figure 6.2: TE and TEF for the pair (VW, DLK) as function of the time window
size m. The dashed lines represent the value of TE averaged on 10 measures
performed on shuffled time-series (d = 0.06).

We find that the Spotify’s popularity index is completely driven by the statistics
from YouTube, mostly from the time-series related to the dislikes. This confirm
our intuition that this index is just an indicator of popularity that summarizes the
richer dynamics of the index of YouTube (where popularity is explicitly measured
as number of views). We explain the great informative role of the dislike time-series
claiming that "it is easier to express a positive feedback than a negative one". This
social behaviour - for which users are more oriented to leave a positive feedback to
a video rather than a negative one - would penalize the information associated to
the likes time-series in favour of the dislikes time-series. In the graph in Figure 6.9
we also recognize the centrality of the followers time-series inside the network. It is
an expected result and it perfectly matches the ever more imperative attention of
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Figure 6.3: TE and TEF for the pair (POP, DLK) as function of the time window
size m. The dashed lines represent the value of TE averaged on 10 measures
performed on shuffled time-series (d = 0.06).

the markets in monitoring this index.
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Figure 6.4: TE for different values of the diameter d the TE for both the directions
(CMM, DLK). The values of TE which don’t result significant according to the
Z-score test are represented with empty markers.

Figure 6.5: TE for different values of the diameter d the TE for both the directions
(LK, DLK). The values of TE which don’t result significant according to the Z-score
test are represented with empty markers.
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Figure 6.6: Distribution of 30 bootstrapped estimates of TEF under the null
hypothesis of independence of the time-series, and the actual measured value of
TEF (red line).
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Figure 6.7: Distribution of 30 bootstrapped estimates of TEF under the null
hypothesis of independence between the time-series, and the actual measured value
of TEF (red line).
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pair ASL
(FLL, POP) 0.00
(VW, POP) 0.00
(VW, FLL) 0.09
(LK, POP) 0.02
(LK, FLL) 0.00
(LK, VW) 0.00

(DLK, POP) 0.00
(DLK, FLL) 0.65
(DLK, VW) 0.00
(DLK, LK) 0.00

(CMM, POP) 0.00
(CMM, FLL) 0.028
(CMM, VW) 0.20
(CMM, LK) 0.13
(CMM, DLK) 0.00

Table 6.1: Achieved Significance Level Table
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Figure 6.8: Heat-map of the TEF (m = 11, d = 0.08). The rows are meant to
drive the columns, e.g. ΦDLK→P OP = 0.270.
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Figure 6.9: Directed graph built from the Heat-Map (Fig. 6.8). The nodes
represent the time-series and the directed edges indicate the direction of the
information. The magnitude of the flow of information is visually represented with
the thickness of the edges.
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Chapter 7

Conclusion

In this work we have shown that by analyzing track data released between January
and March 2020 it is possible to train predictive models for classification and
regression tasks. We saw how Random Forest algorithm efficiently classify the
tracks of the data-set into the two classes "success" and "flop", just taking as input
the static features that Spotify assigns to each track. As one can expect, the
popularity of the artist resulted to be the most important feature when performing
such classification. Also, the regression performed with the MP provided quite
good results even if the fit between the predictions and the actual values of the
time-series can be further improved. High frequency data rather than daily data
could be useful in this sense. The most interesting results came from the analysis
based on information theory tools. In this framework we were able to detect and
quantify the strength and the direction of the drives between the time-series. We
found that the Spotify’s popularity index is completely driven by the statistics
from YouTube, mostly from the time-series related to the dislikes. This confirm
our intuition that the Spotify’s popularity index is just an indicator of popularity
that summarizes the richer dynamics of the index of YouTube (where popularity
is explicitly measured as number of views). Moreover, the failure of Granger
Causality in detecting causal relations allows us to conclude that these time-series
are not linearly coupled. Although it is not possible to test it, we explain the great
informative role of the dislike time-series claiming that "it is easier to express a
positive feedback than a negative one". We also found the great informative role of
the follower time-series, an expected result that corroborates our measurements.
Moreover, the data do not allow to measure transfer entropy between the the VW
time-series and the time-series of the number of plays on Spotify: in this case we
could have inferred how users move from a platform to the other to listen to music
contents and if there are different music consumption patterns on the two platforms
depending on the music genre. Since Spotify lends itself better than YouTube for
streaming audio tracks - as it is not possible to reproduce a video keeping YouTube
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running in background and video streaming consumes more mobile internet data-
we expect that, again, YouTube views would drive Spotify listening. More explicitly,
we expect that the user may first watch the video-clip on YouTube, and after -
assuming that the product satisfies his expectations - he may keep continuing to
listen to the same track and other from the same artist on Spotify. In this way the
information would flow again from YouTube to Spotify. Finally, we conclude that
this kind of analysis could also have an important economic impact. Indeed, one
day these kind of data will not be freely available anymore through API procedures,
and tools such as the one developed here can help in two ways: on one hand,
they can help setting the right value (and consequently the correct price) that
a platform should charge for customers buying it, being the series with higher
impact on others (e.g., their weighted out degree in the TE network). On the other
hand, advertisement companies may optimize their data provisioning expenses by
selecting only the relevant features to buy or scrape in order to have a real-time
description of the features leading the tracks’ dynamics. The latter point also
holds for the feature selection of Machine Learning models. Indeed, being able to
select redundant or completely dependent variables may help in building efficient
predictive models that rely on a smaller set of feature for their functioning.

To conclude, our analysis reveal a rich and non-trivial network of interactions be-
tween different online streaming platforms and shade some light on the mechanisms
driving the success (or failure) of a track being published on the music market.
We also introduced an improved method to statistically test the significance of
the Transfer Entropy information flow in time-series using a bootstrap-inspired
method.
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Appendix A

Back Propagation

Here we report a paragraph from the book Neural Networks - A Comprehensive
Foundation by Simon Haykin [8], in which back-propagation algorithm is explained
extensively.

The error signal at the output of neuron j at iteration n (ie., presentation of
the n-th training example) is defined by

ej(n) = dj(n) − yj(n), (A.1)

We define the instantaneous value of the error energy for neuron j as 1
2e2

j(n).
Correspondingly, the instantaneous value E(n) of the total error energy can be
written as

E(n) = 1
2
Ø
j∈C

e2
j(n) (A.2)

where the set C includes en the neurons in the output layer of the network. Let
N denote the total number of patterns (examples) contained in the training set.
The average squared error energy is obtained by summing k(n) over an n and then
normalizing with respect to the size N , as shown by

Eav = 1
N

NØ
n=1

E(n) (A.3)

The objective of the learning process is to adjust the free parameters of the network
to minimize Eav. To do this minimization, we consider a simple method of training
in which the weights are updated on a pattern-by-patter basis until one epoch,
that is, one complete presentation of the entire training set has been dealt with.
The adjustments to the weights are made in accordance with the respective errors
computed for each pattern presented to the network. The arithmetic average og
these individual weight changes over the training set is therefore an estimate of the
true change that would result from modifying the weights based on minimizing the
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Back Propagation

cost function Eav over the entire training set. Let neuron j being fed by a set of
function signals produced by a layer of neurons to its left. The induced local field
vj(n) produced at the input of the activation function associated with neuron j is
therefore

vj(n) =
mØ

j=0
wji(n)yi(n) (A.4)

where m is the total number of inputs applied to the neruon j. Hence the functional
signal

yj(n) = φj(vj(n)) (A.5)

The back-propagation algorithm applies a correction ∆wji(n) to the synaptic weight
wj,i(n), which is proportional to the partial derivative ∂E

∂wji(n) . We may express this
gradient as:

∂E(n)
∂wji(n) = ∂E(n)

∂ej(n)
∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂wji(n) (A.6)

The partial derivative ∂E(n)
∂wji(n) represents a sensitivity factor, determining the direc-

tion of the search in weight space for the synaptic weight wji. Evaluating all the
terms on the r.h.s. of Eq. A.6, we can write

∂E(n)
∂wji(n) = −ej(n)φÍ

j(vj(n))yi(n) (A.7)

The correction ∆wji(n) applied to wji(n) is defined by the delta rule:

∆wji(n) = −η
∂E

∂wji(n) (A.8)

where η is the learning-rate parameter of the back-propagation algorithm. The
use of the minus sign in Eq.A.8 accounts for the gradient descent in weight space.
Accordingly, the use of Eq.A.7 in A.8 yields

∆wji(n) = ηδj(n)yi(n) (A.9)

where the local gradient δj(n) is defined by

δj(n) = ej(n)φÍ

j(vj(n)) (A.10)

According to Eq.A.10, the local gradient for output neuron j is equal to the product
of the corresponding error signal ej(n) for the neuron and the derivative φ

Í
j(vj(n))

of the associated activation function.
From Eq.A.10 we note that a key factor involved in the calculation of the weight
adjustment is the error signal ej(n) at the output of neuron j. In this context
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Back Propagation

we may identify two distinct cases, depending on where in the network neuron j
is located. In case 1, neuron j is an output node. This case is simple to handle
because each output node of the network is supplied with a desired response of its
own, making it a straightforward matter to calculate the associated error signal.
In case 2, neuron j is a hidden node. Even though hidden neurons are not directly
accessible, they share responsibility for any error made at the output of the network.
The question, however, is to know how to penalize or reward hidden neurons for
their share of the responsibility. This problem is solved in an elegant fashion by
back-propagating the error signals through the network.

Case 1: Neuron j is an Output Node When neuron j is located in the
output layer of the network, it is supplied with a desired response of its ow. We
may use Eq.A.1 to compute the error signal ej(n) associated with this neuron. Hav-
ing determined ej(n), it is a straightforward matter to compute the local gradient
δj(n) using Eq.A.10.

Case 2: Neuron j is a Hidden Node When neuron j is located in a hid-
den layer of the network, there is no specified desired response for that metros.
Accordingly, the error signal for a hidden neuron would have to be determined
recursively in terms of the error signals of all the neurons to which that hidden
neuron is directly connected; this is where the development of the back-propagation
algorithm gets complicated. We may redefine the local gradient δj(n) for hidden
neuron j as

δj(n) = − ∂E(n)
∂yj(n)

∂yj(n)
∂vj(n) = − ∂E(n)

∂yj(n)φ
Í

j(vj(n)) (A.11)

To calculate the partial derivative ∂E(n)
∂yj(n) , we may proceed as follows. Let k be the

index for indicating output nodes

∂E(n)
∂yj(n) =

Ø
k

ek
∂ek(n)
∂yj(n) =

Ø
k

ek
∂ek(n)
∂vk(n)

∂vk(n)
∂yj(n) (A.12)

We note that ek(n) = dk(n) − φk(vk(n)), hence ∂ek(n)
∂vk(n) = −φ

Í
k(vk(n)). We also note

that for neuron k the induced local field is

vk(n) =
mØ

j=0
wkj(n)yj(n) (A.13)

Differentiating Eq.A.11 with respect to yj(n) yields

∂vk(n)
∂yj(n) = wkj(n) (A.14)
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Putting all together we ger the desired partial derivative:

∂E(n)
∂yj(n) = −

Ø
k

ek(n)φÍ

k(vk(n))wkj(n) = −
Ø

k

δk(n)wkj(n) (A.15)

Finally, using Eq.A.15 in A.12, we get the back-propagation formula fot the local
gradient δj(n) as described:

δj(n) = φ
Í

j(vj(n))
Ø

k

δk(n)wkj(n) (A.16)
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