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Summary

Environmental concern, fuel efficiency and new market trends push automotive
companies, governments and research institutes to explore environmentally-friendly,
efficient and sustainable personal and public transportation solutions. Automotive
industry is following this trend developing new eco-friendly, smart, and connected
vehicles. In this scenario, powertrains are one of vehicle subsystems undergoing
several changes in architecture and implementation in favor of electric and hy-
brid solutions. These innovations within the automotive domain are driven by
embedded systems and software solutions. It can be observed that the costs for
embedded solutions in vehicles are growing rapidly while mechanical engineering
based solutions are stagnating in importance.

The motivations of this thesis work are inserted in context related to the
new trends of the automotive industry. To be more precise, the purpose of this
work was to develop the low-level software for an Electronic Control Unit (ECU)
responsible to control an electric powertrain. First, a review of the theoretical
aspects of the features to be implemented and required by the system was made
to provide a background knowledge about the discussed topics. Then, before to
start developing the firmware, a software architecture was carefully defined through
multiple software modules, also called software components, with well-defined
interfaces. This approach was needed to hide the implementation details of the
low-level software and increase the software modularity. The development process,
aiming to verify the system requirements, was carried on through a bare-metal
approach without any real-time operating system and using the C programming
language. Once a first version of the firmware was ready, the testing and verification
process was performed using common laboratory instrumentation and debug and
trace tools provided by Lauterbach to interact with the microcontroller. Test
programs and procedures were developed for each software component to verify
the required features trying to maintain the independence with respect to their
specific software implementations. Then, the obtained results were analyzed
showing correspondences with the expected system responses. As last activities,
the integration of the application software, obtained through automatic code
generation tools, was performed. Furthermore, a processor-in-the-loop simulation
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of the motor control algorithm, implemented as a periodic task in the application
software, was executed to analyze its worst case execution time and demonstrate
the feasibility of its implementation on the target platform. In conclusion, final
considerations and further improvements were pointed out.
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Chapter 1

Introduction

Environmental concern, fuel efficiency and new market trends push automotive
companies, governments and research institutes to explore environmentally-friendly,
efficient and sustainable personal and public transportation solutions. Automotive
industry is following this trend developing new eco-friendly, smart and connected
vehicles. In this scenario, powertrains are one of vehicle subsystems undergoing
several changes in architecture and implementation in favour of electric and hy-
brid solutions. The motivations of this thesis are the result of these trends in
transportation industry.

This thesis was carried out with the collaboration of the Department of Automa-
tion and Computer Science (DAUIN) of the Polytechnic of Turin. The purpose
of this thesis is to project and develop an embedded system firmware responsible
to manage and control a proof of concept of a full electric powertrain. Some
implementation details and technological aspects of the project are protected by
a non disclosure agreement and have been neglected. An overview of embedded
systems for automotive purpose and electric vehicles will be provided in this chapter
to better understand the application of this thesis.

1.1 Electric Vehicles
An electric vehicle (EV) is a vehicle based on one or multiple motor (electric or
traction) to ensure propulsion. The degree of electrification varies from one to
another through a scale from zero (internal combustion engine vehicles) to one (all
electric vehicles). In the context of this thesis, any kind of vehicles powered by
fossil fuels have been neglected and only full EVs have been considered. Almost
every EV is Battery Electric Vehicle (BEV). BEVs make use of a high capacity
battery to store energy. So, they derive all the power from their batteries pack and
have no internal combustion engine (ICE), neither fuel cell, nor fuel tank. The

1
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only way to recharge its batteries is by plugging in the vehicle to a charging point.

Figure 1.1: Generic architecture of an electric vehicle.

The composition of an EV is shown in Fig. 1.2. The architecture consists in
three major subsystem - electric propulsion, energy source, and auxiliary. The
electric propulsion subsystem comprises the electronic controller, power converter,
electric motor, mechanical transmission, and driving wheels. The energy source
subsystem involves the energy source, the energy management unit, and the
energy refuelling unit. The auxiliary subsystem consists of the power steering unit,
temperature control unit, and auxiliary power supply. In Fig. 1.2, a mechanical link
is represented by a double line, an electrical link by a thick line, and a control link
by a thin line. The arrow of each line denotes the direction of electrical power flow
or control information communication. Based on the control inputs from the brake
and accelerator pedals, the electronic controller provides proper control signals to
switch on or off the power devices of the power convert which function is to regulate
power flow between the electric motor and the energy source. The backward power
flow is due to regenerative breaking of the EV and this regenerative energy can be
stored provided that energy source is receptive. The most available EV batteries
readily accept regenerative energy. The energy management unit cooperates with
the electronic controller to control regenerative braking and its energy recovery. It
also works with the energy refuelling and to monitor usability of the energy source.
The auxiliary power supply provides the necessary power with different voltage
levels for all EV auxiliaries, especially the temperature control and the steering
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units.

Figure 1.2: Architecture of an electric vehicle.

On the basis of this architecture, some considerations about the design flexibility
of EVs can be discussed. First, the energy flow is mainly electrical and implemented
via flexible electrical wires rather than bolted flanges or rigid shafts as in internal
combustion engine vehicles (ICEV). Then, the minor encumbrance of electric motors
allows different positioning inside the vehicle chassis. Hence, distributed subsys-
tems in the EV are really achievable allowing different propulsion arrangements
such as independent four wheels and in wheel drives [1]. Research communities
and automotive companies are exploiting this flexibility to implement different
powertrain configurations in an EV to improve as much as possible efficiency and
performances reducing costs. Succeed in developing the right configuration for its
own production can lead to significant advantages in relation to competitors. For
these reasons, this field is becoming even more populated of studies, researches
and investments that propose innovative solutions suitable for the different kinds
of applications. Nowadays, there are two approaches through which it is possible
to improve the performances and the efficiency of an EV. The first one is to make
the most of the already available hardware developing different control and system
management strategies; the second one is related to technology research as it is
often done in the field of battery. In general, the latter approach can be more
expensive and time consuming with respect the first one and it is the reason why
searching for new configurations, algorithms and control strategies is often done to
maximize performances and efficiency of EVs. Efficiency and performance of an
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EV are mainly related to its powertrain, and for this reason, the structure of an
EV powertrain and functional characteristics of its constitutive components have
been analyzed in detail in the following section.

1.1.1 Electric Powertrain
In an automotive vehicle, the powertrain comprises the main components that
generate power and deliver that power to the road surface. This includes the
motor/engine, transmission, drive shafts, differentials, and the drive wheels. All
EVs eliminate the engine altogether, relying solely on electric motors for propulsion
[2]. The main components of an electric powertrain can be identified from the Fig.
1.2. More precisely, the components included in the subsystem are an electronic
controller, a power converter, one or multiple electric motors, and sometimes a
mechanical transmission.

Electric Motor

An electric motor is an electric machine that converts electric energy into mechanical
energy. Most electric motors operate through the interaction between the the
magnetic field of the motor and electric current in a wire winding to generate force
in the form of torque applied on the motor shaft. Electric motors can be powered
by direct current (DC) sources, such as from batteries, motor vehicles or rectifiers,
or by alternating current (AC) sources, such as a power grid, inverters or electrical
generators.

Electronic Controller

An Electronic Controller or Electronic Control Unit (ECU) is an embedded system
that controls electric subsystems in a transport vehicle. In other words, the ECU
is the brain of the system. In general, it receives measurements of significant
quantities of the vehicle by means of sensors, compares these measurements with
the desired behaviour and determines the appropriate control actions on the base
of the control algorithm acting on the available actuators. In the context of an
Electric Powertrain, the Electronic Controller is responsible to drive the Power
Converter to manage the electric power flow from the energy source to the electric
motor and vice versa in case of regenerative breaking.

Power Converter

A Power Converter is an electronic device that controls the flow of electric energy
by supplying voltages or current in a form that is optimal suited for the load. A
Power Converter is necessary in a electric vehicle to transform the DC energy
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of batteries into current waveforms suitable to control the motor. The most
used Power Converter in Electric Powertrain is the inverter. Inverters are power
electronic devices that transform direct current into alternating current with specific
amplitude and frequency. More about inverters is discussed in section 2.5.1.

Mechanical Transmission

A Mechanical Transmission is a machine in a power transmission system, which
provides controlled application of the power. Mechanical Transmissions are often
called gearboxes in automotive applications. In general, gearboxes have a fixed
ratio in Electric Powertrains allowing much more simpler transmission systems
with respect to ICEVs.

1.2 Embedded systems role
The design of electric vehicles requires a complete paradigm shift in terms of
embedded systems architectures and software design techniques that are followed
within the conventional automotive systems domain. It is increasingly being realized
that the evolutionary approach of replacing the engine of a car by an electric motor
will not be able to address issues like acceptable vehicle range, battery lifetime
performance, battery management techniques, costs and weight, which are the core
issues for the success of electric vehicles. While battery technology has crucial
importance in the domain of electric vehicles, how these batteries are used and
managed pose new problems in the area of embedded systems architecture and
software for electric vehicles. At the same time, the communication and computation
design challenges in electric vehicles also have to be addressed appropriately.

Nowadays most innovations within the automotive domain are driven by embed-
ded systems and software solutions. Many of these innovations like anti-lock braking
systems, electronic stability control, or emergency brake assistants significantly
reduce vehicle accidents and increase safety. On the other hand, embedded systems
increase the driving comfort with driver assistance functions like adaptive cruise
control. Furthermore, infotainment systems and smart devices increase the user
acceptance and contribute to the value of modern cars. It can be observed that
the costs for embedded solutions in vehicles are growing rapidly while mechanical
engineering based solutions are stagnating in importance. It is projected that the
importance and costs of embedded systems and software in electric vehicles will
grow much further.

The introduction of electric vehicle is speed up this process. It is widely
understood that the approach of replacing the engine of a conventional car by an
electric motor is only an intermediate solution on the way to a fully customized
electric vehicle. Therefore, the embedded systems and software challenges in electric
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vehicles go beyond the engine and energy control. A redesign of the communication
and computation architecture in electric vehicles entails several opportunities, but
also bears many challenges.

For computation support, novel hardware and programming paradigms have to
be considered. While the automotive industry already started considering multi-
core systems, alternative solutions might be graphic processors or reconfigurable
hardware to cope with the computational demands of active safety functions. The
electric powertrain also has to be designed and controlled to achieve the highest
possible efficiency. To achieve significant energy savings, a distributed embedded
control approach becomes necessary to control the power management of the entire
vehicle. This is a challenging task because multiple energy source like the batteries,
solar panels, or regenerative braking have to be taken into account. For this
purpose, control strategies for these batteries will become necessary that take into
account different driving patterns.

1.3 Firmware development
In computing, firmware is a specific class of computer software that provides the
low-level control for a device specific hardware. Firmware can either provide a
standardized operating environment for more complex device software (allowing
more hardware-independence), or, for less complex devices, act as the complete
operating system of the device, performing all controls, monitoring and data
manipulation functions. Typical examples of devices containing firmware are
embedded systems, consumer appliances, computers, computer peripherals, and
others. Almost all electronic devices beyond the simplest contain some firmware.

Firmware is held in non-volatile memory devices such as ROM, EPROM, or
flash memory. Changing the firmware of a device was rarely or never done during
its lifetime in the past, but is nowadays a common procedure; some firmware
memory devices are permanently installed and cannot be changed after manufacture.
Common reasons for updating firmware include fixing bugs or adding features to the
device. This requires ROM integrated circuits to be physically replaced, or EPROM
or flash memory to be reprogrammed through a special procedure. Firmware such as
the ROM BIOS of a personal computer may contain only elementary basic functions
of a device and may only provide services to higher-level software. Firmware such
as the program of an embedded system may be the only program that will run on
the system and provide all of its functions.

In the proof of concept object of this thesis, the control software of the electric
powertrain was developed as an embedded firmware with the absence of an operating
systems. Therefore, there wasn’t strict distinction between the specific device drivers
and the application software represented by the control algorithms. However, the
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specific device drivers and the application software were developed and integrated
together manually after being developed and tested separately - the devices drivers
were developed with handwritten software development processes, instead the code
of application software was automatic generated by means of specific toolboxes in
Matlab environment.

1.4 Thesis outline
The main objective of this master thesis is to develop the firmware for an electronic
control board responsible to implement the control algorithms for an electric power-
train proof of concept. However, the multidisciplinary topic of electric powertrains
led to consider aspects which aren’t strictly related to the firmware development,
and to interact with different engineering domains in the field of electric motor,
power converters, digital electronics, and embedded real-time systems. The work
developed for this thesis will be discussed according to the following structure:

• Theoretical Background
In chapter 2, a brief overview of the theoretical aspects of the topics discussed
in this thesis is provided to the reader to better understand the design choices
taken during the firmware development process.

• Firmware Development
Chapter 3 is the central work of this thesis and aims to describe the firmware
development process. Features, implementation mechanisms, and application
issues of each software components are discussed.

• Firmware Validation and Testing
The testing procedures used to validate and verify the firmware are provided
in chapter 4 with the corresponding test results and changes made to fulfill
the requirements.

• Application Integration
After being developed and tested in Matlab environment, the application
software was generated by mean of code generation using specific toolboxes.
The application integration process and the used scheduling approach is
discussed in chapter 5.

• Conclusions
The conclusive considerations and possible future improvements are discussed
in chapter 6.

7



Chapter 2

Theoretical Background

In this chapter, some theoretical aspects about electric motors, power electronics,
microcontrollers, analog-to-digital conversion, and digital communication protocols
will be discussed. The theoretical description about these topics will be restricted
to some significant aspects useful for the purposes of this thesis. For this reason,
this chapter has to be seen as a miscellaneous of contents that provides a theoretical
background aiming to understand the description of the system structure and its
functional requirements, and their corresponding implementation in the firmware
development process. All the development aspects will be analyzed in next chapters
and, at that time, it will be clear why some topics were discussed respect to others.

2.1 ARM Architecture
The ARM architecture is based on 32-bit reduced instruction set computer (RISC)
processor cores developed by ARM Holdings. RISC processors are characterized by
the use of small, highly-optimized instructions with explicit memory access (i.e.
load/store instructions) which is always aligned. Moreover, the instruction set is
orthogonal with fixed length and single cycle execution time for all instructions.
These features are finalized to easy the decode process, allow the pipeline technique,
and simplify the hardware implementation and testing. ARM processors can
be classified in classic, embedded and application on the base of their purposes.
Embedded and application processors are constituted by the ARM Cortex family
which is subdivided as following:

• Cortex-A
The Cortex-A category of processors is dedicated to Linux and Android devices.
Any devices – starting from smartwatches and tablets and continuing with
networking equipment – can be supported by Cortex-A processors.
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• Cortex-R
Cortex-R processors primarily target real-time solutions. They find application
in controllers, networking equipment, media players, and other similar devices.
Furthermore, this type of ARM processor provides great support for the
automotive industry. Cortex-R processors have a lot in common with high-end
microcontrollers, but at the same time have the ability to fulfill more scalable
tasks.

• Cortex-M
The point of interest of Cortex-M processors is the MCU market. Cortex-M
is known as an industry standard and find their implementation in FPGA,
integrated memories, clocks, etc. Different members of the set have different
improved features: some of them demonstrate higher performance, others are
more energy efficient. Of course, each of the designed controllers is tailored to
a particular segment of the market.

In this thesis, a microcontroller containing a Cortex-M7 processor core was utilized
for the firmware development and the controller implementation of the proof of
concept. For this reason, the Cortex-M7 processor core will be discussed in detail
in the following section.

2.1.1 ARM Cortex-M7
The Cortex-M7 processor is built on a high-performance processor core, with a 6-
stage pipeline Harvard architecture. The Cortex-M7 processor implements a version
of the Thumb instruction set based on Thumb-2 technology, ensuring high code
density and reduced program memory requirements. The Thumb instruction set is
a subset of the most commonly used 32-bit ARM instructions. Thumb instructions
are each 16 bits long, and have a corresponding 32-bit ARM instruction that has the
same effect on the processor model. Thumb-2 technology is a major enhancement to
the Thumb instruction set. It adds 32-bit instructions that can be freely intermixed
with 16-bit instructions in a program. As can be seen in Fig. 2.1, the Cortex-
M7 processor core provides some in-core peripherals that are used for real-time
application, interrupt handling and fast memory access management:

• Nested Vector Interrupt Controller
The NVIC is an embedded interrupt controller that supports low latency
interrupt processing.

• System Control Block
The System Control Block (SCB) is the programmers model interface to the
processor. It provides system implementation information and system control,
including configuration, control, and reporting of system exceptions.
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Figure 2.1: ARM Cortex-M7 processor core architecture.

• System Timer
The system timer, often called SysTick, is a 24-bit count-down timer. It is used
for Real Time Operating System (RTOS) tick timer or as a simple counter.

• Integrated Instruction and Data Caches (optional)
The instruction and data caches provide fast access to frequently accessed
data and instructions, and can increase average performance when system
based memory is used.

• Memory Protection Unit (optional)
The Memory Protection Unit (MPU) improves system reliability by defining
the memory attributes for different memory regions. Depending on vendor-
specific implementation, it can provide up to 8 or 16 different regions, and an
optional predefined background region.

• Floating-point unit (optional)
The FPU provides IEEE754-compliant operations on 32-bit single-precision
and 64-bit double-precision floating-point values.
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Programmer’s Model

The programmer’s model of a processor contains a concise description of its internal
registers and their functions. Only the program visible registers (i.e. directly
accessible by applications) are included in the programmer’s model.

From a functional point of view, the Cortex-M7 can operates in two different
modes called Thread mode and Handler mode, which are respectively used to
execute application software or handles exceptions. Also two privileged levels are
available to have an unlimited or limited access to all the CPU resources during
software execution. The structure of the processor core registers are reported in

Figure 2.2: Structure of the core register set of ARM Cortex-M7 processor.

Fig. 2.2. There are available thirteen general purpose registers (R0-R12) for data
operations, five special registers to manage the processor status and configuration,
and four other registers for specific purposes. Two registers, called Main Stack
Pointer and Process Stack Pointer (MSP and PSP), are mutually used to store
the stack pointer according to the bit[1] of Control register. The Link Register
(LR) and the Program Counter (PC) store respectively the return information for
subroutines and the next instruction to be fetched. The five special registers are
Processor Status Register (PSR), Priority Mask Register (PRIMASK), Fault Mask
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Register (FAULTMASK), Base Priority Mask Register (BASEPRI), and Control
Register (CONTROL). PSR combines the Application PSR (APSR), Interrupt
PSR (IPSR), and Execution PSR (EPSR) as three mutually exclusive bit fields
in its 32 bits. These three registers contains respectively the current status of
condition flags, exception type number of the current Interrupt Service Routine,
and execution state bits. When they are set, the PRIMASK and FAULTMASK
are used to prevent respectively the activation of all exceptions with configurable
priority and the activation all exceptions except for Non-Maskable Interrupt (NMI).
The BASEPRI is used to define the minimum priority for exception processing. The
CONTROL defines which register is selected for the stack pointer, the privilege level
for software execution when the processor is in Thread mode, and if implemented,
indicates whether the FPU core peripheral is active.

The access to processor core registers and core peripherals can be done using the
Cortex Microcontroller Software Interface Standard (CMSIS) provided by ARM.
CMSIS allows a standardized and device-independent way to interact with the
available resources provided by the processor core.

Memory Model

The memory model describes processor memory map and the behavior of memory
accesses. ARM Cortex-M7 processor divides its 4GB of addressable space in
various memory regions with different purposes. The memory map of the processor
is reported in Fig. 2.3. The low memory addresses are used for code storing,
SRAM and peripheral mapping. The code region is often implemented with NOR-
Flash memories which are able to retain the non-volatile data such as software
to be executed at startup. The peripheral memory region is used to map in-chip
peripherals in MCU architectures. External memories or devices have their own
memory regions which are mapped respectively in External RAM and External
Devices regions. Instead, the private peripheral bus is used to map some processor
core peripherals - NVIC, System Timer, and System Control Block. Also a vendor-
specific memory region is available and mapped in higher memory addresses.

The processor views memory as a linear collection of bytes numbered in ascending
order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7
hold the second stored word. In byte-invariant big-endian format, the processor
stores the most significant byte of a word at the lowest-numbered byte, and the least
significant byte at the highest-numbered byte. In little-endian format, the processor
stores the least significant byte of a word at the lowest-numbered byte, and the
most significant byte at the highest-numbered byte. The Cortex-M7 architecture
supports both memory endianness, but in general, only one of them is supported
in specific-vendor chip implementations.
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Figure 2.3: Addressable memory space of ARM Cortex-M7 processor.

Exception Model

The Exception Model describes how the processor handles and manages exceptions
and interrupts. In Cortex-M7 processor, four different states are provided to
manage an exception - inactive when it is not active and not pending, pending
when it is waiting to be serviced by the processor, active when it is serviced by
the processor and it is not yet completed, and active and pending when it is active
and another exception of the same source is pending. In Cortex-M7 processor,
exceptions are classified in different types as follow:

• Reset
Reset is invoked on power up or a warm reset. The exception model treats
reset as a special form of exception. It is permanently enabled and has a fixed
priority of -3.
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• NMI
A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered
by software. This is the highest priority exception other than reset. It is
permanently enabled and has a fixed priority of -2.

• HardFault
A HardFault is an exception that occurs because of an error during exception
processing, or because an exception cannot be managed by any other exception
mechanism. HardFaults have a fixed priority of -1, meaning they have higher
priority than any exception that has a configurable priority.

• MemManage
A MemManage fault is an exception that occurs because of a memory pro-
tection related fault. The fixed memory protection constraints, or the MPU
if implemented, determines this fault, for both instruction and data memory
transactions.

• BusFault
A BusFault is an exception that occurs because of a memory related fault
for an instruction or data memory transaction. This might be from an error
detected on a bus in the memory system.

• UsageFault
A UsageFault is an exception that occurs because of a fault related to instruc-
tion execution.

• SVCall
A Supervisor Call (SVC) is an exception that is triggered by the SVC instruc-
tion. In an OS environment, applications can use SVC instructions to access
OS kernel functions and device drivers.

• PendSV
PendSV is an interrupt-driven request for system-level service. In an OS
environment, use PendSV for context switching when no other exception is
active.

• SysTick
A SysTick exception is an exception generated when the SysTick reaches zero.
Software can also generate a SysTick exception. In an OS environment, the
processor can use this exception as system tick.

• Interrupt (IRQ)
A interrupt, or IRQ, is an exception signaled by a peripheral, or generated by
a software request. All interrupts are asynchronous to instruction execution.
In the system, peripherals use interrupts to communicate with the processor.
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The Fig. 2.4 represents the so called vector table which contains the memory
locations where the first instruction of the different exception and fault handlers,
and interrupt service routines are placed. More precisely, the first word of the vector
table is the default stack pointer which is loaded by the processor as first operation.
Then, the address to the first instruction of the Reset Handler is placed. The
table continues with the same logic with all exceptions/interrupts first instruction
addresses in increasing priority order. In this way, every time an exception is
serviced, the program counter is loaded with the corresponding address present in
the vector table. All exceptions have an associated priority. Lower priority value

Figure 2.4: Vector table of ARM Cortex-M7 processor.

indicates higher priority. Priorities are configurable except for Reset, NMI, and
HardFault. Preemption between different exception handlers occurs only when a
higher priority exception occurs. If an exception occurs with the same priority
as the exception being handled, the handler is not preempted, irrespective of the
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exception number. However, the status of the new interrupt changes to pending.
To increase priority control in systems with interrupts, the NVIC supports priority
grouping. This divides each interrupt priority register in an upper field that defines
the group priority and a lower field that defines a subpriority within the group.
Only the group priority determines preemption of interrupt exceptions. When the
processor is executing an interrupt exception handler, another interrupt with the
same group priority as the interrupt being handled does not preempt the handler.
If multiple pending interrupts have the same group priority, the subpriority field
determines the order in which they are processed. If multiple pending interrupts
have the same group priority and subpriority, the interrupt with the lowest IRQ
number is processed first.

2.2 Communication Protocols
In this section, the main features of the communication protocols used in the
project will be described. The communication will be implemented in the MCU
using dedicated in-chip peripherals. In the proof of concept, two protocols were
mainly used: the SPI (Serial Peripheral Interface) for in-board communication
and the CAN-bus (Controller Area Network) for the communication between the
system and an external workbench.

2.2.1 Serial Peripheral Interface
The Serial Peripheral Interface is a synchronous serial communication interface
specification used for short-distance communications. The two main features of SPI
are the full-duplex mode and master-slave architecture. Full-duplex mode means
that the devices interested in the transmission receive and send data contemporary.
Master-slave architecture is an architecture where there are a master, which controls
the data transmission, and one or more slaves that answer to the master. SPI
supports up to four slaves. An example of SPI connection between a master and a
slave is represented in Fig. 2.5. This type of connection is often called four-wire
serial bus due to the necessity of four signals to implement the interface:

• Chip Select (CS)
The CS is an enable signal and it is activated by the master for all the duration
of the transmission to select the slave to communicate with.

• Serial Clock (SCLK)
The SCLK signal is the clock signal provided by the master to synchronize
the transmission.

16



Theoretical Background

• Master Output/Slave Input (MOSI)
The MOSI signal is the serial data transmitted from the master to the slave.

• Master Input/Slave Output (MISO)
The MISO signal is the serial data transmitted from the slave to the master.

In SPI communication, the master selects the slave activating the corresponding
CS when a transmission is required. SCLK is driven with a frequency supported
by both devices to synchronize the transmission. Sometimes, a waiting period
is inserted between the activation of the CS and the SCLK driving. A bit is
transmitted for each SCLK pulse in a full-duplex mode through MOSI and MISO
lines. When all bits have been transmitted, the SCLK is stopped and the CS
deactivated.

Figure 2.5: Block diagram of master (on the left) and slave (on the right)
connection in SPI communication.

From the hardware point of view, SPI peripherals are often provided with a
shift register of a given word-size as represented in Fig. 2.6. This type of structure
is usually referred to the ring topology ones. The shift registers of the master and
slave are loaded before to start the transmission. At each clock pulse, the two
devices shift out the bit to send at a specific clock edge and sample the received bit
at the other edge. This procedure continues until all the bits are sent or if one of
the two shift register is full or empty. The event to full or empty the shift register
of a SPI peripheral can be used to set flags associated to an interrupt request
which can be used to react quickly to the event. Another relevant setting of the
communication is the clock polarity and phase with respect to the data. The clock
polarity indicates if the leading and the trailing edges are respectively rising and
falling edges of the SCLK or vice versa. The clock phase determines when bits are
changed and captured in MOSI and MISO lines with respect to the clock pulses.
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Figure 2.6: Example of SPI peripheral implementation using circular buffers.

2.2.2 Controller Area Network
The Controller Area Network is a bus communication protocol designed for automo-
tive applications. CAN network has become a standard in-vehicle communication
thanks to its high integrity, low implementation costs and light weight wiring. In
the proof of concept, the CAN network was strongly suggested by the application
itself, since powertrains are subsystems of vehicles where this kind of communication
is available. Trying to implement a CAN communication between the proof of
concept and an external workbench was a way to test a feature which will be almost
surely needed in the final product.

CAN is an asynchronous communication protocol with a two-wire bus. Each
device connected to the bus is called node. The bus structure and node components
are represented in Fig. 2.7. More precisely, a node is made of a microcontroller, a

Figure 2.7: Representation of CAN-bus network with nodes. The components of
a node can be seen in Node 1.
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CAN controller and a CAN transceiver. The CAN controller manages the message
reception and sending over the network. The CAN transceiver is used to adapt
signals provided by the CAN controller to compliant signals with respect to bus
electric characteristics and vice versa. Indeed, the transceiver can be seen as an
electric interface between the controller and the bus. An example of the same
signal from the bus and controller perspectives is represented in Fig. 2.8. As can
be seen in the figure, the driver logic of the controller is single-ended, instead the
signals are transmitted over the bus network as differential ones. Two signals, CAN

Figure 2.8: Electric signals in the CAN-bus are represented in red and green with
their corresponding logical and single-ended signals.

high (CANH) and CAN low (CANL) are either driven to a dominant state with
CANH > CANL, or not driven and pulled by passive resistors to a recessive state
with CANH ≤ CANL. A 0 data bit encodes a dominant state, while a 1 data bit
encodes a recessive state. The CAN network is wired-AND which means that, in
case of multiple contemporary sending over the network, the resulting bus state
is the AND of the transmitted signals. This is why the 0 data bit encodes the so
called dominant state.

CAN-bus is a message-based protocol where frames are received by all devices,
including the transmitting one. The protocol provides four types of frame:

• Data Frame
Data Frames are frames containing a data payload to be transmitted.

• Remote Frame
Remote Frames are frames requesting the transmission of a specific message.

• Error Frame
Error Frames are frames transmitted when a transmission error is detected.

• Overload Frame Overload Frame are frames used to inject a delay between
data or remote frames.
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Each frame can be structure in base (standard) or extended format. The difference
between them is the length of the identifier field - the identifier of the base frame
format is composed by 11 bits, the extend frame format one by 29 bits. In this
thesis, only standard data frames will be analyzed (reported in Fig. 2.9). A data
frame is constituted by multiples fields, each of them encodes a specific information.
Since the CAN-bus is an asynchronous communication protocol, the first bit of
the frame is the Start of Frame. Then, the Arbitration Field is transmitted. It is
composed by a unique identifier of the message which represents also its priority
and by the Remote Transmission Request (RTR) bit. This bit says if the frame
is a remote one or not, and it must be dominant (0) in case of data frame. The

Figure 2.9: Example of a complete CAN standard data frame.

Control Field is composed by the Identifier Extension Bit (IDE), a Reserved bit,
and 4 bits for the Data Length Code (DLC). The IDE bit must be dominant (0)
for a standard frame as well as the Reserved bit. The DLC represents the data
payload length in number of byte and must be between 0 and 8. The Data Field
can range between 0 and 64 bits in length depending on the declared DLC and
it is the data chunk to be sent. The CRC Field is composed by 15 bits of Cyclic
Redundancy Check followed by a CRC delimiter that must be dominant. Then,
an Acknowledge (ACK) slot is inserted and sent by the receivers to signal with a
recessive (1) bit if the frame was correctly received. The ACK slot is followed by a
recessive ACK delimiter. At the end of the message, there are 7 recessive (1) bits
to signal the End of Frame.

A predefined nominal bit rate and a mechanism for the transmission synchro-
nization in CAN-bus are required due to the asynchronicity of the communication.
First, a hard synchronization occurs on the first recessive to dominant transition
after a period of bus idle (Start of Frame bit). Then, resynchronization occurs
on every recessive to dominant transition during the frame transmission. Even if
all the nodes implement the nominal bit rate, the presence of noises, phase shifts,
oscillator tolerances and oscillator drifts can lead to different node bit rates with
respect the nominal one. For this reason, a mechanism of bit rate adjustment must
be taken into account. Each time a bit is transmitted, the CAN controller expects
the transition to occur at a multiple of the nominal bit time. If the transition
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does not occur at the exact time the controller expects it, the controller adjusts
the nominal bit time accordingly. The bit rate adjustment is done dividing each
bit as it is represented in Fig. 2.10. The bit is divided into four segments: syn-

Figure 2.10: Structure of a bit in CAN-bus.

chronization segment, propagation segment, phase segment 1 and phase segment 2.
Each segment is made by a well defined number of quanta which is proper of each
CAN controller. When a transition occurs before or after it is expected, the CAN
controllers which are receiving the message adjust their timings according to the
transmitting one. In this way, possibles variation in bit rates of different nodes are
compensated.

2.3 Analog-to-Digital Conversion
Analog-to-Digital conversion is the process to converter analog signals into digital
ones. As is known, digital electronics such as MCUs works with binary logic,
instead physical systems are characterized by an analog behaviour with continuous-
time and continuous-amplitude signals. So, Analog-to-Digital converters (and also
Digital-to-Analog converters in the opposite way) are devices that allow these two
domains to interact. In the proof of concept, ADCs were used to acquire system
measurements such as motor phase currents, temperatures, and voltages.

In general, amplitude and time discretization, which are called respectively
sampling and quantization, are performed to convert an analog signal into a digital
one (represented in Fig. 2.11). The conversion can occur at a fixed rate or
sporadically in specific time instances depending on the application. In both cases,
each time a conversion starts, a sampling phase is followed by a quantization one.
First, a sample of the input signal is acquired using dedicated circuitry. The most
used one is the sample-and-hold circuit which block diagram is represented in Fig.
2.12. From a functional point of view, a control signal opens the switch S1 for
a time interval sufficient to charge the capacitor CH to a voltage level equivalent
to VIN . Then, the switch is closed and the charge to the capacitor maintained
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Figure 2.11: Sampling (on top) and quantization (on bottom) of an analog signal.

thanks to the high impedance of the buffer. The buffer output Vout represents the
sampled signal and it is used for the quantization phase. The sampling rate, and its
corresponding sampling frequency, is one of the most relevant characteristic of an
ADC. The maximum sampling frequency constitutes the ADC bandwidth. In order
to correctly acquire an analog signal, its spectrum and the ADC bandwidth can’t be
neglected. Indeed, according to Nyquist-Shannon sampling theorem, the sampling
frequency of an analog signal must be at least double of its higher frequency in its
spectrum. This is why, ADC bandwidth has to be taken into account in the choice
of the most suitable converter.

Another relevant characteristic of an ADC is the number of bits used to express
converted results which constitutes its resolution. Higher resolutions means more
precise results. Given the operational voltage range of operation of the ADC, the
resolution establishes the width of each voltage step in the discretization. More
precisely, the following relation is hold VQ = Vref/2M , where M is the resolution
of the ADC. It is evident that higher resolution means higher precision of the
conversion due to smallest voltage steps in quantization process, but high precision
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Figure 2.12: Scheme of a sampling and hold circuit.

doesn’t mean high accuracy. Indeed, the real characteristic of an ADC (i.e. the
curve describing the relation between its input and its output) can be affected
by many causes such as the tolerance of the components used to implement the
conversion circuitry, gain errors, offsets and non-linearities. For this reason, many
ADCs provides dedicated self-calibration procedures to mitigate these non-idealities.
An example of the difference between ideal and real characteristic of an ADC is
reported in Fig. 2.13.

From amplitude point of view, the sampled signal can be quantizated using dif-
ferent strategies and circuitries. The mechanism utilized to perform the conversion
defines the type of the ADC. The most common types are the following:

• Flash Converter
Flash ADCs are the fastest ones. They make use of one comparator per voltage
level and a string of resistors. The outputs of the comparators are connected
to a logic network that determines the result of the conversion. This type of
ADCs are low energy efficient and more expensive with respect to other ones.
Moreover, the accuracy of the conversion is strictly related to the tolerance of
the used string of resistors.

• Sigma-Delta Converters
Sigma-Delta ADCs digitize an analog signal with a very low resolution (1
bit) ADC at very high sampling rate. By using oversampling techniques in
conjunction with noise shaping and digital filtering, the effectiveness resolution
increase. Decimation is then used to reduce the effective sampling rate at the
ADC output. The high accuracy of Sigma-Delta ADCs is related to the lack
of resistors which can have different value due to tolerance.

• Successive Approximation (SAR) Converters
SAR ADCs makes use of a comparator, a DAC, and a logic network that
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implement a binary search through all possible quantization levels to converge
to the result of the conversion. They are less accurate, but faster than Sigma-
Delta converters and at the same time slower, and more accurate than Flash
converters.
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Figure 2.13: Example of real and ideal ADC characteristics.

In summary, Flash and Sigma-Delta converters are respectively the best solution
in terms speed and accuracy, and SAR ADCs are the best trade-off between the
two performances. In the project of this thesis, SAR ADCs converters were used
because yet available as in-chip peripheral in the MCU. For this reason, they will
be discussed more deeply in the following section.

2.3.1 Successive Approximation ADCs
In general, SAR ADCs are a type of analog-to-digital converter that converts a
continuous analog waveform into a digital values via a binary search through all
possible quantization levels before finally converging upon a digital output for
each conversion. The structure of a SAR ADC can be seen in Fig. 2.14. The
converter is made by a comparator, a sample-and-hold circuit for sampling the
analog input signal, a digital to analog converter to convert the partial result in an
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Figure 2.14: Block scheme of a successive approximation analog-to-digital con-
verter.

analog value to be compared with Vin, and a circuitry that implements the binary
search algorithm. A graphical representation of the algorithm used to perform the
conversion is reported in Fig. 2.15 and described from a functional perspective by
the following steps:

1. First, the successive approximation register (i.e. the register that stores the
result of DAC conversion) is initialized so that only the most significant bit
(MSB) is equal to a digital 1 and this code is fed into the DAC converter
which provides in output Vref/2;

2. At the beginning of the conversion, the input voltage is sampled by a sample-
and-hold circuit;

3. The sampled input voltage and the voltage output of the DAC are compared
by means of the comparator, and if the analog voltage of the partial result
exceeds Vin, the comparator causes the reset of this bit, otherwise the bit is
left 1;

4. The algorithm is repeated from point 3 for each bit until the LSB is determined.
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5. The final converted value stored in the successive approximation register is
connected to the output, meanwhile the End Of Conversion (EOC) signal is
asserted to indicate that the conversion terminated.

By means of this algorithm, the sampled analog input is converted using M steps
where M is the resolution of the converter. Other features about ADCs could be
treated more in detail, but this brief overview is explaining of the key concepts
necessary to understand the topics discussed in this thesis.
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Figure 2.15: Timing diagram of partial results of a Successive Approximation
ADC.

2.4 Pulse Width Modulation
Pulse width modulation (PWM) is a method of reducing the average delivered by a
signal by effectively chopping it up into discrete parts. The average value of voltage
(and current) fed to the load is controlled by turning the switch between supply
and load on and off at a fast rate. The longer the switch is on compared to the
off periods, the higher the total power supplied to the load. PWM is particularly
suited for running inertial loads such as motors, which are not as easily affected by
this discrete switching due to the slow inertial reaction. So, the PWM switching
frequency has to be high enough not to affect the load, which means that the
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resultant waveform perceived by the load must be as smooth as possible. In the
application of this thesis, the PWM will be used to drive the inverter switches to
control the motor supply.

The two characteristics that defines a PWM signal are the switching period and
duty cycle. The switching period is the time that elapses between two positive
edge of the signal, and in general, is maintained constant. The duty cycle is the
percentage of time that the signal is on with respect to its period, and in general,
is changed according to the control strategy. In Fig. 2.16 is represented a PWM
signal showing a complete cycle with its period, and TON and TOF F time intervals.
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Figure 2.16: Example of PWM signal with 30% of duty cycle.

PWM can be classified in edge aligned and centered aligned pulse modulation.
In edge aligned PWM, the TON period starts from the left or right edge of the
switching period. In leading edge modulation, the TON period is placed at the
beginning of the switching period and expands to the right with the increase of the
duty cycle, instead trailing edge modulation implements the opposite behaviour.
In centered modulation, the TON period is placed at the center of switching period
and grows symmetrically to both edges when the duty cycle increases. This is why
it is often called symmetrical PWM. An example of center aligned and edge aligned
PWM is represented in Fig. 2.17.
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Figure 2.17: Three PWM signals with the same duty cycles and switching
frequency - in blue leading edge aligned, in red trailing edge aligned, and in green
centered aligned.

For the purpose of this thesis, it is useful to discuss how PWM signals are
generated. The base concept of PWM generation is the comparison between the
so called carrier wave and modulating wave. In general, the carrier signal is a
sawtooth or triangular waveform with a frequency equal to the switching frequency.
The modulating wave can be different depending on the application - sinusoidal
waves or constant DC signals are often used. The constantly comparison between
the carrier and modulating waveforms gives result to the so called modulated
signal. The modulated wave has the characteristics seen in Fig. 2.16. Indeed, the
comparison gives an output waveform which is high when the modulating wave is
greater than the carrier one and vice versa. In such a way, the resulting duty cycle
can be modified according to changes in the modulating wave. An example of this
is reported in Fig. 2.18. Different carrier waveforms are used to generate different
types of PWM signals - sawtooth carriers are used for edge aligned modulation,
triangular ones for center aligned modulation. In leading edge modulation the
carrier is a sawtooth leading edge with positive ramp followed by the step decay,
instead in trailing edge modulation a sawtooth trailing edge with a vertical rise
followed by a negative ramp is used. The triangular carrier can be also seen as a
double edge sawtooth wave with a positive ramp followed by the negative one, and
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Figure 2.18: PWM generation with a sinusoidal modulating wave.

it used for centered modulation. The three different carrier waves are represented
in Fig. 2.19.

An application of PWM related to this thesis is the driving of switches (often
constitute by thyristors) in power electronics circuitries. As will be seen in section
2.5.1, the turning on and off of these switches is done by means of PWM signals.
There are many cases where two switches must be driven in a complementary fashion
to avoid short circuits. For this reasons, complementary PWM signals (represented
in Fig. 2.20) are used for the purpose. Their main characteristic is that one signal
is high when the other is low and vice versa. From a theoretical point of view, this
is enough to avoid shorts due to switches that must be driven in a complementary
fashion, but in practice turn-off and turn-on delays can’t be neglected. To take
into account delays of real components, a deadtime insertion could be required. In
complementary PWM signals, the deadtime is the time interval that elapses from
the turn off of one signal to the turn on of its complementary one. An example of
deadtime insertion between two complementary PWM signals is reported in Fig.
2.20. The application and the necessity of complementary PWM and deadtime
insertions will be more clear in section 2.5.1 where inverters are discussed. More
about PWM could be explained, but the topics discussed in this section were
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Figure 2.19: Different carrier waveforms - on top a triangular carrier, in the
middle a trailing sawtooth carrier, and on bottom leading sawtooth carrier.

considered the most pertinent for the purpose of this thesis.

2.5 Power Electronics
In broad terms, the task of power electronics is to process and control the flow
of electric energy by supplying voltages and currents in a form that is optimally
suited for user loads. Power converters are autonomous systems. Therefore,
their performance does not only depends on the hardware design but also on
the control strategy used. In an electric powertrain system, the inverter is the
power converter responsible to manage the power flow between the DC energy
source, often constitutes by a battery, and the motor which almost always requires
AC supply. For these reasons, an overview of inverters is required to understand
some implication in the firmware development and peripheral configurations. Only
three-phase pulse-width-modulated inverters will be treated and their structure,
working principle, and related control techniques will be discussed in the following
section. Instead, discussions about other power converters will be neglected because
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Figure 2.20: Two complementary PWM signals with deadtime insertion.

outside the purposes of this thesis.

2.5.1 Inverter
In general, an inverter is a power electronic device that converts direct electric
energy (DC) in alternating electric energy (AC). Inverters are used in AC motor
drives and in interruptible AC power supplies where the objective is to produce a
sinusoidal AC output whose magnitude and frequency can both be controlled. This
power flow through inverters is reversible. However, most of the time the power
flow is from the DC side to the motor on the AC side, but the inverse condition
can occur in case of regenerative breaking. The DC energy source can be obtained
using batteries or rectifying and filtering line voltage. In this context, the power
conversion stage used to obtain the DC energy source is neglected.

The general structure of a three-phase inverter circuit consists of three legs, one
for each phase, as shown in Fig. 2.21. The supply is assumed to be a constant
voltage source. Each leg is made of two transistors and two diodes. Transistors and
diodes are both solid-state semiconductor devices – the first ones act exclusively as
switches, conducting when the voltage between the gate and emitter exceeds the
threshold value Vg of the device, and continuing to conduct until this voltage does
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Figure 2.21: Basic structure of a three phase inverter.

not decrease under Vg, instead the latter ones conduct current primarily in one
direction. As shown in Fig. 2.21, points A, B, and C can be connected to ground
turning on the switch in low position and turning off the corresponding one placed
in high, and the opposite can be done to connect the points to Vd. This means
that the two switches must be driven in a complementary fashion to avoid short
circuits. As highlighted in section 2.4, the switches are not ideal that means that
the status of the two switches in an inverter leg can’t be changed instantaneously
from on to off and vice versa. This delay is often called blanking time and this is
the motivation of the deadtime insertions described in section 2.4.

The AC energy on load size is obtained driving the thyristors with opportunely
control techniques which objective is to shape and control the three-phase out-
put voltages in magnitude and frequency using the constant input voltage Vd.
Practically, controlling an inverter means to generate three different couple of
complementary PWM signals which turn on and off the switches represented by
the six thyristors. For example, the three-phase output voltages can be obtained
using the same triangular carrier voltage waveform and comparing it with three
sinusoidal modulating voltages that are 120° out of phase, as shown in Fig. 2.22.
Deadtimes should be insert in the generated signals to avoid shot circuits due to
blanking times. Of course, more advanced techniques can be used to generate the
PWM signals to drive the inverter, but they will not be treated because outside
of the scope of this thesis. In fact, the main objective of this section remains to
analyze only the aspects that will be relevant for the next chapters. However, a
complete discussion about inverters can be found in chapter 8 of reference [3].
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Figure 2.22: Example of a three phase sinusoidal PWM generation.

2.6 Resolver
A synchronous resolver is a type of rotary electrical transformer used for measuring
degrees of rotation. In the application of this thesis, the resolver was used to
measure the angular position of the motor rotor. It looks like as a small electrical
motor with a stator and a rotor, but it is different for the internal wire windings.
The stator houses three windings: an exciter winding, and two-phase windings.
The rotor houses a winding which can be considered the secondary coil of a rotatory
transformer, where the first one is constituted by the exciter winding. They are
arranged in the axis of the resolver. In such a way, a current in the stator coil is
inducted without limiting its rotation and no need for brushes. The two-phase
windings in the stator are configured at 90 degrees from each other.
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Figure 2.23: Output signal of a resolver. The excitation wave on the top, sine
feedback in the middle, and cosine feedback on the bottom.

The working principle of the resolver is based in the excitation of the two
two-phase windings on the stator by the rotor coil. More precisely, the primary
winding of the transformer, fixed to the stator, is excited by a sinusoidal electric
current, which by electromagnetic induction induces current in the rotor. The
two two-phase windings, fixed at right (90°) angles to each other on the stator,
produce a sine and cosine feedback current. As is shown in Fig. 2.23 The relative
magnitudes of the two-phase voltages are measured and used to determine the
angle of the rotor relative to the stator. Since no direct position acquisition can be
done by analog-to-digital conversion, Resolver-to-Digital Converters are commonly
used as interface between the resolver and other digital devices.

A Resolver-to-Digital converter converts the electrical information (analog signal)
corresponding to a mechanical rotational angle of the Resolver to the corresponding
digital data and output it. The most implemented technique to convert the analog
signals coming from the resolver to digital signals is the Digital Tracking Method,
which is not described because outside the purpose of this thesis. In the proof of
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concept, an in-board chip Resolver-to-Digital Converter was used to provide the
position of the rotor of the motor through SPI or digital parallel interface.
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Chapter 3

Firmware Development

As stated in previous chapters, firmware is a specific class of computer software
that provides the low-level control for the hardware of a specific device [4]. In the
context of the proof of concept, its role was to provide a hardware abstraction
layer (HAL) to be placed between the device and the application software. In
such a way, it was possible to develop the application software independently using
automatic code generation tools and without caring about the specific hardware
implementation of the features required to suitable interact with the plant. The
logical separation between firmware and application was taken into account during
all the software development process, and for this reason, the interfaces between
them were analyzed and defined a priori. In fact, defining the interfaces between
the two layers allowed to develop the code separately, and when necessary, make
changes in the implementation of one layer regardless to the other without affecting
their interaction.

As is usual in firmware development, the programming language used to write
the source code was the C language. C is a general-purpose, procedural computer
programming language supporting structured programming, lexical variable scope,
and recursion, while a static type system prevents unintended operations. By
design, C provides constructs that map efficiently to typical machine instructions
and has found lasting use in applications previously coded in assembly language
[5].

For the electric powertrain prototype, no coding or international standards (i.e.
MISRA C, ISO 26262, etc.) were used, but good practices were followed to write
high-quality code and prevent bugs. The firmware was developed using the device
drivers provided by the MCU silicon-vendor. The source code was organized in
difference software components (SWC) - couples of a header files (i.e. SwcName.h)
and a C source file (i.e. SwcName.c). Each software component manages and
implements a specific set of related functions using one or more peripherals, and
sometimes, other software components. In Fig. 3.1, a graphical representation of
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the logical structure of a software component is reported. In the following sections,
all software components are discussed in detail. Each section highlights the system
specifications that shall be implemented, used peripherals and their settings, and
features provided to the application software. More in detail, the sections describing
software components provide brief overviews of their functions and applications,
list of requirements that shall be implemented, specific firmware implementations,
and API layer constituted by C functions and global accessible variables.

Figure 3.1: UML class diagram of an example of software component.

The source code was written following naming conventions, guidelines and
policies provided by the customer for the proof of concept. The choice to follow a
standardized approach was motivated by several reasons:

• Promote portability and avoid unexpected results;

• Avoid reliance on compiler or platform-specific constructs;

• Avoid errors due to ambiguity in language constructs;

• Measurably reduce program complexity;

• Reduce long-term support costs due to coding errors;

• Make software reuse easier;

• Improve code understanding and maintainability by different developers under
the same organization.

In this thesis, the source code is not entirely reported because the focus is placed
more on constructs, algorithms and procedures rather than the specific written
code itself. Moreover, NDA policies do not allow to publish it.
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3.1 Clock Management
The software component Clock Management, composed by the files ClkMgm.h
and ClkMgm.c, is responsible to initialize the clock signals in the microcontroller.
Its only purpose is to set the frequencies of the clock signals according to the
requirements, and enable them to be provided to the used in-chip peripherals. It
makes use of a Fast Internal RC Oscillator (FIRC), external fast crystal oscillator
(FXOSC) which output signal is provided as input to a Phase-Locked Loop (PLL)
in-chip circuitry, Clock Generation Module, and Mode Entry Module. These clock
signal sources are both processed by dividers and selectors to generate all the device
clock signals.

Figure 3.2: UML class diagram of the software component Clock Management.

3.1.1 Requirements
The requirements that Clock Management (ClkMgm) implements are related, of
course, to the frequencies that shall be provided by the clock signals. First, a list
of the required clock signals for the used in-chip peripherals was made. Then, the
clock sources used to generate such signals were analyzed. In order to maximize
the performance, the higher possible working clock frequencies shall be set for the
processor core and peripherals. An in-chip clock source shall be used in the case of
a hardware fault related to the external oscillator occurs. The clock source signals
chosen for this purpose were the FIRC and PLL. The PLL can provide a frequency
up to 1280MHz, instead the FIRC up to 48MHz. The main advantage of the FIRC
with respect to PLL is that it doesn’t need any external oscillator to work. For
this reason, it is also the boot source clock signal chosen by the silicon-vendor.
Therefore, the PLL clock generator was used as main clock source signal, and the
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FIRC oscillator as recovery one. In the board designed for the MCU, the external
oscillator connected to the device and used by the PLL is an external quartz crystal
oscillator (FXOSC) with frequency of 16MHz. The upper limits of the frequencies
of the each clock signal generated from the main clock source is reported in Tab.
3.1. More signals can be generated (mainly for communication peripherals) starting

Maximum Clock Signal Frequencies
Device Clock Signal Frequency
CM7, CM7 Flash control port M7_CORE_CLK 320MHz
CM33 cores, AXBS, Flash controller port M33_CORE_CLK 160MHz
SRAM/XBAR/AIPS AIPS_PLAT_CLK 80MHz
Peripherals AIPS_SLOW_CLK 40MHz
HSE IPS Interface HSE_IPG_CLK 80MHz
PLL Clock PLL_CLK 320MHz
FIRC Clock FIRC_CLK 48MHz

Table 3.1: Frequency limits of the main clock signals present in the microcontroller.

from the ones of Tab. 3.1, but they are neglected because not used in the project.
The frequency and enabling of each clock signal can be managed in hardware by

means of the Clock Generation Module (MC_CGM). The MC_CGM implements
software configurable clock dividers and multiplexers for selecting from the various
clock sources guaranteeing glitch-less transitions. Therefore, the software component
Clock Management shall configure the Clock Management Module to set the
maximum possible frequency for each signal in Tab. 3.1 using the PLL output or
FIRC as clock source signals. The peripheral clock signal inputs can be enabled
or gated using the Mode Entry Module (MC_ME). Before to use the in-chip
peripherals and modules, their corresponding clock input signals shall be enabled.
This procedure shall be executed at startup and it is a task that the software
component shall perform. The list of the peripheral clock signals to be enable by
ClkMgm through the MC_ME module is reported in Tab. 3.2. In the table, it is
also reported the clock signals used by the in-chip devices and their corresponding
maximum working frequencies. The clock gating and clock frequencies shall not be
changed at run-time, but only in the initialization phase.

3.1.2 Implementation
In order to configure the MC_CGM and MC_ME according to the described
specifications, the corresponding device driver provided by the silicon-vendor was
used. This choice was motivated by the way implemented in the driver to configure
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Peripheral/Module Clock Input Signals
Peripheral/Module Clock Input Signal Max. Frequency
Fast External Crystal Oscillator - 16MHz
Phase Locked Loop FXOSC 320MHz
eMIOS 0 M33_CORE_CLK 160MHz
Analog-to-Digital Converter 0 M33_CORE_CLK 80MHz
Analog-to-Digital Converter 1 M33_CORE_CLK 80MHz
Analog-to-Digital Converter 2 M33_CORE_CLK 80MHz
Body Cross Triggering Unit M33_CORE_CLK 160MHz
Programmable Interrupt Timer 0 AIPS_SLOW_CLK 40MHz
Programmable Interrupt Timer 1 AIPS_SLOW_CLK 40MHz
Low Power SPI 2 AIPS_SLOW_CLK 40MHz
FlexCAN 2 FIRC_CLK 48Mhz

Table 3.2: Peripheral/Module clock input signals to enable and their corresponding
maximum supported frequencies.

the various clock signals - it allows to choose among five different configurations
and two of them implement the described requirements using the PLL output or
FIRC as clock source signals. The driver needs two configuration structure: the
first one is used to configure the clock signal frequencies, the second one to disable
the clock gating of the clock input signals for the peripherals that the user wants
to use. The selected clock configurations are the High Performance and the FIRC
Divider Bypassed.

Figure 3.3: Clock signals obtained using PLL as clock source.

In High Performance mode, the MC_CGM is configured to have the PLL output
as source clock for other clock signals with a frequency equal to 320MHz. As said
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in the previous section, the input of the PLL circuitry is a 16MHz clock signal
provided by the FXOSC. The other clock signals are obtained processing the PLL
output by means of dividers to have the maximum allowed frequency for each of
them. The corresponding configuration of the MC_CGM is show in Fig. 3.3.

The configuration FIRC Divider Bypassed implements the same mechanism
using the FIRC as clock source. In this configuration, the FIRC isn’t processed by
any divider, obtaining its maximum working frequency of 48MHz. This means that
the other clock signals can’t be faster than 48MHz. In particular, the frequencies
of the clock signals are set as shown in Fig. 3.4. Of course, this leads to lower
performances, but allows the system to boot and work also in case of hardware
fault about the external oscillator.

Figure 3.4: Clock signals obtained using FIRC as clock source with its maximum
working frequency.

The peripheral clock gating, managed through the MC_ME, is configured provid-
ing to the driver an array with a list of mcme_peripheral_clock_gating_t variables
which represents the peripheral to enable. Since the clock gating and clock frequen-
cies shall not be changed at run-time, the configuration selection was done by means
of macros. More precisely, the constant SYSTEM_CFG_CLK_HIGH_PERF
shall be defined in case of the user wants to set High Performance configuration,
instead SYSTEM_CFG_CLK_FIRC_DIV_BPS for FIRC Divider Bypassed one.
Both configuration constants are defined in the header file System_cfg.h and one
of them shall be commented depending on the selected configuration.

Listing 3.1: Clock Gating configuration array.

/∗Array o f p e r i ph e r a l s to enable through the MCME module ∗/
mcme_peripheral_clock_gating_t

ClockGatingEn [CLK_GATE_EN_COUNT] =
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{
MCME_eMIOS_0,
MCME_Analog_to_digital_converter_0 ,
MCME_Analog_to_digital_converter_1 ,
. . . . , // The l i s t cont inues

} ;

3.1.3 API
The API layer of the software component Clock Management is constituted of only
by an initialization function and a function used to provide one clock signal to
an output pin. The initialization function is called at startup as first before to
initialize other peripherals. Instead, the use of the function ClkMgm_ClkOut() is
described in the chapter related to testing in section 4.3.1 and was not inserted in
the API of the software component.

Functions

ClkMgm_Init()
status_T ClkMgm_Init(void)
This function configures the MC_CGM and MC_ME modules to obtain the
High Performance or FIRC Divider Bypassed clock configuration according
the macro defined in System_cfg.h file.
Parameters
None.
Returns
status_T - Status return code.
status_success The clock configuration is set correctly.

status_clkInitError An error occurs in initializing one of the
clock signals.

Notes
This function shall be called before to initialize any peripheral due to clock
gating issues.

3.2 Pin Management
The software component Pin Management (PinMgm), composed by the files Pin-
Mgm.h and PinMgm.c, is responsible to set the correct pin configuration for each
input or output signal. It makes use of the module SIUL2 to select the functions
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and electrical characteristics that appear on the external pins of the device. The
functions implemented by Pin Management aren’t used by the application soft-
ware, instead they are called in the initialization functions of the various software
components before to configure the corresponding peripherals.

Figure 3.5: UML class diagram of the software component Pin Management.

3.2.1 Requirements
The software component Pin Management shall implement the pin-out defined for
the proof of concept. A list of signals with their corresponding MCU pins was
provided on the base of board that hosts the MCU.

3.2.2 Implementation
The module SIUL2 is managed writing and reading directly in the peripheral
configuration registers because dedicated drivers are not provided by the silicon-
vendor. The Multiplexed Signal Configuration Registers (MSCR) are used to select
which source signal is connected to the register’s associated destination, which is a
chip pin that is or can be configured as an output. The Input Multiplexed Signal
Configuration Registers (IMCR) is used to select which source signal is connected
to the register’s associated destination, which is an internal module port that is, or
can be configured as, an input. For our configuration purposes, the MSCR were
predominantly used.

The pin alt mode (i.e. the connection between the physical chip pin and the
in-chip peripherals) is selected writing a specific value, reported in the datasheet,
in the Source Signal Select bit field (SSS_0, SSS_1, SS_2, and SSS_3 bits) placed
inside the MSCR of the corresponding pin. The Output Buffer Enable (OBE) bit,
and Input Buffer Enable (IBE) bit are set respectively in case of output or input
signals. The Invert (INV) bit was used to invert the polarity of the corresponding
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pin directly in hardware. Other settings are left as default ones. An example of
the code used to configure a MCU pin is shown in the following:

Listing 3.2: Example of pin configuration

/∗ Source S i gna l Select_0 : 0x00u . ∗/
SIUL2−>MSCR49 &= ~SIUL2_MSCR48_SSS_0_MASK;
/∗ Source S i gna l Select_1 : 0x01u . ∗/
SIUL2−>MSCR49 |= SIUL2_MSCR48_SSS_1_MASK;
/∗ Source S i gna l Select_2 : 0x00u . ∗/
SIUL2−>MSCR49 &= ~SIUL2_MSCR48_SSS_2_MASK;
/∗ Source S i gna l Select_3 : 0x00u . ∗/
SIUL2−>MSCR49 &= ~SIUL2_MSCR48_SSS_3_MASK;
/∗ GPIO Output Buf f e r Enable : 0x01u . ∗/
SIUL2−>MSCR49 |= SIUL2_MSCR48_OBE_MASK;
/∗ GPIO Input Buf f e r Disab le : 0x00u . ∗/
SIUL2−>MSCR49 &= ~SIUL2_MSCR48_IBE_MASK;
/∗ GPIO po l a r i t y : not inve r t ed ∗/
SIUL2−>MSCR49 &= ~SIUL2_MSCR48_INV_MASK;

3.2.3 API Layer
The API Layer of Pin Management provides an initialization function for each
software components. These functions are called before to configure the peripheral
during the initializations of the software components done at startup.

Functions

PinMgm_AdcPinInit()
void PinMgm_AdcPinInit(void)
This function initializes the pin alt mode and electrical characteristics for
acquisition of the analog signals.
Parameters
None.
Returns
None.
Notes
This function is called by the initialization function of the software component
ADC Management.
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PinMgm_PwmPinInit()
void PinMgm_PwmPinInit(void)
This function initializes the pin alt mode and electrical characteristics for
PWM generation.
Parameters
None.
Returns
None.
Notes
This function is called by the initialization function of the software component
PWM Management.

PinMgm_SpiPinInit()
void PinMgm_SpiPinInit(void)
This function initializes the pin alt mode and electrical characteristics for SPI
communication.
Parameters
None.
Returns
None.
Notes
This function is called by the initialization function of the software component
SPI Communication.

PinMgm_CanPinInit()
void PinMgm_CanPinInit(void)
This function initializes the pin alt mode and electrical characteristics for
CAN communication.
Parameters
None.
Returns
None.
Notes
This function is called by the initialization function of the software component
CAN Communication.

PinMgm_DigSgnPinInit()
void PinMgm_DigSgnPinInit(void)
This function initializes the pin alt mode and electrical characteristics for
digital signal acquisition and driving.
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Parameters
None.
Returns
None.
Notes
This function is called by the initialization function of the software component
Digital Signal Management.
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3.3 ADC Management
The software component ADC Management (AdcMgm) is composed by the files
AdcMgm.c and AdcMgm.h, and it is responsible to manage the acquisition of
analog signal according to the system requirements. ADC Management makes
use of 3 SAR-ADCs and the peripheral BCTU present in the MCU. The BCTU
is utilized to trigger analog-to-digital conversions of specific ADC channels listed
with a precise sequence, and the use of more ADCs is motivated by the possibility
to implement multiple parallel conversions.

Figure 3.6: UML class diagram of the software component ADC Management.

3.3.1 Requirements
The specifications that were implemented through AdcMgm are related to analog
signal acquisition - a list of analog signals shall be acquired in specific time instants
with well-defined sample rates and, and sometimes, in a synchronous manner. In
Table 3.3, the list of time requirements of each analog signal that has to be acquired
is reported. The table shows three groups of signals which can be classified as
critical or not. Critical signals are the ones that shall be acquired with a specific
sampling frequency because are relevant from the control point of view. They are
constituted by all the system electrical quantities (i.e. voltages and currents) and
their required sampling frequency was not reported for confidentiality. In particular,
in all this thesis, the sampling frequency of the critical signals was set to a generic
value of 16kHz which is a perfect divider of the clock signal M33_CORE_CLK
(160 MHz). Not critical signals are mainly system temperatures. They shall be
monitored, but their dynamics are relatively slow with respect to the electric
quantities of the system, which means that they can be acquired with a lower
sampling rate without affecting the control actuation.
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Analog Acquisition Requirements
Signal Group Rate Timing Description

Phase currents 16kHz

To be acquired si-
multaneously at the
center of the PWM
switching period.

The phase currents
represent the main
physical quantities
used to control the
electric motor.

Supply voltages 16kHz

To be acquired si-
multaneously at the
center of the PWM
switching period.

The supply voltages
represent the main
physical quantities to
be monitored to be
sure that the system
is correctly supplied.

System temperatures 1kHz No specific require-
ments

The system tempera-
tures shall be moni-
tored for safety rea-
sons and to correct
temperature depen-
dent parameters in
the system model.

Table 3.3: Groups of analog signals to be acquired with their corresponding
sampling rate and timing requirements.

As can be noticed (see section 3.4), the sampling frequency of critical signals is
the same of the switching frequency (16kHz) of the PWM. Since the main control
actuation corresponds to the change in duty cycle which is updated every switching
period, to simplify the implementation, sampling electrical signals every switching
period allows to monitor the system variations at each control step. The three
phase currents were acquired simultaneously to provide a coherent acquisition. In
general, all electric signals were acquired at the center of the PWM switching
period because it was the only event available in hardware to trigger the conversion.
The list of all the analog signals to be acquired is not reported for NDA policies.

3.3.2 Implementations
The described requirements were implemented starting to analyze the timing
constraints on the acquisition of the phase currents because more critical with
respect to other groups of signals from the control point of view. In Fig. 3.7, their
timing constraints are reported graphically. As is shown in the figure, the center of
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the TON period is a constraint about the time instant when to start the conversion
due to the available hardware features. Since the switching frequency was set equal
to 16kHz to simplify the implementation, these time instants were chosen to acquire
the signals. This time instant corresponds to the event of reaching the highest
value of the carrier waveform used as timebase for the PWM generation. For this
reason, this event is utilized to signal to the BCTU when to start the conversion
of the first elements of the conversion list which are constituted by the 3 phase
currents.
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Figure 3.7: Timing constraints of the phase currents acquisition.

In order to acquire the three phase currents simultaneously, all the 3 SAR-
ADCs hardware instances were used - one ADC for each signal. The ADCs were
configured to be triggered by the BCTU, and the BCTU was configured to trigger
the ADCs using a conversion list. The use of a conversion list allows multiple
parallel conversions which are required for simultaneous acquisitions. The list
was implemented using specific configuration registers that set which channels
and ADCs has to be triggered for the conversion. The ADC selection is done by
means of the register TRGCFG that contains 1 for each ADC to be set or cleared
depending on the need to trigger on not the corresponding ADC. As is shown in
Fig. 3.8, channels in the conversion list are grouped together in 2 or 3 elements if
more than one ADC are selected. The registers LISTCHR_i allow the definition of
the elements in the conversion list - each register can contain two elements and
provides two bits per element to set if the element is the last in the list and to insert
a waiting for another trigger source event to continue the conversions. Therefore,
all analog signals of the groups of Table 3.3 were listed according to their priorities
and requirements.
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Figure 3.8: Logic diagram of the multiple parallel conversions list operations
implemented by the BCTU.

The raw converted data are read by means of interrupts. More precisely, an
interrupt, associated to the BCTU peripheral, is set in correspondence of the
end of conversion of the last element in the conversion list. The corresponding
interrupt handler is responsible to read the raw converted data and scale them
from uint16_T (16 bit unsigned integers) to real32_T (float) variables with the
correct measurement unit. Since the BCTU trigger event the instant T1 in Fig.
3.7, the conversion of the elements in the list is performed every time the signals
with the highest sample rate have to be acquired. This causes that all signals are
converted with a sampling frequency of 16kHz which is higher than the required
for the system temperatures signals. For this reason, even if their real sample rate
is 16kHz, they are read in the BCTU interrupt handler in such a way to guarantee
their nominal sampling rate and reduce the computational effort of the BCTU
interrupt handler.

The reading of the raw converted results in the BCTU interrupt handler in-
troduces a delay between the moment when the analog signals are converted and
the moment when they are effectively read. Since the control algorithm in the
application software needs these data to be executed, they shall be read before the
beginning of each PWM switching period. Therefore, the maximum possible delay
for the selected example frequency is a switching period that is equal to

dmax = 1
fsw

= 1
16kHz = 62.5µs . (3.1)

For this reason, to verify the feasibility of this approach, the introduced delay was
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analyzed and estimated according to the expressions reported in the MCU reference
manual. The conversion time of the i-th triple of channels (three signals at time are
converted due to the multiple parallel conversions feature) is given by the following
expressions:

t(i)conv =
C1

ST + PST + CT + DP
2

+ TPT
D
× TADclk , (3.2)

where the terms in the expression are:

• ADC Clock Cycles (TAD_clk)
The TAD_clk is the time period of an AD_clk cycle and corresponds to the
inverse of the clock frequency provided to the ADC peripherals. Since the
clock signal provided to ADC peripherals has a frequency of 80Mhz, the value
of TAD_clk is 12.5ns.

• Sample Phase Time (ST)
The sample time is controlled by writing the the bit field of the configuration
register INPSAMP[7:0] with an 8 bits value which represents units of AD_clk
cycles. The minimum value of sample time is eight. If the value programmed
is less than 8 then it has no effect on sample time duration and in this case
sample time will be 8 AD_clk cycles. In this context, the ST was chosen by
trial and error procedure and set to 100.

• Pre-Sample Phase Time (PST)
The pre-sample phase time is equal to sample time with one AD_clk cycle
delay for phase transition from pre-sample phase to sample phase.

• Compare Phase Time (CT)
The compare phase time is affected by the evaluation time of a single bit and
number of bits to be converted. For N bit conversions the value of CT will
be N multiplied by the evaluation time of a single bit in terms of AD_clk
cycles. The evaluation time of a single bit is estimated to 4 AD_clk in the
MCU datasheet. Since the resolution of the SAR-ADCs is 15 bits, the CT
was estimated to be equal to 60 ADC_clk cycles.

• Data Processing Time (DP)
The data processing time is 2 cycles of AD_clk which are necessary to correct
raw converted data from offset, gain, capacitor mismatch, etc.

• Trigger Processing Time (TPT)
The trigger processing time consists in preparing the channel and calculating
the initial gain value, and BCTU triggering time. It corresponds to about 1
AD_clk cycle and depends on the BCTU configuration.
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According to these considerations, the conversion time of each triple of signals was
estimated to be equal to

t(i)conv =
C1

100 + 101 + 60 + 2
2

+ 1
D
× 12.5ns = 3.3µs . (3.3)

To compute the total conversion time, the structure of the conversion list has to
be analyzed. As described before, the BCTU triggers the start of conversion of
the channels in the conversion list. Since ADC0, ADC1, and ADC2 are used, the
list elements are grouped by 3, assigning one element for each converter. Same
spare channels were inserted in the conversion list because some signals (mainly
not critical ones) were assigned to be converted by ADC0 even if ADC1 and ADC2
were free and available to be used. In those cases, a spare channel was inserted to
maintain the alignment of the multiple parallel conversions of 3 channels at time.
Of course, converted values of these channels aren’t read in the dedicated interrupt
handler because meaningless. This isn’t the best solution for the project, but it
was necessary to avoid the on-run reconfiguration of the BCTU peripheral. Since
conversion list is structured to perform 9 multiple parallel conversions, the total
conversion time was estimated to be equal to:

tconv = nlist × t(i)conv = 9× 3.3µs = 29.7µs , (3.4)

with nlist the number of the multiple parallel conversions.
The acquired values shall be provided to the application software. For this

reason, the interrupt handler, that is run at the end of the conversion of the last
list element, is responsible to move the results of the conversions in well-organized
and global accessible data structures which field are mapped from uint16_T to
real32_T data when read by the application software. These data structures
represents the data exchange interface between the AdcMgm software component
and the application software and they are described in the following section.

3.3.3 API layer
The API layer of the AdcMgm software component is constituted by an initialization
function called to set up correctly the involved pins and peripherals, and by a set
of data structures utilized to store the mapped raw converted values.

Global Data Structure

DataCurrRaw
DataCurr_T DataCurrRaw
This data structure contains the measured currents at the center of the TON
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time interval (instant T1 in Fig.3.7) of the PWM switching period. The
corresponding data fields are constituted by the 3 phase currents of the electric
motor and are acquired synchronously through ADCs.

DataVoltRaw
DataVolt_T DataVoltRaw
This data structure contains the measured voltages at the center of the
TON time interval (instant T1 in Fig.3.7) of the PWM switching period.
The corresponding data fields are constituted by supply voltages which are
constantly monitored by the application software and acquired through ADCs.

DataTempRaw
DataTemp_T DataTempRaw
This data structure contains the temperatures measured with a delay with
respect to the center of the TOFF time interval (instant T1 in Fig.3.7) of
the PWM switching period. The corresponding data fields are constituted
by system temperatures which are constantly monitored by the application
software and acquired through ADCs.

Functions

AdcMgm_Init()
status_T AdcMgm_Init(void)
This function initializes the SAR-ADCs, BCTU, and if not yet initialized, the
eMIOS timebase for generating the source events to trigger conversions.
Parameters
None.
Returns
status_T - Status return code.
status_success The clock configuration is set correctly.

status_clkInitError An error occurs in initializing one of the
clock signals.

Notes
The operations performed during the initialization are the following:

1. Initialize the pins connected to the analog signals to be used by SAR-
ADCs.

2. Configure the ADC0, ADC1, and ADC2 in BCTU triggered conversion
mode.

3. Enable all the required channel related to the analog to digital signals to
be converted.
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4. Perform the self-calibration procedure of ADC0, ADC1, ADC2.
5. If not yet done, set the eMIOS time base (see section 3.4);
6. Reset the BCTU and set it in Configuration Mode;
7. Set the conversion list in the corresponding BCTU configuration registers;
8. Set the source trigger for the conversion list of BCTU;
9. Set the BCTU in Normal Mode to start performing multiple parallel

conversions.
10. Enable the interrupt related to the end of conversion of the last element

of the conversion list.

This function shall be called after the initialization of the software component
PWM Management to avoid issues in configuring the eMIOS timebase.
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3.4 PWM Management
The software component PWM Management (PwmMgm) is made by the files
PwmMgm.c and PwmMgm.h, and it is responsible to manage PWM generation to
drive the inverter board. PWM Management makes use of 1 eMIOS peripheral - 1
channel is used to generate the timebase representing the carrier waveform and the
source events for analog-to-digital conversion, and other 6 channels to generate a
PWM signal for each inverter switch.

Figure 3.9: UML class diagram of the software component PWM Management.

3.4.1 Requirements
The requirements that were implemented with PwmMgm are related to the PWM
generation. The PWM signals shall generated coupled by 2 in a complementary
manner, and with a constant dead-time insertion. The PWM alignment shall be
centered in order to simplify the implementation with the used hardware. In Table
3.4, the specifications of the six PWM signals are reported. Of course, all the
PWM signals shall have the same switching frequency that, as already explained
in section 3.3.1, was chosen equal to 16kHz as example because the used switching
frequency was not reported due to nondisclosure policies. In the same way, the
value of the considered dead time was set to 3µs only as example. Each couple of
signals drives an inverter leg, that is why they shall work in the complementary
manner. From empirical considerations, the dead-time insertion was required to
take into account the blanking time of the inverter switches. The duty cycle of each
couple of switches is computed by the motor control algorithm of the application
software with the same rate of the PWM switching period which, in this case was
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PWM Generation Requirements

Signal Switching
Frequency

Duty
Cycle
Variable

Polarity Deadtime Alignment

PwmUH 16kHz PhUHduty Positive 3µs Centered
PwmUL 16kHz PhUHduty Negative 3µs Centered
PwmVH 16kHz PhVHduty Positive 3µs Centered
PwmVL 16kHz PhVHduty Negative 3µs Centered
PwmWH 16kHz PhWHduty Positive 3µs Centered
PwmWL 16kHz PhWHduty Negative 3µs Centered

Table 3.4: List of PWM signals with their corresponding switching frequency,
duty cycle variable, and polarity.

set to 16kHz as example. Moreover, the firmware shall provide the possibility to
drive all the signals to low in case of faults disabling the PWM generation.

3.4.2 Implementations
The hardware used to implement PWM generation is constituted by the instance 0
of the in-chip peripherals eMIOS. The eMIOS clock source is the M33_CORE_CLK
signal. Its internal counter is made by a 16 bits registers and it is updated every
clock cycle. The peripheral allows to define a clock prescaler using the bit field
GPRE in the configuration register MCR, but it was disabled in this context. The
channel 0 was used to provide the time base to other channels which, of course, need
a carrier waveform to generate the PWM output signals. The choice of channel 0
as channel to generate the time base was constrained because it is the only channel
that can provide the time base to the internal shared bus to which all the required
channels are connected.

Considering the system requirements described in the previous section, it is
evident that a triangular carrier waveform is required to implement the centered
aligned PWM signals (see section 2.4 for more details). Therefore, the channel 0 of
the peripheral eMIOS was set in Modulus Counter Buffer (MCB) Up/Down Mode
to act as an up/down counter providing a discrete triangular carrier waveform
by its internal counter state. The channel operation mode is selected writing the
appropriate value in the configuration register MODE corresponding to the channel.
In general, when this mode is selected, the channel internal counter starts counting
from 0x01 and is increased until the stored value in register A1 is reached. Then,
the counter is decreased, and only when 0x01 is again reached, it restarts counting
up. This mechanism is graphically explained in Fig. 3.10.
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Figure 3.10: Time evolution of the internal counter of an eMIOS channel config-
ured in MCB mode.

The frequency of the discrete triangular waveform, realized with the up/down
counter, was set writing the register A1. As described in the MCU datasheet, its
value can be computed with the folloing expression:

PRECLK
fclk

=
2

1
A1− 1

2
2fsw

⇒ A1 = fclk

2fsw

− 1 , (3.5)

where PRECLK is the prescaler value, fclk the frequency provided to the peripheral
(M33_CORE_CLK), and fsw the PWM switching frequency. Therefore, it was
calculated to be equal to:

A1 = fclk

2fsw

− 1 = 160MHz
2× 16kHz − 1 = 4999 . (3.6)

Since the register A1 can’t be directly written, its shadow register A2 has to be
used to copy the value in A1. As can be seen in Fig. 3.10, the register A1 is
updated with the value contained in A2 whenever the counter reaches the value
0x01 (i.e. starting of switching period). The device driver provided by the MCU
silicon-vendor allows to define the time base frequency in number of clock ticks (i.e.
clock cycles) without the necessity to compute the exact value of A1. However,
these considerations were done to verify the correct hardware configurations during
the corresponding test procedure.

In order to generate the PWM signals with the requirements described in the
previous section, the Center Aligned Output Pulse Width Modulation with Dead
Time Insertion Buffered (OPWMCB) Mode was used for all the required channels
with the exception of channel 0 that, as said, provides the time base. As the name
suggests, this operation mode generates a center aligned PWM with dead time
insertion in the leading or trailing edge depending on the channel configuration. In
general, the time base selected for a channel configured in OPWMCB mode should
be a channel configured in MCB Up/Down mode for the reasons already discussed
in section 2.4. When operating with leading edge dead time insertion, the first A1

57



Firmware Development

Figure 3.11: Time evolution of internal counter of an eMIOS channel configured
in OPWMCB mode with lead deadtime insertion.

match sets the channel internal counter to 0x1. When a match occurs between
register B1 and the internal time base, the output flip-flop is set to the value of
the EDPOL bit. Instead, when operating with trailing edge dead time insertion,
the first match between A1 and the selected time base sets the output flip-flop to
the value of the EDPOL bit and sets the internal counter to 0x01. In the second
match between register A1 and the selected time base, the internal counter is set
to 0x01 and B1 matches are enabled. When the match between register B1 and
the selected time base occurs the output flip-flop is set to the complement of the
EDPOL bit.

It is evident that the value of B1 sets the deadtime duration of the PWM signal
expressed in number of clock cycles. As done for the value of the register A1, its
value was computed for verification purposes. It was computed in the following:

B1 = Tdt × fclk = 3µs× 160MHz = 480 , (3.7)

where Tdt is the deadtime time interval expressed in second. The register B1 is
shadowed as well as the register A1, therefore the same consideration can be done
about its update mechanism - both registers are buffered, that means that their
values are changed writing their corresponding shadow register A2 and B2. A1
and B1 are updated with the value stored in A2 and B2 at the beginning of each
switching period (i.e. when the provided time base is 0x01).
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When the OPWMCB mode is selected, the output PWM duty cycle is equal to
the difference between register A1 and register B1 for a leading edge dead time
insertion, and to the sum of register A1 and register B1 for a trailing edge one.
The polarity of the PWM signals is configured setting the bit EDPOL (contained
in the eMIOS channel control register) to 1 in case of negative polarity or to 0
vice versa. Even in this case, the system call interface of the device driver hides
these implementation details, but as alredy said, they were analyzed to verify the
correctness of the hardware configurations during the verification phases.

Therefore, in order to implement the described system requirements, the PWM
signals PwmUH, PwmVH, and PwmWH (channels 6, 2, 5) are set with leading edge
deadtime insertion and positive polarities, instead PwmUL, PwmVL, and PwmWL
(channels 4, 3, 1) with trailing edge deadtime insertions and negative polarities. The
duty cycle of each couple of signals that controls an inverter leg must be the same
to guarantee the complementary behaviour. Inserting the dead-time in trailing or
leading edge depending on the signal polarity leads to the signal characteristics
reported in Fig. 2.20. This mechanism resolves the issue of the blanking time of
the inverter switches. The deadtime was selected a priori, so the register B1 was
set only during initialization.

According to the requirements, features to disable or enable the outputs of PWM
signals shall be provided. The eMIOS does not implement mechanisms to disable
its outputs without reconfigure the peripheral itself, therefore a workaround was
developed for these features. Indeed, the GPIOs connected to the corresponding
pins of the PWM outputs were configured and set to low values. When the
application software requires to disable the PWM outputs, the corresponding pin
alt mode is changed such that the GPIO mode is selected instead of the eMIOS one.
When the application software needs to enable the PWM outputs, the opposite is
done. Of course, this is not the best solution, but it was necessary because other
approaches couldn’t be developed due the constraints about the pin-out of the
board designed to host the MCU.

3.4.3 API layer
The API layer of the software component PwmMgm is composed by an initialization
function to configure correctly the required channels of peripheral eMIOS0, two
functions to enable or disable the outputs of the PWM signals, and a function to
set the three duty cycles.

Functions

PwmMgm_Init()
status_T PwmMgm_Init(void)
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This function initializes the channels from 1 to 6 of eMIOS peripherals in
OPWMCB mode, and if not yet initialized, the eMIOS channel 0 in MCB
mode to provide the time base to other channels.
Parameters
None.
Returns
status_T - Status return code.

status_success The channels of the peripheral eMIOS0
are set correctly for PWM generation.

status_pwmInitError An error occurs in initializing one of the
channels of the peripheral eMIOS0.

Notes
The operations performed during the initialization are the following:

1. Initialize the pins related to PWM as output pins connected to eMIOS0.
2. If not yet done, configure the channel 0 in MCB mode to generate the

time base with the correct frequency.
3. Configure the channels from 1 to 6 in OPWMCB mode to allow PWM

generation.
4. Call the function PwmMgm_OutDisable to avoid that the PWM signals

are provided to the output pins with unknown duty cycles.

The function shall be called before to initialize the software component ADC
Management and use the PWM Management functions.

PwmMgm_OutEnable()
void PwmMgm_OutEnable(void)
This function enables the output pins of the generated PWM signals. When
the PWM outputs are enabled, the output signals are driven to generate PWM
waveforms according to the last set duty cycle, polarity and deadtime.
Parameters
None.
Returns
None.
Notes
The output enabling mechanism is implemented with the workaround described
in the previous section.

PwmMgm_OutDisable()
void PwmMgm_OutDisable(void)
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This function disables the output pins of the generated PWM signals. When
the PWM outputs are disabled, the output signals are driven to low values.
Parameters
None.
Returns
None.
Notes
The output disabling mechanism is implemented with the workaround de-
scribed in the previous section.

PwmMgm_SetDuty()
status_T PwmMgm_SetDuty(real32_T dutyPhU, real32_T dutyPhV,
real32_T dutyPhW)
This function sets the duty cycle of the three inverter legs.
Parameters
in dutyPhU Duty cycle of phase U
in dutyPhV Duty cycle of phase V
in dutyPhW Duty cycle of phase W

Returns
status_T - Status return code.
status_success The duty cycles are set correctly.

status_pwmDutyError
One of the duty cycle is outside the ex-
pected range and it is saturated to lowest
or highest limits.

Notes
The input parameters shall be comprised between DUTY_MIN_VALUE
and DUTY_MAX_VALUE - these values are macro defined for the specific
application. For this reason, a check is done to saturate the duty cycles. This
was implemented by the following source code:

Listing 3.3: Duty cycle conversion from percentage to ticks

/∗ Ver i fy that the duty cy c l e i s in the c o r r e c t
range and sa tu ra t e i t i f ou t s id e the expected
l im i t s ∗/

i f ( duty > DUTY_MAX_VALUE)
{

duty = DUTY_MAX_VALUE;
re turn status_pwmDutyError ;

} e l s e i f ( duty < DUTY_MIN_VALUE)
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{
duty = DUTY_MIN_VALUE;
re turn status_pwmDutyError ;

}

/∗ Compute the duty cy c l e in number o f t i c k s ∗/
∗dutyTicks =

( uint32_T ) ( ( real32_T ) (PWM_TICK_PERIOD) ∗ duty ;
/∗ Return Status_success ∗/
return s ta tus_succe s s ;

Moreover, the function arguments are converted to uint32_T (unsigned integers
of 32 bit ) variables corresponding correspond to the TON period time lengths
expressed in number of clock cycles. This conversion is required because the
function of the device driver used to set the duty cycles needs their values
expressed in ticks.
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3.5 SPI Communication
The software components SPI Communication (SpiCom), composed by the files
SpiCom.h and SpiCom.c, is responsible to manage SPI communication with the
resolver-to-digital converter connected to the motor resolver. It makes use of an
LPSPI peripheral that is the master of the communication. SPI Communication
implements features related to the resolver-to-digital converter configuration and
data acquisition. SPI communication is necessary for the device configuration,
instead the acquisition of the converted data through SPI is a redundant mechanism
due to the presence of a digital parallel output port.

Figure 3.12: UML class diagram of the software component SPI Communication.

3.5.1 Requirements
The software component SPI Communication shall satisfy specification related to
the configuration mechanism and data acquisition of the resolver-to-digital (R2D)
converter done through its serial interface. As described in section 2.2.1, four
signals are required to implement the SPI communication protocol with specific
timing characteristics. For this reason, the timing diagrams of the serial input and
output sequences were studied to define explicitly timing specifications.

The serial input sequence (i.e. input from the point of view of the resolver-
to-digital converter and output for the MCU), used for device configuration, is
reported in Fig. 3.13. As shown in the figure, the clock polarity is negative, and
its phase positive. This means that the clock signal (SCK) is first high, and data
(SSDT) bits are sampled by the R2D on the falling edge of each clock pulse. Each
clock cycle shall last no less than 200ns that corresponds to a maximum bandwidth
of 5MHz in the transmission. The chip select signal (SSCS) is active low and shall
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Figure 3.13: Timing diagram of the serial input sequence to configure the resolver-
to-digital converter.

be activated at least 100ns before the falling edge of the first clock cycle. The
configuration frame is constituted by 12 bits which are sent to the R2D starting
from the LSB. The frame is divided in 7 fields summarized in Fig. 3.16. After last
bit is sent, the SSCS signal shall be deactivated (i.e. driven high) and the clock
signal shall remain low for at least 318ns. This time is necessary to let the device
to update its settings.

The serial output sequence (i.e. output from the point of view of the resolver-to-
digital converter and input for the MCU) is reported in Fig. 3.14. As can be seen

Figure 3.14: Timing diagram of the serial output sequence to acquire data from
the resolver-to-digital converter.

in the figure, the characteristics of the clock signal are like the serial input sequence
ones. In this case, the clock characteristics are the opposite - the clock polarity is
negative, and its phase is positive that means that the clock signal (SCK) is first

64



Firmware Development

high, and data (DATA) is sampled on the rising edge of each clock pulse by the
LPSPI peripheral. The communication bandwidth is always 5MHz. The chip select
signal (SCSB) is active low and shall be activated at least 100ns before the falling
edge of the first clock cycle as in the previous case. The data frame is constituted
by 16 bits divided in different fields depending on the selected mode for the R2D
converter. The data are sent starting from the LSB. The SCSB signal shall be
disactivated after the last clock cycle and a time period of at least 200ns shall last
between two different activations. The overall timing specifications are listed in
Tab. 3.5.

SPI Communication Timing Requirements
Symbol Parameter Min. Max.
thSCK SPI clock high time 100ns
tlSCK SPI clock low time 100ns
tsetSCSB Data Chip select setup time 100ns
tholSCSB Data Chip select hold time 100ns
tdisSCSB Data Chip deselect time 200ns
tsetSSCS Setting Chip select setup time 100ns
tholSSCS Setting Chip select hold time 100ns
tsetSSDT Setting input setup time 100ns
tholSSDT Setting input hold time 100ns

Table 3.5: Timing requirement of SPI communication between the MCU and the
resolver-to-digital converter.

3.5.2 Implementation
The only hardware needed to implement SPI communication is constituted by a
hardware instance of the peripherals LPSPI. The LPSPI2 was configured by means
of the device drivers provided by the silicon-vendor. First, the peripheral was
configured as master in the communication. Its bit-rate was set to 5 Mbits/s which
corresponds to the maximum supported bandwidth of the R2D converter. Two
different chip selects were used for the SSCS and SCSB signals which correspond
respectively to the selection of configuration and data acquisition transmissions.
The clock polarities and phases of the peripheral were set according to specifications
of Tab. 3.5, and the data were acquired or sent starting from the LSB. The LPSPI
was set to generate an interrupt every times a transmission ends. In practice, a data
request or configuration sending is started by the application software. Then, the
corresponding interrupt handler is executed every time the interrupt is asserted at
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the end of the transmission. The interrupt handler runs a service routine necessary
to manage the acquired data after an output sequence, and is skipped after a
input sequence. Indeed, the interrupt is called the same in case of configuration
transmission, but the no specific instructions are executed.

The structure of the data frame sent by the converter is reported in Fig. 3.15. As
shown in the figure, the data frame presents different structures depending on the
mode setting. For the proof of concept, the required mode is the Absolute Output
Mode. When this mode is used, the R2D converter sends a frame constituted by 12

Figure 3.15: Structure of the data transmitted through SPI by the resolver-to-
digital converter.

bits representing the converted data, the bit PRTY, two bits that reports the mode
setting bit code, and the bit PRTY2. The bits PRTY and PRTY2 are even parity
bits which means that they are 1 in case of the number of 1s of the considered
frame is odd, and 0 vice versa. The bit PRTY expresses the parity of the serial
data bits Bit1∼12, and PRTY2 the serial data bits Bit1∼15. Therefore, a parity
check is done at firmware-level every time a new value is acquired from the R2D
through SPI interface. Parity check errors are signaled to the application software
using a global variable.

The structure of the configuration frame is reported in Fig. 3.16. As can be seen
in the figure, the frame don’t require the insertion of parity or other redundant bits.
The settings selected for the proof of concept are highlighted in yellow and they
are not required to change at run-time. Indeed, the pre-selected settings are sent
to the R2D during its initialization and they are not changed when the application
software is running.

In order to estimate the delay between the request of a data from the R2D and
the corresponding end of data acquisition was computed easily according to the
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Figure 3.16: Structure of the configuration frame transmitted through SPI to
the resolver-to-digital converter.

following expression:

∆TSPI = nbit × fclk + (tselSCSB + tholdSCSB)
= 16× 200ns + (100ns + 88ns) = 3.388µs .

This is negligible with respect to the application software execution rate. The
corresponding calculation to estimate the delay to send the configuration frame
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required by the R2D converter was not performed because no relevant timing
constraints are present in the initialization phase.

3.5.3 API Layer
The API layer of the software component CanCom is composed by an initialization
function used to initialize the peripheral LPSPI2, two functions to send the pre-
selected configuration to the R2D converter and request the converted data by the
device, and two global accessible variables to store the result of the data acquisition
and signal any errors related to parity checks.

Global Data Structure

R2dSpiData
uint16_T R2dSpiData
This variable contains the value acquired from the R2D converter through SPI.
This data is requested synchronously with respect to the analog acquisition of
the motor phase currents.

R2dSpiPrtyError
uint8_T R2dSpiPrtyError
This variable is set to signal to the application software if an error occurs in
computing the parity error of the acquired data through the SPI interface of
the resolver-to-digital converter.

Functions

SpiCom_Init()
status_T SpiCom_Init(void)
This function initializes the LPSPI peripherals for the SPI communication
with the the resolver-to-digital converter.
Parameters
None.
Returns
status_T - Status return code.
status_success The LPSPI peripheral is set correctly.

status_spiInitError An error occurs in initializing the LPSPI
peripheral.

Notes
The operations performed during the initialization are the following:
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1. Initialize the pins related to SPI communication protocol.

2. Configure the LPSPI peripheral as master in the communication according
to the discussed requirements.

This function shall be called before to interact with the R2D converter.

SpiCom_R2dSetCfg()
status_T SpiCom_R2dSetCfg(r2dCfg_T cfg)
This function sends to the resolver-to-digital converter a configuration frame
through SPI.
Parameters

in r2dCfg Resolver-to-digital converter configuration data
structure

Returns
status_T - Status return code.
status_success The configuration is sent correctly.

status_spiBusy
The configuration can’t be sent at the
moment because the LPSPI peripheral is
busy.

status_spiFrameError
An error occurs in creating the configu-
ration frame to be sent through LPSPI
peripheral.

status_spiTxError An error occurs in starting the LPSPI
transmission.

Notes
This function shall be call before to start the application software and after the
initialization of the software component SpiCom. A pre-selected configuration
is defined as global static variable in SpiCom.c, but any allowed configuration
can be send using this function.

SpiCom_R2dReqData()
status_T SpiCom_R2dReqData(void)
This function starts an SPI transmission to acquire a data from the resolver-
to-digital converter.
Parameters
None.
Returns
status_T - Status return code.
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status_success The configuration is sent correctly.

status_spiBusy
The configuration can’t be sent at the
moment because the LPSPI peripheral is
busy.

status_spiTxError An error occurs in starting the LPSPI
transmission.

Notes
After being received, the acquired data is moved in the global variable
R2dSpiData only if the parity check is passed. This function shall be called
synchronously with respect to the analog acquisition of the motor phase
currents.
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3.6 Digital Signal Management
The software components Digital Signal Management (DigSgnMgm), composed
by the files DigSgnMgm.h and DigSgnMgm.c, is responsible to manage digital
input and output signals. It makes use of the module SIUL2 to acquire digital
input signals and drive digital output ones. Digital signals were required by the
project to handle fault, reset, and enabling signals, and a digital parallel interface
connected to the Resolver-to-Digital converter. This digital parallel interface was
implemented with 13 digital input signals.

Figure 3.17: UML class diagram of the software component Digital Signal
Management.

3.6.1 Requirements
The requirements of the software component Digital Signal Management are related
and limited to the acquisition of the digital input signals and the driving of the
digital output ones. Timing requirements are not present in the management
of digital signals except for the digital parallel interface. The data coming from
the resolver-to-digital converter through the parallel interface shall be acquired
periodically and asynchronously with respect to the application tasks. They shall
be sampled as near as possible to the time instants when the phase currents are
sample by ADCs.

3.6.2 Implementation
The SIUL2 peripheral is managed writing and reading directly in the peripheral
configuration registers because dedicated drivers are not provided by the silicon-
vendor. The digital signals required by the application software are classified as
Digital Input (Di) or Digital Output (Do) signals. The GPIO Pad Data Output
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(GPDO) registers are used to set the desired output values of Do signals. The
GPIO Pad Data Input (GPDI) registers are used to read the input values of Di
signals.

The Di signals are read through polling mechanism when their values are required
by the application software. Instead, the polling of the digital input signals that
constitute the digital parallel interface is performed periodically and synchronously
with respect to the analog acquisition of the motor phase currents.

The application software recognizes only active (1) and deactive (0) values for
digital signals, so their electric polarity is managed in hardware as described in
section 3.2. Indeed, the application values correspond to the digital signal states for
positive polarities (active when high), and to their opposite for negative polarities
(active when low). For example, a digital output signal with negative polarity
shall be driven low when set as active by the application software. These signal
polarities are taken into account in the corresponding setting and reading functions
which are implemented as static inline functions (defined in DigSgnMgm.h) to
increase the code efficiency and avoid a function call for only one statement. Their
implementation is the following:

Listing 3.4: Example of setter and getter static inline functions used for digital
signals.

/∗ S t a t i c i n l i n e func t i on f o r s e t t i n g a Do s i g n a l ∗/
s t a t i c i n l i n e void DigSgnMgm_SetSignalName ( uint8_T value )
{

SIUL2−>GPDO193 = ( uint32_T ) value ;
}

/∗ S t a t i c i n l i n e func t i on f o r g e t t i n g a Di s i g n a l ∗/
s t a t i c i n l i n e uint8_T DigSgnMgm_GetSignalName ( )
{

re turn ( uint8_T ) (SIUL2−>GPDI229) ;
}

The digital parallel interface, connected to the Resolver-to-Digital converter, is
constituted by 12 data bit and 1 parity bit. Before to read the data coming from
the Resolver-to-Digital Converter, two signal shall be asserted with the correct
timings. More precisely, the chip select and the read pin of the R2D converter are
asserted one after the other to freeze the digital state of the parallel output port.
At that time, each signal of the interface is read and a their value are stored in
an uint16_T variable. Then, a parity check is performed to verify the correctness
of the acquisition, and if passed, the acquired value is moved to a global variable
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accessible by the application software.

3.6.3 API Layer
The API layer is constituted by a variable which stores the data acquired from
the resolver-to-digital converter through the digital parallel interface, a variable to
signal if a parity error occurred in its acquisition, and the get and set functions for
the digital input and output signals. The function used to acquire the data from
the parallel interface of the resolver-to-digital converter was not inserted in the
API of the software component because it is not called directly by the application
software. Indeed, it is called by the firmware itself to acquire periodically the data
converted by the R2D that the application software can read through the global
variable R2dDigData used as interface.

Global Data Structure

R2dDigData
uint16_T R2dDigData_rad
This variable contains the data acquired through the digital parallel interface
of the resolver-to-digital converter.

R2dPrtyError
uint8_T R2dPrtyError
This variable is set to signal to the application software if an error occurs in
computing the parity error of the acquired data through the digital parallel
interface of the resolver-to-digital converter.

Functions

DigSgnMgm_Init()
void DigSgnMgm_Init(void)
This function initializes the GPIO pins for the digital signal acquisition and
driving.
Parameters
None.
Returns
None.
Notes
This function shall be called before to read or drive digital pins. Only the pin
initialization is performed to initialize the software component.
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DigSgnMgm_SetSignalName()
static inline void DigSgnMgm_SetSignalName(uint8_T value)
This function sets the output value of a digital output pin considering the
configured signal polarity.
Parameters
in value Value to be set to the digital output pin.

Returns
None.
Notes
This function is only an example of set function. In the software component,
a function for each digital output signal was developed, but they are not
reported for NDA policies.

DigSgnMgm_GetSignalName()
static inline uint8_T DigSgnMgm_GetSignalName(void)
This function reads the input value of a digital output pin considering the
configured signal polarity.
Parameters
None.
Returns
uint8_T - Value of the input pin considering the configured signal polarity.
Notes
This function is only an example of get function. In the software component, a
function for each digital input signal was developed, but they are not reported
for NDA policies.
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3.7 CAN Communication
The software component CAN Communication (CanCom), composed by the files
CanCom.h and CanCom.c, is responsible to manage the CAN bus node constituted
by the MCU. It utilizes a peripheral FlexCAN-FD to send and receive messages
with other nodes in the network, and a Periodic Interrupt Timer (PIT) to send
messages periodically. The CAN communication was required as communication
protocol to interface to the MCU externally from the test bench which is the only
other CAN node connected to the bus besides the microcontroller.

Figure 3.18: UML class diagram of the software component CAN Communication.

3.7.1 Requirements
The CAN Communication software component shall be developed to receive 2
messages transmitted by the test bench through CAN bus. These messages contain
information about the operation that the system shall perform. In such a way, an
external operator can interact with the plant placed at a safe distance without
acting directly on the system components. On the other side, the MCU shall send
periodically messages containing information about its status to the test bench
through CAN bus to allow a correct plant monitoring. The CAN database was
defined on the needs of the project. The characteristics of the CAN messages refer
to the CAN 2.0A message frame standard with 11 bits for the identifier field (more
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details about CAN are discussed in section 2.2.2). For the proof of concept, no
error messages or remote frames were considered.

The firmware shall provide a message of error (CanError) when no messages
are received from the workbench for a time interval bigger than a given threshold.
This is required because physical faults in the transmission lines can occur due to
vibrations or accidents, and the system shall be able to detect the interruption in
the transmission. Since the peripheral FlexCAN-FD provides digital logic values
to its outputs, an external transceiver shall be connected to the peripheral output
pins as described in section 2.2.2.

Figure 3.19: Logic diagram of a FlexCAN-FD peripheral connected to CAN bus.

3.7.2 Implementation
The device drivers provided by the silicon-vendor were used to configure the CAN
peripheral according to system specifications. The peripheral FleCAN-FD is set in
normal mode. When this mode is selected, the module operates receiving and/or
transmitting message frames, managing errors normally, and enabling all features
provided by the CAN protocol. The peripheral provides also a feature to implement
flexible bit-rate, but this one is neglected for the project purposes.
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In order to set the required bit rate and the corresponding bit segmentation,
the register CTRL1 of the peripheral FlexCAN-FD was analyzed. Its structure is
reported in Fig. 3.20 and the descriptions of the bit fields set for the purpose are
listed in the following:

• PRESDIV
The Prescaler Division Factor is an 8-bit field and defines the ratio between
the peripheral clock frequency and the inverse of the period of a time quantum
of the CAN protocol.

• RJW
The Resync Jump Width is a 2-bit field and defines the maximum number of
time quanta plus one that a bit time can be changed by one resynchronization.
The valid programmable values are between 0 and 3.

• PROPSEG
The Propagation Segment is a 3-bit field and defines the length of the propa-
gation segment in the bit time. The valid programmable values are between 0
and 7.

• PSEG1
The Phase Segment 1 is a 3-bit field and defines the length of phase segment
1 (number of time quanta plus one) in the bit time. The valid programmable
values are between 0 and 7.

• PSEG2
The Phase Segment 2 is a 3-bit field and defines the length of phase segment
2 (number of time quanta plus one) in the bit time. The valid programmable
values are between 0 and 7.

Figure 3.20: Structure of the register CTRL1 of the peripheral FlexCAN-FD.
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CAN Bit Segmentation settings
Bit Field Description Value
PRESDIV Prescaler Division Factor 2+1
PROPSEG Propagation Segment 7+1
PSEG1 Phase Segment 1 3+1
PSEG2 Phase Segment 1 2+1
RJW Resync Jump Width 1+1

Table 3.6: Parameters of the peripheral FlexCAN-FD used to configure the
required time segmentation and bit rate of the CAN node represented by the MCU.

The desired bit rate (1Mbps) was obtained using 16 time quanta with a duration of
6.25µs. This was implemented setting the values reported in Tab. 3.6. The sample
point placed between the two phase segments, was set at the 83,33% of the bit.

Since the MCU shall send periodically CAN messages to the external test bench,
as described in the previous section, two channel of the PIT1 hardware instance
are used to trigger periodically interrupts. The corresponding interrupt handler
associated to the timer peripheral is used to create a data frame for the data to be
transmitted and send the messages with specific rates. The use of two channels is
necessary to implement two different rates of 0.01s and 0.05s for the two messages.

The peripheral FlexCAN-FD makes use of Message Buffers (MB) to implement
the message acquisition and transmission. The structure of a Message Buffers
is reported in Fig. 3.21, and it is the same for RX and TX buffers. Each MB
provides a register to configure or store message characteristics, a register to store
the message ID and local priority, and 16 registers to store up to 64 bytes to be
sent or received. Some of these parameters have a correspondence with the bits in
the message frame. The description of the bit fields in the registers of Fig. 3.21
and their corresponding settings is described in the following:

• Extended Data Length - EDL
EDL is a configuration bit to distinguish between CAN standard format and
CAN FD format frames, and it is set to 0 to disable CAN FD format frames.

• Bit Rate Switch - BRS
BRS is a configuration bit to define whether the bit rate is switched inside a
CAN FD format frame. Since EDL is set to 0, this bit is ignored.

• Error State Indicator - ESI
ESI is a status bit to indicate if the transmitting node is error active or error
passive.
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Figure 3.21: Structure of a Message Buffer for the peripheral FlexCAN-FD.

• Message Buffer Code - CODE
CODE bit field encodes the buffer status in case of RX buffers or message
settings in case of TX buffers. For RX buffers, it indicates if the buffer is
inactive, empty, full, busy, if an overrun occurred, or if a remote request has to
be serviced. In case of TX buffers, it indicates if is inactive, if the transmitted
frame is a data, remote request, remote response frame, or if the transmission
is aborted.

• Substitute Remote Request - SRR
SSR bit is used only in extended format, therefore it is ignore for this applica-
tion.

• ID Extended Bit - IDE
This field identifies whether the frame format is standard or extended, and it
is set to 0 (frame is standard) in this application. This field was used to store
the message ID of the message provided in the CAN database for the project.

• Remote Transmission Request - RTR
RTR bit affects the behavior of remote frames and is part of the reception
filter. It is set to 1 if remote frame has to be transmitted by a TX buffer or it
is stored in a RX Buffer. Otherwise, it is set to 0. In the MCU configuration,
it is always set to 0.
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• Length of Data in Bytes - DLC
DLC bit field represents the length (in bytes) of the RX or TX data. This is
set according to the lengths of the message of the CAN database.

• Free-Running Counter Time Stamp - TIME STAMP
This 16-bit field is a copy of the Free-Running Timer, captured for TX and
RX frames at the time when the beginning of the ID field appears on the
CAN bus. It is not used for this application.

• Local priority - PRIO
PRIO bit field is used only when the TX buffer priority is enable, and it
defines which TX buffer has to send its message first in case of concurrent
message sending.

• Frame Identifier - ID
The ID bit field store the message ID of TX and RX frames. In standard
frame format, only the 11 most significant bits (28 to 18) are used for frame
identification in both receiving and transmitting cases.

• Data Field - DATA BYTE 0 to 63
Up to sixty four bytes can be used for a data frame, depending on the
size of payload selected for the message buffers. They are used to read the
data received in RX transmissions, and to set the data to be sent in TX
transmissions.

A TX Buffer is configured for each message that shall be sent. The CAN
messages to be sent are declared with appropriate data structures in the source
code. In such a way, their IDs and lengths can be set a priori according to CAN
database, and only message data frames needs to be set before to start the frame
transmission.

RX Buffers are configured with a message ID filter. Therefore, they store only
the frames of the recognized IDs. A RX buffer is configured for each message
to be received present in the CAN database. A callback for each RX buffer is
installed. They are executed in the interrupt handler asserted at the end of a RX
transmission. These callbacks are used to transfer the data from the RX buffers
which have received the message to the global variables used as interface with the
application software.

The corresponding channels of the hardware timer PIT1, used to implement the
periodic message sending, are also used to implement the signal CanError. They
are used to decrease variables which act as count-down timers to set the signal
CanError in case of their values reach 0. Therefore, in case of RX message reception,
the corresponding counter variables is reset to its initial value. Otherwise, an error
is reported through the variable CanError for the absence of the expected RX
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message. In such a way, interruptions in the CAN transmission line are signaled to
the application software.

3.7.3 API Layer
The API layer between the application software and software component CAN
Communication is constituted by the variables that stores the data sent and received
through CAN bus, and by functions to initialize, start, and stop the transmission
over CAN bus.

Global Data Structures

• CanError

uint8_T CanError

This variable contains the CAN error signal which is asserted if no CAN
messages have been received for a time interval greater than the double of the
expected one.

• CanTxDataMsg01

CanTxDataMsg01_T CanTxDataMsg01

This data structure contains the variables that shall be sent by the MCU to the
external test bench through CAN bus with the message 01. This data structure
is updated by the application software with a rate of 0.001s and read by the
software component CanCom before to send the corresponding message. The
field of the data structure are represented by real32_T (float) variables and are
not reported for NDA policies. They are opportunely converted in uint16_T
before to be sent over CAN bus. The data contained in CanTxDataMsg01 are
sent by MCU to the external test bench every 0.05s.

• CanTxDataMsg02

CanTxDataMsg02_T CanTxDataMsg02

This data structure contains the variables that shall be sent by the MCU to
the external test bench through CAN bus with the message 02. This data
structure is updated by the application software every 0.001s and read by the
software component CanCom before to send the corresponding message. The
field of the data structure are represented by real32_T (float) variables and are
not reported for NDA policies. They are opportunely converted in uint16_T
before to be sent over CAN bus. The data contained in CanTxDataMsg02 are
sent by MCU to the external test bench every 0.01s.
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• CanRxDataMsg03
CanTxDataMsg03_T CanTxDataMsg03
This data structure contains the variables that shall be received by the MCU
from the external test bench through CAN bus with the message 03. This data
structure is updated by the software component CanCom when a message 03
is received (nominal transmission rate is 0.01s) and read by the application
software every 0.001s. The fields of the data structure are represented by
real32_T (float) variables and are not reported for NDA policies. They are
opportunely converted from uint16_T to real32_T or uint32_T data types
before to be stored in the data structure.

• CanRxDataMsg04
CanTxDataMsg04_T CanTxDataMsg04
This data structure contains the variables that shall be received by the MCU
from the external test bench through CAN bus with the message 04. This data
structure is updated by the software component CanCom when a message 04
is received (nominal transmission rate is 0.05s) and read by the application
software every 0.001s. The fields of the data structure are represented by
real32_T (float) variables and are not reported for NDA policies. They are
opportunely converted from uint16_T to real32_T or uint32_T data types
before to be stored in the data structure.

Functions

CanCom_Init()
status_T CanCom_Init(void)
This function initializes the FlexCan-FD peripheral to allow CAN communi-
cation with the external test bench using the in-board CAN transceiver.
Parameters
None.
Returns
status_T - Status return code.

status_success The FlexCAN-FD and PIT peripherals are
set correctly.

status_canInitError An error occurs in initializing the
FlexCAN-FD or PIT peripherals.

Notes
The operations performed during the initialization are the following:

1. Initialize the pins related to CAN Management.
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2. Configure the TX buffers for the CAN messages 01 and 02.
3. Configure the RX buffers for the CAN messages 03 and 04.
4. Install the callbacks for the reception of the RX messages.
5. Configure the channels of the PIT1 to periodically send TX messages.

After the initialization, the function CanCom_SendEnable() shall be called
to start to send periodically TX messages according to the CAN database.

CanCom_SendEnable()
void CanCom_SendEnable(void)
This function starts the channels of PIT1 to send periodically TX messages
according to the CAN database.
Parameters
None.
Returns
None.
Notes
This function shall be called after the initialization of the software component
CAN Management to start sending messages.

CanCom_SendDisable()
void CanCom_SendDisable(void)
This function stops the channels of PIT1 which are used to send periodically
TX messages according to the CAN database.
Parameters
None.
Returns
None.
Notes
This function is called at the end of initialization of the software component
CAN Management to prevent sending messages before that the application
software is started.
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Chapter 4

Firmware Verification and
Testing

In software project management, software testing, and software engineering, verifi-
cation and validation (V&V) is the process of checking that a software system meets
specifications and that it fulfills its intended purpose. It may also be referred to as
software quality control [6]. As already discussed, the firmware can be considered as
a specific kind of software that provides the low-level control for a device’s specific
hardware. Verification and validation are independent procedures that are used
together for checking that a product, service, or system meets requirements and
specifications and that it fulfills its intended purpose. More precisely, verification
is the process to evaluate of whether or not a product, service, or system complies
with a regulation, requirement, specification, or imposed condition. It is often an
internal process. Differently, validation is the process to guarantee that a product,
service, or system meets the needs of the customer and other identified stakeholders.
It often involves acceptance and suitability with external customers [6].

In the context of this thesis, the firmware testing aimed mainly to verification
procedures rather than validation ones. As already said, the final goal of the
project of this thesis is to develop a proof of concept for an electric powertrain
which, as the name suggests, doesn’t need to be validate as product. In fact, the
project goal is to proof that the realization of the system that has been designed is
achievable. Therefore, the purposes of the tests discussed in this chapter are to
verify that the firmware configures the embedded hardware to interact correctly to
the other subsystems connected to the MCU, and provides the necessary features
required by the application software. In this chapter, the tests, performed in the
verification phase, are discussed in the following sections. Section 4.2 is dedicated
to the description of the laboratory instrumentation used to perform the MCU
debug and trace and the measurements of the involved electrical quantities. The
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other ones provide the description of correlated tests performed on the specific
software components or hardware peripherals. Each of these sections is structured
to describe the test purposes and the requirements to be checked, the developed
test programs to execute, the specific test procedure to be performed, the expected
results, and the analysis of the results obtained by the test. It is important to
underline that no specific tests were developed for the software component Pin
Management because its functions are tested one at a time during the testing of
other software components.
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4.1 Structure of Test Procedures
The structure of the procedure performed for each test is described by the sequence
diagram of Fig. 4.1. As can be seen in the figure, the laboratory instrumentation
is set up before to interact with the MCU. Then, the test program is downloaded
from a version control system (VCS), also know as revision control or source control
system A VCS is a software utility that tracks and manages changes to firmware
source code, and provides a secure backup in case of data loss or corruption.
The test program is written in the MCU flash memory by means of the specific
Lauterbach hardware and software tools (described in detail in section 4.2.1). After
that, the test program is started, the electrical signals are measured with the
laboratory instrumentation such as oscilloscopes, multimeters, or logic analyzers
and the MCU state checked by means of JTAG or ETM interfaces. The acquired
results are compared with the expected ones - if they are consistent with each

Figure 4.1: Sequence diagram of the structure of test procedures.
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other, the test is passed, otherwise it is failed meaning that one or more bugs are
present in the source code.

4.1.1 Initialization and Startup of Software Components
The test programs, described in the following sections, were developed using the
same sequence of statements to initialize the target platform and the software
component to be tested. The initialization sequence is described by the following
steps:

1. Disable the global interrupts with the function INT_SYS_DisableIRQGlobal()
provided by the MCU driver;

2. Configure the MCU clock signals and peripheral clock gating with the function
ClkMgm_Init() of Clock Management;

3. Initialize the software component to be tested with its initialization function;

4. Enable the global interrupts the the function INT_SYS_EnableIRQGlobal()
provided by the MCU driver;

5. Perform the startup sequences for the target platform correlated to the software
component to be tested;

6. Configure other peripherals or execute other functions required for the specific
test program.

As can be noticed, the interrupts are disable before to start the initialization
sequence. Then, the clock signals and the peripheral clock gating are configured,
and the software component to be tested initialized. Before to execute any startup
sequence, the interrupts are re-enabled. An example of the code used to implement
the described initialization sequence is the following:

Listing 4.1: Structure of the initialization and startup sequence of a generic test
program.

i n t main ( void ) {

status_T l_err = sta tus_succe s s ;

/∗ Disab le g l oba l i n t e r r up t s ∗/
INT_SYS_DisableIRQGlobal ( ) ;
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/∗ Clock i n i t i a l i z a t i o n ∗/
l_er r |= ClkMgm_Init ( ) ;

/∗ SWC i n i t i a l i z a t i o n ∗/
l_er r |= SwcName_Init ( ) ;

/∗ I n i t i a l i z a t i o n check ∗/
whi le ( l_er r != sta tus_succe s s ) {}

/∗ Enable g l oba l i n t e r r up t s ∗/
INT_SYS_EnableIRQGlobal ( ) ;

/∗ Startup procedures ( Optional ) ∗/
SwcName_Startup ( ) ;

/∗ Other ope ra t i on s r equ i r ed by the t e s t program ∗/
. . . . . . . . . . . . . . . . . . .

}

This initialization sequence allows to correctly set up the target platform before
to start the test program and test the initialization functions of the software
component to be tested. In detail, the MCU is blocked inside an infinite loop in
case of any error occurs during the initialization. Indeed, the test program is not
started in case of initialization failure.

As already explained, since the clock signals and clock gating configuration
shall be performed before to initialize any software component, Clock Management
features were the first to be tested.

4.1.2 Test Program Flow and Target Platform Interaction
During the development of the tests, it was necessary to find a mechanism to allow
the user to interact with the execution of the test programs and with the target
platform. The solution found relies in the use of global variables which can be
modified through the Lauterbach debugging tools. More precisely, the execution
flow of the tests programs was controlled using these global variables as conditional
expressions in conditional instructions. An example is reported in the following:

Listing 4.2: Example of execution flow control through a global variable.

switch ( CtrlFlow )
{
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case CtrlFlow_Value1 :
/∗ Do something ∗/
break ;

case CtrlFlow_Value1 :
/∗ Do something ∗/
break ;

/∗ Other ca s e s ∗/
d e f au l t :

break ;
}

As can be seen in the example, the program execution flow is affected by the value
of the variable CrtlFlow. Since the variable is defined as global, the user is capable
to modify it with the software Trace32 (described in section 4.2.1) and control the
program flow without stopping its execution. This mechanism allows to implement
more than one test for each test program.

In some cases, the global variables used to control the execution flow of the
test programs work as "virtual buttons". Indeed, as commonly known, a button is
a physical device that can assume ON or OFF states and is used by the user to
interact with a system and and affect its behaviour. In the same way, a virtual
button allows the user to interact with the system. An example is reported in the
following:

Listing 4.3: Example of virtual button implementation.

i f ( i sEnabled )
{

/∗ Do something ∗/
}
e l s e
{

/∗ Do something e l s e ∗/
}

As can be seen in the reported example, the variable isEnable can assume two
significant values affecting the execution flow - the first block of code is executed if
it assumes any values different from zero, the second one otherwise. Indeed, the
behaviour implemented is the same of the pushing or releasing of a physical button.

In some test programs, global variables were used to interact with the target
platform behaviour. In such cases, these global variables were used as arguments
for the API functions called by the test programs. These variables work as the
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ones used by the application software to interact with the firmware. An example is
the setting of the PWM duty cycle with the corresponding function (described in
detail in section 4.4.1). Since the variables used to define the duty cycles to be set
are defined as global, the user is capable to interact with the target platform to
perform the required test.

In order to test all the features implemented in the firmware, the approach used
was to develop one test program for each software component implementing all
the required tests. Then, global variables were inserted to control the program
execution and interact with the target platform as described in this section.
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4.2 Laboratory Instrumentation
The test procedures designed to verify the correct behaviour of the features imple-
mented in the firmware required mainly five electronics laboratory instruments: a
debug and trace hardware tool, a power supply, an oscilloscope, a signal generator,
and a CAN to USB adapter.

Figure 4.2: Example of laboratory instrumentation setup adopted during the
tests of the software component CanMgm.

The power supply was used to supply the MCU. The debug and trace hardware
tool (described in section 4.2.1) used during the firmware development was provided
by Lauterbach company. It was utilized to download the test programs into the
MCU flash memory and observe the MCU internal state and execution timings. The
Lauterbach practice scripts used to properly pre-configures the MCU and download
the test programs in its non-volatile memory will not be discussed in this thesis
due to non-disclosure policies. The oscilloscope was an fundamental to observe the
MCU analog and digital output signals. Moreover, the used oscilloscope (described
in section 4.2.2) is provided with serial decoding features which where used to
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analyze SPI and CAN data frames sent over their communication buses. The signal
generator was used to stimulate properly the MCU input pins providing signals
to be converted, acquired, and processed by the MCU. The used CAN interface
for USB device was the Peak PCAN-USB (described in section 4.2.3). It was
fundamental to analyze the messages sent over the CAN network and simulate the
behaviour of the test bench to which the MCU will communicate during the tests
of the overall proof of concept tests. An example of the setup used in laboratory is
represented in Fig. 4.2.

4.2.1 Lauterbach Debug and Trace
The Lauterbach Trace32 tools are designed around common universal and architec-
ture independent hardware modules. The tools play a very important role in the
development of embedded systems and are used in the following ways:

Figure 4.3: Complete structure of the Lauterbach hardware tools with the
corresponding connection to the target platform [7].

• Debug
Most cores for the embedded market provide access to on-chip debug features
via a debug port. Trace32 tools connect to this to control the core, access the
data being processed by the core and provide developers with debugging over
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the embedded device: start, stop, step control; reading and writing memory
and registers; setting breakpoints; tracking values of variables and so on. This
means developers can diagnose software failures and memory corruption issues
and correct the system to make it perform as expected.

• Debug and Trace
In many applications it is no longer enough to run a simple test on your
code. In markets such as automotive, medical, aerospace and defence, it
is increasingly necessary to prove how the code behaved under all possible
conditions in real-time. This requires the tools to record the program flow
information from the core via the integrated trace port of the processor. Both
long-term and high-speed trace options are supported.

• Debug, Trace and Logic Analyzer
A debug system can be extended by adding a trace module or a logic analyzer.
In some cases, both can be added to provide a very capable hard and software
debug solution. Such a system can provide signal trace for logic analysis and
protocol analysis as well as correlating power usage to the code operation.

Figure 4.4: Lauterbach Debug and Trace hardware tools structure used for
firmware testing [7].
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For the purposes of the firmware developed for the project of this thesis, the Debug
and Trace solution represented in Fig. 4.4 was adopted.

As debug information is provided by the on-chip debug interface, the PowerDebug
hardware module makes possible to test and analyze every aspect of the target
operation including the bootstrap code, the target initialization, the interrupts,
the drivers and the kernel. The Debug Cable represents the physical architecture-
specific interface between the target debug port ad the PowerDebug module. On
the other hand, the PowerTrace hardware module Real-time trace provides fast and
systematic troubleshooting capabilities to detect complex errors that only occur
under run-time conditions. The recorded and time-stamped program/data flow
allows an overall analysis of the system performance as well as quality assurance
features such as code coverage and cache analysis. Fast trace evaluation and analysis
are guaranteed through advanced compression technologies and speed-optimized
system software. With up to 4GB trace memory and the possibility of streaming
to the host computer, a large amount of program and data flow information can
be traced. The Preprocessor adapter connects the real time trace module to
the standard trace port connector as defined by the silicon manufacturer. The
AutoFocus feature allows a preprocessor’s self-calibrating hardware to ensure signal
integrity up to 600 Mbps per channel for parallel trace ports.

4.2.2 Oscilloscope
As commonly known, an oscilloscope is a laboratory instrument used to display and
analyze the waveform of electronic signals by means of a graph of the instantaneous
signal voltage as function of time. The oscilloscope utilized in laboratory during
testing phase was the Yokogawa DLM3054 represented in Fig. 4.5.

The Yokogawa DLM3054 is a mixed signal oscilloscope designed for automotive,
mechatronics, and power supply application like hybrid and electric vehicles, in-
vehicle serial buses, motors and drives, and office appliances. The key features of
the oscilloscope are the following:

• Bandwidth: 500MHz;

• Number of Analog Channels: 4;

• Maximum Sampling Rate: 2.5 GS/s;

• Maximum Record Length: 125 Mpoints;

• Max. Input Voltage: 300Vrms/400Vpeak (1MΩ) or 5Vrms/10Vpeak (50Ω);

• Voltage Axis Sensitivity: 500µV/div to 10V/div (1MΩ) or 500µV/div to
1V/div (50Ω);
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• A/D Resolution: 8 bit (25 LSB/div) Max. 12 bit (in High Resolution mode);

• Display: 8.4-inch TFT color LCD, 1024 × 768;

• SSD Hard Disk: 60 GB;

• Internal Storage R/W Speed: 50 MB/s.

Figure 4.5: The oscilloscope Yokogawa DLM3054.

The described oscilloscope integrates a lot of features and functions to match
the modern needs in today’s mechatronics applications. Among all of them, the
serial decoding was extensively used during the tests related to SPI and CAN
communication. Developing and verifying these kinds of communication requires
analog physical-layer verification of waveform quality, noise, and simultaneous
measurement of logical-layer on the communication bus. These serial bus decode
functions can display decoded bus data and physical layer waveforms simultaneously
to verify that communication works as expected according to system requirements.

4.2.3 Peak PCAN-USB
The CAN FD adapter PCAN-USB FD allows the connection of CAN FD and CAN
networks to a computer via USB. A galvanic isolation of up to 500 Volts decouples
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the PC from the CAN bus. A picture of the device is reported in Fig. 4.6. Some
of its key features are listed in the following:

• CAN bus connection via D-Sub, 9-pin (in accordance with CiA 303-1);

• Complies with CAN specifications 2.0 A/B and FD;

• CAN bit rates from 25 kbit/s up to 1 Mbit/s;

• Time stamp resolution of 1 µs;

• Galvanic isolation up to 500 V;

• CAN termination can be activated through a solder jumper;

• Measurement of bus load including error frames and overload frames on the
physical bus;

• Voltage supply via USB.

Figure 4.6: The PCAN-USB FD.

The monitor software PCAN-View was used to interface with the PCAN-USB
FD module via PC. More precisely, the software was used to analyze the correct
behaviour of the nodes connected to the CAN bus and simulate the role of the test
bench which shall periodically send and receive messages. Moreover, when nominal
operating conditions were simulated, the PCAN-USB FD allowed also to measure
the bus load.
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Figure 4.7: An example of the bus load window of the software PCAN-View.

4.2.4 Signal Generator
A signal generator is piece of test equipment that produces an electrical signal in
the form of a wave with set properties of amplitude, frequency, and shape. This
is used as a stimulus for the item being tested. The signal generator utilized in
laboratory to perform the designed test procedures is the Tektronix AFG1022
represented in Fig. 4.8.

The signal generator Tektronix AFG1022 includes two channels, up to 60MHz
bandwidth and up to 10Vpp output amplitude. The 3.95” TFT LCD, short-cut
buttons, USB interface and PC software are provided to configure the instrument.
The key features of the signal generator are the following:

• Two channels;

• Bandwidth: 25MHz sine waveforms, 12.5MHz square waveforms;

• Resolution: 14 bits, 125MS/s arbitrary waveforms;

• Record Length: 8k points;

• Amplitude: 1mVpp to 10Vpp into 50Ω loads;
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• Display: LCD TFT 3.95”.

Figure 4.8: The signal generator Tektronix AFG1022.

The described signal generator is designed to be used in application related
to electric and electronics experiments, communications experiments, and sensor
simulation. In the project of this thesis, it was used to stimulate the target platform
testing the analog and digital acquisition.

4.2.5 Power Supply
A power supply is an electronics laboratory instruments used to supply in a
controllable manner the target electronic equipment. The power supply utilized in
laboratory to supply the target platform is the GWInstex GPS4303 represented in
Fig. 4.9.

The signal generator GWInstex GPS4303 has 4 channels and can provide up to
200W output of linear DC power supplies. It includes overload and reverse polarity
protection, and an output on/off switch keep their load safe from unexpected
conditions. The key features of the signal generator are the following:

• 4 independent isolated outputs;

• 0.01% load and line regulation with low ripple and noise;

• Output ON/OFF switch;

• Supply voltage: up to 30V (60V in tracking series voltage);
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• Supply current: up to 3A (6A in tracking parallel current);

• Over load and reverse polarity protection.

Figure 4.9: The power supply GWInstex GPS4303.

Furthermore, a high regulation (0.01%+3mV) and low ripple/noise (< 1mVrms,
5Hz 1MHz) are maintained for channel 1 and 2 in constant voltage mode. Auto-
mated cooling fan speed control minimizes fan noise according to load conditions,
ensuring quiet operation. As already said, the power supply was used as power
source for the target platform.
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4.3 Clock Management Testing
The software component Clock Management was tested to verify the correct config-
uration of the MCU clock signals. As explained in section 3.1, their configuration
is performed by means of the function ClkMgm_Init(), which is also responsible
to manage the peripheral clock gating used for the implementation of the fea-
tures required by the application software. Therefore, the presence of bugs in
its implementation could cause hard fault exceptions during the access to in-chip
peripherals which clock gating is not disable, or to wrong timing behaviour due
to unexpected clock frequency settings. For this reasons, the software component
Clock Management was tested as first. In order to verify the requirements described
in section 3.1.1, the following tests were performed:
1. Clock frequency measurements

The purpose of this test is to physically measure the frequencies of the MCU
clock signals by means of the oscilloscope. In order to make the test possible,
a MCU pin was configured to carry out the desired clock source.

2. Clock gating verification
This test aims to verify the correct clock gating configuration. In order to be
sure that the clock gating of the used peripherals were disabled, a memory
access to their registers was done by means of the hardware debugging tools.

The listed tests were considered sufficient to completely test the functional behaviour
of the software component Clock Management. They were executed before to test
the other software components because, as explained in section 4.1.1, the correct
clock configuration is a prerequisite for other tests.

4.3.1 Test Procedure
In order to perform the tests described in the previous section, a function was
added to the software component Clock Management. Its prototype is reported in
the following:

void ClkMgm_ClkOut(clock_names_t clkOut).
The role of this function is to configure the connection between the desired clock
signal source to be measured and a specific MCU pin (PTD14). In detail, the func-
tion ClkMgm_ClkOut() configures the multiplexer and divider of the MC_CGM
module connected to the so called CLKOUT_RUN signal (represented in Fig.
4.10). The procedure performed by the function is the following:
1. Configure the pin PTD14 as output and connect it to the so called CLK-

OUT_RUN signal - it corresponds to the output of the MUX_11_DIV_6 of
the module MC_CGM;
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2. Set the value of the divider MUX_11_DIV_6 to 128 - it is its maximum
allowed value;

3. Enable the divider;

4. Configure the multiplexer MC_CGM_MUX_11 to select the clock signal
source to be connected to the signal CLKOUT_RUN - it corresponds to the
value of the function parameter clkOut;

5. Enable the multiplexer;

6. Disable the clock gating of the signal CLKOUT_RUN.

As can be noticed by the listed procedure, the divider applied to the selected clock
signal source is set to its maximum value to avoid bandwidth issues during the
frequency measurements performed through the oscilloscope.

Figure 4.10: Structure of the multiplex and divider of the MC_CGM module
connected to the signal CLKOUT_RUN.

Before to start the test, the probe of the oscilloscope shall be connected to
measure the voltage waveform of the pin PTD14 which is where the signal CLK-
OUT_RUN is present. Once the instrumentation is set correctly, the test program
can be downloaded in the MCU flash memory. The program structure is reported
in the following:

Listing 4.4: Test program for the software component Clock Management

i n t main ( void )
{
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/∗ Clock Management I n i t i a l i z a t i o n ∗/
ClkMgm_Init ( ) ;

/∗ Set M7_CORE_CLOCK as output c l o ck source ∗/
ClkMgm_ClkOut(M7_CORE_CLOCK) ;

/∗ Set M33_CORE_CLOCK as output c l o ck source ∗/
ClkMgm_ClkOut(M33_CORE_CLOCK) ;

/∗ Repeat f o r a l l i n t e r e s t e d c l o ck sour ce s ∗/
. . . . . . . . . .

/∗ I n f i n i t e loop ∗/
whi le (1 ) {}

}

As can be seen in the source code, the program was written to test all the clock
signal sources. Therefore, the multiplexer MC_CGM_MUX_11 is configured to
change its source with the execution of the program. For this reason, the test
program shall be executed step by step measuring the frequency of each clock signal
source. The test is considered passed if all the frequencies of the considered clock
signals are equal to the expected ones, otherwise the test fails and a bug in the
software is present.

The clock gating verification test was performed using the software Trace32
to observe and modify some registers of the peripherals that are used by the
other software components. More precisely, the possibility to read and write the
configuration and status registers of a peripheral demonstrates a correct clock
gating configuration. Therefore, in case an error occurs in disabling the clock
gating of the desired peripheral through the MC_ME module, Trace32 signals that
its registers are not accessible. The test is considered passed if all the registers of
the peripherals that shall be enabled are accessible.

4.3.2 Results

In order to verify the requirements about the software component Clock Manage-
ment listed in section 3.1.1, the previously described tests were executed. The
measurements of the frequencies of the MCU clock signals are reported in Tab. 4.1.
The values reported in the table are the expected frequency (Nominal Frequency),
the frequency measured through the oscilloscope affected by the divider (Measured
Frequency), and the actual frequency computed on the base of the measured one
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MCU Clock Signal Frequencies Measurements

Clock Signal Nominal
Frequency

Measured
Frequency

Computed
Frequency

M7_CORE_CLK 320.00MHz 2.4950MHz 319.36MHz
M33_CORE_CLK 160.00MHz 1.2453MHz 159.39MHz
FIRC_CLK 48.000MHz 377.21kHz 48.284MHz
AIPS_PLAT_CLK 80.000MHz 623.82kHz 79.848MHz
AIPS_SLOW_CLK 40.000MHz 312.69kHz 40.002MHz
HSE_IPG_CLK 80.000MHz 621.69kHz 79.576MHz

Table 4.1: Measurements of the MCU clock frequencies (test 1).

(Computed frequency). As can be noticed in the table, the measured clock frequen-
cies show a correspondence with the expected nominal ones. An example of clock
signal measurement through the oscilloscope is reported in Fig. 4.11.

Figure 4.11: Frequency measurement of the MCU clock signal HSE_IPG_CLK.

After all the frequencies of the MCU clock signals were verified, the correct
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clock gating configuration was analyzed. As already said, the debugging tools are
able to access to the configuration and status registers of a peripheral only if its
clock gating is disable. In Fig. 4.12 is reported a screenshot of Trace32 where it is
not possible to access to the peripheral due to clock gating issues. All the used
peripherals were checked to determine the correct clock gating configuration which
is performed using the MC_ME module. Bugs were fixed until all the requirements
described in section 3.1.1 were satisfied.

Figure 4.12: Configuration and status registers of a peripheral with enabled clock
gating.
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4.4 PWM Management Testing
The software component PWM Management was tested to verify that the three
couple of complementary PWM signals are generated according to their require-
ments. All the features implemented by the API functions, described in section
3.4.3, were verified through a suitable test program. For the purpose, the following
tests were executed:

1. PWM generation with fixed duty cycles
This test aims to verify the PWM signal generation of the three couple of
PWM signals when a fixed duty cycle is set. The generated output waveforms
were acquired to verify that the signal generation is performed according to the
requirements. More precisely, this test allows to measure the PWM switching
frequency, the polarity of the complementary signals, any error in the duty
cycles and the deadtime time interval. This test was performed more times
with different values of duty cycles.

2. PWM output enabling and disabling
After the PWM generation was tested and the corresponding system require-
ments verified through test 1, the disabling and enabling functions were tested.
This test was performed introducing a so-called virtual button in the test
program to enable or disable the PWM signal outputs.

3. V/f control modulation
After all the implemented features were tested, an open-loop control algorithm
was designed to generate at run-time the duty cycles for the PWM generation.
The purpose of this test is to simulate an environment as close as possible to
the actuation via PWM generation of the motor control algorithm implemented
in the application software.

The listed testes were performed measuring through the oscilloscope a couple of
PWM signals at time and using global variables in the test program to implement
virtual buttons and controllable values. The use and implementation of virtual
buttons is described in section 4.1.2 and was also extensively used to develop test
programs for other software components.

4.4.1 Test procedure
Only one test program was developed to implement the tests listed in the previous
section. A global variable was introduce to select the test that the user wants to
execute. Since this variable is accessible through Trace32, it allows to control the
test program execution changing its value.
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As explained in the previous section, the test program was developed to reproduce
conditions as close as possible to the nominal operating ones when the application
software makes use of the PWM generation features. For this reason, a Periodic
Interrupt Timer (PIT) was configured to generate an interrupt with a period of
62.5µs (corresponding to the chosen example frequency of 16kHz). This period
corresponds to the period required by the motor control algorithm implemented in
the application software. In the corresponding interrupt service routine (ISR), the
V/f control algorithm or the constant duty cycle setting are executed depending
on the control variable PwmGen. The global variable PwmGen can be modified by
the user via Trace32 affecting the test program execution through a switch-case
structure. This is shown by the following C code:

Listing 4.5: Interrupt service routine developed to test PWM Management.

void PIT_0_Handler ( void ) {

/∗ Enable/Disab le PWM s i g n a l outputs ∗/
i f (PwmEnabled)
{

PwmMgm_OutEnable( ) ;
}
e l s e
{

PwmMgm_OutDisable ( ) ;
}

/∗ Set duty cy c l e accord ing to PwmGen ∗/
switch (PwmGen)
{

case PwmGen_const :
PwmMgm_SetDuty(Duty_a , Duty_b , Duty_c) ;
break ;

case PwmGen_CtrlVf :
MotCtrl_PwmComputeVf(&Duty_a , &DutyB , &Duty_c) ;
PwmMgm_SetDuty(Duty_a , Duty_b , Duty_c) ;
break ;

d e f au l t :
break ;

}
}
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The function PIT_0_Handler() is the ISR associated to the periodic interrupt
generated by the PIT. The global variables Duty_a, Duty_b, and Duty_c are
defined as single precision (32 bit) floating point numbers. They are used to set
the duty cycles of the PWM signals - they are modified by the user in case of test 1
or the computed by the V/f control algorithm in case of test 3. As is shown in the
source code reported above, the duty cycles are set each period independently from
the variable PwmEnabled. Indeed, the variable PwmEnabled is used as virtual
button to enable or disable the PWM signal outputs without affecting the duty
cycles setting.

This test program allows to perform all the tests described in the previous
section and verify all the features of the software component PWM Management.
The procedure to follow to execute a complete test of the software component is
described by the following steps:

1. Setup the oscilloscope to acquire a couple of complementary PWM signals
and connect Lauterbach Debug and Trace to the target platform;

2. Download the test program from the version control system, build the project
and download the executable file into the MCU flash memory using Trace32;

3. Before to start the test program, assign the value PwmMgGen_const to the
variable PwmGen to select test 1 and the duty cycle to be set to the considered
PWM signals;

4. Start the test program;

5. Acquire the considered PWM signals and perform the required measurements;

6. Repeat point 5 with different values of duty cycles - duty cycles bigger that 1.0
and lower than 0.0 shall be also selected to test the behaviour of the saturation
feature;

7. Change the value of the variable PwmEnable at run-time to perform test 2;

8. Assign the value PwmMgm_CtrlVf to the variable PwmGen to select test 3;

9. Acquire the considered PWM signals and perform the required measurements;

10. Change the value of the variable PwmEnable at run-time to repeat test 2;

11. Compare the acquired results to the expected ones and determine if the tests
have been passed or failed.
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4.4.2 Results
In order to verify the requirements about the PWM generation, the test procedure
was performed on the target platform considering a couple of two complementary
PWM signals at-time. The table 4.2 summarizes the obtained results of the PWM
generation with fixed duty cycles. As can be seen in the table, the measured values

PWM Generation Measurements
Switching Period Duty Cycle Dead-time

Signal Nominal Real Nominal Real Nominal Real
PwmUH 16.000kHz 15.983kHz 0.666 0.629 3.00µs 2.99µs
PwmUL 16.000kHz 15.998kHz 0.333 0.286 3.00µs 3.01µs
PwmVH 16.000kHz 16.002kHz 0.500 0.452 3.00µs 2.98µs
PwmVL 16.000kHz 16.001kHz 0.500 0.453 3.00µs 2.99µs
PwmWH 16.000kHz 15.998kHz 0.333 0.286 3.00µs 3.01µs
PwmWL 16.000kHz 16.000kHz 0.666 0.630 3.00µs 2.99µs

Table 4.2: Results and measurements of the PWM generation with fixed duty
cycles (test 1).

of the PWM switching frequency and dead-time time interval are really close to the
nominal ones. The PWM signals acquired through the oscilloscope are shown in Fig.
4.13 and Fig. 4.14 - the measurements of the PWM switching frequency/period
and the dead-time time interval are reported respectively in Fig. 4.13 and Fig. 4.14.
The complementary behaviour of the two signals can be verified in both figures.
Instead, the central alignment of the two signals can not be noticed graphically.
This feature was verified observing the value of the configuration registers of the
used eMIOS peripheral by means of Trace32.

An interesting consideration has to be done about the difference between the
nominal duty cycles and the measured ones. The actual duty cycle of the PWM
signals was computed measuring the TON period through the oscilloscope. In all
the tested cases, the time difference between the actual TON time interval and the
expected one is equal to about 3µs. This value corresponds to the interval of the
inserted the dead-time. From design point of view, it was decided to compensate this
duty cycle error due to the dead-time insertion through the addition of a feedforward
control action in the motor control algorithm of the application software. Therefore,
no features about the compensation of the duty cycle error were implemented in
PWM Management.

The enabling and disabling functions were verified acting on the virtual button
PwmEnabled and observing the interested output signals through the oscilloscope.
An example is reported in Fig. 4.15. The figure shows the time instant where the
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Figure 4.13: Screenshot of the acquisition of two PWM complementary signals
with switching period measurement.

Figure 4.14: Screenshot of the acquisition of two PWM complementary signals
with dead-time measurement.
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variable PwmEnabled is changed from 0 to 1 corresponding to the enabling of the
PMW output signals. The same was done to test the disabling feature obtaining,
also in this case, the expected results. Therefore, test 2 was considered passed.

Figure 4.15: Screenshot of the acquisition of the enabling of two PWM comple-
mentary signals.

As described by the test procedure, the value PWMGen_CrtlVf was assigned
to the variable PwmGen to start test 3. In order to verify the correct PWM
generation, the oscilloscope was used to acquire the PWM signal outputs and
perform a spectrum analysis on them. Since the control algorithm was designed to
produce an output waveform with fundamental frequency of 50Hz, a peak around
50Hz is expected in the spectrum of the considered signals. The analysis was
performed computing the Fast Fourier Transform (FFT) on one output signal by
means of the oscilloscope. The result are reported in Fig. 4.16. As expected,
a peak in correspondence of 50Hz can be observed in the figure. Furthermore,
a second smaller peak was measured in correspondence of about 150Hz. This
is justified by the third harmonic injection performed by the implement control
routine. Therefore, the PWM generation with duty cycles assigned by the V/f
control algorithm were successfully verified.
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Figure 4.16: Spectrum analysis of the PWM signals when the duty cycles are set
by the V/f control algorithm.

4.5 ADC Management Testing
The software component ADC Management was tested to verify that the analog
signal acquisition behaves according to its requirements. The requirements, de-
scribed in section 3.3.1, were verified using the signal generator to produce suitable
constant and time-varying analog signals for the target platform and the Lauterbach
trace features to observe the corresponding acquired values. The timings of the
acquisitions of the analog signals were verified through a loop-back approach. More
precisely, the software component PWM Management was used to generate suitable
PWM signals to be acquired back to determine the time instants corresponding
to the start of conversion of the acquisitions. The tests executed for the software
component are listed in the following:

1. Constant analog signal acquisitions
This test aims to verify that constant analog signals, generated by the sig-
nal generator, are acquired and converted properly by the target platform.
The correspondence between the generated signals and the digital converted
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values was checked to determine the test success. During this test, the cor-
rect acquisition frequency was verified through Trace32 analyzing the time
distance between the occurrence of the interrupts associated to the end of
conversion of the last channels in the conversion list (see section 3.3.2 for more
implementation details).

2. Time-varying analog signal acquisitions
This test aims to reproduce test 1 with time-varying analog signals generated
by the signal generator. As described previously, the correspondence between
the generated signals and the digital converted values was checked to determine
the test success and the correct acquisition frequency was verified through
Trace32. In this case, the digital converted raw values were observed using
the feature Trace.Draw of Trace32.

3. Acquisition timing measurements
The timing requirements about ADC sampling were verified through this test.
As explained in section 3.3.1, the signal acquisition (especially of the phase
currents) shall occur at the center of the TON period of PWM signals - this time
instant corresponds to the center of the carrier waveform. The used approach
was based on acquiring back a PWM signal with known duty cycle by means
of the ADCs. Since the PWM generation is center aligned, the minimum duty
cycle for which the MCU acquires a value of 5V indicates the time instant
where the conversion of the acquired signal starts. For completeness, this test
was done considering all the analog input signals, even if this characteristic is
critical only for the acquisition of the phase currents and some voltages.

The listed tests were executed to verify the requirements described in section
3.3.1. Moreover, the acquisition timing measurement test allows to provide a figure
about the nominal operating conditions to which the MCU will be subjected during
the overall powertrain test for what concerns the analog signal acquisition.

4.5.1 Test procedure
In order to perform the tests described in the previous section, only one test
program was developed. The test program makes use of the software component
PWM Management to implement the acquisition timing measurements test.

The raw converted values were observed through Trace32 accessing to the
data structures DataCurrRaw, DataVoltRaw, and DataTempRaw defined in ADC
Management files. The values of the members of these data structures were observed
plotting their time evolution in Trace32. The virtual button PwmEnabled was
used to enable or disable the PWM generation, and consequentially, to start and
stop the test 3 about acquisition timing measurements. The source code used for

112



Firmware Verification and Testing

PWM Management testing purposes was reused to generate the required PWM
signals. More precisely, the software component initialization and the interrupt
service routine (ISR), associated to the Periodic Interrupt Timer (PIT), are the
same of the ones described in section 4.4.1 without the implementation of the V/f
frequency control algorithm. Therefore, the PIT_0_Handler() was implemented
as following:

Listing 4.6: Interrupt service routine for the test program of ADC Management.

void PIT_0_Handler ( void ) {

/∗ Per iphe ra l i n t e r r up t f l a g s check and c l e a r ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Enable/Disab le PWM s i g n a l outputs f o r t e s t 3 ∗/
i f (PwmEnabled)
{

PwmMgm_OutEnable( ) ;
PwmMgm_SetDuty(Duty_a , Duty_b , Duty_c) ;

}
e l s e
{

PwmMgm_OutDisable ( ) ;
}

}

Of course, this implementation is based on the assumption that the software
component PWM Management was already successfully tested. It is important to
remember that the initialization of the software component PWM Management
is necessary for the correct working of ADC Management independently of this
specific test program implementation. Indeed, the initialization function of PWM
Management configures the carrier waveform used both for center aligned PWM
generation and as hardware trigger event to start the conversion of the first three
elements in the conversion list (see section 3.3.2 for implementation details).

In order to perform all the tests listed in the previous section with the described
test program, the test procedure represented by the following steps shall be followed:

1. Connect the signal generator output to an analog input signal of the target
platform and the Lauterbach Debug and Trace to the debug and trace ports;

2. Download the test program from the version control system, build the project
and download the executable file into the MCU flash memory using Trace32
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software;

3. Configure the signal generator to produce a constant analog signal between
0V and 5V and set the virtual button PwmEnabled to disable PWM signal
outputs;

4. Start the test program;

5. Observe the digital converted value of the analog signal input connected to
the signal generator using Trace32 and check the correspondence between the
input signal amplitude and the raw converted value;

6. Stop the test program and repeat from step 3 with all the analog input signals
of the target platform varying the amplitude of the input signal generated by
the signal generator;

7. Observe the time distance between the occurrence of two different calls of the
function Body_Crossing_Triggering_Unit_Handler() to verify the correct
acquisition rate - this step concludes test 1;

8. Repeat from steps 3 to 7 for all the analog inputs using a time-varying waveform
and observing the raw converted values through the feature Trace.Draw of
Trace32 - these steps are related to the execution of test 2;

9. Set the value PwmEnable to enable the PWM signal outputs and connect one
PWM output signal to one analog input of the target platform;

10. Restart the test program and decrease the duty cycle of the acquired PWM
signal until the raw converted value still remains to its maximum value - the
minimum value of duty cycle that guarantees to have a raw value corresponding
to 5V allows to compute the time distance between the center of the carrier
waveform and the real point where the analog acquisition occurs for the
considered signal;

11. Repeat step 10 for all the analog input signals - these steps complete test 3;

12. Compare the acquired results to the expected ones and determine if the tests
were passed or failed.

It is important to underline that the test procedure can be executed entirely or
one test at-time to easy the setup of the laboratory instrumentation.
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4.5.2 Results
The test procedure described in the previous section about ADC Management was
performed on the target platform. For simplicity, only one analog input signal is
considered in this section to report the obtained results, but the procedure was
executed considering all the analog inputs of the target platform.

The considered analog input signal is a motor phase current. The results of
test 1 are reported in Tab. 4.3. The table reports the constant input voltage
levels generated by the signal generator, the raw digital converted values, their
corresponding values expressed in the voltage range from 0V to 5V, and the absolute
error between the voltage input value and the acquired one. The conversion in
the corresponding voltage range was done manually by means of the following
expression:

VMEAS = VMAX − VMIN

RAWMAX

×RAWMEAS = 5V− 0V
215 ×RAWMEAS, (4.1)

where VMEAS is the acquired voltage level, VMAX and VMIN respectively the
maximum and minimum input voltage full-scales, RAWMAX the digital value
full-scale, and RAWMEAS the raw digital converted value. As can be seen in the

Constant Analog Acquisition Results
Input Voltage Digital Value Voltage Value Absolute Error
0.000V 0 0.000V 0.000V
0.500V 3090 0.471V 0.029V
1.000V 6422 0.980V 0.020V
1.500V 9712 1.482V 0.018V
2.000V 12724 1.942V 0.058V
2.500V 15878 2.423V 0.077V
3.000V 19162 2.924V 0.076V
3.500V 22302 3.403V 0.097V
4.000V 25624 3.910V 0.090V
4.500V 28660 4.373V 0.127V
5.000V 32072 4.894V 0.106V

Table 4.3: Measurements performed during constant analog signal acquisition
(test 1).

table, the error between the acquired values and the voltage input levels is always
below than 110mV. It is important to notice that the absolute error, which is the
difference between the nominal input voltage and the measured one, increases with
the rise of the considered input values. This could be caused by a gain error in the
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ADC characteristic. Anyway, the absolute error was considered sufficient small for
the application of this thesis.

A statistical figure of the time distance between two consecutive interrupts of
the peripheral BCTU due to the end of the conversion list is reported in Fig. 4.17.
This statistical analysis was obtained with the feature Trace.STATistics.DIStance
of Trace32. As can be seen in the figure, the result of the time distance analysis is

Figure 4.17: Statistical figure of the time distance between two consecutive
interrupts of the BCTU peripheral due to the end of the conversion list.

a Gaussian distribution around the value of 62.5µs. This demonstrates that the
analog acquisition occurs with the correct time rate according to the requirements
described in section 3.3.1. It is important to underline that this result can be
considered valid on the assumptions that no event interferes with the call of the
ISR associated to the BCTU peripheral, and the conversion times of the ADCs are
deterministic and always constant.

The time-varying signals used to perform test 2 are constituted by sinusoidal
and triangular waveforms. The amplitude of the two signals was chosen to span
between the minimum and maximum full-scales. Therefore, the first input signal
chosen for the test was a sinusoidal waveform with a peak-to-peak voltage of 5V,
offset of 2.5V, and frequency of 1.3kHz. The signal frequency was chosen according
to the maximum frequency of the phase motor current. The signal acquisition was
observed with the feature Trace.Draw of Trace32 and the results are represented
in Fig. 4.18. As can be seen in the figure, no distortions occurred in the analog
signal acquisition. The same was done using a triangular waveform as input signal
with the same parameters of the previously used sinusoidal waveform. The results
are reported in Fig. 4.19, and also in this case, no distortions occurred in the
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Figure 4.18: Digital raw values acquired from an analog input connected to a
sinusoidal waveform observed with Trace32.

signal acquisition. In both figures, the number of samples for each period of the
acquired waveform is 12-13. This results is another demonstration that the sampling
frequency of the analog acquisition was correctly set to 16kHz.

Figure 4.19: Digital raw values acquired from an analog input connected to a
triangular waveform observed with Trace32.

117



Firmware Verification and Testing

In order to perform test 3, the PWM output signals were enabled and the
loopback connection implemented in the target platform. As already explained,
the PWM generated was acquired back through the considered analog input to
measure the time distance between the center of the carrier waveform of the PWM
signals and the real acquisition time instant. This time distance was obtained by
the following expression:

Td = TON

2 = 62.5µs×D
2 , (4.2)

where Td is the computed time delay, TON is the period where the PWM signal
has a high voltage level in a switching period, and D is the set duty cycle. The
time delays of each parallel conversion of triple of signals associated to the BCTU
conversion list is reported in Table 4.4 As can be seen in the table, the time distance
between the occurrence of the conversion of two different triple of signals is 3.4.
Therefore, the time to convert all the signal in the conversion list can be estimated
to be equal to 30.6µs. This result is very close to the theoretical one computed in
section 3.3.2.

Acquisition Time Delay Measurements
Signals Duty cycle Computed time Delay
Triple 1 10.88 3.4µs
Triple 2 21.76 6.8µs
Triple 3 32.64 10.2µs
Triple 4 43.52 13.6µs
Triple 5 54.40 17µs
Triple 6 65.28 20.4µs
Triple 7 76.16 23.8µs
Triple 8 87.68 27.4µs
Triple 9 97.92 30.6µs

Table 4.4: Acquisition timing measurements about the triple of signals in the
BCTU conversion list (test 3).
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4.6 SPI Communication Testing
The software component SPI Communication was tested to verify the correct
behaviour of the SPI communication between the MCU and the resolver-to-digital
converter. The requirements described in section 3.5.1 about the communication
timings, signal polarities, configuration frame sending, and data frame receiving
were verified using the serial decoding feature of the oscilloscope to observe and
decode the bus signals, and the Lauterbach to access to the MCU debug and trace
ports. After some specific hardware tests, the software component was tested
executing the following tests:

1. Generic data sending
This test aims to verify the correct sending of an easy-to-measure data frame
through SPI communication. During this test, the correct peripheral and
timing configurations, signal polarities, and generic frame sending were verified.

2. Generic data acquisition
This test is performed to request and read a frame sent through SPI communi-
cation. The purpose of this test is to verify the correct peripheral configuration
and frame acquisition. In order to perform this test, a loopback approach was
used: the MISO and MOSI signals of the LPSPI peripheral were connected
together to acquire the data frame sent by the MCU itself.

3. R2D converter configuration frame sending
This test sends a specific configuration frame through SPI communication to
the resolver-to-digital converter. Its purpose is to verify the correct sending of
the configuration frame that shall be received by the R2D converter during
system initialization. The test is repeated two times - first, it is performed
connecting the MCU to the oscilloscope, and once the sent configuration frame
is checked, the complete test program is executed.

4. R2D data acquisition through SPI interface
This test aims to periodically acquire data frames sent by the R2D converter
through SPI communication. In order to be executed, the R2D converter must
be connected to the MCU and configured through SPI before to be used. The
R2D converter was configured according to the specifications described in 3.5.1
to simulate conditions as close as possible to the nominal operating ones.

These tests were considered sufficient to complete verify the functional behaviour
of the software component and the corresponding SPI communication between the
MCU and the resolver-to-digital converter.
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4.6.1 Test procedure

Two different approaches were used to perform the tests about generic (test 1 and
2) and R2D specific (test 3 and 4) data sending and receiving. In the first case, the
oscilloscope probes were set up to acquire the output pins of the LPSPI peripheral.
The MISO and MOSI lines of the LPSPI peripheral were connected together to
make a loopback connection. The signals observed by the oscilloscope were the
MOSI, SCK, SSCS, and SCSB of the SPI interface of the R2D converter. The
acquisition of the MISO line was not required because corresponds to the MOSI
one due to the loopback configuration. During this test, the software Trace32 was
used to set the generic frames to be sent by the MCU and observe the loopback
acquisition. It is important to remember that this test was possible due to the
presence of a hardware selector able to connect or disconnect the R2D device to the
MCU. In the second case, the R2D converter was connected to the MCU and the
acquired data read through Trace32. Of course, in order to acquire meaningful data
from the R2D converter, the resolver must be connected to the target platform.
This setup is represented in Fig. 4.20.

Figure 4.20: Setup used to test the software component SPI Management when
the target platform is connected to the resolver and the R2D converter.
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Two test programs were developed to perform the test listed above. More
precisely, the first one was developed to implement the generic data sending and
acquisition through the loopback connection (test 1 and 2), and the second one to
verify the correct communication between the R2D converter and the MCU.

Since the first test program was designed mainly to verify the bus timings and
signal characteristics of the communication, a virtual button was used to decide
when to start the transmission. This mechanism was implemented in an infinite
loop inside the main function. The source code is the following:

Listing 4.7: Infinite loop to implement the first test program for SPI Communica-
tion.

i n t main ( void )
{

/∗ I n i t i a l i z a t i o n sequence ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Send or acqu i r e SPI data ∗/
whi le (1 )
{

i f ( SpiSendEnabled )

switch ( SpiTx )
{

case SpiTx_cfg :
R2dCfgError = SpiCom_R2dSetCfg (R2dCfg ) ;
break ;

case SpiTx_data :
R2dDataError = SpiCom_R2dReqData ( ) ;
break ;

d e f au l t :
break ;

}

SpiSendEnabled = 0 ;
}
e l s e
{
}

}

121



Firmware Verification and Testing

As can be seen in the source code, SpiTx is a global variable used to control
the test program execution flow. More precisely, When its value is SpiTx_cfg or
SpiTx_data, the tests performed are respectively the the generic data sending (test
1) and receiving (test 2). The data frame is sent through SPI using the function
SpiCom_R2dSetCfg(). The global variable R2dCfg is used as parameter to change
the values in the data frame to be sent. Instead, the data receiving is performed
through the function SpiCom_R2dReqData(). In normal operating condition,
this function puts the MOSI line to 0 when a data acquisition transmission is
started. Instead, in this test program, it is also responsible to send the frame to
be acquired back. The data requested by the function are stored in the variable
R2dSpiData declared as global in the file .c related to the software component SPI
Communication. Both functions return variables of type status_T which are used
to check if errors occur during the program execution.

The previously described test program was used to perform the tests 1 and 2
according to the following test procedure:

1. Connect the oscilloscope to the SPI bus signals of the target platform, and
the Lauterbach Debug and Trace to the debug and trace ports;

2. Download the test program from the version control system, build the project
and download the executable file into the MCU flash memory using Trace32
software;

3. Start the test program;

4. Set a desired value in the variable R2dCfg to be sent through SPI and the
value SpiTx_cfg in the variable SpiTx to start test 1;

5. Set the value 1 in the variable SpiSendEnabled to start the SPI transmission
and acquire the frame sent through the oscilloscope;

6. Repeat step 5 with different value for the variable R2dCfg - these steps
constitute the execution of test 1;

7. Connect the MISO and MOSI signals of the SPI bus to make a loopback
connection;

8. Set a desired value in the variable R2dTxFrame (defined as global static
variable in SpiCom.c) to be sent through SPI and the value SpiTx_data in
the variable SpiTx to start test 2;

9. Set the value 1 in the variable SpiSendEnabled to start the SPI transmission,
acquire the frame sent through the MOSI signal using the oscilloscope, and
observe the MCU acquisition using Trace32;
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10. Check the correspondence between the frame acquired by the MCU and the
one by the oscilloscope;

11. Repeat from step 9 with different value for the variable R2dTxFrame - these
steps constitute the execution of test 2;

12. Compare the acquired results to the expected ones and determine if the tests
were passed or failed.

The second test program was developed to reproduce conditions as close as
possible to the nominal operating ones. The configuration data sending was
performed immediately after the initialization of the LPSPI peripheral and the
re-enabling of the global interrupts. Then, a Periodic Interrupt Timer (PIT) was
configured to manage the periodic acquisition of the data coming from the R2D
converter. The application software will require the motor angular position given
by the resolver and R2D converter with a frequency of 16kHz. For this reason, the
PIT peripheral was configured to generate an interrupt each 62.5µs. Therefore,
in order to execute the tests 3 and 4, the resolver was connected to the target
platform. The interrupt service routine (ISR) of the PIT implemented for the test
program is reported in the following:

Listing 4.8: Interrupt service routine for the test program of SPI Communication.

void PIT_0_Handler ( void )
{

/∗ Per iphe ra l i n t e r r up t f l a g s check and c l e a r ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Request data from the R2D conver t e r through SPI ∗/
R2dDataError = SpiCom_R2dReqData ( ) ;

}

As done for the first test program, the global variable R2dDataError was added
to monitor if errors occurred during the test program execution related to SPI
transmissions. As can be seen in the source code, the function SpiCom_R2dSetCfg()
is not present in the ISR because the configuration sending is done only one time at
startup and not periodically. It is important to remember that the data requested
by the function SpiCom_R2dReqData() are stored in the variable R2dSpiData
declared as global in the file SpiCom.c.

In order to perform the tests 3 and 4, listed in the previous section, a test
procedure was designed taking into account the connection between the target
platform and the resolver. The test procedure is described by the following steps:
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1. Connect the resolver to target platform, the oscilloscope to SPI bus signals,
and the Lauterbach Debug and Trace to the debug and trace ports;

2. Download the test program from the version control system, build the project
and download the executable file into the MCU flash memory using Trace32
software;

3. Before to start the test program, set a breakpoint immediately before the call
of the function SpiCom_R2dSetCfg();

4. Start the test program, which will stop after sending the R2D configuration
frame, and check that the configuration frame and the SPI bus signals respect
the requirements - this step corresponds to test 3;

5. If the previous step has been passed, continue the execution of test program;

6. Check the SPI bus signals using the oscilloscope to verify that they behave
according to their requirements;

7. Move the resolver to change the sensed angular position and check the corre-
spondence between its position and the data acquired by the MCU - these
steps corresponds to test 4;

8. Compare the acquired results to the expected ones and determine if the tests
were passed or failed.

During the execution of the test program, particular test points, designed for the
purpose in the PCB of the target platform, were used to acquired the interested
signals constituted by the MOSI, SCK, SSCS, and SCSB of the R2D SPI interface.

4.6.2 Results
The test procedures described in the previous section about the software com-
ponent SPI Communication were performed on the target platform to verify the
requirements listed in section 3.5.1 and simulate conditions as close as possible to
the operating ones. The acquisition of a generic frame sent through SPI (test 1)
is reported in Fig. 4.21. This frame acquisition was used to measure the timings
of the SPI communication when the configuration frame is sent to the R2D. The
measurements are reported in Tab. 4.5. The set and hold timings of the related
chip select signal are much greater than the minimum required ones, instead the
ones related to the frame sending and clock signals were set as small as possible to
increase the communication speed.

Then, test 2 was executed to verify the acquisition of the SPI frames. The
test results are reported in Fig. 4.22. In the figure, it is reported the oscilloscope
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Figure 4.21: Screenshot of the oscilloscope reporting a generic frame sent by the
MCU.

acquisition of the frame sent through the MOSI line and the value acquired back
through the MISO one stored in the variable R2dSpiData. For this particular case,
the value acquired back by the MCU was observed through the corresponding
SPI data buffers. As can be seen, there is a correspondence between the buffer
R2dBufferRx and the frame decoded by the oscilloscope. Also in this case, the
oscilloscope was used to measure the timings of the SPI communication when the
data frame is requested by the MCU. The measurements are reported in Tab. 4.5.
As seen for the configuration frame sending, the set and hold timings of the chip
select signal related to the data acquisition are much greater than the minimum
required ones, instead the ones related to the frame sending and clock signals
were set as small as possible to increase the communication speed. Therefore, the
timing requirements and signal characteristics were considered satisfied both for
configuration frame sending and data requesting.

Test 3 was performed using the second test program and its results are reported
in Fig. 4.23. More precisely, the figure shows an oscilloscope acquisition of the
configuration frame sent to the R2D converter at startup. The sent frame is
constituted by 16 bits even if only 12 are required for the configuration. In this
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Figure 4.22: Correspondence between the frame sent through the MOSI line and
the one acquired back by the MCU itself.

SPI Communication Timing Requirements
Symbol Parameter Min. Max. Measured
thSCK SPI clock high time 100ns 100ns
tlSCK SPI clock low time 100ns 100ns
tsetSCSB Data Chip select setup time 100ns 1µs
tholSCSB Data Chip select hold time 100ns 1µs
tdisSCSB Data Chip deselect time 200ns 1µs
tsetSSCS Setting Chip select setup time 100ns 1µs
tholSSCS Setting Chip select hold time 100ns 1µs
tdisSSCS Data Chip deselect time 200ns 1µs
tsetSSDT Setting input setup time 100ns 100ns
tholSSDT Setting input hold time 100ns 100ns

Table 4.5: Timing requirement and measurements of SPI communication between
the MCU and the resolver-to-digital converter.
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case, only the last 12 bits sent are considered by the R2D converter to configure the
device. Moreover, the figure demonstrates that the set configuration corresponds
to the required one highlighted in Fig. 3.16.

Figure 4.23: SPI frame sent by the MCU to configure the R2D converter at
startup.

Test 4 simulates the acquisition of the motor angular position sensed by the
resolver and converted by the R2D device. The resolver was connected to an
external stepper motor. Its rotational speed was maintained constant and the
data acquired with a frequency of 16kHz. The variable R2dSpiData was plotted
using Trace32 using the feature Trace.Draw. Its time evolution is reported in Fig.
4.24. The angular speed of the step motor connected to the resolver was set to be
equal to about 850rpm. As can be seen in the figure, the profile of R2dSpiData
has a triangular shape spanning from 0 to 4096 (212) with a period of about 70ms
corresponding to about 850rpm. Therefore, the data acquisition from the R2D
converter was successfully verified. The same test was repeated without moving
the resolver, acquiring a constant angular position, and comparing the real position
with the acquired one, but the results are not reported in this section.
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Figure 4.24: Time evolution of the variable R2dSpiData acquired through the
trace feature using the Lauterbach debugging tools.

4.7 Digital Signal Management Testing
The software component Digital Signal Management was tested to verify that the
digital output and input signals connected to the target platform work as expected.
The requirements about their acquisition and driving, described in section 3.6.1,
were verified using the signal generator to generate high or low logical signals for the
digital inputs, the oscilloscope to observe the digital outputs, and Trace32 to access
to the MCU debug and trace ports. For the parallel port of the resolver-to-digital
converter, a dedicated test was developed independent from the one developed to
test the general features of Digital Signal Management. The tests required to verify
the implemented features are listed in the following:

1. Digital input signal acquisition
Test 1 aims to verify the digital signal acquisition. More precisely, the digital
input pins were stimulated with high (5V) and low (0V) logic signals. The
corresponding values were acquired and stored in dedicated variables using the
API functions described in section 3.6.3. During this test, the correct polarity
configurations were verified.

2. Digital output signal driving
Test 2 aims to test the digital signal driving. More precisely, the digital output
pins were driven to high (5V) and low (0V) logic signals. The correspond-
ing values were driven using specific virtual buttons and the API functions
described in section 3.6.3. As done for test 1, during this test, the correct
polarity configurations were verified.

3. R2D data acquisition through digital parallel interface
This test aims to test the data acquisition through the digital parallel port
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of the resolver to digital converter. This test must be performed after the
software component SPI communication has been successfully tested because a
preliminary configuration of the R2D converter, done through SPI, is required.
Then, the data acquired through the digital parallel interface are compared
with the one acquired through SPI.

The listed tests were executed driving and acquiring the digital signals by means of
a polling mechanism. This approach was used to simulate the conditions in which
the application software interacts with the digital signals of the target platform.
Indeed, this implementation was chosen because it is as close as possible to the
one used in operating conditions.

4.7.1 Test procedure
In order to perform the tests described in the previous section, one test program
was developed. First, the test program was used to perform the acquisition of the
digital inputs and the driving of the digital outputs corresponding respectively to
test 1 and 2. Then, the data acquisition through the digital parallel connected to
the R2D converter (test 3) was tested. In order to perform this test, the software
component SPI Communication must be previously successfully tested.

The test program was developed to acquire and drive digital signals periodically
with the API functions of the software component. The period of this process was
set to be 62.5µs, and as usual, implemented through a periodic interrupt timer
(PIT). As already said, this development choice was carried on to simulate the same
conditions that occur when the system works in the field. The acquired signals
were stored in dedicated global variables observable with Trace32. Global variables
were used as virtual button to set the desired values in the digital output signals.
The source code of the interrupt service routine (ISR) of the PIT peripheral is the
following:

Listing 4.9: Interrupt service routine for the test program of PWM Management.

void PIT_0_Handler ( void ) {

/∗ Per iphe ra l i n t e r r up t f l a g s check and c l e a r ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Set the d i g i t a l output s i g n a l s ∗/
DigSgnMgm_SetSignalName1 (Out_SignalNameValue1 ) ;
DigSgnMgm_SetSignalName2 (Out_SignalNameValue2 ) ;
DigSgnMgm_SetSignalName3 (Out_SignalNameValue3 ) ;
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Get the d i g i t a l input s i g n a l s ∗/
In_SignalNameValue1 = DigSgnMgm_GetSignalName1 ( ) ;
In_SignalNameValue2 = DigSgnMgm_GetSignalName2 ( ) ;
In_SignalNameValue3 = DigSgnMgm_GetSignalName3 ( ) ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Acquire data from the R2D conver t e r ∗/
i f (R2dDataEnabled ) {

R2dDataErrorDig = DigSgnMgm_R2dReadData ( ) ;
R2dDataErrorSpi = SpiCom_R2dReqData ( ) ;

}
}

This implementation allows to acquire the input signals in the dedicated global
variables In_SignalNameValueX and to set the output signals changing the values
of the virtual buttons Out_SignalNameValueX. As can be seen in the source code,
the acquisition of the data provided by the R2D can be enabled acting on the
virtual button R2dDataEnabled. The data are acquired through the digital parallel
and SPI interfaces using respectively the functions DigSgnMgm_R2dReadData()
and SpiCom_R2dReqData(). Both functions return variables of type status_T
which were used to monitor if errors occurred in the data acquisition. The acquired
data are stored in the global variables R2dSpiData and R2dDigData. In order to
correct interface with the R2D converted, its configuration procedure is performed
after the initialization sequence. The test procedure, used to perform all the tests
described in the previous section, is described by the following steps:

1. Connect the signal generator output to a digital input signal, the oscilloscope to
a digital output signal, the resolver to the target platform, and the Lauterbach
Debug and Trace to the debug and trace ports;

2. Download the test program from the version control system, build the project
and download the executable file into the MCU flash memory using Trace32
software;

3. Configure the signal generator to generate a constant signal with amplitude
of 0V or 5V to simulate low or high digital values, and set the value of virtual
button associated to the digital output pin connected to the oscilloscope;

4. Start the test program;

5. Observe the acquired value of the digital input signal connected to the signal
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generator and the measured voltage level of the digital output signal connected
to the oscilloscope to verify their correct configurations;

6. Repeat from step 3 to 5 for all the digital input and output signals to be
tested;

7. Enable the R2D data acquisition using the virtual button R2dDataEnabled
to start test 3;

8. Compare the data acquired through SPI (previously tested) with the one
acquired through the digital parallel port using different configuration for the
resolver to verify their coherence - steps 7 and 8 constitutes test 3;

9. Compare the acquired results to the expected ones and determine if the tests
were passed or failed.

4.7.2 Results
The test procedure described in the previous section about Digital Signal Man-
agement testing was performed on the target platform. The results of only one
digital input and one digital output were reported in this section, but all the digital
signals were tested with the same approach.

The input and output signals considered in this section are both with negative
polarities - this means that a 5V electric voltage signal corresponds to a logic 0 and
0V to a logic 1. The results of the test for the output digital signal are reported
in Fig. 4.25 and 4.26. As can be seen in the figures, the oscilloscope shows a 0V
constant voltage level when the virtual button used to set the output value of the
digital signal, corresponding to the signal SafeStateReq_Do in the Control Setup -
switch windows, is equal to 1, and a 5V voltage level in the opposite case. These
results demonstrate that the API functions used to set the digital output signals
and the polarity configuration are working according to the requirements described
in section 3.3.1.

The results of the test for the input digital signal are reported in Fig. 4.27
and 4.28. As can be seen in the figures, the Control Setup - parameter window
in Trace32 shows that the variable HvDcOvv_Di is 0 when the input signal has
a voltage level of 5V and 1 when the input signal has a voltage level of 0V. In
this partical case, the input signal HvDcOvv_Di was connected to the output
signal TriggerMapping_Do in a loopback fashion to use the virtual button of
TriggerMapping_Do to drive the input of the acquired signal.

Also in the case, the results demonstrate that the API functions used to read
the digital input signal and the polarity configuration are working according to the
requirements described in section 3.3.1. This approach was used for all the digital
input and output signals, but the results were not reported for a brief discussion.
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Figure 4.25: Screenshot of the acquisition of a digital output signal with negative
polarity when the corresponding virtual button is set to 1.

After the requirements about digital pins were verified, test 3 was started
to verify the digital parallel interface with the R2D converter reproducing the
R2D data acquisition test described in section 4.6. As described by the test
procedure, this was done enabling the data acquisition through the virtual button
R2dDataEnabled. Therefore, the acquisition of the angular position, sensed by the
resolver and converted by the R2D converter device, was done moving the resolver.
It was connected to an external stepper motor maintaining its rotational speed
constant and acquiring data with a frequency of 16kHz. The angular speed of
the stepper motor connected to the resolver was set to be equal to about 850rpm.
The variables R2dSpiData and R2dDigData were plotted using Trace32 with the
feature Trace.Draw. Their time evolution are reported in Fig.4.29. As can be seen
in the figure, the profile of R2dSpiData and R2dDigData have a triangular shape
spanning from 0 to 4096 (212) with a period of about 70ms corresponding to about
850rpm. A further coherence check was performed in static condition, and in figure
4.30, the result is reported - the same value coming from the resolver-to-digital
converter was acquired both through the digital and parallel interfaces. Therefore,
the data acquisition from the R2D converter and the data coherence between the
SPI and digital parallel acquisitions were successfully verified.
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Figure 4.26: Screenshot of the acquisition of the digital output signal with
negative polarity when the corresponding virtual button is set to 0.

4.8 CAN Communication Testing
The software component CAN Communication was tested to verify the correct
configuration of the in-chip CAN peripheral used to allow the MCU to work as a
node in the CAN network. The requirements of the CAN communication, described
in section 3.7.1, were verified utilizing the Peak PCAN-USB and oscilloscope. The
Peak PCAN-USB was fundamental to simulate the behaviour of the test bench with
which the MCU will interact during the overall proof of concept tests. Moreover,
this device allowed to easily analyze the messages transmitted through the bus.
For the purpose, the following tests were executed:

1. Periodic CAN messages sending
This test aims to send periodically messages over the CAN network. The
physical connections were done in such a way to connect both the MCU node
and the PCAN-USB node to the CAN bus. As already said, the PCAN-USB
allowed to monitor the messages sent through the bus. This test allowed
to verify the correct configuration of the bit timing segmentation for the
FlexCAN peripherals, the sending of the TX messages, and the packaging of
the variables into the data segment of the sent messages.
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Figure 4.27: Screenshot of the acquisition of the digital input signal when the
corresponding voltage level is set to 1.

Figure 4.28: Screenshot of the acquisition of the digital input signal when the
corresponding voltage level is set to 0.
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Figure 4.29: Time evolution of the variable R2dSpiData and R2dDigData acquired
through the trace feature using the Lauterbach debugging tools.

2. CAN messages sending disabling and enabling
The enabling and disabling features of the periodic sending of CAN messages
was tested through a dedicated virtual button. The C functions of the API,
that implement these features, were called by the test program with the same
rate of the periodic task which will manage the CAN Communication in the
application software.

3. Periodic CAN messages receiving
This test aims to verify the correct reception of CAN messages. Once the
correct peripheral configuration was verified through test 1, the PCAN-USB
device was configured to send the CAN messages corresponding to the ones
that the test bench will send during nominal operating conditions. As done in
test 1, the receiving of the RX messages and the unpackaging of the message
data segments into predefined variables were verified.

4. Test bench environment simulation
Once all the implemented features were tested and the requirements were

135



Firmware Verification and Testing

Figure 4.30: Values of the variables R2dSpiData and R2dDigData acquired
respectively through the serial and digital ports of the resolver-to-digital converter.

verified, the operating conditions of the CAN network expected for the overall
powertrain tests were simulated. In such conditions, both the test bench
node, simulated by the PCAN-USB, and the MCU node send and receive data
messages. Moreover, the PCAN-USB allowed to measure the bus load in these
conditions.

The listed tests were considered sufficient to test all the requirements to be im-
plemented about CAN communication and verify the correct MCU behaviour
in conditions similar to the operating ones. The oscilloscope was only used to
analyze the quality of the electric signals transmitted through the bus, but was
not necessary to test the features implemented in the software component CAN
Communication.

4.8.1 Test procedure
As done for other software components, only one test program was developed to
implement the tests described in the previous section. Dedicated global variables,
accessible through Trace32, were used to store the data of the received messages
and the data to be sent. In such a way, the user can modify the variables to be sent
over CAN network by the MCU in an automatic way using custom C functions or
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manually by means of Trace32. A virtual button was used to enable or disable the
periodic sending of CAN messages.

In order to reproduce conditions as close as possible to the nominal operating
ones, a Periodic Interrupt Timer (PIT) was configured to manage the enabling and
disabling features related to the periodic sending of CAN messages. The application
software will interact with the software component CAN Communication through a
periodic task executed with a frequency of 1kHz. For this reason, the PIT peripheral
was configured to generate an interrupt each 1ms. The reception disabling function
was not implemented because the feature was not listed in the requirements about
CAN Communication. Therefore, in order to execute the test 1, the PCAN-USB
was configured to not send any messages. These considerations allowed to make
the test program less intrusive and less complex. The interrupt service routine of
the PIT implemented for the test program is reported in the following:

Listing 4.10: Interrupt service routine for the test program of CAN Communica-
tion.

void PIT_0_Handler ( void )
{

/∗ Per iphe ra l i n t e r r up t f l a g s check and c l e a r ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Enable/Disab le p e r i o d i c a l sending o f CAN messages ∗/
i f ( CanSendEnabled ) {

CanCom_SendEnable ( ) ;
} e l s e {

CanCom_SendDisable ( ) ;
}

}

As already seen in the other test programs, the function PIT_0_Handler() is the
ISR associated to the interrupt periodically generated by the hardware instance 0 of
the PIT peripherals. The variable CanSendEnabled is a global variable which acts
as virtual button to enable or disable the periodic sending of TX messages over the
CAN network. The global data structures CanTxDataMsg01, CanTxDataMsg02,
CanRxDataMsg03, and CanRxDataMsg04, described in section 3.7.3, were used to
store the data frames of the received messages and to set the data to be sent by
the MCU node.

In order to perform all the tests listed in the previous section with this simple
test program, a precise test procedure shall be followed. The test procedure is
described by the following steps:
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1. Connect the PCAN-USB and target platform to the CAN bus and the Lauter-
bach Debug and Trace to the debug and trace ports;

2. Download the test program from the version control system, build the project
and download the executable file into the MCU flash memory using Trace32
software;

3. Open the PCAN-View software to monitor the CAN bus and interact with
the PCAN-USB;

4. Before to start the test program, use the variable CanSendEnabled to enable
the periodic sending of CAN messages by the MCU node;

5. Start the test program;

6. Use the PCAN-USB to acquire the messages sent by the MCU and verify
that no errors occurred on the CAN bus - the message acquisition allows to
monitor the data sent by the MCU node and the mean time distance between
their sending (called cycle time in PCAN-View software);

7. Repeat point 6 setting different values for the data structures CanTxDataMsg01
and CanTxDataMsg02 - steps 6 and 7 allows to completely execute test 1;

8. Change the value of the variable CanSendEnable at run-time to disable periodic
sending of CAN messages by MCU node - this step contributes to execute test
2;

9. Use the PCAN-USB to send the messages to the MCU node and verify that
the messages are correctly received - the PCAN-View software shall be used
to send messages according to the corresponding requirements;

10. Repeat step 9 setting different values in the data sent by the PCAN-USB
and verify the correspondence with the data structures CanRxDataMsg03 and
CanRxDataMsg04 - steps 9 and 10 allows to completely execute test 3;

11. Change the value of the variable CanSendEnable at run-time to re-enable
periodic sending of CAN messages from MCU side - this step contributes to
completely executes test 2;

12. Repeat simultaneously points 6 and 9 changing the data sent both from MCU
and PCAN-USB sides to simulate an environment as close as possible to the
one reproducing the conditions of the overall powertrain tests and monitor
the bus load using PCAN-View - this step allows to perform test 4;

13. Compare the acquired results to the expected ones and determine if the tests
were passed or failed.
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In order to be more confident about the electrical signals transmitted by the MCU
over the CAN network, a further optional step can be performed: it consists in
observing the electrical signals transmitted over the CAN bus by means of an
oscilloscope. This step is not fundamental in case all the tests are passed, but can
be useful as debugging approach or redundant check.

4.8.2 Results
The test procedure described in the previous section about CAN Communication
was performed on the target platform. The results of test 1 are reported in Fig.
4.31. More precisely, in the figure, it is shown the correspondence between the
data sent by the MCU node and the ones received by the PCAN-USB node. The
software PCAN-View shows that the bus status is "OK". The detected bit-rate
is 1Mbps and it is correct configured according to the requirements described in
section 3.7.1. In the Receive/Transmit window, the messages with IDs 04 and
01 corresponds respectively to the TX messages 01 and 02 defined in the CAN
database. Their measured cycle times (mean time distance between the occurrence
of two consecutive messages with same ID) corresponds to 50ms for TX message 01
and 10ms for TX message 02. There values are exactly equal to the nominal ones
which are respectively 50ms and 10ms. Therefore, test 1 was considered passed.

Figure 4.31: Screenshot representing the correspondence between the messages
sent by the MCU node and the ones acquired by the PCAN-USB node.

Step 6 of the test procedure, which consists in disabling the periodic sending of
TX messages, was verified observing the value of "Count" in the Receive/Transmit
window of PCAN-View software. Indeed, the value of "Count" stops to increase
once the value of the virtual button CanSendEnable was changed.

Before to start step 7 of the step procedure, corresponding to the execution of
test 3, the Receive/Transmit window was restored to highlight only the messages to
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be received from MCU node. The two RX messages were configured in PCAN-View
software to be sent by means of the PCAN-USB device. Their IDs, transmission
time rates, and data frame lengths were set according to the defined CAN database.
After being configured, the message sending from the PCAN-USB point of view
was started and the correspondence between the data frames sent and the ones
received by the MCU checked. As suggested by the test procedure, the test was
repeated with different data frames changed at run-time. The results are reported
in Fig. 4.32, and as can be seen by the figure, the receiving of CAN messages
worked as expected. Therefore, the test was considered passed.

Figure 4.32: Screenshot representing the correspondence between the messages
sent by the PCAN-USB node and the ones acquired by the MCU node.

Then, as done previously, the Receive/Transmit windows was restored maintain-
ing the same settings for the RX messages 03 and 04. Test 4 was started re-enabling
the periodic sending of the CAN messages both by MCU and PCAN-USB nodes.
Also in this scenario, the correspondence between the sent data frames and the
received ones was maintained. Indeed, the test was considered passed and the
results are reported in Fig. 4.33.

As already explained, these conditions are as close as possible to the nominal
operating ones and this scenario simulates the behaviour of the system when it will
be connected to the external test bench through CAN network. The bus load was
measured by means of the PCAN-View software to estimate the traffic over the
network in nominal operating conditions. The results are reported in Fig. 4.34.
The measured mean bus load is equal to 2.4%, and as expected, it is very low. This
means that the CAN database designed for the network can be implemented in the
system without any issues.

After all the tests were successfully executed, the electrical signals transmitted
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Figure 4.33: Screenshot representing the correspondence between the messages
exchanged between the PCAN-USB node and the MCU node.

Figure 4.34: Measurement of the bus load in conditions as close as possible to
the nominal operating ones.

through the CAN bus were analyzed using the oscilloscope to perform a redundant
check about the sent messages and verify their integrity. A screenshot of the
acquired signals is reported in Fig. 4.35.
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Figure 4.35: Screenshot of the acquisition of the TX message 02 sent by the
MCU node.
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Chapter 5

Software Integration
Process

System integration is defined in engineering as the process of bringing together the
component sub-systems into one system (an aggregation of subsystems cooperating
so that the system is able to deliver the overarching functionality) and ensuring that
the subsystems function together as a system, and in information technology as the
process of linking together different computing systems and software applications
physically or functionally, to act as a coordinated whole[8].

In the context of this thesis, the whole software is composed by the different
software components, which constitute the firmware, and the application software
obtained through a code generation process in Matlab/Simulink environment. The
first step was to integrate together the software components constituting the low-
level software. Then, the code generated from the application software was run
on the target platform to check the presence of differences with respect to the
simulated environment. Lastly, the integration of these two software layers was
performed. In detail, the overall integration process was constituted by the steps
listed in the following:

1. Software components integration
The software components composing the firmware were tested one at a time
as described in chapter 4. This approach was motivated by the absence
of communication between the different peripheral drivers with the only
exception of Pin Management, which functions are called by the firmware itself
to configure the related MCU pins. For this reasons, before to perform the
integration between the firmware and application software, it was necessary to
integrate all the software components together to verify that all their features
continue to work according to their requirements in such conditions. This
integration process is described in section 5.1 and the previously developed
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test programs were reused to implement the required tests.

2. Processor-in-the-Loop simulation of application software
The application software was developed through a model-based approach.
Therefore, its behaviour was verified and validated in simulation. Once its code
was generated through Embedded Coder in Matlab/Simulink environment,
a further verification step was required to check that no errors occurred in
the code generation process. Indeed, the application software went through
software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations. In this
thesis, only the PIL simulation was analyzed. It was fundamental not only to
validate the behaviour of the application software, but also to demonstrate the
feasibility of its implementation into the specific target platform measuring
its worst case execution time (WCET).

3. Firmware and application software integration
Once both the application and firmware were verified separately as whole, a
final integration process was performed. In detail, a new software component
was developed to allow the application software to access to the firmware global
variables through specific get and set functions. As it will be described in
section 5.3, these functions are also responsible to map the firmware variables
into variables with the correct unit measurements required by the application
and vice-versa. Then, a dedicated environment was developed to run the tasks
representing the motor control algorithm of the application on the low-level
software layer.

The integration process was carried on using the same laboratory instrumentation
described in section 4.2. Furthermore, the trace features provided by Lauterbach
Trace32 were fundamental to compute a statistical figure about the worst case
execution time of the task related to the application software.
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5.1 Software Components Integration
The software components, constituting the firmware of the target platform, were
developed following a modular approach. Indeed, as described in chapter 3, the
firmware architecture was structured grouping together similar features which use
the same peripherals. As result of this approach, each software component was
developed and tested maintaining its independence with respect to the others.
Therefore, at this point of the development, an integration process was required
before to prepare the software environment that will host the application software.

Since all the software components were already developed and their functions
verified, the integration process was strictly related to repeat the already executed
tests merging the different test programs in a single executable file. In such a
way, all the tests can be repeated to verify if the different peripherals and features
interfere each other when they work simultaneously.

5.1.1 Initialization and Startup Sequence
To integrate all the software components, all the initialization functions shall
be called before to start test programs or the application software. The same
initialization sequence of section 4.1.1 was used to prepare the MCU to run a
program that can use all the functions provided by the firmware. The resulting
code, used to implement the described initialization sequence, is the following:

Listing 5.1: Initialization and startup sequence of all the software components.

i n t main ( void )
{

status_T l_err = sta tus_succe s s ;

/∗ Disab le g l oba l i n t e r r up t s ∗/
INT_SYS_DisableIRQGlobal ( ) ;

/∗ Clock i n i t i a l i z a t i o n ∗/
l_er r |= ClkMgm_Init ( ) ;

/∗ SWC i n i t i a l i z a t i o n ∗/
DigSgnMgm_Init ( ) ;
l_er r |= PwmMgm_Init ( ) ;
l_er r |= AdcMgm_Init ( ) ;
l_er r |= SpiCom_Init ( ) ;
l_er r |= CanCom_Init ( ) ;
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/∗ I n i t i a l i z a t i o n check ∗/
whi le ( l_er r != sta tus_succe s s ) {}

/∗ Enable g l oba l i n t e r r up t s ∗/
INT_SYS_EnableIRQGlobal ( ) ;

/∗ Startup sequence R2D ∗/
l_er r |= SpiCom_R2dSetCfg (R2dCfg ) ;

/∗ Startup sequences check ∗/
whi le ( l_er r != sta tus_succe s s ) {}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
}

As can be seen above, the global interrupts were disabled during the initialization
procedure to avoid interruptions. As already discussed in previous chapters, the
MCU clock signals and the clock gating of the used peripherals is configured as first
operation through the function ClkMgm_Init(). Then, the software components
and the corresponding peripherals are initialized with their corresponding functions
and a check is performed to verify the correct initialization. It is important to
underline that the software component PWMManagement shall be initialized before
ADC Management to start the eMIOS timebase required to trigger the analog-to-
digital conversions. The only startup sequence corresponds to the initialization
and configuration of the resolver-to-digital converter. It is performed after the
enabling of global interrupts through the its dedicated function - since it works
using interrupts, the function responsible to configure the R2D converter is called
with interrupts enabled.

This initialization sequence was tested without noticing any particular issues.
Therefore, it was used as starting point to develop a software environment including
all the software components.

5.1.2 Software Components Integration Test
The main purpose of the integration process at firmware-level was to merge together
all the software components which were developed and tested separately. Indeed,
the behaviour of all their functions and features was checked to verify that they
are working correctly when considered as a whole. This process leads to a further
development of the environment that will be used to run the application software.
More precisely, a new test program was developed combining the test routines

146



Software Integration Process

described in chapter 4 which were used to perform a verification process about the
single software components.

The test program was developed using a periodic task to perform the required
actions according to the application software requirements. As done previously,
a Periodic Interrupt Timer (PIT) was configured to generate periodic interrupt
with the same rate (16kHz) of the one required by the application software. In the
corresponding interrupt service routine (ISR), the programs previously developed
as independent routines were merged. Their virtual buttons and control variables
were maintained to affect the test program execution flow and interact with the
target platform performing the required steps of the test procedure described in
this section. The source code used for the integration process was reported in the
following:

Listing 5.2: Interrupt service routine for the integration test program.

void PIT_0_Handler ( void )
{

/∗ Per iphe ra l i n t e r r up t f l a g s check and c l e a r ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Enable/Disab le PWM s i g n a l outputs ∗/
i f (PwmEnabled)
{

PwmMgm_OutEnable( ) ;
PwmMgm_SetDuty(Duty_a , Duty_b , Duty_c) ;

}
e l s e
{

PwmMgm_OutDisable ( ) ;
}
/∗ Set the d i g i t a l output s i g n a l s and get the d i g i t a l

input s i g n a l s ∗/
i f ( DigSgnEnabled )
{

DigSgnMgm_SetSignalName1 (Out_SignalNameValue1 ) ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In_SignalNameValue1 = DigSgnMgm_GetSignalName1 ( ) ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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/∗ Acquire data from the R2D conver t e r through the
d i g i t a l p a r a l l e l port ∗/

R2dDataErrorDig = DigSgnMgm_R2dReadData ( ) ;
}
/∗ Acquire data from the R2D conver t e r through SPI ∗/
i f (R2dDataEnabled )
{

R2dDataErrorSpi = SpiCom_R2dReqData ( ) ;
}
/∗ Enable/Disab le p e r i o d i c a l sending o f CAN messages ∗/
i f ( CanSendEnabled )
{

CanCom_SendEnable ( ) ;
} e l s e
{

CanCom_SendDisable ( ) ;
}

}

As described in chapter 4, the function PIT_0_Handler() is the interrupt handler
responsible to run the ISR associated to the peripheral PIT0. Therefore, all the tests
designed and executed on the single software components can be repeated using this
service routine where the previously analyzed test programs are merged. The only
exception are some tests about the SPI Communication ( generic data sending and
receiving) which can’t be executed. Despite this, the peripheral LPSPI2 associated
to the communication with resolver-to-digital converter can be tested anyway
through the functions SpiCom_R2dSetCfg() and SpiCom_R2dDataReq() which
respectively set the required configuration in the device and read the data through
SPI. All the global variables added in this program and used to interact with the
firmware are used following the same approach of the previous tests. More precisely,
the virtual buttons PwmEnabled, R2dDataEnabled, and CanSendEnabled are used
in the same way discussed in the sections describing the corresponding software
component testing. Furthermore, a new virtual button called DigSgnEnabled was
added to enable or disable the interaction with the digital input and output signals.
It is important to notice that the acquisition of the data through the digital parallel
port of the R2D convert is enabled with the new virtual button DigSgnEnabled
differently from the test described in section 4.6 where R2dDataEnabled is used.

In order to test the correct integration of the software components, a test
procedure was developed. Therefore, the following steps shall be executed to
successfully test the integration:

1. Connect Lauterbach Debug and Trace to the target platform;
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2. Download the test program from the version control system, build the project
and download the executable file into the MCU flash memory using Trace32;

3. Disable all the virtual buttons and perform the test procedure about ADC
Management described in section 4.5.1;

4. Disable all the virtual buttons except for PwmEnabled to perform the test
procedure about PWM Management described in section 4.4.1;

5. Disable all the virtual buttons except for DigSgnEnabled to perform the test
procedure about Digital Management described in section 4.7.1;

6. Disable all the virtual buttons except for R2dDataEnabled to perform the test
procedure about SPI Communication described in section 4.6.1 considering
only test 4;

7. Disable all the virtual buttons except for DigSgnEnabled and R2dDataEnabled
to check the coherence between the acquired data from the resolver-to-digital
converter;

8. Disable all the virtual buttons except for CanEnabled and perform the test
procedure about CAN Communication described in section 4.8.1;

9. Enable all the virtual buttons and repeat the previous tests to verify if all the
features are working according to their requirements when all the software
components are stressed;

10. Compare the acquired results to the expected ones and determine if the tests
were passed or failed.

As can be noticed by the test procedure, new tests were not developed to perform
the verification of the firmware integration process. This procedure was performed
on the target platform aiming to detect any bugs related to the simultaneous
execution of the different software components. During the test, no problems were
found obtaining results close to the one described in chapter 4.
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5.2 Processor-in-the-Loop Simulation
Processor-in-the-Loop (PIL) is a test technique that allows designers to evaluate if
the embedded software runs properly when compiled and running on the chosen
MCU, from the computation results point of view. PIL tests are designed to expose
problems with execution in the embedded environment.

Figure 5.1: Block scheme of the processor-in-the-loop simulation of the task
representing the motor control algorithm of the application software implemented
on the target platform.

In the PIL simulation performed in this thesis, the plant model, developed in
Matlab/Simulink environment, was integrated and run in the target platform. More
precisely, the source code about the task related to the motor control algorithm
and the plant model were generated through automatic code generation procedures.
Then, they were integrated and executed in the target platform hosting the MCU.
In this way, the plant model was simulated directly on the embedded hardware
without using any external computer. Indeed, the time evolution of its state and
output variables was computed on the base of the control action of the motor
control algorithm which outputs correspond to the plant inputs. The control
actions of the motor control algorithm were computed starting from the plant
outputs and reference signals generated by a suitable generator which simulates
the test bench. From practical point of view, this generator was obtained through
the automatic code generation process performed on the plant model. Of course,
since running the plant model of the e-powertrain creates a delay in the overall
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software execution, this type of simulation is not performed in real-time. Moreover,
the considered task of the application software interacts with the simulated plant
without using the physical in-chip peripherals and/or in-board devices of the target
platform. Therefore, this simulation can be only used to verify the correct functional
behaviour of the source code generated through automatic code generation tools
when it is run on the target platform. A block scheme about the implementation
of the described processor-in-the-loop simulation is reported in Fig. 5.1.

For our specific application, unusually, PIL was fundamental to verify the
feasibility of the implementation of the motor control algorithm on the chosen
target platform. More precisely, since the task related to the motor control algorithm
shall be executed in a periodic fashion (62.5µs) with hard real-time constraints,
its worst case execution time (WCET) must be sufficient small to guarantee no
deadline misses. It is important to remember that a deadline miss occurs when
the considered task instance is not terminated before the activation of the next
instance, indeed when its execution time is bigger than its period.

5.2.1 Processor-in-the-Loop Implementation
A software environment was developed to implement the describe PIL simulation.
As explained in the previous section, both the plant model and the application
software were obtained through automatic code generation and executed on the
target platform. Therefore, the PIL simulation was developed through the following
source code:

Listing 5.3: Structure of the implementation of the PIL simulation.

i n t main ( void )
{

status_T l_err = sta tus_succe s s ;

/∗ Disab le g l oba l i n t e r r up t s ∗/
INT_SYS_DisableIRQGlobal ( ) ;

/∗ Clock i n i t i a l i z a t i o n ∗/
l_er r |= ClkMgm_Init ( ) ;

/∗ I n i t i a l i z a t i o n check ∗/
whi le ( l_er r != sta tus_succe s s ) {}

/∗ Models i n i t i a l i z a t i o n ∗/
P l a n t_ In i t i a l i z e ( ) ;
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Con t r o l_ I n i t i a l i z e ( ) ;

/∗ Run PIL s imu la t i on ∗/
f o r ( i n t i = 0 ; i <= 160000 ∗ SIM_LENGTH; i++)
{

/∗ Cal l the s tep func t i on o f the p lant ∗/
Plant_step ( ) ;

/∗ Set c on t r o l inputs ∗/
Control_U . s i g 1 = Plant_Y . s i g 1 ;
Control_U . s i g 2 = Plant_Y . s i g 2 ;
. . . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Cal l the s tep func t i on o f motor c on t r o l
a lgor i thm with the c o r r e c t ra t e ∗/

i f ( i % 10 = = 1)
{

Control_step ( ) ;
}

/∗ Set p lant inputs ( c on t r o l ac tuat ion ) ∗/
Plant_U . s i g 1 = Control_Y . s i g 1 ;
Plant_U . s i g 2 = Control_Y . s i g 2 ;
. . . . . . . . . . . . . . . . . . . . . . . . . . .

}

whi l e (1 ) {}

re turn 0 ;
}

As can be seen in the code, only the software component Clock Management
is initialized to perform the PIL simulation. Indeed, since this test runs the
motor control algorithm of the application software interacting with the simulated
plant, no peripherals are needed to execute the simulation. For the same reasons,
global interrupts were not enabled to avoid interruptions during the program
execution. The functions Plant_Initialize() and Control_Initialize(), obtained
from the corresponding source files of the generated code, are called before to
start the test. Then, the plant model and the task of the application software
are run. More precisely, the plant is simulated through the function Plant_step()
and the application software through the function Control_step(). Before to call
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these functions, the corresponding input data structures (Plant_U and Control_U)
are written with the required values on the base of the block diagram of Fig. 5.1
that describes this implementation. More precisely, since the implemented model
simulates a closed-loop system, the input data structure of the controller is written
with the output data structure of the plant and vice-versa.

Figure 5.2: Lauterbach Trace32 environment used to perform the PIL simulation.
In the figure, the output data structure of the application software, corresponding
to data structure Control_Y, is called LlcOutputStruct.

It is important to notice that the two step functions simulating the plant and
the controller are run at different rates. Indeed, the plant model is run 10 times
faster than the task of the application software. Therefore, since the execution
rate of the application software was chosen equal to the demonstrative frequency
of 16kHz, the plant model was discretized to be simulated at 160kHz. The choice
to run the plant model at a faster rate is motivated by the physical characteristics
of the system which requires smaller time discretization to be correctly simulated.

5.2.2 Processor-in-the-loop Results
The results obtained by this test were compared with the ones related to the
previously performed software-in-the-loop (SIL) simulation (SIL simulation was
not reported because outside the purposes of this thesis) to identify any differences
in the functional behavior of the controller.

153



Software Integration Process

From a control point of view, the purpose of the application software is to
control the powertrain to produce the right torque according to its reference
signal. Therefore, the time evolution of the torque produced by the model of the
e-powertrain, representing the controlled output variable of the system, was used
to verify the functional behaviour of the generated code of the application software
running on the target platform. The results of the PIL and SIL simulations are
reported respectively in Fig. 5.3 and 5.4. As can be seen in the figures, there

Figure 5.3: Time evolution of the controlled variable of the plant obtained by
PIL simulation.

is a correspondence between the data obtained by the SIL and PIL simulations.
Indeed, these results validate the behaviour of the application software when it is
run on the target platform.

In order to verify that the MCU provides enough computation power to run the
application software according to its real-time requirements, the WCET was com-
puted using the feature Trace.STATistic.func provided by the Lauterbach debugging
tools. A statistical analysis of the execution time of the step function of the appli-
cation software is reported in Fig. 5.5 where the function mdlOutputs_control(),
highlighted in blue, corresponds to the step function of the application software
previously called Control_step() - its average and maximum execution times are
respectively 16.046µs and 17.565µs. Indeed, from this empirical analysis, it can be
demonstrated that the implementation of the control task, obtained by the code
generation process performed on the application software, is feasible. It is important
to underline that the computed maximum execution time doesn’t correspond ex-
actly to the real WCET, but it is a reasonable estimation of its value. Furthermore,
the computed maximum execution time of the function mdlOutputs_control() is
much lower than the nominal period of the control task allowing to be comfortable
about its feasibility due to the margin of tolerance about this estimation.
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Figure 5.4: Time evolution of the controlled variable of the plant obtained by
SIL simulation.

Figure 5.5: Statistical figure about the execution time of the control motor task
of the application software.

5.3 Firmware and Application Integration
The final step of the software integration process is represented by the developing
of a dedicated environment to run the tasks, which constitute the application, on
the low-level software layer. The executable file obtained by this process is the
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software that will be downloaded in the target platform to perform the tests on the
overall system in its dedicated testing environment. In Fig. 5.6, it is reported the
architecture of the overall software including the device drivers provided by the
silicon-vendor, the firmware constituted by the developed software components, and
the application software obtained through an automatic code generation process.
The software integration process was carried forward on the base of this software
architecture.

Figure 5.6: Software architecture including the device drivers provided by the
silicon-vendor, the firmware constituted by the developed software components,
and the application software obtained through automatic code generation process.

5.3.1 Software Environment Initialization
The software environment, developed to initialize all the software components
providing the features required by the application software and perform the startup
procedure, is described in section 5.1. This environment was fundamental to prepare
the target platform to run the control task. Furthermore, the steps required to
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initialize the application software, obtained by a code generation process, were
tested during the execution of the processor-in-the-loop simulation described in
section 5.2. Therefore, the two source codes were integrated to obtain a complete
initialization of the software components, application software, and target platform
devices. The resulting code, used for the purpose, is described in the following:

Listing 5.4: Initialization and startup sequence of all the software components
and application software.

i n t main ( void )
{

status_T l_err = sta tus_succe s s ;

/∗ Disab le g l oba l i n t e r r up t s ∗/
INT_SYS_DisableIRQGlobal ( ) ;

/∗ Clock i n i t i a l i z a t i o n ∗/
l_er r |= ClkMgm_Init ( ) ;

/∗ SWC i n i t i a l i z a t i o n ∗/
DigSgnMgm_Init ( ) ;
l_er r |= PwmMgm_Init ( ) ;
l_er r |= AdcMgm_Init ( ) ;
l_er r |= SpiCom_Init ( ) ;
l_er r |= CanCom_Init ( ) ;

/∗ I n i t i a l i z a t i o n check ∗/
whi le ( l_er r != sta tus_succe s s ) {}

/∗ Enable g l oba l i n t e r r up t s ∗/
INT_SYS_EnableIRQGlobal ( ) ;

/∗ Startup sequence R2D ∗/
l_er r |= SpiCom_R2dSetCfg (R2dCfg ) ;

/∗ Startup sequences check ∗/
whi le ( l_er r != sta tus_succe s s ) {}

/∗ Models i n i t i a l i z a t i o n ∗/
Con t r o l_ I n i t i a l i z e ( ) ;
S a f e t y_ I n i t i a l i z e ( ) ;
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/∗ Star t p e r i o d i c t imer ∗/
Scheduler_Start ( ) ;

/∗ I n f i n i t e loop ∗/
whi le (1 ) {}

}

As can be seen in the source code, the initialization function Control_Initialize()
of the application software was added to integrated code described in section 5.1.
The function Safety_Initialize is responsible to initialize the safety and fault man-
agement task obtained by the application software. The function Scheduler_Start()
is responsible to initialize the periodic timer used to start the execution of the
step functions of the application software. This function is defined in the software
component Scheduler which was specifically developed with the purpose to manage
the periodic execution of the application and its communication with the firmware.
The software component Scheduler is described in the following section.

5.3.2 Software Component Scheduler
As already explained, the software component Scheduler was specifically developed
with the purpose to manage the periodic execution of the application software and
its communication with the firmware software components. Therefore, the main
requirements about its behaviour are the following:

1. Run the motor control algorithm with the chosen rate of 16kHz in a syn-
chronous manner with respect to the PWM switching period and analog signal
acquisition, and the safety and fault management task with its nominal rate
of 1kHz - both tasks were obtained through the automatic code generation
performed on the application software;

2. Implement the required signal scaling and mapping of the variable which stores
the acquired quantities coming from the plant through the target platform;

3. Perform the actuation of the control actions required by the control algorithm
and safety and fault management logic implemented through the developed
firmware features.

Starting from the first requirement, a periodic interrupt, synchronous with respect
to beginning of the switching period of the application software was configured
to run the motor control algorithm. More precisely, the interrupt service routine
associated to the peripheral eMIOS0, used to implement the PWM generation,
was utilized to run the considered task. Indeed, the channel 0 of the eMIOS0,
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responsible to generate the timebase for the PWM generation, was configured to
generate an interrupt in the occurrence of the so-called reload event corresponding
to the beginning of the switching period. In Fig. 5.7, a graphical representation
of the instants where the application software shall be start (task activation) and
terminated (task deadline) and the analog acquisition are triggered is reported.
Therefore, the control algorithm of the application software will be run on the
base of the data acquired at the center of the TON time interval of the previous
switching period having available 62.5µs to complete its execution and actuate its
control action before the activation of the next task instance.
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Figure 5.7: Graphical representation of the time instants related to the software
application execution and firmware acquisitions.

A second periodic interrupt was configured to run the safety and fault man-
agement task of the application software. It was implemented using a periodic
interrupt timer (PIT) configured to generate an interrupt every 1ms. The schedul-
ing approach used to run the two task is based on the rate-monotonic algorithm.
Rate-monotonic scheduling (RMS) is a priority assignment algorithm used in real-
time operating systems with a static-priority scheduling class, where the static
priorities are assigned according to the cycle duration of the task, so a shorter cycle
duration results in a higher task priority [9]. Therefore, the priority of the safety
and fault management task was set lower than the one corresponding to the motor
control task, which means that the PIT interrupt priority was set lower than the
eMIOS0 one through the NVIC core peripheral. Using this approach, real-time
constraints were of the considered tasks were respected. An example of timeline
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for the described algorithm is represented in Fig. 5.8

Figure 5.8: Timeline of the scheduling algorithm implemented through the
software component Scheduler.

As can be seen in the figure, every time the motor control algorithm task needs
to be executed and the safety and fault management is running, a preemption
occurs. It is important to remember that preemption is the act of temporarily
interrupting a task being carried out by a computer system, without requiring its
cooperation, and with the intention of resuming the task at a later time. Such
changes of the executed task are known as context switches[10].

In order to implement the correct data exchange between the considered tasks,
two other data structures were created. The first one, called Control2SafetyData,
was used to store the data to be transferred from the from the control task to the
safety and fault management task and the second one, called Safety2ControlData, to
store the data to be transferred in the opposite way. Moreover, to avoid concurrent
access to the data structures the following rules were implemented:

• The control algorithm task transfers the data from its output data structure
to the data structure Control2SafetyData at the end of its instances;

• The safety and fault management task transfers the data from its output data
structure to the data structure Safety2ControlData at the end of its instances;

• The input data structure of the control algorithm is updated with the data
coming from the firmware at the beginning of each instance and with the data
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coming from the safety and fault management task at the beginning of each
16th instances (corresponding to time instances aLL1 in figure 5.8);

• The input data structure of the safety and fault management task is updated
with the data coming from the firmware and with the data coming from the
control task at the beginning of each instance (corresponding to time instances
aHLi in figure 5.8) - during this operation the interrupt are disable to avoid
multiple concurrent access to the data structure Control2SafetyData possible
due to preemption.

The corresponding interrupt service routines (ISR), used to run the considered
tasks, were used to perform the same steps described in section 5.2 related to the
execution the motor control algorithm. In a formal way, the following steps shall
be performed:

1. Upload the task input structure
Before to run a periodic task obtained from the application software, its input
data structure shall be uploaded with the data acquired by the target platform
through the features implemented by the firmware.

2. Run the task
Once the input data structure of the considered task is upload with the last
acquired data, its step function is run. It is important to remember that
the step function is the code representing the operations performed by the
application software obtained through the automatic code generation process.

3. Actuate the control action
Terminated the execution of the step function of the application software, its
uploaded output data structure is used to actuate the corresponding control
action through the functions implemented in the firmware - at this time, the
instance of the task is terminated.

As result of the previous considerations, the interrupt service routine implemented
in the eMIOS_0_Requests_0_3_Handler is reported in the following as example:

Listing 5.5: Handler responsible to run the application task.

void eMIOS_0_Requests_0_3_Handler ( void )
{

/∗ Per iphe ra l f l a g check and c l e a r ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Upload the task input s t r u c tu r e ∗/
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Control_U . s i g 1 = Scheduler_GetSig1 ( ) ;
Control_U . s i g 2 = Scheduler_GetSig2 ( ) ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Run the task ∗/
Control_step ( ) ;

/∗ Actuate the con t r o l a c t i on ∗/
Scheduler_setS ig1 (Control_Y . s i g 1 ) ;
Scheduler_setS ig2 (Control_Y . s i g 2 ) ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

}

As can be seen in the code, some dedicated functions were developed in the
software component Scheduler to set and get the fields of the input and output
data structures of the considered task. This approach was needed because the
global data structures, defined in the software components and used as interface
with the application software, contain raw values to be scaled and mapped into
the correct measurements units. Therefore, in order to correctly interface this two
software layers, their interactions were analyzed to avoid bugs due to wrong data
conversions or variable accesses. An example of implementation of these functions
is the following:

Listing 5.6: Get and set function implemented in the software component Sched-
uler.

/∗ Generic get func t i on ∗/
s t a t i c i n l i n e real32_T Scheduler_GetPhCurrA ( void )
{

re turn ( real32_T ) ( (DataCurrRaw −
V_OFFSET)/V_GAIN∗CURR_CONV_FACTOR) ;

}

/∗ Generic s e t func t i on ∗/
s t a t i c i n l i n e void

Scheduler_SetCanTxDataMsg01_1 ( real32_T value )
{

CanTxDataMsg01 . Var iab le01 = ( uint16_T ) ( ( va lue +
CAN_OFFSET) ∗CAN01_CONV_FACTOR) ;

}
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Only examples about these functions were reported due to non-disclosure policies.
Anyway, the get and set functions were always declared as static inline to avoid
the introducing of function call overheads in the interrupt service routine related
to the execution of the application software. The values of offset and gain related
to each variable scaling and mapping were chosen according to their corresponding
hardware conditioning in the acquisition or due to predetermined conversions.

The actuation of the control actions computed by the application software was
performed using the previously described set functions or by means of the specific
functions developed for the purpose. An example of this approach is the setting of
the duty cycles for the generate PWM signals which is reported in the following as
example:

Listing 5.7: Handler responsible to run the application task.

void eMIOS_0_Requests_0_3_Handler ( void )
{

/∗ Per iphe ra l f l a g check and c l e a r ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Upload the task input s t r u c tu r e ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/∗ Run the task ∗/
Control_step ( ) ;

/∗ Actuate the con t r o l a c t i on ∗/
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PwmMgm_SetDuty(Control_Y . dutyA , Control_Y . dutyB ,

Control_Y . dutyC) ;
}

As can be seen in the source code, the fields of the output data structures of the
application tasks are used to execute specific actions on the system through the
features implemented in firmware to interact with the system.

At this point, a complete integration between the application software and the
software components constituting the firmware was performed. Furthermore, a
software environment responsible to run the tasks, obtained by means of automatic
code generation processes performed on the application software, was successfully
developed according to the system requirements.

163



Chapter 6

Conclusions

The world around the electric propulsion of automotive vehicles is a multidisciplinary
field including mechanics, electronics, software development and control theory.
This thesis was inserted in this context aiming to develop and test the low-level
software for the target platform integrated in a proof of concept of an electric
powertrain. In this chapter, a brief summary about the activities carried out is
provided describing the corresponding results and possible further developments
are discussed.

First, a general description of the topics discussed during the firmware devel-
opment was provided to the reader in the corresponding chapter. As explained,
the firmware was developed as a Hardware Abstraction Layer (HAL) to be placed
between the Electronic Control Unit (ECU) which hosts the microcontroller (MCU)
and the application software developed through a Model-Based approach. More
precisely, the development process was carried on diving the firmware in separated
modules called software components to prepare a easily modifiable architecture
for further development. Indeed, the choice to structure the firmware in software
components turned out the best way to guarantee the possibility to release upgrades
and further versions without affecting the overall software. This means that changes
in the implementation of the features required by the application software do not
affect the predefined interfaces, and at the same time, changes in the application
software can be made without the necessity to modify the firmware.

As well as done for the firmware development, test procedures were developed
to be independent from the specific implementations of the related features – they
were designed to verify requirements rather than implementations. During the
firmware testing and verification process, all the features required by the application
software and implemented in the firmware were successfully tested.

Once the firmware was tested, the integration process of the different software
components was performed obtaining, also in this case, the expected results. The
feasibility of the implementation of the application software into the target platform
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was demonstrate through a processor-in-the-loop simulation. At that point, the
software component Firmware Application Integration was developed to guarantee
a correct communication between the two software layers. A further step required
for a complete verification and validation of the integration process consists in
performing a Hardware-in-the-Loop simulation or testing the overall software in
the field. It is important to remember that, since we are dealing with a proof
of concept, the field is represented by a test bench or a controlled environment
developed to test the overall powertrain.

Even if all the requirements were satisfied by this first firmware version, improve-
ment are required to increase the code quality. For example, code optimization
and standardization could be required to increase the performances and safety of
the system. In fact, during the development, a significant overhead in the device
drivers provided by the silicon-vendor was found. Substituting the functions of the
device drivers with custom bare-metal ones could lead to a significant increase of
the code efficiency. In general, since we are now developing only a proof-of-concept
implementation of the system, good practices were followed but MISRA rules were
not implemented in a formal way. Since the system application is a safety critical
one, standards like ISO26262 shall be also implemented to guarantee functional
safety.

In summary, the development of the low-level software for the target platform
of the considered electric powertrain leads to expected and satisfactory results. In
order to improve the software developed for the prototype to be ready for a final
product, further developments could be required to formally implement MISRA
rules, functional safety according to standards like ISO26262 and to increase the
computation efficiency. Despite this, a clear software architecture and a first version
of the required features were successfully developed and tested providing a starting
point for further developments.
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