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Abstract

This thesis is the result of a six-months research activity conducted at University
of Denver (DU) Unmanned Systems Research Institute (DU2SRI), Colorado, USA.
The objective of the thesis is the design of a bio-inspired 3D local path planning
strategy for obstacle avoidance based on the optical flow field obtained by a frontal
monocular camera mounted on a quadrotor UAV, with the requirement of being
real-time implementable and runnable by onboard embedded hardware. Assuming
the quadrotor is controlled in position and its path is defined in term of a list of
waypoints, the strategy consists in generating an intermediate waypoint in order to
avoid obstacles based on optical flow horizontal and vertical unbalance for horizon-
tal and vertical avoidance, while for frontally approaching obstacles avoidance the
concept of expansion of optical flow field is used. The algorithm is implemented in
Robotic Operative System (ROS) as a ROS node, where aforementioned quantities
are generated by means of OpenCV Python library. Everything is tested in a simu-
lated environment run by Gazebo in three different scenarios representing horizontal,
vertical and frontal avoidance and both software-in-the-loop and hardware-in-the-
loop tests are carried out. Performance of the algorithm is measured with software
profiling and in terms of execution time for two embedded computer boards such as
NVIDIA Jetson TX1 and RaspberryPi 4 by running ROS node on them. The tests
show the effectiveness of the algorithm in avoiding obstacles in all scenarios and the
capability of the algorithm to be run in real time at a frequency of at least 5 Hz on
onboard mountable hardware.
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Chapter 1

Introduction

1.1 Introduction and rationale

In the last decades Unmanned Aerial Systems (UAS), systems which include multiple
components such as an Unmanned Aerial Vehicle (UAV), a ground-based controller,
and a system of communications between the two, have seen a huge increase in
popularity. These systems have seen a growing interest because they allow to carry
out a huge variety of missions and tasks that usually require manned flight with
vehicles such as planes and helicopters, but at a fraction of the cost, and they
have the potential of being employed to make humans more productive or to do
new tasks that are too dangerous or impossible for unaided humans. Such types
of tasks range through defense, monitoring of territories and environment, aerial
photography, precision agriculture, waste management, urban surveillance, delivery
(as an example, a further boost in delivery has been given in August 2020 by the
approval by Federal Aviation Administration (FAA) to Amazon for its drone delivery
service Amazon Prime Air [1]), just to name a few.
Depending on the application, some types of UAVs can be more suitable than others:
when wide areas must be covered at high speed and for longer times, fixed-wing type
is usually the addressed type; when the application deals with an indoor environment
or hovering capability and more flexibility are required, multirotor vehicles are the
way to go (examples in Figure 1.1).

Multirotors have also become very popular in last years on consumer market:
while in the past they were seen just as expensive robots used in research and
intended for professional use, nowadays they can be found in toy shops as a sort of
cheap flying cameras, available to a broader public of customers.
Due to this pervasiveness, main institutions regularizing flight in different countries,
such as FAA for USA or the italian ENAC (Ente Nazionale dell’Aviazione Civile),
had to set up rules, in order to better mark the difference between amateur use from
professional applications and discourage improper use. A classification of UAVs
has been then required and different ones are proposed depending on considered
parameters such as takeoff weight, size, operating altitude, and airspeed; as an
example, the U.S. Department of Defense (D.o.D) categorizes UAVs in the five
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Chapter 1. Introduction

(a)
(b)

Figure 1.1: Examples of fixed-wing type and multirotor type UAVs. Figure 1.1a shows the General
Atomics MQ-1 Predator, a military grade fixed-wing type UAV used by United States Air Force
(USAF) and Central Intelligence Agency (CIA), mounting a set of sensors, a camera and designed
to carry missiles; it entered in service in 1995 and was used in many conflicts in Middle East.
Figure 1.1b shows instead a multirotor type of UAV, for instance an octacopter produced by the
italian Italdron, here shown with a cinema camera as a payload for taking professional aerial shots.

different groups shown in Figure 1.2.

Figure 1.2: UAV classification according to U.S. Department of Defense, from [2]

Another classification, the one proposed by ENAC, groups UAVs in three cat-
egories based on the type of application, Certified, Specific and Open, better ex-
plained in Figure 1.3.

The regularization of UAV flight is also motivated by estimations about market
evolution: in November 2019, Teal Group, a company into aerospace and defense
industry market analysis, predicts in its 2019/2020 UAV Market Profile an increase
from current worldwide military UAV production of 7.3 B$ annually in 2019 to 10.2
B$ in 2029, totaling 98.9 B$ in the next ten years [3].
Hence a safe integration of UAVs in the National Airspace System (NAS) is required
and one of the main issues preventing that is obstacle and collision avoidance ca-
pability. As a PhD student from MIT’s CSAIL said, ”Everyone is building drones
these days, but nobody knows how to get them to stop running into things”, high-
lighting the necessity of finding solutions for obstacle avoidance implementation.
This is a hot research topic and a huge amount of proposals has been made, each one
with its own peculiarities and applicability, not to mention cost. Obstacle avoidance
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1.1. Introduction and rationale

Figure 1.3: UAV classification according to italian ENAC.

requires an UAV to be aware of its surroundings so that in case of imminent collision
it can take action to get out of a dangerous situation, for people in the area and then
for itself. When it comes to environment perception for avoidance in robotics, most
popular sensors are sonars, radars, laser scanners (e.g. LIDAR) and cameras. The
most complete information for mapping the environment and then taking action
to follow an obstacle-free path is coming from LIDAR, that is still very expensive
and bulky, even if prices has lowered recently. Cameras, otherwise, are cheap and
can sample a big amount of information that, of course, needs some elaboration to
retrieve useful data depending on the application.
Vision on the other hand is undoubtedly a sense that allowed living beings endowed
with it to retrieve information about surrounding world to navigate the environ-
ment, spotting dangerous situations and ultimately survive. Natural selection and
evolution refined over time the working principle of vision techniques, hence the
engineering field finds a lot of useful hints to cope with many problems by taking in-
spiration from nature. The study of flying insects’ or birds’ behaviour in navigation
and interaction with the environment, for example, has revealed interesting facts:
they navigate safely in the three-dimensional world by using cues derived more from
image motion rather than complex stereo mechanisms such as we human beings usu-
ally do (even if we also use this visual motion perception in a lot of situations). In
fact, the distance from their eyes is sometimes very small compared to human eyes,
so possessing inferior spatial acuity the precision with which insects could estimate
range through binocular stereo vision would be much poorer and restricted to rela-
tively small distances; in other cases, eyes are not even point in the same direction,
making impossible to retrieve depth data and hence finding perception from opti-
cal motion more effective objects in terms of apparent speed of motion of objects’
images. Consequently, flight speed is regulated so that the average image velocity
as seen by both the eyes is kept constant. For instance, flight speed is automati-
cally lowered in cluttered environments, and thrust is adjusted to compensate for
headwinds and tailwinds. As an example, bees landing on a horizontal surface hold
the image velocity of the surface constant as they approach it, thus automatically
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Chapter 1. Introduction

ensuring a smooth touchdown [4].
This optical movement in the field of view of the subject due to the relative motion
between the object and the subject has been named optical flow and this concept
was first in introduced by American psychologist James Jerome Gibson in the 1940’s
when describing how animals perceive their environments to be able to move around
freely without collisions [5]. Optical flow of course attracted the computer vision re-
search community and one of the first algorithms was proposed by Horn and Schunck
in 1980 [6], that given two subsequent frames sampled by a monocular camera was
able to estimate pixels motion among frames. A lot of popular applications in tech-
nology are based on this biological principle, for instance video compression codecs
to interpolate between key frames (e.g. MPEG) or optical flow sensors (e.g. the one
used in optical mice), just to name a couple.
This thesis aims hence at proposing a cost-effective solution for the obstacle avoid-
ance problem exploiting this principle inspired by biological systems.

1.2 Thesis organization

This thesis is organized as following.
Chapter 2 presents the literature review carried out in the most comprehensive way
on the most recent scientific literature produced about optical flow based obstacle
avoidance for UAVs. At the of literature review, a classification of the covered pa-
pers is proposed, spotting their main limitations and, from them, a more specific
goal for this thesis is set to overcome found limitations.
In Chapter 3 the stated problem is explained in depth. First, the kinematic and
dynamic nonlinear model of a quadrotor is obtained, showing the whole procedure;
the flight controller with position reference is covered too. Then, theory about
optical flow and its mathematical model, existing algorithms and their common im-
plementation is covered and concepts such as focus of expansion, time-to-contact
and expansion of optical flow are introduced and their computation formalized. Fi-
nally, after reporting used software tools and motivating them, test scenarios and
performance metrics, both for obstacle avoidance algorithm and software execution
time, are defined.
Chapter 4 contains the explanation of my proposed solution to the problem, ex-
plaining its working principle both in a more abstract level and then detailing it in
equation and algorithmic implementation.
Then, the proposed obstacle avoidance strategy is tested ans results are collected and
commented in Chapter 5, where plots about avoidance effectiveness and statistics
and measurements about software real-time execution, tested also on real embedded
hardware that can be integrated onboard, are reported.
Finally, in Chapter 6 conclusions are drawn and possible future development is pro-
posed.
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Chapter 2

Literature review

A comprehensive literature review of the most recent research about monocular
optical-flow-based obstacle avoidance strategies is carried out; among different meth-
ods, those based on optical flow will be considered. This topic has been covered by
multiple researchers since the first mathematical formalization of this bio-inspired
method showed up in the academic community.

In the following, most recent papers are covered and for each of them the main
method proposed is summarized, reporting a meaningful insight, then its main lim-
itations are pointed out, if found, and consequent further possible research path.
The results are then collected and shown clearly in a table, where main features are
pointed out.

2.1 Monocular optical-flow-based obstacle avoid-

ance: literature review

In [7] (2015), Richards et al. present the development of an obstacle avoidance sys-
tem on a small fixed-wing UAV by means of sparse optical flow algorithm (pyramidal
Lucas-Kanade applied on feature points tracking obtained by Shi-Tomasi method)
applied with monocular camera video stream. Stream is processed through a Intel
NUC board, where the algorithm produces a probability matrix that calculates the
safest region in the image the airplane can fly to. From this information, an avoid-
ance command is sent via UART to an Arduino UNO that sends suitable PWM
commands to the ArduPilot Mega 2.5. Mechanical relays are used to switch from
manual command to autonomous obstacle avoidance. Further development can be
identified in fusing multiple sensors (e.g. LiDAR, multiple cameras for expanding
field of view) or implementing obstacle avoidance commands as intermediate way-
points sent over MAVLink to the flight controller).

In [8] (2019), Blumenkamp et al. propose a machine learning approach to ob-
stacle avoidance based on optical flow, implemented on a toy race car. The images
are sampled from a monocular camera connected to a RaspberryPi compressing its
video stream with H.264/AVC that is then decoded by onboard GPU in real time,
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Chapter 2. Literature review

where motion vector stream is made available through an API and used as opti-
cal flow field. Then this optical flow stream is the input of a deep neural network
which aim is to classify obstacles and from it the corresponding steering command
for obstacle avoidance is computed. The proposed approach has several limitations
given by the experimental framework and the algorithm is developed to work only in
2D. Also, this work is more focused on the deep learning side and requires a heavy
computation capability that is not bearable by RaspberryPi and requires off-board
computing on a remote desktop, making the implementation sensitive to wireless
communication performance.

In [9] (2018), Shankar et al. propose a novel algorithm for obstacle avoidance
based on optical flow called Pyramid Histogram of Oriented Optical Flow (p-HOOF),
where the sparse optical flow vector field is transformed by this descriptor in an
histogram that holds orientation information of the field. Then a Support Vector
Machine (SVM) classifier using p-HOOF is trained and used for real-time obstacle
classification. To avoid obstacles, a behaviour-based collision avoidance adaptive
mechanism is designed that dinamically updates the robot’s response sensitivity
using a prior update method. Experiments with a differential drive mobile robot
controlled by RaspberryPi has been carried out, where frame capture rate is around
20 FPS and computation of optical flow vectors and p-HOOF descriptors takes 550-
700 ms, so runs at a rate of 1.4 - 1.8 Hz. However, this algorithm is only tested in
2D with a wheeled robot.

In [10] (2018), Miao et al. use the classic Lucas-Kanade Optical Flow algorithm
and the visual velocity field obtained as output is used to compute a visual artificial
potential field, from which corresponding force field is computed and subsequently
the yaw angle to offer a collision-free path. The potential field is composed by the
superposition of an attractive part toward the goal and a repulsive part given by the
obstacles and obtained by combining gradient vectors and Time-to-collision (TTC)
that represents depth in terms of time. The obtained yaw angle is fed as input
to the quadrotor control system implemented as a cascaded PID. Simulations are
carried out on Matlab using Virtual Reality Modeling Language (VRML) to prove
its effectiveness. However, this method only works in 2D without changing drone
height.

In [11] (2017), Gao et al. propose an obstacle avoidance method based on op-
tical flow using Farnebäck’s dense optical flow. A comparison analysis is first done
with EpicFlow, a novel optical flow approach targeted at large displacements with
significant occlusions, concluding after experiments that is an order of magnitude
slower than Farnebäck’s dense optical flow, that is hence chosen for the proposed
approach. Then, flow field produced is processed, eliminating flow where magni-
tude is too large, getting a greyscale image of magnitudes and then appropriately
thresholding to distinguish obstacles from free space.Finally the target (i.e. obsta-
cle) is detected with minimum rectangle bounding and its velocity is computed by
summing all its pixels’ flow values. The algorithm is tested with real experiments
using ROS package ardrone autonomy for controlling an AR.Drone Parrot and re-
sults state a success rate of 95% for drone speed below 1.5 m/s and the algorithm
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2.1. Monocular optical-flow-based obstacle avoidance: literature review

works at a rate of 10 Hz.

In [12] (2005), Zufferey et al. present a control strategy enabling obstacle avoid-
ance and altitude control based on a 1D simplification of optical flow and gyro-
scopic information. The approach first considers classical 2D optical flow behaviour
by splitting in translation and rotation contributions, noticing that rotational one
can be compensated by knowing gyroscopic rates, so that only useful translation
component can be kept. Than, given the strict constraints of implementation on a
30-grams plane UAV, simplifies optical flow information from 2D to 1D in order to
use a light linear CCD array, implementing a simplified computation of 1D version
of divergence. This lets understand by thresholding if an obstacle is approaching
and where to turn by flow unbalancing. Similar logic is applied for altitude control.
Tests of this algorithm are conducted first on a small wheeled robot, then on the
30-gram fixed-wing UAV. The algorithm here applied is indeed way simplified for
an effective application in the scope of this thesis.

In [13] (2014), Agrawal et al. propose an optical flow based composite guidance
strategy for UAV navigation in unknown outdoor environments while seeking for a
predefined goal point. The proposed guidance logic is based on the relative optical
flow in the right, left and central regions of the image. With appropriate thresholding
of average magnitudes of optical flow in the three aforesaid regions, inverse (i.e.
heading rate proportional to the inverse of difference between right and left average
flow), balancing (i.e. heading rate proportional to mentioned difference) and goal
seeking strategies are appropriately selected. Simulations run with Virtual Reality
Modeling Languages (VRML) toolbox from MATLAB validate the effectiveness of
this composite approach. However, this approach is only working in a 2D fashion.

In [14] (2012), Eresen et al. propose an optical flow based autonomous flight
algorithm for reaching a goal position by means of navigation in virtual urban en-
vironment. The UAV is a quadrotor type whose dynamics are modeled in Matlab,
with the addition of PID controller for the attitude, and simulation is carried out by
linking it to Google Maps virtual urban environment. From Google Maps images of
streets and junctions in the city are processed and the optical flow field is computed
with Horn and Schunk method. Only an horizontal strip of the image is considered
and by means of a template the minimum flow magnitude region is identified in or-
der to avoid collisions with buildings and a correcting yaw movement is computed.
Also, junctions are recognized by noticing the different flow magnitudes on the right
and left sides of the image and the yaw correction that minimizes distance to goal
position is applied. Simulations show the effectiveness of the method. This method
however only works in 2D at fixed altitude and its structure makes it most suitable
for urban environment.

In [15] (2019) , Cho et al. propose an online optical-flow-based 3D obstacle avoid-
ance strategy applied to a quadrotor vehicle able to cope with both lateral, vertical
and frontal obstacles. The strategy deals with horizontal avoidance by considering
the flow balance between the right and left half-planes of a considered horizontal
strip, using it to compute by means of a PD controller the heading rate control
signal, adequately compensated with terms that take into account the waypoint
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guidance (as the difference of current heading and heading towards the next way-
point), avoidance of frontal obstacles and the compensation of yaw rate generated
optical flow. As far as the vertical avoidance is concerned, similar strategy is used
to generate altitude control, where another PD control is implemented based on
both optical flow balance from lower and upper half-plane in the considered ver-
tical strip and the waypoint guidance strategy. Frontal obstacles are detected by
computing the divergence of the field from the focus of expansion (FOE) and from
a geometrical approach time to contact (TTC) is evaluated for each point and by
evaluating their balance the heading rate term in the PD control is evaluated. The
different strategies then are integrated in a hybrid approach by weighting them with
appropriate coefficients computed online according to the current situation, so that
obstacle avoidance part can predominate over waypoint guidance part when obsta-
cles are detected by optical flow conditions. Simulations are conducted by means
of RotorS ROS/Gazebo simulator to prove the effectiveness of the method. Real
test are carried out too with indoor Optitrack motion tracking by using an NVIDIA
Jetson TK1 companion board for OpenCV computation at 8 Hz and set points gen-
eration, which are sent to the Pixhawk flight control board at 1 Hz frequency for
obstacle avoidance. A limitation that can be found in this approach is the lack of
compensation for pitch rate in the generated optical flow and further improvement
can be made by adding a pre-processing phase where also feature and color detection
are considered.

In [16] (2011), Yoo et al. propose a 2D optical-flow-based obstacle avoidance
strategy for quadrotor tested in urban environments simulation. The approach is
based on classical Lucas-Kanade optical-flow algorithm, where the optical flow field
is used to apply a flow balance strategy: avoidance command will be a left turn if
the sum of optical flow magnitudes on right half-plane is greater than the left one
and vice versa. The approach is tested in MATLAB virtual reality environment,
showing basic effectiveness in avoiding static obstacles and moving along a corridor
environment. The algorithm runs at computation rate of 10 Hz. The proposed
approach however is pretty limited due to its 2D nature and simple strategy, plus is
tested only in basic simulated urban environment with static obstacles.

In [17] (2019), Aguilar et al. propose a monocular optical-flow-based method for
dynamic obstacles detection and a fuzzy logic controller based avoidance strategy.
First, two consecutive frames are sampled from the monocular camera, their abso-
lute difference is computed, thresholded with respect to mean value of difference
pixels, noise filtered and passed through Canny edge detector. Then the identified
moving object is encapsulated by a single rectangle, within which features points
are exctracted by Shi-Tomasi method and their motion is estimated as a vector field
by means of Lucas-Kanade optical flow algorithm. Velocity in terms of pixels per
second is computed and, with the assumption that moving points belong to the same
objects, points with too different velocities with respect to their mean velocity are
discarded. Then, template area evolution over the past 15 frames is approximated
with a linear regression and the slope of the obtained line’s equation is used to
discriminate its growth rate, hence if the obstacle is approaching or moving away.
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2.1. Monocular optical-flow-based obstacle avoidance: literature review

Finally, a fuzzy logic controller with as fuzzy inputs the area of the moving object
and the approaching rate is designed by defining fuzzy rules in order to output a
suitable speed control command along x-axis with the aim of mantaining the moving
object far from the UAV, letting the control being strong when object is approaching
too fast and softer when it approaches moderately. Algorithm is tested with dif-
ferent moving objects at different distances, but test details are not clearly pointed
out, as well as algorithm effectiveness. The computation is implemented offboard
on a gorund control station at real-time rates. The proposed approach has several
limitations, being the control output a 1D control command (representing just the
strenght of the avoidance control along one axis) computed offboard. Furthermore,
this approach seems not to be able to track and handle multiple obstacles and direct
tests of UAV obstacle avoidance doesn’t seem to have been conducted.

In [18] (2015), Wang et al. propose an obstacle avoidance algorithm using an
improved method based optical flow. Based on the assumption of a Kalman filter
stabilized quadrotor to minimize vibrations, the captured frames are divided into a
9 regions grid, where on the 5 laying on the cross cells are evaluated with dense op-
tical flow algorithm, while the 4 in the corners are given less computational burden
by applying sparse optical flow algorithm and used as a reference. The final control
command along both vertical and horizontal directions is computed as the contri-
bution of two techniques: the improved balance strategy and the time-to-contact
(TTC) strategy. The former, considers horizontal and vertical unbalances in opti-
cal flow magnitudes in considered cross areas, adding a term relative to respective
corner areas flow. The latter, computes the focus of expansion (FOE), filters its po-
sition by means of moving mean (MM) method in order to reduce the high-frequency
noise and for each pixel computes its TTC based on its distance from FOE and OF
magnitude in that point, producing a qualitative relative-depth estimation of the
scene. The improved balance method is then abstracted by training, where man-
ual control avoidance maneuvers are performed and respective OF conditions are
compared and plotted, so that a classification function with 3 different regions in
which OF measurements fall into can be designed and used to produce appropriate
control command. The algorithm is tested with real experiments by means of Par-
rot AR.Drone controlled by ROS in indoor environment, showing a success rate of
75%. The proposed method however does not consider frontal obstacles and doesn’t
provide avoidance strategies for that case.

2.1.1 Classification

In order to have a more systematic overview of optical flow based obstacle avoidance
methods proposed up to now, the reviewed papers are classified according to different
parameters, as can be seen in table 2.1.
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Table 2.1: Classification of developed monocular optical-flow based obstacle avoidance methods. The columns represent the referenced work with its
publication year (Ref.), the type of robot intended for algorithm application (Robot), the optical flow algorithm used (OF Method), the dimensionality
of obstacle avoidance control commands produced (2D/3D), validation of achieved results (Result) and main limitations (Limitations) classified as
follows. A: 2D Obstacle avoidance (left/right control commands), B: Offboard computation, C: Narrow applicability (e.g. specifically structured
environment, intrinsically limited), D: Non real-time implementable (or not specified), E: Doesn’t deal with frontal obstacles.

Ref. Robot OF Method
2D/
3D

Results
Limitations

A B C D E

[7] (2015) Fixed-
wing

Sparse Pyramidal OF 2D SIM,
EXP

7 7

[8] (2019) Wheeled H.264/AVC, Deep
Neural Network

2D EXP 7 7

[9] (2018) Wheeled Sparse Pyramidal
OF, p-HOOF, SVM

classifier

2D SIM,
EXP

7

[10] (2018) Quadrotor Sparse Pyramidal
OF, Visual APF

2D SIM 7 n/a n/a 7

[11] (2017) Quadrotor Dense Farnebäck OF - EXP n/a 7 7

[12] (2005) Wheeled/
Fixed-
wing

Simplified 1D OF 2D EXP 7 7 7

[13] (2014) Generic Horn and Schunck OF 2D SIM 7 n/a 7 7 7

[14] (2012) Quadrotor Horn and Schunck OF 2D SIM 7 n/a 7 n/a 7

[15] (2019) Quadrotor Horn and Schunck OF 3D SIM,
EXP
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Ref. Robot OF Method
2D/
3D

Results
Limitations

A B C D E

[16] (2011) Quadrotor Lukas-Kanade OF 2D SIM 7 7 7

[17] (2019) Quadrotor Sparse Lukas-Kanade
OF

1D EXP 7 7 7 7

[18] (2015) Quadrotor Mixed dense and
sparse OF

3D EXP 7 7
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Chapter 2. Literature review

2.2 Conclusions

As far as monocular optical-flow-based obstacle avoidance for UAV is concerned, five
main limitations are spotted: obstacle avoidance carried out in 2D control commands
at fixed height, computation carried out on offboard hardware (hence strongly rely-
ing on a good link with ground control station), intrinsic limitations in the method
(i.e. strong environment assumptions, specific hardware based, very specific context
application), non-real-time implementability (due to slow algorithm processing or
not specifically addressed as an issue) and lack of dealing with frontally approaching
obstacles.
What emerges from the set of reviewed articles is that the main two limitations most
of them share is the 2D obstacle avoidance strategy, that supposes a fixed height
flight and mainly moves in a plane parallel to ground to avoid lateral obstacles,
hence this technique does not allow to avoid floating obstacles unless a particular
controller for changing flight height is implemented, and frontal obstacles approach-
ing to the vehicle are not taken into account, just considering lateral obstacles and
their horizontal unbalanced contribution to overall optical flow map.
The other identified limitations are better tackled by some studies, while some oth-
ers still suffer of them. For instance, as far as concerns narrow applicability, some
proposed methods assume a urban structured environment or consider motion in a
corridor [13, 14, 16]; others use a specific hardware sensor [12]. Computational limi-
tation, both for being offboard or non-real-time, is an issue that not every proposed
method shows, but still a part of them doesn’t solve.
A further note has to be done about the computational complexity of proposed al-
gorithms: only a few studies report measurements of execution time, while, at the
best of my knowledge, no one of them carries out an analysis about computational
cost.

Hence, this thesis aims at the attempt of overcoming aforementioned limitations
by proposing a monocular optical-flow-based 3D obstacle avoidance strategy that is
real-time implementable by onboard hardware.
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Problem statement

As emerges from conclusions drawn from literature review, most recurrent limita-
tions are the lack of a 3D path planning by just considering motion in a 2D plane
parallel to ground and not taking into account frontally approaching obstacles. Fur-
thermore, a priori assumptions on the environment’s structure are made and not
always a computational cost analysis is carried out.
This thesis aims at solving previously mentioned limitations by developing a real-
time 3D local path planning strategy based on the optical flow field generated by
an onboard frontal monocular camera, without making a priori assumptions about
environment’s structure.
In order to develop such an algorithm and test it, simulations must be carried out,
hence the kinematic and dynamic equations of motion of the quadrotor must be
obtained, as well as quadrotor flight control system, insight about how optical flow
works is presented and the most appropriate set of simulation software and metrics
for measuring software performance must be identified.

3.1 Quadrotor kinematic and dynamic model

In this section the derivation of a kinematic and dynamic model for the quadcopter is
presented. A mathematical model is required for both path planning and simulation
purposes.

3.1.1 Reference frames

The quadrotor is considered as a rigid body with 6 DOF (3 DOF for translations
and 3 DOF for rotations) and in order to represent all its motions and physical
quantities a set of different reference frames (RF) must be defined in a suitable way.
As pointed out in [19] , a few reasons for defining different RF are:

• Newton-Euler’s equations of motion are defined in the RF attached to the
body of the quadrotor;

• Thrust produced by motors and propellers is applied in the body RF;
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Chapter 3. Problem statement

Figure 3.1: In this image different angles are shown. Heading angle ψ is computed as the clockwise
deviation from North. Course angle χ refers to actual motion direction (velocity direction v) of
the vehicle due to lateral wind perturbation. The angle difference between course and heading is
β and is called crab angle or side-slip angle or drift angle.

• Some measurements provided by sensors, such as accelerations by accelerom-
eters and angular rates by gyroscopes, are defined in the body RF. Other
quantities such as position (GPS), heading angle (magnetometer), course an-
gle (GPS) and ground speed (GPS) are defined in the inertial RF (Figure
3.1);

• Most flight trajectories in missions are defined in the inertial reference frame,
as map information.

In order to provide a consistent representation of all the physical quantities
involved in modelling, the following reference frames are defined, trying to be com-
pliant to scientific literature in aerospace field.

Inertial RF Ri or RNED

The inertial reference frame is defined with the NED (North-East-Down) known in
literature, where x-axis is positive pointing North, y-axis is positive pointing East
and z-axis is positive pointing toward the center of the Earth. The origin is placed
in whatever position has been defined as home position.
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3.1. Quadrotor kinematic and dynamic model

The vehicle RF Rv

This frame has axes aligned with the inertial frame but the origin is centered in
UAV center of mass (as shown in fig. 3.2).

Figure 3.2: The world and the vehicle reference frames.

The body RF Rb

In order to move from the vehicle RF to the body RF representation, attitude of the
UAV is obtained by subsequent rotations using RPY angles (and respective rotation
matrices concatenation). Intermediate RFs as Rv1 and Rv2 are defined for defining
rotations. Rv1 is rotated by yaw angle ψ around k̂v, Rv2 is rotated by pitch angle
θ around ĵv1 and Rb is rotated by roll angle φ around îv2. Multiplying in the right
order obtained rotation matrices the complete RPY rotation matrix is obtained:

Rb
v (φ, θ, ψ) = Rb

v2 (φ)Rv2
v1 (θ)Rv1

v (ψ)

=

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (3.1)

where cθ = cos θ and sθ = sin θ.
Notice that since from reference frame Ri to Rv there is only a translation, following
relation holds:

Rv
b = Ri

b
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Chapter 3. Problem statement

3.1.2 Quadrotor rotations conventions

The quadrotor is supposed to fly in “+ mode”, i.e. with one arm aligned with
the motion direction. Numbering convention for rotors and respective speed and
moment directions are defined as showed in fig. 3.3 taken from [20]:

Figure 3.3: Rotations conventions on quadrotor vehicles.

Forces produced by motors thrusts are parallel and opposite to k̂b.
Each motor produces also a moment which direction is opposite to propeller speed’s
one. Rotors 1 and 3 rotate positive according to k̂b, while rotors 2 and 4 rotate in
direction −k̂b. So rotors 1 and 3 will produce a moment along −k̂b and rotors 2 and
4 will produce a moment along k̂b.

3.1.3 Kinematic and dynamic nonlinear model

State variables of the quadrotor

A quadrotor has 12 states (position, linear velocity, attitude, angular velocity of 3
dimensions each) listed and specified in table 3.1.

Notice that the following relation holds:

ri =

 pn
pe
−h

 =

xy
z


States are represented graphically in figure 3.4.

Kinematic model

For what concerns linear part, position r = (pn, pe,−h)T = (x, y, z)T is a state
defined in the inertial frame and its variation is linked to state v = (u, v, w)T defined
in the body frame through the rotation matrix from Rb to Ri.
As derived in [19]:
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3.1. Quadrotor kinematic and dynamic model

Table 3.1: States of the quadrotor

ri =

xy
z

 inertial (north) position of the quadrotor along îi in Ri,

inertial (east) position of the quadrotor along ĵi in Ri,

altitude of the aircraft measured along −k̂i in Ri,

vb =

uv
ω

 body frame velocity measured along îb in Rb

body frame velocity measured along ĵb in Rb

body frame velocity measured along k̂b in Rb

α =

φθ
ψ

 roll angle defined with respect to Rv2,
pitch angle defined with respect to Rv1,
yaw angle defined with respect to Rv,

ωb =

pq
r

 angular velocity component along îb in Rb

angular velocity component along ĵb in Rb

angular velocity component along k̂b in Rb

ṙi =

ẋẏ
ż

 =

 ṗn
ṗe
−ḣ

 = Rv
b

uv
w

 = (Rb
v)
T

uv
w


=

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ cθsφ cφcθ

uv
w

 (3.2)

For what concerns angular part, the relationship between RPY absolute angles and
the angular rates p, q and r is complicated by the fact that these quantities are
defined in different RF.

RPY angles are defined in three different frames, so the contribution of the variation
rate of each to the angular velocity ω is obtained by considering consequent RF
rotations and, after ding computations, the final matrix relationship is:

φ̇θ̇
ψ̇

 =

1 sin (φ) tan (θ) cos (φ)tan (θ)
0 cos (φ) − sin (φ)
0 sin (φ) sec (θ) cos (φ) sec (θ)

pq
r

 (3.3)

Around hovering position, given that angles can be considered very small, so cosx ≈
secx ≈ 1 and sin x ≈ tanx ≈ 0, the matrix above can be approximated with the
identity matrix.
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Figure 3.4: States reported on a quadrotor UAV.

Rigid body dynamic model

In order to derive the dynamic equations of the quadrotor as a rigid body, for the
linear part the Newton’s equation is used, while for the angular part the Euler’s
equation is used.

Newton’s equation

On the quadrotor are acting the gravity force, measured in the inertial frame, and
the forces deriving by the four motor thrusts, measured in the body RF.

mr̈ = − Ri
bF +mg

mRi
b

 u̇v̇
ẇ

 = −Ri
b

 0
0

F1 + F2 + F3 + F4

+m

0
0
G


Defining the forces vector (F1, F2, F3, F4)T and multiplying both sides by Rb

i and
by 1

m
, the dynamic equation can be rewritten as:

 u̇v̇
ẇ

 = − 1

m

0 0 0 0
0 0 0 0
1 1 1 1



F1

F2

F3

F4

+Rb
i

0
0
G


Plus, we can define the first input of the system u1 as:
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3.1. Quadrotor kinematic and dynamic model

u1 =
∑
i

Fi

Euler’s equation

The inertia matrix of the quadrotor Γ is assumed as known. Given that the quadro-
tor is essentially symmetric about all three axes and assuming it is computed along
principal axes, the inertia matrix will be assumed diagonal. So it will have this form:

Γ =

Γx 0 0
0 Γy 0
0 0 Γz

 , Γ−1 =

 1
Γx

0 0
0 1

Γy
0

0 0 1
Γ z


In addition to forces, each motor produces a moment which direction is opposite

to propeller speed’s one. Rotors 1 and 3 rotate positive according to k̂b, while rotors
2 and 4 rotate in direction −k̂b. So rotors 1 and 3 will produce a moment along −k̂b
and rotors 2 and 4 will produce a moment along k̂b.

The obtained Euler’s equation is:

Γ

ṗq
ṙ

 =

 L(F4 − F2)
L(F1 − F3)

M2 +M4 −M1 −M3

−
pq
r

× Γ

pq
r


Where L is the quadrotor arm length. By representing Mi = γFi, where γ = kM

kF
,

we can write the above equation as a function of forces vector:

Γ

ṗq
ṙ

 =

 0 −L 0 L
L 0 −L 0
−γ γ −γ γ



F1

F2

F3

F4

−
pq
r

× Γ

pq
r


Multiplying by Γ−1 both sides:

ṗq
ṙ

 = Γ−1


 0 −L 0 L
L 0 −L 0
−γ γ −γ γ



F1

F2

F3

F4

−
pq
r

× Γ

pq
r




Where:
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u2

u3

u4

 =

 0 −L 0 L
L 0 −L 0
−γ γ −γ γ



F1

F2

F3

F4


So the complete input vector of the system is the vector (u1, u2, u3, u4)T , where

u1 is the vertical thrust force and u2, u3, u4 are the torques generated around îb, ĵb,
k̂b axes, respectively.

Complete nonlinear quadrotor model

All previously derived equations are here grouped in table 3.2.

Table 3.2: Complete nonlinear kinematic and dynamic model of quadrotor.

Linear Kinematic equations

ẋ = (cθcψ)u+ (sφsθcψ − cφsψ)v + (cφsθcψ + sφsψ)w

ẏ = (cθsψ)u+ (sφsθsψ + cφcψ)v + (cφsθsψ − sφcψ)w

ż = −sθu+ (cθsφ)v + (cφcθ)w

Angular Kinematic equations

φ̇ = p+ (sin θ tan θ)q + (cosφ tan θ)r

θ̇ = cosφq − sinφq

ψ̇ = (sinφ sec θ)q + (cosφ sec θ)r

Linear Dynamic equations

u̇ = − sin θG

v̇ = − cos θ sinφG

ẇ = − 1
m

(F1 + F2 + F3 + F4) + cosφ cos θG

Angular Dynamic equations

ṗ = L
Γx

(F4 − F2) + Γy−Γz

Γx
qr

q̇ = L
Γy

(F1 − F3) + Γz−Γx

Γy
pr

ṙ = γ
Γz

(F2 + F4 − F1 − F3) + Γx−Γy

Γz
pq
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3.1. Quadrotor kinematic and dynamic model

Figure 3.5: Simplified quadrotor model for inertia tensor values computation.

Inertia matrix computation

In Euler’s equations rotational inertia is taken into account in inertia tensor Γ, which
general form is:

Γ =

∫ (y2 + z2)dm −
∫

(xy)dm −
∫

(xz)dm
−
∫

(xy)dm
∫

(x2 + z2)dm −
∫

(yz)dm
−
∫

(xz)dm −
∫

(yz)dm
∫

(x2 + y2)dm

 ∆
=

 Γx −Γxy −Γxz
−Γxy Γy −Γyz
−Γxz −Γyz Γz


where x, y, and z are coordinates of points on the object relative to the center

of mass. In order to simplify computation, the quadrotor is modeled as a spherical
dense center with mass M and radius R, and point masses of mass m located at a
distance of l from the center, as shown in Figure 3.5.

As can be stated, quadrotor is essentially symmetric about all thee axes, hence
Γxy = Γxz = Γyz = 0, which leads to a diagonal inertia matrix in the form:

Γ =

Γx 0 0
0 Γy 0
0 0 Γz


Therefore its inverse is easily obtained as:

Γ−1 =

 1
Γx

0 0

0 1
Γy

0

0 0 1
Γz


A sphere of mass M and radius R has an inertia of 2MR2

5
along all axes, while

a point mass m at a distance l from the axis of rotation has a rotational inertia
of l2m. Given the linearity property of integral operator, the values in the inertia
tensor are given by the following:
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Figure 3.6: Gazebo model of quadrotor UAV implemented in hector quadrotor package. A Hokuyo
UTM-30LX laser scanner is mounted below the main body in this image, but this sensor is not
used in this thesis, hence a modified version without it is used.

Γx =
2MR2

5
+ 2l2m

Γy =
2MR2

5
+ 2l2m

Γz =
2MR2

5
+ 4l2m

hector quadrotor package UAV parameters

The quadrotor used in this thesis comes from a ROS package called hector quadrotor,
which simulates the physics and control of a quadrotor UAV. The UAV can be seen
in Figure 3.6.
In Table 3.3 main quantities defining hector quadrotor model are shown.
Inertia matrix of hector quadrotor is:

Γ =

0.01152 0 0
0 0.01152 0
0 0 0.0218


3.2 Quadrotor state estimation and control

For the aim of this thesis, a required assumption is that quadrotors are controlled in
position, given in the inertial reference frame. Therefore, suitable commands must
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3.2. Quadrotor state estimation and control

Table 3.3: hector quadrotor parameters.

Name Value

Width 0.79 m
Length 0.79 m
Height 0.22 m
Mass 1.477 kg
Γx 0.01152 kg ·m2

Γy 0.01152 kg ·m2

Γz 0.0218 kg ·m2

be produced to track reference positions.
From a control perspective, given the defined system inputs and by spotting inter-
dependencies of states in the equations, the dynamical model of the quadrotor can
be decomposed into two subsystems: a translation one and an angle one, shown in
figure 3.7.

Figure 3.7: Quadrtor’s dynamic model decomposition in two subsystems.

In order to control quadrotor flight, these system inputs are generated by a cas-
caded PID controller. The ROS package used for simulation, hector quadrotor [21],
can implement controllers in velocity and in position by using a set of packages called
ros control [22], which includes controller interfaces, controller managers, transmis-
sions and hardware interfaces, letting ROS developers setup real time controllers for
controlling real hardware by means of an asynchronous architecture like ROS.

The cascaded PID control of Hector Quadrotor is organized as following. An
inner loop controls pitch θ, roll φ, yaw rate ψ̇ and vertical velocity ż. An outer loop
controls the horizontal velocity (ẋ, ẏ), the heading ψ and the altitude z. A further
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PID control is implemented in order to control the horizontal position (x, y) in the
inertial reference frame. A block diagram scheme of the quadrotor PID position
control is shown in figure 3.8.

The cascaded PID controllers produce as output commands the input forces of
the system (U1, U2, U3, U4)T (vertical thrust and torques) that are then translated
in terms of electric motors voltages (V1, V2, V3, V4)T either by using a static mixture
matrix (which in the quadrotor case depends on the so called + or X flight config-
urations) or by feeding them into an inverted model of the propulsion system [21].
In order to correctly track reference signals, quadrotor states must be known, hence
they are estimated bu means of an Extended Kalman Filter (EKF) to fuse all avail-
able measurements to a single navigation solution containing the orientation, posi-
tion and velocity of the vehicle as well as observable error states like the IMU bias
errors. This approach is usually referred to as integrated navigation. The EKF is
implemented in ROS package hector pose estimation core.
PID controllers are therefore tuned such that quadrotor’s flight is smooth, with lim-
ited overshoot and with non-aggressive manouvers. This is carried out by a trial
and error procedure and final parameters for ROS implementation of controllers are
reported in table 3.4. Here controllers are presented as their software implementa-
tion. Parameters are set by modifying file params/controller.yaml inside package
hector quadrotor controllers.

In ROS, pose commands are sent as messages on topic command/pose of message
type geometry msgs/PoseStamped.
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3.2. Quadrotor state estimation and control

Table 3.4: PID controllers parameters.

Position controller

x, y z ψ

P 0.8 0.8 5.0
I 0.0 0.0 0.0
D 0.0 0.0 3.0

Velocity controller

u, v w

P 5.0 5.0
I 1.0 1.0
D 0.0 0.0
Input limit 0.5 m/s 0.5 m/s

Attitude controller

φ, θ ψ̇

P 5.0 5.0
I 1.0 1.0
D 0.0 0.0
Input limit π/4 rad π rad/s
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Figure 3.8: Cascaded PID controllers for position control of the quadrotor in the inertial coordinate frame.
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3.3. Optical Flow theory

3.3 Optical Flow theory

Nature has always been a fascinating source of ideas for finding solutions to practical
problems, nonetheless engineering problems. After all, millions of years of evolution
have refined biological systems to survive and adapt, finding the most curious ways to
overcome challenging environments or reduced capabilities. Bio-inspired algorithms
in robotics constitute a huge branch of research that provides several solutions to a
wide variety of problems, such as path-planning, image analysis and so on.
Optical flow is one of those bio-inspired algorithms and is inspired by how birds
and insects use motion estimation in their field of view to navigate the environment.
The concept was first introduced by American psychologist James Jerome Gibson
in the 1940’s when describing how animals perceive their environments to be able
to move around freely without collisions [5]. Humans too constantly make use of
optical flow to help complete tasks, such as estimation of self-motion, distinguishing
moving and static object in the environment, determining the depth of different
objects, estimating for time-to-contact.
This method has been a great inspiration for a lot of applications, both in robotics
and in other fields of technology: motion and structure-from-motion estimation,
video compression codecs to interpolate between key frames (e.g. MPEG), optical
flow sensors (e.g. the one used in optical mice), visual odometry in robot naviga-
tion, obstacle avoidance, car driving assistance to detect other cars or pedestrians,
creation of additional frames in fast high resolution displays are just some examples
of use cases of this technique.

Optical flow in computer vision can be defined in an high-level manner as the
motion of objects between consecutive frames of sequence, caused by the relative
movement between the object and camera. To use a more precise definition given
by Horn and Schunck [6]: “The optical flow is a velocity field in the image that
transforms one image into the next image in a sequence. As such it is not uniquely
determined; the motion field, on the other hand, is a purely geometric concept,
without any ambiguity — it is the projection into the image of three-dimensional
(3-D) motion vectors.” So what optical flow algorithm produce as an output given
two subsequent frames as input is a velocity field. In this thesis the abbreviation OF
for optical flow will refer to the 2D vector field generated by one of these methods.
A visual example of a produced OF vector field from subsequent frames is shown in
Figure 3.9.

3.3.1 Classical mathematical formulation of Optical Flow

This 2D vector field representing optical motion is computed in general by solving
an optimization problem that relies on the following three key assumptions about
the sampled images:

1. Object brightness invariance: local changes in brightness are caused only by
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Figure 3.9: The produced optical flow 2D vector field describes the motion of each pixel among
subsequent frames. In the picture, taken from [23], results produced from three different algorithms
are shown. First two are sparse OF fields while the last one is a dense OF field.

the motion of a certain object with respect to the camera;

2. Spatial coherence: the motion is uniform in a small area around a pixel;

3. Temporal persistence: In a patch image motion does not change abruptly but
gradually over time.

Assuming I(x, y, t) is the gray scale image, containing the brightness of pixel
(x, y) at time t (see Figure 3.10), from constant brightness between consecutive
frames the following equation can be written:

I(x, y, t) = I(x+ δx, y + δy, t+ δt)

Then the first order Taylor series approximation of the right-hand side of the
equation can be computed, obtaining:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
δI

δx
δx+

δI

δy
δy +

δI

δt
δt+ κ

where κ are higher order terms of the Taylor approximation. Terms δx, δy and
δt are small variations in x, y and t. Higher order terms κ can be neglected because
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Figure 3.10: The displacement of a pixel obtained among subsequent frame defines the optical flow
vector for that specific pixel.

they are very small in magnitude. Furthermore, from previous identity based on
brightness constancy assumption, common terms can be deleted, leading to the
equation:

δI

δx
δx+

δI

δy
δy +

δI

δt
δt = 0

Dividing both sides for dt:

δI

δx
u+

δI

δy
v +

δI

δt
= 0 (3.4)

where u = dx
dt

and v = dy
dt

. Another popular form of the optical flow equation is:

It = −∇I · V, ∇I =

[
Ix
Iy

]
, V =

[
u
v

]
Terms Ix = δI

δx
, Iy = δI

δy
and It = δI

δt
are respectively the horizontal gradient, the

vertical gradient and the variation of brightness over time.
The obtained equation (3.4) is called optical flow equation. This equation has two
variables (u and v), so it’s under-constrained and needs more constraints in order to
find feasible solutions to the problem. This situation of analytically undetermined
algebraic system is also known as the aperture problem, shown in a most intuitive
way by the ”barber’s pole” example in Figure 3.11, where the real motion of the
cylinder is circular and the perceived optical flow is a vertical motion field when
the real one is horizontal. Another example of this phenomena coming from daily
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life is when we are standing in a stationary train observing another adjacent train
and we have the feeling that we are moving when instead it is the other that is
moving. This happens because we have a limited opening from the window and we
don’t have precise references to decide which of the two trains is really in motion. [24]

Figure 3.11: Barber’s pole illusion. Barber’s pole is a panel used in the MiddleAges by barbers.
The white cylinder, with the red ribbon wrapped helically, rotates clockwise but the stripes are
perceived to move vertically upwards. The perceived optical flow does not correspond to the real
motion field, which is horizontal from right to left. This illusion is caused by the aperture problem
or by the ambiguity of finding the correct correspondence of points on the edge of the tape (in
the central area when observed at different times) since the direction of motion of these points is
not determined uniquely by the brain. (Hans Wallach in 1935, a psychologist, discovered that the
illusion is less if the cylinder is shorter and wider, and the perceived motion is correctly lateral.
The illusion is also solved if the texture is present on the tape.) [24]

Depending on which assumptions and hence constraints are added, different OF
techniques are proposed.

3.3.2 OF algorithms classifications

Different classifications are possible for OF algorithms; for instance, according to
[25], the following four broad classes are spotted:

1. Gradient-based : These methods try to solve the OF equation (3.4) typically
tackle this problem by including some constraints—usually based on some
form of spatial or temporal coherence—in the algebraic system of equations
to be solved. Four main algorithm of this class are gradient algorithm [26],
Lukas-Kanade [27], Horn and Schunck [6], Proesmans [28].
The Gradient algorithm assumes that OF is constant within a certain spa-
tial and temporal neighborhood of a pixel and assembles an overdetermined
system of equations and solves it using Least Square method, by discarding
computations over areas in which derivatives are too small or too similar (e.g.
due to lack of motion or because there are not distinguishable features) hence
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improving computation. Lukas-Kanade method is similar with the difference
that uses weights to the neighborhoods as a function of their distances from
the considered point. Horn and Schunck combines equation (3.4) with a global
smoothness term λ with the goal to constrain the estimated velocity. Proes-
mans method uses the minimization of an energy functional, similarly to Horn
and Schunck, but also takes into account the bias in the direction of motion
due to correlations in the finite difference approximation.
Algorithms of this class have the advantage of being computationally efficient,
but they suffer of the aperture problem and calculation of spatial and temporal
derivatives is prone to errors.

2. Phase-based : First proposal of this method was made by Fleet and Jepson
[29], which main idea is that 2D image velocity can be modeled as the phase
behavior of a band-pass filter output.
These methods are known to work well for relatively slow motion, however,
they are not reliable when trying to estimate fast motion.

3. Region-Matching-based : This class of algorithms computes the OF vector for a
given pixel by finding the displacement of the region around that pixel between
two consecutive frames. This is accomplished by means of a minimization of
a predefined function of the differences between two templates.
The advantage of these algorithms is that they behave better than gradient-
based ones in situations with fast motion, but they have the drawback of
having a high computational burden (in particular, computation time increases
quadratically with the maximum allowed object displacement).

4. Feature-Matching-based : These algorithms compute OF component by con-
sidering the displacement of certain image features between two consecutive
frames, detected by a feature-detection algorithm and later associated by a
feature-matching algorithm. Examples of feature-detection methods are Har-
ris corner detector [30], scale-invariant feature transform (SIFT) [31] and Shi-
Tomasi corner detector [32]. The methods of this class rely on the assumption
that the same detected feature over an image are consistently detectable and
trackable over subsequent image frames. The advantage is that this doesn’t
imply a maximum displacement limits between same feature among different
frames. Drawbacks are that these features belong to an evenly spaced grid,
precision is strongly dependent on performances of associated matching algo-
rithm and they are computationally demanding (but parallelizable).

Another classification of OF techniques divides them in two categories:

1. Sparse Optical Flow : Sparse OF gives the flow vectors of just a set of selected
pixel, for instance those identified as corresponding to feature detected by
previously mentioned corner detecting methods. In this way, computation is
carried out for a reduced set of pixel, so it is computationally lighter, but can
lack in accuracy and is not suitable for all situations.
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2. Dense Optical Flow : Dense OF computes flow vectors for all the pixels compos-
ing the frame. It has higher accuracy at the cost of being slow/computationally
expensive.

An example of the difference between the two categories can be seen in Figure
3.12. The OF algorithm applied to the considered pixels (a subset or the whole
frame), can then be any of the previously mentioned algorithms.

Figure 3.12: Comparison between sparse and dens OF. On the left, OF is computed only for
specific featured detected by feature-detection algorithm and tracked in following frames by means
of OF algorithm. On the right, a dense OF field is shown, where OF is computed for each pixel of
the frame and vector information is color-coded: for each pixel, brightness (value in HSV) is the
magnitude of the associated motion vector while color (hue in HSV) is vector angle.

Gunnar Farnebäck Dense OF method

In order to implement obstacle avoidance, an analysis of the whole frame’s OF
is required, so a dense OF method is used. In particular, Farnebäck’s method
is chosen [33]. Farnebäck’s method follows a different reasoning from previously
seen techniques. Its first step is to approximate each pixel’s neighborhood in both
frames by quadratic polynomials, which can be done efficiently using the polynomial
expansion transform, in the local reference frame given by the form:

f(x) ≈ xTAx + bTx + c

where A is a symmetric matrix, b is a vector and c is a scalar.
Afterwards, considering how an exact polynomial transforms under translation,

a method to estimate displacement fields from the polynomial expansion coefficients
is derived and after a series of refinements leads to a robust algorithm.

It is known that OF algorithms can misbehave when large movement are present
in the frame, hence sometimes those movements are not detected. A solution for
this problem is the use of pyramids (see Figure 3.13); both Lukas-Kanade and
Farnebäck’s methods use this solution to add robustness.

The idea is that an image pyramid is generated, where each level has a lower
resolution compared to the previous level. When a pyramid level greater than 1 is
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Figure 3.13: Visual representation of pyramid method used to detect larger movement and improve
robustness. [34]

selected, the algorithm can track the points at multiple levels of resolution, starting
at the lowest level. For each level L the image is shrunk L times resulting in a 2L
times smaller image. This shrinking process is called binning. By binning an image
an area of pixels in the original image is combined into a single pixel for the output
image. A 2x2 binning on an image combines 4 pixels into one pixel and thereby
reduces the total number of pixels by a factor 4. The flow speed is then decreased
with a factor of 2. Increasing the number of pyramid levels enables the algorithm
to handle larger displacements of points between frames. However, the number of
computations also increases. The tracking begins in the lowest resolution level, and
continues until convergence. The point locations detected at a level are propagated
as keypoints for the succeeding level. In this way, the algorithm refines the track-
ing with each level. The pyramid decomposition enables the algorithm to handle
large pixel motions, which can be distances greater than the neighborhood size. [34].

Farnebäck’s method is not only more accurate, as proved by results in [33] from
a test on Yosemite sequence, but it gets faster on smaller images as tested in [35],
where with an increasing binning factor a decreasing execution time with respect to
classical Lukas-Kanade method is proved. This becomes important when pyramids
method is applied.

3.3.3 Focus of Expansion (FOE), Time-To-Contact (TTC)
and Expansion of Optical Flow (EOF)

From the 2D vector field obtained by the algorithm, further information can be
retrieved by analyzing it. Even if OF has intrinsically limited information, given
that a 3D motion is casted into a 2D plane,
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Focus of Expansion

The Focus of Expansion (FOE) depicts the projection center of the environment. Is
the point in the image through which, at least theoretically, all the OF vectors pass,
so ideally can be found by the intersection of any two vectors in the field. Usually,
in ideal situations, it indicates where the drone is pointing to.
In order to compute its coordinates for a given 2D vector field, a possible mathe-
matical reasoning is that FOE is the point in the image that has the smallest cross
product with all the vectors of the field.

Figure 3.14: Computation of FOE coordinates by minimization of moment Mi associated to ith

pixel.

We know that the OF vector vi = (ui, vi) represents the displacement of an ith

pixel at previous position pi = (xi, yi) to a new location in the next frame. Let’s
first consider the moment Mi of the vector vi with arm ri = pi−FOE around FOE
location FOE = (fx, fy), with Figure 3.14 as a reference :

Mi = ri × vi = det

 î ĵ k̂
xi − fx yi − fy 0
u v 0


Leading to:

Mi = k̂ ((xi − fx)v − (yi − fy)u)

In order to find FOE coordinates, this moment has to be minimized, so imposing
the equation Mi = 0 the following is obtained:

k̂ ((xi − fx)v − (yi − fy)u) = 0
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In order to solve the problem for each one of the N pixels in the image, the
previous equation is written in matrix form:

 −v1 u1
...

...
−vN uN

[ fx
fy

]
=

 y1u1 − x1v1
...

yNuN − xNvN


In a more compact form:

A · FOE = b

That naturally leads to the Least Square problem solution:

FOE =

[
fx
fy

]
= (ATA)−1AT · b

Time-To-Contact

Knowing the point from which the OF expands, it is possible to extract other useful
information to understand how the environment is structured and which obstacles
are closer to us. One of those information is Time-to-Contact (TTC) or relative
depth. TTC is an estimation of the relative depth as the time that is going to take
to collide with that obstacle. It is possible to compute TTC for each pixel in the
OF field once FOE has been computed. A visual representation of TTC can be seen
in Figure 3.15: pixel brightness is inversely proportional to TTC for that pixel, so
the lower the TTC, the higher the brightness, the closer the obstacle.

TTC for the ith pixel is computed with:

TTCi =
‖ri‖
‖OFi‖

where ri is the distance of ith pixel from FOE and OFi is the OF vector in that
ith pixel. As can be seen, TTC decreases (i.e. higher risk of collision with obstacles)
for high values of ‖OF‖ or small values of ‖ri‖.

Expansion of Optical Flow

Another quantity that derives from TTC and is extremely useful for dealing with
frontally approaching obstacles is the Expansion of Optical Flow (EOF). When
an object is approaching us frontally, it seems for perspective reasons that it is
expanding, as shown in Figure 3.16.
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Figure 3.15: On the right, video frame with camera moving forward. On the left, respective
elaborated image from TTC computation of the recorded scene. The brighter the pixel, the closer
the obstacle. Image from [18].

This expansion can be mathematically quantified with the divergence of OF from
FOE. The EOF is the sum of all OF divergence components in a considered area
of the image (or the whole image if the computation is not restricted to templates),
being hence a scalar signal. High values of EOF mean high risk of frontal collision
with obstacles.
For the ith pixel, the OF divergence can be computed as the component of OFi

along the direction that points away from FOE (i.e. along ri), identified by unit
vector ûr,i (see Figure 3.17). This quantity is then divided by the distance from
FOE ‖ri‖, so that the farther the considered point (hence the respective OF diver-
gence component) from FOE, the smaller its contribution to frontal collision risk
evaluation.

OFDIV,i = OFi · ûr,i, ûr,i =
ri
‖ri‖

EOFi =
OFDIV,i
‖ri‖

=
OFi · ri
‖ri‖2

EOF =
N∑
i

EOFi

Notice that OFDIV,i ≡ 1
TTCi

only when OFi lies along ûr,i direction, hence we
have a purely expanding OF.
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Figure 3.16: An approaching obstacle appears to be expanding in the field of view, hence the
optical flow produced by it will ideally have vectors pointing away from the FOE. Image from [15].

Figure 3.17: Computation of OF divergence component OFDIV,i for the ith pixel.
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3.4 Used software

To implement the strategy, apply computer vision algorithms and test the system
in a simulated environment, a set of software tools is identified. In the following,
software used are introduced and their choice is motivated.

3.4.1 Robotic Operating System (ROS)

In the last years, in robotics research field and lately also in industrial applications
[36], ROS [37], which logo can be seen in Figure 3.18a, has become the de facto
standard framework for the development of robotics software and plays a key role
in the rapid evolution of robotic applications.

(a) Robotic Operating System (ROS) logo.

(b) Gazebo simulator tool logo.

Figure 3.18: ROS and Gazebo logos.

ROS is a collection of software frameworks for robotics software development,
a robotics middleware in practice, acting in a distributed fashion and offering ad-
vantages such as hardware abstraction, low-level device control, implementation of
commonly used functionality, message-passing between processes, and package man-
agement. Running sets of ROS-based processes are represented in a graph archi-
tecture where processing takes place in nodes that may receive, post and multiplex
sensor data, control, state, planning, actuator, and other messages [38]. These nodes
can exchange data between each other by means of two types of communication
paradigm: publish/subscribe, by streaming messages over topics or subscribing to
topics, and request/response, by service calls. All the nodes ecosystem is managed
by ROS master, the first node that is run and to which nodes register. ROS master
that sets up the peer-to-peer communication between nodes and controls updates
of a shared database among nodes called parameter server. An example of graph
of running nodes obtained by ROS tool rqt graph of ROS demo package turtlesim
running is shown in Figure 3.19.

Main languages supported for writing ROS nodes are C++, Python and Lisp
and client libraries are provided and released under BSD license, and as such are
open source software and free for both commercial and research use. The major-
ity of other packages are licensed under a variety of open source licenses. These
other packages implement commonly used functionality and applications such as
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Figure 3.19: Example of graph representing ROS nodes running in a demo application

hardware drivers, robot models, datatypes, planning, perception, simultaneous lo-
calization and mapping, simulation tools, and other algorithms, hence promoting
software reusability.
An advantage of ROS is that it is conceived as a distributed system, hence nodes
that implement computationally heavy activities can be run on a more powerful ma-
chine different from the robot itself without the system even perceiving it. Another
advantage is the native integration with simulation tools such as Gazebo.
The main ROS client libraries are geared toward a Unix-like system and ROS is
provided in distributions following notation-wise the same of Ubuntu distros. For
this thesis, distro ROS Melodic Morenia, compatible with Ubuntu 18.04 LTS, is used
and Ubuntu distro is run on a virtual machine powered by Oracle VM VirtualBox.

3.4.2 Gazebo

Testing robots algorithms on real robots involves risks and costs: in early releases,
bugs can occur and lead to failure, hence damaging the real robot; in case of aerial
robots, the consequences of unsuccessful tests become pretty obvious. This is why
simulation plays a major role in robotics and in algorithms testing. An advantage of
ROS is its native compatibility and integration with the open source simulator tool
Gazebo (which logo can be seen in Figure 3.18b), an independent project supported
by the same developers of ROS [39].

Gazebo, is a 3D robotics simulator capable of simulating robotics arms, wheeled
robots, aerial robots and whatever combination of different types of joints can be
described, such as the one shown in Figure 3.20. It integrates high performance
physics engine such as ODE, OpenGL rendering and it’s also able to support code
for sensors simulation and actuators control.

In this thesis, Gazebo 9.0 is used, due to compatibility with ROS Melodic More-
nia.
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Figure 3.20: A screenshot of Gazebo simulator GUI. Gazebo lets simulate different types of robots
in an environment they can interact with. In this case a wheeled robot with a robotic arm mounted
on it is shown.

3.4.3 ROS package: hector quadrotor

When it comes to simulating quadrotors in Gazebo, different options are available
from other developers made available as open source. The choice fell on ROS package
hector quadrotor [40, 41], developed by Team Hector at Technische Universitat in
Darmstadt [42], given that a lot of quadrotor Gazebo simulators are based on that
package and is popular among researchers. This stack provides packages related to
modeling, control and simulation of quadrotor UAV system and in addition enables
the simulation of sensors such as sonar, laser scanner, camera and many internal
others for state estimation and control. A frame from a demo of the quadrotor
during an indoor mapping session by means of a laser scanner is shown in Figure
3.21.

Due to modularity of the package, is possible to mount different controllers on-
board, such as attitude, velocity and position controller; the last one is actually the
more external one in the nested structure already shown in previous section, letting
the quadrotor, for the aim of this thesis, being controlled by position commands
(such as waypoints) in the form of navigation msgs/PoseStamped ROS messages.

3.4.4 PlotJuggler

In classical software debugging, the most used tool is an interactive debugger that
stops code at inserted breakpoints so that variables at that time instant can be
inspected. Embedded software, real-time applications, robotics and distributed sys-
tems are software domains where the most effective way to debug the code is through
tracing and logging instead: stopping a task implementing a controller acting on a
real physical system, such as setting a breakpoint in the middle of the control loop
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Figure 3.21: In this frame from [43], a demo of hector quadrotor carrying out an indoor mapping
session through a laser scanner is shown. The quadrotor mounts a camera onboard, which view
can be seen in the upper-right part of the image. In lower-right part the view from Rviz, a tool
for visualizing sensors data coming from ROS and Gazebo, is shown.

that stabilizes a drone, i s not possible and would lead to catastrophic consequences.
ROS offers a package called rqt plot, which has a rudimental interface and allows a
primitive debug, but does not offer a lot of flexibility. A better tool that overcomes
these limitations is PlotJuggler [44]. This tool, which interface is shown in Figure
3.22, allows to visualize timeseries in real time by subscribing to topics during while
ROS is running or a posteriori by loading ROS bag files recorded previously for
analysis. Furthermore, the GUI is pretty flexible, different layouts can be created
and basic operations over signals such as time derivatives can be applied.

3.4.5 OpenCV and NumPy

When it comes to computer vision algorithms implementation, the most popular
tool is OpenCV (Open Computer Vision Library), an open source computer vision
and machine learning software library [45].

(a) (b)

Figure 3.23: OpenCV and NumPy logos.
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Figure 3.22: Example of PlotJuggler GUI.

This library (logo in Figure 3.23a), natively written in C++ and providing inter-
faces in C++, Python, Java and MATLAB, provides a huge number of optimized
algorithms including both classic and state-of-the-art computer vision and machine
learning algorithms and it is distributed under BSD license. These algorithms can
be used for tasks such as recognizing faces, identifying objects, extracting features,
image manipulation, retrieving 3D point clouds from stereo cameras, recognizing 3D
structures, augmented reality and so on.
Among these algorithms, also Farnebäck Dense optical flow algorithm is imple-
mented with pyramids method, which is used for this thesis’ purpose. The chosen
language is Python, supported also by ROS, because OpenCV Python’s library is
a light-weight wrapper for optimized compiled C/C++ functions [46]. Hence, the
performance loss from C++ to Python can be considered negligible, so that it is
possible to combine best features of both the languages, performance of C/C++ and
simplicity of Python. Also, OpenCV-Python interface has full support to NumPy
(logo in Figure 3.23b), a package for scientific computing in Python with multi-
dimensional arrays, that it is also a wrapper around native C code. It is a highly
optimized library which supports a wide variety of matrix operations, highly suit-
able for image processing and machine learning [47]. So combining both OpenCV
functions and NumPy functions correctly, the code will be adequately fast.
Version of OpenCV used for this implementation is version 4.2.
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CvBridge

Given that the processed images by means of Farnebäck optical flow algorithm im-
plementation in OpenCV are coming from the virtual camera coming from simulated
scenario and quadrotor, images must be translated from ROS message of type sen-
sor msgs/Image to OpenCV-NumPy array type. To accomplish this, an ad hoc
made ROS package called CvBridge is used [48]. Its working principle is shown in
Figure 3.24.

Figure 3.24: CvBridge working principle for translating from ROS Image messages to OpenCV
images.

3.5 Test scenarios and performance measurement

3.5.1 Test scenarios

In order to test the local path planning algorithm for obstacle avoidance, the effec-
tiveness is proved in three scenarios that test horizontal avoidance, vertical avoid-
ance and frontal collision avoidance. Considered Gazebo worlds also are modeled in
Python’s library Matplotlib in 2D, considering just the plane of interest, i.e. xy plane
for horizontal and frontal obstacle avoidance and xz for vertical one. Both Gazebo
worlds and Matplotlib maps are shown for each scenario in Figures 3.25, 3.26, 3.27.
Notice that given that Gazebo runs high performance physics engines, the kinematic
and dynamical model of the quadrotor is taken into account in simulations.

3.5.2 Metrics

Minimum distance from obstacles computation

A useful performance indicator to evaluate the obstacle avoidance algorithm is the
minimum distance from obstacles in the map. In order to produce plots of minimum
distance of the drone from obstacles versus time of a given simulation experiment,
this quantity must be evaluated for each position of the drone along its trajectory.
Performances are measured afterwards from ROS bag files analysis, so map is known
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(a) Gazebo world. (b) Map of obstacles in xy plane.

Figure 3.25: Test scenario for horizontal obstacle avoidance.

(a) Gazebo world. (b) Map of obstacles in xy plane.

Figure 3.26: Test scenario for frontal obstacle avoidance.

54



3.5. Test scenarios and performance measurement

(a) Gazebo world.

(b) Map of obstacles in xz plane.

Figure 3.27: Test scenario for vertical obstacle avoidance.
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a priori; furthermore, depending on simulation scenario and the actual type of test,
just a particular 2D plane is of interest (e.g. xy or xz ), so obstacles can be repre-
sented as polygonal shapes composed of segments (in this particular case rectangles).
This simplifies significantly the task of computing the minimum distance in a 2D
plane, provided that every obstacle is represented as a polygon with known vertices.
The problem is hence casted in the simpler task of computing, for each point in the
trajectory, its distances from every segment in the map and choosing the smaller
among those as the distance from the nearest obstacle.

A Python script has been made for extracting information from ROS bag files
(drone’s trajectory from /ground truth/state topic and waypoints sent from /way-
points topic) and from a JSON file that describes the map for each scenario. The
core algorithm of this performance analysis can be summed up in Algorithm 1.

Algorithm 1: Computing minimum distance of drone from obstacles

Input : trajectory: Array containing timestamped positions of drone,
segmentsList: List containing couples of points defining segments

Output: minimumDistanceOverTime: Array containing timestamped
minimum distance from obstacles

for position in trajectory do
for segment in segmentsList do

distance = minDist(position, segment);
distanceArray.append(distance);

end
minimumDistance = min(distanceArray);
minimumDistanceOverTime.append(minimumDistance)

end

Then the obtained values of minimum distances from obstacles over time are
plotted by means of matplotlib.pyplot Python module.
What emerges from the algorithm is that is crucial to compute correctly the distance
from the segment and this is one in function minDist(position, segment), which
applies the following geometrical reasoning: given drone’s position P and segment’s
extremities A and B, such as:

P =

(
xP
yP

)
, A =

(
xA
yA

)
, B =

(
xB
yB

)
the distance of point P from the line to which segment AB belongs and its

orthogonal projection P ′ on it are computed. If this projected point belongs to
segment AB, the returned minimum distance is the one from the line, otherwise the
smaller between the two distances from A and B is returned.
In figure 3.28 the geometric objects considered are shown.
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Figure 3.28: Computation of distance of a point from a segment.

Distance d of point P from line given by segment AB is first computed as the

norm of cross product between the vector
−→
AP and the unit vector û.

d = ‖
−→
AP‖ sin(θ) = ‖û×

−→
AP‖, û =

−→
AB

‖
−→
AB‖

Then, in order to find P ′, the component of
−→
AP along û direction is computed

with a scalar product

‖
−−→
AP ′‖ =

−→
AP · û = (xP − xA)ux + (yP − yA)uy

and point P ′ can be determined as:

P ′ = A+ ‖
−−→
AP ′‖ =

(
xA + ‖

−−→
AP ′‖ux

yA + ‖
−−→
AP ′‖uy

)
=

(
x′P
y′P

)
Now that coordinates of P ′ are known together with segment’s extremities, it is

possible to discriminate if point P ′ ∈ AB. If this conditions is satisfied, minimum
distance from the segment is the same from the line it belongs to d, otherwise it will
be the smaller among the ones from the two endpoints A and B:

minDist(P,AB) =


d , if (xA ≤ xP ′ ≤ xB ∨ xB ≤ xP ′ ≤ xA)

∧ (yA ≤ yP ′ ≤ yB ∨ yB ≤ yP ′ ≤ yA)

min(AP,BP ) , otherwise
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3.5.3 Performances of software in real-time

Given that real-time execution is another requirement, a measurement as precise
as possible of code execution time and performance is necessary. Furthermore,
an insight about which parts of the code increase computational burden would be
convenient so that code optimization can be operated on computationally heavier
functions; hence, using a ”stopwatch technique” where just the time interval passed
between two points in the execution of the code would not tell the whole story. In
order to accomplish this, software profiling is what we are looking for.
Software profiling is the act of using software instrumentation (i.e. addition of code
instructions to monitor components’ performances dynamically, at runtime) to ob-
jectively measure the performances of an application, let those be resource use (e.g.
CPU, memory), frequency or duration of function calls or wall execution time of part
of the application. A software profile outputs then a profile that will be a statistical
summary of the execution of functions and that can be interpreted, by means of
third-party software, in a graphical way so that bottlenecks in performance can be
spotted more easily. However, code instrumentation creates overhead, so it has a
performance cost.
In general, software profilers can be divided in two main categories based on oper-
ating principle: deterministic (or event-based) and statistical profilers. The former
type makes measurement when a certain event happens, such as function call, func-
tion leave or exception rise; these profilers hook function call and return (and more)
events to calculate metrics, so they can precisely spot when functions start and end
at the cost of adding more overhead. On the other hand, statistical profilers makes
their measurements at regular time interval by sampling, by means of operating
system’s interrupts, the target program’s call stack; sampling profiles are typically
less numerically accurate and specific, but allow the target program to run at near
full speed. More specific profiler types exist, but their application is out of the scope
of this thesis.
A variety of software profilers is available for Python language. Actually, Python
comes with a built-in module for profiling called cProfile, but this profiler can-
not deal with multi-threaded software and asynchronous calls, which is ROS case.
Hence, the chosen profiler is Yappi (”Yet Another Python Profiler”) [49], which is
threaded and coroutine aware. Yappi supports call graphs, which are able to store
more information for each function call, because not just how many times the func-
tion was called or how long it took is stored, but also the whole call stack, including
the function that called the considered one. Call graph format allows to create
graphical representations of code performance so that information can be visualized
and understood in a more immediate way. There are several call graphs visualizers
available for visualizing Valgrind’s callgrind format produced by Yappi. The one
that has been chosen is KCacheGrind, available for Linux operating systems. An
example of its GUI can be seen in Figure 3.29.

The software not only provides a list of called functions with detailed information,
but also allows the visualization of time consumption in two formats: treemaps,
where each function is represented as a box containing other boxes representing in
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Figure 3.29: KCacheGrind is a GUI based tool made for visualizing software profilers outputs,
which format is in the form of call graphs. Here a generic example is shown.

turn its subfunctions and each box’s area is proportional to the respective function’s
execution time, and call graphs, which better highlight relationships between caller
function and callee function.
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Chapter 4

Proposed solution

Once spotted the main limitations of optical flow (OF) based obstacle avoidance al-
gorithm available in literature, here the main contribution of this thesis is explained
in details: a local path planning strategy for obstacle avoidance able to work in
3D, deal with frontal obstacles, that doesn’t make a priori assumptions about envi-
ronment structure, real-time implementable and deployable on onboard embedded
systems.

4.1 Optical Flow based Obstacle Avoidance (OFOA)

strategy

The proposed algorithm exploiting OF computed from a frontal monocular camera
uses OF unbalance principle. Given that the drone is controlled in position, an
intermediate waypoint is prepended to the given waypoints list that the drone has
to follow, so that the obstacle is avoided successfully. Said intermediate waypoint’s
coordinates are computed using optical flow unbalances signals and optical flow
expansion signal. This principle is also the one spotted in nature in some insects
and birds behaviour: for instance, if objects seem to move faster on the right side
of the field of view (FOV), that should mean obstacles on the right are at a smaller
distance from us, hence to avoid them a movement to the left is required. The same
holds for vertical obstacle avoidance: with a floating obstacle we will have faster
optical movement in the upper part of our field of view, hence it is required to move
downwards to avoid colliding with the obstacle. As far as frontally approaching
obstacles are concerned, expansion of optical flow (EOF) signal is computed: as we
approach an object frontally, we see it expanding in our FOV (i.e. expanding OF),
so we have to stop and head left or right to avoid it.

4.1.1 OF unbalance computation

Optical flow magnitude unbalances must be obtained as signals over time, hence in
order to do this, different areas in the image, called templates, must be defined. The
defined templates can be seen highlighted in Figure 4.1.
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4.1. Optical Flow based Obstacle Avoidance (OFOA) strategy

Figure 4.1: Templates geometry notation.

First, the region of interest (ROI) smaller than frame’s dimensions is defined,
because external parts of the frame contain objects that are not directly colliding
with quadrotor. Hence the templates are defined inside ROI. For vertical unbalance,
templates vertical-up (VU) and vertical-down (VD) are considered; for horizontal
unbalance horizontal-left (HL) and horizontal-right (HR); for frontal avoidance a
smaller template (FR) containing just obstacles directly in front of quadrotor is
considered. Templates’ geometry is defined around ROI’s center, that is considered
fixed with the frame’s center

C =

(
W

2
,
H

2

)
= (cx, cy)

according to x and y notation in Figure 4.1, where W = 320, H = 240 in hec-
tor quadrotor ’s camera case.

Let’s define OF vector field as:

OF(x, y, t) = u(x, y, t)̂i + v(x, y, t)̂j

where (x, y) is the position of the pixel to which OF vector corresponds, com-
puted for iteration at time instant t (discrete time, synchronous with main algorithm
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iteration) and u and v are the horizontal and vertical vector components respectively.
The field is then adequately compensated for self-motion produced OF, obtaining
OFC field, more information in subsection 4.1.1. Then, for each template, the re-
spective OF vector field sub-region is selected, magnitude and its overall sum are
computed for each time instant:

σV U(t) =
∑

(x,y)∈V U

‖OFC(x, y, t)‖

σV D(t) =
∑

(x,y)∈V D

‖OFC(x, y, t)‖

σHL(t) =
∑

(x,y)∈HL

‖OFC(x, y, t)‖

σHR(t) =
∑

(x,y)∈HR

‖OFC(x, y, t)‖

From magnitude total sum from each template, vertical and horizontal unbalance
signals are computed:

eV (t) = σV D(t)− σV U(t)

eH(t) = σHR(t)− σHL(t)

The unbalance signals are very noisy and sometimes they can show spikes, hence
in order to smooth these signals a Moving Mean Filter (MMF) is applied. MMF
averages a discrete signal by producing as output at instant t the average of the last
M signal’s samples. Hence filtered versions of unbalance signals are produced:

eV (t) =
1

M

M−1∑
i=0

eV (t− i), M = 3

eH(t) =
1

M

M−1∑
i=0

eH(t− i), M = 3

Length of filter’s memory M has been set by trial and error procedure.

Self-motion generated OF compensation

Given that the OF field generated is the result of the relative motion between the
drone, hence the camera fixed to it, and the surrounding environment, quadrotor’s
movement is influencing the result. Hence, when the quadrotor is turning around
z axis, there will be an OF horizontal component generated by this movement that
is considered as a disturb for the aim of our algorithm. In the same way, pitching
occurring when quadrotor passes from hovering to motion in order to reach next
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waypoint or gaining height are movement that generate an unwanted vertical com-
ponent of OF field. Given that we are interested just in the OF generated by forward
motion to avoid obstacles, these components must be compensated.

The best way to compensate these self-generated OF components is to reduce
in magnitude, by multiplying by a time-varying coefficient which value can span
between 0 and 1, the whole field, affecting separately vertical and horizontal com-
ponents with respective factors. Hence, recalling OF field is defined as:

OF(x, y, t) = u(x, y, t)̂i + v(x, y, t)̂j

a compensated version

OFC(x, y, t) = uC(x, y, t)̂i + vC(x, y, t)̂j

is defined.
The horizontal component is affected just by yaw rate ψ̇(t) at time t, considering

that quadrotor will never move sideways. Therefore the compensation is operated
by the following equation:

uC(x, y, t) = u(x, y, t)
1

1 +KC,yaw|ψ̇(t)|

The 1 added at denominator is for avoiding singularity that would occur for very
small values of yaw rate, while absolute value is for keeping the coefficient positive
and influence the compensation in the same way independently from yaw rotation
direction. In a similar way the vertical components of the OF field are compensated
for the effect induced by climbing rate ḣ(t) and pitch rate q(t):

vC(x, y, t) = v(x, y, t)
1

1 +KC,lin z|ḣ(t)|+KC,pitch|q(t)|

By means of a trial and error procedure conducted with the help of PlotJuggler,
the coefficients have been tuned and their values are reported in Table 4.1.

Table 4.1: Coefficient for self-motion OF compensation.

Coefficient Value

KC,yaw 20
KC,lin z 8
KC,pitch 2
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4.1.2 Intermediate waypoint computation

With the obtained signals, both for horizontal of vertical avoidance and for frontally
approaching obstacles, the situation can be evaluated and the OFOA strategy can be
triggered if necessary. In order to understand that, thresholds are defined and if any
of the three signals goes above respective threshold, the OFOA strategy is triggered
and the adequate intermediate waypoint is computed. This is done by using the
signals in order to compute the polar coordinates in the mobile (vehicle) reference
frame and then translating it in cartesian coordinate in the fixed (world) reference
frame, as shown in Figure 4.2. Notice that while in previous chapter some refer-
ence frames where defined, those were used for deriving the kinematic and dynamic
model of quadrotor, while here reference frames used are the ones used in Gazebo
simulation environment (with z axis pointing away from Earth’s center), given that
these equations have the aim of computing waypoints for local path planning to be
referenced in the simulator.

Figure 4.2: Intermediate waypoint computation for obstacle avoidance.

Depending on which avoidance is required, horizontal/vertical or frontal, differ-
ent equations for computing polar coordinates in vehicle reference frame are used.

For horizontal or vertical avoidance, the following equations for computing r, θ
and ψ at time instant t are applied:
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r = rV,H

θ(t) =


KP,V eV (t), if eV (t) > τV ∧

(
−π

2
≤ KP,V eV (t) ≤ +π

2

)
−π

2
, if eV (t) > τV ∧ KP,V eV (t) < −π

2

+π
2
, if eV (t) > τV ∧ KP,V eV (t) > +π

2

0, if eV (t) ≤ τV

ψ(t) =


KP,H eH(t), if eH(t) > τH ∧

(
−π

2
≤ KP,H eH(t) ≤ +π

2

)
−π

2
, if eH(t) > τH ∧ KP,H eH(t) < −π

2

+π
2
, if eH(t) > τH ∧ KP,H eH(t) > +π

2

0, if eH(t) ≤ τH

Basically, the intermediate waypoint will always be at a specified radius of dis-
tance from current quadrotor’s position and the computed angles, if the the respec-
tive unbalance signals are above the defined thresholds τV or τH , are proportional
to signal magnitude in that time instant t of a gain KP,V or KP,H . Then, if the
computed values are exceeding ±π

2
, they are clamped to that value.

For frontal avoidance instead, given that the obstacle cannot just be circumnav-
igated but requires a right angle turn to be avoided, equations for for computing r, θ
and ψ at time instant t assume this form:

r = rF

θ(t) = 0

ψ(t) =

{
−π

2
, eH(t) ≤ 0

+π
2
, eH(t) > 0

The values for thresholds, gains and radii has been found by trial and error
procedure and are reported in Table 4.2.

Table 4.2: Parameter values used in OFOA strategy

Coefficient Value

rV,H 0.7
rF 1.7
τV 3500
τH 5000
τF 2300
KP,H 4e-5
KP,V 2e-4
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The frontal avoidance has priority over horizontal and vertical avoidance. Hence
if, for instance, both EOF (t) and eV (t) are above the respective thresholds at a
certain time instant t, only the frontal avoidance is applied and the second set of
equations will be used.

Finally, given that now the polar coordinates in the vehicle reference frame are
computed, the translation in cartesian coordinates in the world reference frame is
needed in order to feed this point as a reference in position to the quadrotor’s
controller. Defining η(t) as the heading of the quadrotor with respect to world
reference frame’s x axis, pI as the intermediate waypoint in world reference frame
and pQ as the quadrotor’s position, coordinates of pI are computed as:

xI(t) = r cos θ(t) cos(ψ(t) + η(t)) + xQ(t)

yI(t) = r cos θ(t) sin(ψ(t) + η(t)) + yQ(t)

zI(t) = r sin θ(t) + zQ(t)

The computed waypoint is now prepended to the stored waypoints list and will
be used as the next reference in order to avoid the obstacle.

4.2 OFOA Algorithm software implementation

The previously formalized strategy for obstacle avoidance is implemented by means
of ROS and tested in Gazebo simulation environment. The algorithm is implemented
as a Python class that creates a ROS node called /ofoa manager which aim is to
run cyclically the algorithm at a fixed frequency (5 Hz) by associating the main
algorithm’s function to a ROS Timer object. For feeding inputs to the algorithm,
the node subscribes to different topics and every time a new message arrives from a
subscribed topic the appropriate callback function is called and the retrieved infor-
mation is stored in the respective lass attribute. Hence, when the main algorithm is
called, the inputs used are always the latest received. When algorithm computation
is completed, the produced outputs, such as control commands and state informa-
tion, are published on appropriate topics.
A graph of nodes /gazebo and /ofoa manager and main topics (not all of them) used
during a simulation session can be seen in Figure 4.3, while a detail with just inputs
and outputs of /ofoa manager can be seen in Figure 4.4.

The node subscribes to topics :

• front cam/camera/image for retrieving image frames coming from frontal monoc-
ular camera as message type sensors msgs/Image. Images are converted from
Image messages to OpenCV format by means of a ROS package called CvBridge;

• waypoints for receiving next waypoints produced and sent by a global path
planning algorithm as message type geometry msgs/Point, and appending
them to the internally stored waypoint’s list;
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Figure 4.3: Graph representing ROS nodes and topics active during a simulation session.
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Figure 4.4: Graph of inputs an outputs for node /ofoa manager.

• /ground truth/state to retrieve its own pose and velocities (linear and angular),
as message type nav msgs/Odometry.

The node also publishes commands and information over topics such as:

• command/pose for sending position and orientation reference to flight con-
troller in the form of geometry msgs/PoseStamped messages;

• ofoa manager/image/onboard osd display for streaming what the OF algo-
rithm sees with some additional information such as type of obstacles detected,
frame rate and templates geometry, all as sensors msgs/Image messages. An
example of that can be seen in Figure 4.5;

• ofoa manager/telemetry to send telemetry message for retrieving information
about the OFOA manager state; telemetry messages are of custom defined
type hector ofoa/OFOAManagerTelemetry, useful for real-time debugging by
means of PlotJuggler.

The the class method containing the main OFOA algorithm and run at the
fixed ROS Timer’s frequency follows the working principle shown in the flowchart
in Figure 4.6.

The function can be divided mainly in 3 phases: status evaluation, control com-
mand computation, produced outputs publishing.
In the status evaluation phase the gathered information stored in class’ attributes
is used to compute different quantities. From last two frames obtained by frontal
camera, OF field is computed and then compensated. Then from each template,
overall magnitude sum signals are computed as well as OF unbalance signals; TTC
and then EOF are then computed from obtained OF field. Then, the obtained sig-
nals are compared with respective thresholds to identify the kind of avoidance is
required, also taking into account if the obstacle avoidance is enabled, and respec-
tive flags are set or cleared.
In the control command computation the previously evaluated flags are used to de-
cide if and which kind of avoidance is required. First, the algorithm checks if the
quadrotor has arrived near the desired waypoint within a certain radius and in that
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Figure 4.5: Screenshot of OFOA manager node OSD images streamed on topic
/ofoa manager/image/onboard osd display.

case pops the waypoint from the list, moving to the next one (if list is not empty
afterwards). Then, if obstacle avoidance is not required or the drone is already head-
ing to a previously computed and appended intermediate waypoint, the quadrotor
heads to that point. If otherwise obstacle avoidance is required, the previously
stated equations are used to compute correctly the waypoint required depending on
which condition occurred, with frontal avoidance having higher priority, and then
the waypoint is appended to stored list, so that it can be set as position reference.
A flag is then set to know that the next waypoint is an intermediate one, prevent-
ing the algorithm to compute a new one at each iteration and appending it to the
list. When the quadrotor then sets a reference pose, whichever type of waypoint is
moving towards, first hovers in place and turns towards the waypoint, then starts
moving once the alignment has been achieved under a certain tolerance.
In the last phase, produced outputs are published over respective topics.
In order to measure actual execution time, a timer is started when the OFOA al-
gorithm function is called and is stopped before publishing outputs, so that it can
appropriately being superimposed by OSD function and streamed in telemetry mes-
sages. The cycle is then repeated when next call operated by ROS timer object will
occur.
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Figure 4.6: Flowchart representing OFOA algorithm Python function, called at a fixed rate in
order to solve the obstacle avoidance problem in real-time.
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4.2.1 EOF computation

Here the particular software implementation for EOF computation so that opti-
mized operations can be exploited is explained. In order to compute the EOF for
frontal obstacle avoidance, the used equations are the ones already introduced in
previous chapter, here reported as reference.

EOFi =
OFDIV,i
‖ri‖

=
OFi · ri
‖ri‖2

EOF =
N∑
i

EOFi

Given that the problem has to be solved for each pixel in the FR template, the
most efficient way to implement that in code avoiding the use of for loops is to
vectorize the algorithm so that NumPy optimized code can be used. In practice,
instead of having a W × H × 2 tensor OF that holds the OF field information
for the frontal template of width W and height H and holds the ui and vi vectors
components for the ith pixel in the third dimension, the tensor is reshaped to a
”column vector” OFcol (actually a 2D matrix because each row represents a OF
vector in its components ui and vi) with shape N × 2, where N = W ×H.

OF =

 (u, v)1,1 . . . (u, v)1,W
...

. . .

(u, v)H,1 . . . (u, v)H,W

 ⇒ OFcol =


u1 v1
...

...
ui vi
...

...
uN vN


In this way, operating by rows we compute the result by using optimized opera-

tions. The same reasoning holds for each quantity involved in the computation. A
N × 2 array containing indices of pixels’ positions respective to OFcol is built. Then
the array r containing the distance vectors from FOE for each pixel is obtained by
subtracting FOE coordinates from the previously obtained array of indices.

r =


r1
...
ri
...
rN

 =


x1 y1
...

...
xi yi
...

...
xN yN

−
(
FOEx FOEy

)

Hence ‖r‖ is obtained by applying euclidean norm to each row. Then the dot
product OF · r is also applied row by row with optimized operations and element-
wise division is computed between OF · r and ‖r‖2 in order to obtain the EOFi for
each pixel. The total sum is then computed, obtaining the final value of EOF for
that time instant.
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Results

In order to evaluate performances of the algorithm proposed as a solution to the
stated problem, results from simulated experiments setup are analyzed as far as
two aspects are concerned: capability of obstacle avoidance by keeping an adequate
distance and real-time software performances.

5.1 OFOA algorithm effectiveness in simulated test

scenarios

From previously defined Gazebo test worlds, simulations are run, each one with dif-
ferent starting point, and recorded in ROS bag files so that analysis can be carried
out a posteriori.
For each scenario, 20 simulations are run with randomly generated starting points
in the plane of interest according to a 2D Gaussian distribution; a further one with
the origin (0, 0, 0) as starting point is considered. Normal distribution parameters
used for each simulation are reported in respective subsection.
The designed Python script produces two kinds of plots. The first one is a plot
of all simulations’ trajectories with obstacle profiles and an ellipse which principal
semi-axes are 3σ of the randomly distributed starting point displacement along that
direction, highlighting hence the 99.7% of the possible starting locations. The sec-
ond kind of plots shows, for each run, the minimum distance of the drone from
the nearest obstacle. In order to compute success rate, the size of the quadrotor
is considered: the collision is determined if the nearest obstacle is below a certain
distance from the center of the quadrotor. This threshold is set as the half of the
size of the quadrotor along x or y in horizontal plane avoidance scenarios or along z
in vertical plane avoidance scenarios, incremented of 30% as a sort of safety factor.
Hence, in the horizontal plane the threshold for successful obstacle avoidance is set
at 0.52 m while in the vertical plane is set at 0.14 m. A dashed line is plotted to
denote threshold’s value.

In the following subsections, results are quantified by the computation of success

72



5.1. OFOA algorithm effectiveness in simulated test scenarios

rate, minimum distance from nearest obstacle among all successful runs, average
minimum distance among all runs, standard deviation of minimum distance among
all runs.

5.1.1 Lateral obstacle avoidance on xy plane

Results obtained in this scenario are plotted in Figure 5.1 and summed up in Table
5.1. As can be seen, the drone successfully reaches commanded waypoint by correctly
avoiding lateral obstacles.

5.1.2 Frontal obstacle avoidance on xy plane

Results obtained in frontal obstacle scenario are plotted in Figure 5.2 and summed
up in Table 5.2.
As shown, in this case success rate is not 100% because of the simulation run in
which the frontal obstacle wasn’t detected as such, leading the drone to avoid it by
means of horizontal unbalance, that in the considered situation didn’t provide high
enough unbalance to produce a sufficiently wide angle, leading it to crash.

5.1.3 Vertical obstacle avoidance (floating obstacle and hor-
izontal slit) on xz plane

Results obtained in vertical obstacle scenario are plotted in Figure 5.3 and summed
up in Table 5.3.
This scenario tests the capability of the algorithm to avoid both floating obstacles
and ground obstacles which can be climbed over, without crashing in another upper
obstacle, hence passing through a slit.
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(a) Trajectories of all simulations.

(b) Minimum distance form nearest obstacle.

Figure 5.1: Plots of results obtained from simulations run in lateral obstacle avoidance scenario in
horizontal plane.

Table 5.1: Summary of results from simulations run in lateral obstacle avoidance scenario.

Starting point X ∼ N (0, 0.52) m
Y ∼ N (0, 0.52) m

Success rate 100 %
Minimum distance 0.54 m
Average minimum distance 0.66 m
Standard deviation 0.06 m
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(a) Trajectories of all simulations.

(b) Minimum distance form nearest obstacle.

Figure 5.2: Plots of results obtained from simulations run in frontal obstacle avoidance scenario in
horizontal plane.

Table 5.2: Summary of results from simulations run in frontal obstacle avoidance scenario.

Starting point X ∼ N (0, 0.32) m
Y ∼ N (0, 0.32) m

Success rate 95.2 %
Minimum distance 0.59 m
Average minimum distance 0.73 m
Standard deviation 0.14 m
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(a) Trajectories of all simulations.

(b) Minimum distance from nearest obstacle.

Figure 5.3: Plots of results obtained from simulations run in vertical obstacle avoidance scenario
in vertical plane.

Table 5.3: Summary of results from simulations run in vertical obstacle avoidance scenario.

Starting point X ∼ N (0, 0.32) m
Z ∼ N (1.5, 0.32) m

Success rate 100 %
Minimum distance 0.31 m
Average minimum distance 0.53 m
Standard deviation 0.12 m
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5.2 Real-time software performances

Given that a requirement that this thesis aims to satisfy is real-time implementabil-
ity of the algorithm, not only that quadrotor properly avoids obstacles is required,
but also a reasonable execution time for the main obstacle avoidance algorithm must
be guaranteed.
Software performance analysis is here conducted from two different aspects: code op-
timization by software profiling and algorithm execution time statistics on different
platforms.

5.2.1 Software profiling and code optimization

In order to let the algorithm being real-time implementable, an analysis of where
the most part of execution time is spent in the code has to be carried out. The
method used to identify bottlenecks and try to optimize slower parts of code is soft-
ware profiling, which gives an insight about the relative cost of each code part. To
accomplish this task, software profiling tools such as Yappi Python library are used,
so that code is instrumented in order to measure execution time of each thread and
time spent in function calls. Main obstacle avoidance algorithm’s ROS node is in-
strumented with Yappi and run for around 60 s and a profile file in Callgrind format
is generated at the end of the experiment. This is afterwards fed to KCacheGrind
call graph visualizer in order to see how long does each function takes to execute.
Experiments are carried out by deploying the algorithm’s ROS node on the devel-
opment platform NVIDIA Jetson TX1, shown in Figure 5.4.

Figure 5.4: NVIDIA Jetson TX1 Development Kit platform for vision computing. The board is
hosting the Jetson TX1 module, which offers high computational capabilities with 256 core GPU
and low power consumption.

The board is based on Jetson TX1 module, which offers an NVIDIA Maxwell
GPU with 256 CUDA cores, a quad-core ARM Cortex-A57 MCore CPU running
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at 1.9 GHz, 4 GB LPDDR4 RAM and 16 GB flash storage. The OS running on it
is Ubuntu 14.04 and multiple communication interfaces are available, such as WiFi
module. The module alone weights 88 g and consumes 6.5− 15 W .
Given that ROS is a distributed system by nature, running ROS nodes on different
platforms simultaneously letting them communicating with each other is made easy,
as long as every platform hosting ROS nodes is connected on the same LAN and
every ROS node knows ROS master’s IP address and port.

The setup for the hardware-in-the-loop (HIL) simulation is shown in Figure 5.5.

Figure 5.5: Setup for HIL simulation. On the left, the Jetson TX1 Development Kit is connected
to a monitor via HDMI cable, running Ubuntu 14.04 and OFOA ROS node. On the right, the
laptop with virtualized Ubuntu 18.04 which hosts ROS master node and Gazebo simulator. The
Jetson TX1 and the PC are connected by means of the WiFi router acting as a gateway, in the
middle.

Profiling visualization of main OFOA algorithm function in the node is shown
in Figure 5.6 in both forms of tree map and call graph. Execution time is measured
in actual wall time and expressed in terms of CPU ticks.
What can be noticed from Figure 5.6a is that the majority of time is spent in com-
puting the OF field, actually 84.79% of the overall time spent in caller function
OFOAMainAlgorithm, making it the real bottleneck of the whole algorithm. OF
field computation is implemented by an OpenCV function that recalls an optimized
compiled algorithm in C++, hence cannot be optimized anymore.
The second most expensive function is the one used to compute TTC and EOF for
frontal obstacle avoidance evaluation, with a time cost of 6.16% of main function
execution time. The computation of TTC and EOF has already been vectorized
with NumPy array in order to exploit the highly optimized compiled modules for
array operations, hence the function is already in its optimal form. Other functions

78



5.2. Real-time software performances

(a)

(b)

Figure 5.6: Treemap (5.6a) and call graph (5.6b) profiling representation by means of KCacheGrind
of function OFOAMainAlgorithm run on NVIDIA Jetson TX1.
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are reported in decreasing execution time percentage order, but with lower overall
impact and containing non-optimizable or already optimized operations.

5.2.2 Algorithm execution time statistics and Hardware-in-
the-loop (HIL) simulation

Optimizing code is not enough if the algorithm cannot produce results at a reason-
able rate in order to be used on real onboard embedded systems and react in real
time. Hence, a statistical analysis of main algorithm execution time is carried out
here on different platforms.
In order to produce the measurements, a timer starts at the beginning of main algo-
rithm function and it’s stopped at the end of its execution, evaluating time elapsed
and, by its inverse, the frequency of execution ideally achieved in that iteration. Here
operating system time is considered, not simulation time. This information is then
published by means of telemetry ROS messages of type OFOAManagerTelemetry
created on purpose for debugging, where entries time delta and fps hold execution
time and its inverse respectively. A ROS bag file is recorded for around 60 s of ex-
ecution (wall time) and finally statistics are computed by a Python script designed
for this purpose that retrieves time evolution of these quantities and outputs mini-
mum, maximum, average value and its standard deviation. In case the algorithm is
implemented as a process to be scheduled in an operating system in an embedded
system, in order to obtain a feasible scheduling the maximum execution time can be
considered the worst case execution time (WCET), used in design phase to choose
the task period. An histogram to show samples distribution is also produced and
reported in following results.
The main algorithm function is associated to a ROS timer object which frequency
is set to 5 Hz, hence with period 200 ms, that is a safe enough value in order to let
all the operations be executed without excessively compromising obstacle avoidance
reactivity.

Measurements are first made on the same platform where simulations are run, i.e.
Ubuntu 18.04 run on Virtual Box, and then deployed on real embedded hardware
that can be practically mounted onboard on a quadrotor.

Simulation with VM VirtualBox

Previously reported simulations are run on Ubuntu 18.04 LTS virtualized by means
of Oracle VM VirtualBox. The PC on which VirtualBox runs is a Dell XPS 15, with
an Intel Core i7-9750H 6-cores CPU which run at 2.6 GHz and 16 GB of RAM and
an Intel UHD Graphics 630 GPU with 8 GB memory. The VM is set with 3 of the
6 available cores and 8 GB of RAM of the 16 GB available.
In Figure 5.7 the time evolution plot of OFOAMainAlgorithm execution time over
a 1 minute (wall time) run is shown.
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The reported time evolution, after an analysis carried out by a Python script, gives
the statistical results reported in Table 5.4.
As can be noticed, the maximum execution time (or WCET) required from the main
algorithm to be executed in the conducted experiment is lower than the 200 ms set
period.

Hardware-in-the-loop simulation with NVIDIA Jetson TX1

In order to have a more practical idea of how the software would behave in a real sce-
nario, the OFOA manager ROS node is deployed on the already mentioned NVIDIA
Jetson TX1 board.
Execution time trend and its distribution in time in histogram form are reported in
Figure 5.8. Statistical analysis produced by Python script gives results reported in
Table 5.5. The results show that the algorithm can be deployed on an embedded
hardware and be able to keep up with required rate with no problems.

Hardware-in-the-loop simulation with RaspberryPi 4

As a further test, the algorithm is tested with the same method on a RaspberryPi 4,
a cheaper alternative to Jetson TX1 board, but powerful as well, shown in Figure 5.9.
RaspberryPi 4 is a Linux-based computer on a board, mounting a Quad core Cortex-
A72 (ARM v8) 64-bit CPU running at 1.5 GHz, 4 GB LPDDR4-3200 SDRAM
memory, several connections such as 2.4 GHz and 5.0 GHz WiFi, USB 3.0 and a
40 pins GPIO that let the designer interface the board with actual hardware. The
board weights 46 g and power consumption is around 3− 6.25 W .

Figure 5.9: RaspberryPi 4 board, a powerful Linux-based embedded system.

The most popular OS used on RaspberryPi 4 is Raspbian OS, but the board is
able to run any Linux-based OS (by always keeping an eye on performance require-
ments). Given that ROS is needed on the RaspberryPi to run the OFOA manager

81



Chapter 5. Results

(a)

(b)

Figure 5.7: Time evolution of OFOAMainAlgorithm function execution time in each iteration run
on VirtualBox, visualized by means of PlotJuggler (5.7a) and Matplotlib (5.7b) in histogram form.

Table 5.4: Statistics of main algorithm computation time performance run in VirtualBox environ-
ment.

Time [ms] Frequency [Hz]

Mininum 48.2 5.46
Maximum 183.3 20.73
Average 94.6 11.39
Standard deviation 27.0 3.03
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(a)

(b)

Figure 5.8: Time evolution of OFOAMainAlgorithm function execution time in each iteration run
on Jetson TX1 board, visualized by means of PlotJuggler (5.8a) and Matplotlib (5.8b) in histogram
form.

Table 5.5: Statistics of main algorithm computation time performance run on NVIDIA Jetson TX1
embedded system.

Time [ms] Frequency [Hz]

Minimum 97.7 6.27
Maximum 159.4 10.24
Average 124.8 8.07
Standard deviation 11.9 0.78
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node and ROS is not available for Raspbian OS, the Ubuntu distro Ubuntu MATE
18.04 LTS has been flashed on the micro SD card that is used as storage and main
boot drive. Then ROS Melodic has been installed and OFOA manager node has
been correctly setup to run on it. The experimental setup for HIL is shown in Figure
5.10.

Figure 5.10: Setup for HIL simulation. On the left, the RaspberryPi 4 is connected to a monitor via
HDMI cable, running Ubuntu MATE 18.04 and OFOA ROS node. On the right, the laptop with
virtualized Ubuntu 18.04 which hosts ROS master node and Gazebo simulator. The RaspberryPi
and the PC are connected by means of the WiFi router acting as a gateway, in the middle.

A 60 s long ROS bag recording is done and, as before, algorithm execution time
is visualized by PlotJuggler and Python script in Figure 5.11, while its statistics can
be seen in Table 5.6.
As results show, the RaspberryPi 4 board can perfectly manage the computations in-
volved, with a minimum frequency of 12.75 Hz, more than double the minimum one
performed by Jetson TX1 board, and average frequency is almost double. Further-
more, RaspberryPi 4 weights around 52% of Jetson TX1’s weight and its maximum
consumption is around 41.7% in comparison. Hence, RaspberryPi 4 not only can
handle the real-time requirement better than Jetson TX1 module, but it is more
power efficient and lighter in weight, making it suitable to be mounted onboard on
a quadrotor.
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(a)

(b)

Figure 5.11: Time evolution of OFOAMainAlgorithm function execution time in each iteration
run on RaspberryPi 4 board, visualized by means of PlotJuggler (5.11a) and Matplotlib (5.11b) in
histogram form.

Table 5.6: Statistics of main algorithm computation time performance run on RaspberryPi 4
embedded system.

Time [ms] Frequency [Hz]

Minimum 58.7 12.75
Maximum 78.4 17.02
Average 66.8 15.00
Standard deviation 2.9 0.63
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Chapter 6

Conclusions and future work

6.1 Summary of results

In this research, first of all, a review of all the most recent scientific literature pro-
duced about optical flow based obstacle avoidance strategies for UAVs has been
carried out at the best of my knowledge and, after spotting possible main limita-
tions across different studies, a classification of limitations has been proposed. From
identified limitations, the objective of obtaining a monocular optical-flow-based 3D
obstacle avoidance strategy that is real-time implementable by onboard hardware is
stated.
After that, the kinematic and dynamic nonlinear equations of a quadrotor aerial ve-
hicle has been derived together with the inertia matrix of an ideal version of quadro-
tor. The cascaded PID implemented by used ROS package to control quadrotor’s
flight in position is then explained and correctly tuned. After delving in optical flow
algorithms theory and their classification, the Gunnar Farnebäck Dense OF method
is chosen among others for characteristics and performances reasons and is explained,
as well as concepts such as focus of expansion (FOE), time-to-contact (TTC) and
expansion of flow (EOF) and their mathematical computation. Then the chosen
software for algorithm implementation, simulation and performances measurement
is shown and motivated. Test scenarios in which avoidance performances of the
algorithm are tested have been identified so that effectiveness in different kinds of
situations can be proved: one with lateral obstacles for testing horizontal avoidance,
one with a frontal wall to test frontal avoidance and one with a floating obstacle and
a slit for testing vertical avoidance. Performances measurement metrics, both for
obstacle avoidance and for software performance, are then formalized and reported.
A solution to the stated problem is then proposed by designing a local path planning
strategy, operating by commanding appropriate waypoints to the quadrotor, which
working principle is similar to the one used by some insects and birds exploiting gen-
erated optical flow from frontally mounted monocular camera to understand where
in the frame there is more optical movement by means both of optical flow unbalance
principle and moving in the opposite direction to avoid the obstacle and expansion
of the optical flow to identify a frontal obstacle and avoiding it, all by computing
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an intermediate waypoint based on aforementioned information and prepending it
to the already stored list of waypoints.
Finally, the solution is implemented as a ROS node written in Python, tested in
the defined scenarios and performances are measured. Results in the three sce-
narios show a very high success rate, in particular 100% in horizontal and vertical
avoidance and 95.2% for frontal avoidance by considering a minimum safe distance
from obstacles, showing the effectiveness of the proposed method. The ROS node
is run both on the same PC running Gazebo, hence performing a SIL test, and on
two embedded hardware platforms such as NVIDIA Jetson TX1 and RaspberryPi4
exploiting the distributed nature of ROS, doing then an HIL test. Software perfor-
mances are measured both by means of a profiler in order to test code optimization
and also by measuring statistical behaviour of algorithm execution time on each
platform. Results show that the software is already optimized, with the optical flow
field computation as the main bottleneck for performances and execution time wise
algorithm can run in real time on both the tested embedded systems, where Jetson
TX1 lets it run with a minimum frequency of at least 6.27 Hz and an average one
of 8.07 Hz, while the RaspberryPi guarantees a minimum frequency of 12.75 Hz
and an average one of 15.00 Hz, but with a weight being 52% and estimated power
consumption being 41.7% of the Jetson’s ones, making it more suitable for onboard
integration.

6.2 Future research

The proposed algorithm, even if proved effective, has some limitations such as de-
pendence on visibility: in dark environments is difficult for camera to obtain suf-
ficiently well exposed images. Environments with poorly textured objects can be
a problem too because the optical flow computation algorithm struggles in finding
relationships between pixels among two consecutive frames. A possible solution is
integrating other types of sensors such as IR cameras or laser scanners, increasing
however the cost of the application and not by a small amount, even if laser scanner
sensors are becoming cheaper.
A way to improve robustness, given that the frontal position of the camera prevents
the quadrotor from being aware of obstacles on the sides such as wall corners due
to limited FOV angle, could be to add lateral sonar sensors to spot them and react
accordingly; same reasoning holds for obstacles above and below quadrotor.
Another limitation comes from the fact that being the sampled information (the
image) coming just from a monocular camera, the information about depth is lost;
hence, to make the algorithm more robust, a stereoscopic camera can be used instead
at the cost of an heavier computational burden beside economical cost in order to
retrieve depth information and applying the optical flow unbalance to this informa-
tion, being also able to better estimate time-to-contact.
A further development of the method is the integration of this local path planning
strategy into a team global path planning strategy, so that more complex tasks
can be accomplished and robustness of overall team global path planning can be
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improved.

88



Bibliography

[1] “Amazon wins FAA approval for Prime Air drone delivery fleet”. In: CNBC
(2020). url: https://www.cnbc.com/2020/08/31/amazon-prime-now-
drone-delivery-fleet-gets-faa-approval.html.

[2] U.S. military UAS groups. url: https://en.wikipedia.org/wiki/U.S.
_military_UAS_groups.

[3] 2019-2020 World Military Unmanned Aerial Systems Market Profile & Fore-
cast by Teal Group. url: https://www.tealgroup.com/index.php/pages/
press-releases/64-teal-group-predicts-worldwide-military-uav-

production-of-almost-99-billion-over-the-next-decade-in-its-

2019-2020-uav-market-profile-and-forecast.

[4] Mandyam Srinivasan, Saul Thurrowgood, and Dean Soccol. “Competent vision
and navigation systems”. In: Robotics & Automation Magazine, IEEE 16 (Oct.
2009), pp. 59–71. doi: 10.1109/MRA.2009.933627.

[5] James Jerome Gibson. “The Perception of the Visual World”. In: Jan. 1950.
isbn: 978-1114828087.

[6] Berthold K.P. Horn and Brian G. Schunck. “Determining optical flow”. In: Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, U.S.A. Vol. 17. 1981, pp. 185–204.

[7] Blin Richards et al. “Obstacle Avoidance System for UAVs using Computer
Vision”. In: AIAA Infotech @ Aerospace. 2015. doi: 10.2514/6.2015-0986.
eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2015-0986. url:
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0986.

[8] Jan Blumenkamp. “End to end collision avoidance based on optical flow and
neural networks”. In: ArXiv abs/1911.08582 (2019).

[9] Ajay Shankar, Mayank Vatsa, and P.B. Sujit. “A Low-Cost Monocular Vision-
based Obstacle Avoidance using SVM and Optical Flow”. In: Unmanned Sys-
tems 6 (Aug. 2018). doi: 10.1142/S2301385018500097.

[10] Huiqi Miao and Yan Wang. “Optical Flow Based Obstacle Avoidance and
Path Planning for Quadrotor Flight”. In: June 2018, pp. 631–638. isbn: 978-
981-10-6444-9. doi: 10.1007/978-981-10-6445-6_69.

89



Bibliography

[11] P. Gao et al. “Obstacle avoidance for micro quadrotor based on optical flow”.
In: 2017 29th Chinese Control And Decision Conference (CCDC). 2017, pp. 4033–
4037.

[12] J. -. Zufferey and D. Floreano. “Toward 30-gram Autonomous Indoor Aircraft:
Vision-based Obstacle Avoidance and Altitude Control”. In: Proceedings of
the 2005 IEEE International Conference on Robotics and Automation. 2005,
pp. 2594–2599.

[13] Pooja Agrawal, Ashwini Ratnoo, and Debasish Ghose. “A Composite Guid-
ance Strategy for Optical Flow based UAV Navigation”. In: IFAC Proceedings
Volumes 47.1 (2014). 3rd International Conference on Advances in Control and
Optimization of Dynamical Systems (2014), pp. 1099–1103. issn: 1474-6670.
doi: https://doi.org/10.3182/20140313-3-IN-3024.00151. url: http:
//www.sciencedirect.com/science/article/pii/S1474667016327914.
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