
POLITECNICO DI TORINO

Master’s degree in ICT for Smart Societies

Master’s Thesis

Shot-blasted DataMatrix code recovery for
Industry 4.0 product traceability systems

Supervisors
Prof. Elisa Ficarra

Prof. Luca Barbierato
Prof. Raffaele Ferri

Candidate
shaohuan Wei

September 2020

Abstract

In the Industry 4.0 era, companies improved manufacturing efficiency through
the “digital world”. The purpose of the thesis is to recover the shot-blasted
DataMatrix code, using the product unique identity which encoded in the
DataMatrix code to build a multi-agents traceability platform, in order to
obtain a complete and reliable database which contains product information
and attributes, to achieve innovative Industry 4.0 product management and
predictive maintenance. The main objectives are: i) product surface Data-
Matrix code position localization, ii) shot-blasted DataMatrix code recovery
and decoding, iii) develop a smart way to collect data from the agents, and
implement Manufacturing Execution System (MES) tracking.

Keywords: Shot-blasted DataMatrix code; Manufacturing Execution Sys-
tem; Industry 4.0 product management.

i

Acknowledgements

First and foremost, I would like to show my deepest gratitude to my super-
visor Prof. Elisa Ficarra a respectable, responsible, and resourceful scholar,
give me the opportunity to study my thesis topic. I also extend my thanks to
Co-tutor: Prof.Luca Barbierato and Dr.Raffaele Ferri. Without their impres-
sive kindness and patience, I could not complete my thesis. They provide me
the data, describe some important concepts and definitions, give me constant
guidance.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 State of the art . 5
1.3 Objective and purpose . 6

2 Shot-blasted DataMatrix code recovery 8
2.1 Tools and method . 8

2.1.1 Stage1 Pre-processing 9
2.1.2 Image processing algorithm 13
2.1.3 Stage 2 Position localization process 19
2.1.4 Stage 3 DataMatrix code Recovering process 37

2.2 Pre-processing results . 44
2.3 Position localization results 45
2.4 DataMatrix code recovering results 50
2.5 Additional (Neural Network recovering) 53
2.6 Recovery conclusion . 60

3 Traceability Platform 62
3.1 Protocol introduction . 62
3.2 Database creation . 64
3.3 Platform development . 65

4 Conclusion 68
4.1 Tasks and achievements . 68
4.2 Question and answer . 69
4.3 Future tasks suggestion and expectation 70

Reference 72

Appendices 74

iii

List of Figures

1.1 DataMatrix structure . 4
1.2 DataMatrix 8*8 modules . 4
1.3 DataMatrix 8*8 . 4
1.4 Shot-blasted DataMatrix code 5

2.1 RGB distribution . 10
2.2 Gray and Blurred image . 11
2.3 Grey image and blurred image binarization 11
2.4 Morphology algorithm . 13
2.5 Contour detection algorithm 14
2.6 Affine transform . 16
2.7 Affine transform rotation matrix 17
2.8 Rotation origin point . 18
2.9 Morphology algorithm adopted on binary 20
2.10 Kernel and kernel sliding result 22
2.11 Area filtering binary image . 24
2.12 Different kernel sliding result 25
2.13 Hough line detection . 26
2.14 L-shape in different coordinates 27
2.15 Scanning area rotation . 32
2.16 Initial scanning area comparison 33
2.17 Square sliding time . 34
2.18 Circle sliding time . 34
2.19 Rhombus area sliding time . 35
2.20 Position localization flow . 37
2.21 Gridding contour DataMatrix 38
2.22 Ground truth . 38
2.23 Confusion Matrix . 39
2.24 Error and Erasure . 39
2.25 DataMatrix binary image . 40
2.26 DataMatrix recovering flow 44
2.27 Different binarization . 45

iv

2.28 DataMatrix code auto positioning rough range 46
2.29 DataMatrix code auto positioning precision location 47
2.30 DataMatrix code manually positioning 48
2.31 Position Localization . 49
2.32 Auto positioning time . 49
2.33 Gridding contour DataMatrix 50
2.34 Sample ground truth . 50
2.35 Black accuracy color map . 51
2.36 Contour cell recovering . 51
2.37 Contour cell recovering confusion matrix 51
2.38 Filled cell recovering . 52
2.39 Recovering result . 53
2.40 Confusion matrix . 53
2.41 Single layer NN . 54
2.42 Three-layer feedforward NN 55
2.43 Back-propagation NN . 56
2.44 Convolution Neural Network 57
2.45 Spatial Pyramid Pooling . 58
2.46 SPP Neural network recovering 59
2.47 Recovery flowchart . 61

3.1 MQTT message delivering . 63
3.2 Database schema . 65
3.3 MES detection agencies platform 66

v

List of Tables

2.1 Initial scanning region comparison 33

1 ASCII conversion . 75
2 DataMatrix attributes . 76

vi

Chapter 1

Introduction

With I4.0 development, Company proposes to build a multi-agent system
(MES) to detect the product quality. In order to obtain a traceability
database and reliable dataset to analyze the relationship between the pro-
duction process and product quality, achieve product management and pre-
dictive maintenance. The first chapter introduces the conception about I4.0,
MES system and DataMatrix code which record product identity, help us
understand the thesis background.

1.1 Background

I4.0
Modern industrial development has lasted several years, nowadays industry
enters into the 4th Generation Industrial revolution (I4.0). For the operator
viewpoint, the goals of Industry 4.0 are to achieve a higher level of operational
efficiency and productivity (such as reduce the setup and processing times,
maintenance cost, implement product quantity, delivery, and flexibility). As
well as the higher level of automatization[1], I4.0 connects the physical to
the virtual world and will bring computerization and inter-connect into the
traditional industry, for instance, machine to machine communication[2]. For
the market viewpoint, this new industrial stage is also affecting the compe-
tition rules, the structure of the industry, and customer’s demands[3].

As many authors mentioned, I4.0 is defined as Cyber-Physical System based
on heterogeneous data and summed up as an interoperable manufacturing
process. I4.0 characteristics are integrated, adapted, optimized, service-
oriented, which correlate with algorithms, Big Data (BD), Internet of thing

1

(IoT), cloud computation (CC), services (Platform as a Service; Infrastruc-
ture as a Service). In a word, the principles of I4.0 are interoperability,
virtualization, decentralization, real-time capability, service orientation and
modularity[1].

During the I4.0 development move forward, with the base technologies above,
some front-end technologies developed: smart supply chain, smart working,
smart manufacturing, smart product[4]. Smart chain and working aim at
providing efficiency to operational activities, for instance, short-term and
long-term Human-Centered manufacturing, adaptive supply chain[5]. Re-
garding the smart manufacturing and smart product, I4.0 intelligent manu-
facturing system (IMS) framework consists of smart design, smart machines,
smart monitoring, smart control, smart scheduling[6].

For each industry process included in I4.0, product quality is one of the
main features. The principal aim of quality management is adopting high-
productive modern technologies, which are reliability and maintainability. In
general, Six Sigma (definition, measurement, analysis, improvement, control)
methodology is used for industrial management to improve the quality[7]. In
a word, Product quality management aims to define, measure, develop and
control the quality.

I4.0 intelligent manufacturing system (IMS) development has significantly
enhanced the products’ quality. In IMS, some smart processes such as smart
sensors, smart monitoring, and smart control also help to achieve predic-
tive maintenance, predictive maintenance aims to predict when equipment
failures might occur, prevent the occurrence of the failures by performing
maintenance, moreover reducing maintenance costs and activities.

Combine IMS with the quality management and the predictive maintenance.
Thesis monitoring, collecting the product state with product unique MES-
ID which is recorded in DataMatrix code, aims to manage the product and
obtain the relationship between process and quality, to achieve predictive
maintenance in the future.

MES
In I4,0 documents should shared in different enterprises and systems; the
agent analyzes and detects the product in parallel in the Multi-Agent Sys-
tem (MAS), also called Manufacturing execution system (MES). According
to agents’ individual information and decision, they cooperate and service

2

each other to accomplish the whole work. MES includes several functions
such as document management, maintenance management, product track-
ing, performance analysis, it can improve efficiency and reactivity to adversi-
ties, increase flexibility; robustness and adaptability[8]. The implementation
of document management depends on the database, which records dynamic
data and provides data to the control center. In the thesis, to promote prod-
uct quality, multi-agents are all detection agents, and each product should
be detected with the agent’s sequence, to obtain the final state.

A multitude of detection agents in the manufacturing execution system (MES)
cooperate with each other to detect the product quality state. Agent scans
the DataMatrix code which prints on the product to recognize the product’s
identity, uploads documents with the corresponding identity to the platform,
the document contains the detection result and the reason once the detec-
tion result belongs to negative. In order to improve the working efficiency,
the defective product will not follow the sequence anymore, meaning that
in the platform the control center receives all messages generated by every
agent and decides whether the process continues, the detection agent does
not detect the product when getting the unqualified state after scanning the
DataMatrix code.

In the MES system, the company decided to record product MES-ID in the
DataMatrix code, let us introduce what is the DataMatrix code, and which
kind of DataMatrix code we adopt.

DataMatrix code
DataMatrix code consists of black and white cells, the basic structures of
DataMatrix code are the finder pattern and data region[9]. Finder pattern
contains two L-shapes, solid L-pattern and alternating L-pattern. Solid L-
pattern is used to determine the size, orientation and location, alternating
L-pattern is used to define the number of rows and columns in the sym-
bol. Between with the finder pattern, data is encoded in the data region
(Figure 1.1). Let’s name DataMatrix code as DataMatrix in simple. To
avoid DataMatrix cells damaged with external factors, the redundancy error
correction codewords also recorded in the data region. The Reed-Solomon
algorithm is a standard algorithm for error correction generation, with error
correction codewords DataMatrix can be decoded, even if some blocks are
broken. Meaning that the decoded DataMatrix always gives us the correct
information, the information is trustworthy, otherwise, it cannot be decoded.
However according to the DataMatrix guideline[10], the Reed-Solomon al-

3

gorithm has a limitation about correction capability, the capability depends
on the DataMatrix modules number. If errors are less than the correction
capacity, we have the actual result, otherwise, output an empty result.

How ”error correction codewords” recorded in DataMatrix? ASCII encodes
data to decimal and hexadecimal, according to the hexadecimal, Reed-Solomon
algorithm uses a series of hex numbers to represent error correction code-
words. Finally, all hex data and hex error correction codewords are trans-
formed to binary serial, then partition binary serial with 8 bits per byte, and
filled in the modules (Figure 1.2).

Figure 1.1: DataMatrix
structure Figure 1.2: DataMa-

trix 8*8 modules

Figure 1.3: DataMatrix
8*8

For example, we encoded a number string ‘123456’ into DataMatrix, ASCII
encoding the string to ”142;164;186” and transform to hex number:’8E’,’A4’,’BA’,
then Reed-Solomon algorithm use five hex error correction codewords to rep-
resents the data: ’72’,’19’,’05’,’58’,’66’.Finally,the hex code would be:’8E,A4
BA,72,19,05,58,66’ and the binary code would be:10001110 1010100 10111010
01110010 00011001 00000101 01011000 01100110 (Figure 1.3)(table 1).

DataMatrix has different attributes (table 2), in the thesis from the im-
age which the company gave us, the starting point is 14*14 DataMatrix.
Moreover, hypotheses DataMatrix always be 14*14, since it has capacity 16
numbers and ten characters, the capacity is enough to record ID serial num-
bers.

However, the DataMatrix we received is “shot-blasted DataMatrix”. Shot-
blasted DataMatrix means the DataMatrix which uses a laser irradiation
erosion method to print on the product, processed by shot blasting together
with the product. Shot blasting is used for surface production before further

4

processing, such as welding and coloring, it is a technological process for re-
moving various impurities by abrasion. After shot blasting, the DataMatrix
called shot-blasted DataMatrix (Figure 1.4). Because the shot-blasted Data-
Matrix only has rough contour moreover, contours are not smooth and not
continuous, we also call it “rough contour DataMatrix”, this kind of Data-
Matrix cannot be decoded by the scanner.

Thus, the principle objective of the thesis is to recover the rough contour
shot-blasted DataMatrix code, moreover develop the platform demo to simu-
late the detection agents cooperation process, in order to obtain the product
quality state and a reliable product information dataset.

Figure 1.4: Shot-blasted DataMatrix code

1.2 State of the art

MES Platform
Because this MES detection agents cooperation system is under construction,
some specific features like service function, client request, and the database
schema are gradually improving, which means we need to design and proto-
type a new platform system to satisfy the different requests.

DataMatrix code recovery
Shot-blasted DataMatrix is a newly raised problem because it cannot be de-
coded by the usual decoder. After searching a lot, it is hard to find the
literature related to this kind of DataMatrix. We can say this rough con-
tour DataMatrix recovery is a new project. We do not have the reference,

5

and we do not have the baseline to measure recovery performance. This
background requests us to try different methods to recover the DataMatrix,
compare methods to show which method has the worthy value to improve in
the future.

Therefore, this MES system development is a long-time schedule, what the
thesis did is to initiate the system creation, raise some ideas and opinions, in
order to construct a complete system that could be adopted in the company.

1.3 Objective and purpose

Database creation is a way to manage product information in an intelligent
and effective approach. Aggregating the information from different agents is
useful to analyze the relationship between the production information and
product quality. In the end, the analysis report helps the company optimize
the production process and improve product quality, the company will have
a good performance in product management and predictive maintenance,
achieving I4.0 improvement.

The thesis objective is to design a platform to obtain a reliable database
that contains the product information and product quality state. The plat-
form is used for quality detection purposes agents to upload information to
a database through the product’s unique identity, which is encoded in Data-
Matrix and printed on the product. However, the DataMatrix is a rough
DataMatrix which cannot be decoded. Therefore, the thesis introduces two
steps for database creation: the DataMatrix recovery and MES plat-
form building.

DataMatrix code recovery
The objective of recovery is to transform the shot-blasted DataMatrix to
standard DataMatrix with one pixel per cell, to help the scanner decode the
DataMatrix and obtain the products identity. The product ID is a unique
identity in the detection agent MES system, using unique identity, the system
can track and check the product’s state. Chapter 2 introduces the DataMa-
trix recovery flow, which contains “positioning stage” and “recovering
stage”, and introduces different methods adopted in each stage.

MES Platform development
Chapter 3 introduces protocols adopted in the platform, moreover the plat-
form and database structure. A smart platform development, aims to collect

6

the data from the machine with the technical sensors, update the product
state after the multi detection agents process, and record the product analy-
sis report. The platform can significantly improve the work efficiency rather
than manually recording.

In conclusion, before the thesis we have the following questions:

1) How can we create a traceability system? What’s the structure of the
platform and Database?

2) What functions should the platform achieve?

3) How can we decode shot-blasted DataMatrix code with computer vision?

4) Which recovery techniques perform better and are better suitable for a
real case scenario?

7

Chapter 2

Shot-blasted DataMatrix code
recovery

Section 2.1 explains the tool and method adopted in DataMatrix code recov-
ery flow, includes some image processing algorithms, image pre-processing,
position localization process, and recovering process. 1). Pre-processing fo-
cuses on image binarization and denoising. 2). The position localization
process is adopted in two different scenarios; auto positioning is adopted in
the factory and manually positioning is used for the mobile phone applica-
tion. 3). Recovering process using two succession methods to transform the
contour DataMatrix code to the traditional type.

Section 2.2 2.3 2.4 are the recovery results in the study case, to testify the
analysis flow. Thesis also proposes to use Neural Network in the recovering
process, it is introduced in the additional section 2.5. In the following content
DataMatrix code also called DataMatrix.

2.1 Tools and method

Despite the fact that the literature does not mention the rough contour Data-
Matrix recovering method, some of them recover the rough DataMatrix which
has filled cells. Ladislav.K uses aspect ratio condition to define a closed re-
gion which contains DataMatrix solid L-shape, then using two edges of closed
region to define solid L-shape, obtaining DataMatrix location[11]. Feng.L
applies an algorithm to searching solid L-shape closed edges in two opposite
directions from one point[12]. Qiang.H not only detects solid L-shape but
also detects dash border by robustness RANSAC line detection method[13].

8

The typical analysis flow they adopted is positioning DataMatrix firstly and
then based on the precision location, to recover the DataMatrix. I also adopt
this flow and call it ”positioning and recovering analysis flow”.

2.1.1 Stage1 Pre-processing

Before we process the image, firstly, we should know the image attributes.
The sample image (Figure 1.4) has resolution ratio 72*72, and it is an RGB
image. RGB image has three channels, values in each channel are from 0
to 255, the higher value represents the darker color. However, the three-
dimension matrix increases the algorithm complexity, we usually create a
new channel from these three channels, but before that, I check the RGB
distribution, see whether the single color has more representativeness.

RGB channel selection
High representative color means we can easily recognize the DataMatrix from
that color, all the black cells in DataMatrix should have similar color value
and have large differences with white cells and surrounding circumstance.
Therefore, I mark all positions which belong to black cell and then select a
DataMatrix square, to understand black cells color distribution in DataMa-
trix square (Figure 2.1a).

In the image (Figure 2.1b;2.1c;2.1d), the x-axis is the color value from 0-255,
the y-axis is the number of appearances. Moreover the dark color distribu-
tion represents all positions which should be the black cell, the light color
distribution represents all pixels in the DataMatrix area. Blue dash line is
the ratio between the number of appearances in black cells and the DataMa-
trix area for the same color value. From the distribution we see red; green;
and blue color have similar color distribution and the black cells’ color is not
in evidence, which means we cannot extract the DataMatrix from a single
color.

9

(a) Black cells (b) Red distribution

(c) Green distribution (d) Blue distribution

Figure 2.1: RGB distribution

Image binarization
“A binary image is one that consists of pixels that can have one of exactly
two colors, usually black and white, used for the image segmentation, the
morphological operations, the distance transform, and gathering orientation-
free metrics” [Wikipedia1]. Before image binarization, the image should be
a 2D matrix, which means the image should be a single-channel image.

The red channel, blue channel and green channel constitute a single-single,
people called this single-channel as ‘grey channel’(Eq.2.1), the grey chan-
nel image called grey image (Figure 2.2a). Many different methods used
to create the grey channel, using the maximum value of RGB or using the

1https://en.wikipedia.org/wiki/Binary image

10

mean value of RGB, I adopt the typical method which is named ‘equal grey’
method.

Grey value = B ∗ 0.114 +G ∗ 0.587 +R ∗ 0.299 (Eq.2.1)

(a) Gray image (b) Blurred image

Figure 2.2: Gray and Blurred image

After transforming three-channels to one single grey channel, the grey image
can be binarized. However, before binary the image, the typical way is to
use a filter to smooth the grey image and omit the image noise. The filter is
a sliding window, the median value of all numbers replaces the pixel in the
center of the window. The image after smoothing is called a blurred image
(Figure 2.2b). Binary the blurred image, rather than the grey image is a way
to omit the noise, otherwise is it not easy to distinguish between foreground
and background (Figure 2.3).

(a) Grey image binarization (b) Blurred image binarization

Figure 2.3: Grey image and blurred image binarization

In a word, the binarization process is a filter process, the grey value which
higher than the threshold should be assigned as 1, on the contrary, assigned as

11

0. Different binarization algorithms obtain different thresholds and different
binarization performance.

• Algorithm 1: OTUS algorithm
OTUS algorithm is used to perform automatic image thresholding from
0-256, separate pixels into two classes, “the threshold is determined by
minimizing intra-class intensity variance, or equivalently, by maximiz-
ing inter-class variance” [Wikipedia]. The equation is introduced very
clearly in Wikipedia. In a word after iterating each gray value from
0-255, the OTUS algorithm gives the binarization result which has an
optimized threshold.

• Algorithm 2: Adaptive threshold algorithm
Adaptive threshold algorithm separates the image into small windows,
different windows have a different threshold, the threshold can be the
average value of the window or the summation with gaussian weights.
This algorithm has less suitability because mostly the window threshold
is not sufficient to obtain a clear binary image.

• Algorithm 3: Niblack’s algorithm
Same as the adaptive threshold algorithm, separating the image with
several windows. However, Niblick’s algorithm (Eq.2.2) uses mean (m)
and standard (s) deviation to determine the threshold for each window.
Typically the k default as 0.2. Let us use the default value to obtain a
Niblack’s binary image.

T = m(x, y)− k ∗ s(x, y) (Eq.2.2)

• Algorithm 4: Sauvola’s algorithm
Sauvola’s algorithm (Eq.2.3) uses a more complex equation than Niblack’s
method, to obtain different binarization thresholds in each separated
window. Not only use mean (m) and standard (s) but also compute the
maximum standard deviation (R) of grayscale to calculate the thresh-
old. With the default value of k, we obtain a clearer binary image.

T = m(x, y) ∗ (1 + k ∗ ((s(x, y)/R)− 1)) (Eq.2.3)

After grey image processing, blurred image processing, and binarization pro-
cessing, we obtain a binary image with less noise, and base on the binary
image to locate the DataMatrix.

12

2.1.2 Image processing algorithm

1) Binary image processing

Here we introduce some algorithms that process the binary image, which
we use in the following sections.

• Morphology algorithm

Morphology is a collection of non-linear operations related to the shape or
morphology of features in an image, removing the imperfection of noise and
texture by accounting for the image’s form and structure.

The basic operations of morphology algorithms are erosion and dilation (Fig-
ure 2.4).

(a) Erosion: While the convolution kernel slides on the binary image, if all
elements in the kernel are white, the value in the center of the kernel
should be marked as white, else it should be black. Erosion is used for
eliminating the white noise and cutting off the connection part.

(b) Dilation: While the convolution kernel slides on the binary image, if any
elements in the kernel are white, the value in the center of the kernel
should be marked as white, on the contrary, it should be black. Dilation
is used for expanding the contour which shanked after erosion.

(a) Binary Image (b) Erosion (c) Dilation

Figure 2.4: Morphology algorithm

13

With the basic algorithm, different combinations have different effects:

* Close: The close method adopts erosion firstly before dilation is used
to omit the image noise and remain the principal feature.

* Open: The Open method adopts dilation firstly before erosion is used
to connect breakage blocks.

* Top hat: Make the difference between the original binary image and
“open image”, remain the image lightness part.

* Black hat: Make the difference between the “close image” and the
original binary image, remain the image darkness part.

* We can also calculate the image gradient. The original binary image
subtracts the erosion image is the image inner gradient and dilation
image subtract the original binary image is the outer gradient.

• Contour detection algorithm

The contour detection algorithm started from Suzuki in 1985 (Figure 2.5 2)
and improved in the ‘OpenCV’ library. In short, when the algorithm meets
a new black pixel, it will scan the pixels around that black pixel and select
the first one in clockwise order, until back to the original black point, and
then using the same method to detect whether an inner contour exists, finally
mark every contour. In the meantime, the algorithm can reconstruct a full
hierarchy of nested contours.

Figure 2.5: Contour detection algorithm

2S. Suzuki, “Topological structural analysis of digitized binary images by border fol-
lowing”, Computer Vision, Graphics, and Image Processing vol,30, pp.32-46,1985

14

• Hough Line detection

Hough line detection algorithm is an algorithm to detect the black line in
binary image and improved in the “OpenCV” library. In a word, it transforms
the orthogonal coordinate system to the polar coordinate system. In the polar
coordinate system, each point represents a line in the orthogonal coordinate
system.

Algorithm 1 Hough Line detection

Input:
Binary image;

Output:
Start and end coordinate of the detected line

while unmarked black pixel do
for θ in 2π do
ρ = x cos θ + y sin θ record
record ρ and θ
mark the point

end for
end while
record the start and end coordinate of the line which ρ and θ always
appearance

The most important feature that should be noticed is, the line detection algo-
rithm not only detects the continued lines but also detects the line which has
a gap in the middle, it is suitable for the breakage DataMatrix contour, and
this is the reason to select the Hough line algorithm. However, the disadvan-
tage of the Hough line algorithm is the line’s representativeness, sometimes
the detected line cannot represent the real edge, in other words, many similar
lines will be detected in a wide black edge.

2) Image rotation

Affine transformation rotation algorithm

Affine transformation is the process of performing a linear transformation
in a vector space and adding a shift translation, aims to form another
vector space.

15

Figure 2.6: Affine transform

According to the affine transform definition, after the coordinate axis rotate
in anticlockwise degree around point (tx, ty), the equation between original
“coordinate system A” (e1, e2) and new “coordinate system B” (e′1, e

′
2) in

the same point follows the red vector triangle Eq.2.4 shown in the image
(Figure 2.6). Linear transformation is vector multiplication and shift
translation is the origin movement distance. Because (e1, e2) are orthogonal
vectors, the inverse matrix is equal to the transpose matrix Eq.2.5. The
point in “coordinate system A” is presented by “coordinate system B” with
equation Eq.2.6. Obviously, the modulus of vectors e′1, e

′
2, e1, e2 are all equal

to 1, under the rule of vector multiplication using equation Eq.2.7 to show
the relationship of two vectors in two coordinate systems.

(e1 e2)

(
x
y

)
+ (0 0) = (e′1 e

′
2)

(
x′

y′

)
+

(
tx
ty

)
(Eq.2.4)

(e1 e2)
−1 = (e1 e2)

T (Eq.2.5)

(
x
y

)
= (e1 e2)

T (e′1 e
′
2)

(
x′

y′

)
+ (e1 e2)

T

(
tx
ty

)
(Eq.2.6)

16

(
x
y

)
=

(
eT1 e

′
1 eT1 e

′
2

eT2 e
′
1 eT2 e

′
2

)(
x′

y′

)
+ (e1 e2)

T

(
tx
ty

)
=

(
|e1| |e′1| cos(θ) |e1| |e′2| cos(π

2
− θ)

|e2| |e′1| cos(π
2

+ θ) |e2| |e′2| cos(θ)

)(
x′

y′

)
+ (e1 e2)

T

(
tx
ty

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x′

y′

)
+ (e1 e2)

T

(
tx
ty

)
(Eq.2.7)

Imagine that the “image 1” has a point “A” which is ready to rotate with
(tx, ty) in anticlockwise θ degree (Figure 2.7), and the aim is to obtain the
coordinate of “A-r” after ”image 1” rotation.

Figure 2.7: Affine transform rotation matrix

The vector of point ‘A’ in the ‘image 1’ coordinate system is

(
x− tx
y − ty

)
and

this vector won’t change even if image rotation. Therefore, the vector of

point ‘A-r’ is also

(
x− tx
y − ty

)
in the image1-r coordinate system. According

to Eq.2.7 the position of ‘A-r’ in the original coordinate system is shown in
equation Eq.2.8. The matrix which is able to transform the point coordinate
is called the ”affine transform rotation matrix”.

17

(
xr
yr

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x− tx
y − ty

)
+ (e1 e2)

T

(
tx
ty

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x− tx
y − ty

)
+

(
1 0
0 1

)(
tx
ty

)

=

(
cos(θ) sin(θ) tx − tx cos(θ)− ty sin(θ)
− sin(θ) cos(θ) ty − ty cos(θ) + tx sin(θ)

)xy
1

 (Eq.2.8)

In conclusion, the rotation matrix has two parameters, rotation angle and
rotating origin point. From the original image’s ”transform rotation ma-
trix” and ”point coordinate”, it is possible to obtain the new coordinate
after rotating the image with the ”affine transform rotation algorithm”. The
manually positioning process rotates the image which has oblique DataMa-
trix and keeps DataMatrix in “horizontal-vertical” direction.

The typical method to rotate the image is using the central point of the
image as the rotation origin point, however, the image perhaps exceeds the
coordinate system after rotating with the center point (Figure 2.8a), which
means that the translation distance which in ”transform rotation matrix”,
is not enough to obtain the image completely. To avoid this happening, we
change the translation distance in the image aspect way.

(a) Image center rotation (b) Bounding rectangular center rotation

Figure 2.8: Rotation origin point

To ensure that the coordinate system contains the complete rotated image,
the circumscribed rectangular should be accepted at least. The circumscribed

18

rectangular acceptance condition is to increase the translation distance from
the original image center (c) to the circumscribed rectangular center (c’). The
center of circumscribed rectangular (c’) is the average of width and length
which relate to the image rotation angle and image dimension (Figure 2.8b).

2.1.3 Stage 2 Position localization process

According to the literature related to the DataMatrix recovery, their Data-
Matrix recovering process is based on the closed region. The closed region
could be part of DataMatrix, but it must include solid L-shape, then find
solid L-shape from the region to locate the DataMatrix.However, the prob-
lem I faced in the image is the DataMatrix contour integrality and image
noise.

1) Shot-blasted DataMatrix code situation

Because of the manufactory technology problems, after the shot blasting
process, a multitude of noises appear on the image, moreover the DataMa-
trix only reserves the contour. The DataMatrix contours are rough contours,
which means it does not have straight edges, and it has some cracks on the
edges. Breakage contours cannot constitute the closed region.

Thus, we adopt two different methods to complete the contour or omit the
noise, because problems contradict each other:

a) The first idea to solve the problems is to repair the breakages. Using the
morphology algorithm to connect the edges, aims to obtain a completely
DataMatrix solid L-shape.

we adopt the “morphology close method” to process the image, which
the order of process is dilation before erosion. The reason to select the close
method because of the prime objective is to repair the crack on the edges,
and the dilation method can connect separate edges, however in the dilation
binary image, there are many noises, this phenomenon exceeds my expecta-
tion. Lots of noise will influence the analysis process in the following steps.

19

Therefore, using erosion after dilation to eliminate the noise, in order to ob-
tain a clear binary image.

Image (Figure 2.9a) shows the close algorithm adopted result, because we
use closed method, few parts of the noise are omitted, however, the breakage
still exists on the edges, marked by the red square especially. Since the close
algorithm cannot repair the breakage contour and only remove a few noises,
we say this dilation and erosion method is not a suitable algorithm.

(a) Morphology close algorithm (b) Morphology open algorithm

Figure 2.9: Morphology algorithm adopted on binary

b) The second idea to solve the image problem is to remove the noise and
repair the crack as much as possible in the less noisy image.

Opposite with the first close method, the process which erosion firstly and
then dilation is called ”open method”. After the open algorithm, the origi-
nal binary image transforms into a new binary image (Figure 2.9b). The new
image has less noise around the DataMatrix, it seems better than the mor-
phology close method, however, more breakages exist on the edges, marked
by the red square. Because some individual part on the edge is mistaken for
the noise and removed during the erosion process.

After adopting the close algorithm or open algorithm, the noise problem
can be solved more or less (open method seems better), but the breakage on
the edge cannot be repaired in the final. Breakage contour problem means
the traditional methods that find solid L-shape from closed regions to locate
DataMatrix is not suitable for our DataMatrix. Because our DataMatrix is
a rough contour DataMatrix, the L-shape range is not a closed region since
it is broken. Therefore, it is hard to obtain the solid L-shape or alternate
L-shape, in other words, even if the L-shape is obtained in the image, we

20

cannot guarantee that this pseudo L-shape can represent the precision Data-
Matrix location, because breakage appearance in every possible segment on
the edge, and the DataMatrix connected noise also has the probability to
affect the edges’ length and width.

Since the traditional positioning method does not work, I looked for other
methods to obtain the DataMatrix position.

2) Sliding searching algorithm

sliding algorithm is based on the binary image and binary kernel, slide kernel
on the binary image, for each sliding step, calculate the matching accuracy
between kernel and the kernel part in the image.

• Binary kernel

The binary kernel (Figure 2.10a) has the following features:

- 14 cells on each column and row.

- L-shapes outlines reservation.

- Target L-shapes.

- Black edges are quarter wide of the cell.

In kernel 14 cells on each line because at the beginning we hypothesis all
DataMatrix codes belong to the 14*14. The reason for reserve L-shapes out-
lines because the shot-blasted DataMatrix binary image only has L-shapes
contours. Moreover, In the kernel, we do not care about the data region,
because the data region does not have constant shape, instead L-shape has.

Therefore, the matching content between kernel and image kernel part, is
the L-shape black and white pixels. In the kernel the black occupied quarter
width for each cell, I set this default value after observing the image of shot-
blasted DataMatrix. However, kernel cell dimension is unknown, therefore it
is necessary to try different dimensions and select the most suitable one.

21

(a) Binary kernel (b) Kernel sliding searching algorithm result

Figure 2.10: Kernel and kernel sliding result

• Sliding searching algorithm

While the kernel slides on the binary image with the vertical and horizon-
tal direction, for each sliding step, calculate the accuracy of black and white
color with correspondingly proportion, the black proportion is the white color
percentage in the target L-shape, vice versa. The reason to compute accuracy
for two colors is to avoid some widely black lines, especially the black wide
L-shape. If black color is considered only, some widely black lines cannot be
ignored.

accuracyavg = accuracyBK ∗ weightBK + accuracyWH ∗ (1− weightBK)
(Eq.2.9)

accuracyBK =
correctly matched black

kernel L− shape black pixels
(Eq.2.10)

accuracyWH =
correctly matched white

kernel L− shape white pixels
(Eq.2.11)

weightBK =
kernel L− shape white pixels
total pixels in kernel L− shape

(Eq.2.12)

Using the heat map to represent the sliding searching result, in the heat map
the kernel is filled with the same matching accuracy value and the accuracy
value depends on the kernel position, moreover, the lower accuracy is re-
placed by higher accuracy.

In the study case, I select a suitable kernel in which the cell has 28 pixels,
and the kernel slide step is one pixel. Move the kernel from top left to bot-
tom right on the ‘open algorithm’ image which we obtained before, calculate

22

the matching accuracy to show on the heat map (Figure 2.10b). From the
heat map, we see when the kernel position is close to the real DataMatrix,
the matching accuracy becomes higher and higher, until to the maximum
which is around 0.7. The minimum match accuracy is around 0.48 because
many white pixels matched but black pixels are not matched. Thus, in the
heat map, the kernel position which has the maximum matching accuracy,
marked as the black square is almost near to the real DataMatrix position,
this result testifies that our sliding searching algorithm can be used to obtain
the DataMatrix precision location.

3) Position localization process

The positioning localization process uses the sliding searching algorithm
which was introduced before. Two main factors should be considered while
the sliding algorithm is used, one is DataMatrix orientation and another one
is the sliding area.

• Orientation means the DataMatrix L-shape keep around 90 degrees but
not parallel with the image edges, in this case, it is necessary to rotate
DataMatrix to the “horizontal-vertical” direction, because we default
the kernel in sliding algorithm moves horizontally and vertically, it is
easy to operate and calculate with these directions.

• The sliding area is a factor to influence the calculation time, if we
can control the sliding area, the calculation time can be decreased.
Calculation time is a fundamental standard to measure the algorithm
performance.

We do not consider the problem with the shear angle, because we have a
rough contour DataMatrix. If the image has a wide shear angle, the recov-
ered contour’s condition becomes worse, it is another complex project.

Under these two problems, the thesis design two positioning localization pro-
cesses for two kinds of users, one group of users are manufacturing ma-
chines, another group of users are workers. For manufacturing machines,
the camera is fixed on the machine, therefore the orientation problem does
not need to be considered, but the scanning area should be the whole image,
the DataMatrix could be printed in every possible place on the product. For
the workers, the thesis introduces a method used for the mobile phone appli-
cation, workers use a mobile phone to scan the DataMatrix on the product,
aims to check the product identity. We can give users a small scanning region
in advance before scanning, to decrease the waiting time, however, a friendly

23

application should accept user scanning with different orientations.

Program 1: Auto position localization
Auto position localization is adopted in the factory, the process is requested
to locate the DataMatrix on the original image automatically. When an
RGB image input, the first step is the image binarization as we introduced
in “step 1”(chapter 2.1.1), to obtain a binary image. However, many noises
are still existing in the binary image, the denoise processing could be “open
morphology algorithm”. After the open method, the number of noises de-
creased obviously, however we can make it better.

• Step 1: Binary image denoising (area filtering)

Since the erosion method in the open algorithm cannot remove the noise
which has a relatively larger area, I set an area threshold to filter the noise.

Obviously, every noise is a closed region and it has a closed contour. Obtain-
ing the noise contour means the noise’s area and perimeter are easy to know.
Using the “contour detection algorithm”, which introduced in chapter 2.1.2
, I obtain every noise’s border and area in the binary image and filter the
noise which has the area less than 100. In the end receive a new binary im-
age, which less noise remains than the open method (Figure 2.11). This new
binary image can be used in the next process “sliding searching algorithm”.

Figure 2.11: Area filtering binary image

For the “sliding searching algorithm”, we already know the kernel’s structure.
However, we do not know the kernel dimension, meaning that the suitable
kernel dimension should be selected by iterating different cell dimensions, for

24

instance the Figure 2.12 presents the maximum matching accuracy changing
with different kernel cell dimensions sliding. The maximum value is the max-
imum accuracy in the heatmap (Figure 2.10b), heatmap of ”sliding searching
algorithm” depends on different kernels and sliding pixel steps. However, it
spends lots of time during iteration. We know the calculation time is the
primary standard to measure the process, to reduce the calculation time, it
is better to obtain a few kernel dimension options and select the best one
from them.

Figure 2.12: Different kernel sliding result

• Step 2: Line detection

Obtaining kernel dimension options means we should know the possible di-
mension of the DataMatrix. Detecting the L-shape of DataMatrix is a direct
method to obtain the dimension, L-shape consists of two lines, therefore line
detection is the first step to detect the L-shape. The algorithm of line detec-
tion named “Hough Line detection” is introduced in chapter 2.1.2.

25

Figure 2.13: Hough line detection

In the experiment, I set a length threshold to filter shorter lines, and accept
the line which has a 10 pixels gap. From “Hough line detection” result
(Figure 2.13), the good phenomenon is the length of the detected line is
near to real L-shape, however, the vertical edge of L-shape has more than
two green lines inside. Therefore, in case of other lines out of DataMatrix,
and similar lines overlapped, the next step is obtaining the L-shape from
all detected lines, and from the L-shapes length to select kernel dimension
options.

• Step 3: L-shape detection

Lines from the line-detection algorithm are represented by two points, the
‘beginning point’ and ‘ending point’. From two points, other features like the
slope, distance and rotation angle between Y-axis are easy to be computed
and utilized in L-shape detection. Pay attention, the coordinate origin uti-
lized in “Line detection algorithm” is the left bottom of the image, thus the
order of two points in one single line is from the left to right and from the
bottom to above, However, the coordinate of two-point is under the image
coordinate system which the origin is the left above of the image. These two
different coordinate systems should be noticed very carefully (Figure 2.14).

26

(a) Ideal condition (b) Clockwise condition (c) Anticlockwise condition

Figure 2.14: L-shape in different coordinates

The L-shape detection aims at obtaining the L-shapes form many lines, in the
meantime, receives the L-shape length and vertical deviation angle. In the
auto position localization process, it is not necessary to adopt the DataMa-
trix rotation. The fixed camera ensures the DataMatrix is in ideal condition
(Figure 2.14a), but in the manually position localization process in the next
part, it is required to consider the orientation problem. Therefore, I intro-
duce the algorithm in the following (Algorithm 2), the different processes will
adopt different detection results.

Algorithm 2 L-shape detection

Input:
Detected Lines;

Output:
L-shapes(length and orientation);

while unmarked Line do
Obtain the coordinate of start1 & end1 & length1 & slant angle1
for other unmarked Line do

Obtain the coordinate of start2 & end2 & length2 & slant angle2

if line1 is horizontal & point1 ∼= point2 & angle1 + angle2 ∼=
90◦ & length1 ∼= length2 then

recover angle = 0◦(Ideal orientation)
else if start1(y) > end1(y) & start1 ∼= start2 & angle1 + angle2 ∼=

90◦ & length1 ∼= length2 then

27

recover angle = angle2 (Clockwise condition)
else if start1(y) < end1(y) & end1 ∼= end2 & angle1 + angle2 ∼=

90◦ & length1 ∼= length2 then
recover angle = angle1 (Anticlockwise condition)

end if
end for
record L-shape
mark the lines in L-shape

end while
Calculate the length and average recover angle of L-shape

In short, L-shape constitutes two lines, which have adjacent vertex; similar
length, and right-angle. Moreover, the L-detection algorithm restricts that
the DataMatrix accepts the rotation between -90◦ and 90◦.

After L-detection, the length of L-shape is readily known, however, the L-
shape we obtained is pseudo-L-shape, we cannot guarantee this is the real
DataMatrix shape, what L-shape gives us, is the pseudo length. Therefore,
according to the pseudo length, we can create the kernel cell options, which
are [length

14
− 1, length

14
, length

14
+ 1]. Divide 14 because at the beginning we hy-

pothesis the DataMatrix belongs to type 14*14.

Thanks to L-shape, we have the kernel cell options, instead of searching
every possible cell dimension. Optional cells save a lot of calculation time as
we expect.

• Step 4: DataMatrix rough range selection

The image (Figure 2.12) shows the maximum matching accuracy result ten-
dency. Iterate with the kernels which have different cell dimensions and
different steps, for each kernel select the maximum accuracy in the accu-
racy heat map as we introduced in ”sliding searching algorithm”. However,
because of the kernel cell dimension and step, the kernel is hard to match
the DataMatrix within the precision location. Perhaps it is smaller than the
DataMatrix area or skips the DataMatrix area because of the larger sliding
step. Therefore, using the sliding searching algorithm to obtain the preci-
sion DataMatrix location has two requests: 1) the suitable kernel cell, 2) the
sliding step must equal one pixel.

However,one pixel sliding in the whole image is not a wise choice, it wastes
time because many steps far away from DataMatrix are useless. Thus, I
create another range called ”rough range”, the rough range is an area that

28

is smaller than the original image and contains DataMatrix, meaning in the
rough range all kernels matching accuracy at least equal to the threshold,
which default as 0.7. The sliding step to obtain rough range should be larger
than 1, we test 6 pixels 10 pixels 14 pixels, they are working well, we hypoth-
esis the step is default as 10 pixels. Then Base on the rough range to search
the precision location which will be introduced later.

Therefore, searching a rough range before obtaining the precision location
is a way to reduce the calculation time. The binary kernel uses large sliding
steps instead of one pixel, slide on the original binary image.

The Rough range searching based on the heat map result, the searching
process is the following:

Algorithm 3 Rough range selection

Input:
1.Detected L-shapes
2.Binary image

Output:
DataMatrix Rough range;

for lines in L-shape do
cell options list append([length/14-1,length/14,length/14+1])

end for

Obtain the unique cell options list

for cell in cell options list do
Using default step and kernel slide on the image
Record the maximum matching accuracy

end for

Select the cell which has maximum matching accuracy, and it’s whole
matching results
Normalize the results
Compute the accuracy threshold according the Normalize threshold(default
0.7)
Select the kernel position which accuracy ≥ accuracy threshold
Use bounding rectangular to represent the total selected positions

• Step 5: Precision location selection

29

Based on the rough range, we reset the sliding step equal to one pixel, with
one pixel sliding, the location achieves the request that the DataMatrix can
be presented by the minimum square area, it is the precision location. The
searching method is similar to rough range searching, redoing the “sliding
searching process” and selecting the most representative cell from the options.
In the selected heat map, the DataMatrix position is the kernel position which
has the maximum matching accuracy.

• Conclusion

In conclusion, the auto position localization contains 6 steps: binarization
process; Image denoising; Line detection; L-shape detection and kernel se-
lection; rough range selection, and precision location selection. After these
processes, we get the DataMatrix location automatically. We cannot guar-
antee it is the real DataMatrix location, but the square should be near to
the actual square

Program 2: Manually position localization

Auto position localization is designed for the factory which we do not care
about the DataMatrix orientation problem, because the fixed camera is set-
tled in the production line. However, the product should be scanned and
recognized in different scenarios, it satisfied I4.0 conception. Thus, we create
another process that could be considered to use in the mobile phone appli-
cation.

Manually position localization is improved from the auto position localiza-
tion. In the manually positioning process, before scanning, the application
should give users a defined scanning region, and request users to put Data-
Matrix inside the initial scanning area, as other applications did. The scan-
ning area can be understood as the DataMatrix rough range in the auto-
positioning process, which is introduced above.

In manually positioning, the advantage is to ignore the rough range selection
process, but the application should accept different orientation scenarios.
Since the “sliding searching algorithm” we introduced before only accepts
the kernel sliding with vertical and horizontal direction, the method to solve
the orientation problem is to rotate DataMatrix, let DataMatrix L-shape in
“horizontal-vertical” orientation.

30

• Manually positioning steps

Apply “Affine transform rotation algorithm” which was introduced in chapter
2.1.2 in the manually positioning process. The analysis flow is similar to the
auto positioning process, moreover adopting the recovery angle from detected
L-shape in the affine transformation process. The analysis flow is:

* Scanning area selection; Binarization process; Image denoising;

* Line detection; L-shape detection and kernel optional range selection;

* Affine transformation;

* Sliding searching algorithm

* Precision location selection.

Briefly speaking, based on the initial scanning area, the binarization and
denoising process aims to obtain a clearly binary image, the process is in-
troduced in the auto positioning process before. In the binary image select
the relative longer lines which could constitute the L-shape. Iterating all the
lines to select all possible L-shapes, record the length and vertical deviation
angle which obtained from the L-shape detection algorithm. Vertical devia-
tion angle is used for rotating the DataMatrix in “vertical-horizontal orien-
tation” and length is used for obtaining the kernel options. Therefore, the
DataMatrix position is the kernel position which has the maximum matching
accuracy, after the “sliding searching algorithm” search with some optional
kernels.

Notice that the sliding algorithm defaults the kernel slides in the vertical
and horizontal direction, the rotated scanning region has some redundancy
area that could not be scanned, because the length in the redundancy area
is shorter than kernel dimension (Figure 2.15). In other words, the initial
square scanning does not accept the larger DataMatrix rotation in a wide-
angle, because the DataMatrix should always be settled inside the scanning
region.

31

Figure 2.15: Scanning area rotation

• Initial scanning area comparison

To solve the rotation degree issues and to decrease the calculation time as
much as possible, I test three different initial scanning areas. Compare areas
and analyze the advantages and disadvantages of each option.

Three initial scanning areas are square area (Figure 2.16a), circle area (Fig-
ure 2.16b), and rhombus area (Figure 2.16c). These areas have a common
feature that accepts the DataMatrix at most 33 pixels per cell. Assume 33
pixels because in this study case we have DataMatrix with 28 pixels per
cell, the scanning area should be larger than DataMatrix. Thesis uses the
maximum capacity constraint to compare the performance of different meth-
ods, however, the capacity parameter should be optimized in the real mobile
phone application, which is another project in the future.

32

(a) Square scanning area (b) Circle scanning area

(c) Rhombus scanning area (d) Rhombus scanning area 45◦

Figure 2.16: Initial scanning area comparison

Different scanning regions have different performance, thesis focus on the
calculation time performance and usability. In the table 2.1, list the
comparison results to see which is more suitable for the application.

Accumulate Calculation
time(s)(27-29 pixel/cell)

Performance

Square area 2.4s
Pro: Near real-time.
Con: Few angle rotations.

Circle area ≥ 10s
Pro: Full angle rotations.
Con: More time costing.

Rhombus area ≤ 2.4s
Pro: Less time costing.
Con: Higher usage requests.

Table 2.1: Initial scanning region comparison

33

For the square area, since the initial scanning area is little larger than the
DataMatrix area, the sliding algorithm needs less calculation time. When
the kernel dimension decreases, the number of iterations increases and cal-
culation time correspondingly increases. In the previous experiment, we use
some kernel options to decrease the time, therefore we also focus on some
optional kernel instead of all possible dimensions. In the study case, our
kernel options are [27,28,29] pixel per cell, the accumulated calculation time
for optional kernels is around 2.4 seconds, it is near-real-time, more or less
acceptable for the mobile phone application (Figure 2.17). However, the dis-
advantage for this kind of initial area is the larger DataMatrix cannot rotate
in a wide-angle.

Figure 2.17: Square sliding time Figure 2.18: Circle sliding time

For the circle initial area, if the largest inner cut rectangular accepts kernel
cell 33 pixels, meaning that the DataMatrix which is smaller and equal than
33 pixels per cell can be rotated with every possible angle, it is the advantage
for this circle scanning region. However, when the kernel becomes smaller
and smaller for example from 33 reduce to 23 pixels, for the same scanning
area the number of iterations increases, moreover, the scanning area becomes
larger and larger (Figure 2.16b), in the meantime the kernel has more and
more possible positions. Therefore, the calculation time increases faster than
the square area, because in the square region, the scanning area is constant.
In the study case, the accumulated calculation time for all optional kernels is
more than 10 seconds, under the circle initial area condition which contains
a maximum of 33 pixels per cell DataMatrix (Figure 2.18).

34

(a) Rhombus sliding time (b) Rhombus accumulate time(27-29)

Figure 2.19: Rhombus area sliding time

In some scenarios the mobile phone is requested to keep the same distance
with DataMatrix, in this condition we choose rhombus as the initial area, the
rhombus is the square which rotates 45 degrees. Choose rhombus because
it is a way to connect the calculation time and rotation angle. Specifically,
when the input DataMatrix is a smaller one, for example under 23 pixels
per cell (Figure 2.16c), the default rhombus performs well, because the scan-
ning area is small. However, if a larger DataMatrix input, the way to accept
large DataMatrix is to rotate the mobile phone, keep DataMatrix inside the
rotated rhombus (Figure 2.16d). Different rotation angles accept different
maximum kernel dimensions. In our condition, since we know the kernel op-
tions, according to the curve of calculation time (Figure 2.19a), obviously the
rhombus which rotated under 15 degrees cannot accept our optional kernels.
Therefore, the accumulated searching time of these three kernels depends on
the rhombus absolute rotation angle (between 15◦-75◦) and less than 2.4 sec-
onds (Figure 2.19b), absolute angle means the phone can rotate in clockwise
also in anticlockwise.

Thus, the advantage of rhombus scanning is the calculation time decreas-
ing. Suppose the user rotates the phone at a suitable angle which accepts
DataMatrix inside the scanning region and close to the edges. In this case,
the calculation time is less than the square area (obviously, 45◦ rhombus
rotation has the same performance as the square). However, if a smaller
DataMatrix rotated in a larger angle, it cost time. The worst condition is
rotating rhombus with 45◦, the performance is the same with the square area
in the first case. The disadvantage of the rhombus is the usability, it requires
a higher requirement to users, larger DataMatrix needs a larger rotation an-
gle.

In conclusion: according to the performance, the scanning region adoption

35

depends on the scenario and scenario request. In the thesis, we adopt the
square initial area, because it is the typical shape we use in daily life, and
has a balanced performance between calculation time and usability.

4) Conclusion

In the position localization stage, since our shot-blasted DataMatrix has
breakage contours, we design a ”sliding searching algorithm” to search the
DataMatrix location in the image, detect lines and L-shape in order to obtain
some optional kernel dimension to reduce the calculation time. We make two
different positioning algorithms (Figure 2.20), in order to adapt in different
scenarios. ”Auto position localization” is design for the factory. Since the
industrial camera requests to scan the whole image, we use ”rough range”
searching process and ”precision location” searching process to reduce the
searching time.”Manually position localization” is used for the mobile phone
application, we have a defined scanning region in advance, however, the scan-
ning orientation is variable. Using the L-shape oblique angle, we rotate
the DataMatrix to ”vertical-horizontal” orientation and search the location.
Moreover, we test different initial scanning regions, study the performance
variation.

36

Figure 2.20: Position localization flow

2.1.4 Stage 3 DataMatrix code Recovering process

The position localization process gives us the DataMatrix position, because
of the step in the sliding searching algorithm is one pixel, the received loca-
tion has a higher confidence level. The next step is to recover the DataMatrix
cell by cell, transforming the DataMatrix to the traditional standard format,
using one-pixel blocks to represent each cell.

DataMatrix recovering methods focus on cell performance. Gridding the
DataMatrix, for each cell using the percentage of the black pixels to deter-

37

mine the cell belongs to the black or white, this is the shared method in the
literature[11][14]. However, the problem we faced is: our DataMatrix belongs
to rough contour DataMatrix, the cell only reserves the contour, therefore
the black percentage method is not suitable for the contour DataMatrix con-
dition (Figure 2.21).

Figure 2.21: Gridding contour
DataMatrix Figure 2.22: Ground truth

1) Conception

Here we introduce some basic conceptions which we use in this subsection.

I) Ground truth
Since we already know this DataMatrix sample’s content, we create the
standard DataMatrix show in the image (Figure 2.22) called “ground
truth”. Compare recovered DataMatrix with the ground truth to mea-
sure the DataMatrix recovering performance and using the confusion
matrix to represent the recovery result.

II) Confusion matrix
Confusion matrix is a specific table layout that allows visualizing the al-
gorithm error distribution. Confusion matrix has two dimensions (”ac-
tual” and ”predicted”). In the confusion matrix each row represents the
instances in an actual class while each column represents the instances
in a predicted class. Moreover, each block has the algorithm perfor-
mance meaning: Positive(T); Negative(N); True Positive (TP); False
Positive (FP); True Negative (TN); False Negative (FN) (Figure 2.233).

3https://en.wikipedia.org/wiki/Confusion matrix

38

Thesis focuses on the FN and FP, FN means the cell which should
be black but predicted white (named ‘Erasure’) while FP means the
cell which should be white but predicted as black (named ’Error’). Ac-
cording to the ratio between erasure and error and the summation of
erasure and error, to measure the recovering performance (Figure 2.24).

Figure 2.23: Confusion Matrix Figure 2.24: Error and Erasure

III) Recovering Baseline
Since the rough contour DataMatrix is not mentioned in any other lit-
erature, we put forward this new object and create the baseline for this
kind of object.

The purpose of DataMatrix recovering is to decode the content. Accord-
ing to the DataMatrix attributes table (table 2) in the annex, different
DataMatrix has different threshold ratios between error and erasure.
Thanks to the error correction codewords, the DataMatrix can be de-
coded, if the ratio and the total instance number of error and erasure
are less than the threshold, otherwise, this DataMatrix will lose its
function.

Thesis adopts 14*14 type of DataMatrix, therefore the baseline in the
thesis is the following:

{eo
ea
≤ 5/7, eo+ ea ≤ 12}

⋂
{ea = 0, eo+ ea ≤ 12}

eo: Error ea: Erasure
(Baseline)

IV) Normalizing algorithm
Normalize is the way to eliminate the effects of the dataset unit, by

39

scaling the numbers. The thesis adopts the “Min-Max Feature scaling”
scale results from 0 to 1, to process the result matrix Eq.2.13.

x′ =
x− xmin

xmax − xmin
(Eq.2.13)

2) Pre-processing

To solve the problem of “rough contour DataMatrix”, I improve the method
which the literature mentioned. From the beginning, since we already ob-
tain the DataMatrix location, to avoid the other parts which do not belongs
to the DataMatrix position effect the DataMatrix binarization result, it is
better to re-do the binarization process. Same as the positioning process, I
select the Sauvola’s binary image as default binary algorithm because it has
less noise than other methods like Otsu’s image (Figure 2.25a Figure 2.25b).

(a) Otus’s binary image (b) Sauvola’s binary image (c) Sauvola denoising image

Figure 2.25: DataMatrix binary image

After binarization, many noises still exist, adopting the smoothing and mor-
phology algorithm which was introduced in ”positioning processing”, to ob-
tain the denoising image shown in the image (Figure 2.25c). Since in the
beginning, we hypotheses the DataMatrix belongs to 14*14, we can divide
the image into 196 small parts. From the gridding result, each small part
can represent the cell in DataMatrix, it verifies the positioning process works
well. With the gridding image, I create two methods to recover each cell to
obtain a complete DataMatrix.

The two methods of contour DataMatrix recovering are “contour cell re-
covering” which focus on the cell’s contour and “Filled cell recovering”

40

which focus on the whole cell.

3) Method 1: Contour DataMatrix Recovering

“Contour cell recovering” using the cell’s contour to recover the cell to the
one-pixel block. In the beginning, I created a “standard contour cell”, which
black edge occupied a quarter of the cell width, it seems like the cell in the
binary kernel which is introduced in “sliding search algorithm”. Compare
each cell in the gridding map with the standard cell to calculate the black
edge accuracy and using the accuracy threshold to classify the gridded cells.
Different with the sliding searching algorithm, here we only consider the black
color, because in the DataMatrix binary image, black pixels almost belong
to the cell edge, moreover single-color accuracy computation costs less time
than double colors.

accuracyBK =
correctly matched black pixels

standard cell black pixels
(Eq.2.14)

In the contour cell recovering algorithm, we extract and recover the data
region of DataMatrix, data region has 12*12 cells and it records information.
Other DataMatrix parts like the solid L-shape and alternate L-shape have
constant shapes, are not necessary to be recovered from the binary image.
Therefore, the recovering process is the following (Algorithm 4):

Algorithm 4 Contour cell recovering

Input:
1.Gridding DataMatrix
2.Standard cell

Output:
Regular DataMatrix;

Extract the data region (12*12)

for cells in gridding data region do
compute and record the black color matching accuracy with standard
cell

end for

41

Normalize the total result
Normalize threshold=1

while Normalize threshold≥0.5 do
compute the accuracy threshold according the Normalize threshold
for cell in gridding data region do

if cell accuracy≥accuracy threshold then
return black cell

else
return white cell

end if
end for

Add L-shape and decode recovering result

if Successful decoded then
return BREAK

else
Normalize threshold =Normalize threshold-0.1

end if
end while

According to the recovering result, sometimes it cannot be decoded because
some cell connection parts have fewer or do not have black edges. Less black
edges cause these parts are mis-predicted. Therefore the second method
”filled cell recovering” is to recover the cell connection part.

4) Method 2: Filled cell recovering

To avoid the cell connection part cannot be recovered, after the contour
cell recovering process, using the filled cell recovering process to improve the
DataMatrix recovering result.

“Filled cell recovering” method comes from the reference literature. Cal-
culate the black pixels percentage in the cell to determine the cell. Before
the black pixel counting, cells should be filled, especially filling the cell con-
nection part. The filling algorithm is developed from the “Contour Detection
Algorithm” (Figure 2.5) which is introduced in chapter 2.1.2. Each cell con-
tour could be obtained using “Contour Detection Algorithm”. Theoretically,

42

the cell contour should be complete, therefore the contour should be classi-
fied as outer outlines and inner outlines, we select the inner outlines and fill
black color inside. However, the contour is roughly reserved, some contours
are broken, therefore, the breakage contour does not have inner and outer
outlines and it cannot be filled. In the end, the filled cell, which has more
than 90% of black pixels, belongs to black cell.

In the “filled cell recovering process”, I do not apply the morphology ero-
sion algorithm to connect the contour’s crack. Because the distance between
contours is very close, once using erosion algorithm, the crack is successfully
repaired, in the meantime, different cell’s contours are also connected. In the
end the recovering result has lots of black area that should not exist.

5) Recovering result addition

Now we have two methods to recover the DataMatrix, ‘contour cell recover-
ing’ and ‘filled cell recovering’. The final step is to compensate black pixels
with each other, obtaining the final recovering result, which not only has
single cells but also has cell connection parts.

6) Conclusion

In conclusion, the contour recovering algorithm using two methods to recover
the cell and cell connection part, transform the rough contour DataMatrix
to a traditional style with one pixel for each block. In the end, decoded the
recovery result by Python open source library (“pylibdmtx”).

The confusion matrix is used to measure the recovering performance since we
have the ground truth in advance, however in the real usage scenario, users
do not have the ground truth, therefore this algorithm should give them
the decoding result quickly and stability. With the recovering algorithm, I
design a DataMatrix recovering flow (Figure 2.26). After the DataMatrix
image binarization and the data region extraction, firstly using the contour
cell recovering method to recover the DataMatrix, in the meantime the nor-
malize threshold (BET) which is used to determine the cell default as 1.0. If
the first method cannot be decoded, try the second method. Furthermore, if
the second method decoding result is still empty, update the threshold until
the threshold is less than 0.5. In my experiment, when threshold equal to
0.5, many white cells are mis-predicted as black, or maybe 0.5 is suitable for
DaraMatrix with thin edges, but we do not want to analyze the DataMatrix

43

with weak edges, it is an unclear DataMatrix actually.

Figure 2.26: DataMatrix recovering flow

2.2 Pre-processing results

Pro-processing is the first step to process the image. Using the method intro-
duced in the last subsection, after grey processing and blurred image process-
ing. Comparing different binarization methods, I select Sauvola’s algorithm
to binary the image (Figure 2.27). Because Sauvola’s algorithm decreases
the number of noises and makes a better distinction between DataMatrix
contour and noise.

44

(a) OTUS binary image (b) Adaptive binary image

(c) Niblack’s binary image (d) Sauvola’s binary image

Figure 2.27: Different binarization

2.3 Position localization results

1) Auto position localization

Auto positioning is adopted in the factory in which the camera is fixed on
the machine. In this condition, we do not consider the orientation problem,
but the scanning area should be the total image.

• Rough range selection

In the study case, after image binarization and noise area filtering. Using L-
detection algorithm we successfully shrink the options range from 40 numbers
to 3 numbers (Figure 2.28a), In the optional range ([27;28;29] pixel/cell)
with the default sliding step (10 pixel), select the most representative cell

45

dimension which has the largest maximum accuracy, in our case it is 28
pixels per cell. Using normalize threshold (defaults 0.7) select some kernel
positions to constitute a rough range, the heat map rough range result is
shown in Figure 2.28c, In addition from Figure 2.28b , it is easy to see
relations between DataMatrix and rough range.

(a) Kernel selection from options (b) Rough range

(c) Heat map with kernel cell 28 pixels per cell

Figure 2.28: DataMatrix code auto positioning rough range

• Precision location selection

Based on the rough range, we reset the sliding step equal to one pixel, redoing
the “sliding searching process” and selecting the most representative cell from
the options (in our case from set [27;28;29] select 28 pixel/cell) (Figure 2.29a).
In the selected heat map (Figure 2.29b), the DataMatrix position is the kernel
position which has the maximum matching accuracy. After these processes,
we get the DataMatrix location automatically (Figure 2.29c). The square
looks near to the actual DataMatrix position.

46

(a) Kernel selection from options (b) Heat map with kernel cell 28
pixels per cell

(c) Precision location

Figure 2.29: DataMatrix code auto positioning precision location

2) Manually positioning

In the experiment, we simulate the scenario that using the square as an
initial scanning region, to scan the oblique DataMatrix. The DataMatrix
has been rotated 5 degrees in advance (Figure 2.30a). Processing the image
with the analysis flow introduced in chapter 2.1.3 (manually positioning).
Detecting lines in the binary image (Figure 2.30b), selecting the L-shape
from several lines. In the study case two L-shapes were detected, the av-
erage rotation angle of L-shapes is 4.4◦, and the optional range of kernel
cell length is [27,28,29] pixels per cell. Rotating DataMatrix to “vertical-
horizontal direction” (Figure 2.30c) and using “sliding searching algorithm”
to select the suitable cell dimension. Obviously, in the curve the maximum
matching accuracy is around 0.8 when the cell equals 28 pixels (Figure 2.30d),
thus the DataMatrix position is selected in the heat map when the kernel
cell has 28 pixels and kernel position has the maximum matching accuracy

47

(Figure 2.30e).

(a) Initial scanning region (b) L-shape detection (c) DataMatrix rotation

(d) Kernel selection from options (e) Sliding heat-map

Figure 2.30: DataMatrix code manually positioning

The result of DataMatrix location and matching accuracy is similar in man-
ually positioning process and auto positioning process, it demonstrates that
the rotation algorithm and manually positioning analysis flow performs well.
The oblique DataMatrix positioning has the same performance with ideal
orientation DataMatrix positioning.

3) Comparing

For now, the thesis adopts two methods to locate the DataMatrix. Auto
position localization is used for manufacture and manually position local-
ization is used for the mobile phone application (Figure 2.31). The way to
measure the positioning process is the calculation time.

48

Figure 2.31: Position Localization

Figure 2.32: Auto positioning time

In the auto positioning process, since it requests two times sliding, the total
calculation time should be rough range searching time plus precision location
searching time, However, in the manually positioning process, the calculation
time is equal to precision location searching time.

In the study case, after obtaining some kernel options, the auto position-
ing needs 1.4 seconds to obtain the rough range and 11 seconds to obtain the
precision, the total time is around 12 seconds (Figure 2.32). For manually
positioning, using the square as the initial scanning region, the sliding time
is around 2.4 seconds (Figure 2.17).

4) Conclusion

In conclusion, these two positioning processes have the similar positioning
result and matching accuracy, demonstrate the suitability of these two algo-
rithms. However, manually positioning can decrease the calculation time a
lot, because it gives a possible position range in advance, and we can control
the time by controlling the initial scanning region. For the auto positioning
process, the time is hard to predict, because it is hard to predict the rough
range area, the larger rough range area costs more calculation time, however
it can scan every part of the image, locate the position automatically.

49

2.4 DataMatrix code recovering results

From the DataMatrix positioning algorithm, we obtain a precision location.
Since we know the type of DataMatrix, it is easy to separate the location
into many cells. The recovering method aims to recover each cell, in order
to obtain a complete DataMatrix.

Following the binarization process and using morphology algorithm to omit
noise, we have gridding contour DataMatrix image (Figure 2.33). Extract
the data region in the central and compare with the standard cell. Since we
already know this DataMatrix sample’s content, we create our ground truth
(Figure 2.34).

Figure 2.33: Gridding contour
DataMatrix

Figure 2.34: Sample ground
truth

• Contour cell recovering

In this study case, the standard cell has black edge which occupied a quarter
of width. using the color map to represent the black accuracy comparing
result of the DataMatrix data region (Figure 2.35), higher accuracy means
this cell has a larger probability to be predicted as the black cell. For instance,
select 0.6 on the normalizing bar as the threshold to classify the cell, we obtain
the recovering result (Figure 2.36).

50

Figure 2.35: Black accuracy color map
Figure 2.36: Contour cell re-
covering

Compared with the ground truth (Figure 2.34), the recovering result repre-
sents most cells in the DataMatrix. However, the connected cell part which
is in the top right of the DataMatrix is not recovered, because the cell in the
connection part has few black edges around, therefore cells in the cell connec-
tion part are predicted as white. From the confusion matrix (Figure 2.37),
the total mistake is over the baseline threshold which accepts 12 mistakes
totally, therefore this result cannot be decoded.

Figure 2.37: Contour cell recovering confusion matrix

• Filled cell recovering

To avoid the cell connection part cannot be recovered, after the contour cell
recovering process, using the filled cell recovering process to improve the
DataMatrix recovering result.

51

Filling the closed contours in the DataMatrix data region. In the image
(Figure 2.38) obviously the complete contours are filled and recovered, other
incomplete contours still cannot be recovered.

(a) Cell filling (b) Filled cell recovering

Figure 2.38: Filled cell recovering

• Recovering result addition

The final step is to compensate black pixels between the first method with
the second method, obtaining the final recovering result, which not only has
single cells but also has cell connection parts.

The image shows the final recovering result (Figure 2.39), it seems good.
Compare the result with the ground truth (Figure 2.34), using a confusion
matrix to represent the matching statistic. In the confusion matrix (Fig-
ure 2.40), the total black pixels are 102 including L-shape, and we predict
101 of them, only one black pixel gets a mistake that is predicted as white.
While all of the white pixels are correctly predicted. Finally, we have only
one erasure mistake, the result satisfied by the baseline request which accepts
totally 12 mistakes and can be decoded to “ABCDE12345” as we expect.

52

Figure 2.39: Recovering
result Figure 2.40: Confusion matrix

2.5 Additional (Neural Network recovering)

The thesis also proposes to use a Neural Network to recover the DataMatrix
in “position localization process”. Firstly, Let’s see what the Neural Network
is, what is the basic structure and components in the Neural network.

1) Background

Artificial neural networks (ANNs), simply called neural networks (NNs) is a
technical algorithm of machine learning, the principle of the neural network
is inspired by the physiological structure of our brain-neurons that are in-
terconnected with each other. However, unlike a neuron in the brain that
can connect to any neuron within a certain distance, an artificial neural net-
work has discrete layers, connections, and data propagation directions. Same
as machine learning, the Neural network is also classified into three classes:
unsupervised learning, supervised learning and reinforcement learning.

• Unsupervised learning using because we lack sufficient prior knowledge,
it is necessary to solve pattern recognition problems based on training
samples with unknown categories (not labeled). The typical algorithm
is like the K-means algorithm and principal component analysis (PCA).

• Supervised learning using samples with known or specific characteris-
tics as the training set to establish a mathematical model (weight model
in artificial neural network method, etc.), and then use the established

53

model to predict unknown samples. It is the most common machine
learning method. In supervised learning, each example is a pair con-
sisting of an input object and labeled output value. The supervised
learning algorithm analyzes the training data and produces an inferred
function, which can be used to map new examples. An optimal model
would allow the algorithm to correctly determine the class label when
the label does not exist.

• Reinforcement Learning is one of machine learning paradigms and method-
ologies. It is used to describe and solve the learning process of the
agents in the interaction environment. Aims to maximize returns or
achieve specific goals.

In this part, the thesis uses a neural network to train a model that can classify
the cell according to their attribute. The training process is a supervised
learning process since we have the ground truth DataMatrix at the beginning,
the ground truth cells are the certainly known labels. Then using trained
models to predict other cells’ attributes.

2) Neural network structure introduction

• Single layer (node)
In a neural network, the most basic structure is the single layer network
(Figure 2.41). In single layer NN. The neural receives input signals
from other n input neurons. The input signal is transmitted through a
weighted connection, the output of the neural is the summation of all
weighted single plus a bias value. Active the neural output to obtain
the final output of the single layer.

Figure 2.41: Single layer NN

54

The activation function adds a nonlinear factor to the neuron, so that
the neural network can approximate any nonlinear function arbitrarily,
therefore the neural network can be applied to many nonlinear models.

output = g

(
n∑
i=0

xiwi + b

)
g:activation function

• Multi-layer feedforward neural network
Multi-layer feedforward NN (Figure 2.42 4) contains three layers: input
layer, hidden layer and output layer. The input layer neurons receive
external input signals, the hidden layer and the output layer process the
signals, and the output layer neurons process the final result. Feedfor-
ward means that external signals reach the output layer from the input
layer through the hidden layer, and there is no reverse propagation of
the signal.

Figure 2.42: Three-layer feedforward NN

Noticed that the Hidden layer could store many other layers and nodes,
the function of the hidden nodes is the same as before, however, mostly
activation function is only used in the last layer before the output
layer. Because activation function is used for decreasing the algorithm

4Image from “Metaheuristic design of feedforward neural networks”[15]

55

complexity, and one time is enough, more activation using will decrease
the output result accuracy.

• Back-propagation

Figure 2.43: Back-propagation NN

BP (back-propagation) neural network is a multilayer feedforward neu-
ral network, trained according to the error back propagation algorithm,
and it is the most widely used neural network. The purpose of error
back-propagation is to minimize the NN’s cost function by updating
the weight and bias of the nodes in the hidden layer (Figure 2.43). The
back-propagation process is represented using four BP equations.

δj
L =

∂c

∂ajL
σ′(zj

L) (BP.1)

δL−1 =
(

(wL)
T
δL
)
� σ′(zL−1) (BP.2)

∂c

∂bj
L−1 = δj

L−1 (BP.3)

∂c

∂wjkL−1
= ak

L−2δj
L−1 (BP.4)

BP.1 represents an auxiliary variable (‘error’) δ of the node j in layer L,
an auxiliary variable related to the cost (c), and the activation result
(a).

56

BP.2 demonstrates how the auxiliary matrix updates from the deeper
auxiliary matrix, with the weight(w) and node(z).

BP.3 and BP.4 are the processes to update the bias(b) and weight(w)
from the auxiliary variable in the same layer

• CNN
Convolutional neural network (CNN) is a class of deep neural networks,
most commonly applied to analyzing visual imagery, that can recognize
and classify features in images (Figure 2.44).

Figure 2.44: Convolution Neural Network

A CNN is composed of several kinds of layers:

– Convolutional layer: Each convolutional layer in a convolutional
neural network is composed of several convolutional units, and
the parameters of each convolutional unit are optimized through
the back-propagation algorithm. The purpose of the convolution
operation is to extract different features of the input. The first
layer of the convolutional layer extracts some low-level features
such as edges, lines, and corners. More layers of networks can
iteratively extract more complex features from low-level features.

– Pooling layer: scales down the amount of information the convo-
lutional layer generates for each feature and maintains the most
essential information. Specifically cut the image into several re-
gions and the maximum or average value is taken to obtain a new
feature with a smaller dimension. (the process of the convolutional
and pooling layers usually repeats several times).

57

– Fully connected input layer: ”flattening” the output generated by
the previous layer to convert them into a single vector, in other
words combine all local features into axial features and used in
the next layer.

– Fully connected layer: After the input layer, the structure and
function is the same as the back-propagation neural network which
introduced above, applies weights over the input generated by the
feature analysis to predict an accurate label.

In the last, CNN generates the final probabilities for different classes,
to classify the input images.

3) Neural network recovering

Thesis using the back-propagation algorithm to recover the rough contour
DataMatrix cell by cell, with the NN structure named ‘Spatial Pyramid
Pooling’(SPP). SPP neural network is similar to convolution neural net-
work(CNN). However, CNN requests the input image have the same dimen-
sion because the input of the structure is pre-defined. Spp neural network
improves this restriction, it accepts different dimension image input[16]. SPP
neural network structure is shown in the image (Figure 2.45), and this is the
structure I adopt in the thesis.

Figure 2.45: Spatial Pyramid Pooling

58

• Convolution layer: for each image, the convolutional layers use sliding
filters, and their outputs have the same aspect ratio as the inputs.
These outputs are known as features. Using the convolution method to
extend the depth of the image. Since a feature map is extracted from
different angles, it is robust for different images.

• Pooling layer: fully-connected layers require a fixed-length vector, SPP
can maintain spatial information by pooling in local spatial bins. These
spatial bins have sizes proportional to the image size, so the number of
bins is fixed regardless of the image size.

• Fully connected layer: using fixed length vectors to represent any size
of the image, it is possible to train the features in the vector with
the back-propagation algorithm by updating the weight and bias, to
minimize the loss in the cost function.

In the thesis, since DataMatrix has different dimensions, SPP is the most
suitable structure. The input image of SPP is the single separated cell of
DataMatrix, the output is the probability of black (0) and white (1). The
number of depths extent and the number of pooling bins is the literature[16]
proposition and adoption.

Since we have only one image and the ground truth (totally 196 cells), we
select three-quarters of them as the training set others are test set. Be-
cause the training set is not huge, therefore it is not necessary to train many
times. After training a hundred times, the training set accuracy and test set
accuracy is around 0,96 and trend to stable (Figure 2.46a).

(a) SPP training accuracy (b) Recovering result

Figure 2.46: SPP Neural network recovering

In specific, one of the recovering results demonstrated in Figure 2.46b, the
result has nine mistakes totally, the accuracy is around 0.96 of all pixels.

59

Actually, the real mistake is seven not nine, because we focus on the data
region, L-shape mistake can be corrected in the last. Anyhow, the ratio of er-
ror and erasure is satisfied with the Baseline (5/7), the result can be decoded.

In conclusion, the thesis verifies that the SPP neural network is suitable
for the uncertain dimension cell recovering. The recovering accuracy seems
good, but it still needs to be improved when the dataset becomes more com-
plete. Since the problem is lack of dataset, the thesis does not go more
in-depth to modify some specific parameters.

2.6 Recovery conclusion

In Conclusion, from the input rough contour DataMatrix code, the recovery
process using the binarization and smooth approach process the input image
to obtain the denoising image. And using two steps to recover and decode it.
Two steps are position localization and recovering. Firstly, according to
the different requests, the thesis put forward two position localization meth-
ods. One is auto positioning for the factory that accepts more seconds to
process and is requested to scan the whole image, positioning the DataMatrix
code automatically. Another one is manually positioning for the mobile
phone application, which needs a quickly positioning process with small area
scanning. Second, the recovering process following the position localization
process, if the position matches DataMatrix more than 70%. Thesis proposes
a ”contour DataMatrix code recovering” analysis flow to recover the
gridded DataMatrix code cell by cell with two succession processes that fo-
cus on cell recovering and cell connection part recovering. Transforming the
rough contour DataMatrix code to regular shapes. Moreover, generate an
idea to use Spatial Pyramid Pooling neural network to recover the gridded
DataMatrix code, and verify the SPP suitability (Figure 2.47).

60

Figure 2.47: Recovery flowchart

61

Chapter 3

Traceability Platform

Chapter 3 is an intelligent manufacturing system (IMS) development, aims
obtain a reliable Database to achieve I4.0. Section 3.1 introduces the IMS
logic, and protocols adopted in the platform. Section 3.2 and 3.3 are the IMS
database and platform simulation in order to share the agents’ information.

The company is constructing a manufacturing execution system (MES) sys-
tem, In MES system all detection agents can share the product’s information
and track the product state. Therefore, it requests an intelligent way to store
the data in the database rather than manually recording. A smart platform
needs to be developed, aims to collect the data from the machine with the
technical sensors, update the product state after the multi detection agents
process, and record the product analysis report.

The purpose of platform development is to build a complete and reliable
dataset, analyze the relationship between the production process and product
quality, in order to achieve product management and predictive maintenance.

3.1 Protocol introduction

Since the manufactory has technique to obtain the production process infor-
mation from sensors, the thesis focuses on the detection results aggregating,
to mark the product with the quality label in the dataset.

MQTT

MQTT is a light publish/subscribe network protocol, It is designed for con-
nections with remote locations with small code capacity, or the network

62

bandwidth is limited. The MQTT protocol defines two types of network
entities: a message broker and several clients. An MQTT broker is a server
that receives all messages from the clients and then routes the messages to
the appropriate destination clients. An MQTT client is any device that runs
an MQTT library and connects to an MQTT broker over a network. (Fig-
ure 3.1)

Figure 3.1: MQTT message delivering

In MQTT, information is organized with topics. When a publisher needs to
publish the message, it sends a message with the topic to the broker. The
broker then distributes the information to any clients who subscribe to the
same topic. The publisher and subscriber do not need to be configured with
each other. Using the topic, any publisher can publish to any subscriber with
the same broker.

Publish/subscribe is an asynchronous communication paradigm. It allows
the development of loosely-coupled event-based systems. It removes the de-
pendencies between producer and consumer of information.

Publish also can define Quality of Service (QoS). The QoS defines how hard
the broker/client will try to ensure that a message is received. Higher levels
of QoS are more reliable but involve higher latency. QoS of Message related
to the subscription, moreover it depends on the published message, meaning
lower subscripts QoS must have lower QoS message however higher subscripts
QoS might receive lower QoS message.

63

CherryPy

A web service is a service offered by an electronic device to another elec-
tronic device communicating with each other via the World Wide Web.

CherryPy is an object-oriented web application framework, it can act as
a web server. REST (Representational State Transfer) is an architectural
style that is well-suited to implementation in CherryPy. Both REST and
CherryPy heavily leverage the HTTP protocol but otherwise carry minimal
requisite overhead. In CherryPy REST is defined by four interface con-
straints:

• GET: retrieves the state of a specific resource.

• PUT: creates or replaces the state of a specific resource.

• POST: passes information to a resource to use at it sees fit.

• DELETE: removes resources.

Based on Rest architectural and CherryPy framework, we can build our own
web server,deliver information to other users.

3.2 Database creation

Database schema and content

The database is a collection of organized, shareable, and unified management
of large amounts of data stored in the computer for a long time. Moreover,
the database is a data collection that is stored together in a certain way, can
be shared with multiple users, has as little redundancy as possible, and is in-
dependent of the application. It can be regarded as an electronic file cabinet
place for storing electronic files. Users can add, query, update, delete and
other operations on the data in the file

In the MES system, since the contents have not been confirmed, we create
an initial database, the database schema (Figure 3.2) contains the following
contents:

64

Figure 3.2: Database schema

• MES ID: the unique product’s identity, stored in DataMatrix code and
printed on the product.

• Operation history: an array to record different agency operations. In
the array, each object records an agent’s ID, detection time and de-
tection result. Particularly, the x-ray agency also uploads the x-ray
detection image.

• Product state: represent the product’s current state, it depends on the
previous state and the last agency detection result.

Our database simulates the MES system information update, moreover, the
database has the schema to verify the information validation. For instance,
the database accept the specific agents’ ID, the detection result and product
state must be “ACCEPT”,“REJECT” or “NOTSURE”, other results will be
reject in database.

3.3 Platform development

Platform structure

65

Figure 3.3: MES detection agencies platform

The MES platform uses MQTT protocol and HTTP protocol to achieve
information delivering between detection agencies; MES central server and
database. MQTT adoption is used to solve the bandwidth limitation for
the detection machine, while HTTP protocol is widely used in information
transform through a web server.

Since the MES process is constructing, the components are not finalized
yet, the thesis develops a platform demo to simulate the MES process. The
platform demo contains some agency operators; a central server and a
database(Figure 3.3). As publishers in MQTT protocol, all agencies achieve
one-way communication with the central server using the common topic, this
single topic simplifies the central server’s MQTT configuration. Moreover the
QoS level of MQTT is “level 2”, meaning the broker/client will deliver the
message exactly once by using a four steps handshake. In the platform, cen-
tral server likes an information aggregator and manager, has the authority
to connect with the Mongo database, query and modify the objects, com-
plete the database, moreover obtain the feedback from the database. A part
of feedback information can be delivered from the central server to agencies
with a web server. Web server posts the information, and agencies get the
information using different URLs. Moreover, the central server could send
some notice and news to the specific agency by email. In the platform, detec-
tion agencies receive the product’s current state which belongs to feedback
information from the database, but without central server management, they
cannot communicate with the database directly.

Main function introduction

66

Using the platform, agencies can cooperate with each other, obtain the
product current state and history records.The product’s history information,
for instance, the disqualified reason could help agents to make the decision
whether to detect this product.

Some main functions that the platform can achieve are:

1. Current product state updating:
The current product state depends on the previous state and current
detection result. According to the MES-ID, the platform uses the “MES
detection algorithm” to update the current product state until the last
agency (Algorithm 5;6;7 in Annex).

2. Querying from database and uploading to the database:
Scanning the DataMatrix code, the agencies could obtain the current
product state, and the previous operator’s detection result. Moreover,
after detection, upload the detection information to the database, in
order to update the product’s current state.

3. Critical condition alarm:
Supposing the central server has a problem, for instance, shutdown
or disconnected with the mongo database. In that case, server will
automatically send an email to every detection and inform the agencies
to break off the detection process.

67

Chapter 4

Conclusion

4.1 Tasks and achievements

In order to achieve I4.0 product quality management and predictive main-
tenance. The thesis proposes making a reliable database which contains the
product quality state, production information, and unqualified reason. With
the completely reliable dataset, we can achieve predictive model creation by
supervised machine learning methods and summarize the relation between
the quality and production process to improve the production technique.

A complete dataset creation needs a smart platform to collect the infor-
mation from the production process and different quality detection agents.
The collected product information should be stored in the database. Accord-
ing to product identity, it is easy to make the features and labels correspond
with each other. However, the DataMatrix code which stores the product’s
identity cannot be decoded, since it lost the modules, only reserve the mod-
ule’s contour.

Thus, the principal task to achieve a smart platform is to recover the DataMa-
trix code, to obtain the encoded contents which record the product identity.
I worked in the following tasks to recover the shot-blasted DataMatrix code:

1) Understand the DataMatrix code structure, components and attributes.

2) Understand the algorithm, analysis flow and performance measurement
in previous literature.

3) Recover the shot-blasted DataMatrix code and create a baseline.
The recovery process contains two stages, DataMatrix code positioning
and DataMatrix code recovering. For the positioning stage, I create two

68

positioning algorithms to satisfy different requests in factory or the mo-
bile phone application. For the recovering stage, two methods compensate
each other, transforming the rough contour DataMatrix code to regular
shapes. Moreover, propose an idea to use the SPP neural network to
recover the DataMatrix code cell by cell, avoiding the uncertain image
dimension.

Since this kind of DataMatrix code recovery is not mentioned in any other
literature, it is a new raised project and a baseline needs to be created
for the new project.

4) Using calculation time to measure the positioning performance, while us-
ing the number of mispredicted cells and a baseline to measure the final
recovering performance.

After recovery the DataMatrix code, the thesis develops a platform demo
to simulate the MES process and creates an initial database to store the
information. Platform development requests us to understand the following
fields:

1) MES system operation logic and requests.

2) Internet techniques and protocols, which are suitable for MES processing.

3) Database structure and validation.

With the tasks above, an initial MES platform has been built, the platform
contains functions from product recognition to products’ quality detection
result upload. However, this platform construction is a long-term project,
the algorithm and structure should be improved according to the requests.

4.2 Question and answer

As for the questions which we put forward at the beginning:

a) How can we decode shot-blasted DataMatrix code with com-
puter vision?
Ans: DataMatrix code decoding requires the code have a regular format.
We recover the “Rough Contour DataMatrix code” to traditional type by
positioning the DataMatrix code location and recovering the separated
cells.

69

b) Which recovery techniques perform better and are better suit-
able for a real case scenario?
Ans: Different scenarios have different requests. We have two different
positioning algorithms adapt different scenarios. i) Manufacturer ac-
cepts more seconds to process the image, but it requests to scan the whole
image. In this case we adopt the “auto positioning process” to locate the
DataMatrix code automatically in the image.

ii) Mobile phone application, which needs a quickly positioning process
with small area scanning, should adopt the “manually positioning pro-
cess” with the predefined scanning region. However, these two positioning
processes have the similar positioning result and sliding matching accu-
racy.

Moreover, to ensure the decoded success rate and response time, after
positioning algorithm two recovering methods are in series, and the
recovering threshold should be iterated, once decoded successfully the
program should break.

c) How can we create a traceability system? What’s the structure
of the platform and Database?
Ans: The traceability system requests to build a database, and accord-
ing to the product identity to update the records in the Database. The
platform contains some agent operators, a central server and a database.
Agents are in charge of uploading the detection report, the central server
is in charge of modifying the records in the database and sending database
feedback information to agents.

d) What functions should the platform achieve?
Ans: the main functions are: Current product state updating; Querying
from database and uploading to the database; Critical condition alarm.

4.3 Future tasks suggestion and expectation

Since the thesis proposes some suggestions about I4.0 platform construction
and DataMatrix code recovery, future tasks can be divided into three stages:

Stage 1 DataMatrix code recovery program:
Waiting for more samples to verify the DataMatrix code recovery
algorithm, according to the recovery performance, improve the al-
gorithm to achieve a better recovery result.

70

Stage 2 Platform improvement:
This stage parallel with the first stage, improves and updates the
platform function to satisfy the MES new requests. Achieve a com-
plete platform which can process and analyze the data, while can
deal with different critical situations.

Stage 3 Dataset analyzation:
A realiable dataset is an excellent beginning to analyze the rela-
tionship between the production process and product quality per-
formance. With supervised machine learning, we can give the com-
pany an analysis report, help the company understand the influence
of production factors on product quality. Moreover, create a predic-
tion model to predict the product quality in the production simula-
tion process. A useful prediction model also can be integrated into
the platform to verify the detection agents’ quality detection results.

With intelligent platforms and intelligent predictive maintenance, the com-
pany can achieve product optimization and upgrades. Product information
can be stored and fully utilized in a smart way. The production and detection
system improves work efficiency significantly. Every improvement is useful
to smart manufacturing and smart society.

71

Reference

[1] Yang Lu. Industry 4.0: A survey on technologies, applications and open
research issues. Journal of Industrial Information Integration, 6:1–10,
2017.

[2] V. Alcácer and V. Cruz-Machado. Scanning the Industry 4.0: A Liter-
ature Review on Technologies for Manufacturing Systems, 2019.

[3] Lucas Santos Dalenogare, Guilherme Brittes Benitez, Néstor Fabián Ay-
ala, and Alejandro Germán Frank. The expected contribution of Indus-
try 4.0 technologies for industrial performance. International Journal of
Production Economics, 204(July):383–394, 2018.

[4] Alejandro Germán Frank, Lucas Santos Dalenogare, and Néstor Fabián
Ayala. Industry 4.0 technologies: Implementation patterns in manu-
facturing companies. International Journal of Production Economics,
210(January):15–26, 2019.

[5] Manuel Oliveira, Emrah Arica, Marta Pinzone, Paola Fantini, and
Marco Taisch. Human-Centered Manufacturing Challenges Affecting
European Industry 4.0 Enabling Technologies, volume 1. Springer In-
ternational Publishing, 2019.

[6] Ray Y. Zhong, Xun Xu, Eberhard Klotz, and Stephen T. Newman.
Intelligent Manufacturing in the Context of Industry 4.0: A Review.
Engineering, 3(5):616–630, 2017.

[7] Tatiana A. Ryabchik, Elvira E. Smirnova, Marina I. Lukashova, and
Hasan Haydar. Manufacturing processes quality control as a main factor
of performance enhancement in industrial management. Proceedings of
the 2019 IEEE Conference of Russian Young Researchers in Electrical
and Electronic Engineering, ElConRus 2019, pages 1463–1466, 2019.

72

[8] Matheus E. Leusin, Mirko Kück, Enzo M. Frazzon, Mauricio U. Maldon-
ado, and Michael Freitag. Potential of a Multi-Agent System Approach
for Production Control in Smart Factories. IFAC-PapersOnLine, 2018.

[9] Marc Benhaim. GS1 DataMatrix Guideline. page 76, 2016.

[10] GS1. GS1 DataMatrix Guideline Overview and technical introduction
to the use of GS1 DataMatrix. pages 8–12, 2018.

[11] Ladislav Karrach and Elena Pivarčiová. Options to Use Data Matrix
Codes in Production Engineering. Management Systems in Production
Engineering, 26(4):231–236, 2018.

[12] Feng Liu, Anan Liu, Meng Wang, and Zhaoxuan Yang. Robust and fast
localization algorithm for data matrix barcode. Proceedings - 2010 In-
ternational Conference on Optoelectronics and Image Processing, ICOIP
2010, 2:356–359, 2010.

[13] Qiang Huang, Wen Sheng Chen, Xiao Yan Huang, and Ying Ying Zhu.
Data matrix code location based on finder pattern detection and bar
code border fitting. Mathematical Problems in Engineering, 2012, 2012.

[14] Yange Dai, Lizhen Liu, Wei Song, Chao Du, and Xinlei Zhao. The re-
alization of identification method for DataMatrix code. Proceedings of
2017 International Conference on Progress in Informatics and Comput-
ing, PIC 2017, pages 410–414, 2017.

[15] Varun Kumar Ojha, Ajith Abraham, and Václav Snášel. Meta-
heuristic design of feedforward neural networks: A review of two
decades of research. Engineering Applications of Artificial Intelligence,
60(January):97–116, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial
pyramid pooling in deep convolutional networks for visual recognition.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 8691
LNCS(PART 3):346–361, 2014.

73

Appendices

74

ASCII conversion

Table 1: ASCII conversion

75

DataMatrix attributes

Table 2: DataMatrix attributes

76

MES processing algorithm

Algorithm 5 Current state updating algorithm

if previous state == ”NOTSURE” & detection result == ”ACCEPT”
then

return product current state=”NOTSURE”
else if previous state == ”NOTSURE” & detection result ==
”REJECT” then

return product current state=”REJECT”
else if previous state == ”REJECT” then

operator do not detect, do not upload message
return current state do not update

else
return current state do not update

end if

Algorithm 6 Final state updating algorithm

if previous state == ”NOTSURE” & final detection result ==
”ACCEPT” then

return product final state=”ACCEPT”
else if previous state == ”NOTSURE” & final detection result ==
”REJECT” then

return product final state=”REJECT”
else if previous state == ”REJECT” then

operator do not detect, do not upload message
return current state do not update

else
return current state do not update

end if

77

Algorithm 7 MES detection algorithm

Input:
1.MES detection sequence
2.Detection agent(op) output information
3.Current state update algorithm
4.Final state update algorithm

Output:
Product final state

if op is the first in the sequence then
create new MES-ID object or update existing MES-ID records
if op detection result:”ACCEPT” then

return product current state=”NOTSURE”
else if op detection result:”REJECT” then

return product current state=”REJECT”
end if

end if
if op is not the first or last in the sequence then

if previous op uploaded then
current state updating algorithm(Algorithm 5)
upload product info
return current state update

else
operation do not detect, do not upload message
return current state do not update

end if
end if
if op is the last in the sequence then

if previous op uploaded then
final state updating algorithm(Algorithm 6)
upload product info
return final state

else
operation do not detect, do not upload message
return current state do not update

end if
end if
if op is the x-ray operator then

accept both ”ACCEPT” and ”REJECT”
upload product info include x-ray image

end if

78

	Introduction
	Background
	State of the art
	Objective and purpose

	Shot-blasted DataMatrix code recovery
	Tools and method
	Stage1 Pre-processing
	Image processing algorithm
	Stage 2 Position localization process
	Stage 3 DataMatrix code Recovering process

	Pre-processing results
	Position localization results
	DataMatrix code recovering results
	Additional (Neural Network recovering)
	Recovery conclusion

	Traceability Platform
	Protocol introduction
	Database creation
	Platform development

	Conclusion
	Tasks and achievements
	Question and answer
	Future tasks suggestion and expectation

	Reference
	Appendices

