
POLITECNICO DI TORINO

DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING
Master degree in Computer Engineering - Embedded Systems

Master Thesis

A graph oriented approach for implementing the MPI
multicast communicator on a many-core GALS platform

Supervisors:
Gianvito Urgese
Evelina Forno
Francesco Barchi
Elisa Ficarra

Candidate:
Alessandro Salvato

October 2020

2

Summary

The binding between Computer Science and Biology is something much narrower than
you normally may think. Emulation of human brain behaviour is one of the most hot top-
ics let these two branches merge into. Nowadays, in the neuromorphic field, are available
several SW and HW capable to simulate the behaviour of biological neural networks,
identified in the biological studies. The research field of this thesis work is emulation
of the brain by means of embedded applications. At this point we need to distinguish
between software and hardware solutions. The formers, probably, are the most famous
ones. This group counts artificial intelligence and artificial neural networks. Born in soft-
ware, they may run on general purpose machines or on customized ones. Special purposes
hardware and its own configuration is one of the target branches of Bioinformatics team
at Politecnico di Torino. The machine, going to emulate a biologic brain, has been devel-
oped at University of Manchester, in collaboration with the University of Southampton,
University of Cambridge, University of Sheffield, ARM Holdings and Silistix Limited. It’s
a neuromorphic hardware, from Wikipedia web-page: Neuromorphic Engineering, or
Computing, describes the use of multicore and analog circuits to mimic neuro-biological
architectures present in the nervous system.

This neuromorhic machine is called Spin5 (sometimes in this document we will also use
more generically the stylized SpiNNaker or classic Spinnaker). From the logic point of
view that’s composed of 768 general purpose ARM cores, capable to simulate behaviour
of brain neurons. It’s easy to understand that all of them run in parallel, turning both
throughput and memory availability as issues. Moreover, communications are allowed to
be run in broadcast (1-to-all), multicast (1-to-more) and unicasting (1-to-1). The Bioin-
formatics’ team has already developed libraries for both broadcasting and unicasting;
this thesis work aims at integrating and making coexist the multicast communication
scenario.

Spin5 is an hardware simulator running one subcategory of artificial neural networks: the
spiking neural networks, SNN for short. They add the concept of timing to its own
model, for which one neuron generates a signal, an electrical spike, after a certain num-
ber of events coming from the environment. The logic line dividing the neuron from the
others has named membrane potential. That means that, in addition to developing
the routing algorithms for the management of the multicast case, the implementation
of a synchronization system has required, customized for multicasting, as well. All of
these must be done taking into account the small memory availability for routing and
synchronization, trying as well to minimize the throughput, no to forget that SpiNNaker
is massively parallel computing oriented hardware.

MPI is one of the most used protocol when developers work with distributed machines. A
lot of documentation comes from open-license works, making literature really widespread.
Moreover, different MPI implementations fit on different machines. The MPI software
stack for Spinnaker draws an environment made up of various layers of abstraction. How-
ever, as said above, only communicators for unicast and broadcast exist by now. Now,
the main goal stands on multicast communicators realization.
Before focusing on that, a pre-processing step has to be performed. The solution space
for any possible multicast group is really huge, turning any consideration on its manage-

3

ment not so trivial. Due to poverty on memory resources, the compression data phase,
to be filled in routers, it’s absolutely necessary.
MPI allows collecting data from parallel-processes, but Spinnaker is a Globally Asyn-
chronous Locally Synchronous architecture-based. It means that misalignments, among
hundreds of core, running in different clock domains, can occur very frequently. There-
fore, some synchronization cycles must be performed in order to ensure the correctness
of MPI flow. It will be presented a synchronization mechanism, fitting multicast sce-
narios, trying to satisfy all "special cases", but keeping algorithm as much as general.
Synchronization follows same specification of broadcast implementation, but some vari-
ations have been applied, such as the number of hierarchical layers.
Evaluation of results passes through a customized simulator of the board. It acts as
debug tool to collect information on the correctness for both synchronization and rout-
ing rules. Its specifications are described. Then, some simulations have been performed,
trying executing 100 multicast groups at the same time. Slightly tuning some simula-
tor’s parameters and application model where MPI is running over, produces different
results, that will be analyzed and commented in the end to enhance future publications
and operational ideas for next works.

4

Acknowledgement
And I would like to acknowledge . . .

Acknowledgements are mandatory only when people outside the academic institution
supported the development of the research that was performed in order to reach the
conclusion of the doctorate program.

La serenità è la più bella delle felicità

6

Contents

1 Introduction 15
1.1 A bit of history about Neuromorphic engineering 15
1.2 Neuron biology . 17
1.3 Why Neuromorphic technologies? . 18
1.4 The Human Brain Project . 19

2 Background 21
2.1 Some examples of neural networks . 21

2.1.1 Convolutional Neural Network . 22
2.1.2 Recurrent Neural Networks . 23
2.1.3 Bidirectional RNN . 24

2.2 SpiNNaker main architecture . 28
2.3 Message Passage Interface: the MPI . 30
2.4 Libraries for development . 32

3 Methods 37
3.1 Mathematical issue . 38
3.2 Multicast Communication Middleware messages 40
3.3 Inputs and outputs . 41
3.4 Mapping algorithm . 45
3.5 Routing rule generation and compression algorithm 47
3.6 Synchronism mechanism . 49
3.7 Simulator specifications . 54

4 Results 59
4.1 Router sizes . 62
4.2 Simulator . 65

4.2.1 Synchronism . 65
4.2.2 Simulation . 66
4.2.3 The µ factor . 74

5 Conclusions 79

8 CONTENTS

List of Figures

1.1 Curve C illustrates the exponential dependence of the arrival rate of pack-
ets of the neurotransmitter at the postsynaptic membrane on the presy-
naptyc membrane potentiale. Curve D shows the saturation current of a
MOS transistor as a function of gate voltage. [1] 17

1.2 Neuron anatomy . 18

2.1 Building-blocks for CNN . 22
2.2 Example of convolution between two bidimensional objects 23
2.3 Full CNN: in blue the convolutional stages, in pink the non-linear function

and in brown the pooling stage. At the top of the pyramid, each main
branches produce a weight that will take as input of a classical neural
network. 24

2.4 RNN architecture . 25
2.5 Unrolling of a recurrent neural network 25
2.6 Solver schematic view of backpropation problem for a recurrent neural

network after unfolding. h is the state vector, while f is the activation
function. x is the vector of input applied at any timestamp t, producing
in the end the output y. It comes that any state element ht, produced by
the current activation function f t, depends on the previous step input xt−1

and previous state ht−1. Don’t forget to consider weights W in computation. 26
2.7 Bidirectional Recurrent Neural Network unfolded 27
2.8 Neuron cell structure in a Long Short Term Memory context 27
2.9 The Spin5 board. Here are well visible SpiNNaker chips, each of them

composed of 18 ARM processors, for a total of 864 cores 29
2.10 Logic overview of a SpiNNaker chip . 29
2.11 SpiNNaker routing table structure [2] . 30
2.12 Hierarchical logic view of API libraries [3] 32
2.13 Logic overview of a SpiNN-5 board . 34
2.14 Synchronization mechanism: each single chip is a first level manager, any

chip along the diagonal is a second level manager, finally, chip (0, 0) is the
third level manager . 34

3.1 Inputs and outputs flow chart in the environment 38
3.2 Plot of the function q863

k=3 C(864, k) . 39
3.3 MCM format for multicast message on top and synchronization on bottom 40
3.4 Main steps of mapping.py . 41

10 LIST OF FIGURES

3.5 Plot generated from networkx. It names 3_[9,15].png. Bigger red nodes
are the chips where are contained cores listed in filter.txt, smaller red
nodes are chips inserted in the multicast groups in order to ensure con-
nectivity among the bigger ones. Blue nodes are the ones that are not
interested for the current configuration. 42

3.6 All possible pivot regions, depending on the config_chip. At right, a model
of the six ports surrounding a router. 49

3.7 Sync2 detection algorithm: building proto-subtrees 51
3.8 Sync2 detection algorithm: leftmost tree shows the case of a threshold

lower than 4. Rightmost one shows what happens when threshold gets
increased, allowing long chains to be merged with other groups. 51

3.9 Sync2 detection algorithm: leafs are automatically merged up 52
3.10 Sync2 detection algorithm: end of process. N is the threshold 53
3.11 Simulator software implementation UML model 54
3.12 Router.routeM(packet_routing_key) flow 56

4.1 Spin5 map on cartesian coordinates . 60
4.2 Spin5 map on logic id values . 60
4.3 Memory size engaged for routing rules, on 100 multicast groups having

size in range 4 - 20. Data sorted by number of rules. 62
4.4 Memory size engaged for routing rules, on 100 multicast groups having

size in range 4 - 20 . 63
4.5 Memory size engaged for sync rules, sorted 63
4.6 Memory size engaged for sync rules, chip ID on x-axis and number of

router rows used along y-axis . 64
4.7 Synchronism cycles varying mapping algorithm and number (X) of mul-

ticast groups . 65
4.8 Merge Sort application model flow chart [4] 66
4.9 Simulation cycles varying the application model, varying the testSet and

the workload . 68
4.10 Heatmap of OneFire experiment. Workload set to 4, testSet5. On the y

axis the simulation cycles, here treated as nanoseconds. On the x axis the
chip id. 70

4.11 Heatmap of OneFire experiment. Workload set to 10, testSet5. On the y
axis the simulation cycles, here treated as nanoseconds. On the x axis the
chip id . 71

4.12 Heatmap of PingPong experiment. Workload set to 4, testSet25. On the
y axis the simulation cycles, here treated as nanoseconds. On the x axis
the chip id . 71

4.13 Heatmap of MergeSort experiment. Workload set to 10, testSet50. On the
y axis the simulation cycles, here treated as nanoseconds. On the x axis
the chip id . 72

4.14 Heatmap of FED experiment. Workload set to 10, testSet100. On the y
axis the simulation cycles, here treated as nanoseconds. On the x axis the
chip id . 72

4.15 Heatmap of synchronism mechanism. Workload set to 1, testSet5. On the
y axis the synchronization cycles, here treated as nanoseconds. On the x
axis the chip id . 73

LIST OF FIGURES 11

4.16 Heatmap of synchronism mechanism. Workload set to 1, testSet10. On
the y axis the synchronization cycles, here treated as nanoseconds. On
the x axis the chip id . 73

4.17 OneFire µ, varying workload and testSet size 75
4.18 PingPong µ, varying workload and testSet size 75
4.19 MergeSort µ, varying workload and testSet 76
4.20 FED µ, varying workload and testSet . 77
4.21 PageRank µ, varying workload and testSet 77

12 LIST OF FIGURES

List of Tables

4.1 Dictionary Logic Id - Cartesian coordinates for 48 chips on SpiNNaker . . 61
4.2 Total number of routing rules and average number of rules per router . . 62
4.3 Total number of sync rules and average number of rules per router 64
4.4 Total number of ALL rules and percentage of memory used 64
4.5 OneFire application model: simulation cycles 68
4.6 PingPong application model: simulation cycles 69
4.7 MergeSort application model: simulation cycles 69
4.8 FED application model: simulation cycles 69
4.9 PageRank application model: simulation cycles 69
4.10 Multicast packets generated per application model 69
4.11 OneFire µ, varying workload and testSet size 75
4.12 PingPong application model: µ factors . 76
4.13 MergeSort application model: µ factors . 76
4.14 FED application model: µ factors . 77
4.15 PageRank application model: µ factors . 78

14 LIST OF TABLES

Chapter 1

Introduction

1.1 A bit of history about Neuromorphic engineering

Interests on both nervous system and human brain come from far away. First studies
were up to Incas in Americas and to ancient peoples of Mesopotania since 10000 BCE.
Other evidences are recurrent, Egyptians, Greeks and Romans have, over the centuries,
laid the foundations for one of the most interesting branches of modern biology: Neurol-
ogy.
In the XVII century Physiology was born; that’s the branch dealing with how living
beings work. But we have to wait for another century, in full Age of Enlightenment, to
reap the rewards of another field that will help Neurology to evolve into a new layer
of comprehension; I’m talking about Electrophysiology. Actually, early hypothesis were
elaborated in Renaissance by Italian anatomists Costanzo Varolio and Bartolomeo Eu-
stachi. They were among the first that had discredited the Galeno’s millennial theory,
strongly based on Ethics, Logics, Physics, Classical Philosophy and the conception that
human emotions reside in organs. Electrophysiology tried to prove electrical activities
in the brain, and more generically across the nervous system. Luigi Galvani was one of
the most famous scientist of this branch. He could prove the deep link between electri-
cal activity and life: Galvani had applied a differential of potential between two nodes,
putting in the middle a dead frog; he had observed that the limbs of the animal twitched
[5]. How was this possible was the big question of next years. The answer, nowadays
obvious, is that the nervous system needs electricity to work. All the informations have
transmitted from the brain to everywhere by means of electrical signals travelling all
around that.
Within brain, the basic block predisposed to propagate electricity is neuron. Another
italian scientist had a very important role in this path: the 1906 Medicine Nobel prize
Camillo Golgi "Work on the structure of the nervous system"[6]. He was able to depict
the neuron’ structure, mainly composed of nucleus, dendrites and axon.
Despite World Wars began, both brain and computers studies pursued. In 1929 the first
encephalogram was performed; it consists in measuring the current flowing through cele-
bral cortex. In 1944 the first programmable electronics ever was built in Bletchley Park,
England, by Alan Turing and Max Newman, having the main purpose to decrypt Nazi
machine messages by Enigma. Probably, the most important year, leading to the first
match between biology and computer science is 1943. "A logical calculus of the ideas
immanent in nervous activity", McCulloch & Pitts, was published. This paper proposed

16 1.1 - A bit of history about Neuromorphic engineering

a mathematical and computational model to run algorithms by means of logical lattice
schemes. At the beginning, the actual structure of neuron has depicted, describing how
it can turn into an excited state depending on coming of external impulses. The theory
description follows, providing some physical assumptions observable from real neurons
[7].

1. The activity of the neuron is an "all-or-none" process. It means that a neuron/node
can execute just a task at a time

2. A certain fixed number of synapses must be excited within the period of latent
addition in order to excite a neuron at any time, and this number is independent
of previous activity and position of neuron. It refers to the fact that any reaction
has produced after a certain number of stimulus.

3. The only significant delay within the nervous system is synaptic delay.

4. The activity of any inhibitory synapse absolutely prevents excitation of the neuron
at that time

5. The structure of the net does not change with time

Later in 1958, Von Neumann and Rosemblatt refine the previous theory. They pro-
posed more complex models, much more similar to brain, and the first Artificial Neural
Networks, perceptron based.
In 1990 another very important milestone was published: Neuromorphic Electronic Sys-
tems by Mead Carver. First, he compared performaces of a 90s microprocessor with
respect to the brain’s, stating that "the brain is a factor of 1 billion more efficient than
our present digital technology, and a factor of 10 million more efficient than the best
digital technology that we can imagine" [1]. Moreover, Carver treats the leakage power
issue in modern digital electronics; he says that just a small fraction of energy has used
to charge the capacitance of a transistor, but the higher amount of the total is used
for internal wires and interconnections. These considerations laid to one question: how
can nervous system be so more efficient than digital electronics? To enhance neuron
synapse performance with respect to a MOS transistor, Garver advanced results of his
observations by plotting the response of both as function of difference of potential ap-
plied on two terminals 1.1. His own conclusion bases on the fact that analog electronics
fits better than digital one to mimic neurons. However that was not enough. Neurons
own the capability to adapt themselfs, developing a kind of memory of the past. Again,
Carver talks about analog memories, EPROMs and EEPROMs, as proof of the fact that
analog components are compliant for this kind of implementation. He will refer to them
as neuromorphic systems.
Apart from the hardware proposed by University of Manchester, that will be explained
in next sections, let’s have a look of current state of art of research and who are the
main actors, as companies, that are investing in neuromorphic engineering. In 2014 IBM
published a paper where their own 4096 cores and 1 million neurons architecture was
proposed [8].
Intel designed Loihi in 2017. It’s a self-learning neuromorphic research chip, composed
of 128 cores, counting around 130.000 neurons. Actually Loihi cannot be accessed by
general audience, since test phase is still ongoing [9].
Also mobile market hasn’t been untouched from neuromorphic wave. Just think to

1.2 - Neuron biology 17

Figure 1.1: Curve C illustrates the exponential dependence of the arrival rate of packets
of the neurotransmitter at the postsynaptic membrane on the presynaptyc membrane
potentiale. Curve D shows the saturation current of a MOS transistor as a function of
gate voltage. [1]

Google’s TensorFlow Lite. It’s a framework allowing developers to exploit this kind of
technology without knowing machine characteristics. TensorFlow Lite is already avail-
able for Android, iOS and Raspberry Pi.

1.2 Neuron biology

Neuron is the basilar unit building nervous tissue. It allows electric impulses to be
transmitted. A sketch of it is reported at figure 1.2.
Nucleus has contained in soma, that’s the cell body basically. Within Golgi apparatus,
mitochondrions, endosplamic reticulum rough and smooth stay. Neuron’s nucleus, as
the same matter of other type of cells, synthesizes RNA and proteins from mRNA. Two
kind of branches depart from soma: dentrites and the axon. The formers work directing
information from the environment to the center of cell body. Data may come from close
neurons. Dentrites are identified as short-range projections [10]. The axon owns some
outstanding feature. Any single neuron has only one axon. In opposition to dentrites,
axon data direction is from the cell body to outside. Chemistry reactions due to some
ions such as sodium, chlorine, calcium and potassium allow current to flow along. Action
of myelin sheat and nodes of Ranvier (very short compared to the whole axon length)
produces a very intense differential of potential between the inner membrane and the
environment. This causes electrochemical events known as spikes. Speed of transmission
can reach 120 m/s. Then, the axon tail is composed of several minor branches able to
reach the remotest area of the brain, in fact these are considered as long-range-projections
[10].

18 1.3 - Why Neuromorphic technologies?

Figure 1.2: Neuron anatomy

1.3 Why Neuromorphic technologies?

Carver (1990) and some other else before, tried to explain digital electronics limits,
meaning that scalability couldn’t continue for ever. A platue would have been achieved
in next years. Actually, that has been happening. First of all the problem stands over
the transistor size. Although it’s true, the smaller the transistor channel, the higher is
density per area, it hasn’t to be forgotten that a too tiny transistor cannot work. That’s
not only a geometrical issue, but interests also electrical quantities. As well as transistor
channel, also voltage scaling is getting more and more hard.
New implementations are moving to parallel architectures mainly. Keeping the same
transistor technology, but improving system organization, it’s possible to get better per-
formances. Obviously, splitting tasks may generate some hazards that did not exist in a
single pipeline cortex. Modern microprocessors allow sub tasks to be executed in an out-
of-order manner, exploiting the Tomasulo architecture or newer architectural paradigms.
Strong parallelization fills also server management and web services, like Amazon Web
Services, where any module has distributed in all around the world, but acting as a one.
Following this philosofy, Neuromorphic engineering acts. New machines able to paral-
lelize tasks, managing sub units which are able to exchange a lot of messages at minimum
cost, both in terms of power consuming and in terms of delay introduced, reminds to
neurological activity. Neuromorphic computers can be seen as cluster of neurons, able to
parallelize a very high amount of tasks and to be feasible at high throughput scenarios.
That’s the reason why we can state that any neuromorphic machine is an hardware
try to mimic human brain behaviour and structure from the morphology and electrical
points of view.
In 2006 Georgia Tech released a field programmable neural array, mimic the channel-ion
characteristics of neurons in the brain. In 2011 MIT produced an hardware able to repli-
cate the synaptic behaviour. Both of them have been realized by MOSFET technology,
but the emerging ones are getting more and more considered. In 2012 a neuromorphic

1.4 - The Human Brain Project 19

chip was fabricated using ferromagnetic units and memristors, these called also as neuris-
tors.
It’s not so hard to imagine what kind of applications may be interested by Neuromorphic
machines. Graphics Processing Units of course, for floating points operations, but also
to find out new oil wells or to determine stock option curves on the stock exchange. We
can consider all those application machine learning based: vocal recognition, self-driven
cars, astronomic simulations and assistant surgeons.

1.4 The Human Brain Project
In 2013 the European Union collected funds to realize software and hardware projects
to move neuroscience and medicine on technological improvements. The Human Brain
Project was born. To it, 500 scientists and researchers, from more than 100 universities,
take part. Six main applicative branches [11] cover

• Neuroinformatics

• Brain simulation

• High performance analytics and computing

• Medical informatics

• Neuromorphic computing

• Neurorobotics

Neuromorphic computing and Brain simulation paths matched SpiNNaker ongoing
development. It started in 2005 and the first prototype was released in 2009, ten years
ago. Initial SpiNNaker ideas totally fit Human Brain Project purposes. Trying emulating
brain activity, with millions of connected cores, acting as independent neurons, may lead
outbreaks in Neuroscience [12] [13] [14].

The neuromorphic platform has thought for high-performance massively parallel pro-
cessing. Politecnico di Torino university, in collaboration with University of Manchester,
started in developing a MPI protocol feasible running of Spinnaker. The goal is to enlarge
the algorithmic window to general purpose applications; in fact Spinnaker has mainly
been developed to run brain simulations, it does not natively support a general purpose
programming. That’s the reason why researchers decided in MPI usage.

20 1.4 - The Human Brain Project

Chapter 2

Background

2.1 Some examples of neural networks

The union between Computer Science and Biology is something much narrower than
you normally may think. A lot of algorithms and data structure derive from nature
observation. The reference is quiet immediate: look at tree structures, for instance. They
are a very understandable and easy study case, taught in any academic programming
course. Names as roots and leafs come from nature. A much complex example regards
genetic algorithms. This kind of strategies try solving optimization problems, where
any single feature of the final possible solution is encoded in a gene. Combinations of
gene lead to chromosomes. Population of individuals, owning certain chromosomes, are
set of possible solutions. Evaluating these individuals allows to filter the bests, in the
same manner natural selection makes the strongest survive and others become extinct.
Moreover, genetic algorithms may apply random changes in chromosome solutions: these
steps are called mutations and again, researchers took inspiration from biologic world.
Mutations may lead to worst individuals or to better ones, with totally new features. For
example, genetic algorithms are used to improve performances of inside processors, by
fetching instructions not in the chronological order, but ensuring the normal behaviour
[15].

Deep learning is a very recent subfield of neural network theory[16]. It started as
machine learning system devoted at classification system for image processing. With
respect to classic neural networks, deep neural networks expect a number of hidden
layers higher than 2, typically. By increasing the number of middle layers, we increase the
number of hierarchical feature extraction models that we can include in neural network.
The brain has a deep architecture. For instance, the cortical area for visualization seems
to be composed of some sequences, where images get processed step by step. Then, it
acts like some kind of hierachy standing up; human, first, learns simpler concepts and
then compose them to represent more complex ones.
Traditional machine learning system uses ad-hoc solutions depending on data nature and
knowledge on those. Obviously, this kind of approach highly relies on a single application
and it’s really hard to make it portable, moreover requires a deep knowledge of data
nature. Deep learning approach, by means of multiple layers, tries to extract information
by each of them, from the rawest features and to the finest ones, stage by stage.

22 2.1.1 - Convolutional Neural Network

Figure 2.1: Building-blocks for CNN

2.1.1 Convolutional Neural Network

Convolutional Neural Network are mainly used for image recognition (Fig. 2.1), strongly
implemented by graphical processing units [17]. In CNNs not all neurons are sensitive to
the full data set, or, referring to images, the entire visual field, but only single subregions.
Two kind of cells can be listed: simple neurons detecting patterns and complex ones
having a larger receptive field.
With respect a classical network, a CNN takes as input a much lower number of inputs,
because they are organized in a hierarchical manner and layers are not fully connected.
Stages act on chuck of data, not on the whole set: lower layer extract local features,
top-level layers extract global patterns.

The convolutional stage applies the convolutional operator between the input image,
or a portion of that, to a kernel. The result is a multidimensional feature map for a
specific visual pattern; obviously it can be done providing kernel hand-crafted. Convo-
lutional operation is the base of filters for specific features.
The input is a m× n matrix, the kernel instead is a matrix p× q, such that p ≤ m and
q ≤ n. The kernel moves over the input, without exceeding the boundaries, and performs
a sum of product between elements of both having the same relative row and column
indexes. For visualization look at Fig. 2.2. Mathematically, the elements of output s are
so computed

s[x, y] = (input ∗ kernel)(x, y) =
pØ

i=0

qØ
j=0

input(x, y) · g(x− i, y − j)

Actually, in a CNN we handle more kernels, the number of kernel has said depth of
CNN.

As said before, CNN are locally connected, means that not all neuron of a layers are
strongly connected to all neurons of previous and next layer. It means that nodes are
unresponsive to variations outside of its receptive field. The architecture thus ensures

2.1.2 - Recurrent Neural Networks 23

Figure 2.2: Example of convolution between two bidimensional objects

that the feature extractors produce the strongest response to a spatially local input
pattern. Another characteristic regards shared weights.

Then, CNN have another layer performing some non linear function, in order to better
mimic neurons.

In the end, to perform a kind of reduction on number of features obtained by con-
volution and non linear stages, pooling has performed, on a dedicated layer. It works as
the same as a feature reduction algorithm, which in image processing can be considered
as a compressor. The feature map has divided into sub non overlapped rectangles, then
applying some grouping operation for each of them, such as maximum value search,
mean computation, so on.
Convolution, non linear and pooling stages can be repeated in a hierarchical manner, as
depicted in Fig. 2.3.

2.1.2 Recurrent Neural Networks

Classic neural networks considers fixed length inputs to produces fixed length vector of
output. This leads that the number of computational step are known. Recurrent neural
networks, RNN for short, try to overcome that constraint, allowing the management of
sequences of vectors. RNN are often used in text processing because sentences and texts
are sequences of words.
RNN extends kind of field of application, because each input feature has provided for any
timestamp of the analysis, that’s the reason why we talked about sequences. Actually

24 2.1.3 - Bidirectional RNN

Figure 2.3: Full CNN: in blue the convolutional stages, in pink the non-linear function
and in brown the pooling stage. At the top of the pyramid, each main branches produce
a weight that will take as input of a classical neural network.

RNN, to accomplish a job, takes previous output or hidden states as next inputs. With
respect to classic neural network, a recurrent one contains loop in its body; justifying a
sequential behaviour Fig. 2.4.

Typically any RNN implements the following formula:

ht = tanh(W, xt, ht−1)

Actually, the RNNs can be converted into a feed forward network by unfolding over
time (Fig. 2.5), making optimization problem easier to solve, like the minimization of
the error function. Acting in this manner any loop disappears. Then, a very common
algorithm used in neural network analysis can be applied: the backpropagation. Talking
about Recurrent Neural Network, it names backpropagation through time, BPTT
for short. Grandient variation are applied at each time step, as you can see from Fig.
2.6. It’s required the knowledge of initial states in order to apply BPTT, more or less in
the same manner happened for classic backpropagation. Typically, initial states usually
are set as random values.

2.1.3 Bidirectional RNN

For many sequence, labelling tasks would lead some benefits by accessing to future as well
as past context. However, since standard RNNs process sequences in chronological order,
they ignore future context. To solve this issue, there exist another kind of RNN, called
BRNN, standing for Bidirectional Recurrent Neural Network. By doubling the
hidden layer into a backward and a forward one, such that the former runs sequence from

2.1.3 - Bidirectional RNN 25

Figure 2.4: RNN architecture

Figure 2.5: Unrolling of a recurrent neural network

26 2.1.3 - Bidirectional RNN

Figure 2.6: Solver schematic view of backpropation problem for a recurrent neural net-
work after unfolding. h is the state vector, while f is the activation function. x is the
vector of input applied at any timestamp t, producing in the end the output y. It comes
that any state element ht, produced by the current activation function f t, depends on the
previous step input xt−1 and previous state ht−1. Don’t forget to consider weights W in
computation.

the first to the last, the latter works in opposite propagation, Fig. 2.7. The mechanism
is pretty simple. The two middle layers act independently. Before, inputs are applied in
order to run the forward chain. Then, inputs are applied, from the newest to the oldest,
enabling the backward layer. Finally, the overall computation acts in producing output
values, that has performed by considering storing activations from both the hidden layers.

It may happen that the action of gradient can be lost due to both the number of
a lot of steps and middle computations, altering the right updating of weights, due to
multiplication operation performed along the pipe. This issue is known as vanishing or
exploding gradient. This can be incurred with 100 element sequences, so RNN and
BRNN are hard to handle with large feature sets.
To fix vanishing gradient exists a solution called Long Short Term Memory, LSTM
for short. By adding some other structure to a classical RNN it’s possible to mantein
the hidden states for long time. An LSTM block acts in three instant of time, t −
1, t, t+1. The LSTM block receives the feature sample x(t) and produces y(t). Moreover,
it takes as input the state of the previous step s(t − 1), then producing the step for
the next timestamp s(t + 1). The LSTM node has called memory cell, where the
logical structure has shown in Fig. 2.8. To keep the same math, within a memory cell
exists an edge with unitary weight for state storing. The unitary weight is used to avoid
impacting on gradient, this method has knowns as CEC, Constant, Error Carousel. From
an architectural point of view, a memory cell has composed of four main elements:

• Input gate: controls whether input can be made passed

• Forget gate: manages the CEC, enabling it or not

• Output gate: modulate the signal coming out by net output

• Neuron itself with self-recurrent

Any gate may produces either 0 or 1, because they integrate sigmoidal function, then
multiplied by a certain "internal" weight.

2.1.3 - Bidirectional RNN 27

Figure 2.7: Bidirectional Recurrent Neural Network unfolded

Figure 2.8: Neuron cell structure in a Long Short Term Memory context

28 2.2 - SpiNNaker main architecture

2.2 SpiNNaker main architecture

In the last years, the Advanced Processor Technologies Research Group, based at the
University of Manchester, has developed a new hardware architecture in order to emu-
late the human brain computation. This kind of technology is known as neuromorphic.
The meaning of this term lies on the attempt to emulate the neuronal-biologic behaviour
of the human nervous system: SpiNNaker project was born in 2005. Nowadays, after 15
years, SpiNNaker is a supercomputer made up of 1 million of ARM microprocessors. Its
modelling tries to emulate an human brain counting 80000 neurons [18].
Another relevant SpiNNaker feature is that it acts as a GALS architecture, standing for
Globally Asynchronous Locally Synchronous. Typically, this kind of hardware, detects
some portion of it, called clock domains. Within a domain, everything follows the same
clock, whose frequency may be different, a lot, than another one. However, to ensure
connectivity and global communications, among domains are kind of asynchronous com-
municators. The big advantage, enhanced by GALS, stands on the fact that hardware
can be massively pushed towards parallel computing. Moreover, it fits well the event-
driven behaviour of spiking neural networks.
Supercomputer SpiNNaker has composed of several modules: the Spin5 boards (Fig. 2.9).
In this thesis work the focus is on the Spin5 stand-alone. No considerations will made
over Spin5 inter interconnections. SpiNNaker detects basic blocks, which are, basically
48 chips integrating 18 ARM processors each.
Spinnaker can be programmed via ethernet connection. What is required is to pass
through two software programming steps: on the host side, a Python script generates all
the configuration files for the board; on the SpiNNaker side, C user-defined applications
have run. Main libraries will be presented later on this chapter.

Before going deeper in the introduction, let’s have a look on the main components
within a single SpiNNaker chip, keeping as reference Fig. 2.10. From the logic point
of view, each chip has shaped hexagonally, since it makes easier the implementation
of routing algorithms within SpiNNaker. As said before, 18 ARM processor cores are
within. One of them, on the top in the picture, is the Monitor Processor (MP), used for
internal chip management and communication operators. It’s up to it running the SARK
operating system. Other 16 cores are labeled as Application Processors (AP), which will
run the real C application. The last core, actually doesn’t work, since it’s reserved for
manufacturing yield-enhancement purposes. On the left bottom side is highlighted the
embedded router. In the end a 128kB SRAM and a 128MB of SDRAM are integrated
within each chip, shared by all Application Processors.

Each chip has labeled by a couple of number, which are integer values (x, y) detected
by an hypothetical Cartesian plane. Then, it could be useful draw some logic subregions,
at chip level. It has been made, assigning chips to different concentric ring-layers, where
hierarchy policy depends on the distance of a node from the axis origin. The chip (0, 0)
is the one keeps ethernet communication with the host or other SpiNN5 boards. Around,
there are those chips composing ring 1 (the origin is ring 0): (1, 0), (1, 1) and (0, 1). You
may have a look at figure 2.13, where all the rings are depicted.

Some attention should be given to the architecture and operation of the routers mounted
in each chip (1 per chip). Understanding their key features have been fundamental to
realize this project, since the focus is over multicast routing rule generation and their
compression.

2.2 - SpiNNaker main architecture 29

Figure 2.9: The Spin5 board. Here are well visible SpiNNaker chips, each of them com-
posed of 18 ARM processors, for a total of 864 cores

Figure 2.10: Logic overview of a SpiNNaker chip

30 2.3 - Message Passage Interface: the MPI

Figure 2.11: SpiNNaker routing table structure [2]

Mounted routers are CAM objects, acting as traditional caches. When they receive the
routing key, a matching operation has performed, at the same time, all over the keys
along the whole 1024 allocation matrix. Each router’s row has composed of three parts:
the key, the mask and the rule, Fig. 2.11. The presence of a mask, in a preprocessing
phase, allows making kind of reducing operation among routing keys having common
bits (mask bit set to 1), otherwise these bits are not considered (mask bit reset to 0).
The incoming routing key passes through a bitwise-AND logic with the mask, whose
result is compared with the key column. In case of equality, rule has enabled out, in
order to drive the output signal decoders and multiplexers.

2.3 Message Passage Interface: the MPI
MPI has considered as a standard protocol to allow communication among clusters of
computational units having distributed memory. It’s very popular, mainly in the aca-
demic research world, since its own documentation has distributed in a free-license way.
Actually, MPI is just a collection of rules and description of interfaces to be followed,
in order to fit the standard. Being a specification, it is customizable by everyone, what-
ever the architecture taking part to communication. It’s not needed that designers and
engineers to provide architectural description of computation units, because MPI offers
some high-level abstraction objects to avoid that step.

One of the most concept treated by MPI is the communicator object. It defines
groups of units, or cores, such that to build a world of them. On the same hardware
can run more communicators, each of them is totally independent from others. For each
communicator some primitives are offered, such as: MPI_Init, MPI_Comm_Rank, MPI_Send,
MPI_Recv.
To each communicator are assigned processes in the initialization phase, they are iden-
tified by a numerical rank. This value provides a kind of hierarchical order among
processes of a communicator.
Last, but not least, MPI provides extension for C language, making the implementation
very readable and easy to make. As matter of example, a very straightforward point-to-
point MPI program [19] has listed next.

2.3 - Message Passage Interface: the MPI 31

Listing 2.1: MPI P2P example
include "mpi.h"
int main(int argc , char *argv [])
{

char message [20];
int myrank ;
MPI_Status status ;
MPI_Init (&argc , &argv);
MPI_Comm_rank (MPI_COMM_WORLD , & myrank);
if (myrank == 0) /* code for process zero */
{

strcpy (message ,"Hello , there");
MPI_Send (message , strlen (message)+1,

MPI_CHAR , 1, 99, MPI_COMM_WORLD);
}
else if (myrank == 1) /* code for process one */
{

MPI_Recv (message , 20, MPI_CHAR , 0, 99,
MPI_COMM_WORLD , & status);

printf (" received :%s:\n", message);
}
MPI_Finalize ();
return 0;

}

Lst. 2.1 describes a P2P communication MPI-based. This code has loaded into all the
computational unit of the target universe, but it runs differently depending the assigned
rank. That’s a number assigned by MPI primitive, taking into account the communicator
object, i.e. the "list" of all the computational units interested in. The unicast commu-
nicator has to assign just two ranks: zero and one. The code implements an unicast
communication where the unit with rank zero produces the packet. If the unit’s rank is
one, then the packet is read and internally processed.
Lst 2.2 tries to present a classical P2P scenario between two processes in a Linux en-
vironment, where communication happens asynchronously due to the action of writer
and reader blocking functions.

Listing 2.2: Linux Process P2P example
include <stdlib .h>
include <stdio.h>
include <unistd .h>

int main () {
FILE * stream ;
/* Create pipe place the two ends pipe file descriptors in fds */
int fds [2]; pipe(fds);
pid_t pid = fork ();
if(pid == (pid_t) 0) { /* Child process (consumer) */

close(fds [1]); /* Close the copy of the fds write end */
stream = fdopen (fds [0], "r");
reader (stream);
close(fds [0]);

}

32 2.4 - Libraries for development

else { /* Parent process (producer) */
close(fds [0]); /* Close the copy of the fds read end */
stream = fdopen (fds [1], "w");
writer ("Hello , world.", 3, stream);
close(fds [1]);

}
return 0;

}

2.4 Libraries for development

Some libraries are involved to guarantee both correct configuration and behaviour of
SpiNNaker. They are organized in a hierarchical manner as depicted in Fig. 2.12.

• SpinMPI

• Spin2API

• SpinACP

Figure 2.12: Hierarchical logic view of API libraries [3]

SpinMPI: Previous papers [20] have presented a customized implementation for the
MPI algorithm, adapted to run on Spinnaker. It has been designed to emulate spiking
neural networks, not to run general purpose algorithms. The Bioinformatic team tried
to overcome this limitation, by doing that.

2.4 - Libraries for development 33

Let’s spend some words about vanilla MPI. The Message Passing Interface is a standard
aims at providing and easy-to-use software stack, to implement multi-threading algo-
rithms among memory distributed clusters of computers. It offers portability extension
for C and Fortran. In fact, SpinMPI is fully written by C language. Moreover, MPI is
really widespread in the academic community, making it the golden protocol for research
purposes. It deals with all communication models: unicast, broadcast and multicast. So
far, SpinMPI offers full unicast and broadcast functionalities; multicast communication
is still in working progress.

SpinMPI focuses on synchronization, in order to ensure correctness among multi-
threading propagations. While point-to-point doesn’t require it, both multicast and
broadcast communications need that step. At the state-of-art, the synchronism mech-
anism exists for broadcast case; a possible realization filling multicast scenario will be
proposed in next chapter. Broadcast synchronization relies on three level hierarchy. Each
level is controlled by a manager, or a group of them. It’s up to it (them, if more) col-
lecting all synchronization packets. When it happens, the master generates a further
synchronization message to the upper layer Figs 2.13 and 2.14.

1. Chip level: A SY NC1 packet is sent to all cores within a SpiNNaker chip. When
all synchronization packets are collected, a SY NC2 packet has prepared and sent
to the upper level.

2. Ring level: Chips having the same distance from the origin build a ring. The chips
labeled with x-coordinate equal to the y one are the SY NC2 managers, meaning
they are the actors up at collecting the synchronization packets of the group. Each
ring master knows how many SY NC1 should be produced. When they receive all
of them produce a SY NC3.

3. Board level: All 2-level managers send SY NC3 packets toward the third level
manager, which is the chip on the origin. When all 2-level managers do that, the
synchronizer of the upper level sends, broadcasting, a SY NCunlock, or ACK. It
means that synchronization phase is over.

Spin2API: it works as middleware between SpinMPI and lower layers. This library
is an improvement of Spin1API, the native library directly designed by Manchester
University. Spin2API provides frameworks for SpiNNaker Datagrams. It’s up to this
library the filling of routing table. Moreover, Spin2API implements broadcast connection
and synchronization methods. Within this layer is also described format of messages.
This concept will be recovered in the MCM section in the next chapter.

SpinACP: as well as Spin2API, SpinACP is a middleware between SpinMPI and
lower layers. ACP stands for Application Command Protocol, exploited to send and to
receive commands between the host and the SpiNNaker nodes. The offered functions
cover: network command management, ACPoverSPD and ACPoverMC (dedicated at
message reconstruction), memory entities management, which are described as struc-
tures within an hash table. Parsing of messages it’s up to this library.

Libraries presented so far are all the ones running on the physical board, on Spinnaker
itself, spread among all the cores. There exist another software stack allows configuring

34 2.4 - Libraries for development

Figure 2.13: Logic overview of a SpiNN-5 board

Figure 2.14: Synchronization mechanism: each single chip is a first level manager, any
chip along the diagonal is a second level manager, finally, chip (0, 0) is the third level
manager

2.4 - Libraries for development 35

it and provides an higher level management: sPyNNaker. Actually sPyNNaker is a
front-end package offering a lot of sub-modules for Spinnaker configuration and/or sim-
ulation. Main integrated classes are: PyNN [21], SpiNNMachine [22], SpiNNMan [23],
PACMAN [24], SpiNNFrontEndCommon [25].

36 2.4 - Libraries for development

Chapter 3

Methods

Nowadays, the SpinMPI stack can handle both unicast and broadcast communications,
leaking of multicast scenario. Actually, looking for a mapping satisfying them it’s not so
hard; since unicast expects just a point-to-point path and broadcast’s channel is always
identified by the same ring-based structure.

This "hardwired" strategy cannot work for multicasting. First of all, choosing the
same path to connect two nodes may lead to an excessive throughput both on the line
and on the forwarding routers. Another reason, surely, regards the loss of the big ad-
vantage of a neuromorphic architecture, strongly parallel execution oriented. It would
be better manage two non overlapped multicast groups, making their constructions dy-
namic depending on the previous mappings. This is the very basic idea behind methods
will be presented in this chapter. The main goal aims at mapping, tens or hundreds,
multicast groups in order to do makes distribution heterogeneous; bottleneck may occur
among too stimulated edges.

In this chapter, the Fig. 3.1 chain will be described. As first, a kind of numerical
analysis has presented, just to provide the reader a quantitative view about complexity
of managed objects. Then, both all input and output files are described. At this point,
the user owns the knowledge to understand implemented algorithms. Mapping deals with
converting textual information in graph objects. From them, routing rules have being
generated and then compressed to be stored in the routers. In the meantime, SpinMPI
rules for multicast communicators have been performed. When all the information have
been fitted in all the SpiNNaker routers, simulation starts and statistics have produced
in output.

The other main task mapping.py has to accomplish deals with SpinMPI’s barrier
function by means of generating the binary synchronization rules to be filled in all the
48 routers in SpiNNaker. In order to do that, a synchronization mechanism has been
designed, proposing a hierarchical organization in subgroups of nodes; in such a way
master synchronizers at a certain level, turns into slaves nodes to be synchronized at the
upper one.

Then, mapping.py aims at filling routers with routing and synchronization rules and
performing compression where it’s required, in order to avoid consuming the already
limited memory space.
In the end the simulator (main.py) evaluates the correctness for each enabled group,
checking both for the absence of loops in the multicast subgraph and for the consistency
of built rules. In order to run, simulator requires of router contents, the graph-based
description of the neuromorphic board, the (sub)set of multicast groups and a schedule

38 3.1 - Mathematical issue

Figure 3.1: Inputs and outputs flow chart in the environment

of tasks that each core should perform. Simulator has integrated in main.py.

The whole project has been developed in Python3.7.5 on a VMware Workstation 15
Player virtual machine mounting Ubuntu 19.10.
To handle graphs object, networkx Python package has been really useful, offering ready-
to-use methods. Modelling SpiNNaker got trivial by this one.
Rest of the code has been developed from scratch.

3.1 Mathematical issue

Before going on methods, it would be interesting to provide some quantitative number,
making multicast grouping not so trivial. SpiNNaker counts 48 chips, each of them
embedding 18 general purposes core: 864 as total. The minimum number of cores to
draw a multicast group is 3, the upper bound has constrained by all of them minus 1
(otherwise we would fall in the broadcast case). When you build groups, you are allowed

3.1 - Mathematical issue 39

to assign the same core to different ones, causing possible and very common overlaps.
Mathematically you can model as follows. The total number of groups, having same size
k, choosing from all n cores, comes from the binomial coefficient Eq. 3.1.

C(n, k) =
A

n

k

B
= n!

k! · (n− k)! (3.1)

Obviously, saying that all multicast groups have the same size k is a very hard assump-
tion, false in the majority of the cases. Actually k may vary in range [3, 864−1]. We can
reformulate the previous equation in this manner:

863Ø
k=3

C(864, k) (3.2)

Let’s report some quantity to compare that.

Eq. 3.2 produces a number that is higher than
• total number of elementary particles in the known universe ∼ 1087

• the Googol number = 10100

• the total number of possible chess games ∼ 10123

Relative plot has drawn at Fig. 3.2.
Each router can stores 1024 rules only! Obviously, it’s just playing with Maths:

feasible real solution satisfy some hundreds of multicast groups.
After the mapping step, routing rule compression comes. As said in chapter dedicated to
SpiNNaker specifications, each router has composed of 1024 rows, one per rule, shared
between unicast, broadcast and multicast. Moreover, routers must be filled with routing
rules devoted for synchronism mechanism, which is another item of this chapter.

Figure 3.2: Plot of the function
q863

k=3 C(864, k)

40 3.2 - Multicast Communication Middleware messages

When routers have been filled, a simulation is performed. To do that, a software tries
to emulate the hardware, trying to replicate delays and workload. The output returns
both synchronization and simulation times; moreover, for both of them, it’s possible to
plot an heatmap of the cortical activity, router by router, cycle by cycle.

Before going into implementation details, it should be better to provide a description
of kind of messages, and their compositions, travelling all around the board, both in
synchronization phase and in normal communication mode.

3.2 Multicast Communication Middleware messages
Missing the description of unicast and broadcast messages, you can find in reference, in
this section the multicast scenario has treated only.
Packets are basically composed of three parts:

• The routing key (32 bit)

• The payload (32 bit)

• Some additional options (8 bit)
The routing key is the part of the MCM message that it’s used to match router lines,

in order to identify directions packet has to take. Payload, as the name suggests, it’s the
really information content exchanged by neurons. The options are a set of flags enabling
some functionalities on the packet; however they have not been considered here and have
been mentioned just for completeness of information.
Then, you need of discriminating between "classic" multicast packet and the synchro-
nization one. In fact, they have some small differences between, on the routing key (Fig.
3.3).

Figure 3.3: MCM format for multicast message on top and synchronization on bottom

Bit[31:30] set at "11" states that these messages are referred for multicasting pur-
poses. Unicast and broadcast are identified by different encodings. Again, both of them
share Bit[29:20], representing the multicast identification code. Looking at classic packet,
you set LF and CNT/PAD bits. LF stands for Last Fragment, it’s used by cores to re-
construct the full payload if only 32 bits are not sufficient and information has split into
more messages. CNT/PAD are used as timeout. However, these bits are not interesting
to determine routes, so they are simply avoided by putting at 0s in the routing mask.
Bit[15:14] identify that message as Acknowledge or Synchronizer. In the multicast mes-
sage, Bits[13:4] fill information about the source of this packet, where x and y are the
cartesian coordinates of the chip on the chessboard and p is the logic identifier of the core
in that chip, assuming value from 0 to 15. Looking at synchronization packet instead,
Bits[4:0] assumes some meaning: L4 identifies this packet as a level 4 synchronizer, L3
identifies this packet as level 3 synchronizer and so on. You can find more information
on how synchronism mechanism works in the relative section of the current chapter.

3.3 - Inputs and outputs 41

3.3 Inputs and outputs

Logically, the order of operations to be run are mapping before and simulation after. You
need execute mapping.py and then main.py by the command line. Keeping as reference
Fig. 3.1 and Fig. 3.4 the flow description from input to output has shown.

Figure 3.4: Main steps of mapping.py

Both of mapping.py and main.py need, as input, a textual file, here called filter.txt.
It contains, on each line, the list of cores to build the multicast group. An example has
reported in Lst. 3.1. The identification number for that group has assigned as the line
index of that file.

Listing 3.1: Example of filter.txt where 10 multicast groups are described
[121 , 123, 373, 402, 525, 536, 601, 673, 745]
[13, 31, 80, 103, 130, 281, 296, 313, 319, 321, 388, 501, 572, 628]
[42, 58, 66, 96, 196, 250, 280, 310, 331, 528, 545, 561, 651, 672]
[155 , 207, 209, 328, 383, 529, 555, 849]
[42, 56, 135, 194, 238, 314, 345, 351, 366, 406, 567, 712]
[196 , 341, 347, 430, 527, 543, 732, 778, 832]
[146 , 161, 170, 197, 349, 386, 471, 579, 585, 604, 693, 840, 849]
[15, 31, 66, 88, 237, 371, 387, 388, 579, 593, 610, 725, 779, 812]
[12, 75, 98, 295, 337, 346, 412, 459, 524, 609, 653, 659, 744, 751]
[12, 672, 713, 857]

Actually, filter.txt is the only input mapping.py accepts. On the output side, you can
set the boolean parameter to enable the plot for each multicast group on the SpiNNaker
model graph.

Listing 3.2: Enable plot of multicast groups as images
...
MM = MulticastManager ()
MM. loadGroups (" filter .txt")
MM. generateMinimumSpanningTrees (True) # <---- False: no to plot
...

If True, for any multicast group, detected in filter.txt, will be produced a png image
having the following name format idGroup_c[center], where idGroup is the identification
number for the multicast set and center is the node in the subgraph having the lowest

42 3.3 - Inputs and outputs

eccentricity, it may be a list.
Let’s have a look at the outputs:

• routerContentRouting.txt: router by router are listed, as tuples, the triplet routing
key, mask and rule, for classic multicast routing (Lst. 3.3), Fig. 3.5

• routerContentSync.txt: router by router are listed, as tuples, the triplet routing
key, mask and rule, for multicast synchronism (Lst. 3.3)

• statisticsRouting.txt: router by router the number of rules involved, for classic
multicast routing (Lst. 3.4)

• statisticsSync.txt: router by router the number of rules involved, for synchronism
(Lst. 3.4)

• savingsSync.txt: multicast group by multicast group, the percentage of savings, in
term of rows in routers, between two synchronism mechanisms. The former, which
takes into account geometrical properties of the mapped minimum spanning tree,
the latter more efficient, which discriminates, when possible, avoiding the usage of
forwarding-only nodes as synchronizers (Lst. 3.5)

• syncs.txt: multicast group by multicast group, all synchronization subset are re-
ported. The format used is dictionary-like, where for each element the key is the
synchronizer and the list of values are nodes to be synchronized at that level. (Lst.
3.6)

Figure 3.5: Plot generated from networkx. It names 3_[9,15].png. Bigger red nodes are
the chips where are contained cores listed in filter.txt, smaller red nodes are chips inserted
in the multicast groups in order to ensure connectivity among the bigger ones. Blue nodes
are the ones that are not interested for the current configuration.

3.3 - Inputs and outputs 43

Listing 3.3: Format of routerContentRouting.txt and routerContentSync.txt
(0, 0)
(11000000000100000000000010110000 , 11111111111100000011111111110000 ,
101000 - 000000000000000000)
(11000000000100000000000100000000 , 11111111111100000011111100000000 ,
100000 - 000000000000100000)
(11000000000100000000000000000000 , 11111111111100000001011100000000 ,
001000 - 000000000000100000)
(11000000000100000000000000000000 , 11111111111100000000000000000000 ,
001000 - 000000000000100000)
(1, 0)
(11000000000100000000100010110000 , 11111111111100000011111111110000 ,
010100 - 000000000000000000)
(11000000000100000000000000000000 , 11111111111100000011111100000000 ,
010000 - 000000000000100000)
(11000000000100000000000100000000 , 11111111111100000011111100000000 ,
010000 - 000000000000100000)
(11000000000100000010000000000000 , 11111111111100000011111100000000 ,
000100 - 000000000000100000)

Listing 3.4: Format of statisticsRouting.txt and statisticsSync.txt
(0, 0) Size: 90
(1, 0) Size: 126
(2, 0) Size: 198
(3, 0) Size: 155
(4, 0) Size: 99
(0, 1) Size: 139
(1, 1) Size: 194
(2, 1) Size: 283
(3, 1) Size: 275
(4, 1) Size: 185

Listing 3.5: Format of savingSync.txt
0 Save: 38.5
1 Save: 26.1
2 Save: 33.3
3 Save: 30.8
4 Save: 20.0
5 Save: 45.5
6 Save: 23.8
7 Save: 21.7
8 Save: 41.7
9 Save: 43.8
10 Save: 53.3

Next listing reports HighLevelSync, MainSynchLevel, CommLevelSync and LowwSyn-
cLevel, as levels of synchronization at 4 (the top), 3, 2 and 1 (the bottom), respectively.

44 3.3 - Inputs and outputs

Listing 3.6: "Format of syncs.txt"
IdGroup :0
HighLevelSynch :{23: [30, 22, 23]}
MainSynchLevel :{30: [30] , 22: [21, 22], 23: [23]}
CommLevelSynch :{21: [7, 34, 21], 22: [42, 22], 23: [23] ,

30: [38, 30]}
LowwSynchLevel :{7: [7], 21: [21] , 23: [23] , 30: [30] , 34: [34] ,

38: [38] , 42: [42] , 22: [22]}
IdGroup :1
HighLevelSynch :{16: [17, 9, 15, 16]}
MainSynchLevel :{17: [17] , 9: [5, 8, 9], 15: [42, 28, 31, 22, 15],

16: [16]}
CommLevelSynch :{28: [35, 28], 31: [38, 32, 31], 8: [6, 1, 2, 8],

22: [22] , 16: [16] , 5: [5], 42: [42] , 17: [18, 17],
9: [9], 15: [15]}

LowwSynchLevel :{1: [1], 2: [2], 5: [5], 6: [6], 8: [8], 16: [16] ,
17: [17] , 18: [18] , 22: [22] , 28: [28] , 32: [32] ,
35: [35] , 38: [38] , 42: [42] , 31: [31] , 9: [9],
15: [15]}

That’s it on mapping.py. Some of its outputs are taken by main.py to fill simulation
data, such as routerContentRouting and routerContentSync. To register information for
synchronism, syncs has parsed as well.
Simulation produces three files:

• histortSim.txt: it contains a matrix where on the abscissa are listed the 48 chips,
instead along ordinate axis the instant of simulation. The value in matrix is the
amount of tasks in the queue on that chip at that moment. (Lst. 3.7)

• historySync.txt: it contains a matrix where on the abscissa are listed the 48 chips,
instead along ordinate axis the instant of synchronization. The value in matrix is
the amount of tasks in the queue on that chip at that moment. (Lst. 3.7)

• times.txt: it’s the more relevant simulator output. It reports number of cores in-
volved in, the synchronization time, the simulation time and the µ coefficient de-
fined in Eq. 3.3. Format file in (Lst. 3.8)

µ = Tsim

Tsync
(3.3)

Discussion on µ will be recalled later. However it’s quite intuitive to guess that values
higher than 1 are more convenient. The reason stands on the fact that the choice in using
a platform like SpiNNaker depends on the need for a high-parallel computing platform.
Since neurons must be synchronized, if the machine takes more time in that rather than
running its own application, maybe it could be better either change application or change
board.

Listing 3.7: Format of historySim.txt and historySync.txt
t 1 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 2 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,

3.4 - Mapping algorithm 45

10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 3 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 4 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 5 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 6 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 7 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 8 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 9 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16, 11, 11,
11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]
t 10 [11, 10, 16, 13, 13, 13, 11, 9, 13, 10, 12, 14, 12, 13, 10,
10, 9, 12, 12, 12, 16, 12, 15, 10, 11, 14, 8, 15, 8, 16,
11, 11, 11, 8, 9, 7, 9, 18, 17, 11, 14, 14, 11, 7, 11, 12, 12, 17]

Listing 3.8: Format of times.txt
NCores :281 Syn T: 113 Sim T: 989 Mu: 8.8

3.4 Mapping algorithm

The Multicast manager is an ad-hoc class, designed to manage multicast groups. Its
main purpose is the construction of a Graph object taking into account the mapping
of previously laid out groups. In fact, two algorithms have been proposed for the tree
generation:

• Minimum Spanning Tree method by networkx Python package [26]

• Heuristic iterative algorithm based

Quantity results will be presented in the next chapter.
The mapping algorithm is the entry point of the strategy. That is totally handled by

Multicast Manager (MM) class, which is implemented inmulticast.py and instantiated
in mapping.py. Basically, it reads the filter.txt content and returns networkx graphs, each
of them labeled by the identification group code. MM replicates Spinnaker’s connections
among nodes by means of a Graph object. Each node comes out with three attributes:

• Coefficient ς: total number of times that node has crossed considering all minimum
paths for all possible couples.

46 3.4 - Mapping algorithm

• Eccentricity Ô: after computing all possible paths starting from the current node
to all the others, the eccentricity is a number equal to the maximum path length
among those

• Effort ξ: is used as counter. It increases by an amount equal to the coefficient when
the current node has been inserted in a multicast group either as interested node
or as forwarding only

Actually, ς and ξ have been declared and used for a while, but no more dealt with in
next version of this implementation. In fact, previously, the mapping algorithm took care
about ς and ξ; currently it’s used only one attribute stays on each edge:

• Weight ω: is used as counter. It’s increased by 1 every time that edge/connection
has inserted in a multicast graph representation.

At the Multicast Manager initialization, all ω are set to 1.

When you run the multicast group mapping methods, actually the MM allows to decide
what kind of algorithm to enable. Two of them have been thought: one optimization
based minimum spanning tree methods, one heuristic based.
The former exploits the minimum spanning tree method from networkx library. From
documentation "Return a minimum spanning tree or forest of an undirected weighted
graph. A minimum spanning tree is a subgraph of the graph (a tree) with the minimum
sum of edge weights."[26] It means that, given the current multicast group mi, not yet
mapped, and given Υ the mapping function returning as a mapped subgraph Mi, the
behaviour of Υ depends on the history (Eq. 3.4). In the sense that the next mapping
will depend on how the previous multicast groups, at very beginning, were placed.

Mi = Υ(mi) Υ = f(Mi−1, Mi−2, . . . , M0) (3.4)

Let’s focus on the heuristic algorithm instead. It starts looking for the origin, or center.
The find_origin ϕ is a function (Eq. 3.5) selecting the node, in the subset passed as
input, with the minimum eccentricity, such that

ϕ(setOfNodes) = min{Ô(ni)} i ∈ [0, size(setOfNodes)− 1] (3.5)

The origin has assigned to current_node (CN) variable and a mask identifies it as
"already taken". From CN, closest nodes not yet allocated are listed and, for each of
that, are computed all minimum paths (from CN to closest node). Among these paths,
the one having the minimum weight, as sum of weights along its own edges, is added
to the multicast graph. Then the origin has recomputed among nodes of setOfNodes
not yet connected. This runs until setOfNodes gets empty. Briefly the pseudocode of

3.5 - Routing rule generation and compression algorithm 47

heuristic mapping algorithm:

connected = {}, G = Graph(), setOfNodes = multicast_group

while not(setOfNodes = ∅)then
origin = ϕ(setOfNodes)
CN = origin

connected.add(CN)
closests = find_closests(CN, setOfNodes, connected)
paths = find_min_paths(CN, closests)
best = min_weight(paths)
fornode, edgeinbest{G.add(node, edge)connected.add(node)}
setOfNodes = −connected

endwhile
return G

3.5 Routing rule generation and compression algorithm

At this step, all multicast graphs have been generated and routing rules ready to be
computed. This process works iteratively along all multicast groups, one at a time. We
have to configure all chips being in the current subgraph, regardless of it’s part of the
original multicast vector as from filter.txt or it’s just a forwarding node, used only to
ensure connectivity. The current router, to be elaborated, has named config_chip CC.
It should be to understand that CC has to be filled with information of all other nodes
in the multicast group: these name pivot_chips (PC). Basically, a CC treats as PC any
node which is able to act as a source of packets. It means that, in the multicast graph,
all nodes must be configured, but not all act as pivot. The reason is quite simple. A
forwarding node only serves to ensure the connected component: it will never generate
packets, but will forward from others else.
A rule has composed of 24 bits. Top 6 deals with forwarding of the input packet toward
the i-th chip port (if p[i] == 1), or not (if p[i] == 0). Other 18 bits regard the 18
cores within the CC, forwarding to the i-th core(if c[i] == 1), or not (c[i] == 0). Notice
that for i0 and i17 will be never set the bit to ’1’, as the former represents the monitor
processor and the latter redirects to the shadow core.
For the current CC, are listed all possible PCs. For any PC two data are extracted

• The source key: it’s a 6 bit string, encoding the cartesian coordinates of pivot
logic id. Note that source key doesn’t incorporate the logic id of the source core.

• The encoding for port forwarding: it’s the 6 bits string encoding highlithing
which ports are enabled in order to ensure packets propagation in the rest of the
multicast group

When both of these information come out, source keys are grouped by port forwarding
string. It means that the algorithm creates as many clusters of PC, as many are (distinct)
port patterns in the current config_chip. Then, for each of these clusters, keys are again

48 3.5 - Routing rule generation and compression algorithm

distributed among pivot regions. As depicted in Fig. 3.6, these areas has to be thought
as "relative", not absolute placed on the SpiNNaker. Pivot regions are geometrical rules,
only. The number and the chip in each of them, depends on the CC; each of 48 chips
detect 8 different neighboor areas, which are functions of the CC itself. It’s possible
that, given a CC, some of its own pivot regions are empty; this is the case of nodes along
SpiNNaker boundaries, for instance.
Finally, compression runs on all over the pivot regions and produces the compressed
source key k and its own mask m. For all the length of a generic source key, it’s checked
if the i-th bit, among all the keys, is identical (k[i]← 0/1, m[i]← 1) or not (k[i]←Í X Í,
m[i]← 0). At most, 8 couple key/mask will be produced, one for each region. In case no
pivot_chips falls into a region, the related couple has not generated and the algorithm,
simply, continues.
Before inserting all the couples in the CC’s router, they pass through a sorting step.
Couples have sorted taking into account the number of "X" in k. They are sorted in a
growing order manner. This choice depends on the physical working mode of routers.
They are content addressable memory, CAM for short. The input of a CAM has matched
with all the lines in the same moment, but in case of multiple hits, the upper in memory
has extracted. A key k with no "X" leads to the less generic rule: that row matches
exactly full key itself. The higher the number of don’t care bits, the more generic and
the higher the probability of matching. If the order was taken reversely, it would be
almost zero the chance of a hit with the most accurate rule. Below has depicted the
pseudocode of routing rule compression algorithm:

for CC inmulticast_graph then
keys = {},ports = {}, clusters = {}
forPCinmulticast_groupthen

keys.add(coord(PC))
ports.add(forwardingPorts(PC))

endfor
clusters = keys.groupBy(ports)
for port in ports then

nodes = extractByRegion(clusters[port], 1)
k1, m1 = compression(nodes)
nodes = extractByRegion(clusters[port], 2)
k2, m2 = compression(nodes)
. . .

nodes = extractByRegion(clusters[port], 8)
k8, m8 = compression(nodes)
router[CC] = sort({(k1, m1), (k2, m2), . . . (k8, m8)})

endfor
endfor

3.6 - Synchronism mechanism 49

Figure 3.6: All possible pivot regions, depending on the config_chip. At right, a model of
the six ports surrounding a router.

3.6 Synchronism mechanism

In parallel computing architectures, exploiting MPI, synchronism has used as a barrier.
It means that, in order to avoid unbalanced growth of distributed processes, after a
certain number of execution cycles, nodes have to wait for each other, before of going
on running. Given a set of nodes, they exchange, with each other, some synchronization
packets, where one has elected as master and all other else as slaves. This protocol works
in a total asynchronous manner and spreads on all over the board. It’s said Globally
Asynchronous. In previous publications [20] have been explained reasons led to avoid
the usage of a single synchronizer to enhance multi-synchronization layers, in order to
distribute better the workload and the flow of data that would be sent to a single node.
The MPI stack for SpiNNaker, developed at Politecnico di Torino, handles broadcast
synchronization only. In this section, the multicast one solution has proposed.
Unfortunately, broadcast synchronization mechanism cannot be re-used for multicast
groups. When you synchronizes all nodes, you can select in advance who are synchroniz-
ers of any level. Nodes layout doesn’t change in time! This is not true for multicasting.
At the beginning of the current chapter, the total number of possible combination had
been computed. Two different multicast sets may be, geometrically, totally uncorrelated.
So, the choice of who are the synchronizers and the list of sub-nodes treated as slaves
must be done at run time, after mapping. The second big difference with respect to
broadcast scenario, comes in the number of hierarchical layers: 4 in place of 3. Again,
the reason stands on the irregular geometry and uncorrelated features among multicast
groups; so an higher level of flexibility would be more reliable.
Let’s explore which are criteria in selection of synchronizers, layer by layer. Layers are
enumerated from 1 (lowest) to 4 (highest). Given a layer i, and one of synchronizers at
i, called syncji, the total amount of signal syncji has to receives before triggering the
next level i + 1 message, it’s equal to the number of chips are allocated in the subgroup

50 3.6 - Synchronism mechanism

where syncji works. If i = 1 instead of dealing with chip, we deal with cores. If i = 4,
the next level signal is the all-free message, sent by ACK to all members of multicast
group.

Level 1: as well as in broadcast, first layer of synchronization works at core level.
It means that no synchronization packets are sent out of the chip, but it’s exploited
the internal shared memory in order to implement the barrier among cores. Only cores
building multicast group are considered, not the whole 16-vector.

Level 2: it treats no more cores but chips. Sync2 node and its own slaves come out
from an iterative procedure. Substantially, multicast graph are always trees; it means
that they own a root and some leafs. The goal is to divide the tree into some non over-
lapping sub-trees, where for each of these, the root is the sync2 and all the other else
within are nodes to be synchronized by it. Before describing that algorithm, it should be
repeated that nodes and edges can turn overloaded, leading to possible loss of messages.
This scenario must be avoided. About edges, propagation of synchronization packets
has always an upward propagation, to the root of each sub-tree; it means that you will
never see "ping-pong" situation for synchronism mechanism. About nodes, the selector
algorithm uses a soft-threshold to set an upper bound on the number of elements in a
single sub tree. This value has set to 4, but often are accepted also 5 elements. However,
as said, it’s a soft threshold. It may be possible to tune that, in order to accept bigger
sub groups; that is the case of long straightforward chains, that, with low thresholds,
will be splitted, but are kept untouched setting higher values. About that, some results
are reported in the dedicated chapter, looking at difference between small and more
populated sub trees.
Let’s have a look at the algorithm itself. At the beginning, all the nodes having more
than 2 active ports are collected. Then, starting from the deepest, they build a sub tree
where they are roots and leafs are the directed sons, Fig. 3.7. Remind that trees cannot
be overlapped. At this point, all crosses have been removed and only straightforward
chains stay to be allocated. Here, threshold is acting. Starting from the deepest non
allocated node, the length of the chain has computed. If the sum between its size and
the sub tree above is less than the threshold, then merge them, otherwise draw a new
set equal to the chain, Fig. 3.8.
A very common case deals with chain long 1. It may be a leaf of the main minimum
spanning tree or a node between two already allocated subsets. As design choice, instead
of having trees made up of a single node, it has been preferred to merge, in any case
regardless of threshold principle, with the closest group above, Fig. 3.9.
When the algorithm is over, groups have been defined, where sync2s are all the detected
roots, Fig 3.10. You noticed that no distinctions have been done on the nature of each
node, whether it’s an interesting or a forwarding one. It would be better no to synchro-
nize nodes which don’t generate information. Hence, no matter about roots: they are
kept, regardless of nature. For all other else, the filter has applied and forwarding nodes
are simply excluded from synchronism mechanism.

Level 3: The rule to detect sync3 is quite simple. Any direct son of the root is a lever
3 synchronizer. To each of these converge signals coming from sync2s of that branch.
The idea beyond this design choice comes from the fact that, in order to reduce the
workload on the root, which is the level 4 synchronizer, an intermediate layer trying

3.6 - Synchronism mechanism 51

cutting the tree in balanced ones could be useful. Both interesting and forwarding nodes
may become sync3s.

Level 4: As anticipated, the sync4, only one per multicast group, is the root of the
main tree. Given a set of n nodes in a minimum spanning tree, it’s possible to draw it
in n different manners, choosing at each iteration a different node as root. Here, what’s
done is looking for the most central node. This information is easy to extract, by applying
the minimum eccentricity hunter ϕ, already treated when the mapping algorithm was
presented. The only modification stands on the nature node. ϕ returns the object with
minimum eccentricity which is in the multicast group. It cannot be just a forwarding
point.

Figure 3.7: Sync2 detection algorithm: building proto-subtrees

Figure 3.8: Sync2 detection algorithm: leftmost tree shows the case of a threshold lower
than 4. Rightmost one shows what happens when threshold gets increased, allowing long
chains to be merged with other groups.

52 3.6 - Synchronism mechanism

Figure 3.9: Sync2 detection algorithm: leafs are automatically merged up

Reported below the pseudocode for level 2 synchronizers search.

nodes = {orderByDepth(mst)}, subTrees = {dict}
for node in nodes then
if nActivePorts(node) ≥ 3 then

subTrees[node] = {}
childs = node.childs

for child in childs then
if child in subTrees then childs.remove(child)

endfor
subTrees[node] = childs

endif
endfor
for node in nodes and node not in subTrees then

chain = computeChain(node)
if size(chain) + size(aboveSubTree(chain)) ≤ threshold then

merge(chain, aboveSubTree(chain)))
else

subTrees[chain.root] = chain

endif
endfor
subTrees = filter(subTrees)

3.6 - Synchronism mechanism 53

Figure 3.10: Sync2 detection algorithm: end of process. N is the threshold

In order to guarantee a regular hierarchy, a level i synchronizer, it’s synchronizer of
all inferior layers, from i downto 1. It means that sync4 must be also sync3, sync2 and
sync1 at the same time. Then, all sync3s are sync2s and so on. The viceversa is not true.
A lower level synchronizer is not required to be an higher one.
When synchronizers are done, routers are filled with the meaningful information. More-
over, to board (or simulator) are also passed information about the composition of sync
groups at any level, providing also the number of signal has to wait before emitting.

54 3.7 - Simulator specifications

3.7 Simulator specifications

Simulator, totally designed in Python, aims at emulating the SpiNNaker behaviour, in
order to evaluate synchronism algorithm and the validity of routing rule compression.
A rough UML description of this module has provided in Fig 3.11: the simulator requires
the SpiNNaker model, composed of Board, Router and Core. All of them are ad-hoc
developed objects. Simulator works performing Task propagation all around the Board.
Execution of a task allows the simulation time to continue. However, each node can
switch only one Task per simulation cycle. Since Spinnaker is a high-parallel computation
architecture, a lot of Task are on at the same time, also on the same node. So, for each
node, a QueueTask has implemented, by a First In First Out strategy.

Figure 3.11: Simulator software implementation UML model

A Task has fetched when the simulation time matches its own start time; then the
Task has popped out. If a new Task has emitted and its start and end time overlap
with some other else in queue, it is simply delayed to the first fully free interval (FIFO
approach).
Simulation/Synchronism is over, succesfully, when all QueueTask are empty and the

3.7 - Simulator specifications 55

output has written down in the dedicated files.
Simulation/Synchronism fails when one of these two scenarios occur:

• An Exception raises in case, given a router and a incoming routing key, the CAM
produces a miss.

• Program never ends due to presence of loops. Actually, minimum spanning tree
doesn’t form loops, but a too strong routing keys compression may lead to a loss
of information, causing them

In order to customize simulation, two things must be provided: testSet and applica-
tionModel. The testSet is the list of multicast groups you want to enable. It’s a subset of
the whole list of multicast groups provided as filter.txt. Formally, the applicationModel
preloads the QueueTask with pre-built Tasks, in order to emulate some kind of algo-
rithms; moreover, each Task so defined, must come together with the start time and the
multicast group membership. For instance, the OneFire application, states that, for each
enable multicast, a random core shots a message at t = 0. This model has realized by
means of Lst. 3.9:

Listing 3.9: simulator.loadApplication method OneFire
for id , cores in self. multicastCores .items ():

index = rand. randint (0, len(cores)-1)
self. inputs . append ((0, id , cores[index]))

#(startTime , idGroup , Core)

Changing the content loaded into self.inputs, you change application behaviour.
The PingPong (Lst. 3.10) makes one core to fire, then, after a certain delay, the opposite
on network responds.

Listing 3.10: simulator.loadApplication method PingPong
for id , cores in self. multicastCores .items ():

self. inputs . append ((0, id , cores [0]))
#(startTime , idGroup , Core)

self. inputs . append ((delay , id , cores[len(cores) -1]))
#(startTime , idGroup , Core)

Before looking at how Task run method works, the concepts of workload and
router’s computation delay have to be explained. The former is a Core’s property,
the latter Router’s. Workload has intended how the amount of time Core requires from
starting running its own portion of algorithm to the MCM packet has emitted. It in-
corporates MPI procedures, the whole middleware software stack and the customized
applications themselves. You can expect that the lower the workload, the more atomized
the application had been designed. Since synchronism just perform one count and one
comparison, all workloads, in that phase, are kept to 1. Router’s computation delay is
more hardware oriented, since it considers the access time to CAM, its own latency and
the matching bitwise procedure. This parameter has set to the minimum possible value,
1, but it may be tuned in future.

56 3.7 - Simulator specifications

Actually, the Task’s run method is very easy to understand. Given the multicast id,
the source coordinate of packets and type (common message or sync), the routing key
has generated, in according to MCM specifications. The return run value is the 32 bit
string itself. As said, the routing key has taken by Router performing bitwise operation
to match the correct routing rule. The Router’s method in charged of that is routeM.
The sequence of operations are depicted in Fig. 3.12.

Figure 3.12: Router.routeM(packet_routing_key) flow

From the code point of view Lst. 3.11 describes how the route method works.

Listing 3.11: Router.routeM(key)
pk = int(key , 2)

for k, m, r in self.rules:

tmp = (pk & int(m ,2))
Apply the mask (m) to the packet key (pk)

and then check the routing key (k)

if (pk & int(m ,2)) == int(k ,2):

Take the first match

return r

return -1

3.7 - Simulator specifications 57

When a Task has run, it simply dies and it’s deallocated by simulator. A part invalid
case, described above, after a single Task execution two things may happen.

• The packet, came with Task, has to be redirected to other branches, new Tasks
are initialized.

• The packet, came with Task, hasn’t to be redirected to other branches, just because
the 6 forwarding port encoding is all 0s, nothing happens. No generation of further
Task occurs.

Simulator returns histortSim.txt, historySync.txt, times.txt as output files. They are
used to check correctness of all previous steps or to extract some kind of analytics, as
will be presented in the next chapter.

58 3.7 - Simulator specifications

Chapter 4

Results

This chapter aims at providing main results produced by this thesis work, proposed both
in tabular and in graphical manner. First, mapping statistics are shown, to evaluate if
the presented approach is feasible for Spin5. Then, varying the application model and
the amount of loaded multicast groups, synchronism and simulation times get computed.
It will come out that the much more paralleling oriented applications fit better this kind
of architecture.

To discuss mapping results, two different algorithms have been applied, alternatively,
in order to compare an optimum approach versus an heuristic one. The former relies on
the networkx Minimum Spanning Tree method, the latter has been described deeper in
the previous chapter, with the related pseudocode listed. For briefly it will be referred
to them as MST and Heuristic.
Moreover, how it had been anticipated in methods chapter, size of synch sub groups may
be tuned by a threshold value. MST algorithm uses ’5’ as that value, chosen from ob-
serving experiments on the physical boards. However, mechanism accepting long chains,
working as pipeline, the overload issue may be never occur. By increasing threshold to
’10’, the MST_LongChain results are compared with.
Simulation runs on different scenarios. Five application models are applied. For each,
results have been computed taking into account 5, 10, 25, 50 and 100 multicast groups
concurrently running on the board. Then, considerations are made varying the Core’s
workload parameter, 1, 2, 4 and 10. Two out of five applicative are very basics, two other
else come from real MPI situations, described in literature, while the latter fits a real
SpiNNaker implementation for a massive parallelism and large-scale exchange of small
messages. They are

• OneFireAtBeginning

• PingPong

• MergeSort [4], or BubbleSort [27]

• Fast Encoded DNA (FED) [28]

• PageRank [29]

Then, some heatmaps will be plotted. They come useful in order to see where bot-
tlenecks occur and how the application model is able to distribute tasks among all the

60

nodes. Heatmaps depicts both synchronism only and then simulation.

Fig. 4.1 showsh the SpiNNaker logic overview, highlithing the 48 chips and their own
interconnections. In SpiNNaker literature deals with chips by means of a cartesian rep-
resentation, providing as identifier a couple of number (x, y). Just for simplicity, while
running networkx module, I liked assigning incremental integer unique values (Fig. 4.2).
Chip per chip mapping has reported in Tab. 4.1.

Figure 4.1: Spin5 map on cartesian coordinates

Figure 4.2: Spin5 map on logic id values

61

Logic ID Cartesian Coordinates (x,y)
1 (0,0)
2 (1,0)
3 (2,0)
4 (3,0)
5 (4,0)
6 (0,1)
7 (1,1)
8 (2,1)
9 (3,1)
10 (4,1)
11 (5,1)
12 (0,2)
13 (1,2)
14 (2,2)
15 (3,2)
16 (4,2)
17 (5,2)
18 (6,2)
19 (0,3)
20 (1,3)
21 (2,3)
22 (3,3)
23 (4,3)
24 (5,3)
25 (6,3)
26 (7,3)
27 (1,4)
28 (2,4)
29 (3,4)
30 (4,4)
31 (5,4)
32 (6,4)
33 (7,4)
34 (2,5)
35 (3,5)
36 (4,5)
37 (5,5)
38 (6,5)
39 (7,5)
40 (3,6)
41 (4,6)
42 (5,6)
43 (6,6)
44 (7,6)
45 (4,7)
46 (5,7)
47 (6,7)
48 (7,7)

Table 4.1: Dictionary Logic Id - Cartesian coordinates for 48 chips on SpiNNaker

62 4.1 - Router sizes

4.1 Router sizes
We are going to analyse the impact of different mapping algorithm on routers con-
tents. The algorithms taken into accounts are: MST, Heuristic and MST_LongChain
(MSTLC). Results of this section are obtained by a testset made up of 100 multicast
groups, where each of them has composed of a number of cores lasting from 4 to 20,
chosen randomly on uniform distribution.
Any router counts 1024 rows, and around 100 are already used for both unicasting and
broadcasting. Actually MST and MSTLC produces the same result in mapping, so the
only difference stays on how synchronization rules have been organized.

Figure 4.3: Memory size engaged for routing rules, on 100 multicast groups having size
in range 4 - 20. Data sorted by number of rules.

Fig. 4.3 reports memory required space, router by router, after mapping algorithm.
Note that along the x-axis is reported the logic id domain, not the actual correlation
with corresponding number of rules.
Immediately, the big advantage of using MST over Heuristic appears. It’s on the global
memory saving. Although it increases a lot on few nodes (24.4%), both the global sum
and the average rule per chip are lower. A brief summary has shown in Tab. 4.2.

Algorithm Sum Average
MST(LC) 9274 193,21
Heuristic 9808 204.33

Table 4.2: Total number of routing rules and average number of rules per router

Fig. 4.4 shows same data but in an unsorted manner, providing a clearer view on
memory space consumed on the right chip. Highest consumption is up to chip 15, 22,
29 and 30, which are (3,2), (3,3), (3,4) and (4,4). Looking at the Spin5 map in cartesian
coordinates, you can see that these nodes are laid out along the diagonal or very close to
it. Geometrically speaking, it acts as symmetry axis, splitting the board into 2 uniform
areas. Therefore, it shouldn’t have to amaze that diagonal’s nodes are the ones more
interested in data traffic. Then, the test set has been generated fully randomly. Lowering

4.1 - Router sizes 63

the probability of keeping diagonal’s cores would drop those high values. Hence, the
uniform distribution seems not to be the best choice in resource allocation. In future,
allocator algorithm shall be implemented exploiting other probability distributions.

Figure 4.4: Memory size engaged for routing rules, on 100 multicast groups having size
in range 4 - 20

Let’s move on synchronism mechanism results. Here, MST and MSTLC works dif-
ferently, producing different data series (Fig. 4.5).

Figure 4.5: Memory size engaged for sync rules, sorted

Similarly as before, MST(LC) globally are cheaper than Heuristic, but getting more
expensive on a small subset of nodes; 26% on MST and 15% on MSTLC. Heuristic acts
as an horizontal axis. MST performances, with respect to MSTLC, seam to be worst in
all points of the plot. Comparisons gathered in Tab 4.3

64 4.1 - Router sizes

Algorithm Sum Average
MST 5905 123.02
MSTLC 5561 115.85
Heuristic 6181 128.77

Table 4.3: Total number of sync rules and average number of rules per router

Figure 4.6: Memory size engaged for sync rules, chip ID on x-axis and number of router
rows used along y-axis

From memory allocation, Fig. 4.6, peaks are detected over 15, 22, 29 and 30, the same
as before. Again, it’s suggested a change in allocation paradigm, or different weights set-
ting to the edge in the initialization of mapping algorithms.

As last check, total quantities, i.e. routing + synch rules, are reported in tabular manner
(Tab. 4.4).

Algorithm Total Global Mem-
ory Used [%]

Memory Used
in Peak router
[%]

MST 15179 30.8 70.6
MSTLC 14835 30.1 69.5
Heuristic 15989 32.5 38.6

Table 4.4: Total number of ALL rules and percentage of memory used

It seams that Heuristic provides better forecasts, but how will be presented in next

4.2 - Simulator 65

section, it is the worst among the three.

4.2 Simulator

4.2.1 Synchronism

Before tuning workload’s values and application models, simulation can be conducted
to evaluate synchronism mechanism. It’s totally independent of the application, and
all sync workloads are set by default to 1, just to have a strong metric next, while
evaluating simulation results. Now results are presented, in terms of number of cycles
required to synchronize everything, just using the mapping method from MST, MSTLC
and Heuristic. Then, from them, one has picked up for next models. Just for notation,
the test set taking part to simulation names testSetX, where X is equal to the number
of multicast groups enabled at the same time on board. Results will be produced by
running X = {5, 10, 25, 50, 100}

Let’s plot results.

Figure 4.7: Synchronism cycles varying mapping algorithm and number (X) of multicast
groups

As you can see in Fig. 4.7, MST and MSTLC are very similar again, but MST shows
a little better behaviour. Then Heuristics leads a gain 100% around on the largest test-
Set. Everything redirect us to choice it to move on simulating applications, but it cannot
be possible.
Although collected data are impressive, actually, Heuristic is poor of information. All
numbers shown so far are after the compression algorithm action. Compression cuts so
much, causing a very big issue on the routing rules especially. These are so compressed
that a kind of aliasing occurs! This phenomena causes a lot of error and wrong config-
urations. If MST and MSTLC returns an error ∼ 3%, Heuristic leads simulator to raise
exception at least in the 50% of cases.
MST needs a bit more memory to save a bit of synchronism cycles (simulation times are
exactly identical because mapping is the same). MSTLC behaves in the opposite manner,
less memory leads to bit of more sync time. Next simulation are conducted up to MST.

66 4.2.2 - Simulation

The reason stands on the fact that, the higher the threshold for sub tree splitting, the
higher the probability more signals may come on the same node master. Issues about
that had been experimentally observed. So, just to avoid this kind of trouble, MSTLC
has discarded, as well as Heuristic.

4.2.2 Simulation

Simulator requires three objects to successfully run a simulation

• The testSetX, where X = {5, 10, 25, 50, 100}, i.e. the number of multicast group
concurrently running on SpiNNaker

• TheworkloadW where W = {1, 2, 4, 10}. They are set heterogeneously widespread
all over cores

• The applicationModel: OneFire, PingPong, MergeSort, FED and PageRank

All combination of them are performed. The mapping algorithm has fixed: MST is
the best candidate.

OneFire: randomly, a core per multicast group, starts a communication at time 0.

PingPong: two opposite cores, owning to each multicast group, are detected. The for-
mer starts a communication at time 0; after a while the latter responds by triggering
another multicast packet.

MergeSort: any multicast group performs a merge sort algorithm on a different subset
of data. You know that merge sort is a recursive algorithm divide et conquer based (Fig.
4.8). Each operation of splitting and sorting is up to a different core. When a process
ends, regardless of hierarchical level, the core generates a multicast packet.

Figure 4.8: Merge Sort application model flow chart [4]

4.2.2 - Simulation 67

FED: this algorithm aims at performing search of subsequences on long DNA strings.
Two phases are done: preprocessing, where distribution of information happens, match-
ing, which is the core of the algorithm itself and a lot of shifting and comparisons are
performed. Pattern matching fits a lot parallel application [30]. Preprocessing has not
been modelled here, just because exploits unicast communication to spread data and fill
cores. The interesting step is matching. When each core owns its own chunk of text, they
run, internally, FED primitives and emit results by broadcast packets[28]. In the pre-
sented application model, broadcast concept is replaced by multicasting, imaging that
different FED algorithms run at the same time, as many are the enabled multicast groups.

PageRank: PageRank is a very popular algorithm used to provide a quantitative classi-
fication on a set of objects (web pages at the beginning, by Sergey Brin and Larry Page,
Google’s founders), depending on number of links the single element builds with all the
others. Just have a look at the PageRank equation [31]:

PR(A) = 1− d

N
+ d ·

1 nØ
k=1

PR(Pk)
C(Pk)

2
(4.1)

where:

• PR(A) is the PageRank value of page A

• N is the total number of pages

• n is the number of pages such that exists a link between page Pk and A

• C(Pk) is the total number of links Pk owns

• d has known as dumping factor, just for tuning purposes. Its usual value is 0.85

From the equation you can see that, each page needs of knowing the PageRank value
of all the others in the set. So each node, or vertex, sends a multicast communication
with all its own main information. When all nodes collect information of each vertex,
they are ready to apply the formula above. Actually, it’s not enough. At this point the
results are pretty raw and some further reiteration of the described steps are required,
until some kind of convergence criteria has reached.
Multicast approach fits better than the broadcast one the PageRank algorithm. Not all
pages in the universe must have a link in between. For all the page sets, the PageRank
computation runs in parallel. Moreover, it’s very common the case where a page is part
of two, or more, different sets, and multiple PageRank algorithms can interest it in a
totally independent manner. For simulation, as convergence criteria has been chosen the
execution of 5 loops. For µ factor calculation, it gets more interesting deals with a single
iteration rather than considering the algorithm running in a monolithic way. This choice
has justified by literature on PageRank over SpiNNaker [29], describing how barriers
have been put in the middle between two consecutive iterations.

68 4.2.2 - Simulation

Figure 4.9: Simulation cycles varying the application model, varying the testSet and the
workload

Looking at Fig. 4.9, we expected that the higher the workload, the higher the number
of simulation cycles. That’s obviously true, but it’s interesting to notice one thing. Given
any testSet, for any experiments, just pick up simulation cycles at w1 and w10. From
1 to 10 one order of magnitude stands. But it doesn’t occur between the two relative
numbers of simulation cycles, always kept under the order of magnitude.

Another relevant thing to be observed is how grow the simulation time as a function
of the number of multicast groups. Now, keep the workload and application fixed. The
way number of simulation cycles grows is sublinear with respect to that. It’s amazing;
this fact underlines the goodness of simulator, rewarding concurrent running application,
rather than a stand alone scenario.

Next tables 4.5, 4.6, 4.7, 4.8, 4.9, report how many simulation cycle are needed to
accomplish the application model, varying the set workload and the test set size.

Then, Tab. 4.10 shows the variation on the amount of multicast packets generated,
varying the application model. If n is the number of cores making up a single multicast
group, the total number of tasks emitted by each of them can be known in advanced.
For PageRank, k is the number of iterations required to reach the convergence.

Workload TS5 TS10 TS25 TS50 TS100
w1 29 30 38 50 90
w2 28 33 45 63 101
w4 29 38 56 84 140
w10 49 53 114 151 298

Table 4.5: OneFire application model: simulation cycles

4.2.2 - Simulation 69

Workload TS5 TS10 TS25 TS50 TS100
w1 42 48 67 111 196
w2 46 58 79 140 254
w4 52 79 108 225 389
w10 77 141 227 468 921

Table 4.6: PingPong application model: simulation cycles

Workload TS5 TS10 TS25 TS50 TS100
w1 116 204 441 727 1428
w2 137 239 487 877 1800
w4 192 343 654 1266 2526
w10 419 773 1405 2590 5608

Table 4.7: MergeSort application model: simulation cycles

Workload TS5 TS10 TS25 TS50 TS100
w1 113 152 293 559 944
w2 128 186 336 628 1088
w4 194 249 473 856 1514
w10 448 562 989 1830 3377

Table 4.8: FED application model: simulation cycles

Workload TS5 TS10 TS25 TS50 TS100
w1 417 690 1393 2716 4633
w2 518 797 1604 3011 5294
w4 711 1037 2174 4096 7547
w10 1616 2315 4734 8648 16351

Table 4.9: PageRank application model: simulation cycles

Application Model Complexity as Number of Tasks
OneFire 1
PingPong 2
MergeSort n log n
FED n
PageRank n · k

Table 4.10: Multicast packets generated per application model

Computational cost of algorithms is something cannot be neglected, as you see from
tables and plot. It affects the simulation time. Then, the higher amount of generated
tasks, the longer are the queues in any chip, leading to possible bottlenecks. From a
graphical point of view, it’s easy to see where tasks pile up: plotting heatmaps. The
reported heatmaps are just photography of the state in each chip queue, at any simulation

70 4.2.2 - Simulation

(or synchronization cycle). The brightness of color in each cell, determines number of
tasks ready to be executed.

Figure 4.10: Heatmap of OneFire experiment. Workload set to 4, testSet5. On the y axis
the simulation cycles, here treated as nanoseconds. On the x axis the chip id.

Fig. 4.10 shows how at the beginning 5 chips turn red. Being the workload set to 4,
they requires at least 4 cycles to be committed. Then, at fifth cycle, first ramifications
and overlaps appear.
Tuning the workload, the heatmap pattern appears totally different Fig. 4.11. Consid-
ering the same application OneFire, testSet5, but w10, it’s like performing a zoom out
on the board activity. In fact, increasing workload, and testSet size, many information
get filtered and only dangerous bottleneck are left. These plots can be used as graphical
tool to evaluate the "hottest" clusters, depending on multicast groups generated in the
allocation phase. Looking at bright areas you may decide to remove cores on those chips,
preferring unused hardware. Other cases are shown af Fig. 4.12, 4.13 and 4.14.

To generate heatmaps, seaborn Python package has been used. It takes as input a numpy
matrix, which is one of the output, as textual file, by main.py. The same path can be
conducted for synchronism mechanism matrix, as well.

Then, plotting synchronism’s heatmap, you will see more regular structures, where the
majority of activities has focused on synchronizer nodes, like in Figs. 4.15 and 4.16.

4.2.2 - Simulation 71

Figure 4.11: Heatmap of OneFire experiment. Workload set to 10, testSet5. On the y
axis the simulation cycles, here treated as nanoseconds. On the x axis the chip id

Figure 4.12: Heatmap of PingPong experiment. Workload set to 4, testSet25. On the y
axis the simulation cycles, here treated as nanoseconds. On the x axis the chip id

72 4.2.2 - Simulation

Figure 4.13: Heatmap of MergeSort experiment. Workload set to 10, testSet50. On the y
axis the simulation cycles, here treated as nanoseconds. On the x axis the chip id

Figure 4.14: Heatmap of FED experiment. Workload set to 10, testSet100. On the y axis
the simulation cycles, here treated as nanoseconds. On the x axis the chip id

4.2.2 - Simulation 73

Figure 4.15: Heatmap of synchronism mechanism. Workload set to 1, testSet5. On the y
axis the synchronization cycles, here treated as nanoseconds. On the x axis the chip id

Figure 4.16: Heatmap of synchronism mechanism. Workload set to 1, testSet10. On the
y axis the synchronization cycles, here treated as nanoseconds. On the x axis the chip id

The images above show the behaviour of SpiNNaker chips in time. The main target
of these heatmaps is to provide a kind of focus on possible hard-to-manage situation on

74 4.2.3 - The µ factor

the real hardware. The designer can use this tool as a debugger one. Figs 4.13 and 4.14
describe how the highest activities are in the first half of simulation process. Looking at
this behaviour, the designer may decide to delay the execution associated to a subset of
all allocated multicast groups. Moreover, these images depict possible bottlenecks on the
column related to chip having the higher brightness, possibly suggesting avoiding those
nodes to fit in multicast groups.
Same considerations can be carried out from Figs 4.15 and 4.16. Synchronization mecha-
nism detects a hierarchical organization among nodes to be synchronized and synchroniz-
ers. This hierarchical pyramid reflects on how sync packets travel all around the board.
From figures it’s possible to see some "main" branches (in terms of length propagation
in simulation time) come together with some minor ones.

4.2.3 The µ factor

This parameter measures the simulation activity, compared with synchronization time.

µ = Tsim

Tsync
(4.2)

High values of µ say that the application model is strong parallelization oriented,
hence fits better SpiNNaker behaviours. On the contrary, when µ < 1, single thread
models, keeps more time in synchronizing rather than running the application itself;
that’s the case at OneFire and PingPong models. It’s shown just performing the ratio,
experiment by experiment. Before plotting graphs, be careful about one more thing.
Too high µ values generate some unwanted behaviour. As said in previous chapter,
SpiNNaker is a GALS architecture. It means that, on the hardware, there exists some
regions, the single chip, acting as totally independent clock domains. Due to that, cores
owning to two different domains are possibly fed by different clock frequencies. It leads to
need having asynchronous communication channels among these domains. However, the
high parallel propagation of execution, may lead to some unbalancing among threads,
eventually causing hazards or exception in software flow. If simulation takes too time,
in according to MPI protocol, a sync barrier has to be performed, in order to allow
balancing in computation propagating. It’s not a golden rule, but from experiments, a
satisfying µ range

1 ≤ µ ≤ 10

In next pages are reported, application by application, all the µ factors extracted by
varying the workload value and the size of test set applied. Let’s depict some comparison
histogram graph.

In almost all combination cases, the OneFire (Fig. ??) takes more synchronization
times than simulation ones. Actually, for this kind of model µ is consistent. Then, the
lower the testSetSize, synchronism time grows faster than simulation. This is bad, but
coherent with the stand alone model.

4.2.3 - The µ factor 75

Figure 4.17: OneFire µ, varying workload and testSet size

Workload TS5 TS10 TS25 TS50 TS100
w1 0.9 0.5 0.4 0.3 0.2
w2 0.8 0.6 0.4 0.3 0.3
w4 0.9 0.7 0.6 0.4 0.4
w10 1.4 0.9 1.1 0.8 0.8

Table 4.11: OneFire µ, varying workload and testSet size

A few better values come out from PingPong (Fig. 4.18 and Tab 4.12), but are still
under 1 in 10% of cases. However, some bad performances are again justified by single
thread flow.

Figure 4.18: PingPong µ, varying workload and testSet size

76 4.2.3 - The µ factor

Workload TS5 TS10 TS25 TS50 TS100
w1 1.2 0.8 0.7 0.6 0.5
w2 1.4 1.0 0.8 0.7 0.6
w4 1.5 1.4 1.1 1.1 1.1
w10 2.3 2.4 2.2 2.4 2.3

Table 4.12: PingPong application model: µ factors

When parallelized activity grows (in terms of simulation), µ factor grows and fits
the satisfying range. Another difference stands on how µ behaves, fixed the workload,
changing the testSet size. At OneFire and PingPong, µ tends to decrease while number
of multicast groups increases. MergeSort, O(n log n), Fig. 4.19 and Tab. 4.13, relative µ
growth is slower than size variation. It can be explained by the overlinear complexity of
the algorithm. What’s really interesting is the plot on FED, O(n), Fig. 4.20 and Tab.
4.14. Fixing workload, µ stays on a kind of plateu, such that being constant when number
of task grows.
It seems that linear algorithms produce more stable results, because both synchronization
and simulation grow at the same rate. If µ gets trendly, like linearithmic O(n log n), when
testSet grows too much, µ factor can generate to very high values.

Figure 4.19: MergeSort µ, varying workload and testSet

Workload TS5 TS10 TS25 TS50 TS100
w1 3.4 3.5 4.4 3.8 3.8
w2 4.0 4.1 4.8 4.6 4.8
w4 5.6 5.9 6.5 6.6 6.7
w10 12.3 13.3 13.9 13.5 14.9

Table 4.13: MergeSort application model: µ factors

4.2.3 - The µ factor 77

Figure 4.20: FED µ, varying workload and testSet

Workload TS5 TS10 TS25 TS50 TS100
w1 3.3 2.6 2.9 2.9 2.5
w2 3.8 3.2 3.3 3.3 2.9
w4 5.7 4.3 4.7 4.5 4.0
w10 13.2 9.7 9.8 9.5 9.0

Table 4.14: FED application model: µ factors

Figure 4.21: PageRank µ, varying workload and testSet

78 4.2.3 - The µ factor

Workload TS5 TS10 TS25 TS50 TS100
w1 2.6 2,5 2,8 2,9 2,5
w2 3,1 2,8 3,2 3,2 2,8
w4 4,3 3,7 4,1 4,2 3,9
w10 8,8 7,7 8,8 9,0 8,5

Table 4.15: PageRank application model: µ factors

However, by simulation, we see that PageRank results, Fig. 4.21 and Tab. 4.15, having
complexity O(n ·k) very close to linearithmic, improve µ factor, since introducing in the
middle the synchronization cycles. It means that, regardless of any discussion
about computational complexity, exploiting the MPI barrier concept applied
to SpiNNaker, allows developers to obtain the same result as well as FED
model, in a context scenario much more massively oriented to multithreading
and parallelism. Moreover, all PageRank’s mu values are in range [1− 10], considered
as reliable.

Chapter 5

Conclusions

This thesis work aims at contributing the expansion of functionalities, released by the
MPI software stack for Spinnaker, designed by Bioinformatics group at Politecnico di
Torino.
At the end of this project, some modules and tools have been committed and made
available for research field on SpiNNaker. First of all, the main contribution is all over
on the extension of SpinMPI library, having as target the realization of MPI protocol
running on SpiNNaker architecture. SpinMPI already offers facility to manage unicast
and broadcast communication; this thesis work wants to enlarge it by providing methods
and algorithms for multicasting. Before passing through a numerical analysis, trying to
estimate the feasibility, then moving to the realization of a SW able to manage and
gather multicast informations. That has been performed taking into account, as hard
constraint, the poor memory space for each router on the board; trying to succefully fit
onto the highest amount of groups.
Moreover, the SpinMPI’s barrier algorithm has been produced, again taking into account
routing memory space as well as avoiding useless loops of packet propagation. That’s
the reason why the synchronization mechanism, here presented, follows a hierarchical
organization pyramidal-like.
To accompany these algorithms, a simulator tool has been designed, in order to prove
their validity. Offering some degree of freedom, such as size of numbed of multicast
groups concurrently running on the board, the workload for each SpiNNaker’s core and
the loaded algorithm, I have had the opportunity to extract some analytic for further
analysis and comparisons among chosen parameters, taken as input by simulator.

The obtained results come from a testSet composed of 100 multicast groups, fully ran-
domly built. This size tries emulating a very probably real scenario, although Spinnaker
comes with some resource limitation in terms of memory space, especially on routers.
The mapping algorithm is able to fit any chip, reaching 70% of total memory used on the
worst case. Although, the full memory space is covered in the 30%. These considerations
include synchronism rules as well. Anyway, it’s clear that something can be done to
improve memory sizes distribution. Therefore, from this analysis, a totally unexpected
point raised up. Allocator algorithm was something we hadn’t ever thought. But, a clever
one (now, it’s just a call to the uniform random function), for sure would turn low peaks
on most traded node, at cost of a small increase on the average percentage. Probably, a
Gaussian curve, where chips are laid out depending on their own geometrical features,
may return an higher number of allocations from boundary-nodes, and lower ones on

80

nodes along the Spinnaker’s diagonal.

Synchronism mechanism, mainly analysed in terms of simulator’s cycles, has been proven
having a slightly sub-linear behaviour as function of multicast groups engaged. It means
that, eventually, the board might be connected to others Spin5, maybe running multi-
cast inter them (not intra), so complexity could stay under control. Again, the idea of
a smarter allocator might avoid too long groups, leading to a very big latency.

Talking about latency, here motivation of minimum spanning tree methods comes.
Among almost all cases, no multicast groups have been drawn having a diameter longer
than a dozen hops. Heuristic didn’t be careful about chain sizes, producing in very bad
cases, trees 30 hops sized.

Then, kind of algorithms family has been treated. Simple single-thread algorithms have
been modelled, compared with multi processes ones coming from MPI literature. It
shouldn’t be surprising that Spinnaker, not being a general purpose machine, runs bet-
ter some kind of application than others. Algorithms that don’t require to be split, lose
in performances due to useless spread of data among cores. The opposite side covers
MPI-like application. MPI is, de-facto, the most common standard for asynchronous
communication protocols on clusters of nodes; its literature is very vast, justifying also
the choice in the usage for Spinnaker. Following MPI criteria, simulator offers chance
on building application models, to get quantitative results before writing firmware, just
by running an emulator. Depending on the results, designer may decide to tune some
parameters, such as increasing the size of a group, or reduce it, update cores assigned to
a job in order to avoid overloads situation, throw some deductions on number of appli-
cation concurrently running, and so on.

Proposed results show how the MPI approach fits well with SpiNNaker architecture.
Looking at FED, performances are independent on the testSet size have been obtained.
Then, comparing MergeSort and PageRank, the former deals with monolithic propaga-
tion, the latter treats barrier cycle by cycle. PageRank, leads to an amount of multi-
cast propagation higher than MergeSort, but returns better performances in terms of
simulation cycles; showing relationship behaviours very similar to Fast-Encoded DNA.
Fitting barriers has not to be scared, they are part of MPI and are useful to avoid non-
homogeneous propagation among threads. Moreover, from these results, you can see that
performances increases in according to this strategy, rather then avoiding them.

Spinnaker idea as neuromorphic machine was born in 2005; then the first prototype
has been released in 2009. Ten years are passed, making it a still very young technology.
However, a lot of publications have been released in the meantime, making it very popu-
lar and scalable in a lot of Computer Science problems. Researchers merit stands on the
fact having understood, in advance, that a so popular protocol, like MPI, was missing
on the Spinnaker architecture. Working on that, unicast and broadcast communicators
have been published. Nowadays, the big goal deals with on multicast implementation. It
leads to an higher level of complexity due to the vastness of possible "particular cases"
to be managed, without violating the most general criteria. Reminds that number of
combinations exceeds, a lot, the number of elementary particles in the known universe.

Bibliography

[1] Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 1990.

[2] Andrew G. D. Rowley, Christian Brenninkmeijer, Simon Davidson, Donal Fellows,
Andrew Gait, David R. Lester, Luis A. Plana, Oliver Rhodes, Alan B. Stokes, and
Steve B. Furber. Spinntools: The execution engine for the spinnaker platform.
Frontiers in Neuroscience, 13:231, 2019.

[3] Luca Peres. Methods to exploit core-parallelism to improve configuration and results
gathering phases of snn simulations in a many-core neuromorphic platform. Master’s
thesis, Politecnico di Torino Corso di laurea magistrale in Ingegneria Informatica
(Computer Engineering), 2018.

[4] Libby Shoop. Message passing with mpi - merge sort, 2018.

[5] Storia delle discipline mediche. 2001.

[6] Nomination Archive. Nobelprize.org. nobel media ab 2020, 26 Jun 2020.

[7] Walter McCulloch, Warren S.; Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 1943.

[8] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian
Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and Dhar-
mendra S. Modha. A million spiking-neuron integrated circuit with a scalable com-
munication network and interface. Science, 345(6197):668–673, 2014.

[9] IntelLabs. The emergent capabilities in artificial intelligence being driven by intel
labs have more in common with human cognition than with conventional computer
logic, 2018.

[10] Javier Navaridas, Mikel Luján, Luis A. Plana, Steve Temple, and Steve B. Furber.
Spinnaker: Enhanced multicast routing. Parallel Computing, 45:49 – 66, 2015. Com-
puting Frontiers 2014: Best Papers.

[11] Human Brain Project authors. Overview, 2017.

[12] Thomas Sharp; Francesco Galluppi; Alexander Rast; Steve Furber. Power-efficient
simulation of detailed cortical microcircuits on spinnaker. Journal of Neuroscience
Methods, 2012.

82 BIBLIOGRAPHY

[13] Luis A. Plana, David Clark, Simon Davidson, Steve Furber, Jim Garside, Eustace
Painkras, Jeffrey Pepper, Steve Temple, and John Bainbridge. Spinnaker: Design
and implementation of a gals multicore system-on-chip. J. Emerg. Technol. Comput.
Syst., 7(4), December 2011.

[14] B. Sen Bhattacharya and S. B. Furber. Biologically inspired means for rank-order
encoding images: A quantitative analysis. IEEE Transactions on Neural Networks,
21(7):1087–1099, 2010.

[15] A. Marcelli, E. Sanchez, G. Squillerò, M. U. Jamal, A. Imtiaz, S. Machetti, F. Man-
gani, P. Monti, D. Pola, A. Salvato, and M. Simili. Defeating hardware trojan
in microprocessor cores through software obfuscation. In 2018 IEEE 19th Latin-
American Test Symposium (LATS), pages 1–6, 2018.

[16] Elisa Ficarra; Santa Di Cataldo. Bioinformatics course transparencies, 2019.

[17] P. Y. Simard, D. Steinkrau, and I. Buck. Using gpus for machine learning algo-
rithms. In Proceedings. Eighth International Conference on Document Analysis and
Recognition, pages 1115–1119, Los Alamitos, CA, USA, sep 2005. IEEE Computer
Society.

[18] Manolo De Agostini. Il supercomputer neuromorfico con 1 milione di core che mima
il cervello umano, 2018.

[19] Martin Schulz. Mpi: A message-passing interface standard version 3.1, 2015.

[20] Francesco Barchi; Gianvito Urgese; Enrico Maci; Andrea Acquaviva. An efficient
mpi implementation for multi-core neuromorphic platforms. New Generation of
CAS (NGCAS), 2017.

[21] University of Manchester. Spynnaker, 2015.

[22] University of Manchester. Spinnmachine, 2015.

[23] University of Manchester. Spinnman, 2015.

[24] University of Manchester. Pacman, 2015.

[25] University of Manchester. Spinnfrontendcommon, 2015.

[26] NetworkX Developers. Networkx documentation v1.10, 2015.

[27] Zaid Alyasseri, Kadhim Al-Attar, and Mazin Nasser. Parallelize bubble and merge
sort algorithms using message passing interface (mpi). 11 2014.

[28] Gianvito Urgese, Francesco Barchi, Emanuele Parisi, Evelina Forno, Andrea Acqua-
viva, and Enrico Macii. Benchmarking a many-core neuromorphic platform with an
mpi-based dna sequence matching algorithm. Electronics, 8(11):1342, 2019.

[29] Louis Blin, Ahsan Javed Awan, and Thomas Heinis. Using neuromorphic hardware
for the scalable execution of massively parallel, communication-intensive algorithms.
pages 89–94, 12 2018.

BIBLIOGRAPHY 83

[30] Q. Xue, J. Xie, J. Shu, H. Zhang, D. Dai, X. Wu, andW. Zhang. A parallel algorithm
for dna sequences alignment based on mpi. In 2014 International Conference on
Information Science, Electronics and Electrical Engineering, volume 2, pages 786–
789, 2014.

[31] Wikipedia. Pagerank — wikipedia, l’enciclopedia libera, 2020. [Online; in data
3-ottobre-2020].

