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"In my work I always try to combine beauty with truth,
but when I have to choose between one or the other, I generally choose beauty"

Hermann Weyl
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Abstract

The main goal of this work is to develop a robust device modeling framework en-
compassing the unique physics found in Weyl semimetals, and to use this framework
to design and simulate the behaviour of new electrical devices. Weyl semimetals,
due to their unusual band structure (which is gapped except at some isolated
points, called Weyl nodes) have been shown to exhibit interesting properties such
as a huge magneto-resistance at cryogenic temperatures, and a set of different
transport mechanisms that arise from a unique phenomena called chiral anomaly.
Applications-wise, the focus of this work is on two possible device implementations:
a Weyl semimetal amplifier and an oscillator. These two device concepts are
designed to work under low power and cryogenic conditions, which make them
highly suitable for quantum-computing applications.

Concerning the oscillator, the work mainly focuses on the possibility of achieving a
coherent output field generation and the description of the working conditions that
are needed to fulfill that goal. The main components of the device concept are a
Weyl semimetal slab, coupled with a charge sensing device. The Weyl semimetal
slab is subjected to crossed magnetic and electric field: this condition is able to
produce an exotic trajectory for the electrons inside the slab, that translates into the
generation of an oscillating electric field. The charge sensing device, in its simplest
configuration, can be simply a standard transistor or, even better, a quantum dot.
The work on the amplifier is based on a device model consisting of a supercon-
ductive gating of a Weyl semimetal channel, and focuses on the understanding
and modelling of the underlying physics, in order to have a clear perspective of its
performance, compared to the existing competing technologies.

Most of the modeling work was performed within the MATLAB environment: for
specific simulations, such as the FEM solution of the 3D London equation for the
supercurrent density profile in the gate of the Weyl semimetal amplifier, ad-hoc
tools have been used.
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Chapter 1

Introduction

1.1 Brief history of Weyl semimetals

In 1929, the German mathematician Hermann Weyl came up with a simplification
of the recently proposed Dirac equation, which was the first successful attempt to
reconcile quantum mechanics with Einstein theory of special relativity. The Weyl
equation, in its general form, has the following expression [1]:

σµ∂µψ = 0 (1.1)

This equation describes relativistic massless fermions with a defined chirality. For
more than 80 years, neutrinos where believed to be Weyl fermions: it was only in
2015 that the Nobel laureates Takaaki Kajita and Arthur McDonald demonstrated
that neutrinos have mass [2]. Currently there are no fundamentals particle that
can embody the concept of Weyl fermions [3]. They are instead conceived as
quasi-particles associated to low-energy excitations that can carry electrical charge
in some specific solid crystals: this class of topological materials is called Weyl
semimetals.

The first experimentally discovered WSM was TaAs, by angle-resolved photoemis-
sion spectroscopy, in 2015 [4]. At the moment there are several other families of
materials that have been reported to carry Weyl fermions, such as Cd3As2, CoSi,
MoTe2, NbP, TaP, WP2 and other more [5][6][7].
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Introduction

Figure 1.1: Crystal structure and bulk band structure of the WSM family of
TaAs compound (top panels). The bottom panels report the bulk band structure
along some high symmetry lines (with and without SOC) on the left and the energy
dispersion across a pair of Weyl points in the right panels. Taken from [8].
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Introduction

1.2 Topological phases of matter
The different properties of materials are supposed to come from the different
ways in which atoms are organized; however, the standard classification into
solid, liquid and gas is too simplistic to explain some particular phenomena that
arise in nature. A more advanced classification was proposed by Lev Landau [9]:
his symmetry-breaking theory provides a general understanding of the different
phases in which materials organize themselves. He pointed out that, as a material
undergoes a phase transition, the symmetry of the organization of atoms changes
and that transition can be described by means of an order parameter [10]. Landau
symmetry-breaking theory has been believed for a long time to be capable of
describing all possible orders in materials, and all possible phase transitions, but it
is still incomplete. There are in fact materials which have the same symmetry, but
are distinct because of topology: a classic example are the so-called topological
insulators [11]. Topology is a mathematical concept that is adapted to describe
to the fact that certain materials properties remain invariant under continuous
deformation such as stretching, bending or twisting.

1.2.1 Topological insulators
Classical insulators are materials in which the ensembles of valence bands are
separated from the conduction bands by an energy gap near the Fermi level.
Topological insulators instead have a non-trivial topology of the bands, i.e not all
insulating phases are equal to each other. The presence of topological order in
insulating materials leads to characteristic effects, the most relevant is the existence
of gapless surface states [11]. Despite the energy gap in the band structure, the
surface of a topological insulator has a metallic behaviour [11] (Fig. 1.2).

Figure 1.2: Band structure of a topological insulator: the Fermi level lies within
the band gap, which is traversed by topologically-protected surface states.
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These surface states, though, are not exactly like any other surface state: they
are said to be topologically protected, which means that they are robust against
any local perturbations that can break all the symmetries [12].

1.2.2 Weyl and Dirac semimetals
The materials that show this peculiar topology are found to be materials with
strongly spin-orbit coupling1. The SOC produces an effect that is called band
inversion that may give rise to two different phases: the before mentioned topological
insulators or the Weyl-Dirac semimetals (Fig. 1.3). In this last phase, electrons
mimic Weyl fermions and inherit many of their unique properties [13] (see Ch.
2.1.1).

Figure 1.3: Topological insulator and Weyl or Dirac semimetal. The topology
of both a TI and a WSM/DSM originates from similar inverted band structure.
(a) The spin-orbit coupling opens a full gap after the band inversion, giving rise
to metallic surface states on the surface of a TI. (b) In a WSM/DSM, the bulk
bands are gapped by SOC in the momentum space except at some isolated linearly
crossing points, called Weyl points/Dirac points, as a 3D analogue of graphene.
Taken from [8].

1SOC describes a weak magnetic interaction of the electrons spin with their orbital motion; it
is a relativistic effect which is responsible for many different aspects of the atomic structure.
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In these materials the energy band, in specific momentum space regions, would
obey Dirac or Weyl equation, with linear energy band dispersion [8]. What’s more,
this dispersion relationship can be topologically protected, which means that the
linearity would be preserved as long as the system symmetry is not broken.

For sake of clarity, in Fig. 1.4 are sketched the signature features of band diagrams
of different kinds of materials.

Figure 1.4: (a) Direct bandgap semiconductor. (b) Indirect bandgap semiconduc-
tor. (c) Topological insulator. (d) Semimetal with valance band and conduction
band touching. (e) Semimetal with valance band and conduction band overlapping
in different momentum point. (f) Topological semimetal with linear energy disper-
sion in the bulk. (g) Topological semimetal with additional hole pocket near the
Weyl point. Taken from [14].
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1.3 Properties of Weyl semimetals
The non-trivial topology of Weyl semimetals leads to many different transport
mechanisms; all of them are in some way related to a characteristic effect which
consists in an apparent violation of charge conservation, known as chiral anomaly.
The most important mechanisms are the following [14]:

1. Shubnikov-de Haas oscillations;

2. Fermi arcs transport;

3. Non-local transport;

4. Thermoelectric transport.

The chiral anomaly is a peculiar effect of WSMs, that arises when a magnetic field
is applied, thus generating Landau levels2 in the energy bands. The dispersion
relation can be expressed as [13]:

Ôn = vF sign(n)
ñ

2~|n|qB + (E ·B)2, n = 0, 1, 2, ... (1.2)

Where vF is the Fermi velocity, ~ is the reduced Plank constant, q is the electron
charge and E, B are the applied electric and magnetic fields.

Figure 1.5: Landau levels splitting induced across a couple of Weyl points: the
red and blue lines represent the 0th LL of each node (linearly dispersing).

2LLs are the results of the quantization of the orbits of charged particles when subjected to a
magnetic field.
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Eq. 1.2 demonstrates that if an electric field is applied parallel to the magnetic
field (i.e. the E ·B term is not vanishing), a charge imbalance is induced between
Weyl nodes, thus generating the chiral anomaly effect. The charge imbalance
induced by the E · B term requires large momentum scattering process to relax
[14]: a longitudinal current associated with chiral anomaly effect is generated,
translating into a negative magnetoresistance. NMR should gradually disappear
when the direction of the magnetic field deviates from the electric field direction,
which is confirmed by the angle-dependent experiment reported in Fig. 1.6 (right
panel).

The chiral anomaly-induced NMR was firstly observed in Bi0.97Sb0.03 crystal [15],
which is identified as Dirac semimetal (the Weyl nodes are degenerate): when an
external magnetic field is applied, the degeneracy is removed by splitting the single
Dirac point into two separate Weyl nodes along the magnetic field direction and
thus a Dirac semimetal is formally transformed into a Weyl semimetal.

Figure 1.6: Left panel: the Dirac cone shift under external magnetic field. Central
panel: the chiral anomaly effect. Right panel: the angle dependent experiment of
magnetotransport. Taken from [15].

Shubnikov-de Haas oscillation is a transport mechanism which is usually the
one that is detected in transport experiments to confirm the unusual phase in
materials whose energy band satisfies linear energy dispersion, like those in Weyl
semimetal near the Weyl nodes. SdH oscillation is again related to the Landau
quantization of electronic states when subjected to high magnetic field. Under this
condition, the magnetoresistance is reported to oscillate with a period depending
on the inverse of the applied field [15]. The oscillations are due to the Fermi level
which periodically crosses one and subsequent Landau level. Associated with the
SdH oscillations, a huge magnetoresistance can be observed when the magnetic field
is perpendicular to the driven current: these high values of MR (above 4 million %
at 2 K [16]) are ascribed to a protection mechanism that significantly suppresses
back-scattering at zero magnetic field, resulting in a high mobility and a transport
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lifetime times longer than the usual quantum lifetime. By removing this protection
with the application of a magnetic field, the magnetoresistance naturally rises, with
a quasi-parabolic behaviour (Fig. 1.7, left panel). However, the reason why this
protection mechanism exists and why the shift of FS in momentum (i.e. the LL
splitting due to the applied field) could lift the protection remains questionable; up
to the present moment, the mechanism of large MR in topological semimetals still
remains an open question [17].

Figure 1.7: On the left: field dependence of the resistance of bulk MoTe2 measured
at ambient pressure. On the right: the corresponding SdH oscillations. Taken from
[15].

The Fermi arcs transport is a particularly interesting mechanism since it is the
only one of the before mentioned that is related to the topological nature of WSMs.
The actual transport mechanism is called anomalous quantum oscillations and it is
usually very difficult to isolate from bulk contribution [18]. When a magnetic field
is applied perpendicular to the surface of a Weyl semimetal, it is able to produce
a cyclotron orbit in which electrons slide along a Fermi-arc on the top surface,
transfers to the bulk chiral LL mode of the node on which they propagate to the
bottom surface, traverse the bottom Fermi-arc and return to the top surface via
the mode with the opposite chirality [18]. This mechanism will be the starting
point for the analysis of coherent field generation (Ch. 3); a detailed explanation
of the Fermi arcs formation is reported in Ch. 2.2.

1.3.1 Type-I and Type-II Weyl semimetal
The first discovered family of WSMs (TaAs family [4]) exhibits ideal Weyl cones
in the bulk band structure, with the FS that shrinks to a point at the Weyl node;
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such kind of behaviour makes the TaAs family a type-I Weyl semimetal [8]. It
can happen that the constant energy surfaces are open rather than closed and the
resulting constant energy surfaces are electron and hole pockets. This second class
of WSMs, which share the same topological and electronic behaviour of the first
one, is called type-II WSMs. They are expected to support a variant of the chiral
anomaly effect, that arises when the magnetic field direction is well aligned with
the tilt direction, having a density of states different than the usual form, and
possess novel quantum oscillations and anomalous Hall conductivity3 [19]. The
most relevant compounds belonging to this class are MoTe2, WTe2 and WP2 [5].

Figure 1.8: Type-I WSM with point-like Fermi surface at the Weyl node (left
panel). Type-II WSM with electron and hole pockets (right panel). Taken from
[19].

Figure 1.9: Band structure of WTe2 (type-II), with and without SOC (left and
center panels, respectively). Couple of Weyl points in the Brillouin zone (right
panel). Taken from [19].

3The Hall effect is a phenomena that consists in the generation of a voltage difference across
an electrical conductor due to the Lorentz force induced by an applied magnetic field. The Hall
conductivity is therefore related to the transverse magnetoresistance.
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1.4 Motivation and purposes
It is already clear that Weyl semimetals exhibit extremely interesting and unique
transport and material properties. With this work, the intention is to show a
path towards the utilization of these properties in electronic devices with impact
in real-world applications. In particular, two main device concept will be deeply
analysed:

1. First, an in-depth study on some particular aspects of the physics of Weyl
fermions will be deepened, highlighting the possibility of exploiting a peculiar
helical trajectory for the generation of a coherent oscillating field. This can
represent the starting point for developing an RF oscillator, optimized to work
at low temperatures and capable of delivering a very stable and controllable
output field;

2. The second concept that will be presented is a device model of a Weyl semimetal
cryogenic amplifier, which will be shown to exhibits significantly high gain
with an improvement in the power consumption, thanks to its specific design
and the enabling features of WSMs. The proposed design is intended to be a
possible replacement for CMOS and HEMT technologies, which at the present
moment are the only ones that are capable to work at very low temperatures
[20][21].

Both the proposal are intended as possible solutions for state of the art quantum
computers: the actual technology of qubits requires in fact both a good amplification
(since the output signal is generally very low), and an RF signal to control and
switch the qubit itself [20]. Moreover, quantum computers require extremely high
performance in terms of bandwidth and noise, in order to ensure accuracy and
speed in the control of the qubits and also to not disturb the quantum state of the
qubit. The system integration of the proposed devices can allow for a significant
reduction of the complex interconnections between the cryogenic chamber and
the room-temperature electronics. This translates into an enhanced reliability,
which is obviously needed in the creation of practical quantum computers [21].
The cryogenic devices are also needed in other areas, such as space applications or
high-energy physics experiments, where extremely low noise is essential.
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Figure 1.10: Building blocks of a qubit chip: notice the presence of both cryogenic
amplifiers (in the readout block) and oscillating signal generators (control block).
Courtesy of IBM.
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Chapter 2

Physics of the Weyl
semimetals

2.1 Weyl theory

Before actually getting to the description and characterization of the proposed
devices, an overview of the relevant aspects of Weyl physics is presented, in order
to get acquainted with the peculiarities of WSMs that allow for the developing of
possible applications. The starting point of this description is obviously the Weyl
equation.

The Weyl equation is a simpler form of the Dirac equation, which was first written
in 1928 as a relativistic equation for a fermion field; however, when Dirac talked
about fermion, he had primarily electrons in mind [22] (the title of the article in
which he proposed his equation is in fact "The Quantum Theory of the Electron”).
Electrons are particles with well-defined mass and charge, so when Weyl showed
that for massless fermions, a simpler equation would suffice, it was clear that the
Weyl fermions were not electrons. In 1930, Pauli proposed the neutrino to explain
the continuous energy spectrum of electrons coming out in beta decay; the neutrinos
had to be uncharged because of charge conservation, and they seemed to have
vanishing mass from the analysis of beta decay data. It was therefore conjectured
that the neutrinos are massless and consequently it made sense that they were
Weyl fermions, whose properties could be described by Weyl theory. However, at
the beginning of 1960s, the consequences of small but non-zero neutrino masses
started to be considered, in order to detect them: if neutrinos have mass, they
cannot be Weyl fermions; so what are Weyl fermions?

14
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2.1.1 Weyl fermions
Weyl fermions are massless chiral fermions that embody the mathematical concept of
a Weyl spinor and they can be realized as quasi particles in a low-energy condensed
matter system [23]. The materials that exhibit this kind of excitation are called
Weyl semimetals. In order to understand the physics that is required to describe
the behaviour of the Weyl fermions, it is useful to start by the description of the
Weyl equation itself. In its compact form, the Weyl equation has the expression
reported in Eq. 1.1, where the σ matrices are the Pauli matrices (Eq. 2.1).

σ1 =
C
0 1
1 0

D
, σ2 =

C
0 −i
i 0

D
, σ3 =

C
1 0
0 −1

D
(2.1)

The plane-wave solutions of this equation are the so-called Weyl spinors:

ψ(r, t) = χ e
p·r−Et

i~ (2.2)

Where p, r are respectively the momentum and position operators, t is the time
and E is the eigenenergy. The term χ is a two component spinor, so the Weyl
equation can be factorized in two coupled equations that take the form:(E − |p|)ψ1 = 0

(E + |p|)ψ2 = 0
(2.3)

It is possible to show how the solutions of Eq. 2.3 are the eigenstates of the helicity
operator [24], which represents a crucial quantity for the understanding of the
behaviour of Weyl fermions. In its general definition, the helicity of a particle is
the projection of the spin onto the direction of momentum: a particle is said to be
right-handed if the direction of its spin is the same as the direction of its motion
and left-handed if it is the opposite.

Figure 2.1: Graphical representation of the helicity of a moving particle.
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So far, it was established that, in the massless limit, the fundamental fermion
states are eigenstates of the helicity operator. For a massless particle with half-
integer spin, the helicity operator is equivalent to the chiral operator1. By means
of the chirality concept, we can obtain the Hamiltonian of the fermions by writing
the Weyl equation as follows [3]:

i~
∂

∂t
ψ = χ pψ (2.4)

With χ = ±1 being the chirality. Then, the Hamiltoninan can be expressed as [3]:

H(k) = χ~vF k (2.5)

From which we can observe the linear dispersion that in fact characterizes the band
structure of WSMs. Also, given the 3D nature of the wavevector, there is no way
to gap out the system: even adding a perturbation term H̃(k) would only shift in
the momentum space the position of the Weyl nodes. The geometric localization
of the Weyl nodes can be visualized by explicitly separating the components of the
Hamiltonian:

H(k) = f0(k)I + f1(k)σx + f2(k)σy + f3(k)σz (2.6)

Where I is the identity matrix and the f functions are complex envelopes that
carry the dependence of the Hamiltonian on the wavevector [3]. If we consider the
situation where f1(k) vanishes in momentum space we would end up with a 2D
surface that separates positive and negative values of the function. If we demand
also f2(k) and f3(k) to be simultaneously zero, this specifies the intersection of
three independent surfaces, which will occur at a point, namely a Weyl node. By
adding a perturbation that changes the three functions by a small amount, this
will also displace the zero surfaces and their intersections by a small amount, but
the intersection will persist, just at a different crystal momentum [3]. This is the
remarkable protection mechanism that distinguishes WSMs from 2D materials with
analogue linear dispersion (such as graphene [25]).

1Massless particles appear to spin in the same direction along their axis of motion regardless
of the point of view of the observer.
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2.2 Fermi arcs

Now that we have understood the fundamental nature of Weyl fermions, we want
to address a simple yet comprehensive explanation of the band structure of Weyl
semimetals. WSMs are in fact characterized by a peculiar band structure that
closes at isolated points in the Brillouin zone: these points are called Weyl nodes.
At a spatial surface, the bulk band topology produces unusual surface states (Fermi
arcs), whose Fermi surface consists of disjoint arc segments that connect surface
projection of Weyl nodes with opposite chirality [13].

Figure 2.2: Weyl semimetal slab with a pair of Weyl nodes of opposite chirality;
the surface has unusual Fermi arc states that connect the projections of the Weyl
points on the surface. Taken from [13].

These surface states are said to be topologically protected since they do not
vanish if the surface of the WSM is in contact with an other material or if the surface
is peeled-off: this protection comes from the fact that WSMs are 3D material,
as it can be seen by the corresponding Hamiltonian (Eq. 2.5). The Fermi arcs
are different from the Fermi surface of a TI, an ordinary insulator or a normal
metal, which are commonly a closed loop: therefore, the detection of Fermi arc
surface states offer a strong evidence to identify a WSM. This is usually performed
by means of a surface-sensitive characterization technique, such as angle-resolved
photoemission spectroscopy or scanning tunnel microscope [26].
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Figure 2.3: Fermi arcs of TaP from ARPES (left panel) and theoretical calculations
(right panel): the two results agree very well. Taken from [8].

2.2.1 Weyl nodes
In order to clearly understand why this particular surface states arise, we need
to better define the concept of Weyl nodes (or Weyl points). In solid-state band
structures, Weyl fermions exist as low-energy excitations of the Weyl semimetal,
in which bands disperse linearly in three-dimensional momentum space through
a node which is called Weyl point. The quantity that is used to characterize the
topological entanglement between conduction and valence bands is called Berry
curvature, which is equivalent to a magnetic field in the momentum space. The
Berry curvature becomes singular at the Weyl points, that act as monopoles in the
momentum space with a fixed chirality. Therefore, a Weyl point can be a source
(χ = +1) or a sink (χ = −1) of the Berry curvature (see Fig. 2.2).

The relationship between chirality and Berry curvature can be expressed as follows
[13]:

χ = 1
2π

j
FS

F(k)dS(k) (2.7)

Where F(k) is the Berry curvature (or Chern flux). Since the total magnetic charge
in a band structure should be zero [27], it is immediate to verify that there must
be as many nodes with positive chirality as the negative ones, that is why the Weyl
points always appear in pairs. Moreover, the fact that the Weyl nodes are chiral
and are monopoles of magnetic flux is what generates the previously introduced
chiral anomaly. In simple words, the number of quasi-particles around Weyl nodes
of fixed chirality is not conserved in the presence of parallel electric and magnetic
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fields, which are able to pump charge between Weyl nodes of opposite chiralities
(Fig. 2.4).

Figure 2.4: Charge pumping between Weyl nodes in parallel electric and magnetic
fields; each point in the dispersion is a Landau level (taken from [13]).

Now that we have understood the physical origin of Fermi arcs and how they are
related to the position of the Weyl nodes in the momentum space, we can proceed
with a detailed description of the anomalous quantum oscillations, which are the
signature effect of the topological nature of Fermi arcs.

The analysis of this mechanism and how it can be exploited for actual applications
will be delivered in Ch. 3.
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Chapter 3

Coherent field generation by
Weyl fermions

3.1 Cyclotron orbits in Weyl semimetals
The possibility of achieving a coherent generation of an oscillating field from a WSM
relies on the unusual closed magnetic orbits that are observed in these materials
[28]. Despite Fermi arcs being disjoint, when an external magnetic field is applied,
the electrons are able to travel from surface to surface thanks to the presence of
the so-called Landau levels [18]. This mechanism is the foundation of the work
presented in this chapter, which aim to exploit the unique thickness-dependence of
the orbit time to produce a controlled, coherent electromagnetic field.

Figure 3.1: Cyclotron orbit of the electron in the hybrid space. Adapted from
[18].
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The description of the behaviour of electrons inside a WSM when subjected to
a magnetic field will be carried out as follows:

1. First, a semi-classical picture of the 2D trajectory of a single electron will be
presented, highlighting the signature dependence of the orbit time on the slab
thickness;

2. Then, it will be reported an overview of a simple quantum model that provides
a comprehensive description of the actual magnetic orbits of the electrons;

3. Lastly, an elliptical approximation of the 2D trajectory is introduced, in order
to obtain a semi-classical equation of motion, which will be expanded with
the addition of the drifting component, due to the application of an electric
field perpendicular to the magnetic one.

The field generated by the resulting 3D trajectory will be further analysed, starting
from a single-electron model and then moving to a more complete framework in
which the effect of more than one electron in the conductive slab is considered. In
particular, it will be presented a coherency condition which is required in order to
have the electrons moving in phase, thus producing constructive interference and
keeping the signature thickness-dependence of the frequency of the generated field.
A detailed description of the relationship between the quantities involved will be
presented, focusing on the degree of freedom that we have when designing a proper
experimental setup for the generation of the oscillating output field.

3.1.1 Semi-classical model
As previously stated, it is well established that applying a uniform magnetic field
along a direction perpendicular to the longitudinal axe1 of a WSM slab forces the
electrons to move along a cyclotronic orbit [18]. In the semi-classical framework,
this motion is described with an orbit time defined as reported in Eq. 3.1.

torbit(B) = 2Lz + 2k0 · lB(B)2

vF
(3.1)

In Eq. 3.1, Lz is the slab thickness and k0 is the rest length of the Fermi arcs.
The magnitude of the magnetic field affects the orbit time through the quantity lB
(magnetic length), which is defined in Eq. 3.2.

lB =
ó

~
qB

(3.2)

1The axes frame of reference will follow the notation of Fig. 3.1, unless otherwise specified.
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Eq. 3.1 assumes that the electrons are travelling at fixed velocity (the Fermi
velocity, vF ), along closed rectangular loops, whose dimensions are respectively the
thickness of the WSM slab and the real space projection of the Fermi arcs. It is
worth noticing how the topological protection of the surface states (the Fermi arcs)
forces the electrons to travel always from surface to surface, no matter what is the
magnetic field applied. This is a key feature that distinguishes the WSMs from
classic metals and allows for the possibility of achieving a coherent field generation
[29].

However, the semi-classical approximation does not completely hold since the
actual trajectory is not an ideal rectangle (it is pierced at the corners). A more
complete way to model the trajectory is through a proper quantum description of
the cyclotron motion: Ch. 3.1.2 and 3.1.3 will be dedicated to this topic.

3.1.2 Quantum model: two-band Hamiltonian
The semi-classical model used in the introduction of this chapter works well as a
preliminary description of the ideal behaviour of the trajectory of the electrons in
the 2D cross-section and gives an immediate idea of the frequency of the output
field through the orbit-time. In order to have a more detailed description of the
cyclotron orbit, we will exploit a quantum mechanical model for the oscillations.
The starting point of this analysis consists in the description of the Landau splitting
of the energy bands when subjected to an external magnetic field (as previously
stated, the LLs are the "conveyor belt" that joins together the top and bottom
Fermi arcs). The model used for the quantum description of the trajectory exploits
a two band Hamiltonian that can be written as follows [30]:

H = A(kxσx + kyσy) +Mkσz (3.3)

Where the σ matrices are the Pauli matrices, kx, ky and kz are the three compo-
nent of the electrons wave-vector, A is the vector potential and Mk is defined as:
Mk = M(k2

0 − k2
el), with M being a model parameter.

The dispersion of the two energy bands can be simply written as:

E = ±
ñ
M2

k + A2(k2
x + k2

y) (3.4)

In Fig. 3.2 it is shown the model band structure: it describes a couple of Weyl
nodes located at (0,0,±k0).
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Figure 3.2: Energy dispersion of the model Hamiltonian of a WSM slab along
the (0, 0, kz) orientation.

The set of parameters used to obtain Fig. 3.2 are:


A = 0.25 eV
k0 = 1 nm−1

Ly
2 = 40 nm

M = 0.25 eV/nm2

The next step is devoted to highlight the presence of the characteristics of Fermi
arc surface states (at kx = 0 = ky they collapse in the Weyl nodes). Since the
WSM slab with has a finite thickness Ly, the wave-vector component ky should
be viewed as an operator in the Hamiltonian. The electronic eigen-solution of the
WSM slab is reported in Fig. 3.3.

2In this chapter the frame of reference is different with respect to the one reported in Fig.
3.1. The slab has an infinite width Lx (to avoid dealing with boundary conditions) and a finite
thickness Ly. This choice is made since the orbital motion is purely 2D, so we do not need a
third component.
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(a) (b)

Figure 3.3: Energy dispersion of the model Hamiltonian of a WSM slab as a
function of kz (3.3a) and kx (3.3b), for ky ∈ [0,2k0]; the red lines represents surface
Fermi arcs.

We can notice how, by sweeping the y component of the electrons wave-vector,
the presence of the Fermi arcs is highlighted. Within the present two-band model,
the surface states have linear dispersion with respect to kx, but independent of kz
(Eq. 3.5).

EArc = ±Akx (3.5)

The plus/minus sign means that the surface states are chiral in the sense that they
support only one-way, opposite propagating modes.

This structure of the WSM slab is obviously modified in the presence of a vertical
magnetic field, which is the enabling feature for the the cyclotron motion of the
electronic wave packet, through the LLs. The electronic band structure of bulk
WSMs described by Eq. 3.3 can be analytically solved, but the process is not
trivial; here for simplicity we only report the obtained results (Fig. 3.4, see [31] for
the mathematical steps involved).
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Figure 3.4: Landau levels of the WSM slab in a perpendicular magnetic field
(By = 0.1 T) at kx = 0 = ky; the 0th Landau levels are highlighted in red. Taken
from [31].

3.1.3 Quantum trajectory
Once it is established how the energy dispersion of the WSM slab modifies when
subjected to a perpendicular magnetic field, it is possible to evaluate the quantum
trajectory of an electronic wave-packet. The whole derivation is reported in [30];
in the following only the key steps will be highlighted, together with the final results.

The time-zero wave-function is defined as:

Ψ(kx, y, z, t = 0) = g(kx)ψ(0) (3.6)

Where g(kx) is a Gaussian component that is not affected by the applied field and
ψ(0) is the product of another Gaussian propagator (along the z direction this
time) with the topological surface state of the WSM in absence of magnetic field.
The electronic wave-function at an arbitrary later time t can be obtained by adding
an exponential time propagator, and it has the following expression:

Ψ(kx, y, z, t) = e−i
Ht
~ Ψ(kx, y, z, t = 0) (3.7)
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The position expectation values of the x and y components of the motion is then
expressed as:

x(t) = éΨ|x̂|Ψê
y(t) = éΨ|ŷ|Ψê

(3.8)

Whose behaviour is shown in Fig. 3.5.

(a) (b)

Figure 3.5: Electronic coordinate expectation value as a function of time. Adapted
from [30].

Fig. 3.5a shows how the electronic wave-packet oscillates periodically between
±k0l

2
B, which in the momentum space means a periodic motion between the two

Weyl nodes along the Fermi arc. By looking at Fig. 3.5b it is possible to see how
in the y direction the electronic wave-packet transmits through the bulk to the
opposite surface whenever it arrives at a Weyl node. By combining the two results
together, we can obtain a graphical representation of the actual 2D trajectory of
an electron inside a WSM slab.
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The resulting behaviour is shown in Fig. 3.6.

Figure 3.6: Cyclotron orbit of the initial electronic wave packet as given by Eq.
3.6 in a vertical magnetic field. Blue arrows indicate the motion direction of the
electronic wave packet along the cyclotron orbit. Adapted from [30].

Notice that the y coordinate is expressed in nanometers, while the x coordinate is
normalized to the length of the Fermi arcs in the real space. We can see that the
actual trajectory is not different from the purely rectangular motion described by
the semi-classical model.

3.1.4 Elliptical approximation
The 2D quantum trajectory gives us an exact representation of the motion of an
electronic wave-packet in a WSM when subjected to a magnetic field. However, this
solution is difficult to handle and to exploit for further calculations. To overcome
this problem, we propose an approximation that is able to merge together the
information provided by both the semi-classical and the quantum models. The
trajectory in fact can be well approximated by an ellipse in the (y, z)3 plane.

3We switch back to the frame of reference of Fig. 3.1.
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The equation of motion of the y and z components is reported in Eq. 3.9.

y(t) = a(B) · cos
1
ω(t− t0) − θ0

2
− y0

z(t) = b · sin
1
ω(t− t0) − θ0

2 (3.9)

Where ω is the orbit frequency, a(B) and b are respectively the major and mi-
nor semi-axes of the ellipse and t0, θ0 and y0 are parameters introduced to model
the noise effects (a complete description of the noise model is reported in Ch. 3.3.2).

The resulting trajectory is reported in Fig. 3.7.

Figure 3.7: Superposition of the elliptical approximation of the trajectory with
the one obtained with the quantum model.

The elliptical approximation agrees quite well with the quantum trajectory
and offers an analytical formulation of the equation of motion. This will enable
the possibility to achieve a rather simple, close-form expression of the coherency
condition, as reported in Ch. 3.3.
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3.2 3D trajectory: the drift effect

The main problem of 2D quantum oscillations is that they are difficult to detect. In
particular, depending on the doping level, the geometry of the slab and the value of
the applied field, there can be a destructive effect coming from bulk oscillations, that
makes the surface ones very hard to measure [18]. In order to overcome this problem,
the effect of an electric field applied perpendicular to the magnetic one is considered.

It is reasonable to predict that, if we inject electrons in the WSM slab by applying
an electric field perpendicular to the (y,z) plane (the axis orientation follows the
notation used in Fig. 3.1), the electrons will move on an helical path, thus tunneling
from a couple of Weyl nodes to the next ones (the levels are discrete), while keeping
their orbital motion. In this way we are forcing a population imbalance that drives
an electron flow that, given its exotic trajectory, will produce an oscillating field in
the time domain. The classical experimental techniques aimed at the detection of
quantum oscillations usually report the oscillating behaviour of the resistivity (or
some other detectable quantity that depends on the density of states) with respect
to the inverse of the applied magnetic field. The working principle is the following:
the variation of the external magnetic field causes the Landau levels to periodically
cross the Fermi surface, which results in oscillations of the density of states at the
Fermi level (Fig. 3.8).

Figure 3.8: Density of states as a function of the inverse magnetic field (normal-
ized), for a Weyl semimetal slab of thickness Lz = 63 nm. Taken from [18].
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3.2.1 Single-electron field
In Fig. 3.9 is reported a schematic of the motion of one electron in a WSM when
subjected to crossed magnetic and electric filed. The 2D trajectory is evaluated
according to the elliptical approximation described by Eq. 3.9. The drifting
component of the motion (the one ascribed to the electric field) is described by the
following expression:

x(t) = −LX
2 + µ

nØ
i=1

rect(t− i td − 1
2)Edrift(B) · (t− i td) (3.10)

Where Lx is the length of the WSM slab, µ is the electron mobility, td is the drift
time, Edrift is the applied drift field and n is the average number of electrons in
the channel. The complete expression of the equation of motion is reported in Eq.
3.11; the point P(XP , YP , ZP ) is the sensing point.

r(t) =
ñ

[XP − x(t)]2 + [YP − y(t)]2 + [ZP − z(t)]2 · ûr (3.11)

The resulting trajectory is depicted in Fig. 3.9.

Figure 3.9: Schematics of the motion of a single electron inside the WSM.
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For the evaluation of the field produced by a particle that moves in this way, it
is possible to use the simple non-relativistic expression, since the electrons move at
the Fermi velocity, which is orders of magnitude lower than the light velocity [18]
(Eq. 3.12).

E(r) = q

4πÔ0
r−2 (3.12)

Where Ô0 is the electric permittivity of vacuum and r(t) is the previously reported
equation of motion.

The field generated in P by a single particle moving according to Eq. 3.11 is
reported in Fig. 3.10.

Figure 3.10: Superposition of the field generated by a linear drift and the the
total output field generated by a single electron moving across the WSM.

In Fig. 3.10, it is also highlighted the drift contribution to the total field. i.e
the field that would be produced by an electron moving across the slab along a
linear path, without oscillations. We can notice that the exotic trajectory of the
electrons is able, according to the performed simulation, to generate an electric
field which oscillates with period equal to the orbit time.
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3.3 Coherency conditions
Up till now, it was only considered the case where there is one electron flowing
inside the channel, which is not what happens in real materials where we usually
have more than one electron per time flowing inside the WSM slab. The question
that we need to address now is what happens to the output field when we have n
electrons inside the channel.

In order to accomplish this task, we enforce the following assumptions:

1. First, as already discussed, the motion of the electrons in the cross-section is
supposed to be perfectly elliptical;

2. The injection of electrons is restricted only to a superficial contact area, with
perfectly ohmic contacts;

3. The injection position of the electrons may vary randomly, thus introducing a
phase delay (noise).

The average number of electrons flowing inside the WSM slab depends on different
parameters like the dimensions of the slab, the material properties and also the
applied drift field which is responsible for the current inside the WSM. In the
following section, it will be described how it is possible to select a value of the applied
field that is able to produce a coherent output field, at steady-state condition (i.e.
for every electron that is collected at the end of the slab, one electron is injected).

3.3.1 Steady-state behaviour
By looking again at Fig. 3.9 it is possible to predict that the condition that is
able to produce a coherent output is the one where we have the electrons inside
the channel equally spaced (approximately one electron per ring), oscillating in
phase. This condition, that seems very strict at the beginning, can be achieved
quite easily just by selecting a proper value for the applied electric field. This is
made possible by the fact that, since the contacts are perfectly ohmic, and the
channel itself is made by a semimetal that, by definition, does not offer a potential
barrier to overcome, the electrons are strongly correlated, i.e. they tend to minimize
the reciprocal repulsion by arranging themselves in an equally spaced condition.
Given the finite length of the slab, the current that must be set in order to have
an average number of electrons in the channel that matches the ratio between drift
time and orbit time is the following:

I = q

torbit(B)
(3.13)
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Which means that the applied electric field can be expressed as:

Edrift(B, T ) =
qvF

2Lz+2k0·l2B(B)

LyLz
σ0

1+MR(B,T )
(3.14)

Where MR(B, T ) is the magnetoresistance, whose modeling represents a key aspect
for the Weyl semimetal amplifier (Ch. 4) and σ0 is the zero-field conductivity.

Now it is possible to substitute in Eq. 3.12 both the expressions of r(t) and Edrift
(Eq. 3.11 and 3.14), thus obtaining the complete expression that was used to
evaluate the coherent field generated by the current flowing inside the WSM slab
(Eq. 3.15).

EP (t) = q

4πÔ0


5
XP + Lx

2 − µ
nØ
i=1

rect(t− itd − 1
2)Edrift(B) · (t− itd)

62
+

5
YP − a(B) · cos(ω(t− t0) − θ0) − y0

62
+
5
ZP − b · sin(ω(t− t0) − θ0)

62

−2

(3.15)
The behaviour of the generated output field is shown in Fig. 3.11.

Figure 3.11: Total electric field in P(XP , YP , ZP ).

Notice how at each dashed line an electron is injected, until the steady-state
regime is reached. The small de-phasing between the single electron fields is due to
thermal noise.
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3.3.2 Quantum noise
As previously stated, the strong correlation between the electron translate into
a shot noise suppression: the only relevant contribution to noise is the thermal
noise4, whose power spectral density can be evaluated as reported in Eq. 3.16.

Pth = 4kBT
R

(3.16)

In Eq. 3.16, kB is the Boltzmann constant, T is the average temperature and R is
the WSM resistance. It follows that the noise contribution to the drift current is
given by:

Ith =
ó

4KBT
σ0

1 +MR(B, T )
LyLz
Lx

(3.17)

Since thermal noise is a statistic effect, in order to properly analyze its impact on
the coherency of the output, a Monte Carlo analysis of the behaviour of the device
was performed. The obtained results are reported in Fig. 3.12.

Figure 3.12: Monte Carlo analysis of the steady-state field produced at T = 2 K,
B = 1.5 T . The blue line represents the average field.

4The validation of this sentence and the derivation of Eq. 3.16 and 3.17 are delivered in
Appendix B.
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It is clear that, at this conditions, the thermal noise has an almost negligible
impact on the performance of the device. However, the previously shown simula-
tions were performed at cryogenic temperature (which are the standard working
conditions for this kind of detection [32]), so it may be reasonable to predict that
at room temperature even thermal noise can cause a severe de-phasing of the single
electron contributions.

In Fig. 3.13 is reported the behaviour of the simulated device at room temperature.
It is possible to see how there are almost no changes with respect to Fig. 3.12. This
is due to the fact that the magnitude of the thermal current is rather small (fractions
of pA), but also because the current density inside the WSM is considerably high.

Figure 3.13: Monte Carlo analysis of the field produced at T = 300 K, B = 1.5 T .

If we perform the same simulation at lower magnetic field the situation is
considerably different. In this case, at room temperature the magnitude of the
noise becomes comparable to the magnitude of the current itself, resulting in a
damping of the amplitude of the output field (Fig. 3.14).
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Figure 3.14: Monte Carlo analysis of the field produced at T = 300 K, B =
150 µT .

It will be shown in Ch. 3.4.1 that in order to observe quantum oscillations,
rather high values of magnetic field are required. This translates into a trade-off
between the geometry of the slab, the applied magnetic field, the frequency of the
output field and the noise level.

The noise problem can be always solved by going down to cryogenic temperatures.
Moreover, in Fig. 3.14, despite a considerable noise level, the average frequency
of the oscillation is preserved, thus proving the robustness of the generation
mechanisms enabled by the unique properties of WSMs.
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3.4 Device concept: Weyl semimetal oscillator
These results indicate that topological transport in Weyl semimetal could generate
coherent oscillations, which has not been reported before. According to the calcula-
tions performed here, these oscillations could even be visible at room temperature.
A promising application for this effect is in a voltage-controlled oscillator: since the
VCO action is generated by a single device, it could operate at significantly lower
power dissipation than a CMOS counterpart. However, further work is needed
to elucidate the potential of such a device, in particular there are some practical
issues that need to be overcome before proposing an actual device implementation.

3.4.1 Perspectives and limitations
One of the most stringent requirement for the oscillations to take place concerns
the applied magnetic field: having established the existence of quantized magnetic
orbits involving Fermi arcs does not imply that these orbits produce quantum
oscillation. For this to happen, the magnetic field should satisfy to the following
equation [33]:

Bn = ~k0

q
5
~πvF

µ
(n+ 1) + Lz

6 , n : Bn > 0 (3.18)

Where µ is the chemical potential. Moreover, the applied field should be below the
saturation value, which is approximately equal to [18]:

Bsat ≈ ~k0

qLz
(3.19)

For field values above this threshold, the majority of the magnetic orbit takes place
in the bulk, thus losing the thickness dependence which is the key to coherence.
However, the value of the saturation field is rather high (a few dozen Tesla,
depending on the thickness and the rest-length of the Fermi arc), and so this is
generally never the case [18]. It has to be noticed that, even at lower fields, a
bulk contribution is always present and it can potentially interfere with a coherent
output generation. A possible way to filter out the bulk contribution is playing
with the doping level: in fact when the chemical potential lies in the chiral region
(Fig. 3.15) only surface states contribute to quantum oscillation.

37



Coherent field generation by Weyl fermions

Figure 3.15: Energy spectrum of a bulk WSM immersed in a perpendicular
magnetic field. Blue lines represent bulk chiral Landau bands, which are the ones
required for having a coherent output field. The reported value of the magnetic
length corresponds to approximately 8.5 T (assuming k0 = 0.1 nm). Taken from
[30].

A second issue related to the magnetic field is the possible presence of a low-
threshold below which the quantum oscillations are not able to take place.

Figure 3.16: Graphical interpretation of Eq. 3.18. The dashed lines represent
the upper and lower threshold fields.
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We know in fact that the spacing between the Weyl nodes depends on the
magnetic field through the magnetic length. When dealing with a finite-width
slab, there are values of the magnetic field for which the trajectory of electrons is
apparently out of the cross-section.

Let’s for example consider the simple two-bands model that led to Fig. 3.6: assum-
ing a Fermi arc length of 0.1 nm and an applied field of 10 T , we would obtain a
trajectory width of approximately 120 nm. Depending on the actual width of the
slab5, this requirement identifies a minimum value of the field that has to be applied
in order to allow for quantum oscillations to take place. This pose a concrete
trade-off in a possible device implementation, since the output frequency depends
on the magnetic field. The free parameters that we have in the design of a Weyl
semimetal oscillator are essentially two: k0 and Ly. In particular, the rest-length of
the Fermi arcs is a strongly material-dependent quantity which can vary of several
orders of magnitudes, leaving a discrete freedom in the tuning of the lower threshold.

In conclusion, in order to enlarge the operating window of the WSO, further analysis
of materials properties is needed. At the moment, this work aims to represent
a simple way to test the presence of Weyl semimetal phases in new materials,
with Fermi arcs of different lengths, thus opening the path for a concrete device
implementation.

5The lower threshold of Fig. 3.16 is evaluated at fixed width, according to: Bmin ≈ ~k0
qLy
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Chapter 4

Weyl semimetal amplifier

4.1 Device model

The route towards quantum computing requires novel electronic devices that are
able to perform efficiently at very low temperatures, with high reliability and
significant noise reduction [20]. A possible solution for the implementation of such
kind of devices is represented by Weyl semimetals. In this chapter, the device
concept of a Weyl semimetal cryogenic amplifier is presented. It will be shown
that the proposed device is in simulations able to perform significantly better the
the actual competing technologies, being able to provide high power gain with a
notable reduction of the required DC power.

The schematic of the proposed device is reported in Fig. 4.1. It consists of a simple
gating of a Weyl semimetal channel, with an inter-layer of insulating oxide. The
materials chosen are respectively: Niobium for the gate metal (which can exhibit
superconductive behaviour, see Ch. 4.1.1), SiO2 for the oxide interlayer and WP2
for the WSM channel. The working principle of the device is a magnetoresistive
coupling between the gate and the channel: when a bias is applied between the
source and drain contacts, the gate metal produces a magnetic field all around it,
thus tuning the magnetoresistence of the channel, which results in a modulation of
the current flowing inside it. A graphical representation of the working principle of
the device is shown in Fig. 4.2.
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Figure 4.1: Schematic representation of the proposed WSM amplifier.

Figure 4.2: Schematic representation of the MR coupling between gate and
channel.
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Theoretically, the magnetoresistance is defined as the ratio between the zero-field
resistivity and the resistivity shift under a magnetic field [16]:

MR = ρ(B, T ) − ρ(0, T )
ρ(0, T ) (4.1)

Notice that, given the wire-shape of the WSM channel, the effective magnetic field
that tunes the MR of the device is mainly directed perpendicularly to the direction
of the current flow in the channel. The transverse magnetoresistance in WSMs
usually exhibits a quasi-parabolic dependence on the applied magnetic field that is
well fitted by Eq. 4.2 [16].

ρ(B, T ) = ρ0(T ) [1 + (αB)m] (4.2)
The parameters α and m are determined empirically: in most cases it holds that
m ∈ [1,5; 1,8]; α instead has a wider range of values and it also depends on the
temperature. It is worth noticing that in all the relevant literature [16][34], the
α parameter is always taken outside the power m; in this work it was chosen to
bring α inside the parenthesis in order to assign to it a precise physical meaning.
In fact, written in this way, α has the dimension of an electronic mobility, which is
the quantity that normalizes the density of flux (for a more detailed analysis on
the MR modeling see Ch. 4.4.1).

4.1.1 Superconductive effect of the gate
As mentioned before, the gate of the device is made of Niobium, which is a type-II
superconductor1: this choice is made in order to have ideally zero resistance inside
the gate (low losses) and to generally optimize the performance of the device. In
order to properly model the superconducting behaviour of the gate we need to
solve Eq. (4.3), which is the London equation for the density of current [35].

∇2J = 1
λ2
L

J 2 (4.3)

An analytical solution of this equation can be obtained in the 1D case, where the
behaviour of J(x) is an exponential decay (Eq. 4.4).

J(x) = J0 e
−x/λL (4.4)

In Eq. 4.4, J0 is the superficial density of current. The quantity λL is called
London penetration depth and it is a material-dependent quantity that is used to

1A type-II superconductor exhibits an intermediate phase of mixed ordinary and supercon-
ducting properties at intermediate temperature and fields above the superconducting phases.

42



Weyl semimetal amplifier

describe the so-called skin confinement effect of the supercurrent. The explanation
of this effect can be addressed as follows: let’s look again at Eq. 4.4 and consider
that in x = 0 there is an interface between a non-superconducting material and a
superconducting one; in this case, in the SC region, the current would be confined
in a thin layer close to the interface between the two materials, according to Eq. 4.4.

A numerical solution of the 3D London equation can be obtained with a FEM solver:
in Fig. 4.3 it is possible to observe the confinement effect previously described.

Figure 4.3: Sliced view along the X-axis of the current density profile inside the
superconducting gate.

Notice that in Fig. 4.3 the dimensions of the slab are normalized and the London
penetration depth is set significantly lower than its actual value (which for Nb is
approximately equal to 39 nm [36]) in order to highlight the confinement effect.
If the dimensions of the device are comparable to λL, then the SC density is not
negligible inside the slab.

4.1.2 Effective field evaluation
Considering the space distribution of the super-current is a necessary step for
the evaluation of the effective magnetic field that is produced by the current
flowing inside the gate. The field evaluation is made according to the generalized
Biot-Savart law, which is reported in Eq. 4.5.

B(r) = µ0

4π

Ú
V

J(r’) × (r − r’)
|r − r’|3

dr’ (4.5)

The quantity J(r’) is the density of supercurrent that comes out of the London
equation.
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If the dimension of the device are comparable to the London penetration depth,
the previous equation can be simplified as follows:

B(r) = µ0

4πJ0

Ú
V

r − r’
|r − r’|3

dr’ (4.6)

The actual computation of the field is made by discretizing the space inside the
WSM channel (the one described by the coordinate r) and then proceeding in the
integral summation of all the contributes coming from the gate region (described
by r’).

In Fig. 4.4 is reported a graphical interpretation of the integral evaluation.

Figure 4.4: 3D schematic of the active region of the device with the grid points
inside the WSM channel.

Notice that in Fig. 4.4 the dimensions of the WSM are merely indicative: the
analysis of the optimization process that guided the design of the device is reported
in Ch. 4.3.1.

44



Weyl semimetal amplifier

The field distribution generated by a squared wire is reported in Fig. 4.5 (longitu-
dinal cross-section).

Figure 4.5: Sliced view of the magnetic flux density generated by a squared wire.
Taken from [37].

We can see how the field is concentrated in the superficial region near the borders
of the cross-section and its direction is mostly parallel to the sides. These results,
together with the values obtained by the direct evaluation of Eq. 4.6, validates
the use of Eq. 4.2 as fitting model for the MR, since most of the field is in fact
perpendicular to the current flow.
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4.2 Circuit model
The frequency characterization of the Weyl semimetal amplifier was performed by
using a transfer function defined in terms of the so-called Y parameters. The basic
circuit model for the device is reported in Fig. 4.6.

Figure 4.6: Small-signal model of the WSA.

This circuit model is quite standard and it is obtained directly from the physical
model of the proposed device (Fig. 4.1) just by looking at each node and considering
the electrical elements that connect them together. Since the device is a two-port
device, the Y matrix is consequently 2x2; the corresponding Y parameters are
defined as follows:



Y11 = 1
RG

+ 2 iωC
1+iωRC

Y12 = − iωC
1+iωRC

Y21 = gm − iωC
1+iωRC

Y22 = 1
RW SM

+ 2 iωC
1+iωRC

(4.7)

Starting from this model, it is possible to express the power gain (which in the end
is the most useful quantity to evaluate the performance of the proposed device) as:

PG = |Y21 − Y12|2

4|Re(Y11)Re(Y22 −Re(Y12)Re(Y21)| (4.8)

The obtained results and the impact of each quantity involved in this calculation is
further analysed in Ch. 4.3.
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4.2.1 Inductive effect of the gate
In order to model the behaviour of the device, one main improvement to the circuit
model reported in Fig. 4.6 has been applied: the gate resistance in fact is not
completely passive since the flux variation generates a non-zero inductance in the
gate area. The value of RG in the model has been replaced by a complex impedance
defined as follows:

ZG = RG + iωL (4.9)

Where L is the kinetic inductance2 and is defined as:

L =
3
me

2nsq2

4
l

A
(4.10)

The frequency response of the device is reported in Fig. 4.7.

Figure 4.7: High-frequency characterization of the WSA; the dashed lines repre-
sent the results obtained with zero inductance.

It is possible to see that the non-zero inductance, which in the end is a parasitic
effect, shifts the resonance peak at lower frequencies. Also the width of the peak
is increased, since the Q factor, which is a standard quantity used to characterize
resonators, is inversely proportional to the value of L.

2Kinetic inductance is a manifestation of the inertial mass of charge carriers that arises in
conductors with very high carrier mobility at very high frequencies.
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4.3 Device optimization
In order to understand and properly simulate the behaviour of the WSA, one of
the most important quantity to analyze is the transconductance, which relates the
current flowing through the output of a device to the voltage across its input. In
formula it can be expressed as:

gm = ∂ID
∂VG

------
VDS

(4.11)

The output conductance is easier to evaluate since it can be seen by the small-signal
model that it is just the reciprocal of the channel resistance (the resistance of
the WSM). Through these two quantity, it is possible to evaluate the current and
voltage gain as follows:


AV = ∂VDS

∂VGS
= gm ·RWSM

AI = ∂IDS

∂IG
= gm ·RG

(4.12)

The power gain is then:

PG = RGRWSM g2
m (4.13)

The expression of the transconductance can be further expanded in order to an-
alyze the impact that each quantity has on the device performance: this is a
crucial step in the design of the device since both the geometry and the voltages
play a relevant role in determining the performances of the amplifier. To do so,
an explicit derivation of how the drain current depends on the gate voltage is needed.

Let’s start from the basic definition of the drain current:

ID = VDS
RWSM

(4.14)

Since the WSM resistance can be simply related to its resistivity, we can plug in
Eq. 4.2 in the previous one, thus obtaining:

ID = VDS
AWSM

lWSM

1
ρ0[1 + (αéBê)m] (4.15)

The last step consists into substituting Eq. 4.5 in Eq. 4.15: to lighten the notation
as much as possible the Biot-Savart integral has been labeled as IBS.
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The final expression for the drain current is reported in Eq. 4.16.

ID = VDS
AWSM

lWSM

1

ρ0

1 +
A
αµredIBS

VG

RGAG

B (4.16)

By computing the derivative of the current with respect to the gate voltage, it is
possible to obtain a detailed expression for the transconductance, which is reported
in Eq. 4.17.

gm = −VDS
AWSM

lWSM

1
ρ0

A
αµred

IBS
RGAG

Bm
mV m−1

GAαµred IBS

RGAG

Bm
+ V m

G + 1
2 (4.17)

By means of Eq. 4.17, we can predict the impact that each quantity has on the
performance of the WSA. The easiest quantity to analyze is obviously VDS since it
can be immediately seen how the dependence is linear. The gate voltage instead
has a trickier relationship with gm: a graphical representation of the relationship is
reported in Fig. 4.8.

The device dimensions used for the initial calculation were chosen on common
sense principles and represent the basis of the optimization process that will be
described. These values are reported in Tab. 4.1.

Gate WSM channel Oxide layer
Length 500 nm 250 nm 250 nm
Width 250 nm 50 nm 50 nm
Height 50 nm 25 nm 25 nm

Table 4.1: Starting values for the design of the device.
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Figure 4.8: Graphical behaviour of the transconductance versus the gate voltage:
the red region represent the values of the gate voltage that, given the geometry
reported in Tab. 4.1, produces a current overshoot (the gate is not superconductive
anymore).

Fig. 4.8 is incomplete since the gate voltage not only affects the transconductance
but also the resistance of the channel. In order to fully analyze the impact of VG
on the power gain we need the complete expression of PG, which is reported in Eq.
4.18 (the expression of gm is kept implicit in order to avoid an heavy notation, its
behaviour with VG has been already discussed anyway).

PG = RG lWSM

ρ0 AWSM

1 +
A
αµred IBS

VG
RGAG

Bm g2
m (4.18)

In order to obtain a more understandable expression, it is possible to label all
the terms that do not depend on VG as c and the multiplicative factor as k: the
obtained expression is reported below.

PG ∝ V
2(m−1)
G1

1 + c+ V m
G

24

è
1 + (kVG)m

é
(4.19)

In Fig. 4.9 is reported the behaviour of the power gain when changing VG: it is
possible to see that the device cannot operate at the maximum gain level since
the gate voltage would be too high and the gate would loose its superconductive
behaviour. In particular, the maximum allowed value of VG for this geometry is
around 0.2 mV .
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Figure 4.9: Power gain versus gate voltage (the magnitude of the power gain is
not reported since in the calculation the multiplicative factors were omitted).

The last quantity that is interesting to discuss is the factor α: it is particularly
relevant since it is the quantity that allows for the proper functioning of the device.
In fact, if α is equal to zero, i.e. the MR is zero, there is no amplification at all.
This sentence is obviously confirmed by the simulations: in Fig. 4.10 is reported
the behaviour of the transconductance with α.

Figure 4.10: Transconductance versus α.
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4.3.1 Scalability of the device and gain optimization
Before going into the detailed discussion of the obtained results for the frequency
behaviour of the WSA, an overview of the criteria that guided the design of the
device is presented: in particular the focus is on the reasons behind the choice of
the device dimensions.

The first, and obvious, statement is that in principle you want to have a device
which is as small as possible, in order to improve the integration density. This
goal however usually comes at a cost: scaling down a device in fact has a deep
impact on its performance and sometimes there are hard scaling limits that cannot
be overcome without compromising the functioning of the considered device. With
WSA the main scaling issue is related to the magneto-resistive modeling: at the
moment there is not a clear understanding of the physical reasons behind MR and
so it is not possible to establish how scaling down a magnetoresistive device might
affect its behaviour (see Ch. 4.4.1 for further description).

Concerning the geometry of the device, there are several criteria that must be
satisfied in order to maximize the performances of the WSA; in the following are
reported and described the main criteria that guided this work.

The explicit dependence of Eq. 4.17 and 4.18 on each dimension is difficult to
obtain since there are several quantities that are implicitly dependent on geometric
parameters (all the resistances for instance) and moreover in both equations there
is the integral contribution given by the Biot-Savart law that is difficult to read.
For these reasons, a different approach was adopted: in Fig. 4.11 and 4.12 are
reported a set of repeated analysis with only one dimension per time varying in a
range of values around the starting ones reported in Tab. 4.1.
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(a) (b)

(c)

Figure 4.11: Dependence of the frequency behaviour on the geometry of the
WSM channel.

Concerning the WSM channel, it is possible to notice how the dependence of the
power gain on each dimension is monotonic: for increased dimension the power gain
decreases. The good side effect is that the peak is shifted towards higher frequency,
but in this trade-off we are obviously more interested in optimizing the power gain
since the working frequency is already rather high. The dashed lines represent
values that produce a current overshoot in the gate (i.e. it is not superconductive
anymore) and therefore we need to select values bigger than that ones (or better,
we need to optimize the length to section ratio).

53



Weyl semimetal amplifier

(a) (b)

(c)

Figure 4.12: Dependence of the frequency behaviour on the geometry of the gate
metal.

For the gate metal instead, it is possible to notice in Fig. 4.12a how the de-
pendence is not monotonic: this is the only one of the analysed quantities that
exhibits this kind of behaviour, thus proving the complexity of the relationships
between the design of the device and its actual performance.

The oxide layer in principle is only needed to provide electrical insulation between
the gate and the WSM channel. Since the gate-source capacitance depends on the
characteristics of the oxide (permittivity and thickness), we want to minimize it by
choosing a material which has a high permittivity and can be deposited in a thin
film. The final choice is for a SiO2 layer (ÔSiO2 = 3.9) with a thickness of 5 nm
(ALD is a possible solution for the oxide deposition).
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Figure 4.13: Frequency behaviour for different oxide thickness: it is possible to
see how for smaller thickness (which means lower capacitance) the power gain is
increased.

Lastly, in order to assume valid the 2D approximation for the solution of the
London equation, we set an arbitrary condition that the WSM length should be at
least two times its second biggest dimension (the width, in this case). This choice
also grants the validity of another important assumption which is the fact that the
magnetic field is negligible along the longitudinal direction (Eq. 4.2 holds only for
the transverse MR).

Putting together the results of these analysis, a final device configuration is proposed
(Tab. 4.2), with VG = 0.16 mV and VDS = 50 mV . The corresponding frequency
behaviour is shown in Fig. 4.14.

Gate WSM channel Oxide layer
Length 300 nm 100 nm 100 nm
Width 150 nm 50 nm 50 nm
Height 60 nm 25 nm 5 nm

Table 4.2: Selected values for the final design of the device.
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Figure 4.14: Frequency behaviour obtained with the design reported in Tab. 4.2;
with VDS = 50 mV and VG = 0.16 mV .

4.3.2 Stability
In order to further characterize the behaviour of the amplifier, the last figure of
merit that was considered is the stability: an amplifier is unconditionally stable if
a load or source can be connected without causing instability. For this condition
to be true, the magnitudes of the reflection coefficients at the load, source and the
input and output ports should be simultaneously less than one.

A practical way to test the stability of an amplifier is by means of the so-called
Rollet factor, which is usually expressed in terms of the scattering parameters as
follows:

K = 1 − |S11|2 − |S22|2 + |∆|2

2 |S12S21|
(4.20)

Where:

∆ = S11S22 − S12S21 (4.21)

Since our device is characterized in terms of the Y parameters, we need to recall
the relationship between the two formalisms, which is simply:

S = 1 − Y

1 + Y
(4.22)
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The amplifier is unconditionally stable if K < 1: by looking at Fig. 4.15 it is
possible to notice how the condition is always achieved: however the increasing
trend of the Rollet factor near the peak suggests that it probably would rise above
the unit if all the high-frequency effects were considered in the model.

We can conclude that, by means of the Rollet factor, it is possible to establish that
the proposed amplifier is unconditionally stable before the resonance peak, which
is the actual range of interest of our device.

Figure 4.15: Frequency behaviour superposed with the Rollet factor: it is possible
to see that the amplifier is definitely stable up to the Terahertz regime.

4.3.3 Competitive technologies

The actual state of the art solution for cryogenic amplification mostly consist of
High-electron-mobility transistors (HEMT): as suggested by its name, the enhanced
electron mobility is the key feature of this kind of transistors. The working principle
relies on the formation of a 2DEG, which requires a heterostructure in order to from
(a junction between a wide and narrow bandgap materials). Usually the selected
materials are III-V compounds such as GaAs, AlGaAs, InP and so on. When the
electrons arrive at the interface, they move from the wide bandgap material to
the narrow one because of their tendency to occupy the lower energy states. A
standard schematic of a HEMT is reported in Fig. 4.16.
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Figure 4.16: Schematic of a standard HEMT. Taken from [38].

The layer labeled as δ-Si is a doped sheet of Silicon, which is introduced to
act as donors for the heterostructure, thus improving the electron density in the
channel. Because the motion of the electrons in the channel is restricted to a
quasi 2D plane, confined by two potential barriers, these electrons constitute the
so-called two dimensional electron gas. The most important properties of the
2DEG are the number of electrons per unit area, referred to as sheet density,
and the electronic mobility which is considerably higher than the one of standard
electrons. The principle of operation follows the behavior of a field-effect transistor:
an applied positive drain-source voltage is responsible for the lateral electric field
which drives electron flow from the source to the drain. When a negative gate-source
voltage is applied, the normal electric field due to the gate penetrates into the
semiconductor and depletes the 2DEG underneath the gate contact, thus decreasing
the drain-source current.

Figure 4.17: Graphical representation of the band diagram of a HEMT. Taken
from [39].
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HEMT are particularly indicated for cryogenic applications since they exhibits
considerably high gain with low power consumption and consequently they can be
placed near the emitting device (e.g. a qubit), at the coldest cryostat stage. This
allows for a further reduction of parasitic capacitances and reduces the impact of
environmental and thermal noise. In Fig. 4.18 is reported the frequency behaviour
of an InP HEMT at different bias.

Figure 4.18: Measured results for an InP HEMT, at 14.8 K at different bias.
From top to bottom: gain at bias point 1 (BP1), BP2, BP3, BP4, noise at BP4,
BP3, BP2, and BP1. Corresponding bias points are shown in Tab. 4.3. Taken
from [40].

BP1 BP2 BP3 BP4
VDS [V] 1.15 0.5 0.3 0.1
PDC [mW] 11.5 3.0 1.0 0.1

Table 4.3: Bias points of the HEMT.
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In order to have a clear comparison between the performances reported in Tab. 4.3
and the one of the proposed device, we evaluated the drain-source voltage and the
DC power required to match the performance of BP1. The obtained results are
reported in Tab. 4.4.

VDS [mV] PDC [µW]
WSA 10 3

Table 4.4: Drain-source voltage and power supply needed by the WSA to match
the performances of BP1.

By comparing the two results we can appreciate how the WSM cryogenic amplifier is
supposed to work significantly better than the HEMT counterpart since it requires
a significantly lower power supply and it is able to exhibit comparable gain for a
wider set of frequencies.

Future work includes experimental realization of an amplifier demonstrator, which
will be able to confirm the results obtained in simulations: this will be strongly
reliant on the access to epitaxial deposition of Weyl semimetal layers.
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4.4 Perspectives and theoretical work
An experimental realization of the proposed device is yet to be achieved; nev-
ertheless, also from the theoretical point of view there is room to improve both
the understanding of the Weyl physics and the device model. A key aspect that
has been already discussed, is the MR model of Weyl semimetal. At the present
moment there is only a practical understanding of the MR behaviour of WSMs and
consequently it is difficult to predict how the electronic transport mechanisms are
changed for example when the device is scaled down (MR is a scattering-related
mechanism, so what happens when the electronic mean free path is bigger than
the device active length?).

4.4.1 Magnetoresistance modeling
The discovery of several material systems belonging to topological semimetals
that exhibit extremely large magnetoresistance (up to two orders of magnitude
higher than the magnetoresistance observed in metallic thin films [17]) has raised a
fundamental question; whether this exceptional MR can be explained by classical
magnetoresistance theories without considering the topological aspects or not. In
fact, at the core of such exceptional magnetoresistance there is the peculiar band
structure of three-dimensional topological semimetals that yields conducting surface
states. Understanding the physical origin of this MR is crucial since in general, the
study of electrical resistance is tightly related to the electronic transport mecha-
nism. In this section it will be described the empirical model used in this work for
characterizing the MR behaviour of the proposed WSA.

The material that is proposed in the WSA device is WP2, which is a type-II WSM:
this choice is motivated by the fact that, in these materials, the nearest Weyl points
are of the same chirality, thus inducing robust surface states with exceptionally high
mobility [16]. The zero-field resistivity of WP2 is reported to exhibit a quasi-linear
trend at high temperatures, where the electron-phonon scattering contribution is
dominant. The low-temperature behaviour is more difficult to characterize since
the transition to the saturation regime is narrower than what happens in classic
metals (Fig. 4.19).
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Figure 4.19: Low temperature resistivity of WP2 at zero magnetic field, with
different fitting curves. The best fit (blue solid line) takes into account three main
mechanisms: electron-electron scattering, electron-phonon scattering and phonon
drag3. Taken from [16].

By applying a magnetic field, the motion of electrons inside metals is obvi-
ously changed and consequently is the resistivity. In WP2 we observe a huge
magnetoresistance, despite a very high conductivity (Fig. 4.20).

3Phonon drag refers to an increase in the effective mass of electrons due to their interactions
with the crystal lattice.
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Figure 4.20: Comparison of MR and conductivity of some well-known metals and
semimetals. The values of WP2 and MoP2 are evaluated at T = 2 K and B = 9 T .
Taken from [16].

Notice how the Weyl semimetals WP2 and MoP2 exhibit both a large conductiv-
ity and an extremely high magnetoresistance, which is unusual in standard metals.

The field dependence of the MR can be empirically expressed as reported in Eq.
4.2: this equation is used in order to fit the results obtained in [16] and to obtain
the value of α which was used in the calculations (the power dependence of the
resistivity on the applied field is reported to be quasi parabolic: in this work we
set m = 1.8).
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Figure 4.21: Fitted behaviour (blue line) of the experimental curve measured in
[16]. The two results agree very well. The value of α which was used to obtain the
fit is 41.14 cm2/V s.

The fitted behaviour is the one at T = 2 K, which seems a reasonable choice
for the working temperature of the proposed device. Obviously, at different values
of T, the MR behaviour is changed and therefore we would need different values of α.

In conclusion, also from the theoretical point of view, Weyl semimetal are still
an open challenge. The model used for the simulations reported so far is able to
provide exceptional results that motivate the pursuit of an actual realization of
a Weyl semimetal amplifier, which can represent an ideal solution for quantum
computers and in general for all kinds of cryogenic applications.
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Chapter 5

Conclusions

The device simulations performed in this work have elucidated the potential of
Weyl semimetals for novel electron devices.

In particular, the exotic trajectory exhibited by electrons in a WSM when subjected
to crossed electric and magnetic field opens up the possibility for the realization of a
new experimental setup for the detection of quantum oscillations. The possibility of
having a simple and reliable method of identifying WSM phases in new materials is
crucial in developing the understanding of these materials and offers the possibility
of having a wider range of materials with different properties to be exploited for
practical realizations. Moreover, further advances in the theoretical understanding
of WSM transport phenomena can lead to the actual design of a high-frequency
oscillator (up to the Terahertz regime), which promise to show high stability and
field-dependent frequency control, together with the possibility of working well
both at cryogenic and room temperature.

The proposed amplifier is in simulations able to operate with an extreme reduction
of DC power, upwards to 100 times lower than standard HEMT technology, with
comparable power gain, thanks to the negligible gate resistance provided by the
superconductive gating and the enabling features of the magnetoresistive coupling
offered by Weyl semimetals.

In general, the obtained results indicate that Weyl semimetals are highly promising
for applications in cryogenic electronics, particularly those with highly strained
power budgets such as quantum computing.
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Appendix A

Derivation of the Weyl
equation

The Weyl equation can be intended as a subset of the Dirac equation, which
describes massless particles with half-integer spin (fermions). The Dirac equation
can be obtained as a relativistic expansion of the Schrödinger equation, thus
substituting the standard energy relationship (Eq. A.1) with the relativistic one
(Eq. A.2).

E = p2

2m (A.1)

E2 = m2c4 + c2p2 (A.2)

By substituting Eq. A.2 in the Schrödinger equation one ends up with the so-
called Klein-Gordon equation (Eq. A.3) which is indeed a relativistic Schrödinger
equation, but unfortunately it does not include the particle spin.

−~2c2∂
2Ψ
∂t2

= m2c4Ψ − ~2c2Ψ (A.3)

In order to come up with a description that suits better the particles with spin,
like electrons, Dirac proposed a sort of squared root of Eq. A.2, thus obtaining:

E = βmc2 + cαjpj (A.4)
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Where αj and β are 4x4 matrices (Dirac matrices) that satisfy the following
commutation relationships: 

αjβ + βαj = 0
αiαj + αjαi = 0
α2
j = β2 = 1

(A.5)

The αj matrices can be expressed in terms of Pauli matrices as follows:

αj =
C

0 σj
σi 0

D
(A.6)

Similarly:

β =
C
1 0
0 −1

D
(A.7)

By substituting Eq. A.4 in the Schrödinger equation, with some proper re-
arrangements, one ends up with the final Dirac equation:

(i~γµ∂µ −mc)ψ = 0 (A.8)

The last step required to obtain the Weyl equation is setting the mass to be equal to
zero: notice that in this case the γ matrices1 that were 4x4 in the Dirac formulation
reduce to the Pauli matrices (2x2).

Here it is the Weyl equation:

σµ∂µψ = 0 (A.9)

1In Eq. A.8, µ = 0,1,2,3, with γ0 = β and γj = βαj .

69



Appendix B

Shot noise suppression in
ballistic 1D devices

In 1918, Schottky reported that in an ideal vacuum tube (the ancestors of transis-
tors) there were only two types of noise in the electrical current. The first type of
noise is known as Johnson-Nyquist noise, or simply thermal noise. This kind of
electronic noise is generated by the thermal agitation of the charge carriers inside an
electrical conductor at equilibrium, which happens regardless of any applied voltage.
The second type of noise is called shot noise and originates from the discrete nature
of electric charge. If the electron transmission through a conductive system is
fully uncorrelated, the shot noise can be modeled by a Poisson distribution. In
nanosystems, shot noise can be suppressed as a result of correlations in the electron
transmission imposed by the Pauli principle. In this appendix, it is reported a
general expression of the power spectrum of noise, from which it is possible to show
that, assuming the ballisticity of the considered system, the only source of noise is
thermal noise.

In its general form, the noise power spectral density can be expressed as:

P (ω) = 2
Ú ∞
−∞

dt eiωté∆I(t+ t0)∆I(t)ê (B.1)

Where ∆I(t) represents the time-dependent fluctuations in the current at a given
voltage and temperature. The brackets notation indicates an ensemble average
over the initial time t0.
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If we plug in Eq. B.1 the well-known Landauer formula1 for the quantized conduc-
tance, it is possible, with some manipulation, to obtain the following generalized
expression:

P (ω) = 4πq
2

~

NØ
n=1

5
2kBT T 2

n + Tn(1 − Tn)qV coth
1 qV

2kBT
26

(B.2)

If there is complete transmission, i.e. the transmission probabilites Tn are equal to
1, the electrons are fully correlated and Eq. B.2 reduces to:

P (ω) = 4πq
2

~

NØ
n=1

2kBT Tn (B.3)

Since the Landauer conductance can be expressed as:

G = 2πq
2

~

NØ
n=1

Tn (B.4)

We recover the classical expression of thermal noise, which is in fact:

Pth = 4kBT
R

(B.5)

1The Landauer formula states that the conductance of a nanoscale material is given by the
sum of all the transmission probabilities that an electron has when propagating with an energy
equal to the chemical potential.

71



Bibliography

[1] J. Lorenzo Diaz-Cruz, Bryan Larios Lopez, O. Meza-Aldama, and Jonathan
Reyes Perez. «Weyl spinors and the helicity formalism». In: (2015). arXiv:
1511.07477 [physics.gen-ph] (cit. on p. 2).

[2] Charles Day. «Takaaki Kajita and Arthur McDonald share 2015 Physics
Nobel Prize». In: Physics Today (Oct. 2015). doi: 10.1063/PT.5.7208
(cit. on p. 2).

[3] N.P. Armitage, E.J. Mele, and Ashvin Vishwanath. «Weyl and Dirac semimet-
als in three-dimensional solids». In: Reviews of Modern Physics 90.1 (Jan.
2018). issn: 1539-0756. doi: 10.1103/revmodphys.90.015001 (cit. on pp. 2,
16).

[4] B. Q. Lv et al. «Experimental Discovery of Weyl Semimetal TaAs». In:
Physical Review X 5.3 (July 2015). issn: 2160-3308. doi: 10.1103/physrevx.
5.031013 (cit. on pp. 2, 9).

[5] M.-Y. Yao et al. «Observation of Weyl Nodes in Robust Type-II Weyl
Semimetal WP2». In: Physical Review Letters 122.17 (May 2019). issn: 1079-
7114. doi: 10.1103/physrevlett.122.176402 (cit. on pp. 2, 10).

[6] Qian-Qian Yuan et al. «Quasiparticle interference evidence of the topological
Fermi arc states in chiral fermionic semimetal CoSi». In: Science Advances
5.12 (2019). doi: 10.1126/sciadv.aaw9485. eprint: https://advances.
sciencemag.org/content/5/12/eaaw9485.full.pdf (cit. on p. 2).

[7] J. Jiang et al. «Signature of type-II Weyl semimetal phase in MoTe2». In:
Nature Communications 8 (2017). doi: 10.1038/ncomms13973 (cit. on p. 2).

[8] Binghai Yan and Claudia Felser. «Topological Materials: Weyl Semimetals».
In: Annual Review of Condensed Matter Physics 8.1 (2017), pp. 337–354. doi:
10.1146/annurev-conmatphys-031016-025458 (cit. on pp. 3, 5, 6, 10, 18).

[9] Landau L. «The Theory of Phase Transitions». In: Nature (1936). doi:
10.1038/138840a0 (cit. on p. 4).

72

https://arxiv.org/abs/1511.07477
https://doi.org/10.1063/PT.5.7208
https://doi.org/10.1103/revmodphys.90.015001
https://doi.org/10.1103/physrevx.5.031013
https://doi.org/10.1103/physrevx.5.031013
https://doi.org/10.1103/physrevlett.122.176402
https://doi.org/10.1126/sciadv.aaw9485
https://advances.sciencemag.org/content/5/12/eaaw9485.full.pdf
https://advances.sciencemag.org/content/5/12/eaaw9485.full.pdf
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1038/138840a0


BIBLIOGRAPHY

[10] Mario Reis. Chapter 11 - Landau Theory. Ed. by Mario Reis. Boston: Academic
Press, 2013, pp. 177–191. isbn: 978-0-12-405545-2. doi: https://doi.org/
10.1016/B978-0-12-405545-2.00011-4 (cit. on p. 4).

[11] Joel E Moore. «The birth of topological insulators». In: Nature 464 (2010).
doi: 10.1038/nature08916 (cit. on p. 4).

[12] Chao-Kuei Lee et al. «Robustness of a Topologically Protected Surface State
in a Sb2Te2Se Single Crystal». In: Scientific Reports 6 (2016). doi: 10.1038/
srep36538 (cit. on p. 5).

[13] Pavan Hosur and Xiaoliang Qi. «Recent developments in transport phenomena
in Weyl semimetals». In: Comptes Rendus Physique 14.9 (2013). Topological
insulators / Isolants topologiques, pp. 857–870. issn: 1631-0705. doi: https:
//doi.org/10.1016/j.crhy.2013.10.010 (cit. on pp. 5, 7, 17–19).

[14] Shuo Wang, Ben-Chuan Lin, An-Qi Wang, Da-Peng Yu, and Zhi-Min Liao.
«Quantum transport in Dirac and Weyl semimetals: a review». In: Advances in
Physics: X 2.3 (2017), pp. 518–544. doi: 10.1080/23746149.2017.1327329
(cit. on pp. 6–8).

[15] Liu, I., Heikes, C., Yildirim, and T. et al. «Quantum oscillations from net-
worked topological interfaces in a Weyl semimetal». In: npj Quantum Materials
5 (2020). doi: 10.1038/s41535-020-00264-8 (cit. on pp. 8, 9).

[16] Nitesh Kumar et al. «Extremely high magnetoresistance and conductivity in
the type-II Weyl semimetals WP2 and MoP2». In: Nature Communications 8
(2017). doi: 10.1038/s41467-017-01758-z (cit. on pp. 8, 42, 61–64).

[17] P Kumar, Sudesh, and S Patnaik. «Origin of exceptional magneto-resistance
in Weyl semimetal TaSb2». In: Journal of Physics Communications 3.11 (Nov.
2019), p. 115007. doi: 10.1088/2399-6528/ab51a2 (cit. on pp. 9, 61).

[18] Andrew C. Potter, Itamar Kimchi, and Ashvin Vishwanath. «Quantum oscil-
lations from surface Fermi arcs in Weyl and Dirac semimetals». In: Nature
Communications 5.5161 (Oct. 2014). doi: https://doi.org/10.1038/
ncomms6161 (cit. on pp. 9, 20, 21, 29, 31, 37).

[19] Soluyanov, Alexey A., Dominik Gresch, Zhijun Wang, QuanSheng Wu,
Matthias Troyer, Xi Dai, and B. Andrei Bernevig. «Type-II Weyl semimetals».
In: Nature (2015). doi: 10.1038/nature15768 (cit. on p. 10).

[20] M. Veldhorst, H. G. J. Eenink, C. H. Yang, and A. S. Dzurak. «Silicon CMOS
architecture for a spin-based quantum computer». In: Nature Communications
8 (2017). doi: 10.1038/s41467-017-01905-6 (cit. on pp. 11, 40).

[21] B. Patra et al. «Cryo-CMOS Circuits and Systems for Quantum Computing
Applications». In: IEEE Journal of Solid-State Circuits 53.1 (2018), pp. 309–
321 (cit. on p. 11).

73

https://doi.org/https://doi.org/10.1016/B978-0-12-405545-2.00011-4
https://doi.org/https://doi.org/10.1016/B978-0-12-405545-2.00011-4
https://doi.org/10.1038/nature08916
https://doi.org/10.1038/srep36538
https://doi.org/10.1038/srep36538
https://doi.org/https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1080/23746149.2017.1327329
https://doi.org/10.1038/s41535-020-00264-8
https://doi.org/10.1038/s41467-017-01758-z
https://doi.org/10.1088/2399-6528/ab51a2
https://doi.org/https://doi.org/10.1038/ncomms6161
https://doi.org/https://doi.org/10.1038/ncomms6161
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/s41467-017-01905-6


BIBLIOGRAPHY

[22] Paul Adrien Maurice Dirac and Ralph Howard Fowler. «The quantum theory
of the electron». In: Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character 117.778 (1928),
pp. 610–624. doi: 10.1098/rspa.1928.0023 (cit. on p. 14).

[23] Shengyuan A. Yang. «Dirac and Weyl Materials: Fundamental Aspects and
Some Spintronics Applications». In: SPIN 06.02 (2016), p. 1640003. doi:
10.1142/S2010324716400038 (cit. on p. 15).

[24] Ashok Das. Lectures on Quantum Field Theory. WORLD SCIENTIFIC, 2008.
doi: 10.1142/6938 (cit. on p. 15).

[25] Romilly Hills, Matej Brada, Y. Liu, Michael Pierpoint, M. Sobnack, W.M.
Wu, and F. Kusmartsev. «From Graphene and Topological Insulators to Weyl
Semimetals». In: (Jan. 2016), pp. 277–315. doi: 10.1142/9789814740371_
0012 (cit. on p. 16).

[26] Ilya Belopolski et al. «Criteria for Directly Detecting Topological Fermi Arcs
in Weyl Semimetals». In: Phys. Rev. Lett. 116 (6 Feb. 2016), p. 066802. doi:
10.1103/PhysRevLett.116.066802 (cit. on p. 17).

[27] H.B. Nielsen and M. Ninomiya. «Absence of neutrinos on a lattice: (I). Proof
by homotopy theory». In: Nuclear Physics B 185.1 (1981), pp. 20–40. issn:
0550-3213. doi: https://doi.org/10.1016/0550-3213(81)90361-8 (cit.
on p. 18).

[28] Peng Li et al. «Evidence for topological type-II Weyl semimetal WTe2». In:
Nature Communications 8 (2017). doi: 10.1038/s41467- 017- 02237- 1
(cit. on p. 20).

[29] K. Saermark, J. Lebech, and H. Johansen. «On the concept of cyclotron
resonance in metals». In: physica status solidi (b) 83.1 (1977), pp. 187–195.
doi: 10.1002/pssb.2220830121 (cit. on p. 22).

[30] Haibo Yao, Mingfeng Zhu, Liwei Jiang, and Yisong Zheng. «Simulation on
the electronic wave packet cyclotron motion in a Weyl semimetal slab». In:
Journal of Physics: Condensed Matter 29.15 (Mar. 2017), p. 155502. doi:
10.1088/1361-648x/aa5f94 (cit. on pp. 22, 25–27, 38).

[31] Song-Bo Zhang, Hai-Zhou Lu, and Shun-Qing Shen. «Linear magnetocon-
ductivity in an intrinsic topological Weyl semimetal». In: New Journal of
Physics 18.5 (May 2016), p. 053039. doi: 10.1088/1367-2630/18/5/053039
(cit. on pp. 24, 25).

[32] J. Hu, Y. L. Zhu, D. Graf, Z. J. Tang, J. Y. Liu, and Z. Q. Mao. «Quantum os-
cillation studies of the topological semimetal candidate ZrGeM(M=S,Se,Te)».
In: Physical Review B 95.20 (May 2017). issn: 2469-9969. doi: 10.1103/
physrevb.95.205134 (cit. on p. 35).

74

https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1142/S2010324716400038
https://doi.org/10.1142/6938
https://doi.org/10.1142/9789814740371_0012
https://doi.org/10.1142/9789814740371_0012
https://doi.org/10.1103/PhysRevLett.116.066802
https://doi.org/https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1038/s41467-017-02237-1
https://doi.org/10.1002/pssb.2220830121
https://doi.org/10.1088/1361-648x/aa5f94
https://doi.org/10.1088/1367-2630/18/5/053039
https://doi.org/10.1103/physrevb.95.205134
https://doi.org/10.1103/physrevb.95.205134


BIBLIOGRAPHY

[33] Yi Zhang, Daniel Bulmash, Pavan Hosur, Andrew C. Potter, and Ashvin
Vishwanath. «Quantum oscillations from generic surface Fermi arcs and
bulk chiral modes in Weyl semimetals». In: Scientific Reports 6 (2016). doi:
10.1038/srep23741 (cit. on p. 37).

[34] Aifeng Wang, D. Graf, Yu Liu, Qianheng Du, Jiabao Zheng, Hechang Lei,
and C. Petrovic. «Large magnetoresistance in the type-II Weyl semimetal
WP2». In: Physical Review B 96.12 (Sept. 2017). issn: 2469-9969. doi: 10.
1103/physrevb.96.121107 (cit. on p. 42).

[35] Victor Corchete. «Superconductors - the Meissner effect - the London equa-
tion». In: (Oct. 2019) (cit. on p. 42).

[36] B. W. Maxfield and W. L. McLean. «Superconducting Penetration Depth of
Niobium». In: Phys. Rev. 139 (5A Aug. 1965), A1515–A1522. doi: 10.1103/
PhysRev.139.A1515 (cit. on p. 43).

[37] A. Toniato, B. Gotsmann, E. Lind, and C. B. Zota. «Weyl Semi-Metal-
Based High-Frequency Amplifiers». In: 2019 IEEE International Electron
Devices Meeting (IEDM) (Dec. 2019), pp. 9.4.1–9.4.4. issn: 2156-017X. doi:
10.1109/IEDM19573.2019.8993575 (cit. on p. 45).

[38] Andreas R. Alt. «Ultra-low noise InP HEMTs for cryogenic applications».
In: ETH Doctoral Thesis (2013). doi: https://doi.org/10.3929/ethz-a-
009781835 (cit. on p. 58).

[39] Supriya and Sweety. «Ballistic Mobility Degradation Effect in 25 nm Single
Gate HEMT». In: Nanocon 012 - II international conference on Nanotech-
nology Innovative materials, Processes, Product and Materials (Oct. 2012)
(cit. on p. 58).

[40] N. Wadefalk et al. «Cryogenic wide-band ultra-low-noise IF amplifiers operat-
ing at ultra-low DC power». In: IEEE Transactions on Microwave Theory and
Techniques 51.6 (2003), pp. 1705–1711. doi: 10.1109/TMTT.2003.812570
(cit. on p. 59).

75

https://doi.org/10.1038/srep23741
https://doi.org/10.1103/physrevb.96.121107
https://doi.org/10.1103/physrevb.96.121107
https://doi.org/10.1103/PhysRev.139.A1515
https://doi.org/10.1103/PhysRev.139.A1515
https://doi.org/10.1109/IEDM19573.2019.8993575
https://doi.org/https://doi.org/10.3929/ethz-a-009781835
https://doi.org/https://doi.org/10.3929/ethz-a-009781835
https://doi.org/10.1109/TMTT.2003.812570

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Brief history of Weyl semimetals
	Topological phases of matter
	Topological insulators
	Weyl and Dirac semimetals

	Properties of Weyl semimetals
	Type-I and Type-II Weyl semimetal

	Motivation and purposes

	Physics of the Weyl semimetals
	Weyl theory
	Weyl fermions

	Fermi arcs
	Weyl nodes


	Coherent field generation by Weyl fermions
	Cyclotron orbits in Weyl semimetals
	Semi-classical model
	Quantum model: two-band Hamiltonian
	Quantum trajectory
	Elliptical approximation

	3D trajectory: the drift effect
	Single-electron field

	Coherency conditions
	Steady-state behaviour
	Quantum noise

	Device concept: Weyl semimetal oscillator
	Perspectives and limitations


	Weyl semimetal amplifier
	Device model
	Superconductive effect of the gate
	Effective field evaluation

	Circuit model
	Inductive effect of the gate

	Device optimization
	Scalability of the device and gain optimization
	Stability
	Competitive technologies

	Perspectives and theoretical work
	Magnetoresistance modeling


	Conclusions
	Derivation of the Weyl equation
	Shot noise suppression in ballistic 1D devices
	Bibliography

