
POLITECNICO DI TORINO
Master’s Degree in Physics of Complex Systems

Master’s Degree Thesis

Learning capabilities of belief
propagation based algorithms for sparse

binary neural networks

Supervisors

Prof. Luca DALL’ASTA

Prof. Jean BARBIER

Candidate

Chen Yi ZHANG

October 2020

Abstract

With the growth in size and complexity of modern data sets, the computational
and energetic costs of training large, fully connected neural networks, became an
important issue. Therefore exploring the learning capabilities of sparse (possibly
binarized) architectures, that possess many less degrees of freedom but empirically
appear to generalize well, is an important research direction.
In this work, the learning performance of belief propagation (BP) based algorithms,
applied to simple two layers sparse neural networks with discrete synapses, is
analysed. Initially, the framework in which the work is carried on is the so called
teacher-student scenario, in which the learning problem corresponds to the inference
of the weight values of a teacher network whose architecture is given. In this first
part BP provides encouraging results, allowing to perfectly reconstruct the weights
of the ‘teacher’ network that generated the training data, using only a small number
of data points.
Subsequently, the focus shifts to the mismatched setting with a discrepancy between
the used architecture and the one of the ‘teacher’ network. The results are analysed
in order to assess whether BP-based learning is relevant in this case as well, and if
yes, to which extent of mismatch this is possible.

Acknowledgements

First of all I have to thank Jean and Manuel for making me always feel like a
peer of theirs and for making the work throughout these months very enjoyable
despite the difficult conditions. I also have to thank Federico Ricci Tersenghi for
the interesting and instructive conversations that played a big part in this thesis
work. Thanks to Alfredo Braunstein as well for the support and for tolerating my
ravings on convolutions, even during the summer vacations.

Grazie a mamma e papà per i sacrifici estremi che hanno da sempre fatto e
continuano a fare per me e per mio fratello Calvin. Ringrazio Calvin per essere
la persona di cui posso sempre essere orgoglioso e infine ringrazio Fraus, che da
un paio d’anni a questa parte mi accompagna in questa avventura costellata di
difficoltà, che vissute in compagnia non sono poi risultate così insormontabili.

“2020 will be the sparse network year (it already has two zeros, that’s a sign)”
François Lagunas

i

Table of Contents

List of Figures iv

1 Introduction 1
1.1 A little bit of motivation . 1
1.2 Setting: the model under study . 3

2 Bayes optimal case 5
2.1 Factor graph representation . 6

2.1.1 BP equations . 7
2.2 Offline, mini-batch and online learning 8
2.3 The Max-Product algorithm . 9
2.4 Experimental results . 10

3 Mismatched case 16
3.1 Realizable rule setting . 16
3.2 Log-likelihoods and the max-sum algorithm 16
3.3 Soft decimation: reinforced message-passing algorithms 19
3.4 Experimental results . 20
3.5 Conclusion and future directions . 24

A A brief introduction to graphical models and belief propagation 25
A.1 BP equations . 26

B Generalizing to a multi-layer setup 28
B.1 Hidden Variables . 28

B.1.1 Problematic offline learning 29

Bibliography 32

iii

List of Figures

1.1 Example of pruning . 1
1.2 Example of two-layer sparse neural network 3

2.1 The first image is an example of factor graph representation of
the problem. The second image is a pictorial representation of
the weights involved in a certain factor. The variables wout

∂a are
highlighted in orange, while win

∂a in green. 7
2.2 In this figure the results obtained with the φ(x) = tanh(x− b) non-

linearity with b = 0,1 are shown. On the vertical axis there is the
fraction of the student weight estimates that differ from the true
teacher weights. In the sub-figures on the right there are the close
ups of the ones shown on the left. Each plot is obtained by averaging
over 10 simulations. 12

2.3 In this figure the results obtained with the φ(x) = max(x; ax) non-
linearity with a = 0,1 are shown. On the vertical axis there is the
fraction of the student weight estimates that differ from the true
teacher weights. In the sub-figures on the right there are the close
ups of the ones shown on the left. Each plot is obtained by averaging
over 10 simulations. 13

2.4 The plots shown in this figure refer to experiments carried out in
a similar fashion to what is shown in Fig. 2.2 and Fig. 2.3 (same
mini-batch sizes, same damping, etc.), but with a few differences
in the implementation details. In subfig. (a) the output matrix
has three non-zero elements in each row and each column instead
of two as in the previous experiments. In subfig.(b) the denser
matrix is the input one. In subfig.(c) the sizes of the layers are
Nin = 1200, Nhidden = 800, Nout = 800, the input matrix has three
non-zero elements per row and the output one has two. All these
experiments have been carried out with the activation function
φ(x) = tanh(x− b) with b = 0,1 and the plots have been obtained
by averaging over 10 simulations each. 14

iv

3.1 This figure refers to a setting where the student has the input matrix
which is mismatched w.r.t. the teacher. Plots obtained by averaging
over 10 experiments. 22

3.2 This figure refers to a setting where the student has the output
matrix which is mismatched w.r.t. the teacher. Plots obtained by
averaging over 10 experiments. 23

A.1 Simple example of a factor graph 26

B.1 Factor graph with the hidden variables nodes 30
B.2 Visual representation of the extremely ‘loopy‘ factor graph coming

from the factorization over η . 31

v

vi

Chapter 1

Introduction

1.1 A little bit of motivation

Figure 1.1: Example of pruning.
Image from: https://software.intel.com/content/www/us/en/develop/articles/
compression-and-acceleration-of-high- dimensional-neural-networks.html

The successes of algorithms based on deep neural networks in finding patterns
in increasingly large data sets, with growing accuracy levels, unfortunately comes
along with also an increase in computational resources requirements. The number
of parameters that need to be learnt in state-of-the-art neural networks has reached
a point where training them, storing them and using them has become almost
unpractical, especially in situations where the computational budget is low (e.g.
mobile devices), therefore making it vital to find ways to reduce their size.

1

Introduction

There are many so-called model compression techniques, that are used to reduce
the size of already trained networks. The resulting models are often shown to
perform in a comparable way to the original networks, while using a small fraction
of the computational resources (in some instances the size of the systems can be
shrunk by up to 90%), see [1] [2].

The reason behind why the compressed models perform well despite the enor-
mous loss of information that they undergo, intuitively relies on the fact that
the current optimization techniques work well on networks that are heavily over-
parametrised. This means that the networks that have to be trained have many
more parameters that those that are actually needed to fit the data, therefore
causing the resulting trained models to contain a lot of redundant information that
in numerous cases can be removed without affecting significantly their performance.

One important example of model compression technique consists of the so called
pruning algorithms (see Fig.1.1) that are typically implemented in three main steps:

1. Training a large densely connected neural network

2. Pruning: in this step redundant weights are removed (or pruned) and only the
most relevant ones are kept; usually a large percentage of the trained weights
are very small and are therefore set to zero, without affecting too much the
accuracy of the model.

3. Fine-tuning of the survived weights to improve accuracy

Pruning efficiently solves the problem of the high cost of storing and using
trained models (in terms of memory and speed), but the training part of the
computational resources problem is still present. It is true that an active field of
research is that of looking for new and more ingenious ways to do pruning and
better optimization techniques, in order to reduce the cost of training (see for
example [3] and [4]), however there is always at some point the need to train (at
least partially) big and densely connected networks. Indeed it is still not very well
understood why commonly used optimizers in state-of-the-art deep learning fail
when one wants to train networks that are sparse, from scratch [5].

There is a vast literature about the successes of belief propagation algorithms
(for an introduction see Appendix A) in solving complicated constrained optimiza-
tion problems. One can find many examples by looking for instance at [6][7] and [8].
Furthermore there is a strong link between belief propagation and the statistical
physics of disordered systems (it is often referred to as cavity method by physicists),
and this yields the advantage that when some experimental results come up, one
has already a strong theoretical framework to work in, while looking for analytical
results to compare with the experimental ones.

2

Introduction

These reasons triggered the attempt, reported in this brief work, of designing and
implementing a BP algorithm to start tackling the problem of learning sparse
neural networks from scratch.

1.2 Setting: the model under study

Figure 1.2: Example of two-layer sparse neural network

For the sake of simplicity and in order to work in a more controlled setting, the
studied model is neither the most complex nor the most generic one, but despite the
apparent simplicity of the system under study hopefully the results will be able to
provide some insight into the learning capabilities of BP-based algorithms for SNN’s.

Specifically let us consider two-layer networks, which means that there are three
layers of neurons, respectively of sizes Nin, Nhidden and Nout (see Figure 1.2).

The Nout-dimensional output vector y is related to the Nin-dimensional input x
by

y = φ
1
Wout ∗ψ (Win ∗x)

2
(1.1)

where

3

Introduction

• φ and ψ are the non-linearities in the system. They are functions acting
element wise on their arguments (also called activation functions). The results
reported in the following are obtained using as functions tanh(x − b) with
b ∈ R and max {x, ax} with a < 1, also called leaky ReLU.

• Win ∗ and Wout ∗ are the matrices of the weights in the two junctions, respec-
tively between the input and hidden layer, and between the hidden and the
output layer. The sparsity of the network is encoded in the fact that the
number of non-zero elements in these matrices scales linearly with the sizes of
the layers (and not quadratically as it would in a dense NN).

• The non-zero weights of Win ∗ and Wout ∗ and the components of x take values
in {−1, +1}

Always in the spirit of reducing the computational resources needed in deep
learning, alongside techniques such as pruning, there is something called quantized
neural networks (QNN’s), which are networks where the precision of the weights
is reduced, for instance by passing from real to integer values, with the extreme
case being weights which allow a 1-bit representation i.e. binary weights. This
quantization allows for enormous drops in the storage and usage costs of neural
networks, and nonetheless in many instances the resulting models proved to perform
quite well on popular data sets (e.g. MNIST, CIFAR-10 and SVHN) [9] [10].
The good performances of these quantized neural networks together with the fact
that belief propagation is an algorithm that works with discrete variables, justify
the choice to use binary valued weights.

4

Chapter 2

Bayes optimal case

In this setting there is a teacher that generates a random sparse neural network
(i.e. Win ∗ and Wout ∗), by randomly choosing the positions of the non-zero entries
of the weight matrices and their values. Then it generates a certain number m
of input vectors {xη}η=1,...,m and computes the associated outputs {yη}η=1,...,m by
applying the model (1.1).

In particular, in the next experiments when the teacher generates the network,
the connectivity of each node is fixed beforehand and all the nodes in the same
layer have the same degree, which is to say that two consecutive layers of nodes in
the network form a biregular graph (see Fig. 2.1).

Subsequently, the student is provided with the data, i.e. the input-output pairs
{(xη; yη)}η=1,...,m, and his objective is to learn from it. Being in the Bayes optimal
case the student knows the model of the teacher exactly, that is he knows the
positions of the non-zero weights. Therefore the objective reduces to the inference
of the values only of the non-zero entries of the weight matrices.

More formally we can say that being in the Bayes optimal setting means that
the teacher, i.e. the model that generates the data, hands over to the student the
full and exact functional form of the following posterior distribution:

P
1
Win,Wout | {yη}η=1,...,m, {xη}η=1,...,m

2
∝

∝ P
1
{yη}η=1,...,m, {xη}η=1,...,m |Win,Wout

2
· P

1
Win,Wout

2
∝

∝ P
1
{yη}η=1,...,m |Win,Wout, {xη}η=1,...,m

2
· P

1
Win,Wout

2 (2.1)

With the knowledge of the posterior distribution the student has to find the best
estimates of the parameters of the model, but to define in a precise way what ‘best
estimate‘ means we first need to decide an appropriate error metric that quantifies

5

Bayes optimal case

the quality of the inference. Since the weights in the problem are discrete valued, a
meaningful error metric is the so-called overlap

O(ŵ, w∗) = 1
N

Ø
i

δw∗
i , ŵi

(2.2)

where the estimators are designated by the hat, the ground-truth parameters with
a ∗ and N si the total number of parameters to be learned (i.e. the number of
non-zero entries in the teacher weight matrices).
Since the student does not know the ground-truth (i.e. Win ∗,Wout ∗), in the
framework of Bayesian statistics what he can do is to use as error metric the
average of the overlap with respect to the posterior distribution (2.1), also called
mean overlap (MO). Then by maximizing MO with respect to ŵ, one obtains that
the optimal estimator is the so called Maximum Mean Overlap estimator (MMO)

ŵMMO
i = argmax

wi

µi(wi) (2.3)

Where µi(wi) are the posterior marginals.

2.1 Factor graph representation
As anticipated above the main quantities of interest are the marginals of the
posterior distribution of Eq. (2.1). With the knowledge of the correct functional
form of the latter the student can carry out the marginalization task using the
so-called belief propagation algorithm (BP). For a brief introduction on the subject
and for the notation that will be used throughout the next pages refer to Appendix
A.

In order to implement the algorithm one needs first to define the factor graph
that represents the aforementioned joint posterior distribution. However since the
prior of the weights is uniform, its contribution is a constant that can be included
in the normalization factor. Therefore the important quantity which is necessary
to understand the shape of the factor graph is the likelihood

P ({yη}η=1,...,m |Win,Wout, {xη}η=1,...,m) =

=
NoutÙ
a=1

ξa(win
∂a; wout

∂a)
(2.4)

where the factors ξa(win
∂a; wout

∂a) are defined as

ξa(win
∂a; wout

∂a) =
mÙ
η=1

δ

yη,a − φ

A
NhiddenØ
r=1

W out
ar ψ

3NinØ
s=1

W in
rs xη,s

4B (2.5)

6

Bayes optimal case

This expression suggests a factor graph representation with Nout factor nodes
(one associated with each neuron in the output layer of the SNN) and one variable
node for each non-zero weight. wout

∂a and win
∂a correspond respectively to the non

zero entries of the a-th row of the output matrix (with column indices {r}) and of
the {r}-th rows of the input matrix. See Fig. 2.1.

Figure 2.1: The first image is an example of factor graph representation of the
problem. In the middle are the factor nodes, on the left the variable nodes corre-
sponding to the output matrix weights, on the right the ones for the input matrix.
The grey factors represent the prior terms in the context of mini-batch/online
learning (see section 2.2).
The second image is a pictorial representation of the weights involved in a certain
factor. The variables wout

∂a are highlighted in orange, while win
∂a in green.

2.1.1 BP equations
Once the factor graph has been defined, the belief propagation algorithm (again
see Appendix A) consists in updating some quantities called messages (which are
associated to the edges of the factor graph) following the equations reported below.

For implementation convenience, among the variable nodes in the factor graph
we distinguish between the ones associated to the input matrix weights and the
ones associated to the output matrix weights. In particular the letters i, iÍ, . . . are
used for the indexing of the former, j, jÍ, . . . for the latter, a, aÍ, . . . refer to the
factor nodes and t counts the number of BP iterations.

7

Bayes optimal case

Since the nodes associated with the weights in the output matrix are leaves in
the factor graph, µ(t)

j→a(woutj) = 1
2 ∀t, a, j, w

out
j , so there is no need to compute these

messages. The update rules for the remaining messages are:

1. Message from the variable node wini to the a-th factor node:

µ
(t+1)
i→a (wini) ∼=

Ù
aÍ∈∂i\a

µ̂
(t)
aÍ→i(wini) (2.6)

2. Message from the a-th factor node to the variable node wini :

µ̂
(t)
a→i(wini) ∼=

∼=
Ø

{wout
j }, j∈∂a

{win
iÍ }, iÍ∈∂a\i

ξa(win
∂a\i; wini ; wout

∂a)
Ù

iÍ∈∂a\i
µ

(t)
iÍ→a(winiÍ) (2.7)

3. Message from the a-th factor node to the variable node woutj :

µ̂
(t)
a→j(woutj) ∼=

∼=
Ø

{wout
jÍ }, jÍ∈∂a\j

{win
i }, i∈∂a

ξa(win
∂a; wout

∂a\j; woutj)
Ù
i∈∂a

µ
(t)
i→a(wini) (2.8)

where the symbol ∼= is used to indicate that the left and right hand sides of the
equations are equal up to normalization.

Notice that last messages do not need to be updated at each step t. In fact being
directed towards leaves of the factor graph, their value does not affect any other
message in the updates. Therefore one can run BP only for the messages coming
from and going towards the nodes associated to the weights of the input matrix.
Then after convergence has been reached one can first compute the messages going
towards the nodes associated to the output weights and finally evaluate the so
sought-after marginals as in Eq. (A.7)

2.2 Offline, mini-batch and online learning
In the context of machine learning, algorithms that process the available data all
at once are often referred to as offline (such as the BP algorithm described above).
In contrast to this there are the so called mini-batch algorithms, that carry out
the learning task sequentially, as the name suggests, on small batches of data (the
extreme case where the size of the batch is one is called online).[11]

8

Bayes optimal case

Starting from the factor graph and the BP equations reported above, with a few
minor adjustments, one can implement the mini-batch and the online algorithms
and compare their performance with the offline version.

Let us denote by m̃ the number of data points in each mini-batch (the batch
size), by y(k), x(k) the data points of the k-th batch and by
D(k−1) = {y(1), ..., y(k−1), x(1), ..., x(k−1)} the data from the previously used batches.
In this setting the posterior distribution when the k-th batch is made available
reads:

P
1
Win,Wout |y(k), x(k), D(k−1)

2
∝

∝ P
1
y(k) |Win,Wout,x(k)

2
· P

1
Win,Wout | D(k−1)

2 (2.9)

From this expression, one can see that the most significant difference with
respect to what has been described in the previous section is that there is not
an uniform prior that one can include in the normalization constant any more.
Indeed now the ‘prior‘ term P

1
Win,Wout | D(k−1)

2
is the posterior distribution

that one obtains after the previous mini-batches have been used. Unfortunately the
actual posterior is not available, as what BP provides are estimates of the posterior
marginals. Therefore one can resort to the following approximation:

P
1
Win,Wout | D(k−1)

2
≈
Ù
i

µ
(k−1)
i (wini)

Ù
j

µ
(k−1)
j (woutj) (2.10)

where µ(k−1)
i (wini) and µ(k−1)

j (woutj) denote the BP fixed point beliefs, obtained after
using D(k−1).

The implementation of this factorized prior term consists in connecting, in the
factor graph described in the previous section, each variable node to an extra degree-
1 factor node that contains the information about all the previous mini-batches.
The associated factors read:

ξ
(k)
i (wini) = µ

(k−1)
i (wini)

ξ
(k)
j (woutj) = µ

(k−1)
j (woutj)

(2.11)

It is interesting to notice that, in a statistical physics analogy, the weights to be
learnt are the equivalent of an Ising spins system, the Nout factors indexed by a are
couplings (of course there are not just pairwise interactions), and these additional
factors introduced in the mini-batch setting are external fields, updated as new
mini-batches are used.

2.3 The Max-Product algorithm
Belief propagation carries out the specific task of computing marginals of complex
probability distributions, but it also belongs to a wide class of algorithms that

9

Bayes optimal case

share the same structure, called message-passing algorithms, that allow to compute
different quantities.
For instance, let us take the problem of finding a configuration x that maximizes
P (x). If P (x) is a posterior distribution solving this problem would amount to do
a MAP (maximum-a-posteriori) estimation of x. One can accomplish this task by
doing one slight change to the BP algorithm described in appendix A: in Eq. (A.6)
for the update of the factor node to variable node messages, replace the summation
over configurations with a maximization i.e.

µ̂
(t)
a→i(xi) ∝ max

x∂a\i

ξa(x∂a) Ù
j∈∂a\i

µ
(t)
j→a(xj)

 (2.12)

It is not hard to show that (see [6]) analogously to how the beliefs computed with
the fixed point BP messages yield exact marginals for tree-graphical models, the
beliefs computed with the fixed point max-product messages yield exactly the
following quantities, called max-marginals

Mi(x∗
i) = max

x
{P (x) : xi = x∗

i } (2.13)

If ∀i the maximum of Mi(·) is non degenerate, then by maximizing each max-
marginal one would obtain for a tree graphical model the unique configuration x∗

that maximizes P (x).

The same experiments have been carried out both with the belief propagation
(or sum-product) and the max-product algorithm, so that one can check that the
optimal estimator that maximizes the overlap (see Eq. (2.2)) is indeed the one
that maximizes the posterior marginals, and not the MAP estimator. This is also
a further way to check that the algorithms have been properly implemented.

2.4 Experimental results
In this section we show some experimental results relative to the teacher student
scenario in the Bayes optimal case. In the following some implementation details
about the first experiments (see fig. 2.2 and 2.3) are described:

• The two activation functions that have been used are:

1. leaky ReLU: φ(x) = max(x; ax)
2. hyperbolic tangent: φ(x) = tanh(x− b)

In all experiments the same non-linearity has been used for both layers.
We chose a = b = 0.1

10

Bayes optimal case

• The sizes of the layers are: Nin = Nhidden = Nout = 1000

• The teacher network is such that its weight matrices have two non-zero entries
for each row and for each column.

• The simulations have been carried out using both the BP (or sum-product)
and the max-product algorithms. Furthermore each experiment has been done
in the offline, online and mini-batch variations, with mini-batch sizes m̃1 = 2
and m̃2 = 4

• Often times in algorithms that are designed to numerically solve fixed-point
equations (such as belief propagation) one can introduce a so called damping
in order to improve convergence properties. At each step of the algorithm,
this consists in updating the messages with the weighted average between
their old value and the value they would be assigned according to the message
passing equations.

µ
(t+1)
(·) ← αµ

(t)
(·) + (1− α)fMP (µ(t)

(·)) (2.14)

where fMP (·) refers to a generic message passing update rule and 0 ≤ α ≤ 1.
The results shown in the following are obtained with α = 0,3.

11

Bayes optimal case

(a) (b)

(c) (d)

Figure 2.2: In this figure the results obtained with the φ(x) = tanh(x − b)
non-linearity with b = 0,1 are shown. On the vertical axis there is the fraction
of the student weight estimates that differ from the true teacher weights. In the
sub-figures on the right there are the close ups of the ones shown on the left. Each
plot is obtained by averaging over 10 simulations.

12

Bayes optimal case

(a) (b)

(c) (d)

Figure 2.3: In this figure the results obtained with the φ(x) = max(x; ax) non-
linearity with a = 0,1 are shown. On the vertical axis there is the fraction of
the student weight estimates that differ from the true teacher weights. In the
sub-figures on the right there are the close ups of the ones shown on the left. Each
plot is obtained by averaging over 10 simulations.

One can see from the Fig. 2.2 and 2.3 in the last two pages that in the teacher
student scenario, belief propagation allows to perfectly reconstruct the teacher
weights using only a small number of data points. Furthermore, from the close-up
sub-figures on the right of both images one may notice how the online and mini-
batch versions of the algorithm perform very comparably with the offline variant:
indeed for mini-batches of size m̃ = 4 the difference practically disappears. This
fact may potentially turn out to be useful in instances where an offline algorithm
is unfeasible: for an example see Appendix B.
Furthermore it is interesting to observe that Fig. 2.2 and Fig. 2.3 contain plots
that behave in a extremely similar way, despite coming from experiments with

13

Bayes optimal case

networks containing different non-linearities.

(a) (b)

(c)

Figure 2.4: The plots shown in this figure refer to experiments carried out in
a similar fashion to what is shown in Fig. 2.2 and Fig. 2.3 (same mini-batch
sizes, same damping, etc.), but with a few differences in the implementation
details. In subfig. (a) the output matrix has three non-zero elements in each
row and each column instead of two as in the previous experiments. In subfig.(b)
the denser matrix is the input one. In subfig.(c) the sizes of the layers are
Nin = 1200, Nhidden = 800, Nout = 800, the input matrix has three non-zero
elements per row and the output one has two. All these experiments have been
carried out with the activation function φ(x) = tanh(x− b) with b = 0,1 and the
plots have been obtained by averaging over 10 simulations each.

In addition to the simulations above, other experiments have been carried out
with different network topologies obtained by varying the weight matrices densities

14

Bayes optimal case

and the relative sizes of the layers in the SNN. In Fig. 2.4 one can see that
introducing these differences does not change significantly the results in the offline
case.
The largest degree of variability can be witnessed for the online max-product
algorithm. However this may due to the fact that, while in the online version of
the standard BP the expression in Eq. (2.10) amounts to approximating a certain
joint distribution as the product of its marginals, by neglecting the correlations
between the variables, if instead the message passing algorithm beliefs represent
the max-marginals of Eq. (2.13) it is not clear what this approximation means.

15

Chapter 3

Mismatched case

3.1 Realizable rule setting
In light of the encouraging results obtained by belief propagation in the teacher-
student scenario, the last part of this work aims to see whether BP-based learning
can be relevant also in gradually more realistic settings, in which the architecture
that one tries to train is different from the one that generated the data.

As a first step, we consider the so-called realizable rule setting in which the
model of the student, although being different from the one of the teacher, contains
the latter. In particular let us decompose the weight matrices as an element-wise
product between a matrix A(·) that defines the topology of the network and a matrix
J(·) that contains the values of the weights, i.e. W (·)

i,j = A
(·)
i,j J

(·)
i,j , with A

(·)
i,j ∈ {0,1}.

Working in the realizable rule setting means that the student network topology
matrices Ain and Aout contain the ones of the teacher network Ain ∗ and Aout ∗

(i.e. A(·) ∗
ij = 1 =⇒ A

(·)
ij = 1), and that J in ∗

i,j , J
out ∗
i,j ∈ {−1,+1} while J ini,j, Jouti,j ∈

{−1,0,+1}.
The reason behind this choice is that in this setting one knows that the lowest

reachable generalization error is zero, which provides an actual reference that can
be used to assess how good the performance of the learning is.

3.2 Log-likelihoods and the max-sum algorithm
In this section we introduce a variation of the belief propagation algorithm in
order to compare it with the standard BP. The reason for this is that once one
moves away from the realizable rule setting and starts working with an arbitrary
mismatch between the teacher and the student model, BP may not be the most
suitable choice to tackle the problem. More precisely the criticality comes from the

16

Mismatched case

update of the factor to variable nodes messages described in Eq. (2.7) and (2.8).
Indeed if the mismatch between the student and the teacher is arbitrary it is not
granted that the former would be able to reproduce the latter. Therefore it may
be possible that the factors ξa(·) that appear in the aforementioned equations are
zero for all the configurations of the neighbourhood of the corresponding factor
node in the factor graph of Fig. 2.1. If this happens, then all the messages coming
out of the factor nodes with the described issue will have the same value, which
means that they do not provide any information for the estimation of the weights,
which may in turn prevent the convergence of the algorithm.

The first step to make in order to obtain the aforementioned variation on BP is
to approximate the factors of Eq. (2.5), with the following Boltzmann distributions:

ξa(win
∂a; wout

∂a) =
mÙ
η=1

δ

yη,a − φ

A
NhiddenØ
r=1

W out
ar ψ

3NinØ
s=1

W in
rs xη,s

4B Ä

Ä exp
è
−βHa(win

∂a; wout
∂a)

é (3.1)

where β is the inverse temperature and the Hamiltonian reads

Ha(win
∂a; wout

∂a) =
mØ
η=1

yη,a − φ
NhiddenØ

r=1
W out
ar ψ

NinØ
s=1

W in
rs xη,s

2

(3.2)

With these ‘softer‘ constraints (as in opposition with the ‘hard‘ delta constraints),
weight configurations that have different (non-zero) energies will give different con-
tributions in the update of the factor to variable node messages. Furthermore one
may notice that in the zero temperature limit (i.e. β → ∞), if working in the
realizable rule setting where the teacher is reproducible, the Boltzmann distribu-
tion concentrates around its minima allowing us to recover the original delta factors.

The following step is to re-parametrize the messages in terms of new quantities
called log-likelihoods:

h
(t)
i→a(w

in/out
i) := 1

β
log

è
µ

(t)
i→a(w

in/out
i)

é
u

(t)
a→i(w

in/out
i) := 1

β
log

è
µ̂

(t)
a→i(w

in/out
i)

é (3.3)

Using (3.3) and the sum-product BP equations (A.5) and (A.6), one obtains
the new message passing update rules for the log-likelihoods:

17

Mismatched case

1. Variable to factor node log-likelihoods

h
(t+1)
i→a (win/outi) =

Ø
b∈∂i\a

u
(t)
b→i(w

in/out
i) + C

(t)
i→a (3.4)

2. Factor to variable node log-likelihoods

u
(t)
a→i(w

in/out
i) =

= 1
β

log

 Ø
(win;wout)∂a\i

e−βHa((win;wout)∂a\i;w
in/out
i) Ù

l∈∂a\i
eβh

(t)
l→a

(win/out
l

)

+ Ĉ
(t)
a→i

(3.5)

3. The ‘log-beliefs‘: in the same way in which with the BP messages one can
compute the beliefs bi(wi) for each variable, using the log-likelihoods one can
compute the following

h
(t+1)
i (win/outi) = 1

β
log

è
b

(t+1)
i (win/outi)

é
=

=
Ø
a∈∂i

u
(t)
a→i(w

in/out
i) + C

(t)
i

(3.6)

Analogously to what is done with the BP beliefs, by maximizing these log-
beliefs one obtains the estimates for the weights.

Notice that these last equations are defined up to an overall additive constant.
In particular we chose the constants C(t)

i→a, Ĉ
(t)
a→i and C

(t)
i in such a way that

max
w

in/out
i

è
h

(t+1)
i→a (win/outi)

é
= 0, max

w
in/out
i

è
u

(t)
a→i(w

in/out
i)

é
= 0 and

max
w

in/out
i

è
h

(t+1)
i (win/outi)

é
= 0.

Now by taking the zero temperature limit β → ∞ of eq. (3.5) one gets, by
virtue of the saddle-point approximation

u
(t)
a→i(w

in/out
i) =

= max
(win;wout)∂a\i

C
−Ha

1
(win; wout)∂a\i; win/outi

2
+

Ø
l∈∂a\i

h
(t)
l→a(w

in/out
i)

D
+ Ĉ

(t)
a→i

(3.7)

Eq. (3.4) and Eq. (3.7) are the message passing rules of the so called max-sum
algorithm. Another example of max-sum algorithm can be found in [12].

18

Mismatched case

3.3 Soft decimation: reinforced message-passing
algorithms

Both the ‘regular‘ belief propagation and the max-sum algorithm, when applied
to models with non-acyclic factor graphs, lack the guarantees of convergence to
a fixed point that they would have in the case of a tree-graphical model. Fur-
thermore in the case of the max-sum algorithm if the Hamiltonian written in
Eq. (3.2) has multiple minima, even in cases where the factor graph is acyclic,
these guarantees fall apart. There exist however some so-called soft decimation or
reinforcement techniques that heuristically solve these problems. Examples of solu-
tions analogous to the ones described below can be found for instance in [12][13][14].

For the regular sum-product BP algorithm, this reinforcement consists in chang-
ing the variable to factor node message update rule described in Eq. (A.5) with
the following two equations:

b
(t+1)
i (xi) ∼=

Ù
a∈∂i

µ̂
(t)
a→i(xi)

 1b(t)
i (xi)

2rt
(3.8)

µ
(t+1)
i→a (xi) ∼=

b
(t+1)
i (xi)
µ̂

(t)
a→i(xi)

(3.9)

where again the symbol ∼= indicates equality up to normalization.

Therefore the beliefs computed at a certain step of the algorithm are influenced
by the beliefs computed at the previous step. The magnitude of this influence
increases with t and with the parameter r > 0.

For the max-sum algorithm the variable to factor node update rule becomes:

h
(t+1)
i (xi) =

Ø
a∈∂i

u
(t)
a→i(xi) + C̃

(t)
i + rt · h(t)

i (xi) (3.10)

h
(t+1)
i→a (xi) = h

(t+1)
i (xi) + C̃

(t)
i→a − u

(t)
a→i(xi) (3.11)

Where C̃(t)
i→a and C̃

(t)
i are not the same additive constants of Eqs. (3.4) and (3.6)

respectively, but are chosen with the same criterion of setting to zero the maximum
over xi of h(t+1)

i→a (xi) and h(t+1)
i (xi).

Intuitively what happens is that since the reinforcement effect increases with
t, as ‘time‘ passes at each iteration of BP or the max-sum (MS) algorithm, the
updated beliefs or log-beliefs respectively, will have a gradually smaller variation

19

Mismatched case

with respect to the the previous step, effectively forcing the convergence of the
algorithm. Conceptually this is similar to what is described in section 2.2, where
in the context of mini-batch or online learning the previously gained information
on the system is encoded in the introduction of some external fields; the difference
here is that the values of the fields are updated at each step of BP/MS and their
intensity increases with t. The parameter r can be interpreted as a measure of the
velocity of the reinforcement: the larger its value the faster the intensity of the
aforementioned external fields will increase, but it will also likely come along with a
reduction in the accuracy of the final weight estimation. Therefore fine tuning r to
the appropriate value to use in the simulations is heuristically based on a trade off
between speed of convergence to a fixed point and the accuracy of this fixed point.

In the case of the regular BP the soft-decimation forces the estimates of the
marginal distributions to peak around one specific value, whereas in the case of MS
the effect of the reinforcement is to increase the gap between the values of hi(xi)
for the different values of xi.

3.4 Experimental results
In this section some experimental results for the realizable rule setting are presented.
As previously mentioned, the performances of the standard BP, the max-sum algo-
rithm and the corresponding reinforced versions are compared.

Here are some details about the implementation:
• The utilised activation function for the non-linearities is: φ(x) = tanh(x− b)

with b = 0,1

• The sizes of the layers are: Nin = Nhidden = Nout = 200

• The teacher network is generated in such a way that its weight matrices have
two non-zero entries for each row and for each column.

• The mismatch is encoded in the fact that for the construction of the student
network, either the input matrix or the output matrix is generated in such a
way that it contains the teacher topology matrix (i.e. A(·) ∗

ij = 1 =⇒ A
(·)
ij = 1),

but has three non-zero entries per row and column, instead of two.

• The value of the reinforcement velocity parameter is r = 0,01

• In the different sub-figures of Fig. 3.1 and 3.2 the following quantities are
plotted:

– In sub-figure (a) there is the fraction of the teacher non-zero weights that
are wrongly estimated by the student

20

Mismatched case

– In sub-figure (b) there is the error made in learning the teacher topology
which is computed in the following way:

Ôtopo =
NhiddenØ

i

NinØ
j

Ain ∗
ij (1− |J inij |) + Ainij (1− Ain ∗

ij)|J inij |
Nstudent

+

+
NoutØ
l

NhiddenØ
k

Aout ∗
lk (1− |Joutlk |) + Aoutlk (1− Aout ∗

lk)|Joutlk |
Nstudent

(3.12)

where Nstudent is the total number of (possibly) non-zero elements in the
student network.

– In sub-figure (c) there is the average generalization error computed on the
validation set {(xtestη ; ytestη)}η=1,...,Ntest which is provided by the teacher af-
ter the training has been carried out. The generalization error is computed
as:

Ôgen = 1
Ntest

NtestØ
η=1

...ytestη − ystudentη

...2

2
Nout

(3.13)

where {ystudentη }η=1,...,Ntest are the output vectors computed from
{xtestη }η=1,...,Ntest and the trained student network. In all the following
experiments Ntest = 50.

In Fig. 3.1 are shown the results from the experiments where the mismatch is on
the input matrix. In this case both BP, the max-sum algorithm and their reinforced
counterparts perform similarly, all allowing to reconstruct both the topology and
the weight values of the teacher, yielding a zero generalization error with a small
number of data points just like in the Bayes optimal case.

If instead the mismatch is on the output matrix (see Fig. 3.2) what we observe
is different. In this case we notice that belief propagation, although perfectly
recovering the values of the weights that are actually present in the teacher network,
fails to learn its topology, i.e. the trained student network has an excess of non-
zero entries. Furthermore one can also see that the reinforcement does not affect
significantly the performance of the standard BP.

In the case of the max-sum algorithm, both the reinforced and not reinforced
versions allow to perfectly learn the teacher topology (see Fig. 3.2b), whereas
as far as the reconstruction of the teacher weights is concerned, although they
both perform more poorly with respect to the BP algorithms, the reinforcement
does have a positive effect (see Fig. 3.2a). The end result is that in this case the
max-sum algorithm with the reinforcement term is the one that performs better in
terms of generalization error (see Fig. 3.2c).

21

Mismatched case

(a) (b)

(c)

Figure 3.1: This figure refers to a setting where the student has the input matrix
which is mismatched w.r.t. the teacher. Plots obtained by averaging over 10
experiments.

22

Mismatched case

(a) (b)

(c)

Figure 3.2: This figure refers to a setting where the student has the output
matrix which is mismatched w.r.t. the teacher. Plots obtained by averaging over
10 experiments.

23

Mismatched case

3.5 Conclusion and future directions
In this brief work different BP-based algorithms have been implemented to study
the problem of training sparse neural networks from scratch.
In the teacher-student scenario we have obtained encouraging results, in which the
teacher model is accurately reconstructed with a small number of data points, and
these results do not seem to be majorly affected by changes in the non-linearities
used in the network, in the size of the layers and by a different connectivity of the
‘neurons’. In the realizable rule mismatched setting, however, there is still need
for more extensive experimentation. Nonetheless the few results obtained until
now seem to suggest that the max-sum algorithm with the reinforcement would be
better suited for further simulations.

The following step would be that of going towards a setting with arbitrary
mismatch and in this perspective, since the standard BP would probably not be
very well suited for the training task because of reasons that we have mentioned
earlier, the better performance of the reinforced max-sum algorithm is to some
extent reassuring.

Another possible direction to explore is that of investigating what would happen
in a multi-layer setup with SNN’s with an arbitrary number of layers. An idea of
implementation to tackle this problem can be seen in Appendix B.

24

Appendix A

A brief introduction to
graphical models and belief
propagation

Take the generic joint probability distribution of N random variables, taking values
in a finite alphabet χ

P (x) with x = (x1, . . . , xN), xi ∈ χ (A.1)
Without any information on the mutual dependencies among the variables, the task
of computing the marginals of the distribution is very costly (∼ O(|χ|N)). However,
if P (x) factorizes in a non-trivial way, or so to speak the variables interact only
‘locally‘, the complexity can be reduced significantly.

In particular let us suppose that the joint probability distribution can be written
as the product of a certain number of factors, each depending only on a subset of
the totality of the N variables. We call A and I the sets of indices, respectively
identifying the different factors and variables.
To this factorization one can associate a graphical representation called factor

graph (see Fig.A.1), which is the bipartite graph G = (V = I∪A; E ⊂ I×A) where
(i, a) ∈ E if and only if the a− th factor depends on xi. We call ∂a the set of indices
of the variables that appear in the a−th factor, ∀a ∈ A, and ∂i = {a ∈ A : i ∈ ∂a}.

Then P (x) reads
P (x) = 1

Z
Ù
a∈A

ξa(x∂a) (A.2)

Where ξa : χ|∂a| → R≥0 with a ∈ A are the factors, and x∂a = (xi1 , . . . , xi|∂a|) with
i1, . . . , i|∂a| ∈ ∂a.

25

A brief introduction to graphical models and belief propagation

Figure A.1: Simple example of a factor graph

A.1 BP equations
For each edge (i, a) of the factor graph, one can define the following quantities,
called messages

• µ̂a→i(xi): factor to variable node messages

• µi→a(xi): variable to factor node messages

and they take value in the space of probability distributions over the single variable
space χ: Ø

xi

µ̂a→i(xi) = 1 ,
Ø
xi

µi→a(xi) = 1 ∀ i ∈ I, a ∈ A (A.3)

µ̂a→i(xi), µi→a(xi) ≥ 0 ∀ i ∈ I, a ∈ A, xi ∈ χ (A.4)

The belief propagation or message passing algorithm, consists in initializing all
the messages in said probability space to some initial values µ̂(0)

a→i(·) and µ(0)
i→a(·),

and then updating them according to the following rules:

µ
(t+1)
i→a (xi) ∼=

Ù
b∈∂i\a

µ̂
(t)
b→i(xi) (A.5)

µ̂
(t)
a→i(xi) ∼=

Ø
x∂a\i

ξa(x∂a)
Ù

j∈∂a\i
µ

(t)
j→a(xj) (A.6)

where the symbol ∼= stands for equality up to normalization.
The updates are carried on until convergence, i.e. when the maximum variation

of the messages in a BP step is smaller than a certain desired precision value. With

26

A brief introduction to graphical models and belief propagation

the final values of the messages one can compute the so called beliefs, which are
the BP estimates of the marginals of the original joint distribution

bi(xi) ∼=
Ù
a∈∂i

µ̂a→i(xi) (A.7)

In the special case in which the factor graph associated to the factorization of a
probability distribution is a tree, belief propagation has some interesting properties:

• The algorithm always converges, and the fixed point is unique.

• The number of BP iterations to reach convergence grows linearly with the
diameter of the factor graph.

• The beliefs computed at the fixed point, are the exact marginals.

• Other BP based algorithms allow also to carry out tasks such as sampling
efficiently P (x), computing its normalization constant (the partition function)
and its modes.

However not always the factor graph associated to a problem is a tree, and in
this case there are not such strong results on the properties of BP. Nonetheless,
recently it has been shown that the algorithm can be surprisingly effective also on
graphs with loops. The intuitive idea behind why this should be the case, is that
BP is an algorithm that performs ‘local‘ computations, and therefore should work
as long as the graph is ‘locally‘ a tree and the far apart variables can be considered
approximately uncorrelated. The approximation where one assumes that the BP
equations describe well a graphical model where the underlying factor graph is
‘loopy‘, in the context of the study of spin systems, is called Bethe approximation.
This can be seen as a more refined version of the so called mean field approximation,
and in turn there have been studies on more sophisticated generalisations of BP
(an example consists in the so called Cluster Variational Methods).
For more detailed and rigorous information on the subject refer to [15], [6] and [16].

27

Appendix B

Generalizing to a
multi-layer setup

B.1 Hidden Variables
In this appendix we see a way to generalize the work carried out in this thesis
(where the used architecture was always two-layer) to a multi-layer setup. Let us
consider a neural network with L layers where we use the following notation:

• W(1), . . . ,W(L) are the weight matrices and the numeration increases starting
from the layer closest to the output

• φ(1), . . . , φ(L) are the activation functions

• n0, . . . , nL are the sizes of the layers, starting from the output layer

Then, the output vector reads

y = φ(1)(W(1)φ(2)(W(2) · · ·φ(L)(W(L)x))) (B.1)

Analogously to the two layer setting, the aim is to compute the marginals of the
posterior distribution of the weights given the data {(xη; yη)}η=1,...,m

P
1
W(1), . . . ,W(L) | {yη}η=1,...,m, {xη}η=1,...,m

2
(B.2)

and once again the quantity of interest that allows to determine the structure of
the underlying factor graph that represents the problem is the likelihood

P ({yη}η=1,...,m |W(1), . . . ,W(L), {xη}η=1,...,m) (B.3)

In order to make the reasoning more easily generalizable for an arbitrary number
of layers L, we introduce the auxiliary hidden variables h(l)

η ∈ Rnl for l = 1, . . . , L−1

28

Generalizing to a multi-layer setup

and η = 1, . . . ,m. These variables represent the state of the neurons of the hidden
layers and they have to be consistent with the state of the previous layers, in other
words they have to satisfy the constraints:

h(1)
µ = φ(2)(W(2) · h(2)

η)
...

h(L−1)
µ = φ(L)(W(L) · xη)

(B.4)

Successively one can write the following quantity that when marginalized with
respect to the hidden variables returns the likelihood of Eq. (B.3)

P ({yη; hη(1); hη(L−1)}η=1,...,m |W(1), . . . ,W(L), {xη}η=1,...,m) =

=
n0Ù
a=1

 mÙ
η=1

δ
1
yη,a; φ(1)(W(1) · h(1)

η)
2 n1Ù

l1=1

 mÙ
η=1

δ
1
h

(1)
η,l1 ; φ(2)(W(2) · h(2)

η)
2 · · ·

· · · · · ·
nL−1Ù
lL−1=1

 mÙ
η=1

δ
1
h

(L−1)
η,lL−1

; φ(L)(W(L) · xη),
2 =

=
n0Ù
a=1

ξa(w(1)
∂a ; h(1)

∂a)
n1Ù
l1=1

ξl1(w(2)
∂l1 ; h(1)

∂l1 ; h(2)
∂l1) · · ·

nL−1Ù
lL−1=1

ξlL−1(w(L)
∂lL−1

; h(L−1)
∂lL−1

)

(B.5)
From this expression one can build the factor graph representing the problem

shown in Fig. B.1.

B.1.1 Problematic offline learning
Apart from the fact that this implementation is good for the sake of a better
generalizability to a multi-layer setup, it also has the advantage that the number of
neighbours of the factor nodes in the factor graph grows linearly with the number
of non-zero elements in the rows of the weight matrices W(l) with l = 1, . . . , L.
Indeed if the size of these neighbourhoods grows too fast, the part of the BP algo-
rithm where one updates the factor to variable node messages, becomes extremely
costly in terms of computational time, as soon as one works with NN’s that are

29

Generalizing to a multi-layer setup

Figure B.1: Factor graph with the hidden variables nodes

slightly ‘less sparse‘.

The suspicious reader, may wonder at this point, the reason why this implemen-
tation with the hidden variables has not been used for the work carried out in this
thesis in the two-layer case. The reason is that while apparently computationally
more convenient, the BP algorithm on the factor graph of fig. B.1 has a significant
problem: the variable nodes associated to the hidden variables, are not scalar quan-
tities, whereas each grey circle represents a vector of size m, which is the number
of data points. This represents an insurmountable computational impairment for
the update of the factor to variable node messages in the offline learning case (see
section 2.2).

A possible idea to deal with this problem would be to consider, in Eq. (B.5), the
multiplications over the index η as the product of distinct factors. This however,
despite solving the computational problem of having vector quantities as variables,
generates another issue. Indeed the graphical representation of this factorization
would be made of m distinct copies of the factor graph of Fig. B.1 and all the m
copies of each one of the orange and green factors, would be connected to the same

30

Generalizing to a multi-layer setup

variable nodes associated to the network weights. This causes the factor graph to
be tremendously ‘loopy‘, therefore making belief propagation a bad choice. This
kind of ‘excessive factorization‘ would cause the same problem to appear also in the
implementation that has been actually used in this work. As in this case the de-
scribed issue is more easily visualized, we show a pictorial representation in Fig. B.2.

Nonetheless the ideas presented in this appendix are not to be disregarded:
indeed in chapter 2 we have seen that the BP algorithm implemented with mini-
batches of very small size performs comparably to the offline case. Therefore one
could use the factor graph described in this section, in order to implement an online
algorithm to work in a multi-layer setup.

Figure B.2: Visual representation of the extremely ‘loopy‘ factor graph coming
from the factorization over η

31

Bibliography

[1] Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Explor-
ing Sparsity in Recurrent Neural Networks. 2017. arXiv: 1704.05119 [cs.LG]
(cit. on p. 2).

[2] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights
and Connections for Efficient Neural Networks. 2015. arXiv: 1506.02626
[cs.NE] (cit. on p. 2).

[3] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell.
Rethinking the Value of Network Pruning. 2018. arXiv: 1810.05270 [cs.LG]
(cit. on p. 2).

[4] Trevor Gale, Erich Elsen, and Sara Hooker. The State of Sparsity in Deep
Neural Networks. 2019. arXiv: 1902.09574 [cs.LG] (cit. on p. 2).

[5] Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The Difficulty
of Training Sparse Neural Networks. 2019. arXiv: 1906.10732 [cs.LG] (cit.
on p. 2).

[6] Marc Mézard and Andrea Montanari. Information, physics, and computation.
Oxford University Press, 2009 (cit. on pp. 2, 10, 27).

[7] Lenka Zdeborová and Florent Krzakala. «Statistical physics of inference:
thresholds and algorithms». In: Advances in Physics 65.5 (Aug. 2016), pp. 453–
552. issn: 1460-6976. doi: 10.1080/00018732.2016.1211393. url: http:
//dx.doi.org/10.1080/00018732.2016.1211393 (cit. on p. 2).

[8] Andrea Montanari and Rudiger Urbanke. Modern Coding Theory: The Statis-
tical Mechanics and Computer Science Point of View. 2007. arXiv: 0704.2857
[cs.IT] (cit. on p. 2).

[9] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or -1. 2016. arXiv: 1602.
02830 [cs.LG] (cit. on p. 4).

32

https://arxiv.org/abs/1704.05119
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1906.10732
https://doi.org/10.1080/00018732.2016.1211393
http://dx.doi.org/10.1080/00018732.2016.1211393
http://dx.doi.org/10.1080/00018732.2016.1211393
https://arxiv.org/abs/0704.2857
https://arxiv.org/abs/0704.2857
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1602.02830

BIBLIOGRAPHY

[10] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized Neural Networks: Training Neural Networks with
Low Precision Weights and Activations. 2016. arXiv: 1609.07061 [cs.NE]
(cit. on p. 4).

[11] Andre Manoel, Florent Krzakala, Eric W. Tramel, and Lenka Zdeborova.
«Streaming Bayesian inference: Theoretical limits and mini-batch approximate
message-passing». In: 2017 55th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton) (Oct. 2017). doi: 10.1109/
allerton.2017.8262853. url: http://dx.doi.org/10.1109/ALLERTON.
2017.8262853 (cit. on p. 8).

[12] Carlo Baldassi and Alfredo Braunstein. «A Max-Sum algorithm for training
discrete neural networks». In: Journal of Statistical Mechanics: Theory and
Experiment 2015.8 (Aug. 2015), P08008. issn: 1742-5468. doi: 10.1088/
1742-5468/2015/08/p08008. url: http://dx.doi.org/10.1088/1742-
5468/2015/08/P08008 (cit. on pp. 18, 19).

[13] Alfredo Braunstein and Riccardo Zecchina. «Learning by Message Passing
in Networks of Discrete Synapses». In: Physical Review Letters 96.3 (Jan.
2006). issn: 1079-7114. doi: 10.1103/physrevlett.96.030201. url: http:
//dx.doi.org/10.1103/PhysRevLett.96.030201 (cit. on p. 19).

[14] Tadaaki Hosaka and Yoshiyuki Kabashima. «Statistical mechanical approach
to lossy data compression: Theory and practice». In: Physica A: Statistical
Mechanics and its Applications 365.1 (June 2006), pp. 113–119. issn: 0378-
4371. doi: 10.1016/j.physa.2006.01.013. url: http://dx.doi.org/10.
1016/j.physa.2006.01.013 (cit. on p. 19).

[15] Jonathan Yedidia, William Freeman, and Yair Weiss. «Understanding belief
propagation and its generalizations». In: vol. 8. Jan. 2003, pp. 239–269. isbn:
1558608117 (cit. on p. 27).

[16] Alessandro Pelizzola. «Cluster variation method in statistical physics and
probabilistic graphical models». In: Journal of Physics A: Mathematical and
General 38.33 (Aug. 2005), R309–R339. issn: 1361-6447. doi: 10.1088/0305-
4470/38/33/r01. url: http://dx.doi.org/10.1088/0305-4470/38/33/
R01 (cit. on p. 27).

[17] Andre Manoel, Florent Krzakala, Marc Mezard, and Lenka Zdeborova. «Multi-
layer generalized linear estimation». In: 2017 IEEE International Symposium
on Information Theory (ISIT) (June 2017). doi: 10 . 1109 / isit . 2017 .
8006899. url: http://dx.doi.org/10.1109/ISIT.2017.8006899.

33

https://arxiv.org/abs/1609.07061
https://doi.org/10.1109/allerton.2017.8262853
https://doi.org/10.1109/allerton.2017.8262853
http://dx.doi.org/10.1109/ALLERTON.2017.8262853
http://dx.doi.org/10.1109/ALLERTON.2017.8262853
https://doi.org/10.1088/1742-5468/2015/08/p08008
https://doi.org/10.1088/1742-5468/2015/08/p08008
http://dx.doi.org/10.1088/1742-5468/2015/08/P08008
http://dx.doi.org/10.1088/1742-5468/2015/08/P08008
https://doi.org/10.1103/physrevlett.96.030201
http://dx.doi.org/10.1103/PhysRevLett.96.030201
http://dx.doi.org/10.1103/PhysRevLett.96.030201
https://doi.org/10.1016/j.physa.2006.01.013
http://dx.doi.org/10.1016/j.physa.2006.01.013
http://dx.doi.org/10.1016/j.physa.2006.01.013
https://doi.org/10.1088/0305-4470/38/33/r01
https://doi.org/10.1088/0305-4470/38/33/r01
http://dx.doi.org/10.1088/0305-4470/38/33/R01
http://dx.doi.org/10.1088/0305-4470/38/33/R01
https://doi.org/10.1109/isit.2017.8006899
https://doi.org/10.1109/isit.2017.8006899
http://dx.doi.org/10.1109/ISIT.2017.8006899

BIBLIOGRAPHY

[18] Marylou Gabrié. «Mean-field inference methods for neural networks». In: Jour-
nal of Physics A: Mathematical and Theoretical 53.22 (May 2020), p. 223002.
issn: 1751-8121. doi: 10.1088/1751-8121/ab7f65. url: http://dx.doi.
org/10.1088/1751-8121/ab7f65.

[19] K.Tamuly. Compression and Acceleration of High-dimensional Neural Net-
works. Nov. 2018. url: https://software.intel.com/content/www/
us/en/develop/articles/compression-and-acceleration-of-high-
dimensional-neural-networks.html.

[20] F.Lagunas. Is the future of Neural Networks Sparse? An Introduction (1/N).
Feb. 2020. url: https://medium.com/huggingface/is-the-future-of-
neural-networks-sparse-an-introduction-1-n-d03923ecbd70.

[21] Mitchell A. Gordon. Do We Really Need Model Compression? Jan. 2020. url:
http://mitchgordon.me/machine/learning/2020/01/13/do-we-really-
need-model-compression.html.

34

https://doi.org/10.1088/1751-8121/ab7f65
http://dx.doi.org/10.1088/1751-8121/ab7f65
http://dx.doi.org/10.1088/1751-8121/ab7f65
https://software.intel.com/content/www/us/en/develop/articles/compression-and-acceleration-of-high-dimensional-neural-networks.html
https://software.intel.com/content/www/us/en/develop/articles/compression-and-acceleration-of-high-dimensional-neural-networks.html
https://software.intel.com/content/www/us/en/develop/articles/compression-and-acceleration-of-high-dimensional-neural-networks.html
https://medium.com/huggingface/is-the-future-of-neural-networks-sparse-an-introduction-1-n-d03923ecbd70
https://medium.com/huggingface/is-the-future-of-neural-networks-sparse-an-introduction-1-n-d03923ecbd70
http://mitchgordon.me/machine/learning/2020/01/13/do-we-really-need-model-compression.html
http://mitchgordon.me/machine/learning/2020/01/13/do-we-really-need-model-compression.html

	List of Figures
	Introduction
	A little bit of motivation
	Setting: the model under study

	Bayes optimal case
	Factor graph representation
	BP equations

	Offline, mini-batch and online learning
	The Max-Product algorithm
	Experimental results

	Mismatched case
	Realizable rule setting
	Log-likelihoods and the max-sum algorithm
	Soft decimation: reinforced message-passing algorithms
	Experimental results
	Conclusion and future directions

	A brief introduction to graphical models and belief propagation
	BP equations

	Generalizing to a multi-layer setup
	Hidden Variables
	Problematic offline learning

	Bibliography

