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Abstract

This thesis aims at studying phase transition in vehicular traffic with a
Boltzmann-type kinetic approach. Phase transition naturally emerges from
the derivation of macroscopic quantities as a consequence of binary micro-
scopic interactions. No ansatz is needed, contrary to macroscopic models.
First, the kinetic traffic model is presented referring to the literature. It
is based on a follow-the-leader approach and analytical results are obtained
in the quasi-invariant interaction regime. Both the case with and without
autonomous vehicles are considered. In particular, the introduction of au-
tonomous vehicles is investigated as a tool to mitigate road risk and relies
on a Model Predictive Control approach. Two control strategies, which lead
to different conclusions, are adopted: the binary variance and the desired
speed control. The innovation of this thesis consists in modeling nonlinear
interaction rules, which cause the emergence of a bifurcation and therefore,
of phase transition. This feature is derived and characterized by referring
to linear and nonlinear stability analysis.
Then, phase transition under uncertain vehicle interactions is investigated.
As in previous works, an uncertain parameter, which distinguishes several
classes of vehicles, is introduced in the interaction rules. The original find-
ings of this dissertation are due to the coexistence of the nonlinearity and
the uncertainty in the microscopic interaction rules. Several discrete and
continuous uncertain parameters are considered and general results which
identify the stable fixed point of the system and the critical density of the
phase transition, are stated and proved.
Theoretical findings are validated by means of simulations, based on Monte
Carlo methods. The numerical solution of the Boltzmann-type equation
is obtained by means of the Nanbu-Babovsky’s scheme and it is compared
to the asymptotic Fokker-Planck solution, which is obtained analytically in
the quasi-invariant interaction regime.
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Chapter 1

Introduction

The goal of this master thesis is to study phase transition in vehicular
traffic with a Boltzmann-type kinetic approach. Phase transition naturally
emerges from the derivation of macroscopic quantities as a consequence of
microscopic interaction rules. No ansatz is needed, contrary to macroscopic
models.

In the first two sections of this introductory chapter, the background and
the state of the art on the topics relevant for the thesis are respectively out-
lined. Then, the original contributions of the dissertation are summarized.
Finally, the thesis structure is presented.

1.1 Background

Kinetic modeling of interacting multi-agent systems has its roots in statis-
tical physics and it is based on the Boltzmann equation, which was firstly
introduced to study rarefied gas [5; 9; 10; 11]. It allows to describe macro-
scopic properties of a gas starting from the simple mechanics of colliding
molecules. The legacy of this theory is massive: the emergence of a variety
of collective phenomena - for instance in traffic, wealth distribution, finan-
cial markets, opinion formation and swarming - can be explained starting
from the modeling of simple interactions.

All these systems consider a huge number of indistinguishable agents.
They are equipped with an attribute, which can be their speed in the case
of vehicular traffic or their wealth for economic systems describing wealth
distribution. Once each agent binary interacts with other agents or with
an external background, its attribute changes according to an interaction
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rule. Interaction rules represent the core of kinetic models and contain the
physics of the system. They are embedded in the Boltzmann-type equation
[30], which determines the dynamics of the system and therefore, macro-
scopic quantities and their evolution are derived.
The Boltzmann-type equation is usually extremely complex and solving it
analytically turns out to be difficult. Therefore, referring to the grazing
collisions regime [49], the quasi-invariant interaction regime is considered.
Analogously to statistical mechanics where in this limit collisions between
gas molecules are mainly tangential and so, the momentum transfer is small
[49], microscopic states of agents result to be weakly modified by interac-
tions. The Boltzmann-type integro-differential equation is approximated by
a Fokker-Planck partial differential equation (PDE), which can be solved an-
alytically. For complex systems modeling, this regime was first investigated
in the context of a market economy [12] and then it has been adopted for
problems such as opinion [42] and traffic [46; 47] modeling.

On the one hand, the complexity of the system should be contained in
the interaction rules, in order to preserve the physics and to realistically
describe the dynamics. On the other hand, it should be possible to devise
efficient numerical methods, which allow to confirm theoretical findings. In
order to solve numerically the Boltzmann equation, a splitting approach
and Monte Carlo (MC) procedures are usually adopted [29; 30]. Direct
Simulation Monte Carlo (DSMC) methods, such as Nanbu-Babovsky’s and
Bird’s schemes, are more computationally convenient than deterministic ap-
proaches but the accurateness of their results is worse and their convergence
is slower [29].
If the variation of the Knudsen number is large, DSMC methods are not
suited to deal with the problem so, time relaxed MC methods are used.
Finally, in order to study the impact of uncertainty in complex systems,
Uncertainty Quantification (UQ) methods are employed [13; 44; 47; 51].

1.2 State of the art

Among the several applications of the kinetic approach, traffic modeling is
gaining importance in order to complement phenomenological procedures
with an exhaustive description of the unsteady dynamics of traffic. The
mesoscopic approach has been adopted since the sixties and it has revealed
its potentialities compared to the traditional macroscopic and microscopic
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1 – Introduction

strategies [32].

This thesis is based on three recently published papers [45; 46; 47], which
investigate the introduction of autonomous vehicles as a tool to mitigate
road risk.
The goal of [46] is to develop a hierarchical description of traffic: after the
homogeneous case is extensively studied, hydrodynamic models are derived
from the inhomogeneous Boltzmann-type kinetic equation. First, traffic
modeling in absence of autonomous vehicles is investigated. Binary interac-
tions are based on the follow-the-leader approach [18]: they are anisotropic,
so the leading vehicle does not change its speed while the rear vehicle does.
For small densities, the rear vehicle tends to the maximum allowed speed.
When the density increases, it tends to a fraction of the speed of the leading
vehicle and this fraction is given by a decreasing function of the traffic den-
sity. These interaction rules, which also contain a stochastic part that mod-
els the diffusive behavior, are embedded in the homogeneous Boltzmann-
type kinetic equation. Therefore, it is possible to derive the asymptotic
speed distribution, which is conceptually analogous to the Maxwellian for
rarefied gases. It turns out to be a beta probability density function consis-
tently with experimental data [27]. The mean speed at equilibrium is also
obtained and thus speed and fundamental diagrams. In order to derive these
macroscopic quantities, the quasi-invariant interaction regime is adopted.

The introduction of a fraction of autonomous vehicles reveals its poten-
tial to decrease the variance of the asymptotic speed distribution [45; 46]
and consequently road risk. Thanks to their automatic technologies, these
driver-assist cars can make the speed variability within the stream of ve-
hicles decrease. Since speed variability is one of the major causes of car
accidents [50], autonomous vehicles can be employed as a tool to mitigate
road risk.

In order to deal with this issue, an approach based on Model Predictive
Control (MPC) [8] is used. It has been firstly introduced in the context
of traffic [45] being inspired by an analogous approach, which was devised
to deal with opinion consensus [1]. The interpenetration of different ap-
plication fields is evident. A receding horizon strategy is adopted in order
to minimize a binary cost functional, aiming at reducing road risk. The
problem is solved by Pontryagin’s maximum principle [34] and feedback
controlled microscopic rules are obtained. Finally, these rules are embed-
ded in the homogeneous Boltzmann-type equation. The innovation of this
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strategy relies on the fact that the control dynamics have not to be or-
dered a priori or a posteriori, but naturally emerge from the prescribed
microscopic interactions. Even though the control obtained with MPC is
suboptimal compared to the theoretical optimal one, the consistency of this
approximation is guaranteed for multi-agent kinetic systems [22] and it is a
competitive technique due to its lower computational cost.

These traffic models are further extended in [47], where Uncertainty
Quantification (UQ) is performed. An uncertain parameter z, which mod-
els different classes of vehicles, is introduced in the interaction rules; conse-
quently, the Boltzmann-type equation becomes stochastic. Different prob-
ability distributions for z are considered and the mean (with respect to z)
asymptotic speed distribution is obtained. This analysis allows to explain
two macroscopic features that are experimentally observed: the macroscopic
scattering of the fundamental diagram and the multi-modal behavior of the
asymptotic speed distribution. Moreover, this procedure is innovative and
simpler than the traditional approach, which would require an evolution
equation for each class of vehicles.

In the second part of the paper, the controlled case is investigated. The
strategy is analogous to the one used in [46]. However, with a determinis-
tic control, a Boltzmann-type equation for non-Maxwellian-like particles is
obtained and more demanding procedures are required. Both the control
strategies considered, stochastic and deterministic, manage to reduce the
scattering of the fundamental diagram and therefore, road risk.

Theoretical findings are numerically tested by using Stochastic Colloca-
tion and Stochastic Galerkin-generalized Polynomial Chaos methods [13;
51]. On the one hand, these UQ studies pave the way for the development
of these techniques in traffic modeling. On the other hand, they give an in-
sight into the research topic of numerical methods for UQ, which is having
a great boost in recent times.

1.3 Innovative findings

The original contributions of this dissertation are manifold. In this section,
they are briefly summarized.
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1 – Introduction

Phase transition in the uncontrolled traffic model

The novelty of this dissertation, compared to the kinetic traffic model of
[46], amounts to introduce a nonlinearity in the interaction rules. The
consequence is that the evolution of the mean speed is ruled by a nonlin-
ear differential equation, which is studied by linear and nonlinear stability
analysis. A bifurcation diagram is derived: there are two fixed points, one
stable and one unstable, for all values of density except for a critical value ρc
at which the two fixed points merge. This critical density ρc of the system
marks the sharp transition from the free to the congested flow regime. The
presence of the phase transition is also evident by deriving the asymptotic
speed distribution, which is fundamental to highlight traffic features related
to road risk. For densities greater than the critical density ρc, the system
is in the congested phase and the asymptotic speed distribution is a beta
probability density function. When the density is smaller than or equal to
the threshold i.e. ρc, the asymptotic speed distribution suddenly shrinks to
a Dirac delta centered at the maximum allowed speed.

By using the Nanbu-Babovsky’s scheme for Maxwellian-like particles,
theoretical results are numerically tested. The agreement is strong: as
theoretically expected, the numerical equilibrium solution of the Boltzmann-
type equation converges toward the solution of the Fokker-Planck PDE,
which is obtained analytically in the quasi-invariant interaction regime.
These simulations give also an insight on the convergence to equilibrium,
which is theoretically studied: it is exponential in time for all densities
except the critical, for which it is polynomial.

Phase transition in the controlled traffic model

A fraction of autonomous vehicles is taken into account in the model by
introducing a control parameter in the nonlinear interaction rules. Two
control strategies, which lead to different results, are considered: the binary
variance control and the desired speed control [46]. Concerning the former,
if the analysis was just limited to speed and fundamental diagrams, no dif-
ference would be revealed compared to the uncontrolled case. Indeed, the
mean speed at equilibrium is not affected by the introduction of the binary
variance control. Instead, the study of the asymptotic speed distribution
shows that, even though the phase transition from a beta distribution to
a Dirac delta is preserved, the parameters which characterize the beta dis-
tribution are different from the uncontrolled case. In the controlled case,
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the parameters also depend on the fraction of autonomous vehicles in the
system. Moreover, it is proved that in the congested flow regime, the vari-
ance of the asymptotic speed distribution decreases once the binary variance
control is introduced. Coherently with the literature [46], this strategy can
effectively reduce road risk; however, the novelty is that a range of den-
sities for which the variance is identically equal to 0 is identified and it
corresponds to the free flow regime.

On the other hand, the phase transition is not preserved by the desired
speed control and there exist some density values for which the variance of
the asymptotic speed distribution does not decrease compared to the uncon-
trolled case. Anyway, as in previous works [46], a specific regime for which
the variance decreases by introducing the desired speed control, is identi-
fied: the so-called infinite effective penetration rate limit. The fact that the
phase transition is not preserved by the desired speed control strategy can
be a practical benefit: the discontinuity in the traffic could be canceled by
introducing autonomous vehicles equipped with this control strategy.

Numerical tests are performed with the Nanbu-Babovsky’s scheme and
as in the uncontrolled case, simulation results fit theoretical findings.

Phase transition under uncertain vehicle interactions

An uncertain parameter z, which models different classes of vehicles, is
introduced in the nonlinear interaction rules by referring to [44; 47]. Several
probability distributions for z are considered and mean (with respect to z)
macroscopic quantities are obtained. Concerning the analysis of the stability
of the fixed points for the evolution equation of the mean speed, two general
results, one for discrete and another for continuous uncertain parameters,
are stated and proved. The unique stable fixed point of the system at
equilibrium turns out to be equivalent to the mean with respect to z of the
stable fixed points which are derived in the deterministic case i.e. for fixed
uncertain parameter.

If the uncertain parameter is discrete, the phase transition is preserved
by the introduction of the uncertainty and a general result for the expression
of the critical density is derived. The critical point of the system coincides
with the one corresponding to the type of vehicles with the biggest z. An
analogous result is derived for an uncertain parameter which is uniformly
distributed in a bounded interval. On the other hand, the phase transition
is not preserved if the uncertain parameter follows a Gamma distribution.
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1 – Introduction

As in deterministic cases, the quasi-invariant interaction regime is con-
sidered in order to derive mean equilibrium speed distributions. If possible,
they are computed analytically, otherwise quadrature formulae are used.
The piecewise trait of the mean speed at equilibrium is reflected in the
shape of the mean equilibrium speed distribution. For instance, in the case
of a discrete uncertain parameter which can assume two values with given
probabilities, two regions are distinguished in the congested flow regime. In
one of these density intervals, the mean equilibrium speed distribution is a
linear combination of two beta distributions, while in the other interval it
is a linear combination of a beta and a Dirac delta distribution. In the free
flow regime, it is a Dirac delta.
Coherently with literature [47] and with experimental data [27], multi-modal
mean equilibrium speed distributions are obtained, due to the introduction
of the uncertain parameter. However, because of the nonlinearity in the
interaction rules, density intervals in which the behavior of the mean equi-
librium speed distribution is different are distinguished.

In order to perform numerical tests, a Monte Carlo method is employed
for UQ. The numerical solution of the Boltzmann-type equation averaged
with respect to z is compared to the mean Fokker-Planck solution obtained
in the quasi-invariant interaction regime. Due to the Monte Carlo trait of
the algorithm employed, the expected convergence is O(M− 1

2 ), where M
is the sample size and fluctuations are present in the solution statistics.
L2-error is computed as a function of the uncertain parameter’s sample size
M : it represents the numerical error made with respect to the mean Fokker-
Planck theoretical solution and as expected, it is O(M− 1

2 ). The other two
contributions to the numerical error, one related to the Nanbu-Babovsky’s
scheme and the other to the quasi-invariant interaction regime, are also
analyzed.

1.4 Thesis structure

The thesis is organized as follows. After this introductory chapter, chapter
2, Toolbox, covers the theoretical (section 2.1) and numerical (section 2.2)
topics which are fundamental for the dissertation. In the final section 2.3,
a classical example of application is illustrated.

Chapter 3, Kinetic traffic modeling, examines in depth the traffic model
which is used in the literature and which constitutes the basis for subsequent
studies. All the features and the tools which are employed in [45; 46], are
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deepened and explained.
Chapters 4 and 5, Phase transition in kinetic traffic modeling and Phase

transition under uncertain vehicle interactions, represent the core of the
thesis. In the former, nonlinear interaction rules are introduced in the
traffic model and the emergence of the phase transition is studied; both
the case with and without autonomous vehicles are considered. Chapter
5 investigates phase transition in an uncontrolled model with an uncertain
parameter.

Each of chapters 3, 4 and 5 has a section Numerical tests where theoretical
findings previously obtained are validated by means of simulations, based
on Monte Carlo sampling.
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Chapter 2

Toolbox

Kinetic modeling of interacting multi-agent systems has its roots in sta-
tistical physics and is based on the Boltzmann equation, which was firstly
introduced to study rarefied gas [5; 9; 10; 11].

In this chapter, this fundamental equation is presented together with
its main properties. Then, the corresponding Boltzmann-type equation for
binary interaction models is derived. The second section is devoted to nu-
merical methods for kinetic equations; in particular, the Nanbu-Babovsky’s
scheme, which is Monte Carlo based, is examined in depth. In the last
section, a classical example of application, the Kac model, is studied both
theoretically and numerically.

2.1 Kinetic equations

2.1.1 The Boltzmann equation

In 1872, Ludwig Boltzmann wrote a paper where he stated and proved
the so-called Boltzmann equation. This equation aims at describing non-
equilibrium systems. It represents the basis for the kinetic theory of gases
and it can also be employed in other fields such as neutron transport, gas
mixtures, polyatomic gases [9].

The Boltzmann equation allows to describe macroscopic properties of a
gas starting from the simple mechanics of colliding molecules. As it will be
evident from this dissertation, the legacy of this equation is massive: since
the early 2000s, it represents the basis for applied studies which investigate
multi-agent systems. The emergence of a variety of collective phenomena -
for instance in traffic, wealth distribution, financial markets, opinion forma-
tion and swarming - can be explained starting from the modeling of simple
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interactions [30].
In the following, a derivation of the Boltzmann equation for a monoatomic

rarefied gas will be sketched and its properties outlined. We recall that rar-
efied gases are characterized by very low density and so, by large mean free
path. Since the Knudsen number ε is defined as

ε = λ

D
= mean free path of a molecule

characteristic dimension of the flow , (2.1)

ε ∼ 1 or higher for rarefied gases.

Let us consider a gas which is constituted byN indistinguishable molecules
that elastically interact in the three dimensional phase space. The molecules
are considered as hard spheres with diameter equal to σ and mass m [11].
The simplicity of the hard sphere model is justified since we are interested
in the limit N → +∞ and in this limit, there is not dependence on the kind
of interaction between molecules [11]. It is also assumed that interactions
are binary; higher order interactions are neglected [11]. If ~v1 and ~v2 are the
velocities of two interacting particles, the following conservation rules hold
[11]:

~v1 + ~v2 = ~v′1 + ~v′2

|~v1|2 + |~v2|2 = |~v′1|2 + |~v′2|2 ,
(2.2)

where ′ denotes the velocities after the collision. Therefore,

~v′1 = ~v1 − [(~v1 − ~v2) · ~n]~n
~v′2 = ~v2 + [(~v1 − ~v2) · ~n]~n ,

(2.3)

where ~n is the unit vector ~n = (~x1− ~x2)/|~x1− ~x2| [11]. We observe that [5]

~v′1 · ~n = ~v2 · ~n
~v′2 · ~n = ~v1 · ~n .

This means that if the binary interaction occurs between two particles at a
collision angle ~n, then their velocity components which are parallel to ~n are
exchanged while their velocity components which are orthogonal to ~n are
unchanged by the collision [5].

The so-called Boltzmann-Grad limit [11] is considered i.e. N → +∞,
σ → 0 such that Nσ2 is finite. If a 1 cm3 box is considered in standard
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2 – Toolbox

conditions, then N ' 1020, σ ' 10−8 cm and Nσ2 ' 104 cm2 [11].

The starting point of the derivation of the Boltzmann equation is the
Liouville equation [11]. It is defined in terms of PN(t, ~z) with ~z ∈ ΩN×R3N ,
which represents the probability density in the 6N -dimensional phase space.
In particular, ΩN represents theN -dimensional configuration space and R3N

is the 3N -dimensional velocity space. The Liouville equation is the following
partial differential equation [11]:

∂PN
∂t

+
N∑
i=1

~vi ·
∂PN
∂~xi

= 0 (2.4)

with suited boundary conditions. Due to the fact that we are dealing with
hard spheres, PN = 0 if |~xi − ~xj| < σ, i /= j [11]. Therefore, equation (2.4)
is defined on a subset Λ of ΩN × R3N : Λ is obtained by removing from the
phase space the points for which PN = 0 [11]. We recommend [9; 11] for
detailed calculations and discussions.

The Liouville equation (2.4) is defined in terms of PN , which depends on
a number of variables which is O(N) so, it is intractable form a practical
point of view [11]. Starting from this observation, Maxwell and Boltzmann
focused on the one-particle distribution function P

(1)
N [11], which just de-

pends on seven variables. P (1)
N (t, ~x1, ~v1) represents the probability density

of finding a gas molecule at time t, in position ~x1, with velocity ~v1 [11]:

P
(1)
N (t, ~x1, ~v1) =

∫
ΩN−1×R3N−3

PN(t, ~x1, ~v1, . . . , ~xN , ~vN)d~x2d~v2 . . . d~xNd~vN ,

(2.5)
where ΩN−1 represents theN−1-dimensional configuration space and R3N−3

is the 3N − 3-dimensional velocity space.
Boltzmann wrote the equation which inherited his name by means of a

heuristic argument [11]. He stated that

∂P
(1)
N

∂t
+ ~v1 ·

∂P
(1)
N

∂~x1
= G− L (2.6)

where G and L are the gain and loss term respectively [11]. Gd~x1d~v1dt
represents the expected number of molecules which acquire a position in
[~x1, ~x1 + d~x1] and a velocity in [~v1, ~v1 + d~v1] due to a collision in the time
range [t, t + dt] [11]. Analogously, Ld~x1d~v1dt is the number of molecules
which have a position in [~x1, ~x1 + d~x1] and a velocity in [~v1, ~v1 + d~v1] and
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due to a collision in [t, t+ dt], gain position and velocity attributes outside
of the previous ranges [11]. We refer to [9; 11] for detailed calculations of G
and L, which allow to obtain the Boltzmann equation. It is fundamental to
stress that the molecular chaos assumption or Boltzmann ansatz [11] plays
a crucial role. It consists in assuming that molecules are not correlated and
therefore [11],

P
(2)
N (t, ~x1, ~v1, ~x2, ~v2) = P

(1)
N (t, ~x1, ~v1)P (1)

N (t, ~x2, ~v2) (2.7)
or

P
(2)
N (t, ~x1, ~v1, ~x1 + σ~n,~v2) = P

(1)
N (t, ~x1, ~v1)P (1)

N (t, ~x1 + σ~n,~v2)
for (~v2 − ~v1) · ~n < 0

(2.8)

where P (2)
N is the two-particle distribution function. P (2)

N (t, ~x1, ~v1, ~x2, ~v2) rep-
resents the probability density of finding two gas molecules at time t, one
in position ~x1 with velocity ~v1 and another in position ~x2 with velocity
~v2 [9; 11]. The second form of the molecular chaos assumption i.e. (2.8)
expresses well its meaning: only molecules which are about to collide are
statistical independent.
If a 1 cm3 box is considered in standard conditions, the Boltzmann-Grad
limit holds. Then, Nσ3 ' 10−4 cm3 and this quantity represents a rough
estimate of the volume occupied by N interacting particles [11]. Since the
ratio between Nσ3 and the total volume of the box is about 10−4, it is
unlikely that a collision occurs. Therefore, it is justified to consider two
interacting particles as two randomly chosen molecules and to assume their
statistical independence and that their probability density is the product of
the probability densities related to each particle.

As well as the heuristic argument, the Boltzmann equation can be directly
derived from the Liouville equation. We recommend [9; 11] for details. If
equation (2.4) is integrated with respect to the molecules labeled by 2, ...N ,
an equation which rules the evolution of P (2)

N is obtained [11]. Then, by
reworking on it, the following equation can be written [9]:

∂P
(1)
N

∂t
+ ~v1 ·

∂P
(1)
N

∂~x1
= (N − 1)σ2

∫
[P (2)
N
′ − P (2)

N ]|~V1 · ~n|d~nd~v2 (2.9)

where ~V1 = ~v1 − ~v2.
Thanks to assumption (2.7), the Boltzmann equation is derived [11]:

∂P

∂t
+ ~v · ∂P

∂~x
= Nσ2

∫
[PP ′∗ − PP∗]|~V · ~n|d~nd~v∗ (2.10)
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where ~x1 → ~x, ~v1 → ~v, ~x2 → ~x∗, ~v2 → ~v∗, P denotes the one-particle
distribution function P

(1)
N and P∗ = P

(1)
N (t, ~x∗, ~v∗).

Let us rewrite equation (2.10) with a notation that will be adopted in the
following. The one-particle distribution function is denoted by f = f(t, ~x,~v)
and the integral of the right-hand side of equation (2.10) by Q(f, f)(t, ~x,~v).
Therefore, the Boltzmann equation turns out to be the following partial
integro-differential equation [5; 30]:

∂tf(t, ~x,~v) + ~v · ∇xf(t, ~x,~v) = Q(f, f)(t, ~x,~v) (2.11)

where

Q(f, f)(t, ~x,~v) = α
∫
R3×S+

(f ′f ′∗ − ff∗)|~n · (~v − ~v∗)|d~v∗d~n . (2.12)

Q(f, f)(t, ~x,~v) is the so-called collision operator [5] and B(~n · (~v − ~v∗)) =
|~n · (~v − ~v∗)| is the collision frequency [5]; α is a constant.
The Boltzmann equation describes the evolution of the probability density of
molecules f(t, ~x,~v) for a rarefied gas. This quantity changes in two different
ways, by transport or by collision. The first phenomenon is expressed by
the second term in the left-hand side of (2.11): if a given particle does not
collide, its velocity is unchanged while its position changes and we have
(t0, ~x,~v) → (t + t0, ~x + (t − t0)~v,~v) [5]. Instead, the collision phenomenon
is described by the collision kernel Q(f, f): velocities change according to
microscopic interactions between molecules.

2.1.2 Collision invariants

Let us drop the notation for vectors and let us focus on the homogeneous
Boltzmann equation

∂tf(t, v) = Q(f, f)(t, v) . (2.13)

In order to consider some properties of the collision kernel Q(f, f), we focus
on functionals defined as [5]

Φ(f) ≡
∫
R3
φ(v)f(v)dv (2.14)

and such that ∫
R3
φ(v)Q(f, f)dv = 0 . (2.15)
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It can be proved [5] that (2.15) holds if

φ(v) + φ(v∗) = φ(v′) + φ(v∗′) (2.16)

and the function φ(·) which satisfies (2.16) is called collision invariant [5]. In
this case, the functional Φ(·) in (2.14) is constant in time for every function
f which solves the Boltzmann equation.

It can also be proved [5] that if φ ∈ C2 and (2.16) holds, then we have

φ(v) = a+ b · v + c|v|2 with a, c ∈ R and b ∈ R3 . (2.17)

Significant examples of collision invariants are φ(v) = 1, φ(v) = ei · v with
i = 1,2,3 and ei unit vectors, φ(v) = |v|2/2. Thanks to them, we obtain the
conservation of mass, of momentum and of energy respectively [5].

2.1.3 Maxwellian distribution

Let us consider the left-hand side of (2.15) with φ(v) = log f(v). It can be
proved [5] that ∫

R3
log fQ(f, f)dv ≤ 0 (2.18)

and (2.18) is called Boltzmann inequality [5]. The equality corresponds to
the case in which φ(v) = log f(v) is a collision invariant. Therefore, due to
(2.17), we have that the equality holds if and only if [5]

f(v) = exp(a+b·v+c|v|2) = A exp(−β|v−v0|2) with A, β > 0 and v0 ∈ R3.
(2.19)

Equation (2.19) defines the so-called Maxwellian distributions i.e. the solu-
tions f of the Boltzmann equation which lead to Q(f, f) = 0 [5].

It is worth noticing that starting from the Boltzmann equation, it is pos-
sible to derive the H-theorem, which represents the first analytical proof of
the second principle of thermodynamics and the macroscopic balance equa-
tions, which constitute the basis for hydrodynamic models. We recommend
[5; 9; 10; 11] for examining in depth these topics.

2.1.4 Binary interaction models

In previous subsections, the Boltzmann equation and its main properties
are outlined. However, the aim of this dissertation is to focus on vehicular
traffic, which is a multi-agent system. In this subsection, a model, which
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constitutes the basis for the kinetic traffic model that will be employed in the
following, is examined in depth. The starting point is modeling interaction
rules and then, the binary interaction model is constructed step-by-step.
The derivation of the model is grounded on probability theory and it high-
lights the statistical trait of the kinetic description.

Let us focus on a one dimensional system therefore agents are equipped
with scalar attributes, which could be speed, opinion or wealth depending
on the system studied. Due to the fact that only binary interactions are
considered, the following interaction rules can be written [30]:

v′ = p1v + q1w

w′ = p2v + q2w ,
(2.20)

where (v, w) and (v′, w′) are the agents’ attributes before and after the
interaction respectively. The parameters p1, p2, q1, q2 > 0 can be either
constants or random variables; in the following, we will consider them as
random variables. We assume v, v′, w, w′ ∈ V ⊆ R, which is the so-called
physical admissibility condition. Parameters in the interaction rules (2.20)
have to be chosen such that the physical admissibility condition is guaran-
teed for post-interaction attributes i.e. v′, w′. This requirement represents
a difference compared to the context of rarefied gases, where molecules’
speeds are unconstrained i.e. v ∈ R and it will become clearer in chapter 3,
where traffic modeling is investigated.

We would like to rephrase interaction rules (2.20) in terms of random pro-
cesses in order to derive the associated Boltzmann-type equation. There-
fore, let us introduce the random variable X(t) with probability density
f = f(t, v): it allows to describe the number of agents with attribute v at
time t [30]. If X(t) ∈ V,

P(X ∈ A) =
∫
A
f(t, v)dv ∀A ⊆ V . (2.21)

where A is a measurable set.
Analogously, another random variable Y (t) with the same density f(t, v) is
introduced. Interaction rules (2.20) can be rewritten as [30]

X ′(t) = p1X(t) + q1Y (t)
Y ′(t) = p2X(t) + q2Y (t) .

(2.22)
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The variation of X(t) and Y (t) is due to binary interactions between agents.
In a time interval ∆t << 1, two agents may interact: if so, their microscopic
states change according to the interaction rules. Therefore, we can write

X(t+ ∆t) =
 X ′(t) if interaction occurs

X(t) else .

Let us assume that the interaction probability is proportional to the time
interval ∆t and that the proportionality constant is equal to µ, the so-called
interaction kernel [30]. In general, µ = µ(v, w) i.e. it is a function of the
attributes of interacting agents and it is analogous to the collision kernel in
the framework of rarefied gases. Then, a random variable T , which models
the probability with which interactions occur, is defined as [30]

T ∼ Bernoulli(µ∆t)

so,

P(T = 1) = µ∆t
P(T = 0) = 1− µ∆t .

The condition µ∆t ≤ 1 holds since we will be interested in the limit
∆t→ 0+.
Then, X(t+ ∆t) can be rewritten as

X(t+ ∆t) = TX ′(t) + (1− T )X(t) . (2.23)

Analogously, we have:

Y (t+ ∆t) = TY ′(t) + (1− T )Y (t) . (2.24)

If φ = φ(v) is a generic observable quantity, equations (2.23) and (2.24) can
be generalized as

φ
(
X(t+ ∆t)

)
= φ

(
TX ′(t) + (1− T )X(t)

)
(2.25)

and
φ
(
Y (t+ ∆t)

)
= φ

(
TY ′(t) + (1− T )Y (t)

)
. (2.26)

Moreover, the average variation of φ(v) due to interactions (2.22) can be
obtained. In particular we are interested in

〈φ(X(t+ ∆t)) + φ(Y (t+ ∆t))〉 − 〈φ(X(t)) + φ(Y (t))〉 ,
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where the average 〈·〉 is performed with respect to all random variables i.e.
X, Y, T, p1, p2, q1, q2.
By referring to (2.23) - (2.24), we have that

〈φ(X(t+ ∆t))〉 = 〈µ∆tφ(X ′(t))〉+ 〈(1− µ∆t)φ(X(t))〉
〈φ(Y (t+ ∆t))〉 = 〈µ∆tφ(Y ′(t))〉+ 〈(1− µ∆t)φ(Y (t))〉

(2.27)

where the average with respect to T has been calculated. Therefore, we
obtain
〈φ(X(t+ ∆t)) + φ(Y (t+ ∆t))〉 = 〈µ∆tφ(X ′(t))〉+ 〈(1− µ∆t)φ(X(t))〉+
+ 〈µ∆tφ(Y ′(t))〉+ 〈(1− µ∆t)φ(Y (t))〉 ⇐⇒
⇐⇒ 〈φ(X(t+ ∆t))− φ(X(t))〉+ 〈φ(Y (t+ ∆t))− φ(Y (t))〉 =

= ∆t
[
〈µφ(X ′(t))〉 − 〈µφ(X(t))〉+ 〈µφ(Y ′(t))〉 − 〈µφ(Y (t))〉

]
.

(2.28)

Equation (2.28) can be divided by ∆t and the limit ∆t → 0+ can be con-
sidered:

lim
∆t→0+

〈φ(X(t+ ∆t))− φ(X(t))〉+ 〈φ(Y (t+ ∆t))− φ(Y (t))〉
∆t =

= 〈µφ(X ′(t))〉 − 〈µφ(X(t))〉+ 〈µφ(Y ′(t))〉 − 〈µφ(Y (t))〉
(2.29)

and this is equivalent to
d

dt
〈φ(X(t)) + φ(Y (t))〉 = 〈µφ(X ′(t))〉 − 〈µφ(X(t))〉+

+ 〈µφ(Y ′(t))〉 − 〈µφ(Y (t))〉 .
(2.30)

By assumption, the two random processes X(t) and Y (t) are independent
therefore their joint probability distribution is

π(t, v, w) = f(t, v)f(t, w) .

This assumption is equivalent to the Boltzmann ansatz, previously intro-
duced in the context of the kinetic theory of rarefied gases and its not
completely grounded on the physics of the problem when dealing with multi-
agent systems. However, it allows to obtain an equation in closed form and
therefore, it represents a compromise between the desire of most realistically
describe the dynamics and that of have insight into the process thanks to
an approximate mathematical model [30].
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Consequently, since X ′(t) and Y ′(t) are linear combinations of X(t) and
Y (t) - see relations (2.22), they are independent random variables as well
and so, we have

〈φ(X ′(t))〉X ′ =〈
∫

V

∫
V
φ(v′)π(t, v, w)dvdw〉p1,q1 =

=〈
∫

V

∫
V
φ(v′)f(t, v)f(t, w)dvdw〉p1,q1

〈φ(Y ′(t))〉Y ′ =〈
∫

V

∫
V
φ(w′)π(t, v, w)dvdw〉p2,q2 =

=〈
∫

V

∫
V
φ(w′)f(t, v)f(t, w)dvdw〉p2,q2 .

(2.31)

Therefore, equation (2.29) becomes

d

dt

[
2
∫

V
φ(v)f(t, v)dv

]
=

= 〈
∫

V

∫
V
µ
[
φ(v′) + φ(w′)− φ(v)− φ(w)

]
f(t, v)f(t, w)dvdw〉

(2.32)

and finally
d

dt

∫
V
φ(v)f(t, v)dv =

= 1
2〈
∫

V

∫
V
µ
[
φ(v′) + φ(w′)− φ(v)− φ(w)

]
f(t, v)f(t, w)dvdw〉

(2.33)

where the average 〈·〉 in equation (2.33) is the one with respect to the
random parameters p1, p2, q1, q2.
Equation (2.33) is the weak form of the Boltzmann-type kinetic equation
for binary interaction models [30]. It holds for all possible choices of the
observable quantity φ(v).

The similarity with the Boltzmann equation is more evident if the strong
form of (2.33) is derived [30]. Let us consider: φ(·) = δ(v − ·) i.e. a Dirac
delta observable, v → v1, w → v2 and by simplicity, a constant interaction
kernel i.e. µ = 1. Then, equation (2.33) becomes

∂tf(t, v) = 1
2〈
∫

V

∫
V

[
δ(v − v′1) + δ(v − v′2)

]
f(t, v1)f(t, v2)dv1dv2〉 − f(t, v) ,

(2.34)

where the interaction rules are
v′1 = p1v1 + q1v2

v′2 = p2v1 + q2v2 .
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This equation can be also rewritten as [30]

∂tf(t, v) = Q+(f, f)(t, v)− f(t, v) , (2.35)

where Q+(f, f)(t, v) is the so-called gain operator and it is defined as

Q+(f, f)(t, v) := 1
2〈
∫

V

∫
V

[
δ(v − v′1) + δ(v − v′2)

]
f(t, v1)f(t, v2)dv1dv2〉 .

(2.36)
Therefore, the evolution in time of the density f(t, v) is due to the balance
between a gain and a loss operator.

Insight on the physical meaning of this equation can also be gained by
focusing on equation (2.33). In the left-hand side, the term ∫

V φ(v)f(t, v)dv
represents the mean of a given observable quantity φ(v). Instead, in the
right-hand side the term 1

2

[
φ(v′)+φ(w′)−φ(v)−φ(w)

]
is the mean variation

of φ(v), which occurs in a binary interaction (2.20). Consequently, equation
(2.33) claims that the variation in time of the mean of a given observable
quantity φ(v) is equal to the average of the mean variation of φ(v) due to a
binary interaction (2.20).
Remark 2.1.1. In analogy to the kinetic theory of rarefied gases, only
binary interactions have been regarded in the derivation of equation (2.33).
However, by referring to its physical meaning, it is possible to derive a
Boltzmann-type kinetic equation, which also considers interactions between
three or more agents [43]. Interaction rules can be written as

v′i = vi + I(v1, v2, . . . , vN ; p1, . . . , pN) i = 1, . . . , N ,

where I(v1, v2, ..., vN ; p1, ..., pN) is the interaction function, which depends
on the attributes of all N agents and on N random variables.
The term 1

2

[
φ(v′) + φ(w′)− φ(v)− φ(w)

]
can be written as

1
N

N∑
i=1

[
φ(v′i)− φ(vi)

]
(2.37)

and the Boltzmann ansatz becomes f(t, v1, ..., vN) = f(t, v1)...f(t, vN). There-
fore, we obtain [43]
d

dt

∫
V
φ(v)f(t, v)dv = 1

N
〈
∫

VN
µ

N∑
i=1

[
φ(v′i)− φ(vi)

]
f(t, v1)...f(t, vN)dv1...dvN〉

(2.38)
where the average 〈·〉 is considered with respect to the random variables
p1, ..., pN . �
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Remark 2.1.2. The Boltzmann-type kinetic equation (2.33) has been de-
rived in the homogeneous case. In order to obtain the corresponding het-
erogeneous equation, the following probability density has to be introduced:
f = f(t, x, v) where x ∈ S represents the space position of the agents. The
normalization condition becomes∫

S

∫
V
f(t, x, v)dvdx = 1 ∀t ≥ 0 .

The inhomogeneous Boltzmann-type kinetic equation is [46]

∂t
∫

V
φ(v)f(t, x, v)dv + ∂x

∫
V
vφ(v)f(t, x, v)dv =

= 1
2〈
∫

V

∫
V
µ
[
φ(v′) + φ(w′)− φ(v)− φ(w)

]
f(t, x, v)f(t, x, w)dvdw〉 .

This equation states that the time variation of the density function is both
due to the transport, resulting from the inhomogeneity in space and to
binary interactions between agents.
Contrary to the homogeneous case,

ρ(t, x) ≡
∫
V
f(t, x, v)dv ,

which represents the density of agents at time t in position x, is not constant
in time because of the transport in space. �

Symmetric interactions

Let us consider interaction rules (2.20) in a symmetric situation i.e. p1 =
q2 = p and p2 = q1 = q [30]. Let us also assume that p, q are fixed parameters
with p > q > 0 and µ = 1. Therefore, the Boltzmann-type kinetic equation
becomes

d

dt

∫
V
φ(v)f(t, v)dv =

∫
V

∫
V

[
φ(v′)− φ(v)

]
f(t, v)f(t, w)dvdw . (2.39)

The following initial conditions can be imposed without loss of generality
[30]: ∫

V
f0(v)dv = 1∫

V
vf0(v)dv = 0∫

V
v2f0(v)dv = 1

(2.40)

26



2 – Toolbox

where f0(v) = f(t = 0, v) is the initial density.
If φ(v) = v, an evolution equation for the first moment m(t) is obtained:

d

dt

∫
V
vf(t, v)dv︸ ︷︷ ︸

=m(t)

=
∫

V

∫
V

[
(p− 1)v + qw

]
f(t, v)f(t, w)dvdw ⇐⇒

⇐⇒ ṁ(t) = (p+ q − 1)m(t) =⇒ m(t) = m(0) exp{(p+ q − 1)t} .
(2.41)

Due to the fact that m(0) = 0 - see equation (2.40), m(t) = 0 ∀t and so,
the first moment is conserved. This is not the case of the second moment
E(t). Indeed, if we set φ(v) = v2, we obtain

d

dt

∫
V
v2f(t, v)dv︸ ︷︷ ︸

=E(t)

=
∫

V

∫
V

[
(p2 − 1)v2 + q2w2 + 2pqvw

]
f(t, v)f(t, w)dvdw ⇐⇒

⇐⇒ Ė(t) = (p2 + q2 − 1)E(t) + 2pqm2(t)
=⇒ E(t) = E(0)︸ ︷︷ ︸

=1

exp{(p2 + q2 − 1)t} = exp{(p2 + q2 − 1)t} .

(2.42)

Therefore, E(t) is conserved if and only if p2 + q2 − 1 = 0 otherwise it can
grow or decrease exponentially, thus highlighting the variety of behaviors
depending on the choice of the fixed parameters p, q.

Anyway, the main goal is to obtain the evolution of the distribution
f(t, v). In particular, its behavior at equilibrium allows us to make com-
parison with experimental data and state whether the model is suited to
describe the system. Two main strategies are usually employed to tackle
this problem. The first relies on self-similarity [30]: the solution of (2.39)
relaxes at equilibrium towards the so-called self-similar profile, which is as-
sociated to different initial conditions. Practically, the following solution is
introduced [30]:

g(t, v) :=
√
E(t)f

(
t, v

√
E(t)

)
,

which is still a probability density and has a conserved second moment.
The other approach is based on the so-called grazing collisions regime, which
was deeply investigated by Cedric Villani in the classical kinetic theory of
rarefied gases [49]. In this context, it consists in considering p ' 1 and q ' 0
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that means a regime in which the agents’ attributes are weakly modified by
the interactions [30]. This limit will be examined in depth in section 3.6,
where it will allow to obtain the asymptotic solution of the Boltzmann-type
kinetic equation.

2.2 Monte Carlo methods for kinetic equations

In the previous section, the Boltzmann-type equation for multi-agent sys-
tems has been derived. It will be the basis for our subsequent studies, which
will focus on traffic modeling. The theoretical analysis will be supported by
numerical tests, which allow to confirm theoretical findings.

Equation (2.35) is an integro-differential equation, which is difficult to
solve numerically because of the curse of dimensionality and its nonlinear
trait. A first idea could be to tackle this equation by relying on quadrature
formulae [3; 39; 48]. If the density function f(t, v) depends on N parame-
ters such as grid points, a quadrature formula based on this set of points is
employed. Consequently, the computational cost is O(Nα) with α ≥ 2 for
each time step [29]. A Monte Carlo approach permits to consistently im-
prove this high cost, which becomes of the order of the number of particles
[29]. Moreover, it also allows to preserve most of the physical properties of
the system and it does not impose artificial constraints in the velocity space
[29]. However, due to their statistical character, Monte Carlo procedures
lead to results with statistical fluctuations and they have lower accuracy
than deterministic approaches [29; 30].

The first Monte Carlo based methods are the Direct Simulation Monte
Carlo (DSMC), in particular the Bird’s and the Nanbu-Babovsky’s scheme
[29; 30]. They consider a finite number of particles with given initial ve-
locities. As time evolves, in each time step each of them may collide with
another molecule, which is randomly selected, thus changing its velocity.
Therefore, a probabilistic approach is employed and it is perfectly suited
to the kinetic framework, which is based on a statistical description of the
system.

In the next subsection, the Nanbu-Babovsky’s scheme is examined in
depth since it will be employed in chapters 3 and 4. This approach is
more suited to deal with homogeneous problems while the Bird’s scheme is
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generally employed in inhomogeneous situations. If the Boltzamnn equation
has the transport term, a splitting approach is adopted [29; 30]. First, the
corresponding homogeneous equation is solved by using DSMC methods
(interaction step) then, the output of this first step is used as an input of
the transport step, where the equation to be solved does not include the
collision term. This allows to capture both the transport and the collision
dynamics since each of them is solved in its associated temporal scale.
If the variation of the Knudsen number is large, DSMC methods are not
effective to deal with the problem so, Time Relaxed Monte Carlo (TRMC)
methods are used. We recommend [29; 30] for the Bird’s, inhomogeneous
and TRMC methods.

2.2.1 The Nanbu-Babovsky’s scheme

In following chapters, the Nanbu-Babovsky’s scheme will be used in order to
solve numerically the Boltzmann-type kinetic equation for Maxwellian-like
particles i.e. with constant collision kernel. Let us explain this simulation
method in the more general context of the Boltzmann equation for constant
collision kernels.

The equation we would like to solve is the following:

∂tf(t, v) = 1
ε

[
P (f, f)−Kf(t, v)

]
, (2.43)

with the initial condition f(t = 0, v) = f0(v). P (f, f) := Q+(f, f)(t, v) is
the gain operator, K /= 0 is a normalization constant i.e. K = ∫

f(t, v)dv
and the parameter ε > 0 is the Knudsen number, which is defined in (2.1).
Let us consider the following time discretisation. The final time is T and
∆t represents the time step therefore, tn = n∆t with n = 0,1, ..., NT . If fn
is an approximation of f(tn, v) and the forward Euler scheme is employed,
equation (2.43) implies [29]

fn+1 =
(

1− K∆t
ε

)
fn + K∆t

ε

P (fn, fn)
K

. (2.44)

Given the condition K∆t
ε ≤ 1, fn+1 is a convex combination of fn and

P (fn,fn)
K . At every time step, a particle collides with probability K∆t

ε and it
does not with probability 1− K∆t

ε .
By referring to (2.44), the Nanbu’s scheme is stated in algorithm 1.
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Algorithm 1: The Nanbu’s scheme

Initialize
Sample particles’ initial speeds from the initial distribution f0(v):
{v0

1, v
0
2, ..., v

0
N}

For n = 1, ..., NT

for i = 1, ..., N
with probability 1−K∆t/ε:

vn+1
i ← vn

i

with probability K∆t/ε:
select a random particle j
compute v′i with the interaction rules of the model considering i and j
as interacting particles
vn+1

i ← v′i

Return the numerical distribution fN (t, v) = 1
N

∑N
i=1 δ(v − vi(t)) by using a

suited histogram

We observe that in algorithm 1, energy is not conserved in each inter-
action. Indeed, if EFIN is the post-collision energy of the interacting pair
(i, j) and E0 is its pre-collision energy, we have

EFIN = m

2 (v′i2 + v2
j ) /= E0 = m

2 (v2
i + v2

j ) .

This issue was tackled by Babovsky, who proposed the conservative scheme
of algorithm 2 (p. 31). It is based on the following observation. Let us
introduce the random variable X, which describes the number of colliding
particles in the time step ∆t. Due to the probabilistic interpretation of
equation (2.44), we have E[X] = NK∆t/ε. Consequently, the expected
number of interacting pairs is Nc = NK∆t/(2ε).
In algorithm 2, the function Sround(x) is employed. It is a stochastic integer
rounding function and it defined as

Sround(x) =
 bxc+ 1 with probability x− bxc

bxc with probability bxc+ 1− x .

In [4], it is proved that numerical results which are obtained with the
Nanbu’s and the Nanbu-Babovsky’s schemes, converge to solutions of the
Boltzmann equation. This holds if some criteria - the uniqueness and reg-
ularity of the solution on the time interval considered, a condition on the
starting measure, another on the collision kernel, a large enough number
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Algorithm 2: The Nanbu-Babovsky’s scheme

Initialize
Sample particles’ initial speeds from the initial distribution f0(v):
{v0

1, v
0
2, ..., v

0
N}

For n = 1, ..., NT

introduce NC = Sround(KN∆t/(2ε))
select NC pairs of interacting particles uniformly among all

(N
2
)
pairs

for each interacting pair (i, j)
vn+1

i ← v′i
vn+1

j ← v′j

for all particles which are not part of the NC interacting pairs
vn+1

i ← vn
i

Return the numerical distribution fN (t, v) = 1
N

∑N
i=1 δ(v − vi(t)) by using a

suited histogram

of particles, a sufficient small time step - are satisfied. This issue can be
examined in depth by referring to [4].

Algorithms 1 and 2 hold for Maxwellian molecules and they can be gen-
eralized to non-constant collision kernels. We recommend [29; 30] for their
discussions.

2.2.2 Accuracy of Monte Carlo methods

In the previous subsection, Monte Carlo methods which allow to solve the
Boltzmann integro-differential equation are presented. They are easy to
implement and they are less refined from a mathematical point of view
than other numerical methods. They are also extremely powerful in terms
of computational cost but as we have already mentioned, they have lower
accuracy than deterministic approaches. In this subsection, their accuracy
will be investigated in the general framework of Monte Carlo integration
[7; 30].

Let us consider the following integral:

I[f ] =
∫ 1

0
f(x)dx , (2.45)

where f = f(x) is a Lebesgue integrable function. If X ∼ U([0,1]) i.e.
X is a random variable uniformly distributed in the interval [0,1], then
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I[f ] = E[f(X)].
Analogously, in d dimensions, we have that ~X is a random vector which is
uniformly distributed in the unit cube [0,1]d and

I[f ] = E[f( ~X)] =
∫

[0,1]d
f(~x)d~x . (2.46)

Let us consider {X1, ..., XN} where each random variable is such that
Xn ∼ U([0,1]) with n = 1, ..., N . Then, the integral (2.45) can be approxi-
mated by the average of the function f evaluated in these N points [7; 30]:

IN [f ] = 1
N

N∑
n=1

f(Xn) . (2.47)

We observe that {X1, ..., XN} are independent and identically distributed
(i.i.d) and

E
[
IN [f ]

]
= I[f ] . (2.48)

Therefore, by the Strong Law of Large Numbers [15], we have

P
(

lim
N→+∞

IN [f ] = I[f ]
)

= 1 , (2.49)

which states that the empirical approximation IN [f ] converges almost surely
to I[f ].
Moreover, according to the Central Limit Theorem [15], we obtain that

IN [f ]− I[f ]
σf/
√
N

d−→ N(0,1) , (2.50)

where N(0,1) is the standard normal distribution and σf is defined as

σf =
√∫ 1

0

(
f(x)− I[f ]

)2
dx . (2.51)

Result (2.50) is equivalently claimed by the following theorem [7; 30].

Theorem 2.2.1. Let us introduce the Monte Carlo integration error
εN [f ] := I[f ]− IN [f ].

If N is large,
εN [f ] ≈ σfN

− 1
2ν

where ν is a normal random variable i.e. ν ∼ N(0,1) and more precisely,

lim
N→+∞

P
(
a <

√
N

σf
εN < b

)
= P(a < ν < b) = 1√

2π

∫ b

a
e−

x2
2 dx .
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This theorem states that the Monte Carlo integration error is O(N− 1
2 )

with a proportionality constant that is the variance of f . Moreover, this
error is normally distributed. In the following, we prove εN [f ] = O(N− 1

2 )
[7; 30]. We recommend [15] from a complete proof of theorem 2.2.1.

Proof. Let us introduce the following random variables: Zn = f(Xn)−I[f ]
σf

where Xn are i.i.d., Xn ∼ U([0,1]) and n = 1, ..., N . Then, we have

E[Zn] = 0
E[Z2

n] = 1
E[ZnZm] = 0 if n /= m .

Moreover,

SN = 1
N

N∑
n=1

Zn = 1
N

N∑
n=1

f(Xn)− I[f ]
σf

= εN [f ]
σf

⇐⇒ εN [f ] = σfSN

(2.52)

and

E[S2
N ] = E

[ 1
N2

( N∑
n=1

Zn
)2
]

= 1
N2

{
E
[ N∑
n=1

Z2
n

]
︸ ︷︷ ︸

=N ·1

+E
[ N∑
n=1

∑
m/=n

ZnZm
]

︸ ︷︷ ︸
=0

}
= N−1 .

(2.53)

If the root mean square error (RMSE) is defined as RMSE :=
√
E[ε2N [f ]],

we obtain
RMSE =

√
E[ε2N [f ]] =

√
E[σ2

fS
2
N ] = σf√

N
,

where in the second and in the last equality, equation (2.52) and equation
(2.53) have been used respectively.

Remark 2.2.2. Theorem 2.2.1 is related to a one dimensional problem. If
a problem in d dimensions is considered - see equation (2.46), an analogous
result is obtained. The convergence rate is still O(N− 1

2 ) and the propor-
tionality constant σf [7; 30]. �

Remark 2.2.3. Identical conclusions about the accuracy are drawn if the
following integral is considered:

I[f ] =
∫

Ω
f(x)g(x)dx ,Ω ⊆ R
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where g = g(x) is a probability density function. In this case, we consider
X ∼ g(x) and therefore, I[f ] = E[f(X)].
�

Theorem 2.2.1 is a probabilistic result: the committed error can be as-
sessed within some confidence interval. If we want to obtain a maximum
error ε with confidence level c, the sample size has to be

N = ε−2σ2
fs(c) (2.54)

where
c =

∫ s(c)

−s(c)

1√
2π
e−

x2
2 dx = erf

(
s(c)√

2

)
.

Usually, σf is unknown but it can be obtained empirically. The sample
points {X1

1 , ..., X
1
N , X

2
1 , ..., X

2
N , ..., X

M
1 , ...XM

N } are considered and

I
(j)
N = 1

N

N∑
i=1

f(X(j)
i ) where j = 1, ...,M

ĪN = 1
M

M∑
j=1

I
(j)
N

ε̄N =

√√√√√ 1
M

M∑
j=1

(
I

(j)
N − ĪN

)2

σ̄f =
√
Nε̄N .

Now, let us compare the convergence rate of Monte Carlo methods with
that of deterministic methods. It is consistently improved by the former
indeed, it is O(N− 1

2 ) while grid-based methods lead to convergence rates
which are O(N−kd ), where k is the order of the method and d is the dimen-
sion [7]. By directly comparing these two accuracy rates, we have that in
high-dimension and if k/d < 1/2, Monte Carlo wins over grid-based. This
comparison is not significant if the function to be integrated is periodic,
indeed in this case k → +∞. However, in high dimensions Monte Carlo
methods are more suited to deal with these estimation problems than grid-
based methods since it is extremely unpractical to conceive a grid and the
convergence rate of MC methods does not depend on d [7].
It is worth pointing out that MC methods are global, since each point in
the sample set {X1, ..., XN} is selected over the whole domain. Instead,
grid-based methods are local [7].
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Monte Carlo methods are robust since their convergence rate just de-
pends on N . On the other hand, they are extremely slow since their rate is
O(N− 1

2 ). Two different kinds of strategies can be adopted to accelerate their
convergence. The first are the so-called variance reduction strategies [7; 30]:
they consist in reducing the proportionality constant σf in the convergence
rate. Indeed, we observe that by theorem 2.2.1, N = O(σ2

f/ε
2
N) and if σf

decreases, so does N , which measures the computational time. The second
class of strategies is the so-called quasi-Monte Carlo methods [7; 30]. In
this case, the sequence of points {X1, ..., XN}, which allows to compute the
approximation IN [f ] of the integral, is quasi-random that means points are
correlated. The convergence rate turns out to be O(N−1(logN)k) for a given
k. We suggest [7; 30] for the discussion of variance reduction strategies.

2.3 Hands-on application: the Kac model

One classical example of application is the Kac model [25; 30]. The impor-
tance of this model relies on the fact that it is analytically solvable and it
paves the way for further development of mathematical tools. Moreover,
this model gives insight on the physical phenomena of chaos propagation.

Let us consider the binary interaction model studied in section 2.1.4 with
the following interaction rules [30]:

v′ = cos θv − sin θw
w′ = sin θv + cos θw ,

(2.55)

where θ ∼ U
(
[−2π,2π]

)
i.e. θ is a random variable which is uniformly

distributed in the interval [−2π,2π].
It is evident that the post interaction speeds (v′, w′) are the result of a
rotation of the vector ~x = (v, w) by an angle θ. Therefore, the modulus of
the velocity vector ~x = (v, w) is unchanged by the interaction:

(v′)2 + v2 = (w′)2 + w2 (2.56)

and so, the conservation of energy follows [30].

Let us consider the following initial speed distribution [31]:

f0(v) ≡ f(0, v) = 2√
π
v2e−v

2
. (2.57)
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We look for a solution of the Boltzmann equation

∂tf(t, v) =
∫
R

∫ 2π

0

1
2πf(t, v cos θ−w sin θ)f(t, v sin θ+w cos θ)dwdθ−f(t, v)

(2.58)
of the kind

f(t, v) = (A+Bv2)e−C(t)v2
with A,B ∈ R . (2.59)

Then, if the conservation of mass and energy are imposed, an analytical
solution f(t, v) of the Boltzmann equation (2.58) can be obtained [31]:

f(t, v) = 1
2

[3
2
(
1− C(t)

)√
C(t) +

(
3C(t)− 1

)(
C(t)

) 3
2v2

]
e−C(t)v2

(2.60)

where
C(t) =

[
3− 2e−

√
πt/16

]−1
. (2.61)

We recommend the Appendix A.1 of [31] for a complete derivation of f(t, v).

In order to test this finding, numerical simulations are carried out. As
explained in section 2.2, the Nanbu-Babovsky’s scheme [29; 30] can be
adopted. All simulations are carried out with MATLAB®.
The following parameters are chosen:

• ε = 1, ∆t = 0.01;

• number of particles N = 105;

• speed domain [−6,6] is discretized in Nv = 101 points.

In figure 2.1 (p. 37), the initial distribution (2.57) and the one sampled
from it are plotted. In figures 2.2 - 2.4 (pp. 37-38), the theoretical speed
distribution f(t, v) defined in (2.60) is compared with the numerical solution
of the Boltzmann equation (2.58) for different final times: t = 2, 5, 10.
Distributions are plotted by using a suited histogram. By qualitatively
inspecting the plots, we can claim that if t = 10, the system has reached
equilibrium indeed there is stability and the simulation speed distribution
perfectly matches the theoretical one. In section 3.12, we will introduce
a quantitative criterion in order to outline whether the system is in its
stationary state.
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Figure 2.1: Comparison between the initial speed distribution (2.57) (theoretical) and the one
sampled from it (sampling)
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Figure 2.2: Comparison between the speed distribution (2.60) (theoretical) and the numerical
solution of the Boltzmann equation (2.58) (simulation) for t = 2
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Figure 2.3: Comparison between the speed distribution (2.60) (theoretical) and the numerical
solution of the Boltzmann equation (2.58) (simulation) for t = 5
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Figure 2.4: Comparison between the speed distribution (2.60) (theoretical) and the numerical
solution of the Boltzmann equation (2.58) (simulation) for t = 10
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Figure 2.5: Comparison between the forth moment m4TH of f(t, v) (theoretical) and m4SIM
(simulation) as a function of time. They are both defined in (2.62)

In figure 2.5, the forth moment of f(t, v) is plotted as a function of time.
It is defined as follows:

m4TH(t) ≡
Nv∑
k=1

V 4
k f(t, Vk)dv

m4SIM(t) ≡ 1
N

N∑
i=1

v4
i (t) ,

(2.62)

where TH stands for theoretical, SIM stands for simulation, Vk with
k = 1, ...Nv are the points of the discretized speed domain, dv is the speed
step of the discretized speed domain and vi(t) with i = 1, ...N are the par-
ticles’ speed which are obtained numerically at each time step. We observe
that the numerical forth moment fluctuates around theoretical values with
an error that depends on the number of agents N and the time step ∆t.
Due to the Monte Carlo trait of the Nanbu-Babovsky’s scheme, we expect
that the error is O(N− 1

2 ).
Contrary to moments of order k ≤ 3, the forth moment is not conserved in
the Kac model and it increases with time.
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Chapter 3

Kinetic traffic modeling

Since the sixties, the mesoscopic approach has been adopted to study traffic
modeling and it has revealed its potentialities compared to the traditional
macroscopic and microscopic strategies.

In this chapter, the traffic model, which represents the basis for this dis-
sertation, is explained referring to [45; 46; 47]. The main research method-
ologies which will be employed for successive studies, are examined in depth.
In more detail, after providing an overview about traffic modeling, the sub-
sequent five sections are devoted to study an uncontrolled system i.e. a
system without autonomous vehicles. Then, the controlled case is inves-
tigated in other five sections. In the penultimate section, all theoretical
findings are numerically validated. Finally, conclusions are drawn.

3.1 Vehicular traffic modeling and the kinetic approach

Among the several applications of the kinetic approach, traffic modeling
is gaining importance. Understanding vehicular traffic has social and eco-
nomic consequences: it can lead to replan urban mobility in order to con-
sider environmental and management issues. Due to its complexity, a phe-
nomenological approach is not sufficient to tackle this problem. Even though
data and experimental observations give insight into the physics of traffic,
this approach is not predictive and it does not provide an exhaustive de-
scription of the unsteady dynamics of traffic. A theoretical strategy, which
relies on mathematical modeling, is required [32].

Several approaches can be adopted in order to study vehicular traffic.
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They are characterized by different scales of the representation and differ-
ent approximations. The microscopic approach consists in considering the
detailed dynamics: a set of second-order differential equations is considered
and each of them is associated to each agent [32]. Therefore, as the number
of agents increases, so does the number of motion equations thus making
this approach not competitive from a computational point of view and dif-
ficult to handle analytically.

In order to overcome these difficulties, the macroscopic approach can be
employed: it does not trace each agent but it considers the evolution of
macroscopic quantities of the system such as the traffic density and the
traffic flux [32]. This approach relies on the continuum hypothesis, which
assumes the Knudsen number being much smaller than 1: ε << 1 [32].
Due to the fact that this parameter is defined as the ratio between the
mean free path of an agent and the characteristic dimension of the flow,
it is equivalent to assume that the latter is much bigger than the former.
Therefore, macroscopic quantities are defined as continuous space functions.
More computational efficiency than the microscopic approach comes along
with less modeling accuracy.

When the Knudsen number is of the order of the unity i.e. ε ∼ 1, ki-
netic modeling can be used [32]. This approach is based on the Boltzmann
equation, which was firstly introduced to study rarefied gas. The scale of
representation is the mesoscopic one: the object of interest is the speed dis-
tribution function and the collision kernel of the Boltzmann-type equation
depends on the microscopic interactions rules. Starting from this equation,
macroscopic quantities and their evolution are derived. Collective behav-
iors naturally emerge and they are the result of the microscopic interactions
between agents.

3.1.1 An overview of pioneering kinetic traffic models

Kinetic traffic models are based on common assumptions [32]. An asymp-
totic number of indistinguishable and point-like vehicles is considered. Each
of them is equipped with a speed and once it binary interacts with others,
only its speed changes according to interaction rules. Interactions are purely
binary, anisotropic and conservative.

The Prigogine model [32] is one of the first works of traffic modeling with
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a Boltzmann-type kinetic approach. It is mainly based on a collision kernel
made up of two contributions, a relaxation and an interaction term, and on
the vehicular chaos hypothesis, which assumes uncorrelated vehicles. The
relaxation term in the collision operator has been criticized by subsequent
models, due to the fact that it is function of a desired speed distribution,
which is given a priori. The Paveri Fontana model [32] overcomes this issue
by introducing a further variable, which represents the desired speed and
thus, considering its dependency on the system’s evolution.
However, Prigogine and Paveri Fontana models are not suited to properly
describe inhomogeneous traffic flows. Due to the physical constraint which
requires velocities to be greater than or equal to 0, the traffic flow only
propagates in the positive direction of the spatial axis. This is in strike
contrast with experience, where traffic jams travel backwards [24]. This
issue is tackled by Klar and coworkers by referring to Enskog-like models of
dense gases [32]: the speed distribution associated to the spatial coordinate
x also depends on what happens at x′ > x.

In this chapter, we will dwell upon traffic modeling with a Boltzmann-
type kinetic approach by referring to [45; 46; 47]. These papers were recently
published and investigated the introduction of autonomous vehicles as a tool
to mitigate road risk. The development of autonomous vehicles is extremely
promising for their lower environmental impact and their potentiality to
mitigate road risk: it will lead to a reshape and innovation of our urban
mobility.

3.2 Interaction rules

The basis of this dissertation is the Boltzmann-type kinetic equation for
binary interactions, which is explained in subsection 2.1.4.

Let us introduce f = f(t, v), which is the speed distribution function. It
is such that f(t, v)dv is the relative number of agents which have a speed
in the interval [v, v+ dv] at time t ≥ 0. The speed as other quantities, such
as the traffic density ρ, are dimensionless: we assume that v, ρ ∈ [0,1] [46].

The interaction rules represent the core of kinetic models: they contain
the physics of the system and express how the microscopic state of each
agent changes. They are defined as [46]

v′ = v + γI(v, w; ρ) +D(v; ρ)η
w′ = w

(3.1)
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where v and w are the speeds of vehicles before the interaction while v′
and w′ represent their post-interaction speeds. The coefficient γ > 0 is a
proportionality parameter, while η is a centered random variable, with zero
mean and variance σ2 and D(v; ρ) ≥ 0 is a diffusion coefficient. Thanks to
the termD(v; ρ)η, a stochastic component is included in the model, allowing
to consider the intrinsic stochasticity in each agent’s behavior.

The function I(v, w; ρ) is the interaction function and it is defined as [46]

I(v, w; ρ) = P (ρ)(1− v) + (1− P (ρ))(P (ρ)w − v) , (3.2)
where P (ρ) is the probability of accelerating [46]

P (ρ) = (1− ρ)µ, µ > 0 . (3.3)

In figure 3.1, the probability of accelerating is displayed for different values
of the exponent µ. It is a decreasing function of the traffic density ρ and
when numerical tests are performed, the exponent µ is chosen equal to 2.
This choice will be cleared up in the following.

From (3.1), it is clear that binary interactions are based on the follow-
the-leader approach [18]: they are anisotropic, so the leading vehicle i.e.
the agent with speed w does not change its speed while the rear vehicle
i.e. the agent with speed v does. Referring to the terminology of [32], the
vehicle with speed v is the candidate vehicle while the one with speed w
is the field vehicle. Due to the anisotropic character of traffic interactions,
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Figure 3.1: Probability of accelerating (3.3) for different parameters µ
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binary interactions only occur for candidate vehicles which are ahead of field
vehicles.

The interaction function defined in (3.2) expresses that: for small densi-
ties i.e. when P (ρ) approaches 1, the rear vehicle tends to the maximum
allowed speed i.e. 1, while when the density increases i.e. when P (ρ) tends
to 0, it tends to a fraction of the speed of the leading vehicle and this frac-
tion is given by the probability of accelerating P (ρ). These interaction rules
also contain a stochastic part that models diffusive behaviors [46].

3.3 Physical admissibility of the interaction rules

Once that the binary interaction rules are defined, their physical admissi-
bility has to be checked. This is equivalent to identify the criteria for which
post-interaction speeds satisfy the physical constraint i.e. v′, w′ ∈ [0,1]. In
[46], the following proposition is stated and proved.

Proposition 3.3.1. Let us consider the interaction rules defined in (3.1)
and let us assume that γ ∈ [0,1].
If ∃c > 0 such that |η| ≤ c(1− γ)

cD(v; ρ) ≤ min{v,1− v}, ∀v, ρ ∈ [0,1]

then the interaction rules satisfy the physical admissibility requirement i.e.
v′, w′ ∈ [0,1] ∀v, w ∈ [0,1] and ∀ρ ∈ [0,1].

Proof. First of all, we observe that w′ = w ∈ [0,1].

Let us start to prove that

v′ ≥ 0 ⇐⇒ v + γ
[
P (ρ)(1− v) + (1− P (ρ))(P (ρ)w − v)

]
+D(v; ρ)η ≥ 0.

We observe that γP (ρ), P (ρ)w ≥ 0 therefore,

v − γ
[
P (ρ)v + (1− P (ρ))v

]
+D(v; ρ)η ≥ 0 ⇐⇒ (1− γ)v +D(v; ρ)η ≥ 0

=⇒ v′ ≥ 0.

By hypothesis, ∃c > 0 such that η ≥ −c (1− γ)︸ ︷︷ ︸
≤0

and D(v; ρ) ≤ v
c . This
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implies that the sufficient condition for v′ ≥ 0 becomes

(1 - γ)v +D(v; ρ)η ≥ (1− γ)v + v
cc(γ − 1) = 0.

Analogously, let us prove that v′ ≤ 1. Due to the fact that P (ρ)w ≤ 1, a
sufficient condition for v′ ≤ 1 is

v + γ
[
P (ρ)(1− v) + (1− P (ρ))(1− v)

]
+D(v; ρ)η ≤ 1 ⇐⇒

⇐⇒ (γ − 1)(1− v) +D(v; ρ)η ≤ 0.

By using the hypothesis ∃c > 0 such that η ≤ c(1− γ) and D(v; ρ) ≤ 1−v
c ,

we obtain

(γ − 1)(1− v) +D(v; ρ)η ≤ (γ − 1)(1− v) + 1−v
c c(1− γ) = 0.

Proposition 3.3.1 implies that: η ∈ [−c(1−γ), c(1−γ)] i.e. it is a random
variable with compact support [46]. This is coherent with the fact that η
has zero mean i.e. 〈η〉 = 0. Moreover, proposition 3.3.1 also implies that
D(v = 0; ρ) = D(v = 1; ρ) = 0 ∀ρ ∈ [0,1] [46]. This point will be taken into
account when the diffusion coefficient D(v; ρ) will be chosen - see remark
3.6.1.

3.4 Mean speed at equilibrium

The Boltzmann-type kinetic equation for binary interaction models can be
written. We refer to [30] and to the derivation of equation (2.33) explained
in detail in subsection 2.1.4.
This equation rules the evolution of the distribution function f = f(t, v).
If φ = φ(v) is a generic observable, the equation in weak form [30; 46] is

d

dt

∫ 1

0
φ(v)f(t, v)dv = 1

2〈
∫ 1

0

∫ 1

0
[φ(v′)+φ(w′)−φ(v)−φ(w)]f(t, v)f(t, w)dvdw〉

(3.4)
where 〈·〉 is the expectation with respect to the distribution of the centered
random variable η. A constant interaction kernel has been chosen i.e. µ = 1
and this is equivalent to consider Maxwellian interactions in the framework
of the kinetic theory of rarefies gases [9; 11]. In traffic, this assumption is
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justified since speeds of interacting vehicles can be realistically considered
as uncorrelated. We also observe that φ(w′)− φ(w) = 0, due to (3.1).

First, let us consider φ(v) = 1. In this case,

d

dt

∫ 1

0
φ(v)f(t, v)dv = 0 . (3.5)

This means that, given the initial speed distribution f0(v) := f(t = 0, v)
properly normalized, f(t, v) will be normalized and therefore, a distribution
probability ∀t > 0 [46].

Instead, if φ(v) = v, an equation which rules the evolution of the mean
speed will be derived. Let us define the mean speed as [46]

V (t) :=
∫ 1

0
vf(t, v)dv . (3.6)

Then, by plugging φ(v) = v in (3.4), we end up with the following equation
[46]:

d

dt
V (t) = γ

2

{
P (ρ)

[
1 +

(
1− P (ρ)

)
V (t)

]
− V (t)

}
. (3.7)

Equation (3.7) is an ordinary differential equation (ODE), which is equipped
with the initial condition

V0 := V (t = 0) =
∫ 1

0
vf0(v)dv . (3.8)

Therefore, the solution of (3.7) is

V (t) = V0 exp
{
− γ

2
[
P (ρ) + (1− P (ρ))2]t

}
+

+ P (ρ)
P (ρ) + (1− P (ρ))2

(
1− exp

{
− γ

2
[
P (ρ) + (1− P (ρ))2]t

})
.

(3.9)

If t→ +∞, the mean speed at equilibrium is obtained [46]:

V∞(ρ) = P (ρ)
P (ρ) + (1− P (ρ))2 . (3.10)

This quantity allows to derive the speed and the fundamental diagrams.

Remark 3.4.1. From (3.9), it is clear that the first moment of the speed
distribution i.e. the mean speed V (t) is not conserved. �
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Figure 3.2: Speed diagram for different parameters µ
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Figure 3.3: Fundamental diagram for different parameters µ

3.5 Speed and fundamental diagrams

The speed and the fundamental diagrams are macroscopic relations, based
on the mean speed at equilibrium V∞(ρ). The former is the mapping
ρ → V∞(ρ), while the latter is ρ → q = ρV∞(ρ), where q is the flux of
vehicles at a given density [32; 46]. The flux q is central since it is usually
the most precise measurable quantity [32].

Several criteria, which make the diagrams compatible with experimental
data, can be outlined [32]:
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• the flux q = q(ρ) should be monotonically increasing in the density
interval [0, q̄], where q̄ ∈ (0,1);

• the flux q = q(ρ) should be decreasing in the density interval [q̄,1];

• the maximum q̄ of the flux q should be unique;

• the flux q = q(ρ) should be concave for ρ ∈ [0,1].
The last property is not so strict [32]: sometimes q is allowed to be convex
in the density interval [q̄,1].

We refer to these criteria when the parameter µ, which enters the defi-
nition of the probability of accelerating P (ρ), is set. In figures 3.2 - 3.3 (p.
48), speed and fundamental diagrams are displayed for different values of
µ. Except for the cases µ = 0.5 and µ = 1, other values of the exponent µ
lead to convex flux in the decreasing branch. If µ = 0.5, the mean speed at
equilibrium is not really meaningful since it takes values greater than 0.8
for more than 60% of the density interval; therefore this case is excluded.
On the other hand, µ = 1 roughly models the probability of accelerating.
So, µ = 2 is chosen: it is more suited to describe our dynamics compared to
the other cases, which lead to similar diagrams, since it captures all aspects
without being too extreme.

3.6 The quasi-invariant interaction regime and the
asymptotic speed distribution

The object of the homogeneous Boltzmann-type equation (3.4) is the speed
distribution function f(t, v). In particular, we are interested in the asymp-
totic speed distribution f∞ = f∞(v), which represents the distribution at
equilibrium and is the solution of

1
2〈
∫ 1

0

∫ 1

0
[φ(v′)− φ(v)]f∞(v)f∞(w)dvdw〉 = 0 . (3.11)

Due to its complexity and its high-resolution in time, it is extremely dif-
ficult to solve equation (3.11) analytically and the quasi-invariant interac-
tion regime is usually adopted e.g. [12; 42; 46; 47]. In this limit, attributes’
agents result to be weakly modified by interactions and the Boltzmann-type
integro-differential equation is approximated by a Fokker-Planck partial dif-
ferential equation (PDE), which can be solved analytically.

This regime corresponds to an adjustment of the so-called grazing colli-
sions regime, which was deeply investigated by Cedric Villani in the classical
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kinetic theory of rarefied gases [49]. Collisions between molecules are mainly
tangential and so, the momentum transfer is small. In [49], the Fokker-
Planck equation is derived from the Boltzmann equation in this regime;
this is performed for several interacting potentials and with a more general
reach of previous works.

In the context of complex systems modeling, the quasi-invariant interac-
tion regime was first investigated in the context of a market economy [12]
and then, it has been adopted for other problems such as opinion model-
ing [42] and traffic modeling [46; 47]. Both in [12] and in [42], the authors
carried a detailed analysis of the evolution of the first moment - the aver-
age wealth and the average opinion respectively - and higher moments. By
means of measure theory’s results, they showed the difficulty of studying in
detail the distribution function of agents’ attributes. Therefore, they relied
on kinetic theory and in particular, on grazing interactions, in order to ob-
tain a more easily solvable asymptotics of the Boltzmann-type equation.

In the quasi-invariant interaction regime, we assume [46]

γ, σ2 → 0+ such that σ
2

γ
→ λ > 0 . (3.12)

From a physical point of view, this is equivalent to claim that v′ ' v i.e.
after an interaction, the rear vehicle has a speed v′ which is close to its
initial speed v. The balance condition, which defines λ, is fundamental to
ensure that both the deterministic and the stochastic component of inter-
action rules are relevant. Only in this way, we obtain an asymptotic speed
distribution which is the direct consequence of the microscopic binary in-
teractions (3.1).

Let us define the following time scale: τ := γ
2 t [46]. If γ → 0+, τ is a time

scale much smaller than t and with bigger interaction frequencies: indeed,
in the t scale, interactions occur as 1/t = O(1) while in the τ scale, they
occur with frequency 1/τ = O(1/γ) >> 1.
Let us introduce the scaled distribution function f̃(τ, v) := f(2τ/γ, v) [46].
Due to the fact that ∂τ f̃ = 2

γ∂tf , equation (3.4) can be rewritten as

d

dτ

∫ 1

0
φ(v)f̃(τ, v)dv = 1

γ
〈
∫ 1

0

∫ 1

0
[φ(v′)− φ(v)]f̃(τ, v)f̃(τ, w)dvdw〉 . (3.13)

Let us assume that the observable φ(v) is such that φ(v) ∈ C3([0,1]). Then,
the condition v′ ' v allows us to perform a Taylor expansion of φ(v′) in the
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vicinity of v [46]:

φ(v′) = φ(v) + φ′(v)(v′ − v) + 1
2φ
′′(v)(v′ − v)2 + 1

3!φ
′′′(v̄)(v′ − v)3 , (3.14)

where v̄ ∈ (min{v′, v},max{v′, v}) and v′ − v = γI(v, w; ρ) + ηD(v; ρ).
Expansion (3.14) can be plugged in (3.13) and therefore, we obtain

d

dτ

∫ 1

0
φ(v)f̃(τ, v)dv =

∫ 1

0

∫ 1

0
φ′(v)I(v, w; ρ)f̃(τ, v)f̃(τ, w)dvdw+

+ 1
γ
〈η〉︸︷︷︸
=0

∫ 1

0
φ′(v)D(v; ρ)f̃(τ, v)dv

∫ 1

0
f̃(τ, w)dw︸ ︷︷ ︸

=1

+

+ γ

2

∫ 1

0

∫ 1

0
φ′′(v)I2(v, w; ρ)f̃(τ, v)f̃(τ, w)dvdw+

+ 1
2γ 〈η

2〉︸ ︷︷ ︸
=σ2

∫ 1

0
φ′′(v)D2(v; ρ)f̃(τ, v)dv+

+ 〈η〉︸︷︷︸
=0

∫ 1

0

∫ 1

0
φ′′(v)I(v, w; ρ)D(v; ρ)f̃(τ, v)f̃(τ, w)dvdw+

+ 1
6γ 〈

∫ 1

0

∫ 1

0
φ′′′(v̄)

[
γI(v, w; ρ) + ηD(v; ρ)

]3
f̃(τ, v)f̃(τ, w)dvdw〉 ,

(3.15)

which can be equivalently written as [46]

d

dτ

∫ 1

0
φ(v)f̃(τ, v)dv =

∫ 1

0

∫ 1

0
φ′(v)I(v, w; ρ)f̃(τ, v)f̃(τ, w)dvdw+

+ σ2

2γ

∫ 1

0
φ′′(v)D2(v; ρ)f̃(τ, v)dv +Rφ(f̃ , f̃) ,

(3.16)

where Rφ(f̃ , f̃) is the remainder and it is defined as [46]

Rφ(f̃ , f̃) := γ

2

∫ 1

0

∫ 1

0
φ′′(v)I2(v, w; ρ)f̃(τ, v)f̃(τ, w)dvdw+

+ 1
6γ 〈

∫ 1

0

∫ 1

0
φ′′′(v̄)

[
γI(v, w; ρ) + ηD(v; ρ)

]3
f̃(τ, v)f̃(τ, w)dvdw〉 .

(3.17)

Both the interaction and the diffusion functions are bounded. By con-
sidering the definition (3.2), it is clear that |I(v, w; ρ)| ≤ 1 ∀v, w, ρ ∈ [0,1].
On the other hand, cD(v; ρ) ≤ min{v,1 − v} because of physical admissi-
bility criteria 3.3.1. We also know that φ ∈ C3([0,1]), which implies that
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φ, φ′, φ′′, φ′′′ are bounded in the speed interval [0,1]. Finally, let us assume
that 〈|η|3〉 < +∞ and let us write η = η̃

√
σ2, where η̃ is a random vari-

able with zero mean, unitary variance and finite third moment [46]. So,
〈|η|3〉 ∼ (σ2) 3

2 . Consequently, we obtain

∃K > 0 such that |Rφ(f̃ , f̃)| ≤ K

{
γ + γ2 + σ2 + σ2

γ

√
σ2
}
. (3.18)

In the quasi-invariant interaction regime (3.12), the remainder Rφ(f̃ , f̃)
tends to 0. Therefore, equation (3.16) becomes

d

dτ

∫ 1

0
φ(v)f̃(τ, v)dv =

∫ 1

0
φ′(v)

( ∫ 1

0
I(v, w; ρ)f̃(τ, w)dw

)
f̃(τ, v)dv+

+ λ

2

∫ 1

0
φ′′(v)D2(v; ρ)f̃(τ, v)dv

(3.19)

and it can be integrated by parts, in order to obtain a Fokker-Planck PDE
[46]. Therefore, we get

∫ 1

0
φ(v)∂τ f̃dv = φ(v)

( ∫ 1

0
I(v, w; ρ)f̃(τ, w)dw

)
f̃(τ, v)

∣∣∣∣∣
v=1

v=0
+

−
∫ 1

0
φ(v)∂v

(( ∫ 1

0
I(v, w; ρ)f̃(τ, w)dw

)
f̃(τ, v)

)
dv+

+ λ

2

{
φ′(v)D2(v, ρ)f̃(τ, v)

∣∣∣∣∣
v=1

v=0
− φ(v)∂v

(
D2(v; ρ)f̃(τ, v)

)∣∣∣∣∣
v=1

v=0
+

+
∫ 1

0
φ(v)∂2

v

(
D2(v; ρ)f̃(τ, v)

)
dv

}
,

(3.20)

which can be rewritten as [46]

∂τ f̃ = λ

2∂
2
v

(
D2(v; ρ)f̃

)
− ∂v

(( ∫ 1

0
I(v, w; ρ)f̃(τ, w)dw

)
f̃

)
(3.21)

with the following boundary conditions:


( ∫ 1
0 I(v, w; ρ)f̃(τ, w)dw

)
f̃(τ, v) + λ

2∂v

(
D2(v; ρ)f̃(τ, v)

)
= 0

D2(v; ρ)f̃(τ, v) = 0 ,
(3.22)

which have to hold for v = 0,1 ∀τ > 0.
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Let us plug the interaction function (3.2) in (3.21) and let us introduce
Ṽ (τ) = V (2τ/γ) i.e. the scaled mean speed [46]. Then, the final form of
the Fokker-Planck PDE is

∂τ f̃ = λ

2∂
2
v

(
D2(v; ρ)f̃

)
− ∂v

{[
P (ρ)

(
1 +

(
1− P (ρ)

)
Ṽ

)
− v

]
f̃

}
. (3.23)

If the asymptotic limit i.e. τ → +∞ is considered, then Ṽ → V∞(ρ), which
is reported in (3.10). Moreover, we have
V∞(ρ)

[
P (ρ)+(1−P (ρ))2

]
= P (ρ) ⇐⇒ V∞(ρ) = P (ρ)

[
1+

(
1−P (ρ)

)
V∞(ρ)

]
.

(3.24)
So, if τ → +∞, the Fokker-Planck equation (3.23) becomes

λ

2∂
2
v

(
D2(v; ρ)f̃∞

)
− ∂v

((
V∞(ρ)− v

)
f̃∞

)
= 0 . (3.25)

For the diffusion coefficient, the following form is chosen [46]:

D(v; ρ) := a(ρ)
√
v(1− v) , a(ρ) ≥ 0 . (3.26)
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Figure 3.4: The diffusion coefficient (3.26) with ρ = 0.5, a(ρ) = ρ(1−ρ) together with the straight
lines v and 1− v

Remark 3.6.1. The diffusion coefficient must satisfy proposition 3.3.1, in
order to ensure physical admissibility of the interaction rules (3.1).
If we consider figure 3.4, it is evident that

@c > 0 such that cD(v; ρ) ≤ min{v,1− v} ∀v, ρ ∈ [0,1] .
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Figure 3.5: The diffusion coefficient (3.27) with ρ = 0.5, a(ρ) = ρ(1 − ρ) and for different
parameters γ, together with the straight lines v and 1− v

In particular, the physical admissibility property does not hold for speeds
in the neighborhood of v = 0 and v = 1. This is clear from figure 3.4 where
the diffusion coefficient (3.26) is plotted by considering a(ρ) = ρ(1 − ρ), a
choice which will be motivated in the following.
So, let us consider the γ-dependent diffusion coefficient [46]

Dγ(v; ρ) := a(ρ)
√√√√max

{
0, (1 + γ)v(1− v)− γ

4

}
, (3.27)

which satisfies proposition 3.3.1 with c = cγ := 1
a(ρ)

√
γ

1+γ . A graphical
representation of this fact is given in figure 3.5.
Actually, in the quasi-invariant interaction regime, we have

Dγ(v; ρ)→ D(v; ρ) if γ → 0+ .

Therefore, the choice (3.26) is physical admissible in the quasi-invariant
interaction regime. �

Eventually, the asymptotic speed distribution turns out to be a beta
probability density function [46]

f̃∞(v) = vα−1(1− v)β−1

B(α, β) , (3.28)
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with the following parameters [46]:

α := 2V∞(ρ)
λa2(ρ)

β := 2(1− V∞(ρ))
λa2(ρ)

(3.29)

and B(α, β) is the beta function i.e. B(α, β) = ∫ 1
0 x

α−1(1− x)β−1dx.
Let us note that (3.25) is accompanied with boundary conditions (3.22).

These conditions are satisfied if [46]

a2(ρ) ≤ 1
λ

min{V∞(ρ),1− V∞(ρ)} . (3.30)

Indeed, if (3.30) holds, the asymptotic distribution function f̃∞ and its
derivative ∂vf̃∞ are null in the extreme values of the speed domain i.e.
v = 0, 1 [46]. A suited choice of the function a(ρ), which satisfies (3.30), is
a(ρ) = ρ(1− ρ) [46].

In figure 3.6, the asymptotic speed distribution (3.28) is plotted for dif-
ferent values of densities.
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Figure 3.6: The asymptotic speed distribution (3.28) for different values of densities, λ = 1,
µ = 2, a(ρ) = ρ(1− ρ)

If X is a random variable such that X ∼ f̃∞,

E[X] = α

α + β
= V∞(ρ)

Var(X) = αβ

(α + β)2(α + β + 1) = λa2(ρ)
2 + λa2(ρ)V∞(ρ)(1− V∞(ρ))

(3.31)
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and as expected, the first moment of the asymptotic speed distribution is
the mean speed at equilibrium.

Remark 3.6.2. The asymptotic speed distribution (3.28) is conceptually
analogous to the Maxwellian for rarefied gases, which we mentioned in sub-
section 2.1.3. �

Remark 3.6.3. The asymptotic speed distribution is a beta probability
distribution function. This finding is compatible with experimental data:
for instance in [27], the beta distribution turns out to be the one which best
fits collected data about the traffic flow. �

3.7 Controlled interaction rules and the MPC approach

The increasing development and spreading of autonomous vehicles has shown
their potentiality to mitigate road risk. This source of accidents is mainly
due to speed variability in the traffic flow [50].

In the following sections, autonomous vehicles are introduced in the
model as hidden leaders: their are standard agents and others do not inter-
act with them differently. Their ability to decrease road risk is investigated:
the idea is that thanks to their automatic technologies, these driver-assist
cars can make the speed variability within the stream of vehicles decrease.
The variance of the asymptotic speed distribution quantifies speed variabil-
ity and consequently, road risk; therefore, this quantity is compared to the
one obtained in the uncontrolled case in order to show the impact of au-
tonomous vehicles on risk mitigation [46].

First, binary interaction rules are modified as follows [46]:

v′ = v + γ
[
I(v, w; ρ) + θu

]
+D(v; ρ)η

w′ = w
(3.32)

where u is the control, θ is a Bernoulli random variable of parameter p i.e.
θ ∼ Bernoulli(p) and p represents the penetration rate that is the percentage
of autonomous vehicles in the traffic [46]. The control u is the correction of
the deterministic part of the interaction due to the presence of autonomous
vehicles. Actually, it is [46]

u∗ = arg min
u∈U

J(v′;u) (3.33)
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where J(v′;u) is a least-square cost functional and U is the set of controls
which are physical admissible. Autonomous vehicles aim at reducing road
risk, which is equivalent to reducing speed variability in the traffic flow [50].
Therefore,

J(v′;u) = 1
2〈
(
Vd(w′; ρ)− v′

)2 + νu2〉η , ν > 0 (3.34)

where Vd(w′; ρ) = w′ = w if the control strategy is the binary variance
control and Vd(w′; ρ) = vd(ρ) ∈ [0,1] if the control strategy is the desired
speed control [46]. The first term of J(v′;u) represents the binary vari-
ance of Vd(w′; ρ) and the post-interaction speed v′. The second term νu2

penalizes large controls with a coefficient ν > 0.

This minimization problem can be rewritten as [45]

u∗ = arg min
u∈U

{1
2

∫ T

0
〈
(
Vd(w; ρ)− v

)2 + νu2〉ds
}

subject to
v̇ = γ̄

[
I(v, w; ρ) + θu

]
+D(v; ρ)η̄ , v(0) = v0

ẇ = 0 , w(0) = w0

(3.35)

where T is a given time horizon, ∆t is the time step, γ̄ = γ/∆t and
η̄ = η/∆t. Two different approaches can be adopted to solve this problem:
dynamic programming methods or variational methods such as Pontrya-
gin’s maximum principle. The problem becomes intractable if the number
N of agents is large therefore a Model Predictive Control (MPC) approach
[8] is used. The cost functional is not minimized over the whole time hori-
zon T but a receding horizon strategy is adopted. Then, the Pontryagin’s
maximum principle is employed and feedback controlled microscopic rules,
which are embedded in the Boltzmann-type kinetic equation, are obtained
[1; 45; 46].

The receding horizon strategy [1; 45; 46] consists in splitting the time
horizon T in NT intervals: T = NT∆t, tn = n∆t with n = 0, ..., NT . We
assume the control has the following form [1]:

u(t) =
NT−1∑
n=0

unI
[
t ∈ [tn, tn+1]

]
(3.36)

where I[x ∈ A] = 1 if x ∈ A and I[x ∈ A] = 0 if x /∈ A.
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The value of each un is determined by solving the reduced problem [1]

un = arg min
u∈R

{1
2

∫ tn+1

tn
〈
(
Vd(w; ρ)− v

)2 + νu2
〉
ds

}
subject to
v̇ = γ̄

[
I(v, w; ρ) + θu

]
+D(v; ρ)η̄ , v(tn) = v̄ ,

(3.37)

where we have dropped the constraint u ∈ U . In the following, it will be
shown that the physical admissibility is guaranteed by some conditions on
η and D(v; ρ) - see proposition 3.8.1 below. Therefore, it is not needed to
define a set of physical admissible controls a priori and it is much easier to
handle an unconstrained optimization problem.
Once the control un, which is defined on the time interval [tn, tn+1], is ob-
tained from (3.37), the post-interaction speeds are given by solving

{
v̇ = γ̄

[
I(v, w; ρ) + θun

]
+D(v; ρ)η̄

ẇ = 0 (3.38)

thus obtaining v̄ = v(tn+1). This represents the initial condition for solving
again equation (3.37) thus getting un+1. This procedure is repeated until
tn+1 = T .

This receding horizon strategy is an iterative procedure over a sequence
of finite time steps. The complexity of (3.37) is reduced compared to (3.35)
since it is a minimization problem in the single variable un. Moreover, this
method allows to obtain the control at each time step as a function of the
interaction speeds. The innovation of this strategy relies on the fact that the
control dynamics naturally emerge from the prescribed microscopic interac-
tions. Even though the control obtained with MPC is suboptimal compared
to the theoretical optimal one i.e. the solution of (3.35) [8], the consistency
of this approximation is guaranteed for multi-agent kinetic systems [20; 22]
and it is a competitive technique due to its computational cost, which is of
the order of agents’ number [1].

In order to solve the minimization problem (3.37), the Pontryagin’s max-
imum principle is employed [1; 45; 46]. Its one dimensional version is stated
in the following.
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3.7.1 The Pontryagin’s maximum principle

Let us consider the following problem:

max
∫ T

0
f0(x(t), u(t), t)dt

subject to
ẋ(t) = f(x(t), u(t), t) , x(0) = x0

u(t) ∈ R

(3.39)

where f, f0 ∈ C1([0, T ]). Let us define the Hamiltonian H as
H(x, u, λ, t) := f0(x, u, t) + λf(x, u, t) , λ ∈ R . (3.40)

Then, the Pontryagin’s maximum principle in 1D [34; 40] is the following
theorem.
Theorem 3.7.1. Let us consider u∗(t), which is an optimal control, piecewise-
defined in the interval [0, T ]. Its associated state variable is x∗(t).
Then, ∃λ(t) : [0, T ] → R with λ ∈ C1 such that the following conditions
hold ∀t ∈ [0, T ]:
(i) u∗(t) = maxu∈RH(x∗(t), u(t), λ(t), t)
(ii) λ is differential ∀t such that u∗(t) is continuous and

λ̇(t) = −∂xH(x∗(t), u∗(t), λ(t), t)
(iii) λ(T ) = 0.

We observe that this theorem provides an optimality condition which is
necessary but not sufficient.
We recommend [34; 40] for its proof and further details.

3.7.2 Feedback controlled microscopic rules

Now, we can solve the reduced minimization problem (3.37); in this case, the
time horizon is the interaction interval [t, t+ ∆t]. The related Hamiltonian
is

H = 1
2〈
(
Vd(w; ρ)− v

)2 + νu2〉+ λ

[
γ̄I(v, w; ρ) + γ̄θu+D(v; ρ)η̄

]
, (3.41)

where λ ∈ R. Let us impose the conditions of theorem 3.7.1:
∂uH = 0 ⇐⇒ νu+ λγ̄θ = 0
λ̇ = −∂vH ⇐⇒ λ̇ = 〈

(
Vd(w; ρ)− v)〉 − λγ̄∂vI(v, w; ρ)− λη̄∂vD(v; ρ)

λ(t+ ∆t) = 0 .
(3.42)
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By using the backward Euler scheme, the second condition can be dis-
cretized in the interaction interval [t, t+ ∆t]:
λ′ := λ(t+ ∆t) = λ+ ∆t

[
〈Vd(w′; ρ)− v′〉 − λ′γ̄∂vI(v′, w′; ρ)− λ′η̄∂vD(v′; ρ)

]
and then, combined with the third equality. This results in

λ = −∆t〈Vd(w′; ρ)− v′〉 . (3.43)
On the other hand, the first condition of (3.42) gives

u = − γ̄θ
ν
λ . (3.44)

By plugging (3.43) in (3.44) and by referring to (3.32), we obtain the control
u as a function of the interacting velocities:

u = θγ

ν + θ2γ2

(
Vd(w; ρ)− v

)
− θγ2

ν + θ2γ2I(v, w; ρ) . (3.45)

It represents the speed correction which is made by autonomous vehicles at
each interaction which occurs in the time step ∆t. As assumed in (3.36),
the control is constant in this time horizon.
Finally, this result is plugged in (3.32) and the feedback controlled micro-
scopic interaction rules are obtained:

v′ = v + γ2θ2

ν + γ2θ2

[
Vd(w; ρ)− v

]
+ γν

ν + γ2θ2I(v, w; ρ)︸ ︷︷ ︸
γI(v,w;ρ)

+D(v; ρ)η

w′ = w ,

(3.46)

where I(v, w; ρ) is the new interaction function.
The physical admissibility of these interaction rules has to be checked and

once its criteria identified, they can be embedded into the Boltzmann-type
kinetic equation, which rules the dynamics of the system.

3.8 Physical admissibility of the feedback controlled
interaction rules

Proposition 3.8.1. Let us consider the interaction rules defined in (3.46)
and let us assume that γ ∈ [0,1] and ν > 0.
If ∃c > 0 such that{

|η| ≤ c(1− ν+γ
ν+γ2γ)

cD(v; ρ) ≤ min{v,1− v}, ∀v, ρ ∈ [0,1]
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then the interaction rules satisfy the physical admissibility requirement i.e.
v′, w′ ∈ [0,1] ∀v, w ∈ [0,1] and ∀ρ ∈ [0,1].

Proof. First, we observe that w′ = w ∈ [0,1].
Let us start to prove that

v′ ≥ 0 ⇐⇒ v + γI(v, w; ρ) +D(v; ρ)η ≥ 0 .

We observe that P (ρ), P (ρ)w, Vd(w; ρ) ≥ 0 therefore it is sufficient to show
that

v − γ2θ2

ν + γ2θ2v −
γν

ν + γ2θ2v +D(v; ρ)η =

= v

(
1− ν + γθ2

ν + γ2θ2γ

)
+D(v; ρ)η ≥ v

(
1− ν + γ

ν + γ2γ

)
+D(v; ρ)η ≥ 0

where we have used that θ is a Bernoulli variable.
By hypothesis, ∃c > 0 such that η ≥ c

(
ν+γ
ν+γ2γ − 1

)
and D(v; ρ) ≤ v

c . This
implies that

v

(
1− ν + γ

ν + γ2γ

)
+D(v; ρ)η ≥ v

(
1− ν + γ

ν + γ2γ

)
+ v

c
c

(
ν + γ

ν + γ2γ − 1
)

= 0 .

Analogously, let us prove that v′ ≤ 1. Due to the fact that P (ρ)w,
Vd(w; ρ) ≤ 1, the sufficient condition for v′ ≤ 1 is

v + γ2θ2

ν + γ2θ2 (1− v) + γν

ν + γ2θ2 (1− v) +D(v; ρ)η =

= v + ν + γθ2

ν + γ2θ2γ(1− v) +D(v; ρ)η ≤ v + ν + γ

ν + γ2γ(1− v) +D(v; ρ)η ≤ 1 .

By using the hypotheses ∃c > 0 such that η ≤ c

(
1− ν+γ

ν+γ2γ

)
and

D(v; ρ) ≤ 1−v
c , we obtain

v + ν + γ

ν + γ2γ(1− v) +D(v; ρ)η ≤

≤ v + ν + γ

ν + γ2γ(1− v) + 1− v
c

c

(
1− ν + γ

ν + γ2γ

)
= 1 .

61



Adele Ravagnani

Remark 3.8.2. If the infinite penalization limit is considered i.e. ν → +∞,
conditions of proposition 3.8.1 become the ones of proposition 3.3.1. This is
coherent with expectations since in this limit, the control u is so penalized
that u∗ = 0.

On the other hand, if the non penalized limit is considered i.e. ν → 0+,
η → 0 and indeed, dynamics are purely deterministic. �

3.9 The controlled mean speed at equilibrium

The Boltzmann-type equation of the controlled system is [46]
d

dt

∫ 1

0
φ(v)f∗(t, v)dv = 1

2Eθ
[
〈
∫ 1

0

∫ 1

0
[φ(v′)− φ(v)]f∗(t, v)f∗(t, w)dvdw〉η

]
,

(3.47)
where the expected value with respect to the Bernoulli random variable θ
has been introduced and the superscript ∗ refers to the fact the controlled
case is considered.

In order to derive the evolution equation for the mean speed, we set
φ(v) = v and by plugging the feedback interaction rules (3.46), we obtain
[46]

dV ∗

dt
= γ

2

ν + (1− p)γ2

ν + γ2

{
P (ρ)

[
1 + (1− P (ρ))V ∗

]
− V ∗

}
+

+ pγ

ν + γ2

( ∫ 1

0
Vd(w; ρ)f∗(t, w)dw − V ∗

) ,

(3.48)

where V ∗ = V ∗(t) := ∫ 1
0 vf

∗(t, v)dv i.e. V ∗ is the mean speed in the con-
trolled case [46].
Remark 3.9.1. Consistently, if p = 0 i.e. there are not autonomous vehi-
cles, equation (3.7) is recovered from (3.48). This also occurs if ν → +∞,
which implies u∗ = 0.

On the other hand, if p→ 1 i.e. all vehicles are autonomous and ν → 0+,
the control dominates the evolution of V ∗. �

In order to solve (3.48), the quasi-invariant interaction regime is adopted
[46]:

γ, σ2, ν → 0+ such that σ
2

γ
→ λ > 0 and ν

γ
→ κ > 0 . (3.49)
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In addition to the assumptions of the uncontrolled case (3.12), also the
control contribution is considered negligible in the dynamics, but still of
the same order of the interaction part.
The scaled speed distribution is defined as f̃∗(τ, v) := f∗(2τ/γ, v) and the
scaled mean speed as Ṽ ∗(τ) := V (2τ/γ) [46]. Therefore, in the quasi-
invariant interaction limit, equation (3.48) becomes [46]

dṼ ∗

dτ
= P (ρ)

[
1 + (1− P (ρ))V ∗

]
− (1 + p∗)Ṽ ∗ + p∗

( ∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw

)
(3.50)

where p∗ is the effective penetration rate [46] and is defined as p∗ := p
κ .

If τ → +∞, Ṽ ∗ → V ∗∞ and the mean speed at equilibrium V ∗∞ solves the
following equation:

P (ρ)
[
1 + (1− P (ρ))V ∗∞

]
− (1 + p∗)V ∗∞ + p∗

( ∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw

)
= 0 .

(3.51)
If the control strategy is the binary variance control, then

Vd(w; ρ) = w and we obtain

V ∗∞(ρ) = P (ρ)
P (ρ) + (1− P (ρ))2 , (3.52)

which is equivalent to the uncontrolled case (3.10).
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Speed diagram with desired speed control
p* = 0
p* = 0.5
p* = 1
p* = 5

Figure 3.7: Mean speed at equilibrium (3.53) with the desired speed control for different values
of the effective penetration rate p∗, vd(ρ) = 1− ρ
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If the control strategy is the desired speed control, then
Vd(w; ρ) = vd(ρ) and we obtain

V ∗∞(ρ) = P (ρ) + p∗vd(ρ)
P (ρ) + (1− P (ρ))2 + p∗

, (3.53)

which is plotted in figure 3.7 (p. 63).

Remark 3.9.2. If p∗ → 0, the uncontrolled case is recovered from (3.53):
V ∗∞(ρ)→ V∞(ρ).
If p∗ → +∞ i.e. ν → 0+, the speed diagram corresponds to the one of the
desired speed vd(ρ): V ∗∞(ρ)→ vd(ρ). �

3.10 The controlled asymptotic speed distribution

In the binary variance control case, if the analysis was just limited to speed
and fundamental diagrams, no difference would be revealed compared to the
uncontrolled case. Indeed, the mean speed at equilibrium is not affected by
the introduction of the binary variance control. Instead, the study of the
asymptotic speed distribution shows that the variance of the asymptotic
speed distribution decreases thanks to the introduction of the control. Also
in the case of the desired speed control, the analysis of the asymptotic speed
at equilibrium allows to have a detailed insight on the impact of autonomous
vehicles on risk mitigation.

Let us consider the quasi-invariant interaction regime (3.49) and the
feedback controlled interaction rules (3.46). We observe that their form is
equivalent to that of the uncontrolled case (3.1) with the new interaction
function I(v, w; ρ). Therefore, an analogous equation of (3.21) holds for the
controlled asymptotic speed distribution f̃∗(τ, v). In this case, the interac-
tion function I(v, w; ρ) is replaced by I(v, w; ρ).
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In the quasi-invariant interaction regime (3.49), we have

Eθ
{ ∫ 1

0
I(v, w; ρ)f̃∗(τ, w)dw

}
=
∫ 1

0

{
pγ

ν + γ2

[
Vd(w; ρ)− v

]
+

+ pν

ν + γ2I(v, w; ρ) + (1− p)ν
ν + γ2 I(v, w; ρ)

}
f̃∗(τ, w)dw

→
∫ 1

0

{
p

κ

[
Vd(w; ρ)− v

]
+ pI(v, w; ρ) + (1− p)I(v, w; ρ)

}
f̃∗(τ, w)dw =

=
∫ 1

0

{
p∗Vd(w; ρ) + I(v, w; ρ)

}
f̃∗(τ, w)dw − p∗v .

(3.54)

So, in the controlled case, the Fokker-Planck PDE is [46]

∂τ f̃∗ = λ

2∂
2
v

(
D2(v; ρ)f̃∗

)
+

− ∂v
{[ ∫ 1

0

(
I(v, w; ρ) + p∗Vd(w; ρ)

)
f̃∗(τ, w)dw − p∗v

]
f̃∗
}
.

(3.55)

If τ → +∞ and by plugging the interaction function defined in (3.2), we
obtain

λ

2∂
2
v

(
D2(v; ρ)f̃∗∞

)
− ∂v

{[
P (ρ)

(
1 + (1− P (ρ))Ṽ ∗∞

)
− v+

+ p∗
∫ 1

0
Vd(w; ρ)f̃∗∞(τ, w)dw − p∗v

]
f̃∗∞

}
= 0 .

(3.56)

By referring to (3.51), the content of the square brackets in (3.56) can be
rewritten as

P (ρ)
[
1 + (1− P (ρ))V ∗∞

]
+ p∗

∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw − (1 + p∗)v =

= (1 + p∗)(V ∗∞ − v) .
(3.57)

As in the uncontrolled case, the same form defined in (3.26) [46] is chosen
for the diffusion coefficient. The asymptotic speed distribution is still a beta
probability density function [46]

f̃∗∞(v) = vα−1(1− v)β−1

B(α, β) , (3.58)
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but now the parameters α and β are defined as [46]

α := 2(1 + p∗)V ∗∞(ρ)
λa2(ρ)

β := 2(1 + p∗)(1− V ∗∞(ρ))
λa2(ρ) .

(3.59)

Remark 3.10.1. If p∗ = 0 i.e. there are not autonomous vehicles, α and β
in (3.59) are equivalent to the corresponding parameters in the uncontrolled
case (3.29). �

Let us note that (3.55) is accompanied with boundary conditions. These
conditions are satisfied if f̃∗∞ and ∂vf̃∗∞ are null in the extreme values of the
speed domain i.e. v = 0, 1 [46]. This is equivalent to state that

a2(ρ) ≤ 1 + p∗

λ
min{V ∗∞(ρ), 1− V ∗∞(ρ)} . (3.60)

If X∗ is a random variable such that X∗ ∼ f̃∗∞,

E[X∗] = α

α + β
= Ṽ ∗∞

Var(X∗) = αβ

(α + β)2(α + β + 1) = λa2(ρ)
2 + λa2(ρ) + 2p∗V

∗
∞(ρ)(1− V ∗∞(ρ)) .

(3.61)
Coherently, the expected value of a random variable distributed according
to the asymptotic speed distribution (3.58) is the mean speed at equilibrium
in the controlled case V ∗∞.

3.11 Risk mitigation

Let us consider the binary variance control with p∗ > 0. In this case,
V ∗∞ = V∞ and

λa2(ρ)
2 + λa2(ρ) + 2p∗V

∗
∞(1− V ∗∞)︸ ︷︷ ︸

Var(X∗)

<
λa2(ρ)

2 + λa2(ρ)V∞(1− V∞)︸ ︷︷ ︸
Var(X)

∀ρ ∈ [0,1] .

(3.62)
This control strategy, which aims at reducing the binary speed variance,
is effectively able to decrease speed variability and therefore, macroscopic
road risk.
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Figure 3.8: Variance of the asymptotic speed distribution (3.58) with the desired speed control
vd(ρ) = 1− ρ for different values of the effective penetration rate p∗

Instead, if the desired speed control is considered, the mean speed at
equilibrium is affected by the introduction of the control, as it can be seen
by setting (3.53) against (3.10). Therefore, it is more difficult to directly
compare the variance of the asymptotic speed distribution in the uncon-
trolled case with that in the controlled case. In figure 3.8, the variance of
the controlled asymptotic speed distribution (3.58) is plotted as a function
of the density ρ, for different values of effective penetration rates p∗ and
for a desired speed control strategy. It is assumed that the desired speed is
equal to vd(ρ) = 1− ρ and the case p∗ = 0 corresponds to the uncontrolled
situation. It is evident that

¬
(
Var(X∗) < Var(X) ∀ρ ∈ [0,1]

)
with the desired speed control strategy.

This means that there exist some values of densities for which the vari-
ance does not decrease compared to the uncontrolled case. However, a
circumstance where the introduction of the desired speed control leads to a
reduction in the variance of the asymptotic speed distribution can be identi-
fied. As pointed out in the remark 3.9.2, in the infinite effective penetration
rate limit, V ∗∞ → vd(ρ). Moreover, in this limit, Var(X∗) → 0+. Thus, the
introduction of the desired speed control leads to road risk mitigation when
dynamics are fully controlled [46].
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3.12 Numerical tests

In order to confirm theoretical findings, several numerical tests can be per-
formed. As explained in section 2.2, the Nanbu-Babovsky’s scheme [29; 30]
is adopted. All simulations are carried out with MATLAB®.

3.12.1 Choice of parameters

In section 3.5, speed and fundamental diagrams are introduced and in-
vestigated. The exponent µ in the probability of accelerating P (ρ) =
(1− ρ)µ , µ > 0 is chosen equal to 2.

The Nanbu-Babovsky’s scheme is used in order to solve the Boltzmann-
type equation for the uncontrolled and controlled dynamics. Let us consider
the controlled equation (3.47); the uncontrolled dynamics can be easily
recovered from it by setting p = 0. We can rewrite equation (3.47) in such
a way that the link with (2.43) becomes clearer [46]:

∂τ f̃
∗(τ, v) = 1

γ
[Q+(f̃∗, f̃∗)(τ, v)− f̃∗(τ, v)] , (3.63)

where τ = γ
2 t and f̃

∗ is the controlled scaled speed distribution. Moreover,
the gain operator Q+(f̃∗, f̃∗) is defined as [46]

Q+(f̃∗, f̃∗)(τ, v) = Eθ
[
〈
∫ 1

0

1
′J
f̃∗(τ,′ v)f̃∗(τ,′w)dw〉η

]
, (3.64)

where (′v,′w) and (v, w) are the speeds before and after the interaction
respectively. ′J is the Jacobian of the change of variables (′v,′w)→ (v, w).

The requirement ∆t
ε ≤ 1 must hold - see subsection 2.2.1. Moreover, the

quasi-invariant interaction regime is considered: we would like to compare
the numerical solution of the Boltzmann-type equation with the asymptotic
Fokker-Planck distribution, obtained analytically in this regime. Therefore,
we set

ε = 0.01, ∆t = ε, γ = ε, σ2 = γ , (3.65)
which imply λ = 1. Imposing ∆t = ε means that all agents interact.
Remark 3.12.1. In section 3.6, the quasi-invariant interaction regime is
introduced. The new time scale τ is such that interactions occur with
frequency 1/τ = O(1/γ) >> 1 [46], coherently with 1/γ = 1/ε and the
definition of the Knudsen number, which represents the relaxation time of
vehicles’ interactions. �
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In the controlled case, the following condition is also considered:

ν = γ , (3.66)

which implies κ = 1.

Remark 3.12.2. In this dissertation, vehicular traffic is studied in the
quasi-invariant interaction regime and this leads to consider ε � 1. As
outlined in section 3.1, this regime identifies the so-called continuum hy-
pothesis, which is the basis of the macroscopic approach contrary to the
kinetic one that is employed if ε ∼ 1 [32]. Moreover, the DSMC schemes
are not suited to describe the dynamics in this case [29; 33]. Indeed, in the
hydrodynamic regime ε→ 0, the mean free path of particles is much smaller
than the characteristic scale of the system and dynamics are dominated by
collision over transport. In order to capture all the dynamics, which occur in
different time scales, a splitting approach is adopted in the inhomogeneous
case. Due to the fact that we are studying the Boltzmann-type equation in
the homogeneous case, the kinetic description and the Nanbu-Babovsky’s
scheme are preserved. In this situation, the convective term is not present in
the Boltzmann-type equation: the only temporal scale is given by ε, which
represents the relaxation time of the vehicles’ interactions and therefore, its
inverse is the interaction frequency. �

The agents considered in the simulations are 105 and their initial speeds
are sampled from a uniform distribution in the interval of physical admis-
sibility i.e. f̃0 ∼ U([0,1]). The points considered in the speed interval [0,1]
are Nv = 101 and so, the lattice step is equivalent to 0.01. They allow to
reconstruct speed distributions.

We also have to set a(ρ), which enters in the definition (3.26) of the dif-
fusion coefficient D(v, ρ) and of the parameters α and β of the asymptotic
speed distribution. As previously explained, a suited choice, which satisfies
boundary conditions of the Fokker-Planck PDE, is [46]

a(ρ) := ρ(1− ρ).

Finally, let us consider the proportionality parameter η of the diffusion
coefficient D(v; ρ). It is sampled from a uniform distribution with zero
mean and variance σ2 [46]. The zero mean condition is obtained by setting
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η ∼ U([−a, a]) while the variance condition by letting(
a− (−a)

)2

12 = σ2 ⇐⇒ a =
√

3σ2 .

To sum up, η ∼ U [−a, a] with a =
√

3σ2.

3.12.2 Uncontrolled case

Results of Monte Carlo simulations in the uncontrolled case are displayed.
The theoretical asymptotic speed distribution defined in (3.28), or equiva-
lently the one in (3.58) with p∗ = 0, is compared to the stationary numer-
ical solution of the Boltzmann-type equation. Distributions are plotted as
functions of speed by using a suited histogram and simulations are run for
a sufficiently long time such that convergence at equilibrium is achieved.
This time will be specified for each simulation and justified by referring to
the L2-numerical relative error.
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Figure 3.9: Comparison between the asymptotic Fokker-Planck distribution (3.28) (theoretical)
and the numerical solution of the Boltzmann-type equation in the uncontrolled case (simulation).
Several values of the parameter ε are considered, ρ = 0.4, T = 20

First, let us investigate the quasi invariant interaction regime. In fig-
ure 3.9, the asymptotic speed distribution (3.28) is plotted for ρ = 0.4
and for several values of the parameter ε. Final time T is set equal to 20
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for all cases. Then, it is evident that the choice performed in (3.65) i.e.
ε = γ = σ2 = 0.01 is justified: the more γ and σ2 approach 0, the deeper
we are in the quasi-invariant interaction regime.

In figures 3.10 - 3.11 (p. 72), numerical tests are performed for two more
values of density by considering (3.65) i.e. ε = 0.01. By qualitatively look-
ing at these figures, it is evident that the agreement is strong: as theoret-
ically expected, the numerical equilibrium solution of the Boltzmann-type
equation converges toward the solution of the Fokker-Planck PDE, which is
analytically obtained in the quasi-invariant interaction regime. A quantita-
tive insight into this issue is gained by studying the L2-numerical relative
error. This is defined as

L2-numerical error =
√∑Nv

k=1(f̃TH∞ (Vk)− f̃SIM∞ (Vk))2∑Nv
k=1 f̃

TH
∞ (Vk)

, (3.67)

where TH stands for theoretical, SIM stands for simulation and Vk with
k = 1, ...Nv are the points of the discretized speed domain. This error is
plotted in figures 3.12 - 3.14 (pp. 73-74) for ρ = 0.2, 0.4, 0.8. If ρ = 0.2, 0.4,
this numerical error drops to values which are of the order of 10−2 in a
relatively small number of time steps. Instead, if ρ = 0.8, the numerical
error stabilizes at values which are O(10−1). These higher errors are due to
the fact that ρ = 0.8 is a more extreme value of density. Figures 3.12 - 3.14
also justify the choice T = 20 indeed we observe that this time is sufficient
for the system to reach equilibrium.

3.12.3 Controlled case

Similarly to the uncontrolled case, simulation results are displayed in the
controlled case. Let us set ρ = 0.4 and T = 20. In figures 3.15 - 3.17
(pp. 74-75), numerical tests are performed with a binary variance control
strategy and for different values of the penetration rate p. The same is
done in figures 3.18 - 3.20 (pp. 76-77) for the desired speed control. As in
the uncontrolled case, the numerical distribution perfectly fit the theoretical
one. The L2-numerical error’s trend can also be obtained and it is analogous
to that of figures 3.12 - 3.14; at equilibrium it is O(10−2).

71



Adele Ravagnani

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

10

Theoretical
Simulation

Figure 3.10: Comparison between the asymptotic Fokker-Planck distribution (3.28) (theoretical)
and the numerical solution of the Boltzmann-type equation in the uncontrolled case (simulation)
for ρ = 0.2, T = 20
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Figure 3.11: Comparison between the asymptotic Fokker-Planck distribution (3.28) (theoretical)
and the numerical solution of the Boltzmann-type equation in the uncontrolled case (simulation)
for ρ = 0.8, T = 20
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Figure 3.12: L2-numerical error defined in (3.67) as a function of time for ρ = 0.2
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Figure 3.13: L2-numerical error defined in (3.67) as a function of time for ρ = 0.4
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Figure 3.14: L2-numerical error defined in (3.67) as a function of time for ρ = 0.8
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Figure 3.15: Comparison between the asymptotic Fokker-Planck distribution (3.58) (theoretical)
and the numerical solution of the Boltzmann-type equation (simulation) with binary variance
control for ρ = 0.4, p = 0.2, T = 20
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Figure 3.16: Comparison between the asymptotic Fokker-Planck distribution (3.58) (theoretical)
and the numerical solution of the Boltzmann-type equation (simulation) with binary variance
control for ρ = 0.4, p = 0.5, T = 20
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Figure 3.17: Comparison between the asymptotic Fokker-Planck distribution (3.58) (theoretical)
and the numerical solution of the Boltzmann-type equation (simulation) with binary variance
control for ρ = 0.4, p = 0.8, , T = 20
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Figure 3.18: Comparison between the asymptotic Fokker-Planck distribution (3.58) (theoreti-
cal) and the numerical solution of the Boltzmann-type equation (simulation) with desired speed
control for ρ = 0.4, p = 0.2, T = 20
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Figure 3.19: Comparison between the asymptotic Fokker-Planck distribution (3.58) (theoreti-
cal) and the numerical solution of the Boltzmann-type equation (simulation) with desired speed
control for ρ = 0.4, p = 0.5, T = 20
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Figure 3.20: Comparison between the asymptotic Fokker-Planck distribution (3.58) (theoreti-
cal) and the numerical solution of the Boltzmann-type equation (simulation) with desired speed
control for ρ = 0.4, p = 0.8, T = 20

3.13 Conclusion

In this chapter, the kinetic traffic model is deeply investigated by extensively
referring to the literature, in particular to the article [46]. All the tools
learned will be fundamental for subsequent studies, which represent the
core of this thesis.

First, a system without autonomous vehicles is considered. The main fea-
tures of mesoscopic modeling such as the follow-the-leader approach, speed
and fundamental diagrams, the quasi-invariant interaction regime are ex-
plained. Next, autonomous vehicles are introduced in traffic and the Model
Predictive Control strategy is investigated.
Both in the uncontrolled and in the controlled case, the mean speed at
equilibrium and the asymptotic speed distribution are analytically derived.
These findings are validated numerically by means of simulations based on
the Nanbu-Babovsky’s scheme.

It is important to notice that the two control strategies considered lead to
different conclusions. The binary variance control turns out to be efficient
at mitigating road risk for every value of traffic density. Instead, the desired
speed control does not always guarantee this property.
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Chapter 4

Phase transition in kinetic
traffic modeling

The interaction rules represent the core of the kinetic model. They express
in a microscopic fashion how agents change their velocities after binary
interactions. Most importantly, they determine the time evolution of the
speed distribution function f and therefore, macroscopic quantities such as
the mean speed and the macroscopic flux. Changing the interaction rules
would lead to substantial differences in final results and in the aggregate be-
havior, which naturally emerges from the Boltzmann-type kinetic approach.

In this chapter, the impact of the introduction of new interaction rules is
investigated. In the first three sections, the uncontrolled case is studied: the
speed diagram of the system reveals a phase transition, which determines the
shape of the asymptotic speed distribution. Then, the control is introduced
in the subsequent four sections. Two different control strategies are studied:
binary variance and desired speed control. Finally, a section is dedicated to
numerical tests and another to conclusions.

4.1 Nonlinear interaction rules

Let us consider two vehicles, one with speed v and another with speed w.
Their post-interaction speeds, v′ and w′, follow the same interaction rules
previously explained in chapter 3 and first introduced in [46], but with a
different interaction function:

v′ = v + γI(v, w; ρ) +D(v; ρ)η
w′ = w .

(4.1)
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As in [46], γ > 0 and it is a proportionality parameter, while η is a centered
random variable, with zero mean and variance σ2 and D(v; ρ) ≥ 0 is a
diffusion coefficient. Thanks to the term D(v; ρ)η, a stochastic component
is included in the model, allowing to consider the intrinsic stochasticity in
each agent’s behavior.

The interaction function I(v, w; ρ) is defined as

I(v, w; ρ) = P (ρ)(1− v) + (1− P (ρ))(vw − v), (4.2)

where P (ρ) is the probability of accelerating [46]

P (ρ) = (1− ρ)µ, µ > 0. (4.3)

As in [46], a microscopic follow-the-leader approach [18] is assumed. The
difference compared to [46] consists in the term vw instead of P (ρ)v in the
interaction rule. As in [46], when the probability of accelerating is max-
imum and the density is small, the rear vehicle tends to the maximum
allowed speed i.e. 1. The novelty occurs when the density increases and the
probability of accelerating decreases: in this case, the rear vehicle tends to
a fraction of the speed of the leading vehicle and this fraction is given by
the speed of the rear vehicle itself. In other words, when the rear vehicle
decelerates, it is sensitive to the leading vehicle’s speed proportionally to
its speed v: the bigger v is and the more it approaches 1, the higher the
sensitivity to the speed w of the leading vehicle is. Vice versa, the small-
est v is and the more it approaches 0, the less the sensitivity to w is; in
particular, only a fraction of w, given by its own speed v, will be considered.

The physical admissibility of the nonlinear interaction rules (4.1) - (4.2)
is guaranteed by proposition 3.3.1. It can be proved analogously to the
situation with interaction rules (3.1) - (3.2): P (ρ)w ∈ [0,1] is replaced by
vw ∈[0,1].

4.2 Mean speed at equilibrium: emergence of phase
transition

Once the new interaction rules have been defined, a Boltzmann-type kinetic
equation for binary interaction models can be written. We refer to [30] and
to the derivation of this equation explained in detail in subsection 2.1.4.

As previously stated, this equation is fundamental since it rules the evo-
lution of the speed distribution function f = f(t, v). If φ = φ(v) is a generic
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observable and w′ = w in (4.1), the equation in weak form is

d

dt

∫ 1

0
φ(v)f(t, v)dv = 1

2〈
∫ 1

0

∫ 1

0
[φ(v′)− φ(v)]f(t, v)f(t, w)dvdw〉, (4.4)

where 〈·〉 is the expectation with respect to the distribution of the centered
random variable η.

Let us proceed as in section 3.4. First, we observe that if φ(v) = 1,

d

dt

∫ 1

0
φ(v)f(t, v)dv = 0 . (4.5)

This means that, given an initial condition f0(v) = f(0, v) properly nor-
malized, f(t, v) will be normalized and therefore, a distribution probability
∀t > 0 [46].

Instead, if φ(v) = v, an equation which rules the evolution of the mean
speed will be derived. Let us define the mean speed as [46]

V (t) :=
∫ 1

0
vf(t, v)dv . (4.6)

Then, by plugging φ(v) = v in (4.4) together with (4.1) - (4.2), we obtain

d

dt

∫ 1

0
vf(t, v)dv = 1

2〈
∫ 1

0

∫ 1

0

[
γI(v, w; ρ) +D(v; ρ)η

]
f(t, v)f(t, w)dvdw〉,

(4.7)

which is equivalent to

d

dt
V (t) = 1

2〈
∫ 1

0

∫ 1

0
[γI(v, w; ρ) +D(v; ρ)η]f(t, v)f(t, w)dvdw〉 =

= 1
2〈
∫ 1

0

∫ 1

0
{γ[P (ρ)(1− v) + (1− P (ρ))(vw − v)]+

+D(v; ρ)η}f(t, v)f(t, w)dvdw〉.

(4.8)
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Due to the fact that

〈
∫ 1

0

∫ 1

0
{γ[P (ρ)(1− v) + (1− P (ρ))(vw − v)]}f(t, v)f(t, w)dvdw〉 =

= γP (ρ)
( ∫ 1

0
f(t, w)dw

)
︸ ︷︷ ︸

=1

( ∫ 1

0
(1− v)f(t, v)dv

)
︸ ︷︷ ︸

=1−V (t)

+

+ γ(1− P (ρ))
{ ( ∫ 1

0
vf(t, v)dv

)
︸ ︷︷ ︸

=V (t)

( ∫ 1

0
wf(t, w)dw

)
︸ ︷︷ ︸

=V (t)

+

−
( ∫ 1

0
f(t, w)dw

)
︸ ︷︷ ︸

=1

( ∫ 1

0
vf(t, v)dv

)
︸ ︷︷ ︸

=V (t)

}
=

= γ[P (ρ)(1− V (t)) + (1− P (ρ))(V (t)2 − V (t))]}

(4.9)

and

〈
∫ 1

0

∫ 1

0
D(v; ρ)ηf(t, v)f(t, w)dvdw〉 =

∫ 1

0
D(v; ρ)〈η〉f(t, v)dv = 0 , (4.10)

the equation we end up with is the following:
d

dt
V (t) = γ

2 [P (ρ) + (1− P (ρ))V 2(t)− V (t)] . (4.11)

Contrary to equation (3.7) obtained with the interactions in [46], now the
motion of the mean speed V (t) is governed by a differential equation with
a nonlinearity. This originates from the nonlinearity vw contained in the
interaction rules (4.1) - (4.2).

The goal is to the determine the mean speed speed at equilibrium i.e. as
t → +∞. Therefore, first, fixed points of the system are determined and
then, linear stability analysis is performed [41].
Let us rewrite (4.11) as

V̇ = g(V ;P ), (4.12)
where g(V ;P ) = γ

2 [P + (1− P )V 2 − V ] and V, P ∈ [0,1].
In order to determine the fixed points, which will be denoted by V ∗, we
need to solve

g(V ;P ) = 0 ⇐⇒ (1− P )V 2 − V + P = 0 , (4.13)

which is equivalent to solve a quadratic equation. For the moment, the
physical requirement V ∈ [0,1] is dropped and only positive speeds are
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considered. We will be back to this requirement in a second moment. The
solutions of (4.13) are

V ∗ =
1±

√
1− 4P (1− P )
2(1− P ) (4.14)

and we observe that

1− 4P (1− P ) = 4
(
P − 1

2
)2
≥ 0 ∀P . (4.15)

Therefore, the existence of the two fixed points is guaranteed ∀P /= 1.
If P = 1, from (4.13), we obtain V = 1.

Thanks to (4.15), the fixed points can be rewritten as

V ∗ =
1±

√
4(P − 1

2)2

2(1− P ) = 1± 2|P − 1
2 |

2(1− P ) . (4.16)

Three cases should be distinguished:

• if P > 1
2 ,

V ∗ = 1±2(P− 1
2 )

2(1−P )
and the two solutions are

V ∗+ = P

1− P and V ∗− = 1; (4.17)

• if P = 1
2 ,

V ∗ = 1
and therefore, the fixed point is unique;

• if P < 1
2 ,

V ∗ = 1±2( 1
2−P )

2(1−P )
and the two solutions are

V ∗+ = 1 and V ∗− = P

1− P . (4.18)

In order to determine the stability of the fixed points, linear stability
analysis is performed by referring to [41]. Let us introduce

ε(t) := V (t)− V ∗,
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which is the perturbation with respect to the fixed point V ∗. Given (4.12),
ε(t) has the following evolution equation:

ε̇(t) = d

dt
[V (t)− V ∗] = g(V ;P ) = g(V ∗ + ε;P ) . (4.19)

If a small perturbation with respect to the fixed point V ∗ is assumed i.e. we
assume ε→ 0, a Taylor expansion of g(V ∗+ ε;P ) around V ∗ can be carried
out. Therefore, at first order we obtain

ε̇(t) = g(V ∗;P ) + εg′(V ∗;P ) +O(ε2) = εg′(V ∗;P ) +O(ε2), ε→ 0. (4.20)

By neglecting second order terms, we get ε̇(t) ' εg′(V ∗;P ) that is the
linearization about V ∗ and therefore,

ε(t) ' ε(0)eg
′(V ∗;P ) . (4.21)

This means that the sign of g′(V ∗;P ) determines whether the perturbation
grows or decay exponentially, |g′(V ∗;P )| represents the rate of growth or
decay and its inverse is the characteristic time of growth or decay [41]. In
any case, it is important to note that the convergence is exponential in time.

Let us compute the first derivative with respect to V of the function
g(V ;P ) in order to determine the stability of the fixed points [41]:

g′(V ;P ) = γV (1− P )− γ

2 . (4.22)

Let us consider the expression of the fixed points defined in (4.16). If
V ∗ = V ∗+ = 1+2|P− 1

2 |
2(1−P ) , then

g′(V ∗;P ) = γ
1+2|P− 1

2 |
2 − γ

2 = γ|P − 1
2 | ,

and, due to the fact that γ > 0, g′(V ∗;P ) > 0 ∀P ∈ [0,1). So, this fixed
point is unstable ∀P ∈ [0,1).
On the other hand, if V ∗ = V ∗− = 1−2|P− 1

2 |
2(1−P ) , then

g′(V ∗;P ) = γ
1−2|P− 1

2 |
2 − γ

2 = −γ|P − 1
2 | < 0 ∀P ∈ [0,1) ,

and so, this other fixed point is stable ∀P ∈ [0,1).
If P = 1

2 , g
′(V ∗;P ) = 0. This means that we cannot rely on linear stabil-

ity analysis anymore and nonlinear stability analysis has to be performed
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in order to determine the stability of the fixed point [41]. Terms of order
ε2 in (4.20) are not longer negligible and so, a Taylor expansion at second
order is performed:

ε̇(t) = εg′(V ∗;P ) + ε2

2 g
′′(V ∗;P ) +O(ε3), ε→ 0 . (4.23)

For P = 1
2 and V ∗ = 1 and by neglecting terms of order ε3, (4.23) becomes

equivalent to

ε̇(t) ' ε2

2 g
′′(V ∗;P ) = γ

2 ε
2 . (4.24)

Therefore, by solving the evolution equation for the perturbation ε, the
solution turns out to be

ε(t) '
[ 1
ε(0) −

γ

4 t
]−1

. (4.25)

Consequently, the fixed point V ∗ = 1, which is obtained for P = 1
2 , is stable

but contrary to the fixed points previously found, the mean speed converges
to it with a polynomial law. In particular, the mean speed converges to 1 as
t−β, where β = 1. Much longer time is needed to converge to the stationary
solution at the critical point P = 1/2 than at other values of P .

If P = 1, we have previously computed the fixed point, which coincides
with the solution of (4.11) with this value of P and it is V = 1. In this
case,

g(V ;P = 1) = γ
2 (1− V ) and g′(V ;P = 1) = −γ

2 < 0.

Therefore, V ∗ = 1 is a stable fixed point of the system if P = 1.
In figure 4.1 (p. 86), the bifurcation diagram of the system is displayed.

On the top, the speed fixed point is plotted as a function of the probability
of accelerating P . On the bottom, it is plotted as a function of the density
ρ. In particular, it is assumed that the probability of accelerating P has the
form defined in (4.3) and introduced in [46] with µ = 2. This choice of the
exponent µ is properly justified in section 4.8.
If the constraint of physical admissibility is reintroduced i.e. V ∈ [0,1], we
observe that for big values of P or equivalently for small ρ, the unstable
fixed point assumes values outside of this domain. However, this is not a
problem since this fixed point is unstable and at equilibrium the system will
converge to the stable one.
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Figure 4.1: Bifurcation diagram of equation (4.11). On the top, the fixed point is plotted as a
function of the probability of accelerating P . On the bottom, it is plotted as a function of the
density ρ by referring to the definition (4.3) with µ = 2

Most importantly, from this bifurcation diagram, the typical behavior of a
bifurcation is evident: there are two fixed points, one stable and one un-
stable, for all values of density except for a critical value at which the two
fixed points merge. This critical value of density is called critical density
ρc of the system and it marks the passage from one phase to another. The
stability of the two fixed points (FP) remains unchanged.

2 FP → 1 FP → 2 FP
ρ ∈ [0, ρc) ρc ρ ∈ (ρc,1]
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The merging of the two fixed points occurs for P (ρ) = 1
2 and therefore, the

critical density ρc can be determined as follows:

P (ρc) = 1
2 ⇐⇒ (1− ρc)µ = 1

2 ⇐⇒ ρc = 1− 2−
1
µ . (4.26)

Therefore, the critical density turns to be only dependent on the exponent
µ in the probability of accelerating P (ρ).

For ρ ∈ [0, ρc], the system is in the free flow phase: the density is low
and the mean speed of agents coincides with the maximum allowed one.
For ρ ∈ (ρc,1], the system in the congested phase: the density increases and
consequently, the mean speed of agents decreases nonlinearly to 0.

We can summarize our results by saying:

• if P ∈ [0, 1
2) ⇐⇒ ρ ∈ (ρc,1], there are two fixed points: one stable (V ∗−)

and one unstable (V ∗+). The mean speed at equilibrium is V ∗− = P (ρ)
1−P (ρ)

and the system is the congested flow phase;

• if P = 1
2 ⇐⇒ ρ = ρc, there is just one fixed point which is stable and

is V ∗ = 1. The system is at the critical point;

• if P ∈ (1
2 ,1] ⇐⇒ ρ ∈ [0, ρc), there are two fixed points: one stable

(V ∗−) e one unstable (V ∗+). The mean speed at equilibrium is V ∗− = 1
and the system is in the free flow phase.

V∞(ρ) =
{ P (ρ)

1−P (ρ) if ρ ∈ (ρc,1]
1 if ρ ∈ [0, ρc]

(4.27)

4.3 The asymptotic speed distribution with nonlinear
interaction rules

The emergence of a phase transition is evident from the study of the mean
speed at equilibrium. The next step in our analysis is to obtain the asymp-
totic speed distribution f∞ = f∞(v). It would be expected to obtain a sharp
transition in the shape of the speed distribution function at equilibrium; in
particular, this transition would occur for the critical density previously ob-
tained.

As explained in detail in section 3.6, the quasi-invariant interaction limit
is considered in order to analytically determine an expression for f∞. Let
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us recall this limit:

γ, σ2 → 0+ such that σ2

γ → λ > 0 .

Calculations are identical to section 3.6 until the interaction function and
the mean speed at equilibrium have to be plugged in. Therefore, let us
consider equation (3.21) [46]:

∂τ f̃ = λ

2∂
2
v

(
D2(v; ρ)f̃

)
− ∂v

(( ∫ 1

0
I(v, w; ρ)f̃(τ, w)dw

)
f̃

)
(4.28)

with the boundary conditions


( ∫ 1
0 I(v, w; ρ)f̃(τ, w)dw

)
f̃(τ, v) + λ

2∂v

(
D2(v; ρ)f̃(τ, v)

)
= 0

D2(v; ρ)f̃(τ, v) = 0
(4.29)

for v = 0,1 and ∀τ > 0.
Let us compute the integral of the new interaction function (4.2) in the

Fokker-Planck PDE (4.28):
∫ 1

0
I(v, w; ρ)f̃(τ, w)dw =

∫ 1

0

[
P (ρ)(1− v) + (1− P (ρ))(vw − v)

]
f̃(τ, w)dw =

= P (ρ)(1− v) + (1− P (ρ))v(Ṽ − 1) ,
(4.30)

where Ṽ is the mean speed with respect to the distribution function f̃ i.e.
Ṽ = ∫ 1

0 wf̃(τ, w)dw.
At equilibrium i.e. for τ → +∞, the Fokker-Planck type equation (4.28)

becomes

λ

2∂
2
v

(
D2(v; ρ)f̃∞

)
−∂v

{[
P (ρ)(1−v)+(1−P (ρ))v(Ṽ∞−1)

]
f̃∞

}
= 0 . (4.31)

At this point, the analysis for the two different regimes have to be performed
separately. Let us consider the congested flow regime. As derived in the
previous section, it corresponds to P ∈ [0, 1

2) ⇐⇒ ρ ∈ (ρc,1]. In this
regime,

Ṽ∞(ρ) = P (ρ)
1− P (ρ) ⇐⇒ Ṽ∞(ρ)(1− P (ρ)) = P (ρ) . (4.32)
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Therefore, we have[
P (ρ)(1− v) + (1− P (ρ))v(Ṽ∞ − 1)

]
=

= P (ρ)− P (ρ)v + vṼ∞ − v − P (ρ)vṼ∞ + P (ρ)v =
= vṼ∞(1− P (ρ)) + P (ρ)− v = vP (ρ) + P (ρ)− v = P (ρ)− v(1− P (ρ)),

(4.33)

where in the penultimate equality, (4.32) has been plugged in.
This results is then used to rewrite (4.31):

λ

2∂
2
v

(
D2(v; ρ)f̃∞

)
− ∂v

{[
P (ρ)− v(1− P (ρ))

]
f̃∞

}
= 0 ⇐⇒

⇐⇒ ∂v

{
λD(v; ρ)f̃∞∂vD(v; ρ) + λ

2D
2(v; ρ)∂vf̃∞+

−
[
P (ρ)− v(1− P (ρ))

]
f̃∞

}
= 0

=⇒
∫ df̃∞

f̃∞
= −2

∫ ∂vD(v; ρ)
D(v; ρ) dv + 2

λ

∫ [
P (ρ)

D2(v; ρ) −
v(1− P (ρ))
D2(v; ρ)

]
dv .

(4.34)

In order to introduce the diffusion coefficient D(v; ρ), we refer to section
3.6 and in particular, to definition (3.26) and remark 3.6.1:

D(v; ρ) = a(ρ)
√
v(1− v) , a(ρ) ≥ 0 . (4.35)

Then, the integrals in (4.34) can be solved:

2
∫ ∂vD(v; ρ)

D(v; ρ) dv = 2 logD(v; ρ)
∫ P (ρ)
D2(v; ρ)dv = P (ρ)

a2(ρ)

∫ [1
v

+ 1
1− v

]
dv = P (ρ)

a2(ρ) log
(

v

1− v

)
∫ v(1− P (ρ))

D2(v; ρ) dv = −1− P (ρ)
a2(ρ) log (1− v) .

(4.36)

Eventually, the asymptotic speed distribution turns out to be a beta
probability density function as in [46] - see (3.28) - (3.29):

f̃∞(v) = vα−1(1− v)β−1

B(α, β)
(4.37)
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but with different parameters α and β. They are

α := 2P (ρ)
λa2(ρ)

β := 2(1− P (ρ))
λa2(ρ) − 2P (ρ)

λa2(ρ) = 2(1− 2P (ρ))
λa2(ρ) .

(4.38)

B(α, β) is the beta function i.e. B(α, β) = ∫ 1
0 x

α−1(1− x)β−1dx.

Remark 4.3.1. • α = P (ρ)
λa2(ρ) ≥ 0 since P (ρ) ∈ [0,1], λ >0

However, the case α = 0 corresponds to maximum density i.e. ρ = 1
since P (ρ) = (1 − ρ)µ, µ > 0. We are confident enough it is highly
improbable to have the system in such a situation. Therefore, we can
consider α > 0 and consequently, the beta distribution well-defined.

• β = 2(1−2P (ρ))
λa2(ρ) > 0 ⇐⇒ 1− 2P (ρ) > 0 ⇐⇒ P (ρ) < 1

2
P (ρ) < 1

2 holds since we are in the congested flow regime. So, this
implies β > 0.

�

Let us note that (4.28) is accompanied with boundary conditions. Anal-
ogously to [46], these conditions are satisfied if

a2(ρ) ≤ 1
λ

min{P (ρ),2(1− 2P (ρ))} . (4.39)

Indeed, if (4.39) holds, the asymptotic distribution function f̃∞ and its
derivative ∂vf̃∞ are null in the extreme values of the speed domain i.e.
v = 0, 1.

If X is a random variable such that X ∼ f̃∞,

E[X] = α

α + β
= P (ρ)

1− P (ρ) = Ṽ∞(ρ)

Var(X) = αβ

(α + β)2(α + β + 1) = (1− Ṽ∞(ρ))Ṽ 2
∞(ρ)

2P (ρ) + λa2(ρ)Ṽ∞(ρ)
λa2(ρ) ,

(4.40)

where the relation α + β = α
Ṽ∞

has been used.
Coherently, the expected value of a random variable distributed according
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to the asymptotic speed distribution (4.37) is the mean speed at equilibrium
Ṽ∞(ρ).

Now, let us consider the free flow regime. As derived in the previous
section, it corresponds to P ∈ [1

2 ,1] ⇐⇒ ρ ∈ [0, ρc]. In this regime,
Ṽ∞ = 1.

In order to have insight on the change of shape of the asymptotic speed
distribution which occurs at the critical point, we can approach the free
flow regime. Therefore, let us introduce

ε := 1− Ṽ∞ → 0+.

The content of the square parenthesis in (4.31) can be rewritten as
P (ρ)(1− v) + (1− P (ρ))v(Ṽ∞ − 1) = P (ρ)(1− v)− (1− P (ρ))vε (4.41)

and by plugging it into (4.31), the following Fokker-Planck type equation
at equilibrium is obtained:

λ

2∂
2
v

(
D2(v; ρ)f̃∞

)
− ∂v

{[
P (ρ)(1− v)− (1− P (ρ))vε

]
f̃∞

}
= 0 ⇐⇒

⇐⇒ ∂v

{
λD(v; ρ)f̃∞∂vD(v; ρ) + λ

2D
2(v; ρ)∂vf̃∞+

−
[
P (ρ)(1− v)− (1− P (ρ))vε

]
f̃∞

}
= 0

=⇒
∫ df̃∞

f̃∞
= −2

∫ ∂vD(v; ρ)
D(v; ρ) dv + 2

λ

∫ [
P (ρ)(1− v)
D2(v; ρ) − εv(1− P (ρ))

D2(v; ρ)

]
dv .

(4.42)
By referring to (4.35), the integrals in (4.42) can be solved:

2
∫ ∂vD(v; ρ)

D(v; ρ) dv = 2 logD(v; ρ)
∫ P (ρ)(1− v)

D2(v; ρ) dv = P (ρ)
a2(ρ) log (v)

∫ εv(1− P (ρ))
D2(v; ρ) dv = −1− P (ρ)

a2(ρ) ε log (1− v) .

(4.43)

The asymptotic speed distribution is still a beta probability density func-
tion

f̃∞(v) = vα−1(1− v)β−1

B(α, β) , (4.44)
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but with different parameter β compared to the deep congested phase. In-
deed, if we approach the free flow phase, the parameters of the asymptotic
speed distribution are

α := 2P (ρ)
λa2(ρ)

β := 2(1− P (ρ))
λa2(ρ) ε .

(4.45)

Remark 4.3.2. • α is invariant compared to the congested flow phase
and α > 0.

• β = 2(1−P (ρ))
λa2(ρ) ε→ 0+ since ε→ 0+.

�

As in the congested flow phase, fulfillment of the boundary conditions in
(4.28) is required. Analogously to [46], these conditions are satisfied if

a2(ρ) ≤ 1
λ

min{2P (ρ),2(1− P (ρ))ε} ' 1
λ

min{2P (ρ),0} ' 0 , (4.46)

since P (ρ) ∈ [0,1]. Therefore, a(ρ) ' 0 in this regime. This is coherent
indeed, if for example a(ρ) = ρ(1 − ρ), a(ρ) → 0+ in the free flow regime
since ρ→ 0+.

If X is a random variable such that X ∼ f̃∞ and ε→ 0+,

E[X] = α

α + β
→ 1

Var(X) = αβ

(α + β)2(α + β + 1) → 0+ .
(4.47)

By approaching the free flow regime, the expected value of a random variable
distributed according to the asymptotic speed distribution tends to the
maximum allowed speed. On the other hand, the variance shrinks to 0.
This means that in the free flow phase, where ε = 0, the asymptotic speed
distribution is a Dirac delta distribution centered at 1:

f̃∞ = δ(v − 1). (4.48)

From the derivation of the asymptotic speed distribution in the two dif-
ferent regimes, the phase transition is evident. For densities greater than
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the critical density ρc, the system is in the congested phase and the asymp-
totic speed distribution is a beta distribution function with parameters α,
β > 0. When the density overcomes the threshold i.e. ρc, the asymptotic
speed distribution suddenly shrinks to a Dirac delta centered at the maxi-
mum allowed speed i.e. 1.
This behavior reflects the piecewise-defined mean speed at equilibrium and
this is in turn due to the nonlinearity in the new interaction rules introduced
with (4.1) and (4.2).

The kinetic approach used in this dissertation expresses full potential-
ity in dealing with phase transition. Phase transition has been previously
considered in macroscopic models and in this framework the approach is
totally different. The existence of a phase transition is postulated a priori
by assuming the existence of two different regions in the phase space, one
for the free flow and another for the congested flow [32]. Different equations
rule the dynamics in these two different regimes. In particular, in the free
flow regime, the speed is uniquely determined by the density while, in the
congested flow regime, it depends both on the density and on the flux.
Looking at the problem with the kinetic modeling’s glasses means chang-
ing completely point of view. In this case, the phase transition naturally
emerges from the derivation of macroscopic quantities, such as the mean
speed and the asymptotic speed distribution, and it is due to the micro-
scopic interaction rules, which determine the dynamics of the systems. No
ansatz is needed. We only need to define the interaction rules by best mod-
eling the real interactions between vehicles and let the system evolve.

Insight on the definition of phase transition

In the literature [16; 23; 32; 36; 37], phase transition is defined
from a phenomenological point of view. Several definitions of this
phenomenon exist and they are all based on the slope change in the
fundamental diagram.

As explained in section 3.5, the fundamental diagram represents
the flux q(ρ) = ρv(ρ) as a function of the density ρ. Therefore, the
slope of this curve in the (ρ, q) plane is given by q′(ρ) = v(ρ)+ρv′(ρ).
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If we consider the mean speed at equilibrium, which is defined in
equation (4.27) then, we have that if ρ ∈ [0, ρc], v(ρ) = 1 and q′(ρ) =
1 i.e. the slope of the flux in the fundamental diagram is positive for
densities smaller than or equal to the critical. Instead, if ρ ∈ (ρc,1],
v′(ρ) < 0. Therefore, there exists a value of ρ such that q′(ρ) is
negative.
The value of density for which the slope of the flux becomes negative
can be identified as follows. Let us impose that q′(ρ) < 0 if
ρ ∈ (ρc,1]. This condition is equivalent to v′/v < −1/ρ and it can be
integrated in the density range [ρc, ρ] where ρ ∈ [ρc,1]. So, we have

∫ ρ

ρc

v′

v
dρ < −

∫ ρ

ρc

1
ρ
dρ ⇐⇒

⇐⇒ log(v(ρ)) < − log
( ρ
ρc

)
⇐⇒ v(ρ) < ρc

ρ
.

Due to the fact that if ρ → 1−, v(ρ) → 0 and ρc/ρ → ρc and since
v(ρ) is continuous and monotonic if ρ ∈ [ρc,1], we will have that
v(ρ) < ρc

ρ holds for ρ ∈ [ρc,1]. Consequently, the value of density for
which the change of slope in the flux occurs, is the critical ρc and
this is due to the bifurcation we obtain in the analysis of the mean
speed at equilibrium.

An easier way to obtain the critical density and so, the phase
transition could rely on determining the maximum flux. Indeed,
this value of q(ρ) marks the passage from the positive to negative
slope. However, the definition which is based on the slope inversion
is empirical and by referring to data, it is not possible to identify a
density value for which the flux is maximum. From an experimen-
tal point of view, the so-called capacity drop is observed [23]: close
to the critical density, the flux is discontinuous and once we are in
the congested regime, flux sharply drops. Therefore, it is more sig-
nificant to identify the phase transition by studying the bifurcation,
which is a solid trait of the system dynamics, rather than identifying
the maximum flux, which is not reproduced by experimental data.
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4.4 Nonlinear interactions rules: controlled dynamics

As examined in depth in section 3.7 following the derivation in [46], it is
possible to modify the interaction rules in order to take into account the
presence of autonomous vehicles in traffic.

Let us consider the nonlinear interaction rules, defined in (4.1) - (4.2).
The goal of this section is to introduce a control u [45; 46], in order to
investigate the behavior of macroscopic quantities, such as mean speed at
equilibrium and asymptotic speed distribution, in presence of a phase tran-
sition and for different control strategies.

Interaction rules are modified as follows by the introduction of the control
[46]:

v′ = v + γ
[
I(v, w; ρ) + θu

]
+D(v; ρ)η

w′ = w
(4.49)

where θ is a Bernoulli random variable of parameter p i.e. θ ∼ Bernoulli(p)
and p represents the penetration rate that means the percentage of au-
tonomous vehicles in the traffic. The control u is actually [46]

u∗ = arg min
u∈U

J(v′;u) (4.50)

and J(v′;u) is a least-square cost functional. As explained in section 3.7,
the introduction of autonomous vehicles aims at the reduction of road risk,
which is equivalent to the reduction of speed variability within the stream
of vehicles [50]. Therefore,

J(v′;u) = 1
2〈
(
Vd(w′; ρ)− v′

)2 + νu2〉η , ν > 0 (4.51)

where Vd(w′; ρ) = w′ = w if the control strategy is the binary variance
control, and Vd(w′; ρ) = vd(ρ) ∈ [0,1] if the control strategy is the desired
speed control [46]. We refer to section 3.7 for detailed explanations and
for the derivation of the feedback controlled microscopic interaction rules,
which is based on a Model Predictive Control approach [8] and the use of the
Pontryagin’s maximum principle [34]. Calculations are identical since the
only difference between interaction rules is due to the interaction function
I(v, w; ρ).
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Let us recall the expression of the feedback controlled microscopic interac-
tion rules [46]:

v′ = v + γ2θ2

ν + γ2θ2

[
Vd(w; ρ)− v

]
+ γν

ν + γ2θ2I(v, w; ρ) +D(v; ρ)η

w′ = w

(4.52)

where I(v, w; ρ) is defined in (4.2). The physical admissibility of these
interaction rules is guaranteed by the criteria outlined in proposition 3.8.1.

4.5 Controlled dynamics: mean speed at equilibrium
and asymptotic speed distribution

First, let us define the Boltzmann-type equation of the system [46]:
d

dt

∫ 1

0
φ(v)f∗(t, v)dv = 1

2Eθ
[
〈
∫ 1

0

∫ 1

0
[φ(v′))− φ(v)]f∗(t, v)f∗(t, w)dvdw〉η

]
,

(4.53)
where, compared to (4.4), the expected value with respect to the Bernoulli
random variable θ has been introduced and the superscript ∗ refers to the
fact that the controlled case is considered.

In order to derive the evolution equation for the mean speed, we set
φ(v) = v and interaction rules (4.52) are plugged in (4.53):

dV ∗

dt
= γ

2

 pγ

ν + γ2

∫ 1

0

[
Vd(w; ρ)− v

]
f∗(t, w)dw+

+ pν

ν + γ2

[
P (ρ)(1− V ∗) + (1− P (ρ))((V ∗)2 − V ∗)

]
+

+ (1− p)
[
P (ρ)(1− V ∗) + (1− P (ρ))((V ∗)2 − V ∗)

] ⇐⇒
⇐⇒ dV ∗

dt
= γ

2

pν + (1− p)(ν + γ2)
ν + γ2

[
P (ρ)(1− V ∗)+

+ (1− P (ρ))((V ∗)2 − V ∗)
]
+

+ pγ

ν + γ2

( ∫ 1

0
Vd(w; ρ)f∗(t, w)dw − V ∗

) ,

(4.54)
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where V ∗ = V ∗(t) := ∫ 1
0 vf

∗(t, v)dv i.e. V ∗ is the mean speed in the con-
trolled case [46].
Remark 4.5.1. If p = 0 i.e. there are no autonomous vehicles in the traffic,
(4.54) becomes equivalent to (4.11). This also occurs if ν → +∞ indeed this
case corresponds to the situation of maximum penalization of large controls
and the cost functional is minimized by u = 0.

On the other hand, if ν → 0+ i.e. large controls are not penalized at
all and p = 1 i.e. the penetration rate is maximum, the evolution equation
of the mean speed is dominated by the last term at the right-hand side of
(4.54), which is absent in (4.11) and is completely due to the presence of
the control. For ν → 0+ and intermediate values of penetration rate p i.e.
p ∈ (0,1), both terms of the right-hand side of (4.54) play a role. �

As in section 3.9, the quasi-invariant interaction limit is assumed in or-
der to analytically determine an expression for V ∗∞ [46]. Let us recall this
limit in the controlled case:

γ, ν, σ2 → 0+ such that σ2

γ → λ > 0 and ν
γ → κ > 0 .

Moreover, the new time scale τ := γ
2 t, the scaled distribution function

f̃∗(τ, v) := f∗(2τ/γ, v) and the scaled mean speed Ṽ ∗(τ) := V ∗(2τ/γ) are
introduced. Therefore, we obtain

dṼ ∗

dτ
= ν + γ2

ν + γ2

[
P (ρ)(1− Ṽ ∗) + (1− P (ρ))

(
(Ṽ ∗)2 − Ṽ ∗

)]
+

− p

1 + ν
γ2

[
P (ρ)(1− Ṽ ∗) + (1− P (ρ))

(
(Ṽ ∗)2 − Ṽ ∗

)]
+

+ p
ν
γ + γ

( ∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw − Ṽ ∗

) (4.55)

and in the quasi-invariant interaction limit, equation (4.55) becomes
dṼ ∗

dτ
=
[
P (ρ)(1− Ṽ ∗) + (1− P (ρ))

(
(Ṽ ∗)2 − Ṽ ∗

)]
+

+ p

κ

( ∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw − Ṽ ∗

)
⇐⇒

⇐⇒ dṼ ∗

dτ
= P (ρ) + (Ṽ ∗)2(1− P (ρ))− (1 + p∗)Ṽ ∗+

+ p∗
( ∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw

)
,

(4.56)
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where p∗ is the effective penetration rate and is defined as p∗ := p
κ . In

order to obtain the mean speed at equilibrium, the limit τ → +∞ will be
considered and so, the equation

P (ρ) + (Ṽ ∗∞)2(1− P (ρ))− (1 + p∗)Ṽ ∗∞ + p∗
( ∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw

)
= 0

(4.57)

will be studied for the two different control strategies.
Analogously, an equation for the asymptotic speed distribution to be

studied for the two different control strategies can be derived.
As explained in detail in section 3.10, the Fokker-Planck PDE for f̃∗, which
is obtained in the quasi-invariant interaction limit is [46]

∂τ f̃∗ = λ

2∂
2
v

(
D2(v; ρ)f̃∗

)
+

− ∂v
{[ ∫ 1

0

(
I(v, w; ρ) + p∗Vd(w; ρ)

)
f̃∗(τ, w)dw − p∗v

]
f̃∗
}
.

(4.58)

If τ → +∞ and by plugging the interaction function defined in (4.2), we
obtain

λ

2∂
2
v

(
D2(v; ρ)f̃∗

)
− ∂v

{[
P (ρ)(1− v) + (1− P (ρ))v(Ṽ ∗∞ − 1)+

+ p∗
∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw − p∗v

]
f̃∗
}

= 0 .
(4.59)

The content of square brackets in (4.59) can be rewritten as follows:

P (ρ)(1− v) + (1− P (ρ))v(Ṽ ∗∞ − 1) + p∗
∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw − p∗v =

= P (ρ) + vṼ ∗∞(1− P (ρ))− (1 + p∗)v + p∗
∫ 1

0
Vd(w; ρ)f̃∗(τ, w)dw =

= P (ρ) + vṼ ∗∞(1− P (ρ))− (1 + p∗)v+

−
[
P (ρ) + (Ṽ ∗∞)2(1− P (ρ))− (1 + p∗)Ṽ ∗∞

]
=

= vṼ ∗∞(1− P (ρ)) + (1 + p∗)
(
Ṽ ∗∞ − v

)
− (Ṽ ∗∞)2(1− P (ρ)) ,

(4.60)

where in the second equality, (4.57) is used in order to rewrite the last term.
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Therefore, we obtain

λ

2∂
2
v

(
D2(v; ρ)f̃∗

)
= ∂v

{[
vṼ ∗∞(1− P (ρ)) + (1 + p∗)

(
Ṽ ∗∞ − v

)
+

− (Ṽ ∗∞)2(1− P (ρ))
]
f̃∗
}

=⇒
∫ df̃∞

f̃∞
= −2

∫ ∂vD(v; ρ)
D(v; ρ) dv + 2

λ

∫ [
vṼ ∗∞(1− P (ρ))

D2(v; ρ) +

+
(1 + p∗)

(
Ṽ ∗∞ − v

)
D2(v; ρ) − (Ṽ ∗∞)2(1− P (ρ))

D2(v; ρ)

]
dv .

(4.61)

As in the uncontrolled case, the diffusion coefficient is chosen by referring
to section 3.6 and in particular, to definition (3.26) and remark 3.6.1. Then,
the integrals in (4.61) can be solved:

− 2
∫ ∂vD(v; ρ)

D(v; ρ) dv = −2 logD(v; ρ)
∫ vṼ ∗∞(1− P (ρ))

D2(v; ρ) dv = − Ṽ
∗
∞(1− P (ρ))
a2(ρ) log (1− v)

∫ (1 + p∗)
(
Ṽ ∗∞ − v

)
D2(v; ρ) dv = (1 + p∗)Ṽ ∗∞

a2(ρ) log
(

v

1− v

)
+ (1 + p∗)

a2(ρ) log (1− v)

−
∫ (Ṽ ∗∞)2(1− P (ρ))

D2(v; ρ) dv = −(Ṽ ∗∞)2(1− P (ρ))
a2(ρ) log

(
v

1− v

)
.

(4.62)

The asymptotic speed distribution turns out to be a beta probability
density function

f̃∗∞(v) = vα−1(1− v)β−1

B(α, β) , (4.63)
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with parameters α and β defined as follows:

α :=2
λ

{(1 + p∗)Ṽ ∗∞
a2(ρ) − (Ṽ ∗∞)2(1− P (ρ))

a2(ρ)

}
= 2Ṽ ∗∞
λa2(ρ)

[
(1 + p∗)− Ṽ ∗∞(1− P (ρ))

]

=⇒ α := 2Ṽ ∗∞
λa2(ρ)

[
(1 + p∗)− Ṽ ∗∞(1− P (ρ))

]

β :=2
λ

{
− Ṽ ∗∞(1− P (ρ))

a2(ρ) + (1 + p∗)(1− Ṽ ∗∞)
a2(ρ) + (Ṽ ∗∞)2(1− P (ρ))

a2(ρ)

}
=

= 2
λa2(ρ)

{(
(Ṽ ∗∞)2 − Ṽ ∗∞

)
(1− P (ρ)) + (1 + p∗)(1− Ṽ ∗∞)

}

=⇒ β := 2
λa2(ρ)

{(
(Ṽ ∗∞)2 − Ṽ ∗∞

)
(1− P (ρ)) + (1 + p∗)(1− Ṽ ∗∞)

}
.

(4.64)

Remark 4.5.2. • α = 2Ṽ ∗∞
λa2(ρ)︸ ︷︷ ︸
≥0

[
(1 + p∗)︸ ︷︷ ︸
≥1

− Ṽ ∗∞(1− P (ρ))︸ ︷︷ ︸
∈[0,1]

]
≥ 0

The case α = 0 corresponds to minimum mean speed i.e. Ṽ ∗∞ = 0 and
therefore, to maximum density i.e. ρ = 1. We are confident enough
it is highly improbable to have the system in such a situation there-
fore, we can consider α > 0 and consequently, the beta distribution
well-defined.

• β = 2
λa2(ρ)︸ ︷︷ ︸
>0

{ (
(Ṽ ∗∞)2 − Ṽ ∗∞

)
(1− P (ρ))︸ ︷︷ ︸

∈[0,1]

+ (1 + p∗)︸ ︷︷ ︸
≥1

(1− Ṽ ∗∞)︸ ︷︷ ︸
∈[0,1]

}
≥ 0

The case β = 0 corresponds to maximum mean speed i.e. Ṽ ∗∞ = 1.
We will see that this occurs in the free flow regime for the binary vari-
ance control. In this case, the beta distribution shrinks to a Dirac
delta centered at 1. For all other cases β > 0 and consequently, the
beta distribution can be considered well-defined.

�

Remark 4.5.3. If p∗ = 0 i.e. there are not autonomous vehicles, α and β
in (4.64) turns out to be equivalent to the corresponding parameters in the
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uncontrolled case. Indeed, we obtain

α := 2Ṽ∞
λa2(ρ)

[
1− Ṽ∞(1− P (ρ))

]

β := 2
λa2(ρ)

{(
(Ṽ∞)2 − Ṽ∞

)
(1− P (ρ)) + (1− Ṽ∞)

}
.

(4.65)

In the congested flow regime, where Ṽ∞ = P (ρ)
1−P (ρ) , by reworking on (4.65)

we have

α := 2P (ρ)
λa2(ρ)

β := 2(1− 2P (ρ))
λa2(ρ) .

(4.66)

Instead, if we approach the free flow regime i.e. Ṽ∞ → 1, by reworking on
(4.65) we obtain

α := 2P (ρ)
λa2(ρ)

β → 0+ .

(4.67)

�

Let us note that (4.58) is accompanied with boundary conditions. These
conditions are satisfied if the asymptotic distribution function f̃∗∞ and its
derivative ∂vf̃∗∞ are null in the extreme values of the speed domain i.e.
v = 0, 1 [46]. This is equivalent to state that α− 2 ≥ 0

β − 2 ≥ 0 (4.68)

and by reworking on it, a condition for a2(ρ), similar to the one obtained
in the uncontrolled case, can be imposed.

If X∗ is a random variable such that X∗ ∼ f̃∗∞,

E[X∗] = α

α + β
= Ṽ ∗∞

Var(X∗) = αβ

(α + β)2(α + β + 1) = (1− Ṽ ∗∞)Ṽ ∗∞
2

Ṽ ∗∞ + 2Ṽ ∗∞
λa2(ρ)

[
(1 + p∗)− Ṽ ∗∞(1− P (ρ))

] ,
(4.69)
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where the relation α + β = α
Ṽ ∗∞

has been used.
Coherently, the expected value of a random variable distributed according
to the asymptotic speed distribution (4.63) is the mean speed at equilibrium
in the controlled case Ṽ ∗∞.

4.6 Binary variance control

The binary variance control is a strategy, which aims at reducing road risk.
This is achieved by reducing the post-interaction speed variance of the two
vehicles involved in a binary interaction.
In particular, this control strategy assumes: Vd(w′; ρ) = w′ = w. If this
is plugged in equation (4.57), we obtain the mean speed at equilibrium in
presence of a binary variance control. Indeed, (4.57) becomes

P (ρ) + (Ṽ ∗∞)2(1− P (ρ))− (1 + p∗)Ṽ ∗∞ + p∗Ṽ ∗∞ = 0 ⇐⇒
⇐⇒ P (ρ) + (Ṽ ∗∞)2(1− P (ρ))− Ṽ ∗∞ = 0

(4.70)

and therefore, the analysis is equivalent to the one performed in the uncon-
trolled case - see equation (4.11) and subsequent calculations:

Ṽ ∗∞(ρ) =


P (ρ)
1−P (ρ) if ρ ∈ (ρc,1]

1 if ρ ∈ [0, ρc] .
(4.71)

The asymptotic speed distribution with this control strategy is the beta
distribution defined in (4.63). The parameters α and β of this distribution
are defined in (4.64) and they are functions of Ṽ ∗∞, P (ρ) and p∗. With
the binary variance control, the mean speed at equilibrium Ṽ ∗∞ has the form
defined in (4.71). This means that, even if α and β have different expressions
due to the presence of the control, the phase transition is still present and
it occurs for the same critical density found in the uncontrolled case. For
ρ ∈ (ρc,1], the asymptotic speed distribution is a beta distribution with
α, β > 0. For densities smaller than or equal to ρc, the asymptotic speed
distribution shrinks to a Dirac delta centered at 1. Indeed, if Ṽ ∗∞ → 1 i.e.
by approaching the free flow regime, we obtain

α→ 2
λa2(ρ)

(
p∗ + P (ρ)

)
β → 0+ .

(4.72)

Therefore, in the free flow regime, f̃∗∞(v) = δ(v − 1) as in the uncontrolled
case.
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If our analysis was just limited to the speed and the fundamental dia-
grams, no difference would be revealed compared to the uncontrolled case.
Indeed, the mean speed at equilibrium is not affected by the introduction
of the binary variance control. Instead, the study of the asymptotic speed
distribution shows that, even though the phase transition from a beta dis-
tribution to a Dirac delta is preserved, the parameters which characterize
the beta distribution are different. In the controlled case, the parameters α
and β also depends on the effective penetration rate p∗.

Let us consider the free flow regime. In this regime, both in the un-
controlled and in the controlled case, the asymptotic speed distribution is
a Dirac delta centered at 1. So, we have Var(X∗) = Var(X) = 0. On
the other hand, in the congested flow regime, the variance of the beta dis-
tribution decreases once the binary variance control is introduced. We can
directly compare variances in (4.40) and (4.69) since Ṽ∞ = Ṽ ∗∞. If we rework
them by considering the expression of Ṽ∞ and p∗ > 0, we obtain

(1− Ṽ ∗∞)Ṽ ∗∞
2

Ṽ ∗∞ + 2Ṽ ∗∞
λa2(ρ)

[
(1 + p∗)− Ṽ ∗∞(1− P (ρ))

]
︸ ︷︷ ︸

Var(X∗)

<
(1− Ṽ∞)Ṽ 2

∞

Ṽ∞ + 2V∞(1−P (ρ))
λa2(ρ)︸ ︷︷ ︸

Var(X)

∀ρ ∈ (ρc,1]

(4.73)

=⇒ Var(X∗) ≤ Var(X) ∀ρ ∈ [0,1] with the binary control strategy.

In figure 4.2 (p. 104), the variance of the asymptotic speed distribution
is plotted as a function of the density ρ, in the congested flow regime and
for different values of the effective penetration rate p∗. The case p∗ = 0
corresponds to the uncontrolled case. It is evident that this variance is
greater than others for every value of density. Coherently with the literature
[46], the binary variance control strategy is able to effectively reduce the
speed variability in the traffic and therefore, road risk. The novelty is that,
due to the presence of the phase transition, a range of densities for which
the variance is identically equal to 0 is identified and it corresponds to the
free flow regime.
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Figure 4.2: Variance in (4.69) related to the asymptotic speed distribution (4.63) in the congested
flow regime. The control strategy is the binary variance control so, Ṽ ∗∞ is given by (4.71)

4.7 Desired speed control

With the binary variance control strategy, the mean speed at equilibrium
is equivalent to the one obtained in the uncontrolled case and the phase
transition is preserved. This does not hold for all control strategies indeed,
we will see that this is not the case of the desired speed control.

The desired speed control is a strategy, which aims at reducing the speed
variance of one vehicle with the desired speed vd(ρ), which could be a sug-
gested or a prescribed speed that just depends on the traffic density ρ. In
particular, it is assumed that Vd(w′; ρ) = vd(ρ). If this is plugged in equa-
tion (4.56), the evolution equation for the mean speed with desired speed
control is obtained. Indeed, (4.56) becomes

dṼ ∗

dτ
= P (ρ) + (Ṽ ∗)2(1− P (ρ))− (1 + p∗)Ṽ ∗ + p∗vd(ρ) . (4.74)

The goal is to the determine the mean speed speed at equilibrium i.e. as
t → +∞. Therefore, first, fixed points of the system are determined and
then, linear stability analysis [41] is performed.
Let us rewrite (4.74) as

˙̃
V ∗ = h(Ṽ ∗; p∗, P, vd), (4.75)

where h(Ṽ ∗; p∗, P, vd) = P + (Ṽ ∗)2(1− P )− (1 + p∗)Ṽ ∗ + p∗vd and p∗ > 0,
Ṽ ∗, P, vd ∈ [0,1].
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In order to determine fixed points, we need to solve

h(Ṽ ∗; p∗, P, vd) = 0 ⇐⇒ (Ṽ ∗)2(1−P )−(1+p∗)Ṽ ∗+(P+p∗vd) = 0 , (4.76)

which is equivalent to solve a quadratic equation. For the moment, the
physical requirement Ṽ ∗ ∈ [0,1] is dropped and only positive speeds are
considered. We will be back to this requirement in a second moment. If
P (ρ) ∈ [0,1), the solutions of (4.76) are

Ṽ ∗± =
(1 + p∗)±

√
(1 + p∗)2 − 4(1− P )(P + p∗vd)

2(1− P ) =

=(1 + p∗)±
√

∆
2(1− P ) ,

(4.77)

where
∆ := (1 + p∗)2 − 4(1− P )(P + p∗vd) . (4.78)

∆ can be considered as the discriminant of the quadratic equation (4.76).
Let us assume for the moment that ∆ ≥ 0 and therefore, both the fixed
points exist. Indeed, if ∆ < 0, the quadratic equation has no solution and
the system has not fixed points. We will come back to this issue later.

The stability of the fixed points (4.77) can be determined by performing
linear stability analysis [41] as explained in detail in section 4.2.
Let us compute the first derivative with respect to Ṽ ∗ of the function
h(Ṽ ∗; p∗, P, vd):

h′(Ṽ ∗; p∗, P, vd) = 2(1− P )Ṽ ∗ − (1 + p∗) . (4.79)

If the fixed points Ṽ ∗± in (4.77) are plugged in (4.79), we obtain

h′(Ṽ ∗±; p∗, P, vd) = ±
√

∆ .

Therefore, Ṽ ∗+ = Ṽ ∗+(ρ) is unstable ∀ρ ∈ [0,1] while Ṽ ∗− = Ṽ ∗−(ρ) is sta-
ble ∀ρ ∈ [0,1].
Once the desired speed control is introduced, the mean speed at equilibrium
is equal to the stable fixed point just found:

Ṽ ∗∞ =
(1 + p∗)−

√
(1 + p∗)2 − 4(1− P )(P + p∗vd)

2(1− P ) . (4.80)

Contrary to the binary variance control, the mean speed at equilibrium is
not invariant compared to the uncontrolled case.
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Remark 4.7.1. If p∗ = 0, from (4.77) the fixed points (4.14) obtained in
the uncontrolled case are recovered. �

Remark 4.7.2. Let us study the infinite effective penetration rate limit i.e.
p∗ → +∞ [46]. In this limit, the control fully dominates the dynamics.
Equation (4.80) can be rewritten as

Ṽ ∗∞ = (1 + p∗)
2(1− P )

1−
√√√√1− 4(1− P )(P + p∗vd)

(1 + p∗)2

 . (4.81)

If p∗ → +∞, the content of the square root can be rewritten as

1− 4(1− P )(P + p∗vd)
(1 + p∗)2 ' 1− 4(1− P )vd

p∗
:= 1− y,

where y = 4(1− P )vd
p∗

<< 1 if p∗ → +∞ .

A Taylor expansion can be performed:
√

1− y = 1 + 1
2y + O(y2) if y → 0.

Therefore, we obtain

Ṽ ∗∞ '
(1 + p∗)
2(1− P )

{1
2

[4(1− P )(P + p∗vd)
(1 + p∗)2

]}
(4.82)

=⇒ limp∗→+∞ Ṽ ∗∞ = vd(ρ) .
In the limit p∗ → +∞, the mean speed at equilibrium coincides with

desired speed vd(ρ) and, because of (4.69), so does the expected value of
the asymptotic speed distribution.
Moreover, let us consider the variance of the asymptotic speed distribution
defined in (4.69). If p∗ → +∞, Var(X∗) → 0+. Therefore, when the
desired speed control is introduced and the infinite effective penetration
rate limit is considered, the asymptotic speed distribution tends to a Dirac
delta centered at vd(ρ):

f̃∗∞ → δ(v − vd) .
�

The situation is specular to the one examined in depth in section 4.2
for the uncontrolled case. The fixed points of the system are two and their
stability is invariant ∀ρ ∈ [0,1]. In that case, the bifurcation which leads to a
phase transition, is due to the piecewise-defined mean speed at equilibrium.
There exists a value of density, the critical density ρc, for which the two
fixed points merge and collapse in just one fixed point. This critical density
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marks the transition between two different regimes of traffic.
Therefore, analogously to this situation previously studied, it can be stated
that a phase transition occurs in the controlled case with the desired speed
control strategy, if there exists a value of density for which ∆ = 0 and the
two fixed points merge.

In subsection 4.8.4, a detailed study of the discriminant ∆ will be carried
out. In particular, the desired speed will be set equal to vd(ρ) = 1−ρa with
a ≥ 1 and the probability of accelerating to P (ρ) = (1−ρ)2. It will be clear
that ∆ > 0 ∀ρ ∈ [0,1] and therefore, the existence of the fixed points will
be ensured. However, due to the fact that

@ρ ∈ [0,1] such that ∆ = 0,

a phase transition does not occur with this control strategy.
The absence of the phase transition is evident if the asymptotic speed

distribution is considered. It is the beta distribution (4.63) with parameters
(4.64). These parameters depend on Ṽ ∗∞, which is defined in (4.80).
The fact that the phase transition is not preserved with the desired speed
control strategy can be a practical benefit. Indeed, the discontinuity in
the traffic could be canceled by the introduction of autonomous vehicles
equipped with this control.
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0.000
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Variance of the asymptotic speed distribution - vd( ) = 1
p* = 0.0
p* = 0.5
p* = 1.0
p* = 5.0

Figure 4.3: Variance in (4.69) related to the asymptotic speed distribution (4.63) with desired
speed control vd(ρ) = 1− ρ. Ṽ ∗∞ is given by (4.80) and µ = 2
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Figure 4.4: Variance in (4.69) related to the asymptotic speed distribution (4.63) with desired
speed control vd(ρ) = 1− ρ6. Ṽ ∗∞ is given by (4.80) and µ = 2

In figure 4.3, the variance of the asymptotic speed distribution with de-
sired speed control is plotted as a function of the density ρ and for different
values of effective penetration rate p∗. It is assumed that the desired speed is
equal to vd(ρ) = 1−ρ. The same plot is shown in figure 4.4 for vd(ρ) = 1−ρ6.
In both figures, the case p∗ = 0 corresponds to the uncontrolled case. It is
evident that

¬
(
Var(X∗) < Var(X) ∀ρ ∈ [0,1]

)
with the desired speed control strategy.

This means that there exist some values of densities for which the variance
does not decrease compared to the uncontrolled case.

We can have a qualitative insight of this issue by considering that the
phase transition is not preserved by the desired speed control. Let us focus
on the uncontrolled case in the free flow regime i.e. ρ ∈ [0, ρc]: the variance is
null since the asymptotic speed distribution is a Dirac delta centered at 1. If
we consider the desired speed controlled case for the same range of densities
i.e. ρ ∈ [0, ρc] - remember that ρc just depends on the exponent µ in the
probability of accelerating P (ρ)) - then the asymptotic speed distribution is
a beta with parameters α, β > 0. Therefore, the variance of the asymptotic
speed distribution with the desired speed control is greater than the one in
the uncontrolled case. This is evident if vd(ρ) = 1− ρ - see figure 4.3.

However, a case where the introduction of the desired speed control leads
to a reduction in the variance of the asymptotic speed distribution can be
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identified. As pointed out in the remark 4.7.2, in the infinite effective pene-
tration rate limit, the asymptotic speed distribution tends to a Dirac delta
centered at vd(ρ). Therefore, in this limit, the introduction of the control
leads to a decrease in the variance of the asymptotic speed distribution and
consequently, of road risk.

4.8 Numerical tests

In order to confirm theoretical findings of this chapter, several numerical
tests are performed. We proceed analogously to section 3.12.

4.8.1 Choice of µ and other parameters

The first issue to deal with is the choice of the exponent µ in the probability
of accelerating P (ρ) = (1−ρ)µ , µ > 0. In order to do this, the speed and the
fundamental diagram have to be considered. The exponent µ has to chosen
in a way such that the related diagrams reproduce experimental results.
In section 3.5, the criteria which make it possible, are stated [32]. Let us
consider figures 4.5 - 4.6: the diagrams (ρ, V∞) and (ρ, ρV∞) are displayed
for different values of µ in the uncontrolled case - see equation (4.27).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

V

Speed diagram

 =0.5
 =1
 =2
 =3
 =4

Figure 4.5: Speed diagram in the nonlinear uncontrolled case: the mean speed at equilibrium V∞
is (4.27)

The choice µ = 2 can be supported by the speed and the fundamental
diagrams. In particular, in the latter the flux ρV∞(ρ) is linearly increasing
from ρ = 0 to a value ρ̄ ∈ [0,1], which is its unique maximum and it is non
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Figure 4.6: Fundamental diagram in the nonlinear uncontrolled case: the mean speed at equilib-
rium V∞ is (4.27)

linearly decreasing from [ρ̄,1]. The flux is not concave but this requirement
is not so strict [32]. Moreover, except for µ = 0.5 and µ = 1, other values
of the exponent µ lead to convex flux in the decreasing branch. If µ = 0.5,
the mean speed at equilibrium is equal to 1 for almost 80% of the density
interval, therefore this case is excluded. On the other hand, µ = 1 roughly
models the probability of accelerating. So, µ = 2 is more suited to describe
our dynamics compared to the other cases which lead to similar diagrams,
since it captures all aspects without being too extreme.

As proved in section 4.2, the value of critical density ρc just depends on
the exponent µ in the probability of accelerating P (ρ). Let us compute ρc
for µ = 2 by referring to definition (4.26). It turns out to be equal to

ρc = 1− 2− 1
2 ' 0.2929.

Choices of other parameters are summarized in the following. They are
analogous to those of section 3.12 and we recall to that section for more
details.

• ε = 0.01, ∆t = ε, γ = ε, σ2 = γ, ν = γ

• number of agents = 105

• initial speed distribution f̃0 ∼ U([0,1])
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• speed domain [0,1] is discretized in Nv = 121 points

• a(ρ) := ρ(1− ρ)

• η ∼ U [−a, a], a =
√

3σ2

4.8.2 Uncontrolled case

In this subsection, results of simulations in the uncontrolled case are dis-
played. The Fokker-Planck asymptotic speed distribution defined in (4.37)
for the congested flow regime and in (4.48) for the free flow regime, or
equivalently the one in (4.63) with p∗ = 0, is compared to the stationary
numerical speed distribution, computed with the Nanbu-Babovsky’s simu-
lation scheme [29; 30]. In particular, distributions are plotted by using a
suited histogram and simulations are run for a sufficiently long time such
that convergence at equilibrium is achieved. This time will be specified for
each simulation.

Simulations are performed for different values of density. The presence of
the phase transition is evident: in the congested flow regime, the asymptotic
speed distribution is a beta while for densities smaller than or equal to the
critical point, it shrinks to a Dirac delta centered at 1.

From the analysis carried out in section 4.2, we expect a much longer time
of convergence when the critical point is approached. Indeed, as stated by
(4.25), the convergence at the critical point is polynomial in time, since it
follows the law (time)−1. This is in contrast with the exponential conver-
gence we have for densities different than the critical, as stated by equation
(4.21). The numerical evidence of this fact is gained by looking at the time
of convergence related to each simulation. Even if this is not a proper proof,
it is a first insight on this issue.

In figures 4.7 - 4.12 (pp. 112-115), the asymptotic speed distribution is
studied as a function of the density. In all cases, the simulations are run
for T = 50. Due to the fact that we set ∆t = 0.01, this T corresponds to
5 · 103 time steps. By studying the L2-numerical error, as done in section
3.12, it is evident that this time is generously sufficient for convergence if
ρ = 0.5, 0.8 and the error is O(10−2)/O(10−1). Instead, for ρ = 0.3 and
ρ = ρc = 1 − 2− 1

2 , this running time is not sufficient for the system to
converge to equilibrium. In figures 4.13 - 4.14 (pp. 115-116), results related
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to ρ = 0.3 and ρ = ρc = 1 − 2− 1
2 are displayed for T = 250. As expected,

in these two cases, the time needed to converge to the asymptotic speed
distribution is much longer and the time steps are 2,5 · 104.

The agreement between the theoretical and the simulation results is
strong: as theoretically expected, the numerical equilibrium solution of
the Boltzmann-type equation converges toward the solution of the Fokker-
Planck PDE, which is analytically obtained in the quasi-invariant interac-
tion regime. It is important to observe that in the free flow regime, the value
of the theoretical f̃∞(v) corresponding to v = 1 is not visible in the plot.
This is due to the fact that f̃∞(v = 1) = +∞, since the asymptotic speed
distribution is a Dirac delta in this case. This fact makes impossible to in-
fer the convergence time by considering the L2-numerical error; indeed, the
value of the speed distribution corresponding to v = 1 drives the result, thus
making the numerical error explode: it is impossible to numerically obtain
the Dirac delta. Therefore, in the free flow regime, qualitative observations
are employed to understand whether the system reaches equilibrium.
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Figure 4.7: Congested flow regime: comparison between the asymptotic Fokker-Planck distribu-
tion (4.37) (theoretical) and the numerical solution of the Boltzmann-type equation (simulation)
for ρ = 0.8, T = 50
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Figure 4.8: Congested flow regime: comparison between the asymptotic Fokker-Planck distribu-
tion (4.37) (theoretical) and the numerical solution of the Boltzmann-type equation (simulation)
for ρ = 0.5, T = 50
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Figure 4.9: Congested flow regime: comparison between the asymptotic Fokker-Planck distribu-
tion (4.37) (theoretical) and the numerical solution of the Boltzmann-type equation (simulation)
for ρ = 0.3, T = 50
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Figure 4.10: Critical point: comparison between the asymptotic Fokker-Planck distribution (4.48)
(theoretical) and the numerical solution of the Boltzmann-type equation (simulation) for ρ =
1− 2− 1

2 , T = 50
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Figure 4.11: Free flow regime: comparison between the asymptotic Fokker-Planck distribution
(4.48) (theoretical) and the numerical solution of the Boltzmann-type equation (simulation) for
ρ = 0.2, T = 50
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Figure 4.12: Free flow regime: comparison between the asymptotic Fokker-Planck distribution
(4.48) (theoretical) and the numerical solution of the Boltzmann-type equation (simulation) for
ρ = 0.11, T = 50
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Figure 4.13: Congested flow regime: comparison between the asymptotic Fokker-Planck distribu-
tion (4.37) (theoretical) and the numerical solution of the Boltzmann-type equation (simulation)
for ρ = 0.3, T = 250
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Figure 4.14: Critical point: comparison between the asymptotic Fokker-Planck distribution (4.48)
(theoretical) and the numerical solution of the Boltzmann-type equation (simulation) for ρ =
1− 2− 1

2 , T = 250

4.8.3 Binary variance controlled case

In this subsection, results of simulations in the controlled case with binary
variance control are displayed. The theoretical asymptotic speed distribu-
tion defined in (4.63), with the mean speed speed at equilibrium Ṽ ∗∞ defined
in (4.71), is compared to the stationary numerical speed distribution, com-
puted with the Monte Carlo simulation scheme. As in the uncontrolled
case, distributions are plotted by using a suited histogram and simulations
are run for a sufficiently long time such that convergence at equilibrium is
achieved. This time is specified for each simulation.

Simulations are performed for different values of density and we observe
a similar behavior to the uncontrolled case. The presence of the phase
transition is evident: in the congested flow regime, the asymptotic speed
distribution is a beta while for densities smaller than or equal to the critical
point, it shrinks to a Dirac delta centered at 1.

In figures 4.15 - 4.17 (pp. 117-118), the case corresponding to ρ = 0.5
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is studied for different penetration rates: p = 0.2, 0.5, 0.8. As the pene-
tration rate increases, the variance of the asymptotic distribution decreases
coherently with what we explained in section 4.6.
In figures 4.18 - 4.20 (pp. 119-120), we set p = 0.5 and the asymptotic
speed distribution is obtained for different values of densities. As in the
uncontrolled case, if ρ → ρc, the convergence time is decisively longer and
we set T = 250 instead of T = 50.
In figures 4.21 - 4.23 (pp. 120-121), the same analysis is performed for
p = 0.2.

As in the uncontrolled case, numerical results perfectly fit theoretical
predictions.
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Figure 4.15: Congested flow regime: comparison between the asymptotic Fokker-Planck distribu-
tion (4.63) with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-
type equation (simulation) for ρ = 0.5, p = 0.8, T = 50
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Figure 4.16: Congested flow regime: comparison between the asymptotic Fokker-Planck distribu-
tion (4.63) with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-
type equation (simulation) for ρ = 0.5, p = 0.5, T = 50
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Figure 4.17: Congested flow regime: comparison between the asymptotic Fokker-Planck distribu-
tion (4.63) with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-
type equation (simulation) for ρ = 0.5, p = 0.2, T = 50
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Figure 4.18: Critical point: comparison between the asymptotic Fokker-Planck distribution (4.63)
with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-type equation
(simulation) for ρ = 1− 2− 1

2 , p = 0.5, T = 250
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Figure 4.19: Free flow regime: comparison between the asymptotic Fokker-Planck distribution
(4.63) with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-type
equation (simulation) for ρ = 0.2, p = 0.5, T = 50
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Figure 4.20: Free flow regime: comparison between the asymptotic Fokker-Planck distribution
(4.63) with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-type
equation (simulation) for ρ = 0.14, p = 0.5, T = 50
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Figure 4.21: Critical point: comparison between the asymptotic Fokker-Planck distribution (4.63)
with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-type equation
(simulation) for ρ = 1− 2− 1

2 , p = 0.2, T = 250

120



4 – Phase transition in kinetic traffic modeling

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

140

Theoretical
Simulation

Figure 4.22: Free flow regime: comparison between the asymptotic Fokker-Planck distribution
(4.63) with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-type
equation (simulation) for ρ = 0.2, p = 0.2, T = 50
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Figure 4.23: Free flow regime: comparison between the asymptotic Fokker-Planck distribution
(4.63) with Ṽ ∗∞ defined in (4.71)(theoretical) and the numerical solution of the Boltzmann-type
equation (simulation) for ρ = 0.14, p = 0.2, T = 50

121



Adele Ravagnani

4.8.4 Desired speed controlled case

As it has been sketched in section 4.7, the desired speed control strategy
does not preserve the phase transition. The discriminant ∆ of the quadratic
equation (4.76) has been defined as ∆ := (1 + p∗)2 − 4(1 − P )(P + p∗vd).
As previously stated, the phase transition occurs if and only if there exist
a critical value of density for which ∆ = 0.
In the following, several plots of this discriminant are reported: in particu-
lar, it is studied with the choice of parameters of subsection 4.8.1 and several
shapes of the desired speed are considered: vd(ρ) = 1−ρa with a = 1,2, ...,8.
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Figure 4.24: Desired speed vd(ρ) = 1− ρa, a = 1, ...,8

First, let us study the shape of the desired speed vd(ρ) = 1− ρa and its
related physical meaning. The plots of this quantity for different values of
a are shown in figure 4.24. The case a = 1 corresponds to the one adopted
in [46]: agents tend to minimize the variance of their own speed after the
interaction and the desired speed, which depends linearly on traffic density
ρ. We observe that for bigger values of the exponent a, vd(ρ) turns out to
be about the maximum value of allowed speeds for a wider and wider range
of densities. In particular, if a = 6, the desired speed is about 1 for almost
50% of the density interval [0,1] and then, it steeply decreases to 0. From a
physical point of view, this means that the choice a = 6, or more generally
big a, is not suited to describe our process: agents would be required to
tend to a desired speed which is maximum for a wide range of densities and
then, to decrease their own speed very steeply. Therefore, cases with big a
and in particular, a = 6 will be considered only for explanatory reasons and
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to outline some properties of the system.
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Figure 4.25: Discriminant (4.78) for different effective penetration rates p∗, vd(ρ) = 1− ρ, µ = 2
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Figure 4.26: Fixed points (4.77) for different effective penetration rates p∗, vd(ρ) = 1− ρ, µ = 2.
Dashed lines are related to unstable fixed points i.e. Ṽ ∗+; solid lines are related to stable fixed
points i.e. Ṽ ∗−

In the following, the case a = 1 i.e. the case in which the desired speed
is equal to vd(ρ) = 1− ρ is considered.
In figure 4.25, it is clear what we stated in section 4.7. There do not exist
values of density for which the discriminant is equal to 0 and therefore, there
is not phase transition. Evidence of this fact is also provided by figures 4.26
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Figure 4.27: Stable fixed point (4.80) for different effective penetration rates p∗, vd(ρ) = 1 − ρ,
µ = 2

and 4.27, where the fixed points (4.77) are plotted.
Therefore, by running simulations, it is numerically confirmed that the

asymptotic speed distribution is a well-defined beta distribution for all val-
ues of density. Results for the effective penetration rate p∗ = 0.1 (actually,
we assumed κ = 1 and therefore, p = p∗) are displayed in figures 4.28 -
4.32 (pp. 126-128). This value of p∗ is chosen since it is the one, among
considered values, for which the discriminant is lower. In figures 4.31, 4.33
and 4.34 (pp. 128-129), results related to ρ = 0.2 and different penetration
rates are displayed.

The plots of the discriminant and the fixed points are also considered for
a = 3, 6 and are displayed in figures 4.35 - 4.40 (pp. 130-132). In appendix
A, plots for a = 2, 4, 5, 7, 8 are also shown. We observe that as a increases,
the discriminant turns out to be closer and closer to 0 for small values of
the effective penetration rate (p∗ = 0.1). Therefore, we expect a behavior
closer and closer to the one obtained in the uncontrolled case and with the
binary variance control. In other words, we expect that as a increases, the
phase transition is approached.

In table 4.1 (p. 125), the minimum value ρ∗ of the discriminant is re-
ported for different values of the exponent a in the case p∗ = 0.1. We also
have the corresponding value of the determinant i.e. ∆(ρ∗). We observe that
even with a = 100, the determinant approaches 0 but it is not exactly equal
to it. In the case a = 6, the discriminant is of the order 10−4 in its minimum
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a ρ∗ ∆(ρ∗)
1 0.304 5.6 · 10−2

2 0.316 1.9 · 10−2

3 0.323 6.3 · 10−3

4 0.327 2.1 · 10−3

5 0.328 7.0 · 10−4

6 0.329 2.3 · 10−4

7 0.329 7.6 · 10−5

8 0.329 2.5 · 10−5

100 0.329 1.1 · 10−19

Table 4.1: Minimum value ρ∗ of ∆ in (4.78) for different a (vd(ρ) = 1− ρa) and p∗ = 0.1

and we consider this value sufficiently small to assume ∆ ' 0. The goal is
to investigate this case and how the phase transition is approached. The
value of density ρ∗ = 0.329 is considered as a kind of critical density. A
quite sharp change in the behavior of the asymptotic speed distribution is
expected in correspondence of this value of density.
Evidence of this fact is also provided by the bifurcation diagram for a = 6
in figure 4.41 (p. 133). Indeed, by zooming around the point where the two
fixed points are supposed to merge, a gap appears.

In figures 4.42 - 4.48 (pp. 133-136), results of simulations in the case
vd(ρ) = 1 − ρ6 with p = 0.1 are displayed. As expected, the change
in the behavior of the asymptotic speed distribution is not so sharp as
in the cases previously considered but the phase transition is approached.
For ρ ∈ (0.329,1], the asymptotic speed distribution is a beta, while for
ρ ∈ [0,0.329), it shrinks to a Dirac delta centered at the maximum allowed
speed i.e. 1. Due to the fact that we do not have a proper phase transition,
in the neighborhood of ρ = 0.329, which is considered as a sort of critical
density, the asymptotic speed distribution is still a beta distribution, which
is approaching a Dirac delta.

Finally, let us consider the remark 4.7.2: we would like to test that in the
infinite effective penetration rate limit i.e. p∗ → +∞, the asymptotic speed
distribution tends to a Dirac delta centered at vd(ρ). Let us set vd(ρ) = 1−ρ
and

ν = 0.1ε = 0.1γ,

which implies κ = 0.1 and p∗ = 10p ∈ [0,10]. This cannot be assimilated to
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p∗ → +∞ but it leads to p∗ >> 1 and therefore, we expect the asymptotic
speed distribution begins to tend to δ(v − vd). Results of a simulation for
p = 0.4 and T = 100 are displayed in figure 4.49 (p. 137). Even though p∗ is
just equal to 4, the asymptotic speed distribution shrinks compared to the
uncontrolled case and it is centered at vd(ρ), which is equal to vd(0.5) = 0.5
in this case. Theoretical findings are confirmed and the comparison with
the uncontrolled case highlights how in this limit, the introduction of the
desired speed control makes the variance decrease.
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Figure 4.28: Desired speed control vd(ρ) = 1 − ρ: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.8, p = 0.1, T = 50
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Figure 4.29: Desired speed control vd(ρ) = 1 − ρ: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.5, p = 0.1, T = 50
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Figure 4.30: Desired speed control vd(ρ) = 1 − ρ: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.3, p = 0.1, T = 50
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Figure 4.31: Desired speed control vd(ρ) = 1 − ρ: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.2, p = 0.1, T = 50
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Figure 4.32: Desired speed control vd(ρ) = 1 − ρ: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.12, p = 0.1, T = 50
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Figure 4.33: Desired speed control vd(ρ) = 1 − ρ: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.2, p = 0.5, T = 50
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Figure 4.34: Desired speed control vd(ρ) = 1 − ρ: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.2, p = 0.8, T = 50
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Figure 4.35: Discriminant (4.78) for different effective penetration rates p∗, vd(ρ) = 1− ρ3, µ = 2
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Figure 4.36: Fixed points (4.77) for different effective penetration rates p∗, vd(ρ) = 1−ρ3, µ = 2.
Dashed lines are related to unstable fixed points i.e. Ṽ ∗+; solid lines are related to stable fixed
points i.e. Ṽ ∗−
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Figure 4.37: Stable fixed point (4.80) for different effective penetration rates p∗, vd(ρ) = 1− ρ3,
µ = 2
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Figure 4.38: Discriminant (4.78) for different effective penetration rates p∗, vd(ρ) = 1− ρ6, µ = 2
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Figure 4.39: Fixed points (4.77) for different effective penetration rates p∗, vd(ρ) = 1−ρ6, µ = 2.
Dashed lines are related to unstable fixed points i.e. Ṽ ∗+; solid lines are related to stable fixed
points i.e. Ṽ ∗−
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Figure 4.40: Stable fixed point (4.80) for different effective penetration rates p∗, vd(ρ) = 1− ρ6,
µ = 2
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Figure 4.41: Bifurcation diagram of equation (4.74). Fixed points (4.77) are plotted for different
effective penetration rates p∗, vd(ρ) = 1− ρ6, µ = 2.
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Figure 4.42: Desired speed control vd(ρ) = 1 − ρ6: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.8, p = 0.1, T = 50
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Figure 4.43: Desired speed control vd(ρ) = 1 − ρ6: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.4, p = 0.1, T = 50
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Figure 4.44: Desired speed control vd(ρ) = 1 − ρ6: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.35, p = 0.1, T = 200
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Figure 4.45: Desired speed control vd(ρ) = 1 − ρ6: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.329, p = 0.1, T = 200
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Figure 4.46: Desired speed control vd(ρ) = 1 − ρ6: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.32, p = 0.1, T = 200
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Figure 4.47: Desired speed control vd(ρ) = 1 − ρ6: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.3, p = 0.1, T = 200
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Figure 4.48: Desired speed control vd(ρ) = 1 − ρ6: comparison between the asymptotic Fokker-
Planck distribution (4.63) with Ṽ ∗∞ defined in (4.80)(theoretical) and the numerical solution of
the Boltzmann-type equation (simulation) for ρ = 0.2, p = 0.1, T = 200
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Figure 4.49: Infinite effective penetration rate limit (ν = 0.1γ) with desired speed control vd(ρ) =
1− ρ. Comparison between the asymptotic Fokker-Planck distribution (4.63) with Ṽ ∗∞ defined in
(4.80)(theoretical), the numerical solution of the Boltzmann-type equation (simulation) and the
uncontrolled asymptotic Fokker-Planck distribution (4.37)(theoretical uncontrolled) for ρ = 0.5,
p = 0.4, T = 100

4.9 Conclusion

In this chapter, new interaction rules have been introduced. Their nonlinear
character leads to a piecewise-defined mean speed at equilibrium and there-
fore, to a phase transition between two different regimes, the free flow and
the congested flow regime. The derivation of the asymptotic speed distri-
bution in the quasi-invariant interaction limit provides further evidence of
it: in the congested flow regime, the asymptotic speed distribution is a beta
distribution while, in the free flow regime, it is a Dirac delta centered at 1.
The phase transition naturally emerges from the derivation of macroscopic
quantities and it is due to the microscopic binary interactions, which rule
the dynamics of the systems.

In the second part of the chapter, a control is introduced in the interac-
tion rules; in particular, two different control strategies are studied: binary
variance control and desired speed control. With the former, the phase
transition is preserved and coherently with the literature, this strategy can
effectively reduce road risk. However, the novelty is that a range of den-
sities for which the variance is identically equal to 0 is identified and it
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corresponds to the free flow regime.
With the desired speed control, the phase transition is not preserved.

This can be a practical benefit: the discontinuity in the traffic could be
canceled by introducing autonomous vehicles equipped with this control
strategy. However, even though we cannot properly speak about phase
transition, this can be approached in some specific conditions and a behavior
similar to the one of the uncontrolled and the binary variance controlled
cases can be achieved. Anyway, as in previous works, a specific regime for
which the variance decreases by introducing the desired speed control, is
identified: the so-called infinite effective penetration rate limit.

All theoretical findings are validated by Monte Carlo simulations based
on the Nanbu-Babovsky’s scheme. The agreement is strong: as theoreti-
cally expected, the numerical equilibrium solution of the Boltzmann-type
equation converges toward the solution of the Fokker-Planck PDE, which is
analytically obtained in the quasi-invariant interaction regime.
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Chapter 5

Phase transition under
uncertain vehicle interactions

So far, interaction rules with both a deterministic and a stochastic compo-
nent have been considered. In this chapter, an uncertain parameter, which
models the presence of different types of vehicles in traffic, is introduced in
the nonlinear interaction rules previously studied. This uncertainty quan-
tification analysis allows to explain two macroscopic features that are exper-
imentally observed: the macroscopic scattering of the fundamental diagram
and the multi-modal behavior of the asymptotic speed distribution.

In the first section, the theoretical model is derived referring to the lit-
erature [47]. The second section dwells upon the derivation of the mean
speed at equilibrium and that of the critical point. Several discrete and
continuous uncertain parameters are considered and general results which
identify the stable fixed point of the system and the critical density of the
phase transition, are stated and proved. The third section is devoted to
the asymptotic speed distribution. In the penultimate section, theoretical
findings are numerically validated by a Monte Carlo based scheme. Finally,
conclusions are drawn.

5.1 Uncertainty meets nonlinearity

In [47], an uncertain parameter z is introduced in the interaction rules. The
goal is to model the presence of different categories of vehicles in the traffic
and to derive the macroscopic scattering of fundamental diagrams. In the
following, we refer to [47] in order to obtain the mean speed at equilibrium
and the asymptotic speed distribution with our new interaction rules, which

139



Adele Ravagnani

contain both a nonlinearity vw and an uncertain parameter z. We would
like to investigate whether the phase transition, which emerges in chapter
4, is preserved by the introduction of the uncertainty.

Let us introduce the probability of accelerating P (ρ; z) [47], which de-
pends both on the traffic density ρ and on the uncertain parameter z:

P (ρ; z) = (1− ρ)z , (5.1)

where z is a positive random variable such that z ∼ ψ(z), ψ(z) is a prob-
ability distribution: ψ : R+ → R+. If we refer to figure 3.1 (p. 44) with
µ→ z, it is clear that greater uncertain parameter z corresponds to vehicles
which have a lower probability of accelerating such as lorries, while smaller
z are related to vehicles which easily accelerate i.e. accelerate even with big
values of density, such as cars.

The interaction rules, which represent the core of our model and deter-
mine the dynamics of the system, are defined as [47]

v′ = v + γI(v, w; ρ, z) +D(v; ρ)η
w′ = w .

(5.2)

As in previous chapters, γ > 0 and it is a proportionality parameter,
while η is a centered random variable, with zero mean and variance σ2

and D(v; ρ) ≥ 0 is a diffusion coefficient. Thanks to the term D(v; ρ)η,
a stochastic component is included in the model, allowing to consider the
intrinsic stochasticity in each agent’s behavior.
The interaction function I(v, w; ρ, z) is defined as [47]

I(v, w; ρ, z) = P (ρ; z)(1− v) + (1− P (ρ; z))(vw − v) . (5.3)

The physical admissibility of these interaction rules is guaranteed by
proposition 3.3.1, in which the parameter µ is replaced by the random vari-
able z.

5.2 Mean speed at equilibrium and the critical point

First, let us introduce the Boltzmann-type equation for the system. The
speed distribution is also function of the uncertain parameter z: f =
f(t, v; z). It is such that f(t, v; z)dv represents the fraction of vehicles which
have speed in the interval [v, v + dv] at time t ≥ 0, given the uncertain pa-
rameter z.
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If φ = φ(v) is a generic observable, the Boltzmann-type equation in weak
form is [47]

d

dt

∫ 1

0
φ(v)f(t, v; z)dv = 1

2〈
∫ 1

0

∫ 1

0
[φ(v′)− φ(v)]f(t, v; z)f(t, w; z)dvdw〉,

(5.4)
where 〈·〉 is the expectation with respect to the distribution of the centered
random variable η.
Unlike the Boltzmann-type equations considered in chapters 3 - 4, equation
(5.4) is stochastic since its solution f(t, v; z) is a function of the random
variable z. Therefore, first we will derive the evolution equations for z-
dependent macroscopic quantities and then, we will average over z in order
to rule this dependence out.

If φ(v) = 1,
d

dt

∫ 1

0
φ(v)f(t, v; z)dv = 0 . (5.5)

This means that, given an initial condition f0(v; z) = f(0, v; z) properly
normalized, f(t, v; z) will be normalized and therefore, a distribution prob-
ability ∀t > 0 [47].

Instead, if φ(v) = v, an equation which rules the evolution of the mean
speed will be derived. Let us define the z-dependent mean speed as [47]

V (t; z) :=
∫ 1

0
vf(t, v; z)dv. (5.6)

Then, by plugging φ(v) = v in (5.4), we obtain

d

dt
V (t; z) = γ

2
[
P (ρ; z) + (1− P (ρ; z))V 2(t; z)− V (t; z)

]
. (5.7)

We have obtained an equation analogous to the case without uncertain
parameter: equation (5.7) and (4.11) are equivalent if equation (5.7) is
considered for a fixed value of the parameter z. Therefore, the analysis
which leads to the solution at equilibrium of (5.7) is equivalent to the one
performed in section 4.2 for equation (4.11). The only difference is that
now the solution is a stochastic quantity. The z-dependent mean speed at
equilibrium turns out to be

V∞(ρ; z) =
{ P (ρ;z)

1−P (ρ;z) if ρ ∈ (ρc(z),1]
1 if ρ ∈ [0, ρc(z)]

(5.8)
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where the z-dependent critical density ρc(z) is defined as

ρc(z) := 1− 2− 1
z .

Indeed, it corresponds to the value of the probability of accelerating P (ρ; z)
for which the two fixed points of the system merge i.e. P (ρ; z) = 1

2 . Equa-
tion (5.8) can be also written as

V∞(ρ; z) = P (ρ; z)
1− P (ρ; z)I

[
ρ ∈ (ρc(z),1]

]
+ I

[
ρ ∈ [0, ρc(z)]

]
, (5.9)

where I[x ∈ A] = 1 if x ∈ A and I[x ∈ A] = 0 if x /∈ A.

In order to rule the z dependence out, we should average V∞(ρ; z) with
respect to this parameter. This is equivalent to define the mean speed at
equilibrium V̄∞(ρ) as [47]

V̄∞(ρ) := Ez[V∞(ρ; z)] =
∫
R+
V∞(ρ; z)ψ(z)dz . (5.10)

At the same time, the variance of the z-dependent mean speed at equi-
librium can be introduced [47]:

ζ2
∞(ρ) := Varz

(
V∞(ρ; z)

)
=
∫
R+
V 2
∞(ρ; z)ψ(z)dz −

[
V̄∞(ρ)

]2
. (5.11)

Then, it can be clarified what we mean by scattering of the fundamental
diagram of the system. Let us define the flux at equilibrium as q := ρV̄∞(ρ).
As explained in section 3.5, the fundamental diagram is identified by the
mapping ρ→ q = ρV̄∞(ρ). Due to the uncertainty that has been introduced
in the interaction rules, the following set of points can be defined [47]:

S :=
{

(ρ, q) ∈ [0,1]× R+ : q ∈
[
ρV̄∞(ρ)− ρζ∞(ρ), ρV̄∞(ρ) + ρζ∞(ρ)

]}
.

(5.12)
This set S represents a quantification of the uncertainty of the fundamental
diagram. As in [47], the standard deviation ζ∞(ρ) is chosen as a measure of
uncertainty. We speak about scattering of the fundamental diagram, since
we can identify the entire region S in the density-flux plane together with
the curve of the flux as a function of the density.

In the following, the mean speed at equilibrium V̄∞(ρ) will be computed
for different probability distributions of the uncertain parameter z, by re-
ferring to [47].
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5.2.1 Mean speed at equilibrium in the discrete case

Let us consider a discrete case. The uncertain parameter z assumes the
following values:

z ∈ {z1, z2, ..., zn}

and zi ∈ R+∀i = 1, ..., n .The probability distribution of z is defined as

ψ(z) =
n∑
k=1

P(z = zk)δ(z − zk) , (5.13)

where
P(z = zk) := αk ∈ [0,1] with ∑n

k=1 αk = 1.

Therefore, we obtain

V̄∞(ρ) =
n∑
k=1

αkV∞(ρ; zk) (5.14)

and

ζ2
∞(ρ) =

n∑
k=1

αkV
2
∞(ρ; zk)−

( n∑
k=1

αkV∞(ρ; zk)
)2

. (5.15)

For instance, n can be set equal to 2 and therefore, z ∈ {z1, z2}. Let us
choose z1 = 1 and z2 = 3; they have associated probabilities α1 and α2. In
this case, the mean speed at equilibrium turns out to be equivalent to

V̄∞(ρ) = α1V∞(ρ; z1 = 1) + α2V∞(ρ; z2 = 3) (5.16)

and its variance is

ζ2
∞(ρ) = α1V

2
∞(ρ; z1 = 1) + α2V

2
∞(ρ; z2 = 3)+

−
[
α1V∞(ρ; z1 = 1) + α2V∞(ρ; z2 = 3)

]2
.

(5.17)

Referring to (5.8), three cases should be distinguished:

if ρ ∈
(
ρc(z1),1

]
, V̄∞(ρ) = α1

P (ρ;z1)
1−P (ρ;z1) + α2

P (ρ;z2)
1−P (ρ;z2)

if ρ ∈
(
ρc(z2), ρc(z1)

]
, V̄∞(ρ) = α1 + α2

P (ρ;z2)
1−P (ρ;z2)

if ρ ∈
[
0, ρc(z2)

]
, V̄∞(ρ) = 1

(5.18)
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where ρc(z1) = 1− 2−1 = 0.5 and ρc(z2) = 1− 2− 1
3 ' 0.2063.

In figures 5.1 - 5.4, speed and fundamental diagrams are displayed for
two different choices of α1 and α2. In fundamental diagrams 5.3 - 5.4, the
uncertainty region S can be identified since ρV̄∞±ρζ∞(ρ) is plotted together
with the flux ρV̄∞.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

V

Speed diagram - 1 = 0.7, 2 = 0.3

Figure 5.1: Speed diagram in the discrete case z ∈ {z1 = 1, z2 = 3}, α1 = 0.7, α2 = 0.3. V̄∞ is
defined in (5.18)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

V

Speed diagram - 1 = 0.3, 2 = 0.7

Figure 5.2: Speed diagram in the discrete case z ∈ {z1 = 1, z2 = 3}, α1 = 0.3, α2 = 0.7. V̄∞ is
defined in (5.18)

By studying these plots and by referring to the related analytical ex-
pressions, we observe that the mean speed at equilibrium is equal to the
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

V

Fundamental diagram - 1 = 0.7, 2 = 0.3
V ( )
V ( ) ± ( )

Figure 5.3: Fundamental diagram in the discrete case z ∈ {z1 = 1, z2 = 3}, α1 = 0.7, α2 = 0.3.
V̄∞ is defined in (5.18); ζ∞(ρ) is obtained with (5.17)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

V

Fundamental diagram - 1 = 0.3, 2 = 0.7
V ( )
V ( ) ± ( )

Figure 5.4: Fundamental diagram in the discrete case z ∈ {z1 = 1, z2 = 3}, α1 = 0.3, α2 = 0.7.
V̄∞ is defined in (5.18); ζ∞(ρ) is obtained with (5.17)

maximum allowed value i.e. 1 for densities smaller than the z2-dependent
critical density ρc(z2). We could start to think about ρc(z2) as the criti-
cal density which marks the phase transition between the free flow and the
congested flow regime. This is just a first qualitative insight on the issue
and a rigorous argument will be provided in the following.
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5.2.2 Insight on the critical point

First, let us focus on the stability analysis of the fixed points related to the
mean speed. In order to perform the linear stability analysis as done in
chapter 4, we could think about averaging (5.7) with respect to z. In this
way we obtain

d

dt
V̄ (t; ρ) = γ

2

{
Ez
[
V 2(t; z)

]
− Ez

[
P (ρ; z)V 2(t; z)

]
− V̄ (t; ρ)+

+ Ez
[
P (ρ; z)

]}
,

(5.19)

where V̄ (t; ρ) := Ez[V (t; z)]. We cannot determine the fixed points of
this equation and study their stability since it is not possible to express
Ez
[
V 2(t; z)

]
and Ez

[
P (ρ; z)V 2(t; z)

]
as functions of V̄ (t; ρ). Therefore, we

change our perspective to study the problem.
Proposition 5.2.1. Let us consider a discrete uncertain parameter, in par-
ticular z ∈ {z1, ..., zn} with z1, ..., zn > 0. Then, the system has a unique
stable fixed point at equilibrium, which is denoted by V̄∞(ρ) and it is equal to

V̄∞(ρ) = ∑n
k=1 αkV∞(ρ; z = zk),

where V∞(ρ; z = zk) are the stable fixed points for fixed z.
Proof. Let us consider equation (5.7). Its equilibrium solution is derived:
it is expressed in (5.8) and it is denoted by V∞(ρ; z). This solution corre-
sponds to the stable fixed point of the system, which is unique. Therefore,
if the unstable fixed point is excluded as initial condition, we will have

limt→+∞ V (t; z) = V∞(ρ; z).

Due to the fact that we have V̄ (t; ρ) = ∑n
k=1 αkV (t; zk), then we obtain

V̄∞(ρ) := limt→∞ V̄ (t; ρ) = limt→∞
∑n
k=1 αkV (t; zk) = ∑n

k=1 αkV∞(ρ; zk).

This means that the mean speed at equilibrium V̄∞(ρ) is equal to the average
with respect to z of the z-dependent stable fixed points.

Even though we are not able to derive an evolution equation for V̄ (t; ρ),
we have proved that the mean speed at equilibrium coincides with the unique
stable fixed point of the system.
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The same result can also be proved for a continuous uncertain parameter.
Before doing it, let us recall the Lebesgue’s dominated convergence theorem
[38]. This theorem will be needed to prove the proposition analogous to 5.2.1
for the continuous case.
Theorem 5.2.2. Let (X,F , µ) be a measure space: X is a non empty set,
F ⊆ P(x) is a σ-algebra on X, P(x) is the collection of all subsets of X
and µ is a measure on F .
Let us denote by M = M(F) the space of measurable functions
f : X → [−∞,+∞] and introduce {fn} ∈ M i.e. {fn} is a sequence of
measurable functions on X such that limn+∞ fn(x) = f(x) ∀x ∈ X.
Assume there exists a function g ∈ L1(µ) i.e. integrable with respect to µ
and such that |fn(x)| ≤ g(x) ∀n and ∀x ∈ X.
Then, f ∈ L1(µ) and

∫
X fdµ = limn→+∞

∫
X fndµ .

The proof of this theorem is not reported in this dissertation, but we
suggest [38] for it.
Proposition 5.2.3. Let us consider a continuous uncertain parameter z ∼
ψ(z), ψ(z) is a continuous probability distribution: ψ : R+ → R+. Then,
the system has a unique stable fixed point at equilibrium, which is denoted
by V̄∞(ρ) and it is equal to

V̄∞(ρ) = ∫
R+ V∞(ρ; z)ψ(z)dz,

where V∞(ρ; z) is the stable fixed point for fixed z.
Proof. Let us consider equation (5.7). We derived its equilibrium solution,
which is expressed in (5.8) and it is denoted by V∞(ρ; z). This solution cor-
responds to the stable fixed point of the system, which is unique. Therefore,
if the unstable fixed point is excluded as initial condition, we will have

limt→+∞ V (t; z) = V∞(ρ; z).

We have that V̄ (t; ρ) = ∫
R+ V (t; z)ψ(z)dz. Then, by the Lebesgue’s domi-

nated convergence theorem 5.2.2, we obtain
V̄∞(ρ) := lim

t→+∞
V̄ (t; ρ) = lim

t→+∞

∫
R+
V (t; z)ψ(z)dz =

=
∫
R+

lim
t→+∞

V (t; z)ψ(z)dz =
∫
R+
V∞(ρ; z)ψ(z)dz .
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In particular, the theorem is used in the third equality: it allows to take
the limit for t → +∞ into the integral. The hypotheses of the theorem
hold since V (t; z)ψ(z) ≤ ψ(z) because V (t; z) ∈ [0,1] for all t, z and ψ(z) is
Lebesgue measurable by definition.
Therefore, the mean speed at equilibrium V̄∞(ρ) is equal to the average
with respect to z of the z-dependent stable fixed points, as in the discrete
case.

In order to identify the phase transition, we could refer to the in-depth
box at the end of section 4.3. It explains that the bifurcation is a solid
trait of the system’s dynamics which identifies its critical point and that
the phase transition is empirically linked to the slope change in the fun-
damental diagram. However, the situation is more complicated if uncer-
tainty quantification is performed and this empirical definition has to be
relaxed. In particular, the mathematical justification which is provided in
the in-depth box does not hold because the derivative of the mean speed at
equilibrium is not continuous in the congested flow regime. For instance,
in the discrete case with z ∈ {z1 = 1, z2 = 3}, two angular points can be
identified in the mean speed at equilibrium V̄∞(ρ), one which corresponds
to ρc(z1) = 1− 2−

1
z1 = 0.5 and another to ρc(z2) = 1− 2−

1
z2 ' 0.206. This

is pretty evident by studying equation (5.18) and figures 5.1 - 5.2 (p. 144).
The smallest angular point i.e. ρc(z2) can be defined as the critical point of
the system since it marks the passage from a density region where V̄∞(ρ) = 1
to another where V̄∞(ρ) < 1. On the other hand, ρc(z1) does not denote
any phase transition but other changes which occur in the congested flow
regime. In section 5.3, the mean (with respect to z) asymptotic speed dis-
tribution will be determined and it will be clear that for ρ ∈

(
ρc(z2), ρc(z1)

]
,

the mean asymptotic speed distribution is the linear combination of a beta
and a Dirac delta distribution, while for ρ ∈

(
ρc(z1),1

]
, it is a bimodal beta

distribution. A qualitative insight of this issue can be gained by studying
(5.18): for ρ ∈

(
ρc(z2), ρc(z1)

]
, the mean asymptotic speed has just V∞(ρ; z2)

different from 1, while for ρ ∈
(
ρc(z1),1

]
, both V∞(ρ; z2) and V∞(ρ; z1) are

different from 1.
The empirical definition of phase transition, which is based on the change

of slope of the flux in the fundamental diagram, does not hold under uncer-
tain vehicle interactions. The critical point of this phenomenon has to be
identified as the density which marks the passage from a region where the
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mean speed at equilibrium is equal to 1 to another where it suddenly de-
creases to values smaller than 1. This physical-mathematical interpretation
of the phase transition is more suited than the empirical since it holds for
more complex cases such as the ones with uncertainty.

Therefore, by studying the simple discrete case z ∈ {z1 = 1, z2 = 3}, we
have obtained that the critical point of the system coincides with the one
corresponding to the type of vehicles with the biggest z. Let us generalize
this result for z ∈ {z1, ..., zn} with z1, ...zn > 0.
Proposition 5.2.4. Let us consider a discrete uncertain parameter, in par-
ticular z ∈ {z1, ..., zn} with z1, ..., zn > 0. Then, the system’s critical point is

ρc := mink=1,...,n
{
ρc(zk)

}
,

where ρc(zk) = 1− 2−
1
zk .

Proof. Let us consider ρc(zk): it is defined as ρc(zk) = 1− 2−
1
zk and

limzk→+∞ ρc(zk) = 0 .
ρc(zk) is a decreasing function of zk. If ρ ≤ ρc(zk), V∞(ρ; zk) = 1. Therefore,
if we define

ρc := mink=1,...,n
{
ρc(zk)

}
=⇒ ρc ≤ ρc(zk) ∀zk,

we obtain

V̄∞(ρ) = ∑n
k=1 αkV∞(ρ; zk) = 1 for ρ ≤ ρc.

Consequently, ρc identifies the phase transition between the free flow and
the congested flow regime.

Let us have a graphical insight on this proposition by considering the
discrete case with z1 = 1, z2 = 2,...,z10 = 10 and αk = 0.1 for k = 1, ...10.
The related speed diagram is displayed in figure 5.5 (p. 150), where the
vertical lines correspond to ρ = ρc(zk) with k = 1, ...,10. By zooming on
the region which identifies the critical point as it is done in figure 5.6 (p.
150), it is evident that the critical density is about 0.06697, coherently with
ρc(z10) = 1 − 2− 1

10 . In this case, the discretisation of the density interval,
which has been chosen to plot the mean speed at equilibrium is such that
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Figure 5.5: Speed diagram in the discrete case z ∈ {z1 = 1, z2 = 2, ..., z10 = 10}, αk = 0.1
k = 1, ...,10 together with ρ = ρc(zk) k = 1, ...,10
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Figure 5.6: Zoom on the speed diagram in the discrete case z ∈ {z1 = 1, z2 = 2, ..., z10 = 10},
αk = 0.1 k = 1, ...,10 together with ρ = ρc(zk) k = 1, ...,10

the lattice step is equivalent to 0.00001. By refining it, convergence towards
ρc(z10) is achieved.
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From proposition 5.2.4, the critical point in the continuous case can be
deduced.

Corollary 5.2.5. Let us consider z ∼ ψ(z) where ψ(z) is a continuous
probability distribution with bounded support i.e. ψ : [a, b] → R+, 0 < a <
b < +∞. Then, the system’s critical point is

ρc := 1− 2− 1
b .

Proof. The proof is similar to the one of proposition 5.2.4. The only dif-
ference is that now, we have a continuum of points. z = b corresponds to
the biggest value of the uncertain parameter in the interval considered. Due
to the fact that ρc(z) := 1−2− 1

z and it is a decreasing function of z, we have

ρc = minz∈[a,b]
{
ρc(z)

}
= 1− 2− 1

b .

From corollary 5.2.5, it can be deduced that if an uncertain parameter
z with unbounded support is considered, there is not phase transition. For
instance, let us consider z ∼ ψ(z) where ψ(z) is a Gamma distribution:

ρc = min
z∈(0,∞)

{
ρc(z)

}
= lim

z→∞

{
ρc(z)

}
= 0 . (5.20)

As done in the discrete case, let us compute the mean speed at equilibrium
V̄∞(ρ) in continuous cases. Then, we will able to plot the associated speed
and fundamental diagrams.

5.2.3 Mean speed at equilibrium in the uniform case

If z is uniformly distributed in the interval [a, b] with a, b > 0, we have

z ∼ U([a, b])

ψ(z) = 1
b− a

I[a ≤ z ≤ b] .
(5.21)

In order to compute V̄∞(ρ), we refer to definition (5.10), where V∞(ρ; z) has
to be plugged in. We would like to use (5.9) and in order to do so, we have
to express the conditions in the indicator functions in terms of z. Therefore,
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we obtain

ρ > ρc(z) = 1− 2− 1
z ⇐⇒ P (ρ; z) = (1− ρ)z < 1

2 ⇐⇒

⇐⇒ z > − log 2
log(1− ρ) ≡ zc

(5.22)

and
V∞(ρ; z) = P (ρ; z)

1− P (ρ; z)I
[
z > zc

]
+ I

[
z ≤ zc

]
. (5.23)

Let us compute V̄∞(ρ) by using equation (5.23). We should distinguish
several cases: a ≤ zc < b, zc < a and zc ≥ b. First, let us compute the
following integrals:

I =
∫ z2

z1

P (ρ; z)
1− P (ρ; z)dz =

∫ z2

z1

(1− ρ)z
1− (1− ρ)z dz =

∫ z2

z1

ez log(1−ρ)

1− ez log(1−ρ)dz =

=
{
−

log
(
1− ez log(1−ρ)

)
log(1− ρ)

}∣∣∣∣∣
z2

z1

=
log

(
1− (1− ρ)z1

)
− log

(
1− (1− ρ)z2

)
log(1− ρ)

(5.24)

and

J =
∫ z2

z1

P 2(ρ; z)[
1− P (ρ; z)

]2dz =
∫ z2

z1

(1− ρ)2z[
1− (1− ρ)z

]2dz =

=
∫ z2

z1

 (1− ρ)z[
1− (1− ρ)z

]2 − (1− ρ)z
1− (1− ρ)z

dz =

=

[
1− (1− ρ)z

]−1

log(1− ρ) −
{
−

log
(
1− ez log(1−ρ)

)
log(1− ρ)

}∣∣∣∣∣
z2

z1

.

(5.25)

If a ≤ zc < b:

V̄∞(ρ) =
∫
R+

{
P (ρ; z)

1− P (ρ; z)I
[
z > zc

]
+ I

[
z ≤ zc

]}
ψ(z)dz =

= 1
b− a

{ ∫ b

zc

P (ρ; z)
1− P (ρ; z)dz +

∫ zc

a
dz

}
=

= 1
b− a

{ log
(
1− (1− ρ)zc

)
− log

(
1− (1− ρ)b

)
log(1− ρ) + (zc − a)

}
(5.26)
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where in the last equality the integral I of equation (5.24) has been used.
If zc < a:

V̄∞(ρ) =
∫
R+

{
P (ρ; z)

1− P (ρ; z)I
[
z > zc

]
+ I

[
z ≤ zc

]}
ψ(z)dz =

= 1
b− a

{ ∫ b

a

P (ρ; z)
1− P (ρ; z)dz

}
=

= 1
b− a

{ log
(
1− (1− ρ)a

)
− log

(
1− (1− ρ)b

)
log(1− ρ)

}
(5.27)

where in the last equality the integral I of equation (5.24) has been used.
If zc ≥ b:

V̄∞(ρ) =
∫
R+

{
P (ρ; z)

1− P (ρ; z)I
[
z > zc

]
+ I

[
z ≤ zc

]}
ψ(z)dz =

= 1
b− a

{ ∫ b

a
dz

}
= 1 .

(5.28)

Analogously, the variance of the mean speed at equilibrium i.e.
ζ2
∞(ρ) := Varz

(
V∞(ρ; z)

)
can be obtained by referring to equation (5.11).

If a ≤ zc < b:

ζ2
∞(ρ) = 1

b− a

{ ∫ zc

b

(1− ρ)2z[
1− (1− ρ)z

]2dz +
∫ zc

a
dz

}
−
[
V∞(ρ; z)

]2 =

= 1
(b− a) log(1− ρ)

{ 1
1− (1− ρ)b + log

(
1− (1− ρ)b

)
+

− 1
1− (1− ρ)zc − log

(
1− (1− ρ)zc

)}
+ zc − a
b− a

+

− 1
(b− a)2

{ log
(
1− (1− ρ)zc

)
− log

(
1− (1− ρ)b

)
log(1− ρ) + (zc − a)

}2

(5.29)

where the integral J of (5.25) has been used.
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If zc < a:

ζ2
∞(ρ) = 1

(b− a) log(1− ρ)

{ 1
1− (1− ρ)b + log

(
1− (1− ρ)b

)
+

− 1
1− (1− ρ)a − log

(
1− (1− ρ)a

)}
+

− 1[
(b− a) log(1− ρ)

]2
{

log
(
1− (1− ρ)a

)
− log

(
1− (1− ρ)b

)}2

(5.30)
where again the integral J of (5.25) has been used.
Finally, if zc ≥ b:

ζ2
∞(ρ) = 0 . (5.31)

The critical density of the phase transition can be obtained by referring
to (5.28): it corresponds to zc = b ⇐⇒ ρc = 1− 2− 1

b , coherently with the
corollary 5.2.5. Moreover, the density 1−2− 1

a , which corresponds to zc = a,
divides the congested flow regime into two density regions, where the mean
speed at equilibrium has different expressions. We expect this behavior will
be reflected in the change of shape of the asymptotic speed distribution, as
we will see in subsection 5.3.2.
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Figure 5.7: Speed diagram in the continuous case z ∼ U([a, b]) with a = 1 and b = 3. V̄∞ is
defined in (5.26) - (5.28)

In figures 5.7 - 5.8, the speed and the fundamental diagram with a = 1
and b = 3 are respectively displayed. In this case, the critical density is
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Figure 5.8: Fundamental diagram in the continuous case z ∼ U([a, b]) with a = 1 and b = 3. V̄∞
is defined in (5.26) - (5.28); ζ∞(ρ) is defined in (5.29) - (5.31)

ρc = 1 − 2− 1
3 ' 0.206 and the density which divides the congested flow

regime into two regions is 1− 2−1 = 0.5.

5.2.4 Mean speed at equilibrium in the gamma case

These diagrams can also be obtained for other continuous distributions of
the uncertainty parameter z. Let us consider:

z − p ∼ Gamma(α, β)

ψ(z) = βα

Γ(α)e
−β(z−p)(z − p)α−1 , z > p .

(5.32)

If zc < p:
V̄∞(ρ) =

∫ ∞
p

P (ρ, z)
1− P (ρ, z)ψ(z)dz , (5.33)

while if zc ≥ p:

V̄∞(ρ) =
∫ ∞
zc

P (ρ, z)
1− P (ρ, z)ψ(z)dz +

∫ zc

p
ψ(z)dz . (5.34)

Referring to (5.11), the variance ζ2
∞(ρ) of the asymptotic speed distribu-

tion can be computed analogously.
The computation of V̄∞(ρ) and ζ2

∞(ρ) cannot be carried out analytically
and suited quadrature methods [3; 39; 48] have to be employed. By calcu-
lating V̄∞(ρ), it is evident that V̄∞(ρ) < 1 ∀ρ ∈ [0,1] and so, there is not
phase transition, coherently with (5.20).
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Figure 5.9: Speed diagram in the continuous case z − 1 ∼ Gamma(α, β]) with α = 3 and β = 3.
V̄∞ is defined in (5.33) - (5.34)
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Figure 5.10: Fundamental diagram in the continuous case z− 1 ∼ Gamma(α, β]) with α = 3 and
β = 3. V̄∞ is defined in (5.33) - (5.34); ζ∞(ρ) is defined in (5.11)

The parameter p is chosen such that the expected valued of z is equivalent
to 2, as in the uniform case previously considered. Therefore, we can set
α = β = 3 and p = 1 since E(z) = α/β + p.

In figures 5.9 - 5.10, the speed and the fundamental diagram are dis-
played. They have been obtained by means of Gaussian quadrature for-
mulae [3; 39; 48]; in particular, the Python™ sub-package scipy.integrate
has been used. This sub-package has functions, such as quadrature, which
perform Gaussian quadrature of multiple orders. The integration result is
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returned when the difference in the estimate becomes smaller than a given
tolerance, which is set equal to 1.49e-08 by default.

Similarly, speed and fundamental diagrams can be obtained for other
probability distributions of the uncertain parameter z, both discrete and
continuous.

5.3 The asymptotic speed distribution with nonlinear
and uncertain interaction rules

The next step in our analysis is to obtain the mean equilibrium speed dis-
tribution, where mean denotes the average with respect to the probabil-
ity distribution of the uncertain parameter z [47]. First, the z-dependent
asymptotic speed distribution will be obtained by solving the stochastic
Boltzmann-type equation (5.4). This will be done by considering the quasi-
invariant interaction regime: from the integro-differential equation (5.4), a
z-dependent Fokker-Planck PDE will be obtained. Then, its result will be
averaged with respect to the probability distribution of z. Few different
distributions will be considered.

As in chapters 3 - 4, the quasi-invariant interaction limit is considered
in order to determine the asymptotic speed distribution analytically. Let
us recall this limit:

γ, σ2 → 0+ such that σ2

γ → λ > 0 .

A new time scale τ := γ
2 t and the scaled z-dependent distribution func-

tion g(τ, v; z) := f
(

2τ
γ , v; z

)
are introduced [47]. Calculations are analogous

to the case without uncertainty; the only difference relies on the z depen-
dence indeed the solution of (5.4) is a stochastic quantity. Therefore, as in
the uncontrolled case, we obtain the following equation:

∂τg = λ

2∂
2
v

(
D2(v; ρ)g

)
− ∂v

(( ∫ 1

0
I(v, w; z)g(τ, w; z)dw

)
g

)
. (5.35)
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Let us compute the integral of the interaction function (5.3) in (5.35):
∫ 1

0
I(v, w; z)g(τ, w; z)dw =

=
∫ 1

0

[
P (ρ; z)(1− v) + (1− P (ρ; z))(vw − v)

]
g(τ, w; z)dw =

= P (ρ; z)(1− v) + (1− P (ρ; z))v(U − 1) ,

(5.36)

where U = U(τ ; z) is the mean speed with respect to the distribution func-
tion g i.e. U = ∫ 1

0 wg(τ, w; z)dw [47].
At equilibrium i.e. for τ → +∞, the Fokker-Planck type equation (5.35)

becomes

λ

2∂
2
v

(
D2(v; ρ)g∞

)
− ∂v

{[
P (ρ; z)(1− v) + (1− P (ρ; z))v(U∞− 1)

]
g∞

}
= 0 .

(5.37)
The analysis for the two different regimes have to be performed sepa-

rately, analogously to the uncontrolled case. Let us consider the congested
flow regime. As previously derived, it corresponds to P ∈ [0, 1

2) ⇐⇒
ρ ∈ (ρc(z),1]. In this regime,

U∞(ρ; z) = P (ρ; z)
1− P (ρ; z) . (5.38)

As in chapters 3 - 4, the following diffusion coefficient is considered:

D(v; ρ) := a(ρ)
√
v(1− v) , a(ρ) ≥ 0 . (5.39)

Therefore, by referring to section 4.3 and to the calculations carried out in
the case without uncertainty, the z-dependent asymptotic speed distribution
turns out to be a beta probability density function

g∞(v; z) = vα−1(1− v)β−1

B(α, β) , (5.40)

where the parameters α and β depend on z. They are

α := 2P (ρ; z)
λa2(ρ)

β := 2(1− 2P (ρ; z))
λa2(ρ) .

(5.41)

158



5 – Phase transition under uncertain vehicle interactions

If X is a random variable such that X ∼ g∞,

E[X] = α

α + β
= P (ρ; z)

1− P (ρ; z) = U∞(ρ; z)

Var(X) = αβ

(α + β)2(α + β + 1) = (1− U∞(ρ; z))U2
∞(ρ; z)

2P (ρ; z) + λa2(ρ)U∞(ρ, z)λa
2(ρ) ,

(5.42)

where the relation α + β = α
U∞

has been used.

Now, let us consider the free flow regime. As previously derived, it
corresponds to P ∈

[
1
2 ,1

]
⇐⇒ ρ ∈ [0, ρc(z)]. In this regime,

U∞ = 1.

Let us introduce
ε := 1− U∞ → 0+

and let us perform an analysis analogous to the one of the case without un-
certainty - see section 4.3. Therefore, by approaching the free flow regime,
the z-dependent asymptotic speed distribution turns out to be a beta dis-
tribution

g∞(v; z) = vα−1(1− v)β−1

B(α, β) , (5.43)

but with different parameter β than the deep congested phase. Indeed, the
parameters of the asymptotic speed distribution are

α := 2P (ρ; z)
λa2(ρ)

β := 2(1− P (ρ; z))
λa2(ρ) ε .

(5.44)

Remark 5.3.1. Parameters of the z-dependent asymptotic speed distribu-
tion, in (5.41) and (5.44), have the same form of the case without uncertain
parameter. The only difference is the dependence on z and the fact that
in the case with uncertain parameter, both the mean speed at equilibrium
and the asymptotic speed distribution are stochastic quantities. �
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If X is a random variable such that X ∼ g∞ and ε→ 0+,

E[X] = α

α + β
→ 1

Var(X) = αβ

(α + β)2(α + β + 1) → 0+ .
(5.45)

If the free flow phase is approached, the expected value of a random vari-
able distributed according to the z-dependent asymptotic speed distribution
(5.43) tends to the maximum allowed speed. On the other hand, the vari-
ance shrinks to 0. This means that in the free flow phase, the z-dependent
asymptotic speed distribution is a Dirac delta distribution centered at 1:

g∞ = δ(v − 1).

To sum up, the z-dependent asymptotic speed distribution can be rewrit-
ten as

g∞(v; z) = B1(v; z)I[z > zc] + δ(v − 1)I[z ≤ zc] (5.46)

where zc is defined in (5.22) and B1(v; z) is the z-dependent asymptotic
speed distribution in the congested flow regime (5.40).

Now, it is possible to average the z-dependent asymptotic speed dis-
tribution with the expectation using the probability distribution of z. If
z ∼ ψ(z), the mean asymptotic speed distribution is

ḡ∞(v) := Ez[g∞(v; z)] =
∫
R+
g∞(v; z)ψ(z)dz (5.47)

and its variance

Varz
(
g∞(v; z)

)
:=

∫
R+
g2
∞(v; z)ψ(z)dz −

[
ḡ∞(v)

]2
. (5.48)

As for the mean speed at equilibrium, ḡ∞(v) and Varz
(
g∞(v; z)

)
are

obtained for different probability distributions of the uncertain parameter
z.

Remark 5.3.2. The derivation of macroscopic quantities averaged with
respect to z is innovative and simpler than the traditional approach, which
would require an evolution equation for each class of vehicles. �
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5.3.1 The mean equilibrium speed distribution in the discrete
case

Let us consider the following discrete case:

z ∈ {z1, z2, ..., zn} and zi ∈ R+∀i = 1, ..., n

where the probability distribution of z is ψ(z) = ∑n
k=1 αkδ(z − zk). There-

fore, we obtain
ḡ∞(v) =

n∑
k=1

αkg∞(v; zk) (5.49)

and

Varz
(
g∞(v; z)

)
=

n∑
k=1

αkg
2
∞(v; zk)−

( n∑
k=1

αkg∞(v; zk)
)2

. (5.50)

If n = 2, the mean equilibrium speed distribution turns out to be

ḡ∞(v) = α1g∞(v; z1) + α2g∞(v; z2) . (5.51)

Referring to (5.46), several cases should be distinguished.
If zc < z1:

ḡ∞(v) = α1B1(v; z1) + α2B1(v; z2) , (5.52)
if z1 ≤ zc < z2:

ḡ∞(v) = α1δ(v − 1) + α2B1(v; z2) (5.53)
and if zc ≥ z2:

ḡ∞(v) = δ(v − 1) . (5.54)
Similarly, if n = 2, its variance is equivalent to

Varz
(
g∞(v; z)

)
=
[
α1g

2
∞(v; z1) +α2g

2
∞(v; z2)

]
−
[
α1g∞(v; z1) +α2g∞(v; z2)

]2

(5.55)
and it assumes different values depending on zc.

In figures 5.11 - 5.15 (pp. 162-164), results related to the discrete case
with n = 2, z1 = 1, z2 = 3, α1 = 0.7 and α2 = 0.3 are reported; the
parameter λ is set equal to 1 and a(ρ) = ρ(1 − ρ). In particular, in figure
5.11, the mean equilibrium speed distribution is displayed in the congested
flow regime. The critical density ρc which marks the passage from the
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free flow to the congested flow regime is ρc = ρc(z1) = 1 − 2− 1
3 ' 0.206.

As explained in section 5.2, another angular point of the mean speed at
equilibrium V̄∞(ρ) is identified i.e. ρc(z1) = 0.5 and it divides the congested
flow region into two different sub-regimes. If zc < z1 holds, this is equivalent
to consider ρ > ρc(z1) = 1 − 2−

1
z1 = 0.5 and the mean equilibrium speed

distribution ḡ∞(v) is plotted in figure 5.12. By referring to (5.52) - (5.54), it
is evident that if ρc(z1) < ρ ≤ 1, ḡ∞(v) is the linear combination of two beta
distributions while if ρc(z2) < ρ ≤ ρc(z1), ḡ∞(v) is the linear combination of
a Dirac delta centered at 1 and a beta distribution. In the free flow regime
i.e. if 0 < ρ ≤ ρc(z1), ḡ∞(v) is a Dirac delta.

It is important to observe that in the figures, Dirac deltas are not plot-
ted since the value returned is infinity. For instance, this is the case of
the asymptotic speed distribution related to ρ = 0.4, which is plotted in
figure 5.11 and that is the linear combination of a beta and a Dirac delta
distribution.

In figures 5.13 - 5.15, the mean equilibrium speed distribution is displayed
together with its uncertainty region. As in [47], the standard deviation√
Varz

(
g∞(v; z)

)
is chosen as a measure of uncertainty.
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Figure 5.11: Congested flow regime: the mean equilibrium speed distribution with z ∈ {z1 =
1, z2 = 3}, α1 = 0.7, α2 = 0.3, λ = 1, a(ρ) = ρ(1− ρ)
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Figure 5.12: The mean equilibrium speed distribution with ρ > ρc(z1), z ∈ {z1 = 1, z2 = 3},
α1 = 0.7, α2 = 0.3, λ = 1, a(ρ) = ρ(1− ρ)
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Figure 5.13: The mean equilibrium speed distribution and its uncertainty region with ρ = 0.7,
z ∈ {z1 = 1, z2 = 3}, α1 = 0.7, α2 = 0.3, λ = 1, a(ρ) = ρ(1− ρ)
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Figure 5.14: The mean equilibrium speed distribution and its uncertainty region for ρ = 0.5,
z ∈ {z1 = 1, z2 = 3}, α1 = 0.7, α2 = 0.3, λ = 1, a(ρ) = ρ(1− ρ)
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Figure 5.15: The mean equilibrium speed distribution and its uncertainty region for ρ = 0.3,
z ∈ {z1 = 1, z2 = 3}, α1 = 0.7, α2 = 0.3, λ = 1, a(ρ) = ρ(1− ρ)
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5.3.2 The mean equilibrium speed distribution in the uniform
case

Let us consider a uniformly distributed uncertain parameter z. In particu-
lar, we set

z ∼ U([a, b])

ψ(z) = 1
b− a

I[a ≤ z ≤ b] .

Then, if zc ≥ b:

ḡ∞(v) = δ(v − 1) ,

if a ≤ zc < b:

ḡ∞(v) = 1
b− a

{ ∫ b

zc
B1(v; z)dz + (zc − a)δ(v − 1)

}

and if zc < a:

ḡ∞(v) = 1
b− a

∫ b

a
B1(v; z)dz .

Similarly, its variance can be obtained.
As explained in subsection 5.2.3 and by referring to corollary 5.2.5, the

critical density is ρc = 1 − 2− 1
b . If we consider a = 1 and b = 3, ρc =

1 − 2− 1
3 ' 0.206. Moreover, the density 0.5 divides the congested flow

regime into two regions, where the behavior of the mean equilibrium speed
distribution ḡ∞(v) is different: for ρ ∈ (ρc,0.5], ḡ∞(v) is the linear combi-
nation of a Dirac delta and the integral over the interval [zc,3] of the beta
probability density function B1(v; z) while for ρ ∈ (0.5,1], it the mean of
the beta probability density function B1(v; z) with respect to the uniformly
distributed z in the interval [1,3].

In figure 5.16 - 5.19 (pp. 166-167), plots related to a = 1 and b = 3 are
displayed; a(ρ) = ρ(1−ρ) and the parameter λ is set equal to 1. They have
been obtained by means of Gaussian quadrature functions of the Python™
sub-package scipy.integrate. As in previous figures related to the discrete
case, infinite values which occur for ρ = 0.25 or ρ = 0.4 in v = 1, cannot be
plotted.
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Figure 5.16: Congested flow regime: the mean equilibrium speed distribution with z ∼ U([a, b]),
a = 1, b = 3, λ = 1, a(ρ) = ρ(1− ρ)
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Figure 5.17: The mean equilibrium speed distribution and its uncertainty region for ρ = 0.8,
z ∼ U([a, b]), a = 1, b = 3, λ = 1, a(ρ) = ρ(1− ρ)
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Figure 5.18: The mean equilibrium speed distribution and its uncertainty region for ρ = 0.6,
z ∼ U([a, b]), a = 1, b = 3, λ = 1, a(ρ) = ρ(1− ρ)
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Figure 5.19: The mean equilibrium speed distribution and its uncertainty region for ρ = 0.4,
z ∼ U([a, b]), a = 1, b = 3, λ = 1, a(ρ) = ρ(1− ρ)
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5.3.3 The mean equilibrium speed distribution in the gamma
case

Let us consider an uncertain parameter z, which is distributed according to
a Gamma distribution of parameter α and β. In particular, we set

z − p ∼ Gamma(α, β)

ψ(z) = βα

Γ(α)e
−β(z−p)(z − p)α−1 , z > p .

Then, if zc < p:

ḡ∞(v) =
∫ ∞
p

B1(v; z)ψ(z)dz ,

and if zc ≥ p:

ḡ∞(v) =
∫ ∞
p

B1(v; z)ψ(z)dz + δ(v − 1)
∫ zc

p
ψ(z)dz .

Its variance can be analogously obtained.
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Figure 5.20: The mean equilibrium speed distribution with z − 1 ∼ Gamma(α, β), α = β = 3,
λ = 1, a(ρ) = ρ(1− ρ)

In figure 5.20, the mean equilibrium speed distribution ḡ∞(v) is displayed
for p = 1; the parameter λ is set equal to 1 and a(ρ) = ρ(1 − ρ). Also
in this case, Gaussian quadrature functions of the Python™ sub-package
scipy.integrate have been used. As proved in subsection 5.2.2, there is not
phase transition when z is Gamma distributed and indeed, the transition
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from a beta distribution to a Dirac delta is smooth.

Coherently with literature [47] and with experimental data [27], multi-
modal mean equilibrium speed distributions are obtained, due to the intro-
duction of the uncertain parameter. However, because of the nonlinearity
in the interaction rules, density intervals in which the behavior of the mean
equilibrium speed is different are distinguished

5.4 Numerical tests

In this section, several numerical tests are performed in order to confirm
theoretical findings.

5.4.1 Monte Carlo methods for uncertainty quantification

Uncertainty quantification (UQ) is a research topic, which is having a great
boost in recent times and is increasingly showing its potentiality in complex
system studies [13]. A first numerical approach to UQ is based on a Monte
Carlo (MC) based scheme [13; 28].

Let us assume that f(t, v, z), v ∈ V ⊆ Rdv , z ∈ Ω ⊆ Rdz is the solution of
a PDE with uncertainties only in the initial distribution f0(v, z). Then, the
standard MC method for UQ of kinetic models is presented in the following
algorithm [13; 28].

Algorithm 3: MC-MC algorithm

1. Sampling: Sample M independent identically distributed (i.i.d.) initial
distribution fk

0 , k = 1, ...,M from the random initial data f0.

2. Solving: For each fk
0 , the kinetic equation is solved numerically by a MC solver.

The numerical solution at time tj is denoted by fk,j
Nv
, k = 1, ...,M where Nv is the

sample size of the MC solver for the kinetic equation.

3. Estimation: Estimate statistical moments of any quantity of interest g[f ] of the
random solution field, e.g. for the first moment

E[g[f j ]] ≈ EM [g[fk,j
Nv

]] := 1
M

M∑
k=1

g[fk,j
Nv

].
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Algorithm 3 refers to the general context of kinetic equations. If we con-
sider our problem, that means the solution of the Boltzmann-type equation
under uncertain vehicle interactions, these steps translate in the following
way. A Monte Carlo sampling of the uncertain parameter z is performed
according to its probability distribution. For each value of the uncertain
parameter in the sample, the problem is deterministic and it is solved by
means of the Nanbu-Babovsky’s scheme, explained in section 2.2 and used
in chapters 3 and 4. Then, statistical information about the quantities of
interest, such as the mean equilibrium speed distribution, can be obtained
by means of statistical estimators such as the mean.
Algorithm 4 [13] is the scheme, which will be used to perform simulations.

Algorithm 4: MC-MC algorithm for the Boltzmann-type equation

Set parameters N , ρ, ε, ∆t, γ, σ2, Nv

Sampling
Sample M independent identically distributed values of the uncertain
parameter z: {z1, z2, ..., zM}

Solving
For j=1,...,M

Set z = zj

Solve the Boltzmann-type equation for z = zj by means of the
Nanbu-Babovsky’s scheme

Save the resulting asymptotic speed distribution gj
∞(v) or other quantities

of interest
Estimating

Estimate the mean asymptotic speed distribution ḡSIM
∞ (v) by means of the

statistical mean: ḡSIM
∞ (v) ←

∑M
j=1 g

j
∞(v)/M or other quantities of interest

Compute the L2-numerical error with respect to the exact solution ḡT H
∞ (v),

which can be obtained by means of quadrature formulae:
L2-numerical error =

√∑Nv

k=1(ḡT H
∞ (vk)− ḡSIM

∞ (vk))2/
∑Nv

k=1 ḡ
T H
∞ (vk)

Return ḡSIM
∞ (v) and L2-numerical error

Monte Carlo methods for UQ are easily implementable as it is shown by
algorithms 3 and 4 since they manly rely on MC solvers of kinetic equations
such as the Nanbu-Babovsky’s scheme for Boltzmann-type kinetic equa-
tions. Therefore, the MC-MC algorithm is non-intrusive and parallelizable
since estimation is a post-processing step. It also inherits from the MC
solver its efficiency: as explained in section 2.2, Nanbu-Babovsky’s scheme
has a computational cost, which is linearly proportional to the number of
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agents and it preserves the main physical properties of the solution [29; 30].
Moreover, the impact of this method on the curse of dimensionality is lower
[28]. This means that it weakly has impact on the increase of computational
cost due to the size of the uncertain parameter’s sample. However, its draw-
backs are related to its Monte Carlo trait: as explained in subsection 2.2.2,
MC methods are slow, their convergence is O(N− 1

2 ), where N is the sample
size and fluctuations are present in the solution statistics [7].

Algorithm 4 can be classified as a Monte Carlo-Monte Carlo scheme since
both the solution for fixed z of the Boltzmann-type equation and uncertainty
quantification are performed with Monte Carlo procedures. Therefore, the
overall error has three different contributions [13]. The first is related to UQ
and it is O(M− 1

2 ), where M is the size of the uncertain parameter’s sample;
the second is due to the Nanbu-Babovsky’s scheme and it is O(N−

1
2

v ) [7],
where Nv is the number of lattice points in the speed interval; finally, the
last contribution to the error is due to the choice of the parameters such as γ
and σ2, which should be performed such that the quasi-invariant interaction
regime holds.

In the more general context of algorithm 3, this MC-MC method satisfies
the error bound

||E[g[f ]]−EM [g[fNv ]]||L2(V,Ω) ≤ C(σz, σf0, T, f0,∆t) (M− 1
2 +N

− 1
2

v ), (5.56)

where C is a function of σz i.e. the variance of the random variable z, σf0

i.e. the variance of the random initial data f0, T i.e. the final time, f0 and
∆t i.e. the time step.

5.4.2 Choice of parameters

In order to perform simulations, the uniform case has been considered: this
means that the uncertain parameter z is uniformly distributed in the inter-
val [a, b]. In subsections 5.2.3 and 5.3.2, the mean speed at equilibrium and
the mean equilibrium speed distribution have been computed respectively.
If a = 1 and b = 3, the critical density turns out to be ρc = 1−2− 1

3 ' 0.206.

Due to the fact that algorithm 4 is based on the Nanbu-Babovsky’s
scheme and the requirement ∆t

ε ≤ 1 must hold - see subsection 2.2.1, we set

∆t = ε, γ = ε, σ2 = γ , (5.57)
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which imply λ = 1. The choice ∆t = ε implies that all agents interact. Sev-
eral values of ε will be considered and it will be evident that as ε gets smaller,
the solution of the Boltzmann-type kinetic equation better approaches the
Fokker-Planck mean equilibrium speed distribution since we are closer to
the quasi-invariant interaction regime.
As in sections 3.12 and 4.8, we set:

• number of agents = 105;

• initial speed distribution f0 ∼ U([0,1]);

• speed domain [0,1] is discretized in Nv = 101 points;

• a(ρ) := ρ(1− ρ);

• η ∼ U [−a, a], a =
√

3σ2 .

5.4.3 Results

Let us consider the congested flow regime therefore, we set ρ = 0.6. By
referring to the deterministic case extensively studied in chapter 4, we set
T = 20 since this time is sufficient to reach equilibrium with this density.
For the parameter ε, the following values are considered: 0.5, 0.1, 0.01.

In figures 5.21 - 5.23 (pp. 173-174), results related to the case ε = 0.5 are
displayed, respectively for M = 10, M = 50 and M = 100. In particular,
a comparison between the theoretical and the simulation mean equilibrium
speed distribution ḡ∞(v) can be appreciated. The theoretical ḡ∞(v) is the
mean solution of the Fokker-Planck PDE, which is obtained in the quasi-
invariant interaction regime. It is calculated numerically by means of the
Legendre-Gauss Quadrature formula with 20 nodes [3; 39; 48]. Instead, the
simulation ḡ∞(v) is the solution of the Boltzmann-type equation obtained
by means of algorithm 4. Due to the fact that γ = σ2 = ε = 0.5, we are
far from the quasi-invariant interaction regime, which requires γ, σ2 → 0+

and σ2

γ → λ > 0, and consequently, the simulation ḡ∞(v) does not fit the
theoretical one.

Analogous plots are reported in figures 5.24 - 5.26 (pp. 175-176) for
ε = 0.1 and in figures 5.27 - 5.29 (pp. 176-177) for ε = 0.01. As ε decreases,
the matching between the simulation and the theoretical mean equilibrium
speed distribution improves.
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Due to the Monte Carlo trait of this approach, considering big values
of M is a necessary condition in order to obtain better matching between
simulation and theoretical results. In figure 5.30 (p. 178), M = 500 is
considered together with ε = 0.01; the improvement is evident.
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Figure 5.21: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 10, ε = 0.5, T = 20
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Figure 5.22: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 50, ε = 0.5, T = 20
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Figure 5.23: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 100, ε = 0.5, T = 20
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Figure 5.24: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 10, ε = 0.1, T = 20
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Figure 5.25: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 50, ε = 0.1, T = 20
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Figure 5.26: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 100, ε = 0.1, T = 20
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Figure 5.27: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 10, ε = 0.01, T = 20
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Figure 5.28: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 50, ε = 0.01, T = 20
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Figure 5.29: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 100, ε = 0.01, T = 20
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Figure 5.30: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.6, M = 500, ε = 0.01, T = 20

A more quantitative insight on the matching between the simulation and
the theoretical mean equilibrium speed distribution can be had by studying
the L2-numerical relative error, as it is defined in algorithm 4:

L2-numerical error =
√∑Nv

k=1(ḡTH∞ (vk)− ḡSIM∞ (vk))2∑Nv
k=1 ḡ

TH
∞ (vk)

(5.58)

where ḡTH∞ and ḡSIM∞ are the theoretical and the simulation mean asymptotic
speed distribution respectively.
The typical behavior of Monte Carlo methods is expected i.e. L2-numerical
error ∼ O(M− 1

2 ). In figure 5.31 (p. 179), the L2-numerical error related
to the mean equilibrium speed distribution is compared to the theoretical
expected. The log-log plot displays results for ε = 0.5, 0.1, 0.01 and for
M ∈ [0,100].

Since we have observed that the numerical ḡ∞(v) better fit the theoretical
distribution if M increases, a smoother behavior of the L2-numerical error
would be expected if M increases. In figure 5.32 (p. 180), the L2-numerical
error is compared to the theoretical one for ε = 0.01 and forM ∈ [100,1000].
The numerical curve is smoother than figure 5.31, where M ∈ [0,100] and
the theoretical curve is better reproduced.
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The same numerical relative error can be computed referring to the first
moment i.e. V̄∞ and it is defined as

L2-numerical errorV =
√

(V̄ TH
∞ − V̄ SIM

∞ )2/V̄ TH
∞ , (5.59)

where V̄ TH
∞ and V̄ SIM

∞ are the theoretical and the simulation mean speed
at equilibrium respectively.
In order to observe a smoother behavior of the L2-numerical error, a wider
interval of M is considered. In figure 5.34 (p. 181), the L2-numerical er-
ror related to V̄∞ is compared to the MC error with ε = 0.01 and M ∈
[100,1000].

Now, let us focus on another source of error. The Nanbu-Babovsky’s
scheme is used to solve the Boltzmann-type equation at fixed z. It is a
Monte Carlo approach and as mentioned in subsection 5.4.2, the speed do-
main is discretized in Nv = 101 points. In figures 5.35 - 5.37 (pp. 181-182),
the L2-numerical error is plotted for various Nv values. As expected, a finer
choice of the speed discretization domain leads to results which are more
consistent with theoretical predictions.
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Figure 5.31: Comparison between the L2-numerical error defined in (5.58) and the theoretical
expected error i.e. O(M− 1

2 ) for ρ = 0.6, T = 20, various ε and M ∈ [0,100]
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Figure 5.32: Comparison between the L2-numerical error defined in (5.58) and the theoretical
expected error i.e. O(M− 1

2 ) for ρ = 0.6, ε = 0.01, T = 20 and M ∈ [100,1000]
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Figure 5.33: Comparison between the L2-numerical error defined in (5.59) and the theoretical
expected error i.e. O(M− 1

2 ) for ρ = 0.6, T = 20, various ε and M ∈ [0,100]
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Figure 5.34: Comparison between the L2-numerical error defined in (5.59) and the theoretical
expected error i.e. O(M− 1

2 ) for ρ = 0.6, T = 20, various ε and M ∈ [100,1000]
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Figure 5.35: Comparison between the L2-numerical error defined in (5.58) and the theoretical
expected error i.e. O(M− 1

2 ) for ρ = 0.6, ε = 0.5, T = 20 and various Nv
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Figure 5.36: Comparison between the L2-numerical error defined in (5.58) and the theoretical
expected error i.e. O(M− 1

2 ) for ρ = 0.6, ε = 0.1, T = 20 and various Nv
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Figure 5.37: Comparison between the L2-numerical error defined in (5.58) and the theoretical
expected error i.e. O(M− 1

2 ) for ρ = 0.6, ε = 0.01, T = 20 and various Nv
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In previous plots, the density ρ = 0.6 has been considered. Since z
is uniformly distributed in the interval [1,3], the critical density is about
0.206. Consequently, if ρ = 0.6, we are in the deep congested regime.
Let us set ρ = 0.4. The associated mean equilibrium speed distribution
is plotted in figure 5.19 (p. 167) together with its uncertainty region. In
v = 1, ḡ∞(v = 1) = +∞ and this value is not visible in the plot. Therefore,
we expect we will face some difficulties in deriving ḡ∞ in the neighborhood
of v = 1 numerically.
Moreover, by running simulations at fixed z, it is evident that the time
for convergence at equilibrium is longer than the case ρ = 0.6 and we set
T = 150.

In figures 5.38 - 5.40 (pp. 183-184), the mean equilibrium speed distribu-
tion computed with simulations is compared to the theoretical one, which
is obtained by mean of the Legendre-Gauss Quadrature formula with 20
nodes, in the case ε = 0.01. The discrepancy in the neighborhood of v = 1
is high and this is due to the fact that it is impossible to obtain a Dirac
delta numerically. Indeed, the points of ḡ∞ in the neighborhood of v = 1
are not even plotted since they assume extremely high values e.g. ∼ 108

and ḡ∞(v = 1) = +∞. Consequently, computing the numerical error is not
significant.
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Figure 5.38: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.4, M = 10, ε = 0.01, T = 150
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Figure 5.39: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.4, M = 50, ε = 0.01, T = 150
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Figure 5.40: Comparison between the mean Fokker-Planck equilibrium speed distribution - see
subsection 5.3.2 (theoretical) and the numerical distribution obtained with algorithm 4 (simula-
tion) with z ∼ U([1,3]), ρ = 0.4, M = 100, ε = 0.01, T = 150
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5.5 Conclusion

In this chapter, an uncertainty parameter z is introduced in the nonlinear
interaction rules by referring to previous works. Different probability distri-
butions for z are considered and mean macroscopic quantities are obtained.
For some probability distributions of the uncertain parameter, calculations
can be carried out analytically while for others numerical methods such as
Gaussian quadrature formulae are employed.

Several innovative results are obtained. In particular, two general results,
one for discrete and another for continuous uncertain parameters, identify
the stable fixed point of the system and the critical density of the phase
transition. The mean speed at equilibrium turns out to be equivalent to the
average, with respect to z, of the stable fixed points, which are derived in
the deterministic case i.e. for fixed z. Instead, if we focus on the phase tran-
sition, it is preserved by the introduction of the uncertainty if the uncertain
parameter is discrete. In this case, the critical point of the system coincides
with the one corresponding to the type of vehicles with the biggest z. An
analogous result is derived for an uncertain parameter which is uniformly
distributed in a bounded interval. On the other hand, the phase transition
is not preserved if the uncertain parameter follows a Gamma distribution.

As in deterministic cases, the quasi-invariant interaction regime is consid-
ered in order to derive mean equilibrium speed distributions. The piecewise
trait of the mean speed at equilibrium is reflected in the shape of the mean
equilibrium speed distribution. Coherently with literature [47] and with
experimental data [27], multi-modal mean equilibrium speed distributions
are obtained, due to the introduction of the uncertain parameter. How-
ever, because of the nonlinearity in the interaction rules, density intervals
in which the behavior of the mean equilibrium speed distribution is different
are distinguished.

Finally, numerical tests are performed thanks to a Monte Carlo method
for UQ. The numerical solution of the Boltzmann-type equation averaged
with respect to z is compared to the mean Fokker-Planck solution obtained
in the quasi-invariant interaction regime. Due to the Monte Carlo trait of
the algorithm employed, the numerical error made with respect to the mean
Fokker-Planck theoretical solution is O(M− 1

2 ) where M is the uncertain
parameter’s sample size. The other two contributions to the numerical error,
one related to the Nanbu-Babovsky’s scheme and the other to the quasi-
invariant interaction regime, are also analyzed. More accurate numerical
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results could be obtained by using more sophisticated numerical methods
for UQ such as Stochastic Collocation and Stochastic Galerkin-generalized
Polynomial Chaos [13; 51].
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Conclusion

This dissertation highlights the potentiality of the mesoscopic approach to
study phase transition and provides several original contributions to the
research topic of kinetic traffic modeling.

Contrary to macroscopic models which were already used to investigate
this feature [32], the Boltzmann-type kinetic approach does not require
any assumptions a priori. The phase transition naturally emerges from the
derivation of macroscopic quantities and it is a consequence of nonlinear
microscopic interaction rules. In particular, a bifurcation emerges in the
stability analysis of the mean speed at equilibrium and it identifies the
critical point of the phase transition. This critical density marks the passage
from the free flow regime, in which the mean speed at equilibrium is equal
to its maximum value and the asymptotic speed distribution is a Dirac
delta, to the congested flow regime, in which the mean speed at equilibrium
decreases nonlinearly to 0 as a function of the density and the asymptotic
speed distribution is a beta probability density function.

Nonlinear interaction rules are also considered when dynamics are con-
trolled i.e. a percentage of autonomous vehicles is introduced in the system.
The phase transition is preserved by the binary variance control while it is
not by the desired speed control. Risk mitigation is also investigated. Co-
herently with literature [46], the binary variance control can reduce the vari-
ance of the asymptotic speed distribution and therefore, road risk. However,
the novelty is that a range of densities for which the variance is identically
equal to 0 is identified and it corresponds to the free flow regime. Instead,
the desired speed control manages to reduce road risk only in the infinite
effective penetration rate limit as in previous works [46].

Finally, phase transition is also investigated under uncertain vehicle in-
teractions. Two general results, one for discrete and another for continuous
uncertain parameters, identify the stable fixed point of the system and the
critical density of the phase transition. The mean speed at equilibrium
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turns out to be equivalent to the average of the stable fixed points which
are derived in deterministic cases. The phase transition is preserved by
the introduction of the uncertainty if the uncertain parameter is discrete.
In this case, the critical point of the system coincides with the one corre-
sponding to the type of vehicles with the biggest uncertain parameter. An
analogous result is derived for an uncertain parameter which is uniformly
distributed in a bounded interval. On the other hand, the phase transition
is not preserved if the uncertain parameter follows a Gamma distribution.
Coherently with literature [47] and with experimental data [27], multi-modal
mean equilibrium speed distributions are obtained, due to the introduction
of the uncertain parameter. However, because of the nonlinearity in the
interaction rules, density intervals in which the behavior of the mean equi-
librium speed is different are distinguished.

The reach of these studies is both theoretical and practical. Kinetic mod-
eling is a powerful tool which allows to characterize in detail the unsteady
dynamics of traffic, thus marking new research directions which inspire the
development and the evolution of broader theoretical and computational
topics. Furthermore, understanding vehicular traffic has social and eco-
nomic consequences: it can lead to replan urban mobility in order to con-
sider environmental and management issues.

The findings of this dissertation provide an overview of phase transition
in vehicular traffic with a Boltzmann-type kinetic approach. However, this
research topic could still be deepened by referring to this thesis as a bench-
mark. In the following, possible research ideas are presented.

• As in [46], the Boltzmann-type equation of the kinetic traffic model
could be reformulated in space inhomogeneous setting. In this way,
hydrodynamic models with nonlinear interaction rules could be derived.
The idea is to understand which is the impact of the nonlinearity and
how these kinetic based models relate to the macroscopic ones. This
analysis would also allow to focus on the derivation of hydrodynamic
models, which is an under-explored topic in the context of multi-agent
kinetic systems.

• The Uncertainty Quantification (UQ) study can be extended to the
controlled dynamics. As in [47], the stochastic and the deterministic
control strategy would be considered. The former leads to a model for
Maxwellian molecules, which can be tackled with techniques similar
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to the ones employed in the uncontrolled case. The latter leads to a
more easily implementable model for non-Maxwellian molecules with a
non constant kernel that ensures the physical admissibility of the in-
teractions. This model is more difficult to tackle and it can be solved
by referring to a work related to a market economy [12]. In [47], the
macroscopic features, which result from the two different control strate-
gies, are equivalent. It would be interesting to understand whether this
also occurs in the case of a phase transition and if this phenomenon
is preserved by the introduction of the control. Moreover, also non-
Maxwellian models are under-explored in the context of multi-agent
kinetic systems and therefore, in this way they could be deepened.

• UQ results could be tested with more sophisticated and efficient pro-
cedures then the Monte Carlo-Monte Carlo scheme used in chapter 5.
The goal would be to compare several existing methods [13; 51], in par-
ticular Stochastic Collocation (SC) and Stochastic Galerkin-generalized
Polynomial Chaos (SG-gPC) methods. It could be interesting and use-
ful to devise hybrid methods, which combine the bright sides of differ-
ent approaches. This is a current research direction as shown in [31],
where the efficiency of DSMC methods is combined with the accuracy
of SG-gPC.

• In [45; 46] and in this thesis, autonomous vehicles are introduced as
hidden leaders: their are standard agents and others do not interact
with them differently. The problem could be studied by treating au-
tonomous vehicles as labeled leaders: they are distinguished as leaders
by other agents and the interaction with them is different from the one
with standard vehicles. This issue has been traditionally tackled with
fluid-dynamic models [21] and in order to do it in a kinetic fashion,
we could be inspired by the paper [2], where leaders allow to control
opinion consensus. It would be fascinating to compare implementation
costs and benefits of different modeling approaches. Investigating au-
tonomous vehicles with a Boltzmann-type kinetic approach could also
be the basis to devise automatic decision algorithms in the context of
Artificial Intelligence and study their multiscale collective impact.

• The modeling of traffic interactions could be enriched by considering
that an agent is pushed to change its speed not only because of the
leading vehicle’s speed and the level of congestion. Behavioral and psy-
chological aspects should be considered. In analogy with an economic
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model that studies wealth distribution [6], the traffic model could con-
sider agents’ utility in the interaction rules. This utility would be based
on psychological studies such as [19; 35], which dwell upon gender differ-
ences in traffic behavior due to the endorsement of stereotypes. Alter-
natively, research could be based on a model for a speculative financial
market with a single stock that couples the financial with the opinion
dynamics [26]. In this work, two different populations of traders are
considered and their interplay determines the stock’s price dynamics.
In a similar way, women and men could be considered and the contri-
bution of each population to road risk could be understood.
These studies could pave the way for further research, which would take
into account psychological aspects in traffic modeling with a multi-agent
kinetic approach.
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Appendix A

Desired speed control and
phase transition
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Figure A.1: Discriminant (4.78) for different effective penetration rates p∗, vd(ρ) = 1− ρ2, µ = 2
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Figure A.2: Fixed points (4.77) for different effective penetration rates p∗, vd(ρ) = 1− ρ2, µ = 2.
Dashed lines are related to unstable fixed points i.e. Ṽ ∗+; solid lines are related to stable fixed
points i.e. Ṽ ∗−
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Figure A.3: Stable fixed point (4.80) for different effective penetration rates p∗, vd(ρ) = 1 − ρ2,
µ = 2
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Figure A.4: Discriminant (4.78) for different effective penetration rates p∗, vd(ρ) = 1− ρ4, µ = 2
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Figure A.5: Fixed points (4.77) for different effective penetration rates p∗, vd(ρ) = 1− ρ4, µ = 2.
Dashed lines are related to unstable fixed points i.e. Ṽ ∗+; solid lines are related to stable fixed
points i.e. Ṽ ∗−
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Figure A.6: Stable fixed point (4.80) for different effective penetration rates p∗, vd(ρ) = 1 − ρ4,
µ = 2
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Figure A.7: Discriminant (4.78) for different effective penetration rates p∗, vd(ρ) = 1− ρ5, µ = 2
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Figure A.8: Fixed points (4.77) for different effective penetration rates p∗, vd(ρ) = 1− ρ5, µ = 2.
Dashed lines are related to unstable fixed points i.e. Ṽ ∗+; solid lines are related to stable fixed
points i.e. Ṽ ∗−
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Figure A.9: Stable fixed point (4.80) for different effective penetration rates p∗, vd(ρ) = 1 − ρ5,
µ = 2
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Figure A.10: Discriminant (4.78) for different effective penetration rates p∗, vd(ρ) = 1−ρ7, µ = 2
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Figure A.11: Fixed points (4.77) for different effective penetration rates p∗, vd(ρ) = 1−ρ7, µ = 2.
Dashed lines are related to unstable fixed points i.e. Ṽ ∗+; solid lines are related to stable fixed
points i.e. Ṽ ∗−
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Figure A.12: Stable fixed point (4.80) for different effective penetration rates p∗, vd(ρ) = 1− ρ7,
µ = 2
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Figure A.13: Discriminant (4.78) for different effective penetration rates p∗, vd(ρ) = 1−ρ8, µ = 2
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Figure A.14: Fixed points (4.77) for different effective penetration rates p∗, vd(ρ) = 1−ρ8, µ = 2.
Dashed lines are related to unstable fixed points i.e. Ṽ ∗+; solid lines are related to stable fixed
points i.e. Ṽ ∗−
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Figure A.15: Stable fixed point (4.80) for different effective penetration rates p∗, vd(ρ) = 1− ρ8,
µ = 2
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