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Abstract
This work focuses on understanding how evolutionary forces, in a complex environ-

ment, have shaped the human decision making processes. Within the field of choice under
uncertainty, it is experimentally observed that people tend to make irrational and/or contro-
versial choices (e.g. Allais Paradox, Ellesberg Paradox), adopting simple heuristics rather
than following rational principles established by the expected utility framework. Through
this project, we aim to retrieve such observed irrational preferences as an evolutionary
emergent phenomenon. Specifically, the environment we live in is extremely complex, of-
ten characterized by highly non-linear and time-evolving conditions. Evolutionary forces,
both exogenous (environment) and endogenous (group interaction), made our ancestors
develop certain heuristics, which everyday help us taking quick and efficient decisions.
The hypothesis we would like to prove is that these “mental shortcuts” work optimally in a
real-world-complexity scenario, but only sub-optimally in abstract and oversimplified lab-
oratory setups, leading to the emergence of irrational choice patterns and paradoxes. To
demonstrate our point, we developed an Agent Based Model, where agents are first faced
with different degrees of uncertainty, with the aim of naturally facilitating the development
of heuristics and strategies. Once the training phase has ended, they are then confronted
with different tasks (scenario with same degree of uncertainty, risky lotteries), to observe
if some empirically reported patterns would arise. In order to include intelligence in our
model, we chose as agents Artificial Neural Networks, and we then trained the agents by
means of a structured evolutionary algorithm, to mimic the actual Darwinian selection.
As results, we observed different decision-making attitudes, depending on the degree of
risk and uncertainty of the choices faced by the agents, both in the training evolutionary
phase and in the out-of-sample analysis. In light of such results, possible extensions of the
present work are outlined, in order to gain a deeper understanding of how decision making
works.
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1. Introduction

The purpose of this thesis is to gain understanding on how evolution, in a complex and
uncertain environment, have shaped the human decision making processes.
Decision making is present in nearly everything we do: from daily to more uncommon
decisions, our life is driven by the choices we make. Therefore, due to its centrality in
our lives, it is not surprising that decision making captures research attention from a wide
range of disciplines, starting from cognitive and social psychology to economics, political
science, marketing, engineering, philosophy, etc.
Initially, a great part of decision making research was focused on the concept of selecting
the optimal decisions, reducing a decision situation essentially to a mathematical opti-
mization problem [Johnson and Busemeyer, 2010]; the most famous theory in this stream
is Expected Utility Theory [Morgenstern and Von Neumann, 1953]. These theories have
no space for deviation from the best choices: the decision maker will always choose ratio-
nally, whatever the circumstances. Obviously, such an approach is too simplistic, indeed it
does not take into account the large amount of endogenous and exogenous factors affecting
choice and deceiving the decision maker from the optimal move. In addition, humans are
famously bad at understanding probabilities, exhibiting a multitude of context dependent
biases and distortions. For these reasons, the rational recipe of Expected Utility Theory
shows many limitations in accounting how humans perceive probabilities and uncertainty,
leading to the notion of bounded rationality [Simon, 1955] and a long list of behavioral
biases and fallacies (e.g. [Allais, 1953],[Ellsberg, 1961], etc.).
Many attempts [Ferro and Sornette, 2020] and new theories (among all Cumulative Prospect
Theory [Tversky and Kahneman, 1992]) were developed to explain such fallacies, replac-
ing the objective probabilities with subjective probabilities (also called decision weights).
These theories are called descriptive decision models, attempting to describe how humans
actually make decisions, rather than trying to find best decisions for any situation. Here,
the attractiveness of an event is decomposed into the product of subjective probability
and subjective value, although empirical evidence indicate that probability weights and
utilities are often not separable in the mind of the decision maker [Kadane and Winkler,
1988] [Pruitt and Hoge, 1965]. This approach still retains an expectation principle, but
it focuses on which psychological factors must be added to account for observed human
decision preferences [Johnson and Busemeyer, 2010]. Theories including the concept of
subjective probabilities usually give better results in predicting human decision making;
however their biggest criticism is that they are built ad hoc to justify experimental obser-
vation: the parameters of the curves characterizing these theories are trivially fitted from
experiments, meaning that there is no theoretical explanation for deriving the values and
their nature.
In addition, most decision models are built on artificial and oversimplified hypothesis, for
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example they describe how a single individual makes decisions, assuming interaction only
with the external environment (e.g. choose between two lotteries with different payoffs),
but not with other individuals. Paradoxical results are typically reproduced in laboratory
settings and in experiments where reality is traded for control, e.g. participants are asked
to answer a list of questions isolated from the rest of the world. From a more realistic
perspective, it is unlikely that our ancestors had to face similar setups; on the contrary,
they had probably experienced both competition and cooperation between individuals, in
a fluctuating and uncertain environment.
Therefore, existing decision making theories are not able to explain fully correctly our de-
cision processes, and many researchers are working on developing a new theory. Among
them, Professor Sornette, in his Chair of Entrepreneurial Risks (ETH Zurich), is address-
ing research questions of decision making, analysing the topic from different point of
views. Above all, he developed together with the colleague V.I. Yukalov the Quantum
Decision Theory [Yukalov and Sornette, 2008]. An important aspect to investigate, which
is nowadays not yet explained, is the origin of our “irrational” behaviour in decision mak-
ing processes: “How and why did our observed decision-making attitudes develop?” So
far, in the scientific community, an important factor that has received relatively little at-
tention is evolutionary pressure.
In this work, we suggest that selective dynamics, acting during the evolution of human
populations, led to the formation of certain heuristics [Gigerenzer and Todd, 1999], which
everyday influence our decision-making process. The key hypothesis of this work is that
the observed human deviations from rational expected utility theories derive from evolu-
tionary forces, which gradually affected our decision modules, in order to promote survival
and gene transmission in an extremely complex environment, often characterized by highly
non-linear and time-evolving conditions.
In other words, evolutionary processes, both exogenous (environment) and endogenous
(interaction), may have shaped our decision-making mechanisms to act optimally in an
complex real-world scenario, but sub-optimally in overly simplified laboratory tasks. To
sum-up, through this project, we would like to retrieve observed irrational preferences as
an evolutionary emergent phenomenon. More concretely, we aim to find which are the
simplest and most natural ingredients that can lead to the emergence of irrational patterns
of decision, combining both an uncertain environment and interaction (e.g. competition
and cooperation) between individuals.
To test our hypothesis, we developed an agent based model (ABM), which will describe the
evolution of the decision making process. In agent-based modeling, a system is modeled
as a collection of autonomous decision-making entities called agents, which individually
assess their situation and take decisions. At the simplest level, an ABM consists of a sys-
tem of agents and the relationships between them; even the simplest model can exhibit
complex behavior patterns and provide valuable information about the dynamics of the
real-world system that it emulates [Bonabeau, 2002]. Sophisticated ABM can incorporate
advanced tools as neural networks, evolutionary algorithms, or other learning techniques
to allow realistic learning and adaptation and evolution of the agents, letting unsuspected
behaviors to emerge.
As results, we observed different decision-making attitudes, depending on the degree of
risk and uncertainty of the choices faced by the agents in the training evolutionary phase.
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CHAPTER 1. INTRODUCTION

The structure of the thesis is the following: in the second Chapter, Decision Theory State
of the Art, we illustrate the actual state of the art in decision-making, explaining the most
famous theories and providing some examples where these models fail.
In the third Chapter, Heuristics in decision making, we illustrate the concept of heuris-
tics, with a regression on the interesting works of the professor Gerd Gigerenzer.
In the fourth Chapter, Purpose of the Agent Based Model, we start to describe our agent
based model, explaining its purpose, the choice of using neural networks and an evolution-
ary algorithm for training them, concluding with an explanation of the Reverse Engineer
algorithm, used to compare our agents behaviour to some existing decision making theo-
ries.
In the fifth Chapter, Inside the Agent Based Model, we go through each step of the model,
explaining in details each step of the evolutionary algorithm and its characteristics.
In the fifth Chapter, Results, we report the main results of our Neural Network Agent
Based Model, to conclude in the sixth Chapter, Conclusions and possible extensions,
where we summarize the results and mention some possible further developments of the
work.
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2. Decision Theory State of the Art

The current chapter will cover the State of the Art in decision theory from a behavioral
and game-theoretical point of view.
Most theories of decision making assume that any decision can be abstracted and rep-
resented as the selection of a single course of action (e.g. a gamble, a lottery) X , de-
scribed by the value of the possible outcomes that could result from selecting the action
(x1, x2, ..., xN), and the associated probability that each outcome would occur if the ac-
tion was selected, (p1, p2, ..., pN). Following this notation, N is the number of possible
outcomes for one single gamble. The single gamble can be also represented as:

X = (x1, p1;x2, p2; ...;xN , pN) (2.1)

In a decision making problem, giving an ensemble of gambles W = (X1, X2, ..., XM),
where M is the number of available alternatives, the player, i.e. decision maker, has to
choose the gamble Xi that he believes optimal. To give a first simple example, we can
imagine a decision making problem which concerns a choice between two binary lotteries
(N = 2, M = 2) where X1 = A and X2 = B:

A = (xA
1 , p

A
1 ;x

A
2 , p

A
2 ) vs B = (xB

1 , p
B
1 ;x

B
2 , p

B
2 ) (2.2)

Here, if the decision maker chooses lottery B, he will receive xB
1 with probability pB1 or

xB
2 with probability pB2 = 1−pB1 .

Decision where the outcome of a lottery is uncertain but the probabilities are known are
generally called decisions under risk; on the contrary, situations where probabilities and/or
outcomes are unknown are called decisions under ambiguity or uncertainty.

2.1 Expected Value Theory

The simplest and, from a purely statistical point of view, optimal rule for choosing the best
gamble from the ensembleW , is selecting the optionX that has the highest expected value.
Using the notation of (2.1), the expected value EV (X) of the X-th lottery is calculated as:

EV (X) =
N∑
i=1

xipi (2.3)

where N is the number of possible outcomes of the lottery X.
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CHAPTER 2. DECISION THEORY STATE OF THE ART

2.1.1 Criticism of Expected Value Theory
The EV rule seems reasonable for gambles played repeatedly many times, however, for
gambles with high stakes that are only played once, it turns out that this objective may
not be so appealing. Bernoulli [Bernoulli, 1954] observed that most people did not make
choices in line with the expected value rule when the values were determined with large
objective amounts. He proposed that people did not view monetary outcomes objectively,
but subjectively. To make things clearer, imagine to take a decision between the following
two options (first choice of Allais paradox, explained in Subsection 2.2.1):

(A) A certain outcome valued at €1 million

(B) An uncertain option with an 89% chance of €1 million, a 10% chance of €5 million,
and a 1% chance of receiving nothing

The expected value rule, according to Eq. (2.9), suggests that one should take the second
option, because

EV (B) = €1.39M > €1M = EV (A)

However, given this hypothetical choice, the majority of experimental participants selected
A even though it has a lower expected value. Presumably, this is due to the fact that the
subjective experience of receiving 5 million instead of 1 million is not five times as pleasur-
able as receiving 1 million instead of nothing. Rather, as wealth increases, the additional
value placed on subsequent increments decreases, i.e. the same amount of money does
not have the same subjective value to both a miller and a millionaire. Just with this simple
example one can deduce two concepts that expected value theory is missing and that will
be deepen in the next section:

• Risk aversion, i.e. humans have the tendency of always choosing certainty over risk.

• Diminishing marginal utility, i.e. the marginal utility of a good or service declines
as its available supply increases.

Another famous paradox highlighting the importance of distinguishing between short-run
or long-run experiments, in order to compute the worth of a gamble, is the St. Petersburg
paradox.

2.1.1.1 St. Petersburg paradox

The St Petersburg paradox was first put forward by Nicolaus Bernoulli in 1713 [de Mont-
mort, 1713], but takes its name from the resolution by Daniel Bernoulli, who published his
arguments in the Commentaries of the Imperial Academy of Science of Saint Petersburg
[Bernoulli, 1738].
This game is a single player game in which a fair coin is tossed at each stage, and, starting
with 2 dollars, the value is doubled every time heads appears. The first time tails ap-
pears, the game ends and the player wins whatever is in the pot. Hence, mathematically,
the player wins 2k dollars with probability 1

2k
, where k is a positive integer equal to the

number of consecutive head tosses, or equivalently to the number of tosses. The St. Pe-
tersburg gamble has infinite expected value (i.e. infinite expected payoff) and considering
nothing but the expected value one should therefore play the game at any price if offered

11



2.2. EXPECTED UTILITY THEORY (EUT)

the opportunity. In relation to common experience, this seems to be a paradoxical result.
Georges-Louis Leclerc, Comte de Buffon (1701-1788) (famous for his random needle es-
timation of π) made an empirical test of the problem and found that in 2048 games a total
10,057 dollars were paid, less than an average of less than 5 dollars per game: it turns out
that this game was worth only a very small amount to the participants [Nelson, 2013].
As we will explain later, one can solve this paradox computing the worth of the gamble
using a rule including the concept of “saturation of happiness”, meaning that one become
less and less happy as the money prize increase.

2.2 Expected Utility Theory (EUT)
In order to go beyond the criticisms of expected value rule described in the previous sec-
tion, a new theory was needed; Nicolas Bernoulli described the St. Petersburg paradox in
1713, prompting mathematicians to develop a new theory as a solution. For this reason, in
1738, Nicolas’ cousin Daniel Bernoulli, proposed the basis of Expected Utility Theory in
[Bernoulli, 1738], while the theory was formalized almost two centuries later by John von
Neumann and Oskar Morgenstern, establishing the basis of modern expected utility theory
[Morgenstern and Von Neumann, 1953]. Bernoulli claimed that, in order to account for
risk aversion, a nonlinear function of utility of outcomes should be used. Bernoulli further
proposed that the goal of the gambler was not to maximize his expected gain but instead
to maximize the logarithm of his gain: with this assumption, Bernoulli’s paper was the
first formalization of the concept of marginal utility, which has broad application in eco-
nomics. Using the words of Bernoulli: “The determination of the value of an item must
not be based on the price, but rather on the utility it yields. [...] There is no doubt that a
gain of one thousand ducats is more significant to the pauper than to a rich man though
both gain the same amount”.
Mathematically, this is solved by the explicit introduction of a function that transforms ob-
jective value into subjective utility, the so called utility function. The first used basic utility
model, suggested by Bernoulli, was the logarithmic function U(X) = ln(X) (known as
log utility), where X is gambler’s total wealth, and the concepts of risk aversion and di-
minishing marginal utility of money are built into it.
In economics, utility is the satisfaction or benefit derived by consuming a product; thus
the marginal utility of a good or service is the change in the utility from an increase in the
consumption of that good or service; the fall in marginal utility as consumption increases
is known as diminishing marginal utility. When talking about monetary outcomes, it is
assumed that more is better, and so increasing utility functions are adopted. One simple
example is the power utility function,

U(X) = Xα (2.4)

The curvature of the utility function plays an important role in determining decision maker’s
attitude toward risk. The form in 2.4 allows for describing an individual’s risk attitudes
with a single parameter: when 0 < α < 1, the utility function is concave and risk-averse
behavior is predicted, whereas a convex function predicting risk-seeking behavior emerges
if α > 1. It is important to stress that X represents not the single outcome of a lottery

12



CHAPTER 2. DECISION THEORY STATE OF THE ART

xi but the total possible wealth of the decision maker: X = W0 + xi, where W0 is the
initial wealth. The fact that decision makers choose according to changes in final wealth,
not considering just the gamble frame, is a fundamental feature differentiating generalized
expected utility theories from other theories such as Cumulative Prospect Theory, as we
will describe in 2.3. According to Expected Utility Theory, one should select the option
with the highest expected utility, that for the gamble X in Eq. 2.1:

EU(X) =
N∑
i=1

U(xi +W0)pi (2.5)

The assumed concavity of the utility function is enough to characterize risk-aversion.
Specifically, there are two types of risk aversion [Schmidt and Zank, 2008], weak and
strong; the first one concerns preferences towards risky and risk-less options, while the sec-
ond one focuses on attitudes towards degrees of risk, i.e. comparison of lotteries with same
expected value but different outcome variances (introducing a mean-preserving spread).
Expected utility has the advantage to explain both risk aversions in the same way, i.e. by
concavity of utility.
Another concept well explained by expected utility theory is stochastic dominance; there
are two types of stochastic dominance;

• First-order stochastic dominance, for which a random variable A has first-order
stochastic dominance over random variable B if for any outcome x, A gives at least
as high a probability of receiving at least x as does B. In terms of expected utility
theory this is ensured by the fact that the utility function is an increasing function.

• Second-order stochastic dominance, which is another commonly used type of stochas-
tic dominance, to compare two distributions and measure the risk aversion. For two
gambles A and B, gamble A has second-order stochastic dominance over gamble B
if the former involves less risk and has at least as high a mean. In order to expected
utility to satisfy second order stochastic dominance the requirement is to have an
increasing and concave utility functions.

To sum up, Expected Utility, despite its simplicity, is an extremely powerful normative
decision theory. Next subsection outlines its limits and how generalized models of choice
have been introduced.

2.2.1 Criticism of Expected Utility Theory
Expected Utility is not able to encompass many situations: in empirical applications, a
number of violations have been shown to be frequent and systematic. These fallacies are
very important, in the sense that have deepened understanding of how people actually de-
cide, with the aim of building more complete and complex decision theories.
The first example that we will examine is the St. Petersburg paradox, explained in Subsec-
tion 2.1.1. Here expected utility theory solves it by assuming a concave utility function (for
example the log utility model), to take into account the concept of saturation of happiness.
This seems reasonable, but what does happen if one constructs a Super St. Petersburg
experiment, in which the expected payoff is 22

k? In this scenario not only the expected
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value will be infinite, but also the log utility turns out to be infinite. Hence, the solution
by Bernoulli is not completely satisfying, since the lottery can easily be changed in a way
such that the paradox reappears; indeed, one just needs to change the game so that it gives
even more rapidly increasing payoffs. For any unbounded utility function, one can find a
lottery that allows for a variant of the St. Petersburg paradox. This can be solved changing
the expected utility function and choosing another particular utility function that provides
a non-infinite expected payoff. This discussion raises some reflections: does make sense to
modify and impose ad hoc utilities functions for each problem or gamble? Moreover, the
utility function associated to the agents are often considered fixed or, in the best scenario,
drawn from various possibilities with a certain probability.
Some other example of emergence of EUT violations are the Allais and Ellesberg para-
doxes.

2.2.1.1 Allais Paradox

The Allais paradox was first presented by Allais [Allais, 1953]. In this experiment, each
agent has to choose one lottery between A1 and A2 together with one lottery between B1
and B2.

• Lottery A1: €1 million with 100% chance.

• Lottery A2: €5 million with 10% chance, €1 million with 89% chance, and 0 with
1% chance.

• Lottery B1: €1 million with 11% chance and €0 with 89% chance.

• Lottery B2: €5 million with 10% chance and €0 with 90% chance.

It was empirically observed that most people would choose both A1 and B2, which is
inconsistent with expected utility theory (violation of the independence axiom), for which
choice A1 and A2 can be seen as the same choice (as B1 and B2). Such choice pattern
can be explained in terms of subjective probability distortion (certainty effect [Tversky
and Kahneman, 1981]), where people tend to underweight high probabilities, considering
almost-certain events less likely to happen.

2.2.1.2 Ellesberg Paradox

The Ellsberg’s paradox was developed by Daniel Ellsberg [Ellsberg, 1961]. In this exper-
iment, an individual is told that an urn contains 90 balls from which 30 are known to be
red and the remaining 60 are either black or yellow. He is asked to choose between the
following gambles:

• Gamble A: winning €100 if the ball is red

• Gamble B: winning €100 if the ball is black

And one between the following:

• Gamble C: winning €100 if the ball is not black
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• Gamble D: winning €100 if the ball is not red

In most cases people will choose A over B and D over C. Betting for or against the known
information (red ball) is perceived safer than betting for or against the unknown (black
ball). Nevertheless, these choices of preferences result in a violation of the expected utility
theory, which would require the ordering of A to B to be preserved in C to D.
This phenomenon is called ambiguity aversion: Ellsberg showed that not only do people
display aversion to risk, they also display aversion to ambiguity, i.e. people tend to prefer
gambles for which they are confident and know the exact probabilities involved.

2.3 Beyond Expected Utility Theory
To account for the paradoxes above outlined, several generalized expected utility theories
were formalized. Prominent examples are Rank-dependent expected utility and (Cumula-
tive) prospect theory [Johnson and Busemeyer, 2010].

2.3.1 Prospect Theory and Cumulative Prospect Theory (CPT)
Prospect theory was first introduced by D. Kahneman and A. Tversky in 1979 [Kahneman
and Tversky, 1979]. It presents a substantial difference from expect utility theory, postulat-
ing that carriers of value are not final assets, but gains and losses. In other words, people
do not consider their present wealth when making a choice, but they consider only the
gamble frame. Thanks to this feature, many psychological mechanisms can be described,
as loss aversion (people’s tendency to avoid losses rather than acquiring equivalent gains:
it is better to not lose €x than to win €x). In 1992 [Tversky and Kahneman, 1992], by in-
corporating the rank-dependent weighting, improved the theory such that no violations of
stochastic dominance were predicted, developing the so called Cumulative Prospect The-
ory (CPT). Under Cumulative Prospect Theory, the utility of the gamble X is evaluated
as

UCPT (X) =
N∑
i=1

v(xi)πi (2.6)

where πi are the decision weights and v(·), the value function proposed by Kahneman and
Tversky [Tversky and Kahneman, 1992], is:

v(x) =

{
xα if x ≥ 0

−λ(−xα) else
(2.7)

represented in 2.2. The authors estimate α = 0.88 and λ = 2.25 from experimental data.
This formulation illustrates the four principal elements of prospect theory:

1. Reference dependence: as already introduced, in prospect theory, people derive
utility from gains and losses measured relative to some reference point, rather than
from absolute levels of wealth: the argument of v(·) is xi notW+xi. Kahneman and
Tversky motivate this assumption, known as “reference dependence,” with explicit
experimental evidence and by noting that our perceptual system works in a similar
way (we are more attuned to changes in attributes such as brightness, temperature
than we are to their absolute magnitudes).
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2. Loss aversion: the value function v(·) is defined in order to captures loss aversion,
the idea that people are much more sensitive to losses than to gains of the same
magnitude. Mathematically, loss aversion is generated by making the value function
steeper in the region of losses than in the region of gains, as shown in Figure 2.1.
Kahneman and Tversky infer loss aversion from the fact that most people turn down
gambles like (–€100, 0.5 ; €110,0.5).

3. Diminishing sensitivity: as shown in Figure 2.1, the value function is concave in
the region of gains but convex in the region of losses. This element of prospect
theory is known as diminishing sensitivity and it implies that, while replacing a
€100 gain with a €200 gain has a significant utility impact, replacing a €1,000 gain
with a €1,100 gain has a smaller impact (the same for losses). The concavity over
gains is a sign of risk aversion, as in Expected Utility Theory. On the contrary, was
experimentally demonstrated that people tend to be risk seeking over losses and this
motivates the convexity over losses.

4. Probability weighting:In prospect theory, people do not weight outcomes by their
objective probabilities pi but rather by decision weights πi . The decision weights
are computed with the help of a probability weighting function w(·) whose argument
is an objective probability. One possible form, motivated by numerous evidence
[Gonzalez and Wu, 1999], is:

w(p) =
pδ

(pδ + (1− p)δ)1/δ
(2.8)

where δ= 0.65 is the value estimated by the authors from experimental data, while
the curve is shown in Figure 2.2. The weighting function represents over-weighting
of small probabilities and under-weighting of high probabilities.

The difference between cumulative prospect theory and the original version of prospect
theory is that the weighting function is applied to the cumulative probability distribution
function. This section was written with the help of the reviewing article of Cumulative
Prospect Theory written by Barberis, [Barberis, 2013].

2.3.1.1 Criticism of Cumulative Prospect Theory

Even though prospect theory describes more accurately how people evaluate risk in ex-
perimental settings, its use is not widespread in orthodox economics. One possible moti-
vation, as discussed in [Barberis, 2013], is that, when considering as carriers of utility are
gains and losses, it is often unclear what a gain or loss represents in any given situation,
especially in finance.

2.3.2 Rank-Dependent Utility Theory
Quiggin [Quiggin, 1982] suggested a generalization of the expected utility model, the so-
called Rank-Dependent Utility Theory (RDU). Its crucial point is to relax the assumption
that the utility of a gamble has to be linear in the probabilities. This is justified by the
fact that individuals tend to substitute ‘decision weights’ for probabilities, as discussed in
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Figure 2.1: Value function proposed by [Tversky and Kahneman, 1992], namely v(x) =
xα for x ≥ 0 and v(x) = −λ(−x)α for x < 0, where x is an unitary gain or loss. The plot
uses α = 0.5 and λ = 2.5, to make loss aversion and diminishing sensitivity easier to see.

Figure 2.2: Probability weighting function proposed by [Tversky and Kahneman, 1992],
namely w(p) = pδ/(pδ + (1−p)δ)1/δ , where p is the objective probability. The solid line
corresponds to δ = 0.65 while the dotted line corresponds to δ = 1, i.e. linear probability
weighting.
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previous subsection.
Due to rank-dependence, the weight of an outcome will be not only function of its proba-
bility, but also of the ranking position of this particular outcome compared to the others.
Indeed, according to RDU, the utility given to an outcome depends not only on its prob-
ability but also on the preferability of the considered outcome in comparison to the other
possible outcomes.
Mathematically, the utility of an option X becomes:

ERDU(X) =
n∑

i=1

U(xi +W0)πi(~p) (2.9)

where W0 is the initial wealth of the decision maker and πi(~(p)) is introduced to take into
account the ranking position of outcome xi:

πi(~p) = w(
n∑

j=i

pj)− w(
n∑

j=i+1

pj) (2.10)

Here w(·) is the the probability weighting function, which have the shape shown in Figure
2.2 and the same reasoning already explained above for Cumulative Prospect theory.

2.3.3 Quantum Decision Theory (QDT)
Also Professor Didier Sornette is exploring the opportunity to develop a new decision
making model, addressing the problem from different point of views, in his Chair of En-
trepreneurial Risks at ETH Zurich.
Above all, he developed together with the colleague V.I. Yukalov the Quantum Decision
Theory [Yukalov and Sornette, 2008], which provides an intrinsic probabilistic framework
describing entangled decision making and non-commutativity of decisions. This theory of
decision making takes its name from the fact it is based on the mathematical theory of the
Hilbert spaces and on the employment of mathematical techniques used in the quantum
theory of physical measurements. The model is led by the natural hypothesis that proba-
bilities and utilities are entangled dual characteristics of the real human decision making
process. Indeed, according to QDT, the probability of choosing a prospect can be decom-
posed into the sum of two terms: the utility factor and the attraction factor; the utility term
represents the rational comparison among the available alternatives, while the attraction
factor quantifies the attractiveness of a prospect, dependent on interfering feelings, beliefs
and subconscious biases. This approach can be seen as a simple mathematical and natural
extension of objective probabilities into nonlinear subjective probabilities.
In [Yukalov and Sornette, 2008] the authors demonstrate that the developed quantum for-
malism allows to explain quantitatively the known anomalies and paradoxes, documented
in the context of classical decision theory, without adjustable and ad hoc parameters as in
others EUT-substitute theories. As shown in [Yukalov and Sornette, 2011] [Kovalenko and
Sornette, 2018], Quantum Decision Theory avoids common paradoxes arising in classical
decision theories such as violation of the the conjunction fallacy [Tversky and Kahne-
man, 1974] (see next Section 2.4 for details) and the already explained Ellsberg’s Paradox
[Ellsberg, 1961].
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2.4 List of further violations of Expected Utility Theory

Here we report a non exhaustive list of further violations and paradoxes of Expected Utility
Theory. Investigating the origin of such irrational behaviours is the goal of the present
work.

• Conjunction fallacy: Formal fallacy that occurs when it is assumed that specific
conditions are more probable than a single general one. The most often-cited ex-
ample of this fallacy originated with Amos Tversky and Daniel Kahneman [Tversky
and Kahneman, 1974] and it is called the Linda problem: Linda is 31 years old,
single, outspoken, and very bright. She majored in philosophy. As a student, she
was deeply concerned with issues of discrimination and social justice, and also par-
ticipated in anti-nuclear demonstrations. Which is more probable?

1. Linda is a bank teller.

2. Linda is a bank teller and is active in the feminist movement.

The majority of those asked chose option 2. However, the probability of two events
occurring together (in ”conjunction”) is always less than or equal to the probability
of either one occurring alone.

• Preference reversal: Subjects tend to value p bets (lotteries with a high chance of
winning a low prize) lower than r bets (lotteries with a small chance of winning a
large prize). When subjects are asked which lotteries they prefer in direct compari-
son, however, they frequently prefer the p bets over r bets. Preference reversals were
initially demonstrated by Lichtenstein and Slovic in 1971 [Lichtenstein and Slovic,
1971].

• Reflection effect: It refers to have opposite preferences for gambles differing in the
sign of the outcomes. For example, between
A) Would you prefer to receive €3000 for sure, or €4000 with probability .8?
B) Would you prefer to lose €3000 for sure, or lose €4000 with probability .8?
Most people would be risk-averse in question A, and risk-seeking in question B.
This issue was solved in prospect theory by Daniel Kahneman and Amos Tversky
[Tversky and Kahneman, 1992].

• Framing effects: People tend to avoid risk when a positive frame is presented but
seek risks when a negative frame is presented. Shown by Tversky and Kahneman
in 1981 [Tversky and Kahneman, 1981], with a two-surveys experiment called the
Asian disease problem. In both survey scenarios, a group of 600 people is about
to be exposed to a deadly disease. In the first survey, the choice is whether to save
200 people for sure, or save all 600 with probability 1/3 (and save nobody with
probability 2/3). In the second survey, the choice is whether to allow 400 people to
die for sure, or accept a 2/3 probability of all 600 people dying (and a 1/3 probability
of nobody dying). The vast majority of participants chose the sure option in the first
survey and the gamble in the second, despite they are asking the same thing.
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• Endowment effect: It refers to the fact that the loss in utility from giving up an item
is greater than the gain in utility from acquiring it. It was demonstrated experimen-
tally by Kahneman, Knetsch, and Thaler in 1990 [Kahneman et al., 1990], with the
mug experiment: they donate to a percentage of the participants a cheap decorative
mug, and asked all subjects to place a monetary value on it. They found that the
subjects who were given the mug placed much higher values on it that those who
were not, demonstrating that people tend to place much higher values on items they
possess, or are “endowed” with.

• Status quo bias: It can be intended as the preference for remaining in the cur-
rent situation. Discussed by William Samuelson and Richard Zeckhauser in 1988
[Samuelson and Zeckhauser, 1988], where they conducted an experiment in which
several different funds were described to the participant. When participants were
told that they currently had money invested in one of the funds, then they gener-
ally preferred that fund to the others. When they were given a neutral scenario in
which they did not have money invested in any of the funds, then no such bias was
observed.
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3. Heuristics in decision making

After having introduced some of the most famous microeconomics theories in Chapter 2,
in this Chapter we will analyse decision making from an other point of view, focusing on
how heuristics affects our behaviour and how evolution played a first role in the formation
of such heuristics.
Heuristics can be defined as mental shortcut or rule-of-thumb strategies allowing people to
solve problems and make judgments quickly and efficiently. Indeed, in order to cope with
the tremendous amount of information we encounter and to speed up the decision-making
process, the brain relies on these mental strategies to simplify situations. In this way we
do not have to spend endless amounts of time in analyzing every detail; the number of de-
cisions we make every day is enormous; heuristics allow us to think through the possible
outcomes quickly and arrive at a solution.
However, while heuristics speed up the decision-making process, they can introduce er-
rors: these short-cut often lead to inaccurate judgments, and in this respect some paradoxes
can arise, especially when the decision maker is forced to take choices in an environment
different from the one he was used to [Cherry, 2020].

3.0.1 Satisficing and Bounded Rationality
During the 1950s the Nobel-prize winning psychologist Herbert Simon suggested that hu-
man judgment is subject to cognitive limitations, hence it is not logical to search a way
to make rational choices. He intended that in real world, people, while taking choices,
are limited by the amount of time and information they have at disposal. With this idea,
Simon formulated one of the first models of heuristics, known as satisficing, in his 1947
book Administrative Behavior [Simon, 1947].
According to this model, Decision-makers act as satisficers, seeking a satisfactory solu-
tion rather than an optimal one and looking through the available alternatives just until an
acceptability threshold is met. Simon is also known as the father of bounded rationality,
the idea that rationality is limited by intrinsic environmental factors. Bounded rationality
complements “rationality as optimization”, which views decision-making as a fully ratio-
nal process of finding an optimal choice given the information available.
Simon’s goal was to replace the global rationality of economic man with a kind of rational
behavior that is compatible with the access to information and the computational capaci-
ties that are actually possessed by organisms, including man, in the kinds of environments
in which such organisms exist [Simon, 1955]. Such concept is well represented by the
famous scissors analogy: “Human rational behavior (and the rational behavior of all phys-
ical symbol systems) is shaped by a scissors whose two blades are the structure of task
environments and the computational capabilities of the actor” [Simon, 1990], illustrating
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how minds compensate for limited resources by exploiting known structural regularity in
the environment.
To sum up, Simon was the first highlighting the big fallacy of existing decision making the-
ories, i.e. assuming an environment characterized by fixed and known probabilities and/or
outcomes. This is clearly not the case in everyday life: our world is full of uncertainty (the
set of future states and their consequences is not known or knowable) and many real-world
problems are characterized by computational intractability or lack of information, both of
which preclude the use of mathematical optimization procedures.
Simon urged economists to move away from theories as expected utility models and study
how people actually make decisions in realistic situations of extreme time-dependent am-
biguity/uncertainty.

3.0.2 Adaptive Toolbox, Ecological Rationality and Smart Heuristics
The thesis of Herbert Simon was revived in the 1990s by Gerd Gigerenzer and others
[Gigerenzer and Todd, 1999]. Gerd Gigerenzer proposed a completely new methodology
to understand human behaviour in decision making. Gigerenzer was quite a visionary,
with his own words: “My work will, I hope, change the way people think about human
rationality. Human rationality cannot be understood, I argue, by the ideals of omniscience
and optimization. In an uncertain world, there is no optimal solution known for most
interesting and urgent problems. When human behavior fails to meet these Olympian ex-
pectations, many psychologists conclude that the mind is doomed to irrationality. These
are the two dominant views today, and neither extreme of hyper-rationality or irrationality
captures the essence of human reasoning. My aim is not so much to criticize the status
quo, but rather to provide a viable alternative” [Gigerenzer and Brockman, 2003].
Among researchers, a variety of deviations from rational choice theory were interpreted
as systematic flaws in the human mind rather than in the theory [Gigerenzer, 2018]. Math-
ematicians usually explained the deviations from rationality by modifying models and
adding free parameters to decision making theories. But the fundamental problem high-
lighted by Gigerenzer was that no one can be rational in a world where knowledge is
limited and time is pressing. However, traditional models of unbounded rationality and
optimization in cognitive science, economics, and animal behavior have tended to view
decision-makers as possessing supernatural powers of reason, limitless knowledge, and
endless time [Todd and Gigerenzer, 2000].
The two main questions addressed by the Gigerenzer research group were [Gigerenzer and
Gaissmaier, 2011]:

1. “Which heuristics do people use in which situations?”, analysed in the study of
the Adaptive Toolbox, where they look for common building blocks (e.g., rules
for search) and core capacities (e.g., recognition memory), from which the various
heuristics are constructed as an organizing principle. This allows reducing the huge
number of heuristics to a smaller number of components.

2. “When should people rely on a given heuristic rather than a complex strategy to
make better judgments?”, analysed in the study of Ecological Rationality, which
investigates in which environments a given strategy is better (because there are no
best strategies in complex scenarios) than other strategies. The study of ecological
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rationality thus involves analyzing the structure of environments together with the
structure of heuristics, and then the match between them.

But where do these heuristics come from and what is the role of evolution in their forma-
tion? As introduced, each individual or species is assumed to have an adaptive toolbox, i.e.
a collection of building blocks and core mental capacities at its disposal for constructing
heuristics. Heuristics can be fast and frugal thanks to the fact that these instruments are
already in place.
But how is decided and learnt which strategy is the good one to select? First, heuristics
and their underlying core capacities are shaped by evolution and by individual learning.
Moreover, heuristics are selected and learned by social processes, as in imitation and ex-
plicit teaching of heuristics. Finally, the content of individual memory determines in the
first place which heuristics are exploited to make decisions [Gigerenzer and Gaissmaier,
2011].
However, what I find to be the most revolutionary concept explored by Gigerenzer is the
study of fast and frugal decision-making, or Smart Heuristics. Being heuristics cognitive
processes, conscious or unconscious, which ignore part of information and save effort, a
straightforward conclusion may be that decisions taken thanks to heuristics imply greater
errors than rational decisions, defined by optimal-solution models [Gigerenzer and Gaiss-
maier, 2011].
On the contrary, Gigerenzer discovered that heuristics can lead to fast, frugal, and more
accurate than biased decisions in many real-world situations. In other words, in order
to make good decisions in an uncertain world, one sometimes has to ignore information:
“The art is knowing what one doesn’t have to know”. [Gigerenzer and Brockman, 2003].
In “Simple heuristics that make us smart” [Gigerenzer and Todd, 1999], fast and frugal
heuristics were explored. They discovered that these types of heuristics can enable both
living organisms and artificial systems to make smart choices quickly and with a min-
imum of information by exploiting the way that information is structured in particular
environments. These simple heuristics perform comparably to more complex algorithms,
particularly when generalizing to new data, i.e. simplicity leads to robustness.
I will conclude with the following bullet points, from [Gigerenzer and Gaissmaier, 2011],
to highlight and summarize the most important concepts of the theory of heuristics:

• Heuristics can be more accurate than more complex strategies even though they
process less information (less-is-more effects).

• A heuristic is not good or bad, rational or irrational; its accuracy depends on the
structure of the environment (ecological rationality).

• Heuristics are embodied and situated, they exploit core capacities of the brain and
their success depends on the structure of the environment. They provide an alterna-
tive to stable traits, attitudes, preferences, and other internal explanations of behav-
ior.

• With sufficient experience, people learn to select proper heuristics from their adap-
tive toolbox.

• Usually, the same heuristic can be used both consciously and unconsciously, for
inferences and preferences, and underlies social as well as nonsocial intelligence.
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• Decision making in organizations typically involves heuristics because the condi-
tions for rational models rarely hold in an uncertain world.

24



4. Purpose of the Agent Based Model

As mentioned in Chapter 2, when individuals are faced with some kind of choices, they
tend to make irrational and illogical decisions. For this reason, many researchers and
scientists developed in the years enumerable theories struggling to explain and/or predict
human decision making.
Our hypothesis is that the presence of irrationality is due to the action of certain heuristics,
i.e. mental shortcuts that allows individuals to make a decision or solve a problem quickly
with a minimal mental effort. The complex and uncertain environment has led our brain
to elaborate information and take decision using heuristics, which work really well in real
world scenarios. However, how will these heuristics perform in oversimplified and unre-
alistic scenarios? Our hypothesis is that, when applying heuristics to laboratory-situation,
they may bring paradoxical results, as indeed observed empirically.
As a tool to test our idea, we develop an Agent Based Model (ABM), representing the
evolution of the decision making process from our ancestor to the present. In agent-based
modeling, a system is represented as a collection of autonomous decision-making entities
called agents, which individually assess their situation and take decisions. At the simplest
level, an ABM consists of a system of agents and the relationships between them. Even the
simplest model can exhibit complex behavior patterns and provide valuable information
about the dynamics of the real-world system that it emulates [Bonabeau, 2002]. Sophisti-
cated ABM can incorporate advanced tools as neural networks, evolutionary algorithms,
or other learning techniques to allow realistic learning and adaptation and evolution of
the agents, letting unsuspected behaviors to emerge [Bonabeau, 2002]. In this work, we
will insert in our ABM both neural networks and an evolutionary algorithm, making it an
advanced and sophisticated model.
The idea behind our Agent Based Model is to train intelligent agents in real-world com-
plexity scenarios and let the population evolve under this uncertain environment. After
the training part, our aim is to analyse the behaviour of the trained population in specific
simplified scenarios, obliging the population to face unrealistic situation to check if para-
doxes will appear. Put differently, we want the population to develop a collective brain,
with rules and heuristics, and then check if some biases and paradoxes will arise in overly
simplified choices.

4.1 Creation of a complex environment

In order to reproduce a real-world scenario, lotteries (the proxy for choices) must change
over time, being an exogenous variability a more realistic setup to elicit preference rela-
tions. In real world, one does not know the exact probabilities; uncertainty will be always
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present and the decision tasks will be much harder with respect to laboratory ones. The
only thing that in reality can be achieved is an estimation of expectation; for example, in
hunting, one can be able to distinguish between mammals (so at first order we can assume
that the payoffs are known with certainty), while the probabilities to capture them are un-
known.
We aim to introduce and tune uncertainty through:

• Uncertain probabilities

• Uncertain outcomes

• A combination of both

Our purpose is to develop a model permitting to adjust these values easily, in order to
quickly analyse how different levels of uncertainty would affect the results in a decision
making process.

4.2 Agents as Neural Networks
If the environment changes over time, we need the agents to be able to generalize their
choice criterion, as a classifier does in machine-learning algorithms. Therefore, we have
to endow the agents with some generalization ability.
Our purpose is to induce in the system the concept of swarm intelligence [Kennedy, 2006],
defined as the collective behavior of natural or artificial decentralized and self-organized
systems. Rather than finding the optimal solution by minimization of a complex cost func-
tion, one lets microscopic agents follow simple rules, such that an aggregate system de-
velops intelligence as an emergent property. In other words, to optimize a function in a
system, it is often sufficient to search for the set of local rules that the system has to follow
to make the dynamics converge to a fixed point; it is proven that this fixed point will be
the optimal solution, with respect to the imposed cost function [Kennedy, 2006].
The concept of swarm intelligence can be implemented in our agent based model designing
a “soup of little brains” evolving, i.e. brains selected and shaped by evolutionary pressure.
These brains should be seen as a black box, in the sense that the rules used to make deci-
sions are not a priori imposed by any decision making theory. Then, as soon as the system
evolves, one can check the emergence of some similarities with theoretical predictions (for
example by fitting existing decision models to the black box synthetic choice data).
We decided to include intelligence in our model by using as agents simple Neural Net-
works (NNs). Modeled loosely on the human brain, a Neural Network can be seen, in
its simplest form, as an unknown black-box performing a non-linear transformation of an
input [Hardesty, 2017].
The black-box consists of an ensemble of simple processing nodes that are densely inter-
connected with predefined rules. These networks are organized into layers of nodes: an
input layer and an output layer are always present, and then, located between the input and
output of the algorithm, an arbitrary number of hidden layers are included. In the hidden
layers, the network applies weights to the inputs and directs them through an activation
function as the output; in short, the hidden layers perform nonlinear transformations of
the network inputs. The most famous and simple (and the ones that we will implement)
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neural networks are called “feed-forward”, because data moves in only one direction: a
single node might be connected to several nodes in the layer beneath it, from which it re-
ceives data, and several nodes in the layer above it, to which it sends data. To each of its
incoming connections, a node will assign a number known as a weight. The node receives
a different data item over each of its connections and multiplies it by the associated weight.
It then adds the resulting products together (plus a number called bias), yielding a single
number to pass to a certain activation function. The output of this function will be send
along the outgoing connections of the node [Hardesty, 2017].
As an example, we outline the simplest case of feed-forward Artificial Neural Network,
represented in Figure 4.1, with one only hidden layer. We can schematize the NN be-
haviour in the following subsequent steps:

1. The inputs xi are collected in the nodes of the input layer;

2. Before entering the hidden layer, the inputs xi are multiplied with the weights wi,j

and added to the biases bj , where j represents the different nodes of the hidden layer;

3. The previous values are then summed in the number inputs, obtaining a single input
per hidden layer node;

4. In the hidden layer, this number is passed to the activation function f(·), giving the
value aj;

5. Before entering the output layer and calling k the output node, the values aj are
then combined with the weights wj,k and biases bk, summed and finally passed to
the output layer;

6. The input of the output layer is finally passed to the output function function g(·),
resulting in the single output of the NN o(k).

Usually, all weights and thresholds are initially set to random values, and then, during
training, they are continually adjusted until the network gives meaningful results.
The usual NNs learning processes follow supervised learning algorithms: given a train-
ing set, the NNs are trained with a back-propagation algorithm, inferring a function that
maps an input to an output based on example input-output pairs that have been already
labeled in advance. For instance, an object recognition system might be fed thousands of
labeled images of objects and it would find visual patterns in the images that consistently
correlate with particular labels. On the contrary, in our specific case, we want the deci-
sion preferences arise from an evolutionary context, and to make the agents learning from
their experience. We have therefore to think about another algorithm to train our neural
networks.

4.3 Evolutionary Algorithm for training the NNs
As already mentioned, we aim to train the agents in a complex and uncertain environment,
to make the agents developing heuristics and learning to take decisions just with intrinsic
survival and huge uncertainty.
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Figure 4.1: Representation of a simple Neural Network with one only hidden layer

The more natural and genuine way in order to model such process is by using an evo-
lutionary algorithm [Câmara, 2015]. Evolutionary algorithms are algorithms which take
inspiration from the Darwinian evolutionary theory: they are characterized by the exis-
tence of a population of individuals exposed to environmental pressure, which leads to
natural selection, i.e. the survival of the fittest, and in turn the increase of the average fit-
ness of the population. Fitness is the measure of the degree of adaptation of an organism
to its environment; the bigger the fitness is, the more the organism is fit and adapted to the
environment. This kind of algorithms are typically used to solve problems that cannot be
easily solved in polynomial time, such as classically NP-Hard problems, and anything else
that would take far too long to exhaustively process [Soni, 2018].
From an high level point of view, in our designed evolutionary scenario the agents take
decisions, and, given their outcomes, they will reproduce unequally according on how
they perform, by following some preset selection rules. The population parameters will
evolve (mutate) according to predefined rules. The intelligence or ability to generalized is
intended as memory: the agents will initially behave randomly but they will each time eval-
uate their choices and outcomes, remembering when they failed and succeed and learning
from their experience.
Evolutionary algorithms are already successfully used in the process of neural networks
training. As an easy implementation example, I report [Fogel et al., 1990], one of the first
paper reviewing evolutionary programming as a technique for training neural networks; in
this paper, the author claimed that an evolutionary approach can yield faster, more efficient
and robust training procedures.
The evolutionary technique is based on the premise of natural selection, and taking inspi-
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ration from the example reported in [Lazarou, 2019], it can be seen as a five-step process:

1. Create an initial population of organisms, in our case neural networks.

2. Evaluate each organism based on some criteria, such as the fitness score.

3. Make the agents reproduce according to a selection rule.

4. Mutate the offspring.

5. Take the new mutated offspring population and return to step two. Repeat until
some conditions are met (e.g. a fixed number of generations pass, a target fitness is
achieved, etc.)

What happens inside each of these steps is deepen in the Chapter 5.
In this work we will use the algorithm only to evolve the agents’ weighting strategy to take
decisions, i.e. just modifying weights and biases of the network.
Generally speaking, an evolutionary training algorithm can be used to evolve all the net-
work parameters, optimizing the weights, the learning rules and/or the entire network ar-
chitecture. Therefore, for completeness, I would like to spend some words on the promis-
ing application of evolving neural networks in their integrity and on its outstanding ad-
vantages. The architecture of a network, i.e. how the neurons are connected to each other,
plays a very important role in whether or not an Artificial Neural Network can be trained
to successfully learn a task. Over the years, experts of the field carefully designed com-
plex architectures to achieve and often surpass human-level performance on many different
tasks. However, there is no single architecture that fix well for all tasks, and therefore de-
signing performing Artificial Neural Network is a very challenging, time consuming and
complex work, requiring knowledge and experience [Harvey, 2017]. In order to choose
the best network, many architecture should be evaluated: a ten layer network, for example,
can have ∼ 1010 candidate networks. This makes it impractical to evaluate all combina-
tions and select the most performing one. Finding the best architecture requires answering
many questions, such as how to design the components of the architecture, how to put
them together, and how to set the parameters [Frolov, 2018] [Real, 2019]. To overcome
the weaknesses of the current training algorithms, a lot of effort is currently put into using
alternative automated methods to find a good architecture to train neural networks. These
algorithms are the evolutionary algorithm described above, which are inspired by natural
selection and genetic evolution, attempting to mimic natural process of genetic mutations,
crossover and selection, while trying to solve objective function optimization problem. As
claimed by the Uber AI Labs team, the process of using evolutionary techniques is “yet
another example that old algorithms combined with modern amounts of computing can
work surprisingly well” [Stanley and Clune, 2017].

4.4 Evaluate the agents: Reverse Engineering
Our final goal is to understand how evolution in a complex scenario affected our decision
making processes. In order to asses this, we train agents both in different complex sce-
narios (uncertain probabilities) and in a simplified scenario (fixed probabilities). After the
training, in order to compare their behaviour, we analyse them making face some choices
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from the same out-of-sample dataset, with fixed probabilities.
In order to discover which theory among the ones described in Chapter 2 will best fit them,
we develop a “Reverse Engineering Toolbox”, allowing as to map the strategy of the evo-
lutionary selected NNs to decision making theories assumptions.
The result we expect is that agents trained in a simplified scenario will act “more ratio-
nally”, i.e. using an approach similar to an expected utility framework. Conversely, we
expect that the agents trained in a complex scenario will be better described by generalized
expected utility theories, involving a weighting of objective probabilities.
Following the guidelines of [Ferro et al., 2020], we compare our agents behaviour with two
theories, Expected Utility Theory and Rank-Dependant Utility Theory, studying which one
best fits our agents’ decision making approach.

4.4.1 Methods specifications: EU and RDU
We refer to a generic binary lottery as

L = {xL
1 , p

L
1 ;x

L
2 , p

L
2 } (4.1)

which gives outcome xL
1 with probability pL1 and xL

2 > xL
1 with probability pL2 = 1− pL1 ,

and we consider a choice between two binary lotteries, L = {A,B}.
Following Expected Utility theory, the utility of each lottery will be:

EU(L) = u(xL
1 )p

L
1 + u(xL

2 )p
L
2 (4.2)

Regarding the utility function, which is the same for both Expected Utility and Rank-
Dependant Utility theory, we impose the following parameterizations:

u(x;α) =

{
xα if α 6= 0

ln(x) else
(4.3)

This form is represented in Figure 4.2 for different value ofα. We remember that a concave
utility function is a sign of risk aversion, while a convex one represents risk seeking. In
the case of Rank-Dependant Utility theory, the utility of each lottery will be:

RDU(L) = u(xL
1 )w(p

L
1 ) + u(xL

2 )w(p
L
2 ) (4.4)

where we have introduced the probability weighting, imposing one of the two following
parameterizations:

w1(p; δ) =
pδ

(pδ + (1− p)δ)1/δ
(4.5)

w2(p; γ, κ) = exp(−κ(−ln(p))γ) (4.6)

The probability weighting function w1(p; δ) is represented in Figure 4.3, while the prob-
ability weighting function w2(p; γ, κ) is shown in Figure 4.4; the two parameters κ and
γ control the general elevation of the curve and its curvature respectively. In general, the
probability weighting function will account for the observed humans tendency to overesti-
mate small probability and underestimate high probability events [Tversky and Kahneman,
1992].
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Figure 4.2: Utility function for different values of the parameter α

Figure 4.3: Probability weighting function 1st type for different values of δ
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Figure 4.4: Probability weighting function 2nd type for different values of κ and γ
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Figure 4.5: Probability of choosing lottery B over lottery A as a function of the difference
in utilities

Expected Utility and Rank-Dependent Utility predict that the best option (with the
largest utility) will always be selected. In order to account for probabilistic deviations,
following the implementation on [Ferro et al., 2020], we introduce a Logistic function, so
that the probability of choosing lottery B over lottery A is given by

pB =
1

1 + eβ(U(A)−U(B))
(4.7)

where, depending on which theory is used, U(A) = {EU(A), RDU(A)} and U(B) =
{EU(B), RDU(B)}, evaluated according to Eq. 4.2 or 4.4. Here we introduce β, a pa-
rameter describing the sensitivity of the decision maker to the difference in utilities, as
illustrated in Figure 4.5. Deterministic choice is recovered by letting β → ∞.

4.4.2 Methods evaluation: Maximum Likelihood
All the analyzed models are probabilistic: thus, we can easily implement a maximum like-
lihood estimation (MLE), as criterion to choose which theory best fit the agents behaviour.
After the training phase, the answers of an agents i will be computed as output of the Neu-
ral Networks and stored in an array of length L. The total evaluated output will be then
stored in a matrix S of dimensions NxL, of which the matrix element si,j will be the i-th
agent choice in the j-th lottery, equal to an ising-like variable:

si,j =

{
−1 , if subject i chooses A in the gamble j
+1 , if subject i chooses B in the gamble j

(4.8)
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Performing the simple transformation

Φi,j =
si,j + 1

2
(4.9)

we encode the output information in Φi,j , defined as:

Φi,j =

{
0 , if subject i chooses A in the gamble j
1 , if subject i chooses B in the gamble j

(4.10)

Then, for each model, we look for the parameters that maximize the following aggregate
likelihood function:

L(~m) =
∏
i

∏
j

(pAj(~m))1−Φi,j(pBj(~m))Φi,j (4.11)

where the productory on i is among the agents, the productory on j is among the choices,
and ~m is the parameter vector relative to the model considered (e.g. ~m = (α, β, κ, γ) for
RDU2).
We can simplify eq. 4.13 computing the productory on the agents

L(~m) =
∏
j

(pAj(~m))N−Nj(pBj(~m))Nj (4.12)

where N is as always the number of agents and Nj =
∑

i Φi,j the number of agents which
at the j-th gamble chose B.
For computational stability, we actually maximize the log-likelihood:

logL(~m) =
∑
j

(N −Nj)pAj(~m) +NjpBj(~m) (4.13)

~m∗ = argmax~m(logL(~m)) (4.14)

We solved the optimization problem in 4.14 with a MATLAB-routine which implements
the Nelder-Mead simplex algorithm, as described in [Lagarias et al., 1998].

4.4.3 Methods comparison: Nested Hypothesis Testing
Once the maximum likelihood estimation is performed for each model, statistical tests are
needed to compare the quality of the calibrations of the models to the data.
In order to confront the two models, we can exploit the fact that EU and RDU models
are nested, which permits us to employ an efficient comparison strategy. Two models are
nested if one model contains all the terms of the other and at least one additional term, i.e.
the parameters of one model are a subset of the parameters of the other. The larger model
is the complete (or full) model, and the smaller is the reduced (or restricted) model.
When a model R with kR parameters is nested in a model F with kF ≥ kR parameters,
according to Wilk’s Theorem [Wilks, 1938] one can compare the model performances
through the likelihood ratio test statistic. Defining the null hypothesis as “the simpler
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model R is the true one”, it can be shown that, under the null hypothesis, as the sample
size n goes to ∞

D = 2log
LF

LR

∼ χ2(kF−kR) (4.15)

where LR and LF are the maximum-likelihood estimations of the nested model R and of
the nesting model F, and χ2(k) is a chi-squared distribution with k degrees of freedom.
At a significance level ε, the null hypothesis is rejected if the p-value p is smaller than ε:

p = (P (χ2(kF−kR)) ≥ D) = 1− F (
kF−kR

2
,
D

2
) < ε (4.16)

where F (kF −kR
2

, D
2
) is the cumulative distribution function of the chi-square distribution,

evaluated in the point D. For a chi-square distribution, F (s, x) = γ(s,t)
Γ(s,t)

is the regularized
gamma function and it is the ratio between the lower incomplete gamma function and the
ordinary gamma function.
Being the model R the simplest one, in our case R will correspond to EU, F will correspond
to RDU and the degrees of freedom of the chi-square k will be k = kF−kR = 4 − 2 = 2
or k = kF−kR = 3− 2 = 1, depending on which probability weighting function is used.
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5. Inside the Agent Based Model

In this section we will go deeper inside the ABM, explaining the meaning of each of its
steps.

5.1 Create the initial population

The population of Neural Networks is characterized by the same architecture and each
network is initialized with different random weights and biases.
More specifically, regarding the architecture, we fix:

• Input and output dimensions of the organisms

• Output activation function: we choose as output activation function an hyperbolic
tangent sigmoid transfer function: output ∈ [−1,+1], meaning that if the output
equals -1 the NN choses the 1st lottery with probability equal to 1, while if the output
equals +1 it chooses the 2nd lottery with probability equal to 1

• Complexity of the networks, intended as number of layers and neurons. We designed
the agents to be as simple as possible and, after some attempts, we configure the
neural networks with one only hidden layer with a number of 10 neurons in it

In order to make sure that the chosen neural networks architecture is good enough to un-
derstand and solve the problem of choosing the best lottery among two possibilities, we
initially designed a training set classifying “good” and “bad” choices, and we train the
neural networks with a classic back-propagation algorithm. In a test phase, it turns out
that the chosen architecture was sufficient for the networks to be correctly trained, so we
kept the above described architecture.
A diagram representing the used neural network structure is showed in Figure 5.1.

5.2 Define the complex environment

During a lifetime, each agent will face L different lottery choices. This space of lotteries
will be extremely complex, with different levels of uncertainty to enable and facilitate the
development of heuristics, in a scenario as similar as possible to a real-world one.
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Figure 5.1: Neural Network used as agents in the ABM

5.2.1 Input Dataset: introduction of uncertainty
In this work, for simplicity, we introduce uncertainty only in probabilities, while the pay-
offs are fixed. Being the developed model extremely tunable, a possible extension can
easily include uncertain payoffs as well.
We build the input dataset in the following way: each agent, represented by a Neural Net-
work, during his life (one time step of the model) will face L subsequent binary choices,
each of two alternatives being a binary lottery. Hence, the input structure of the NN will
be a binary choice between binary lotteries, both selected from an ensemble of lotteries.
We now focus on a single binary lottery to characterize the structure. If the lottery A have
had known probabilities, we would construct it in the following way:

• Choose two possible outcomes from the set X− > xA
i , x

A
j

• Choose a probability of outcome xA
i − > pAi

• The lottery is then: A = (xA
i , p

A
i ;x

A
j , 1− pAi )

However, in the training phase, we want the agents to face uncertain setups. The simplest
generalization involves (partially) unknown event probabilities:

• Choose two possible outcomes from the set X− > xA
i , x

A
j

• Choose an interval of possible probabilities for the outcome xA
i , such that the un-

known probability pAi of outcome xA
i , lies in [pA,min

i , pA,max
i ]

• The lottery is then:

A = (xA
i , [p

A,min
i , pA,max

i ];xA
j , 1− [pA,min

i , pA,max
i ]) (5.1)

Each binary lottery has thus 4 parameters: (xA
i , x

A
j , p

A,min
i , pA,max

i ).
A training input is a decision task l between two lotteries Al and Bl, being characterized
by 8 parameters (4+4):

l = (xA
i l, x

A
j l, p

A,min
i , pA,max

i , xB
i l, x

B
j l, p

B,min
i , pB,max

i ) (5.2)

At each decision task, agents make a choice between the two lotteries. Then the outcome
of the chosen lottery is extracted, i.e. for one single lottery the probability pi is uniformly
sampled between pmin

i and pmax
i . Finally the payoff is computed for each agent and the

evolutionary algorithm proceeds as described later on the Chapter.
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5.2.2 Uncertainty targeting: different scenarios

Considering again one single lottery, we now will make some assumptions in order to
characterize the problem. First of all, we choose the two outcomes of the lottery (xi, xj)
to be in the interval [0, 1]. More precisely xi is extracted following different distributions,
while xj is taken fixed and equal to 1: xi ≤ xj = 1. This measure was taken in order to
have an easier characterization of the level of uncertainty of the problem: depending on
the distribution of the variable xi and on its probability distribution, we will have different
levels of uncertainty.
It is important to stress that the concept “uncertainty” is quite complex to define; it can
be interpreted as level of lack of probability knowledge (for example as the length of the
interval pmax − pmin in which the actual probability can fall) or it can be interpreted as
uncertainty of the final result, including a combination of both probabilities and related
outcomes. Following the second interpretation, and taking fixed the second outcome x2 =
1, we characterized four possible scenarios:

1. WU, or Weak-Uncertain scenario.
In this scenario x1 is large (x1 ∼ 1) and it is extracted with low probability (p1 ∼ 0).
Therefore, all the possible outcomes (x1 and x2) are large and the agents are subject
to weak uncertainty, in the sense that whatever the outcome will be, they will be
well rewarded.

2. U1, or Uncertain-1st-Type scenario.
In this scenario, x1 is large (x1 ∼ 1) and it is extracted with high probability
(p1 ∼ 1). Therefore, agents will obtain with high probability the lower outcome
x1; however, the value of x1 will still be high, hence this type of scenario will be
characterized by a low degree of uncertainty.

3. U2 or Uncertain-2nd-Type scenario.
In this scenario, x1 is small (x1 ∼ 0) and it is extracted with low probability (p1 ∼ 0).
Therefore, agents will obtain with high probability the higher outcome x2; however,
if x1 will be extracted, the agents will receive a small outcome, hence this scenario
is described by an higher uncertainty, compared to the previous ones.

4. SU or Super-Uncertain scenario.
In this scenario, x1 is small (x1 ∼ 0) and it is extracted with high probability (p1 ∼
1). Therefore, agents will obtain with high probability the lower outcome x1, hence
this scenario is described by super uncertainty.

In order to characterize these worlds, we sampled the value of x1 and of the two proba-
bilities pmin and pmax from two different beta distributions: B(α1, β1), which is peaked
around 0, and B(α2, β2) which is peaked around 1. The two beta distribution are repre-
sented in Figure 5.2 and the values used for the simulations are α1 = 0.5, β1 = 3, α2 =
3, β2 = 0.5. The table 5.1 schematize the procedure used to create the different scenarios,
where ~p = {pmin, pmax}.
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WU U1 U2 SU

x1 big: x1 ∼ B(α2, β2) big: x1 ∼ B(α2, β2) small: x1 ∼ B(α1, β1) small: x1 ∼ B(α1, β1)

~p small: ~p ∼ B(α1, β1) big: ~p ∼ B(α2, β2) small: ~p ∼ B(α1, β1) big: ~p ∼ B(α2, β2)

Table 5.1: Different world scenarios creation

In addition to this four world-scenarios, we developed other two worlds with more
extreme conditions:

5. FL or Floating scenario.
Here x1 is extracted from a less peaked beta distribution B(α3, β3), with parameters
α3 = 0.5 and β3 = 1, while pmax and pmin are extracted from a beta distribution
B(α4, β4) with parameters α4 = 0.5 and β4 = 0.5; the two distribution for x1 and
for ~p = {pmin, pmax} are shown in Figure 5.3. This world is developed to train the
agents in a super-floating scenario; indeed, three different situations can happen:

• both pmax and pmin are small: p will be small

• both pmax and pmin are big: p will be big

• pmax is big and pmin is small: p will be very uncertain

6. CE or Certain scenario.
In this world the probability are fixed, hence p = pmax = pmin, extracted from
an uniform distribution, while x1 is extracted from the same distribution as for the
Random world (B(α3, β3) in Figure 5.3).

5.3 Make the agents learn: Evolutionary Algorithm

5.3.1 Evaluate the fitness
Measuring how well an organism perform is the crux of evolutionary algorithm design.
In general, fitness functions are task-specific, i.e. “good performance” varies from task
to task; for example, in a classification problem, a way to evaluate a performance may be
classification accuracy.
To measure how well an organism performs, since in a really uncertain environment is
complex to determine a criterion to assess the optimal choice, we evaluate the agents’
fitness from confronting one agent’s performance with the rest of population performances.
There are substantially two ways for comparing an agents’ performance with others’, i.e.
following a:

• Cardinal utility, i.e. considering how much each agent actually gained and compar-
ing the values.

• Ordinal utility, i.e. considering the ranking among agents’ outcomes.
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Figure 5.2: The two probability distribution functions B(α1, β1) and B(α2, β2) describing
the worlds WU, U1, U2 and WU.
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Figure 5.3: The two probability distribution functions B(α3, β3) and B(α4, β4) describing
the Floating scenario. The first picture represent the probability distribution from which
x1 is extracted, the second the one from which pmin and pmax is extracted.
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In this work, we will analyse both approaches: cardinal ranking with proportional selection
and ordinal ranking with truncation selection and sigmoid-weighted selection.
In order to compute the fitness, the first step is to compute the total payoff of each agent,
intended as the sum of the single lotteries payoffs. If the agent i faces in his lifetime L
choices, his total payoff will be:

payoffi =
L∑

j=1

Si,j (5.3)

where Si,j is the outcome gained by the i-th agent in the j-th choice. After having computed
the payoff, we developed three above described different way of computing the fitness; in
any of the following methods the fitness is a number included in the interval [0, 1].

5.3.1.1 Proportional Selection

Using this algorithm, we simply define the fitness through a normalization of the payoffs.
For the i-th agent:

fitnessi =
payoffi∑N
i=1 payoffi

(5.4)

where N is the total number of agents.
Although proportional selection could seem the simplest and more natural method, it as-
sumes too many linear proportionalities. This method is indeed based on the concept of
cardinal utility, where preference orderings are preserved uniquely up to increasing mono-
tone linear transformations. This hypothesis is sometimes too strong and ordinal utility,
with its weaker assumptions (preference orderings preserved up to increasing monotone
transformations), is usually preferred in consumer choice theory because it best represents
reality.
According to ordinal utility, it is only meaningful to ask which option is better, but it is
meaningless to ask how much better. We therefore figured two other different ways to
compute the fitness based on ordinal ranking of payoffs, i.e. mapping the possible ranked
payoffs to a fitness function. These two methods are truncation selection and sigmoid-
weighted selection (which is based on ordinal ranking but also resumes some aspect of
cardinal utility).

5.3.1.2 Truncation Selection

In this method, the function mapping the payoffs to the corresponding fitness is a step
function. This selection rule is really simple: a certain percentage %P of the population,
which we want to survive and transfer the genes, is chosen. Then the payoffs are sorted and
the %P agents with highest payoffs will reproduce with equal probability, i.e. we assign to
the surviving agents the same positive fitness, while we assign to the non-surviving ones
a zero fitness. Obviously, if the %P of the agents is not an integer number, we will round
it to the next integer value. The number of surviving agents therefore is d%P ·Nc, where
N is as always the number of agents.

fitnessi =

{
1

d%P ·Nc if payoffi ∈ d%P ·Nc best payoffs

0 else
(5.5)
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Figure 5.4: Mapping payoff-fitness under sigmoid-weighted selection for two different
couple of values steepness ξ and inflection point β

5.3.1.3 Sigmoid-weighted Selection

This reproduction scheme allows a gradual departure from the proportional selection scheme
towards a fitness function that is more similar to the one created by truncation selection.
It is also based on an ordinal ranking, and for these reason we can interpret this method
as a softer version of truncation selection: instead of mapping fitness to payoffs following
a step function, it uses a sigmoid function. Differently from truncation selection, here the
fitness, and so the probability of reproduction, of the survivors will have different values.
The number of offspring probabilistically assigned to each individual is proportional to its
payoff after the following transformation:

weighted_payoffi =
1

1 + e−ξ(pN,i−β)
(5.6)

where ξ represents the steepness of the sigmoid, pN,i the individual’s sum of payoffs after
normalization, such that the highest-scoring individual has a sum of payoffs equal to 1,
and β represents the sigmoid’s inflection point and it is correlated to the percentage of
surviving agents. After the weighting, the same procedure of proportional selection is
applied:

fitnessi =
weighted_payoffi∑N
i=1 weighted_payoffi

(5.7)

This mapping payoff-fitness is taken from the paper [Kolodny and Stern, 2017] and two
examples are represented in Figure 5.4.
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Figure 5.5: Representation of wheel selection rule

5.3.2 Agents reproduction

The reproduction step has itself two steps: parent selection and progeny creation. Each
new organism needs k parents: in asexual reproduction k is 1, while in sexual reproduction
k is 2 or more. Deciding which organisms will parent each child should be done on the
basis of their fitness score, where the fittest organisms should produce more offspring. In
this work we used for simplicity k=1, i.e. asexual reproduction; the son will be an exact
copy of the parent, inheriting the weights and biases of the NN (only in the subsequent
step will be added a mutation).
We impose non-overlapping generations, hence we replace all the agents.
An individual can become a parent with a probability which is proportional to its fitness.
Therefore, fitter individuals have a higher chance of reproduction and of propagating their
features to the next generation. This applies a selection pressure to the more fit individuals
in the population, evolving better individuals over time. Specifically, we apply the roulette
wheel selection rule, called in this way because it could be imagined similar to a Roulette
wheel in a casino. In this method, a proportion of the wheel is assigned to each of the
individual based on their fitness value; then a random selection is made similarly to how
the roulette wheel is rotated. A fitter individual has a greater pie on the wheel and therefore
a greater chance of being selected. In the simplest case of truncation selection, each of
the surviving individuals will have the same portion of the wheel, meaning that, for each
replacement, a parent will be extracted uniformly among all possible parents. The wheel
selection rule is represented in Figure 5.5.

5.3.3 Agents mutation

Mutation is a fundamental step in any evolutionary algorithm, since it permits to explore
more states, accelerating the learning process to quickly reach an evolutionary stable state
[Mallipeddi et al., 2011].
In this work, the mutation step is realized as the addition of Gaussian noise to each weight
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and bias in the network. We do not change the activations or architecture of the network,
although a more advanced evolutionary algorithm could certainly do so, by adding or
removing nodes in the hidden layers.
The gaussian noise is proportional to “how bad” the agents’ perform, and a mutation is
applied in two different timescale of the algorithm, hence we can divide in two class of
learning:

• Intra-generational: in between the agents lifetime

• Inter-generational: in between different generations

Generally speaking, the intra-generational mutation will be smaller with respect to the
inter-generational one, reflecting the fact that between generations, when agents are re-
placed, bigger changes should be observed.

5.3.3.1 Intra-generational mutation (learning)

Any agent during his lifetime faces L choices. After having played the j-th lottery at time
t, we compute the mean over the payoff-outcomes of the j-th lottery (the so called cost of
the j-th lottery) as:

costj(t) =
1

N

N∑
i=1

Si,j(t) (5.8)

where Si,j is the outcome gained by the i-th agent for the j-th choice.
A mutation is then added whenever the lottery payoff of the single agent is lower than the
cost, i.e. lower then the mean outcome for the single lottery. The mutation, added to all
the weights and biases of the network, is an array of Gaussian random variables with mean
0 and variance proportional to how bad an agent performed in that single choice. Calling
wbi the vector of weights and biases of the network, and supposing that the choice is taken
at time t, the vector of weights and biases for the agent i after one single choice at time
t+ δt will be:

wbi(t+ δt) =

{
wbi(t) if Si,j(t) > costj(t)

wbi(t) + ξi(t) else
(5.9)

where
ξi(t) ∼ N(0, ε · (costj(t)− Si,j(t))) (5.10)

and ε is a small number to make the variance of the Gaussian a reasonable number.

5.3.3.2 Inter-generational mutation

The offspring, as already explained, is initially created as an exact copy of the selected par-
ent. In the subsequent moment, a mutation is applied to the whole offspring, proportional
to how much the parent misperform during his lifetime compared to other agents.
Also in this case, the mutation is added to all the weights and biases of the network, as an
array of Gaussian random variables with mean 0 and variance proportional to how bad an
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agent performed.
The offspring having as parent the i-th agent will be:

wbi = wbi + ζi (5.11)

where
ζi ∼ N(0, κ · (payoff_max− payoffi) (5.12)

where payoff_max is the maximum payoff among the total payoffs of all agent and κ is
a small number to make the variance of the Gaussian a reasonable number.
We suppose the inter-generational mutation bigger than the intra-generational mutation,
hence ξi < ζi.

5.3.4 Repeat across generations
It is well known that very basic rules repeated continuously can give rise to arbitrary com-
plexity: basically, one can form a complex network just by applying simple rules and
iterating many times, and this is one of the fundamental feature of our agent based model.
These previous steps characterized the process of one only generation, which is defined
as the accomplishment of the entire set of L choices. When the population have taken all
the decisions, they finish their lifetime and they are all replaced: for simplicity, as already
mentioned, we choose the framework of non overlapping generations. As soon as the old
agents are replaced with new agents, the offspring, the new agent are faced to the L subse-
quent choice and the algorithm restarts. We make the agents evolve until a stationary state
is reached or a fixed number of generations have passed.

5.4 Out-of-sample analysis
While in the training part agents develop heuristics in complex scenarios, in the out-of-
sample analysis part, agents apply these short-cuts to new situations. The purpose of this
final step of the algorithm is to evaluate and understand our agents behaviour.
After having built an out-of-sample dataset to be faced to the trained agents, one can ei-
ther evaluate the learning process and agents performance by means of scoring rules or
mapping the agents strategy to some existing decision making theories (with the reverse
engineering procedure, explained in 4.4).

5.4.1 Out-of-sample dataset
After the training phase, comes the out-of-sample analysis, where the evolutionary selected
agents face different choices with respect to the ones faced during the training. We define
the set of choices faced by the agents in this final phase as out-of-sample dataset, suggesting
the fact that this dataset can be substantially different from the one tackled in the training
phase.
Specifically, the out-of-sample can be of the same form of the training dataset (hence
characterized by the same level of uncertainty) or can include much simpler decision tasks,
involving lotteries with known probability. We analyse the agents’ performance with the
following different typology of out-of-samples:
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1. With the training set

2. With an out-of-sample built in the same way of the training set, i.e. with uncertain
probabilities, representing real-world-complexity

3. With an out-of-sample built in a different way with respect to the training set, i.e.
with certain probabilities. This represents the oversimplified scenario of laboratory-
like choices. A typical input belonging has 8 parameters, of which therefore only 6
are non degenerate, i.e. pmin = pmax, and therefore it is a particular case (just in the
form) of the input used in the training phase.

5.4.2 Different scoring rules to evaluate performances
To evaluate the agents’ performance, we take an out-of-sample dataset and pursue the
following steps:

1. Compute the so called rational-choices for the out-of-sample dataset, based on higher
expected value of the lotteries. The vector of rational-choices will be a vector of
length L, where L is the number of choices between a first lottery A and a second
lottery B, of which the element rj will be:

rj =

{
−1 if EV (A) ≥ EV (B)

+1 else
(5.13)

where EV(A) (resp. EV(B) is the expected value of the lottery A (resp. B).

2. Deciding the metrics of interest: Having N agents and wanting to evaluate a single
output per system, we designed two different metrics in order to compute a final
output:

• Mean Output:
We first compute the output of each NN, simulating the Neural Networks on
the out-of-sample set and evaluate its choices: Collecting all the outputs in a
matrix M of dimension NxL, each matix element mi,j will be in the interval
[−1, 1]. Giving this number we have to evaluate the choices, that we will col-
lect in a matrix S, always of dimension NxL. Considering negative output as
choosing the first lottery and second output as choosing the second lottery, the
matrix element si,j will be the choice of the i-th agent in the j-th lottery:

si,j = sgn(mi,j) =

{
−1 , if subject i chooses A in the choice j
+1 , if subject i chooses B in the choice j

(5.14)

where sgn is the sign function.
We then compute the mean output for each of theL choices, averaging between
all the N agents. For the j-th lottery, the final output will be:

oj =
1

N

N∑
i=1

si,j (5.15)

47



5.5. SUMMARY OF THE ABM

• Representative agent’s output:
We design a representative agent; this agent has as vector of weights and biases
wbrep the mean of all agents’ weights and biases.

wbrep =
1

N

N∑
i=1

wbi (5.16)

Then we will compute the outputs mj ∈ [−1, 1] of the representative agent for
the L choices. For the j-th lottery, the final output will be:

oj = sgn(mj) (5.17)

where sgn is always the sign function.

3. Evaluate the performances, according to different scoring rules:

• Accuracy, defined as measure of closeness of the outputs. Computed by count-
ing the fraction of the agent’s choices equal to rational choices:

Acc =
1

L

L∑
i=1

fj(rj, oj) (5.18)

where

fj(rj, oj) =

{
1 if rj = oj

0 else
(5.19)

• Mean square error (or Brier score), defined as measure of the difference be-
tween the values of rational choice and agent’s choice:

MSE =
1

L

L∑
i=1

(oj − rj)
2 (5.20)

• Final wealth, defined as total amount of payoff acquired in L lotteries. We play
all the lotteries and, according on the previous output choice oj , we compute
the total payoff

5.4.3 Study the agents behaviour: Reverse Engineering
After having built a specific out-of-sample dataset, we face our agents with these choices
and collect their decisions. We then map their outputs to the models of both Expected
Utility Theory and Rank Dependent Utility Theory, finding which is the decision making
model that best fit the agents’ output, as it is described in Section 4.4. We finally observe
and make consideration on the resulting curves of utility function for EU and probability
weighting for RDU.
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5.5 Summary of the ABM

5.5.1 List of parameters of the ABM

In this subsection we will list all the parameters of the ABM; the values in the parentheses
represent the values chosen and used as default, unless otherwise specified.
The most important parameters of the agent based model involve:

• N: Number of agents (N=100)

• Ngen: Number of generations (Ngen=500)

• L: Number of choices per generation, i.e. length of training dataset (L=150)

• Training scenario: type of training dataset scenario among WU, U1, U2, SU, Float-
ing and Certain

• Selection rule: type off selection rule among proportional, truncation and sigmoid-
weighted selection

Then we have several secondary parameters, as:

• Number of choice in the out-of-sample set (50)

• Amplitude of iter-generational mutation (0.005)

• Amplitude of intra-generational mutation (0.001)

• Truncation percentage (for truncation and sigmoid-weighted selection)

• Steepness of sigmoid for sigmoid-weighted selection (10)

And finally the parameters describing the Neural Networks:

• Number of hidden layers (1)

• Number of neurons in the hidden layers (10)

• Hidden layer transfer function (hyperbolic tangent sigmoid)

• Output transfer function (hyperbolic tangent sigmoid)

Counting them, we have in total 14 different parameters. Manage this huge number of
parameters in the simulations was one of the biggest challenge of this master thesis.
For running the simulations, we use MATLAB as programming language.
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5.5.2 Flowchart
To summarize as much as possible, we can regroup the whole algorithm in 4 main steps:

1. Agents creation: initialization of NNs population

2. Environment characterization: creation of datasets collecting choices between
binary lotteries

3. Agents learning: training the NNs by means of an evolutionary algorithm

4. Agents evaluation: out-of-sample analysis

The third point includes a lot of processes, which are repeated for as many times as the
chosen number of generations. To clarifying the ideas and simplify the concept, I present
a flowchart showing the cycle of the evolutionary algorithm, to be repeated among the
Ngen.
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6. Results

In this section we will present the results of our Agent Based Model.
We can divide the analysis in two main parts: evaluation of the learning process by means
of a scoring rule and mapping the agents strategy to existing decision making theories.

6.1 Assess the algorithm: Accuracy Computation

As described in Section 5.4, we defined three different score functions in order to evalu-
ate the agents performances: accuracy, mean square error and final wealth. Each of this
scoring rule led to similar results and corresponding conclusions, hence in this chapter we
will present only the accuracy-related results.
In this section we will perform a first assessment of the functioning of the evolutionary
training algorithm of the Agent Based Model. The question that we address is then: “are
our agents actually learning a reasonable strategy to make choices?”. In order to answer
this question we compute the accuracy, as explained in Chapter 5.4, at the end of each
generation-step, for different ABM parameters settings.
Investigating the accuracy as a function of number of generations, we are able to monitor
the learning of the agents, understand if they reach an equilibrium state and how long it
takes, depending on the different conditions in which the system was set. Moreover, look-
ing into the oscillation of the accuracy, one can outline the different learning behaviour
and make considerations with the aim of finding the ABM features and parameters that
best mimic reality.
We compute the accuracy in function of generations both on the training set and on an out-
of-sample dataset built in the same way of the training set (same type of world-scenario
described in Subsection 5.2.2). Once the agents were trained, we compute the accuracy
at the last generation-step also on an out-of-sample dataset without uncertainty, i.e. with
fixed probabilities, in order to compare the agents on a same out-of-sample.
We present results regrouped in three different situations: training in different world sce-
narios, training with different numbers of choices and training with different selection
rules.

6.1.1 Training in different world scenarios:
Accuracy on training and out-of-sample datasets

In this subsection we want to understand how our agents learn according to the worlds in
which they evolved. We analyse the following situations:
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• Fixing:

– Number of generations (Ngen=400)
– Number of choices per lifetime (L=150)
– Type of selection (Sigmoid-weighted, inflection point=10%, steepness=20)

• Varying

– The world scenario: SU, U2, U1, WU, FL and CE

The accuracy on the training set and on a test set (out-of-sample built in the same condi-
tions) in function on generations are shown in Figures 6.1 for SU, 6.2 for U2, 6.3 for U1,
6.4 for WU, 6.5 for FL, 6.6 for CE.
In the following Table 6.1, we report the averaged results (for 10 different simulations) of
the accuracy on the training set, on an out-of-sample same-scenario of the training set and
on an out-of-sample different-scenario (CE world). For example, the accuracy of the NN
trained in the world SU and tested with CE is 0.86, while the accuracy of the NN trained
in the world FL and tested with an out-of-sample FL different from the training one is
0.92. The accuracy is here computed after 500 generations, with the same parameters
listed before.

SU U2 U1 WU FL CE
Training 0.98 0.89 0.79 0.74 0.94 0.92

Same-world out-of-sample 0.87 0.80 0.76 0.82 0.92 0.90
CE out-of-sample 0.86 0.84 0.72 0.61 0.88 0.90

Table 6.1: Accuracy on training set, out-of-sample same scenario and out-of-sample dif-
ferent scenario for the different worlds (Ngen=500, sigmoid-weighted selection infl=10%,
L=500)

As expected, the accuracy on the training set is the highest one for each world-scenario,
because agents actually have learnt how to make choices on that dataset. On the other hand,
the accuracy on the out-of-sample built in a different scenario (CE world) is the lowest one
between the three measures of accuracy (on training set, out-of-sample same scenario and
out-of-sample different scenario), and this can be explained by the fact that agents trained
in different scenarios never faced choices in which the probabilities are fixed.
Despite this general trend, we can still notice differences between the worlds: looking into
the table, the world scenarios in which agents outperform (beside CE that obviously is the
simplest world and the scenario for which the last out-of-sample analysis is the same of
the training), are SU and FL. This can be explained from the fact that in these two worlds
the agents are trained in difficult and different situations, so they learnt a versatile strategy.
This led to success also in a scenario different from the training one, as the CE world.
On the contrary, the out-of sample CE test is worst when agents are trained in world scenar-
ios WU and U1. This can be due to the fact that in these two cases the agents are trained in
worlds in which bad outcomes are not existent, hence they can have big difficulties to un-
derstand how to make a reasonable choice as soon as more risk appears. Moreover, when
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faced to the CE scenario, where bad outcomes are possible, they are put in a completely
new situation and they are not able to react.
Generally speaking, when faced to the same out-of-sample with fixed probabilities, agents
trained in simplified scenario (CE) will take more optimal decisions compared to agents
trained in complex scenario (SU, FL). This can be a first proof of our initial hypothesis,
i.e. the fact that agents trained in complex scenario developed an heuristics which will
not work optimally in over-simplified scenarios. However, these results are necessary but
not sufficient to assume that our hypothesis is correct: one can conclude that the second
type of agents (trained with fixed probabilities) perform better just because they are tested
in the same training condition, contrary to respect to the first type of agents (trained with
uncertain probabilities).

6.1.2 Training with different numbers of choices:
Accuracy on training set

In this subsection we want to understand how our agents learn according to the number of
choices per lifetime that they face in the training phase. We analyse the following situa-
tions:

• Fixing:

– Number of generations (Ngen=400)
– The type of scenario: SU and FL
– Type of selection (Sigmoid-weighted, inflection point=10%, steepness=20)

• Varying:

– Number of choices per lifetime: 50 choices, 100 choices, 200 choices, 300
choices and 400 choices.

The accuracy on the training set, is shown in Figure 6.7 for the SU scenario and in Figure
6.8 for the FL scenario.
As we can see from the two graphs, in the early stage of the training (around 100 gener-
ations) there is a significant difference between the accuracy curves: the agents that face
less choices per lifetime misperform compared to the ones who face more choices. This
difference tends to disappear as the number of generations increases: after 400 genera-
tions, one can not see any difference between the curves.
For this reason, we decide to keep the number of generations high, in order to be sure that
the system had the time to stabilize whatever the training set, but to reduce the number of
choices per lifetime, to avoid possible over-fitting of the data. The usual dimension of the
training dataset used in general in the simulations was then 150 choices per lifetime.

6.1.3 Training with different selection rules:
Accuracy on training set

In this subsection we want to understand how our agents learn according to the selection
rule applied in the evolutionary algorithm. We analyse the following situations:
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Figure 6.1: Accuracy on training set and on test set, both built according to a SU (Super
Uncertain) scenario

Figure 6.2: Accuracy on training set and on test set, both built according to a U2
(Uncertain-type2) scenario
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Figure 6.3: Accuracy on training set and on test set, both built according to a U1
(Uncertain-type1) scenario

Figure 6.4: Accuracy on training set and on test set, both built according to a WU (Weak
Uncertain) scenario
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Figure 6.5: Accuracy on training set and on test set, both built according to a FL (Floating)
scenario

Figure 6.6: Accuracy on training set and on test set, both built according to a CE (Certain)
scenario
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Figure 6.7: Accuracy on training set, built according to a SU (Super Uncertain) scenario
for different length of training set, i.e. different number of choices faced to agents in the
training phase

Figure 6.8: Accuracy on training set, built according to a FL (Floating) scenario for dif-
ferent length of training set, i.e. different number of choices faced to agents in the training
phase
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Figure 6.9: Accuracy on the training set for SU world and different selection rules

• Fixing:

– Number of generations (Ngen=400)
– The type of scenario: SU
– Number of choices per lifetime (L=150)

• Varying:

– Type of selection: proportional, truncation with 10% of survivors, truncation
with 60% of survivors, sigmoid-weighted with inflection point at 10%, steep-
ness=10 and sigmoid-weighted with inflection point at 60%, steepness=10

Then we compute the accuracy on the training set as function of generations, as it is shown
in Figure 6.9. We can notice that all selection rules brought to a similar accuracy (except
truncation 10%). However, the two sigmoid-weighted selection rules give smaller oscil-
lations in accuracy compared to the other selection rules. For this reason, we select this
type of rule as default; specifically, we choose as default value of sigmoid inflection point
10%, noticing best results whenever the percentage of surviving agents was small.

6.2 Confront agents with decision theories: Reverse En-
gineering Analysis

The aim of this section is to find some analogy between our agents behaviour and the one
described by some decision theories presented in Chapter 2, specifically by Expected Util-
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ity Theory and Rank Dependent Utility Theory.
In order to check for similarities, we first trained the agents with different types of param-
eters of the ABM (mainly changing the training world-scenario, the number of choices in
the training dataset and the type of selection) and then we used the Reverse Engineering
procedure described in Section 4.4.
The out-of-sample dataset faced to the agents in this reverse engineering part was always
the same: it was built following a CE scenario and it is consists of 50 binary choices. When
not specified, we imposed Ngen=500, L=150, sigmoid selection rule with steepness=10
(varying inflection point).

6.2.1 Risk aversion with different selection rules
As explained in Chapter 2, the presence of risk aversion in individuals is characterized by
a concave utility function, while a convex utility function is a sign of risk seeking.
Understanding how selection acts on risk preference for our agents is crucial to interpret-
ing and confronting our results with observed individual behaviors. According to different
selection rules, individuals can develop different attitudes to risk. In particular, it is rea-
sonable to assume that when an environment is particularly challenging, i.e. only few best
individuals will survive, being risk seeker is the best strategy, because only the ones tak-
ing risks (and being lucky) will outperform with respect to the ones preferring lower safer
outcomes (risk averse). On the other hand, if the selective pressure is less strong, e.g. in
a scenario where a large percentage of individuals will survive, the best strategy will be
trying to survive with the lowest possible risk, hence it is reasonable to think that the in-
dividuals will be risk averse.
In order to asses how attitude towards risk changes according to how challenging the train-
ing environment is, we analyse the following situations:

• Fixing:

– Number of generations (Ngen=500)
– Number of choices per lifetime (L=150)
– Type of selection rule: Sigmoid-weighted, steepness=10

• Varying:

– Type of scenarios: CE, FL, SU
– Inflection point of the sigmoid: (10%, 20%, 60%, 80%)

We then fit the utility function of our agents applying the Reverse Engineering algorithm,
but focusing only on Expected Utility, hence the estimated utility function is found only
assuming the expected utility model (objective probabilities).
The results are shown in Figure 6.10 for agents trained in CE scenario, 6.11 for the FL
scenario, 6.11 for the SU scenario. As expected, there is a shift from risk seeking towards
risk aversion each time the value of sigmoid inflection point is increased, i.e. each time
the percentage of surviving agents is increased. From the plots we can indeed observe
that, whatever the level of uncertainty in the training phase, if the agents evolved in a
challenging environment (only a small percentage of the population survived), when faced
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to out-of-sample choices, they tend to be risk seekers, while, if trained in a non-challenging
environment (a large percentage of the population survived), they usually behave as risk
averse.
From these results, we conclude that risk preferences strictly depend on the particular
evolutionary process. Our results are in line with what found by Kolodny and Stern in
[Kolodny and Stern, 2017]. This paper study the effects of reproduction dynamics on the
extent to which different strategies of risk preference are favored by selection, conducting
an agent-based simulation in constant-sized populations. They explore the effects of inter-
generational different selection rules, population size, the number of decisions throughout
an individual’s life, concluding that simple rules regarding predicted risk preference do
not hold across the complete range of factors characterizing evolution.

6.2.2 Probability distortion with different uncertainty training sce-
narios

As we saw in Chapter 2, individuals are usually bad in understanding and interpreting
probabilities. Studying how humans tend to distort probabilities, Tversky and Kahneman
[Tversky and Kahneman, 1992] first proposed a probability weighting function to convert
objective probabilities into subjective ones. The usual form adopted for the probability
weighting function is shown in Figure 2.2, and it accounts for over-weighting of small
probabilities and under-weighting of large ones.
When trained in different scenarios (with different level of uncertainty), agents could per-
ceive probabilities differently, leading to distortion of probabilities. In order to asses how
individuals may weight probabilities according to the uncertainty level in the training
phase, we analyse the following situations:

• Fixing:

– Number of generations (Ngen=500)

– Number of choices per lifetime (L=150)

– Type of selection rule: Sigmoid-weighted, steepness=10

• Varying:

– Training world-scenario

– Sigmoid inflection point

Here we search for probability weighting, so we apply the Reverse Engineering algorithm
assuming only Rank Dependent Utility theory (which includes also Expected Utility con-
sidering a w(p) = p). As explained in Section4.4, there are two possible probability
weighting functions that can be used to fit the agents behaviors: equation w1(p) 4.5, with
just one parameter δ and equation w2(p) 4.6, with two parameters γ and κ. We performed
a reverse engineering analysis for both weighting functions, however we noticed that the
fitted curves were similar in pattern, as can we observe from Figure 6.13. For this reason,
we present the results just for the probability weighting function w1(p), being more parsi-
monious.
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Figure 6.10: Fitted curves of utility function for CE scenario. Fitted values of parameter
of α are: α = 3.67 for sigmoid with inflection 10%, α = 2.16 for sigmoid with inflection
30%, α = 1.00 for sigmoid with inflection 60%, α = 0.53 for sigmoid with inflection
80%

Figure 6.11: Fitted curves of utility function for FL scenario. Fitted values of parameter
of α are: α = 3.79 for sigmoid with inflection 10%, α = 1.33 for sigmoid with inflection
30%, α = 1.00 for sigmoid with inflection 60%, α = 1.01 for sigmoid with inflection
80% 62
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Figure 6.12: Fitted curves of utility function for SU scenario. Fitted values of parameter α
are: α = 3.05 for sigmoid with inflection 10%, α = 2.35 for sigmoid with inflection 30%,
α = 1.19 for sigmoid with inflection 60%, α = 0.25 for sigmoid with inflection 80%

Figure 6.13: Fit of same agents outcomes to two different probability functions w1(p) and
w2(p), for SU scenario and different inflection points
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Figure 6.14: Probability weighting SU scenario for different sigmoid inflection points.
Fitted values of parameter δ are: δ = 2.77 for sigmoid with inflection 10%, δ = 1.40
for sigmoid with inflection 30%, δ = 0.68 for sigmoid with inflection 60%, δ = 0.52 for
sigmoid with inflection 80%

Before looking into the different world scenarios and how they affect the probability weight-
ing, let us focus on the effect of the sigmoid inflection point, as shown in Figure 6.14. In-
terestingly, it seems that the less the environment is challenging (more individuals are able
to reproduce) the more the probability weighting is accentuated towards an over-weighting
of low probabilities and an under-weighted of high probabilities, which is the pattern pro-
posed by [Tversky and Kahneman, 1992]. The curve fitted with a sigmoid-weighted se-
lection with inflection point 60% has a parameter δ = 0.68, extremely similar to the one
fitted in real experiments [Barberis, 2013].
On the other hand, where the environment is very challenging (only 10% or 30% of the
best individuals will reproduce) we can observe an under-weighting of low probabilities
and, just for an inflection point 30%, an over-weighting of high probabilities, in contrast
with Prospect Theory.
In order to compare the different world scenarios used in the training phase, we report the
different fitted curves for a sigmoid-weighted selection rules with inflection point at 80%,
Figure 6.15.
As one can see, the two words with a stronger probability weighting are SU and FL, and
this is reasonable thinking that these two worlds are characterized by more complex and
uncertain choices. On the other hand, for the worlds WU and U1 we can see that there is no
probability weighting, i.e. the fitted probability functions are coincident (or almost coinci-
dent for U2) with the diagonal dotted line, corresponding to linear probability weighting.
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An extreme probability weighting is sign of a strong distortion of probability perception,
and this can lead to irrational decisions. The above described findings are thus in line with
our first hypothesis that heuristics developed in complex environment can lead to paradox-
ical results when applied to over-simplified scenarios.
In the previous analysis on accuracy, we found that the selection rule that best mimics (i.e.
that gives higher accuracy and less oscillations) the actual evolution process for our agents
is the sigmoid-weighted selection with a low percentage of survivors (e.g. inflection point
10%).
The comparison in probability weighting between the different scenarios with such se-
lection rule is shown in Figure 6.16. As we can see, the corresponding fitted probability
weighting function is different from the one inferred by Prospect Theory (Section 2.3), in-
volving an under-weighting of small probabilities and sometimes over-weighting of high
probabilities, as already pointed out in Figure 6.14.
One argument in favour of such result is the so-called “description-experience gap” [Bar-
ron and Ursino, 2013]: while rare events are over-weighted in description based decisions
(as described in Prospect Theory), people seem to underweight rare events when they
make choices in decisions based on experience under uncertain conditions. Evidence on
experience-based decision-making, where people do not know the outcome probabilities
a priori but can learn them through repeated experience, shows that people consistently
choose as if they underweight rare events ([Camilleri and Newell, 2011]; [Lejarraga and
Gonzalez, 2011]; [Newell and Rakow, 2007]; [Yechiam and Busemeyer, 2006]). This can
lead to paradoxical inconsistency of people’s beliefs and choices [Szollosi et al., 2019].
For this reason many scientists, among who Barron and Erev [Barron and Erev, 2003] and
Hertwig, Barron, Weber and Elke [Hertwig et al., 2004], argue that such findings are sub-
stantive and call for a theory of decision making under risk, other than Prospect Theory,
for explaining decisions from experience.
In view of the above described scientific researches, the probability weighting shown in
Figure 6.16 could be meaningful, and it should be deeper studied and analyzed.

6.2.3 Method comparison with different scenarios
In order to compare Expected Utility Theory and Rank Dependent Utility Theory, we used
the Nested Hypothesis Testing as explained in Section 4.4. We choose as significant level
ε = 0.01 and as probability weighting function w1(p) 4.5, meaning that the degree of
freedom of the chi-squared distribution used by the Nested Hypothesis Testing is k = 1
(i.e. Rank-Dependent model has only one parameter more than Expected Utility).
We remember that we reject the null hypothesis, i.e. EU model is the true one, if

p = P (χ2(k = 1) ≥ 2log
LRDU

LEU

) < ε

We perform this analysis for a population of agents trained in different worlds and fol-
lowing a sigmoid-weighted selection rule with inflection point 10% and 60%. The nested
hypothesis testing is done on a same out-of-sample set, i.e. we are trying to understand
which theory best describes our agents when faced with overly-simplified choices, depend-
ing on the way they were trained. We collect the following results, represented in Table
6.2.
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Figure 6.15: Probability weighting different scenarios, sigmoid inflection point=60%. Fit-
ted values of parameter δ are: δ = 0.76 for CE, δ = 0.40 for FL, δ = 0.68 for SU, δ = 1.00
for WU, δ = 1.35 for U1, δ = 1.06 for U2

Figure 6.16: Probability weighting different scenarios, sigmoid inflection point=10%. Fit-
ted values of parameter δ are: δ = 1.29 for CE, δ = 2.34 for FL, δ = 2.77 for SU, δ = 0.86
for WU, δ = 0.57 for U1, δ = 1.06 for U2
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SU U2 U1 WU FL CE
Sigmoid inflection point 10%

Winning model RDU EU RDU RDU RDU RDU
Corresponding p 0 0.1177 0 0.0010 0 5.7418e-11

Sigmoid inflection point 60%
Winning model RDU EU RDU RDU RDU EU
Corresponding p 0.0012 0.2530 3.5220e-05 0.0040 0 0.0953

Table 6.2: Nested hypothesis testing: p-value and best models

The right model is almost always Rank Dependent Utility, which is reasonable since
RDU is a more complete theory, described by one parameter more that EU. Despite that,
one can notice that in general the p-values for the inflection point of 60% are higher with
respect to the ones related to the inflection point of 30%.
Moreover, we observe differences among the agents trained in different uncertainty set-
tings: the p-values related to the CE scenario are higher with respect to the ones related
to SU and/or FL scenario, implying that the EU model works better for CE then for SU
and/or FL. In simpler words, when agents were evolved in an extremely uncertain envi-
ronment, RDU outperform EU more than for agents trained in simpler environment. This
is reasonable since the CE world is a simple scenario, characterized by fixed probabilities,
while SU and FL are complex and uncertain scenario, where agents will tend to distort
more probabilities, so a theory including a probability weighting is necessary.

6.2.4 Limits of the analysis and possible improvements
Despite these first results are promising, they have just to be intended as a starting point
for a more sophisticated analysis.
In view of a possible continuation of this work, we suggest the following amendments
and/or improvements:

• switch to a quicker programming language, as Python or Julia, instead of MATLAB

• optimize the code, for example adding some automated strategy to cross-combine
and select the best parameters

• explore the possibility of evolving the neural network not just in weights and biases,
but in their entire structure, as explained in Section 4.3

• explore different uncertainty set-ups, for example including the uncertainty also in
payoffs other than probabilities

• explore other evolutionary algorithm set-ups. In this work we used non-overlapping
generations and just started to explore a more realistic overlapping generations sce-
nario; an extension on this sense can be further explored
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In this thesis, we have presented a simple evolutionary model to study and analyse our de-
cision making processes. Within the field of choice under uncertainty, it is experimentally
observed that people tend to make irrational and/or controversial choices (e.g. Allais Para-
dox [Allais, 1953], Ellesberg Paradox [Ellsberg, 1961]), adopting simple heuristics rather
than following rational principles established by expected utility frameworks. Heuristics,
which we use everyday to take decisions, work optimally in a real-world-complexity sce-
nario, but only sub-optimally in abstract and oversimplified laboratory setups, leading to
the emergence of irrational choice patterns and paradoxes.
This project started from the simple intuition that, since evolution has shaped our deci-
sion making processes and heuristics, such observed irrational choice preferences can be
retrieved as an evolutionary emergent phenomenon.
To assess our hypothesis, the first phase of the project was dedicated to review the main
research behind decision making, studying the most famous theories, as Expected Util-
ity Theory [Morgenstern and Von Neumann, 1953] and Prospect Theory [Kahneman and
Tversky, 1979], some fundamentals concepts, as risk aversion and probabilities weight-
ing, and analysing a set of paradoxes and fallacies. Right after, we deepened the concept
of heuristics, understanding how heuristics can interfere, and sometimes help, in the pro-
cess of decision making, mainly analysing the research of Simon [Simon, 1947] and of
Gigerenzer [Gigerenzer and Todd, 1999].
After this preliminary research phase, we developed an Agent Based Model (ABM) de-
scribing the evolution of the decision making processes. In the model, agents are first
trained by facing them with different degrees of uncertainty, with the aim of naturally fa-
cilitating the development of heuristics and strategies. Once the training phase has ended,
we confronted them with different kind of tasks, to observe if some empirically reported
patterns would arise.
In the development of the ABM we brought the most innovative contribution to the project;
first of all, to include intelligence in our model, we chose as agents Artificial Neural Net-
works, exploiting the big potential of this machine learning tool and making our ABM
truly innovative. Secondly, we trained the agents by means of an evolutionary algorithm,
to mimic the actual Darwinian selection. Choosing such algorithm gives us the double
advantage of using a more realistic algorithm, naturally emulating what happens in real-
world, and of obtaining quick result, finding in a relatively short time solution-patterns to
a problem otherwise hardily solvable with other standard algorithms [Soni, 2018]. Our
developed evolutionary algorithm is composed by different steps and characterized by a
huge number of parameters (14). Managing and combining all these parameters was one
of the biggest challenge of this master thesis.
Finally, in the Reverse Engineering part, we use our statistical knowledge, implementing a
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maximum likelihood estimation, to find which decision theory, among the ones analysed
during the research phase, best fit the behaviour of the agents, depending on the different
training scenarios.
As results, after having verified the functioning of our ABM and carefully selected the best
model-parameters to mimic the actual evolution of the agents (thanks to an analysis based
on the accuracy with which agents took decisions), we observed different decision-making
attitudes, depending on the degree of risk and uncertainty of the choices faced by the agents
in the training evolutionary phase. Specifically, to evaluate our agents’ performances, we
face them with a same out-of-sample of choices characterized by no-uncertainty (known
probabilities), and we compare the behaviour of the evolutionary selected agents to the
decision making theories of Expected Utility and Rank Dependent Utility.
We first try to understand how selection acts on risk preferences. With this aim, we fit
the utility function of our agents assuming Expected Utility Theory, finding that, whatever
the uncertainty in the evolutionary process, when the agents evolved in a challenging en-
vironment (only a small percentage of the population survive), if faced to out-of-sample
choices, they tend to be risk seekers, while, when trained in a non-challenging environ-
ment (a large percentage of the population survive), they usually behave as risk averse.
From these results, we conclude that it does not exist a straightforward rule to determine
an individual risk attitude, but risk preferences strictly depend on the process of evolution.
Our results are in line with what found by [Kolodny and Stern, 2017].
Secondly, we analyse how agents perceive and understand probabilities, by fitting the prob-
ability weighting assuming Rank Dependent Utility Theory. We found that agents evolved
in complex and extremely uncertain environments are subjected to a stronger probability
weighting with respect to agents evolved in less or even non uncertain environments. A
strong probability weighting is sign of a strong distortion of probabilities perception, lead-
ing to irrational choice-patterns; these findings are thus in line with our first hypothesis
that heuristics developed in complex environment may lead to paradoxical results when
applied in over-simplified scenarios.
In the probability weighting analysis, for non-challenging environments we recover the
probability weighting function proposed by Prospect Theory [Tversky and Kahneman,
1992]. On the other hand, for challenging environments, we recover agents under-weighting
rare events and sometimes over-weighting probable events. This results, despite being in
contrast with Prospect Theory, is supported by other research and experimental results (as
[Barron and Erev, 2003], [Camilleri and Newell, 2011], [Newell and Rakow, 2007]), and
it should be further explored.
Finally, we found that the best theory between EU and RDU to model our agents behaviour
was almost always RDU, due to the fact that it is a more complete theory, described by one
parameter more than EU. Despite that, we observe differences among the agents trained
in scenarios different in uncertainty, indeed, when agents evolved in extremely uncertain
environments, RDU outperform EU more than for agents trained in simpler environments.
In light of such results, possible extensions of the present work can be outlined, in order
to gain a deeper understanding of how decision making works. Some examples of further
development include exploring the possibility of evolving the neural network in their entire
structure, as explained in [Frolov, 2018], [Harvey, 2017]; exploring different uncertainty
set-ups, for example including the uncertainty also in payoffs other than probabilities; ex-
ploring other evolutionary algorithm set-ups, as overlapping generations scenarios.
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