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Abstract

The aim of this thesis is to show that, depending on the ratio between the inter- and
the intra-species repulsive interactions, a mixture of two Bose-Einstein condensates
trapped in a L-well potential with periodic boundary conditions (and L = 4)
exhibits various macroscopic ground-state configurations which differ in the degree
of mixing and in the space distribution. The latter were found and investigated,
thanks to the use of the Coherent-State picture, with reference to previous work
on the dimer (two potential wells) and on the trimer (three wells). Moreover, by
studying the energy behavior described by the Hamiltonian of the Bose-Hubbard
model, it has been possible to derive the complete mixing-demixing phase diagram,
both in the case with the hopping parameter set to zero (T=0) and in the case with
the latter different from zero (more realistic and interesting from an experimental
point of view). The mixing properties of the two quantum fluids, which are shown
to be strongly affected by the fragmented character of the confining potential, are
also shown to depend only on two effective parameters incorporating the asymmetry
between the heteronuclear species. The study of the case L = 4, developed in
continuity with the L < 4 ring lattices’ one, allowed us to discover significant
differences with respect to cases with L = 2, 3 and, moreover, it highlighted new
and interesting properties concerning the demixing mechanism and the quantum
phases in ring lattices.
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Chapter 1

Introduction

“Logic takes you from A to B, imagination takes you everywhere.”
Albert Einstein

In this Chapter, we will give a historical and illustrative account of the theoretical
aspects and experimental advances in the field of binary mixtures of Bose-Einstein
condensates in optical lattices. Furthermore, we will illustrate in details the model
used in Condensed Matter Physics to describe a Bose-gas of interacting particles
in the presence of external trapping potentials: the Bose-Hubbard Model.

1.1 Physics of Ultracold Atoms and Binary Mix-
tures

1.1.1 Bose-Einstein condensation
Theorized in 1924 by Albert Einstein and Satyendra Nath Bose, a Bose–Einstein
condensate (BEC) is a state of matter (also called the fifth state of matter) which
is typically formed when a gas of bosons at low densities is cooled to temperatures
very close to absolute zero (-273.15 °C). Under such conditions, and thanks to their
bosonic quantum statistics, a large fraction of bosons occupy the lowest quantum
state (the Ground-State, GS) [8].
The BEC can be formed from gas with a low density of ultra-cold atoms or from
some quasiparticles within solids, such as excitons or polaritons.
The basic idea behind this concept is that, at temperatures T below a certain critical
temperature Tc,the characteristic width of the atomic wave functions approaches
the typical inter-particle distance. Consequently, under the temperature Tc, each
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Introduction

wave packet associated with a single atom begins to overlap the others. At this
point, quantum statistics force the atoms to Bose condense and the whole group
starts behaving as though it were a single atom [53].

Figure 1.1: An illustration of a "super-photon" created when physicists turned photons
of light into a state of matter called a Bose-Einstein condensate. (Image: © Jan Klaers,
University of Bonn)

For many years, the theory of the existence of BEC had no theoretical relevance
or experimental validation, until 1938, when the connection between Superfluidity
(just discovered) and Condensates was first hypothesized. Afterwards, a series
of papers by Landau, Lifshitz, Penrose and Onsager introduced the concept of
nondiagonal long-range order and specified the role of the latter in Bose-Einstein
condensates and superfluids [50, 18].

As it often happens, experimental interest in ultracold atomic gases came many
years after the first theoretical speculations. In the 1970s, thanks to the advent of
new techniques to cool and trap atoms, some groups of physicists began to try to
Bose condense some chemical elements [13, 52].

It took a few more years, but finally, in 1995, thanks to powerful and versatile

2



Introduction

laser-based cooling techniques, the first Bose-Einstein condensations of 87Rb and
23Na gases, respectively, were observed [4] [15]. After that, some other elements were
successfully condensed, e.g. 7Li [9], spin-polarized hydrogen [24], metastable 4He
[51, 56], and 41K [46]. We should consider that, in the conditions of temperature
and density normally available in modern experimental equipments, the atomic
system would be at equilibrium in the solid phase. Thus, in order to observe
Bose-Einstein condensation, one has to keep the system in a metastable gas phase
for a sufficiently long time. This is possible, in fact, because three-body losses [63]
represents rare events in an ultracold dilute gas, whose typically lifetime is hence
long enough to perform experiments.

The experimental results of 1995, celebrated by the award of the Nobel Prize
in Physics in 2001 [38], were the first step towards a number of theoretical and
experimental studies in the field of quantum gases. Furthermore, thanks to them,
new fundamental questions arose and the curiosity of generations of young scientists
in this topic grew considerably. Some of these problems have already been addressed
and solved: there is now a very rich and renowned literature on Bose-Einstein
condensation [53]. However, new questions concerning the Physics of ultracold
quantum matter arise every day and remain unanswered, as well as many areas of
this research field are still unexplored.

1.1.2 Mixtures of Bose-Einstein condensates
Immediately following the achievement of Bose-Einstein condensation in dilute
gases, there has been considerable interest in the study of binary mixtures of
Bose-Einstein condensates. One of the first examples is represented by a mixture
created in 1997, made up of two particular states of the Rubidium atoms. Instead,
the first example of a mixture of two different atomic species dates back to 2001
(K and Rb) [46].
Over the last two decades, two species Bose-Einstein condensates have been em-
ployed in the exploration of several different phenomena: in addition to the
dynamical phase-separation mechanisms, one has modulation instabilities [57, 35,
33, 16], the presence of persistent currents [5, 62] and collective excitations [44].

The situation under which demixing occurs in binary mixtures with inter-species
repulsion, has been the focus of a certain number of theoretical investigations,
including mean-field treatments at zero [39, 47, 14, 17, 32] and finite temperature
[58] as well as Quantum Monte Carlo (QMC) simulations [31].
The separation of the two species is usually characterized in terms of parameters
written as a combination of the number of bosons of each species (N and M or Na

and Nb), the intra-species repulsion coefficients (Ua and Ub) and the inter-species
repulsion coefficient (W ). This is because the basic rule [60, 54, 37, 41, 12] when
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dealing with harmonically-confined BECs in the mean-field approximation is that,
if intra- and inter-species scattering lengths aij verify the condition

a12 <
√
a11a22

then the two quantum fluids can be mixed. So, if the inter-species repulsion ∝ a12
(that is W ) gets bigger than the (geometric average of the) intra-species repulsions
∝ √

a11a22 (that is
√
UaUb), then, already in the rather simple case of bosonic

binary mixture trapped in a harmonic potential, two phase separation mechanisms
are available, depending on the ratio of the atomic masses and of the interaction
strengths.

1.1.3 Ultracold atoms in optical lattices
The possibility of storing ultracold atoms in artificial periodic potentials of light,
enabled by the previously unseen degree of control of matter at the nanoscale, has
opened the way to directly plumb the fundamental problems of Condensed Matter
Physics[7].

Figure 1.2: Illustration of Cold Atoms in an Optical Lattice.

Ultra-cold quantum gases in optical lattices, in fact, could be seen as nothing
more than quantum simulators, i.e. quantum systems that have the advantage of
being highly controllable and that can be used to mimic and simulate the static or
dynamic behavior of other more complex quantum systems. Quantum simulators
were proposed by Richard Feynman [20, 21] in 1985, to give particularly clean
access to different classes of Hamiltonians (some of which come from solid state
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physics, atomic physics, quantum optics or the theory of quantum information) and
thus represent almost ideal systems where to test important theoretical concepts
and observe quantum many-body effects.

The simplest way in which optical lattices can be created is to superimpose two
counter-propagating laser beams, whose interference causes a stationary optical
wave to be formed: the latter, in turn, determines a effective periodic potential
able to trap the atoms. Based on how many laser beams are used, 1D, 2D or
3D optically-generated periodic potentials can be obtained, the sites of which can
be effectively modeled as tight harmonic wells. The fundamental peculiarity of
these experimental setups is that the properties of the resulting periodic potential
(geometry and depth) are under the complete control of the experimentalists [36].
It is precisely from this last characteristic that the definition of "quantum simulator"
is gathered.

Weakly and strongly interacting regimes

Among the most important peculiarities of ultra-cold atom systems trapped in
optical lattices is the possibility of being able to generate and observe strongly
correlated quantum regimes (despite the fact that particles are in a ultralow density
state). Let’s recall, at this point, that a quantum many-body system in which
weak interactions are present, can be effectively described by a macroscopic wave
function. The temporal evolution of the latter is governed by an ad hoc modified
version of the famous Schrödinger equation, i.e. the Gross-Pitaevskii equation, in
which there is a nonlinear term that describes the interaction between particles.
On the other hand, in the event that strong interactions are present (with respect
to kinetic energy), the system cannot be described in terms of a simple single wave
function, since it is in an ultraquantistic and strongly correlated state. Not surpris-
ingly, this type of state is one of the most interesting and complicated to analyze,
representing, in fact, one of the major challenges of the Physics of Condensed Matter.

An example of such a transition from the weakly to the strongly interacting
regime is represented by the quantum phase transition from the Superfluid to
Mott-insulator phase, observed for the first time in 2002 by Bloch and his group
[28]. This transition can be easily described using the Bose-Hubbard Model [45]
and the relevant Hamiltonian:

H = −T
Ø
éi,jê

(âi
†âj + h.c.) + U

2
Ø

i

n̂i (n̂i − 1) (1.1)

The first part constitutes the kinetic energy term, which includes the tunneling
coefficient T between adjacent sites and the âi

† and âi operators that, respectively,
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create and destroy a particle in the i-th site. The second term, instead, is nothing
but the onsite repulsive energy term U and includes operator n̂i, which counts
the number of bosons at the i-th site. Based on which of the two is the dominant
energy term, we can deal with two different types of Ground State:

• if U
T

¹ 1 (weakly interacting regime), each atom is delocalized on the entire
lattice: we are therefore dealing with a Bose Gas in the Superfluid phase
characterized by phace coherence. To describe such a phase of matter we can
use a factorized macroscopic state whose components describe, at each site, the
local properties of bosons. On-site components are typically coherent states
implying that the number of atoms per well follows the Poisson Statistics;

• if U
T

º 1 (strongly interacting regime), the system is a state called the Mott
insulator: a phase of matter where bosons are trapped in single lattice sites and
that cannot be described in terms of a macroscopic factorized wavefunction.
In this case we are in the presence of a complete correlation in the particle
numbers per site, while phase-coherence is completely lost.

Since the first experimental observation of the Superfluid - Mott Insulator transition
[28], ultracold atoms have begun to acquire more and more importance in the
study of highly interacting quantum systems, to which we can relate problems
that are so complex that they cannot be solved in any other way. At the moment,
thanks to the ease with which they are controllable, ultra-cold atomic and molecular
systems are considered the best basis for studying several important problems of
Condensed-Matter Physics, Statistical Physics, High Energy Physics and Quantum
Chemistry [29, 6, 42].

1.1.4 Binary mixtures in optical lattices
The first experimental realization of a binary mixture in an optical lattice dates
back to 2008 and was documented by the Firenze group [11], which worked to
produce a degenerate mixture of 87Rb and 41K atoms in a 3D optical lattice. After
this event, a surprisingly broad scenario of physical phenomena related to bosonic
binary mixtures in optical lattices came out. Theoretically, bosonic binary mixtures
in optical lattices can be conveniently described by means of the two-species Bose-
Hubbard Hamiltonian [30], nothing more than a generalization of the single-species
Bose-Hubbard Hamiltonian previously introduced (1.1), which incorporates the
inter-species repulsion W between the two bosonic species:

H = 1
2Ua

Ø
i

n̂i (n̂i − 1) + 1
2Ub

Ø
i

m̂i (m̂i − 1) +W
Ø

i

m̂in̂i+ (1.2)

−Ta

Ø
éi,jê

(âi
†âj + h.c.) − Tb

Ø
éi,jê

(b̂i
†b̂j + h.c.)

6
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This Hamiltonian, as well as for the extended lattice case and for another series of
interesting problems, has also been used in the study of the mixtures in the two
simplest lattice cases: the two-well [19] potential and the three-well [61, 3] potential
with the ring geometry. In fact, a lot of attention has been focused on small bosonic
lattices since they provide a fertile ground to investigate the quantum-classical
correspondence and the role of nonlinear interactions.

7
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1.2 The Bose-Hubbard Model
As already mentioned, Hamiltonians (1.1) and (1.2) are respectively the Hamilto-
nian of the Bose-Hubbard Model and its generalization to the two-species case. This
model was created in order to provide a description of the physics of interacting
spinless bosons on a lattice. It can be seen as a variant of Hubbard model, which
belongs to that class of models of Solid State Physics that deal with describing
superconducting systems in an approximate way, as well as the movement of elec-
trons between the atoms of a crystalline solid. The term "Bose", in this case, was
introduced for the fact that the particles we are dealing with are bosons.

Firstly introduced by Gersch and Knollman [26] in 1963 in the context of granu-
lar superconductors, it became of great interest in the 1980s, after it was found to
capture the essence of the Superfluid-Mott insulator transition in a way that was
much more mathematically tractable than fermionic metal-insulator models [43,
27, 22]. Speaking of fermions, this model can also be generalized and applied to
Bose–Fermi mixtures, in which case the corresponding Hamiltonian is called the
Bose–Fermi–Hubbard Hamiltonian.

Now, in order to derive Eq. (1.1), let us start from the second-quatized Hamil-
tonian describing a Bose-Gas of interacting particles in the presence of external
trapping potentials:

H =
Ú
d3r

C
− ~2

2mψ̂†∇2ψ̂ +W (þr)ψ̂†ψ̂ + U0

2 (ψ̂†)2ψ̂2
D

(1.3)

where W (þr) = V (þr) + Vp(þr) is the sum of two contributions:

• V (þr) that is a confining harmonic potential

V (þr) = 1
2m

1
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
2

in which the frequencies ωx, ωy and ωz determine the spatial distribution of
the gas particle;

• Vp(þr) that is the periodic potential responsible for the occurrence of the local
minima.

Let us consider the 1D case. The potential Vp(þr) realized experimentally is
periodic and can be represented in the simple form

Vp(x) = 2v sin2
3
πx

a

4
8
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Figure 1.3: A schematic representation of the fragmentation in many space components
of the condensate in the lattice. Different heights of the wells correspond to different
values of the tunneling amplitude J.

where a is the distance between two adjacent potential wells, while v is the optical
lattice strength.

Since bosons tend to occupy the positions with the lowest possible energy (poten-
tial minima), then Vp(x) determines the fragmentation in many space components
of the condensate (see Fig. (1.3). So, bosons are trapped and distributed in a
periodic sequence of (local) potential wells whose minima are situated at xj = aj,
j = 1,2, ..., L.

The fragmentation of the condensate in M nanoscale subsystems (M is the
number of wells) formed by ∼ N

M
bosons (with N

M
¹ N) trapped in such potential

wells shows how the dominating physical process in the resulting many-well system
is the creation/destruction of bosons in each well tunneling T (often labeled with
J too) between adjacent wells takes place.
To describe such a system we are going to use the field picture where the second
quantization process allows one to embody the information that the system is
formed by many nanoscale components.

Before continuing, let’s assume periodic boundary conditions (PBC)

f(x+ L) = f(x)

where L = Ma. The Hamiltonian becomes:

H =
Ú L

0
dx

C
ψ̂†(x)

A
− ~2

2m
∂2

∂x2 + Vp(x)
B
ψ̂(x) + U0

2 (ψ̂†)2ψ̂2
D
S (1.4)

where
1
− ~2

2m
∂2

∂x2 + Vp(x)
2

= H0 and S is the transverse area of the torous. Further-
more, since we are dealing with a 1D domain U0 = 4π~2as

m
reduces to U0 = 4π~2as

mS
.

9
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1.2.1 Derivation of the BH model through the space-mode
approximation

Our goal now is to derive the field ψ. Since the system is at a temperature close to
absolute zero, we know that bosons occupy the lowest-energy level of the potential
wells localized at x = aj with j ∈ (1,M). Locally, one has:

Vp(x) = Vp [(x− aj) + aj] = 2 v sin2
5
π

a
(x− aj) + πj

6
=

= 2 v sin2
5
π

a
(x− aj)

6
Ä 2 v

C
π

a
(x− aj) − π3

6a3 (x− aj)3 + ...

D2

Ä

Ä 2 v π
2

a2 (x− aj)2

so, for x Ä aj, potential Vp reduces to a Harmonic-oscillator potential, then

H0 Ä − ~2

2m
d2

dx2 + mω2

2 (x− aj)2

with ω2 = 4π2v
ma2 . In the absence of interaction U0, at T Ä 0, the quantum states

describing bosons are those involving the minimum energy. Hence, these states are
the local Harmonic-oscillator Ground States:

Wj(x) Ä
32α
π

4 1
4

exp
5
−mω

2~ (x− aj)2
6

(1.5)

where we can easily visualize the Gaussian part exp
è
−mω

2~ (x− aj)2
é
. Now, if we

define the following variables
xj = aj

γ2 =
ó

2α
π

α = mω

2~
we can replace them in Eq. (1.5) in order to obtain a more readable expression

Wj(x) Ä γ exp [−α(x− xj)2] (1.6)

these are the so-called Wannier functions and satisfyC
− ~2

2m
d2

dx2 + mω2

2 (x− aj)2
D
Wj(x) = E0 Wj(x)

10
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with E0 = ~ω
2 , i.e. the GS Energy.

The other excited states are never involved due to the fact that no energy
is available which allows to create excited states at T = 0. The Space-Mode
Approximation consists in assuming the following field representation

ψ(x) Ä
Ø

j

ajWj(x)

meaning that a restricted basis of states Wj(x) (i.e. the local GSs) is sufficient to
describe the behavior of the system at sufficiently low T. They form a basis such
that

(Wj(x),Wü(x)) =
Ú L

0
dxW ∗

j (x)Wü(x) Ä δjü

with j, ü ∈ [1,M ]. We exploit the properties of functions Wj(x) to reduce H to
a simpler form depending only on bosonic modes aj and a†

j. Let us rewrite H as
H = H0 + U , where

H0 =
Ú L

0
dx ψ̂†(x)

A
− ~2

2m
∂2

∂x2 + Vp(x)
B
ψ̂(x) (1.7)

U = U0

2

Ú L

0
dx ˆψ † 2(x) ψ̂ 2(x) (1.8)

1. concerning Eq. (1.7) we find

H0 =
Ø

j

Ø
ü

a†
j aü

Ú L

0
dxW ∗

j (x)
A

− ~2

2m
∂2

∂x2 + Vp(x)
B
Wü(x) =

=
Ø

j

Ø
ü

a†
j aü

Ú L

0
dxW ∗

j (x)
CA

− ~2

2m
∂2

∂x2 + mω2

2 (x− aü)2
B

+

−mω2

2 (x− aü)2 + Vp(x)]Wü(x)

where we added and subtracted the Harmonic-oscillator potential. So, contin-
uing

H0 =
Ø

j

Ø
ü

a†
j aü

Ú L

0
dxW ∗

j (x)
C
E0 − mω2

2 (x− aü)2 + Vp(x)
D
Wü(x) =

=
Ø

j

Ø
ü

a†
j aü E0

Ú L

0
dxW ∗

j (x)Wü(x) +
Ø

j

Ø
ü

a†
j aü Kjü =

11
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= E0
Ø

ü

a†
ü aü +

Ø
j

Ø
ü

a†
j aü Kjü

with
Kjü =

Ú L

0
dxW ∗

j (x)
C
Vp(x) − mω2

2 (x− aü)2
D
Wü(x)

The resulting form of H0 is

H0 =
Ø

ü

(E0 +Kü, ü)a†
ü aü +

Ø
ü

a†
ü+1 aüKü+1, ü+

+
Ø

ü

a†
ü−1 aüKü−1, ü + ...

and it can be shown that

Kjü Ä v δjü − v e−α a2 (ü−j)2
2 (π2(j − ü)2 + (−1)j+ü) (1.9)

This means that in the case j = ü we have Kü,ü = 0 and, in the case we
consider two adjacent minima Kü+1,ü = Kü−1,ü. Moreover, we have that

|Ki,ü| ¹ |Kü+1,ü|

with i = ü± 2, ü± 3, .... The latter is due to the fact that the Gaussian term
in (1.9) becomes stronger and stronger as we get far from the "central well".
In conclusion, Hamiltonian H0 reduces to the form:

H0 = E0
Ø

ü

a†
ü aü − |Kü+1,ü|

Ø
ü

1
a†

ü+1 aü + a†
ü aü+1

2
+ negl. (1.10)

Now, noticing that a†
ü aü = n̂ü is nothing but the boson-number operator and

calling |Kü+1,ü| = T , i.e. the hopping amplitude (or tunneling amplitude), we
can write

H0 = E0
Ø

ü

n̂ü − T
Ø

ü

1
a†

ü+1 aü + a†
ü aü+1

2
(1.11)

where qü n̂ü represents the total boson number, while the second term rep-
resents the exchange of bosons between adjacent wells and is called hopping
term. In particular, considering wells ü and ü+ 1:1

a†
ü+1 aü + a†

ü aü+1
2

we can see how a boson is created in the state ü+ 1 and destroyed in ü, or how
it is created in ü and destroyed in ü + 1, resulting in a perfect Hamiltonian
Operator.

12
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Why tunneling? Because the effect that brings the boson from ü to ü+ 1
(or viceversa) is nothing but the Tunneling Effect.

2. Now let us consider the interaction term (1.8):

U = U0

2

Ú L

0
dx ˆψ † 2(x) ψ̂ 2(x) =

= U0

2

Ú L

0
dx
Ø

i

a†
i W

∗
i (x)

Ø
j

a†
j W

∗
j (x)

Ø
k

ak Wk(x)
Ø

l

al Wl(x) =

= U0

2
Ø

i

Ø
j

Ø
k

Ø
l

a†
i a

†
j ak al

Ú L

0
dxWi(x)Wj(x)Wk(x)Wl(x) Ä

Remembering that W is a Gaussian, so we have the main contribution for
i = j = k = l:

Ä U0

2
Ø

i

a†
i a

†
i ai ai

Ú L

0
dxW 4

i (x) Ä

Ä U0

2 K0
Ø

i

n̂i(n̂i − 1)

where
K0 =

Ú L

0
dxW 4

i (x) =
Ú L

0
dx γ4 e−4α (x−xj)2 =

γ4
ò
π

4α =

since γ2 =
ñ

2α
π

= 2α
π

ò
π

4α =
ò
α

π

So, let us now define U = U0
ñ

α
π
; the interaction term becomes

U = U

2
Ø

i

n̂i(n̂i − 1) (1.12)

This term is a local energy: it has no zero contribution only if n̂i ≥ 2. It
means that we must have at least two bosons in the well in order to have a
contribution from this term.

In conclusion, putting together Eq.s (1.11) and (1.12), the final form of H is:

H = E0
Ø

j

a†
j aj − T

Ø
ü

1
a†

ü+1 aü + a†
ü aü+1

2
+ U

2
Ø

i

n̂i(n̂i − 1) (1.13)

that is the so-called Bose-Hubbard Model Hamiltonian.
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1.2.2 The BH-Model Phase Diagram
The BH-Model has been hardly studied in the last 30 years owing to the considerable
interest raised by the well-known Superfluid - Mott Insulator (SF - MI) phase
transition characterizing the system at zero temperature. More recently, the
experimental realization of BECs and, in particular, the experimental success in
constructing 1D, 2D and 3D (optical) homogeneous lattices where condensed bosons
can be trapped, led to the experimental confirmation of the SF-MI transition.

Now, let us take a quite general form of the BH Hamiltonian, including a lattice
dimension d > 1 and the presence of external potentials

HBH = U

2
Ø

j

n̂j(n̂j − 1) +
Ø

i

vi n̂i − T
Ø
éi,jê

1
a†

iaj + a†
jai

2
(1.14)

where the latter represents a summation between nearest neighbours éi, jê, while
term q

i vi n̂i allows one to take into account the presence of an external potential
V (þr) (e.g. the parabolic potential confining the condensate) by setting vi = V (þri),
i being the site at position þri.

To study the zero-temperature phase diagram of this model one usually refers
to the free energy operator F̂ = Ĥ − µN̂ , where µ is the chemical potential. In
particular, it will be the ratio between the latter and U plus the ratio between T
and U to be the parameters on the axes of our phase diagram (see Fig. (1.4)).

When these parameters fall within one of the gray domains in the figure (called
lobes) the system is in the Mott-Insulator phase. In this state we have the same
integer number n of bosons at each site (integer filling). Notice that the total boson
number is given in this case by N = M n, where M is the number of lattice sites.
A finite energy cost is requested to add (subtract) a single boson to (from) any
lattice site. Thus, this phase entails zero compressibility, since, at each site, the
number of bosons is frozen. In this case, the dominant contribution to the Ground
State is represented by the simple Fock State

|þnê = |n, n, ..., nê (1.15)

while other smaller contributions can be evaluated, for example, in a perturbative
way. Instead, outside of the lobes, the fluid has a Superfluid character since it
becomes compressible. The filling is no more integer and the expectation value
én̂iê assumes (almost) continuous values.
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Figure 1.4: BH-Model Phase Diagram. The grey domains (lobes) represent the portions
of the plane where the system is in the MI-phase. For each lobe, the filling is specified.
Outside the domains, the system is in the SF-regime.

1.2.3 The Coherent-State Picture of the Bose-Hubbard
Model

Let us consider the non-linear BH-Hamiltonian in a 1-dimensional lattice

HBH = U

2
Ø

j

n̂j(n̂j − 1) − T
Ø
éi,jê

1
a†

iaj + a†
jai

2
(1.16)

where term E0
q

j a
†
j aj has been omitted since it is a conserved quantity. Once

we have this Hamiltonian, we can proceed in deriving its effective dynamics by
exploiting the method based on the Time-dependent Variational Principle (TDVP)
[2, 1] .

The TDVP method

In order to see how this method works, let us begin with the Schrödinger problem

i ~ ∂t |φtê = Ĥ |φtê

which we can rewrite as
(i ~ ∂t − Ĥ) |φtê = 0 (1.17)
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What we have in round brackets in Eq. (1.17) is nothing more than an operator:
we can therefore calculate its expectation value, that is

éφt|i ~ ∂t − Ĥ|φtê = 0. (1.18)
This new equation is certainly satisfied by the solutions of the original Schrödinger
problem, which are, moreover, the best approximation we can obtain. The latter
can be shown by the TDVP.
Let us set |φê = ei S

~ |Zê wher |Zê is a trial state that depends on the variational
parameters z1, z2, ..., zM . The next step will be to replace |φê in Eq. (1.18),
obtaining

éZ|e−i S
~

3
i ~
i

~
ei S

~ S Í|Zê + i ~ei S
~ ∂t|Zê − ei S

~ Ĥ|Zê
4

=

= −ṠéZ|Zê + i ~ éZ|∂t|Zê − éZ|Ĥ|Zê = 0
Since éZ|Zê = 1, this implies that

Ṡ = i ~éZ|∂t|Zê − éZ|Ĥ|Zê

So
S =

Ú t2

t1
dt
1
~éZ|∂t|Zê − éZ|Ĥ|Zê

2
The term between round brakets can be seen as an effective Lagrangian L(Z) =
L(z1, z2, ..., z3). This means that S has the dimension of an Action, while éZ|Ĥ|Zê
can be interpreted as an effective Hamiltonian. So, owing to this semiclassical trick
we will be able to find the dynamical evolution of the system.

Coherent-State Picture and TDVP method

For the HBH the trial state is assumed to be [40, 48]

|φê = ei S
~ |Zê with |Zê =

Ù
i

|ziê

where |ziê are the Weyl-Heisenberg (or Harmonic Oscillator) Coherent States such
that:

• ai|ziê = zi|ziê;

• given ∆x =
ñ

éx2ê − éxê2 and ∆p =
ñ

ép2ê − épê2, we have

∆x∆p = ~
2

i.e. they represent the minimum of the Heisenberg Uncertainty Principle.
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Such Coherent States have the form

|ziê = e− |zi|
2

2

∞Ø
m=0

zm
i√
m!

|mê

but can be expressed in the equivalent form

|ziê = e− |zi|
2

2 ezi a†i |0ê (1.19)

well reproducing the initial definition

|ziê = e− |zi|
2

2

∞Ø
m=0

zm
i

m! (a
†
i )m|0ê = e− |zi|

2
2

∞Ø
m=0

zm
i

m!
√
m! |0ê =

= e− |zi|
2

2

∞Ø
m=0

zm
i√
m!

|mê

Notice that éφ|φê = éZ|Zê = r
iézi|ziê = 1 since ézi|ziê = 1 at each lattice

site. Concerning the physical meaning of variables zm, the so-called local order
parameters, we observe that definitions

zm = ézm|am|zmê z∗
m = ézm|a†

m|zmê (1.20)

lead to
nm = ézm|nm|zmê Ä |zm|2

ei θ m = zmñ
|zm|2

where the latter is just the exponential form of zm as complex value. Thus, Eqs.
(1.20) provide essential informations about the system in that, at each lattice site,
both the local average boson number nm and the local phase θm can be evinced
from zm (and z∗

m).
From the Schrödinger equation one obtains

S =
Ú t

0
dτ (i ~éZ|∂τ |Zê − H(Z)) (1.21)

where H(Z) = éZ|H|Zê.
It can be shown, exploiting definition (1.19), that

éZ|∂τ |Zê = 1
2(żi z

∗
i − ż∗

i zi) (1.22)

éZ|H|Zê = U

2
Ø

j

|zj|4 − T
Ø

j

(zj+1 z
∗
j + z∗

j+1 zj) (1.23)
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The latter is nothing but a semiclassical form of the initial Second Quantized
Hamiltonian. Instead, for what concerns the effective Lagrangian, we have

L = i ~
2
Ø

i

(żi z
∗
i − ż∗

i zi) − H(Z) (1.24)

Then, from the two corresponding Lagrange equations

d

dt

∂L
∂ż∗

i

− ∂L
z∗

i

= 0

d

dt

∂L
∂żi

− ∂L
zi

= 0

we can obtain, respectively

i ~ żi = U |zi|2zi − T (zi+1 + zi−1) (1.25)

i ~ ż∗
i = U |zi|2z∗

i − T (z∗
i+1 + z∗

i−1) (1.26)

which are one the h.c. of the other.
The new set of equations shows that the initial Schrödinger problem has been
reformulated in a different semiclassical form, in which physical information about
the system evolution is embodied in the dynamical variables zm, the coherent-state
parameters.
So, let us take the first of them (Eq. (1.25)) and call it the discrete non-linear
Schrödinger equation.
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Chapter 2

Phase Separation in L = 2, 3
Ring Lattices

“From a certain temperature on, the molecules ’condense’ without attractive forces;
that is, they accumulate at zero velocity. The theory is pretty, but is there some

truth in it.”
Albert Einstein

The purpose of this thesis is to investigate the case of the binary mixture in a
lattice with 4 potential wells arranged in a ring. However, it is advisable, before
going into the analysis of the latter, to recall the results obtained in the simplest
cases (previously studied). As already mentioned in the previous chapter, the
simplest cases we are referring to are those of the dimer (2 wells) and the trimer (3
wells). It is important to consider that, while the semiclassical approaches to this
kind of systems are generally not problematic, their study at the purely quantum
level remains a considerably difficult task and the diagonalization of quantum
Hamiltonians mainly relies on the use of numerical techniques.
To circumvent these difficulties, an effective analytical method has been developed,
which consists in using continuous variables (CVs) to describe the dynamics of
bosonic states at low energies. For completeness, we are going to revisit this method
in this chapter.
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2.1 The dimer
Bosons trapped in two potential wells can be described in a good way by the
two-mode BH Hamiltonian

Ha = Ua

2 (a†
L a

†
L aL aL + a†

R a
†
R aR aR) − Ta(a†

LaR + a†
RaL) (2.1)

where L refers to the left well, while R to the right one. The boson operators
aL, a

†
L, aR, a

†
R satisfy the standard commutator [ak, a

†
k] = 1 with k = L,R. Pa-

rameters Ua and Ta are the boson-boson interaction and the hopping amplitude,
respectively.

Therefore, if we are dealing with two species in a 2-well lattice we have to double
the bosonic modes and introduce also bL, b

†
L, bR, b

†
R for species B, saying that the

previous ones are for species A. In this case the Hamiltonian thus becomes

H = Ha +Hb +W (a†
L aL b

†
L bL + a†

R aR b
†
R bR) (2.2)

where Ha and Hb are the Hamiltonian associated to the single species A and B,
respectively. For what concerns W , instead, it constitutes the the inter-species
interaction.
The total number of bosons of each species is a conserved quantity (since [H,N ] =
[H,M ] = 0), so our system features two dynamical constraints

N = nL + nR = a†
L aL + a†

R aR (2.3)

M = mL +mR = b†
L bL + b†

R bR (2.4)
where n and m denote both the boson numbers of the two species and their number
operators.

2.1.1 The Continuous-Variable Picture
When dealing with this kind of bosonic models a useful description can be obtained
by observing that physical quantities depending on the local populations ni and
mi (the eigenvalues of number operators n̂i = a†

i ai and m̂i = b†
i bi, with i = L,R)

can be reformulated in terms of continuous variables xi = ni

N
representing local

densities [59, 23, 34]. Notice that variable xi := ni/N represents a normalized
boson population and is regarded as continuous in view of the fact that the total
number of bosons N is assumed to be large.
Thus, for total boson number N = q

i ni large enough, Fock states

|þnê = |n1, n2, ..., nLê ≡ |x1, x2, ..., xLê
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can be interpreted as functions of variables xi, and creation and destruction
processes ni → ni ± 1 correspond to small variations of the type

|x1, ..., xi ± Ô, ..., xLê

where Ô = 1
N

¹ 1.
Such an approach, in addition to simplify the energy-eigenvalue problem associated
to an Hamiltonian like the one in Eq. (2.2), also leads to a new effective Hamiltonian
written as a function of coordinates xi and of the corresponding generalized momenta
[49]. In particular, if we took a general multimode Hamiltonian Ĥ, we can expand
up to the second order the quantity Ĥ|Eê in the corresponding eigenvalue problem

Ĥ|Eê = E|Eê

and rewrite the latter in the CVP form

(−D + V )ψE(þx) = E ψE(þx) (2.5)

whereD is a generalized Laplacian, while V is an effective potential. Among the two,
we are going to focus on the latter, that can be used to obtain meaningful information
about the Ground-State structure as a function of the model parameters.
Notice that, in this picture, constraints such as (2.3) and (2.4) read respectively

2Ø
i=1

xi = 1 (2.6)

2Ø
i=1

yi = 1 (2.7)

At this point, the minimum-energy configurations can be obtained by imposing
the stationarity conditions for the potential V , expressed by equations ∂ V

∂ x
= 0 and

∂ V
∂ y

= 0.

What has been done in the case of the dimer was the evaluation of the solutions
(þx, þy) in the CVP approach, followed by the comparison of the obtained results with
the exact Ground-State calculated numerically [19]. In particular, there has been a
focus on the twin-species case: i.e. the case in which we have equal intra-species
interactions Ua = Ub = U , equal hopping amplitudes Ta = Tb = T and the same
number of bosons of both types N = M (see Fig. 2.1).

For what concerns the interaction situation, it has been considered the weakly
repulsive interaction regime, the strongly repulsive one and even the attractive
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Figure 2.1: Probability densities of the ground state for U/T = 0.01, N = M = 30,
and (from top to bottom) W/T = 0.001, 0.085, 0.093, 0.170. Right column: probability
density obtained within the CV method. Left column: probability amplitudes for the
exact ground state calculated numerically.
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interaction regime (W assumed negative values). It has been observed a definite
macroscopic dynamical phase transition to states with localized populations as the
inter-species repulsion W increased, confirmed by the numerical simulations, and a
a behavior with mirror symmetry in the case of attractive interaction.
In particular, Fig. 2.2 shows how the first fifteen energy leves feature a perfect
symmetry between positive and negative values of the inter-species interaction.

Figure 2.2: First 15 energy levels as a function of interspecies interaction W for
intraspecies interaction U = 0.01 (energy units in J ) and total boson number N = 60
with N = M . The plots compare numerical results (continuous lines) with the analytical
eigenvalues (dotted lines) computed within the CV method.
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2.1.2 The Mixing-Supermixing Phase Diagram in the large
populations limit

Particular attention should be paid to the attractive case (W < 0) and the related
phase diagram [55]. In fact, previous analysis has highlighted the presence of a
common phase diagram for systems featuring L = 2 (dimer), L = 3 (trimer), and L
= 4 (tetramer, i.e. the case of our interest). Before continuing, however, it must
be specified that in this case the analysis was carried out considering heteronuclear
species, i.e. the more general case in which Ua /= Ub and N /= M . Moreover, we
are dealing with the large-populations limit, that is when Ta

UaN
→ 0 and Tb

UbM
→ 0.

The latter can be regarded as a sort of thermodynamic limit according to the
statistical-mechanical approach discussed in [49].

Furthermore, from now on, we are going to recast all the system parameters in
only two effective ones, containing all the information about the differences between
the two heteronuclear species:

α = W√
UaUb

(2.8)

β = M

N

ó
Ub

Ua

(2.9)

The former constitutes the ratio between the inter-species attractive coupling and
the (geometric average of) the intra-species repulsions, while the latter corresponds
to the degree of asymmetry between species A and species B condensates. The
introduction of these new effective parameters is particularly useful, since all the
important quantities concerning the system can be re-expressed as a function of
them only.

So, the attractive-case phase diagram is illustrated in Fig. (2.3) and includes three
phases.
1. A completely Mixed phase (labelled with "M"), delimited by α > −1. The

two species are uniformly distributed among the L wells and feature a perfect
mixing;

2. A Partially Localized phase (labelled with "PL"), delimited by α < −1 and
β < − 1

α
. It is characterized by the fact that the minority species (say B)

conglomerates in a soliton (that is defined as a self-reinforcing wave packet
that maintains its shape while it propagates at a constant velocity) , while
species A occupy all the available wells, even if in a non-uniform way;

3. A Super-Mixed phase (labelled with "SM"), identified by β > − 1
α
. In this

phase the two species conglomerate in the same well (full localization), giving
rise to a single soliton. The other wells remain empty.
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Figure 2.3: Phase diagram of a bosonic binary mixture characterized by attractive
inter-species interaction and confined in a generic L-site potential. Phase M is the uniform
and mixed one, phase PL features a soliton just in the minority species, while phase SM
exhibits the presence of a supermixed soliton. Red dashed (solid) line corresponds to a
phase transition where the first (second) derivative of the effective potential of the CVP,
associated to this case, with respect to α is discontinuous.

Thus, these three systems (dimer, trimer and tetramer) have a common path
which, as the control parameters α and β vary, leads from the uniform and mixed
configuration (phase M) to the supermixed soliton (phase SM), passing through
the intermediate phase (phase PL), which features partial localization. The latter,
in particular, gives us the first hint of the soliton generated by the localizing
effect of the inter-species attractive coupling. For this reason, we assume that the
mechanism of the soliton formation is the same regardless of the value of L as
well as the explicit expression of the GS configurations (þx, þy) and of the effective
potential V with respect to α and β in the three phases. Furthermore, nothing
prevents us from thinking that these expressions can also be valid for cases with
L ≥ 5. To reinforce this hypothesis, one could observe that, for any L, V = V (α, β)
is continuous everywhere in the half-plane {(α, β) : α ≤ 0 and 0 ≤ β ≤ 1} and its
derivatives present the same discontinuities at the same lines.
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2.1.3 The Mixing-Demixing Phase Diagram in the large
populations limit

As we have seen in Sec. 2.1.1, the repulsive interaction regime has been fully
explored, but just in the case of twin species. The case of the heteronuclear species
in the large populations limit has never been analyzed for what concerns the dimer.
So, we are going to discover this eventuality, trying to produce also this time an
outlined phase diagram, just as it has already been done in the attractive regime.

In order to do so, we are going to consider a different approach with respect to
the CVP. In fact, as we have seen in Chapter 1, when one deals with a multimode
boson model, he can always re-express its dynamics in terms of discrete nonlinear
Schrödinger equations. Thus, let us introduce the dimer Hamiltonian derived by
combining the TDVP with the coherent-state picture of the BH model:

H = Ua

2

 2Ø
j=1

|aj|4
+ Ub

2

 2Ø
j=1

|bj|4
+W

 2Ø
j=1

|aj|2|bj|2
 (2.10)

where the hopping amplitudes Ta and Tb have been set equal to 0. Following the
Coherent-State Picture, Hamiltonian (2.10) produces the equations of motions
given by

i~ȧj = Ua|aj|2aj +W |bj|2aj

i~ḃj = Ub|bj|2bj +W |aj|2bj

for j = 1,2. Dynamical constraints (2.3) and (2.4) can be rewritten as

N = n1 + n2 = |a1|2 + |a2|2

M = m1 +m2 = |b1|2 + |b2|2

The ground state belongs to the class of collective-frequency solutions (these can
be shown to essentially represent the fixed points of the dynamical equations when
the dynamical constraints are taken into account). By setting

aj(t) = aje
−iµat

~

bj(t) = bje
−iµbt

~

we get
µaaj = Ua|aj|2aj +W |bj|2aj (2.11)

µbbj = Ub|bj|2bj +W |aj|2bj (2.12)
for j = 1,2.
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Uniform Solution

We start by simply assuming that aj /= 0 and bj /= 0. Then the equations reduce to

µa = Ua|a1|2 +W |b1|2 , µa = Ua|a2|2 +W |b2|2

µb = Ub|b1|2 +W |a1|2 , µb = Ub|b2|2 +W |a2|2

which we rewrite in the form

µa = Uan1 +Wm1 , µa = Uan2 +Wm2 (2.13)

µb = Ubm1 +Wn1 , µb = Ubm2 +Wn2 (2.14)

since |aj|2 = nj and |bj|2 = mj. Now, combining Eqs. (2.13) and (2.14) with
the dynamical constraints, we get

n1 = n2 = µaUb − µbW

UaUb −W 2 (2.15)

m1 = m2 = µbUa − µaW

UaUb −W 2 (2.16)

showing how this solution features twin populations. Thanks to the constraints
N = n1 + n2 and M = m1 + m2 we discover that n1 = n2 = N/2 and m1 =
m2 = M/2. By replacing these values in equations (2.13) and (2.14) we are able to
determine the values of µa and µb

µa = Ua
N

2 +W
M

2

µb = Ub
M

2 +W
N

2
The substitution of the expressions for µa and µb in (2.15) and (2.16) further
validate the above results giving, as expected

nj = µaUb − µbW

UaUb −W 2 = 1
2(UaUb −W 2)(Ub(UaN +WM) −W (UbM +WN)) = N

2

mj = µbUa − µaW

UaUb −W 2 = 1
2(UaUb −W 2)(Ua(UbM +WN) −W (UaN +WM)) = M

2
for j = 1,2.
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Solution with partial separation

In this case we assume a1, a2, b2 /= 0 and b1 = 0. Then we cannot simplify the
common factors aj and bj occurring in the equations (2.11) and (2.12). However,
by setting b1 = 0 these reduce to

µaa1 = Ua|a1|2a1 , µaa2 = Ua|a2|2a2 +W |b2|2a2

0 = 0 , µbb2 = Ub|b2|2b2 +W |a2|2b2

showing how only three equations determine the solution. The equations that
survive can be reduced to

µa = Uan1 (2.17)

µa = Uan2 +Wm2 (2.18)

µb = Ubm2 +Wn2 (2.19)

This example shows how new solutions can emerge by considering the original
version of the equation for aj and bj and introducing the on-site depletion condition
b1 = 0 (other four solutions can be found with this approach, changing the species
label or the site one). Let us determine its explicit form. Since m1 = 0 then
M = m1 +m2 = m2 , equations (2.17), (2.18) and (2.19) become

µa = Uan1 (2.20)

µa = Uan2 +WM (2.21)

µb = UbM +Wn2 (2.22)

Thanks to the constraint N = n1 + n2, the first two equations give

Uan1 = Uan2 +WM → Uan1 = Ua(N − n1) +WM → n1 = N

2 + WM

2Ua

Then n2, µa and µb are easily found to be

n2 = N − n1 = N

2 − WM

2Ua

µa = NUa −WM

2
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µb = NW

2 +MUb

A
1 − W 2

2UaUb

B

Now, introducing also in this case the effective dimensionless parameters (2.8) and
(2.9), we get

n1 = N

2 (1 + αβ) (2.23)

n2 = N

2 (1 − αβ) (2.24)

and
µa = NUa

2 (1 + αβ) (2.25)

µb = MUb

A
α

2β + 1 − α2

2

B
(2.26)

Interestingly, due to the fact that necessarily n2 ≥ 0, then the expression for n2 is
valid only for αβ ≤ 1, i.e. for β ≤ 1

α
.

Solution with complete separation

In this case we assume a1, b2 /= 0 and a2 = b1 = 0. Equations (2.11) and (2.12)
reduce to

µaa1 = Ua|a1|2a1 , 0 = 0

0 = 0 , µbb2 = Ub|b2|2b2

The solution is trivial. The two constraints entail

n1 = N, m2 = M in addition to n2 = m1 = 0

and one has µa = UaN and µb = UbM . Interestingly, for β →
1

1
α

2−
, the population

formulas (2.23) and (2.24) give

n1 = N

2 (1 + αβ) = 1 (2.27)

n2 = N

2 (1 − αβ) = 0 (2.28)

which perfectly match the solution featuring complete space separation.
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Energy evaluation

Now that the results associated with the various configurations have been found,
we can proceed to calculate the value of the Hamiltonian (2.10) as a function of
these solutions. We will then proceed to compare these values (also taking into
consideration the validity ranges of the solutions on the plane (α, β)), in order to
define where the found configurations actually minimize the energy. Let us start
from the uniform configuration; the Hamiltonian evaluated in this case reads

H1

3
N

2 ,
N

2 ,
M

2 ,
M

2

4
= N2Ua

4 + M2Ub

4 + MNW

2 (2.29)

The latter can be rewritten as a function of α and β only. Indeed, collecting the
factor N2Ua, we get

H1 = N2Ua

A
1
4 + 1

4
M2Ub

N2Ua

+ 1
2
MW

NUa

B

where we can recognize respectively

M2Ub

N2Ua

= β2

MW

NUa

= αβ

So, Eq. (2.29) becomes
H1 = 1

4(1 + β2 + 2αβ) (2.30)

where the overall factor N2Ua has been omitted since it is positive for sure and, so,
will not affect the sign of H1.
Similarly, switching to the energy of the solution with partial delocalization, one
can find

H2

31
2 N (αβ + 1), 1

2 N (1 − αβ), 0, M
4

= (2.31)

1
4
1
N2

1
α2β2 + 1

2
Ua + 2M (MUb +NW (1 − αβ))

2
that can be rewritten in term of α and β as

H2 = 1
4
1
−α2β2 + 2αβ + 2β2 + 1

2
(2.32)

Finally, in the fully demixed phase we obtain

H3(N, 0, 0, M) = N2Ua

2 + M2Ub

2 (2.33)
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that, expressed as a function of α and β, becomes

H3 = 1
2(1 + β2) (2.34)

At this point, comparing the results we found, we are able to identify the positions
of the three phases on the (α, β) plane and find, in such a way, the Mixing-Demixing
Phase Diagram of the dimer (see Fig. 2.4)

1

2

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

α

β

Phase Diagram

Figure 2.4: The Mixing-Demixing Phase Diagram of a binary mixture in a dimer.
Each of the three phases corresponds to a different functional relationship between the
minimum-energy configuration and the effective model parameters α and β. Each phase
has been labelled with the same number used to label the Hamiltonian in the relevant
configuration.

Let us examine how such phases are delimited:

1. Phase 1 (fully mixed) is delimited by α < 1 and it is characterized by a
uniform distribution of the two species among the two wells;
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2. Phase 2 (partially demixed) is delimited by α > 1 and β < 1
α
. In this case,

the minority species (say B) occupy a single well, while the other one (say A)
spreads in both wells, but in different proportion;

3. Phase 3 (fully demixed) is delimited by β > 1
α
. In this case the two species

are completely delocalized: the first in a well and the second in the other well.

It is worth noticing that, for β = 1, that corresponds to the twin species case,
phase 2 (the one characterized by partial demixing) reduces to a single point, in
perfect agreement for what was found in previous works [19]. It is the increasing
asymmetry between the two condensates that lead the creation of an intermediate
phase and its subsequent enlargement as β decreases.
Moreover, we can notice also that this phase diagram is the mirror image of the
one in Fig. (2.3). Not surprisingly, we had already mentioned the mirror simmetry
between the energy levels relevant to positive and negative values of the inter-species
interaction W (so also of α), so we could expect this result. However, even if the
attractive-case phase diagram was valid for L = 2, 3, 4, the one we have just found
is exclusively related to the dimer and, as we will see, the repulsive interaction
regime brings with it more and more unexpected and less trivial phenomena as L
increases.

2.2 The trimer
Passing to the case of the trimer (three-well potential equipped with PBC), obvi-
ously we are going to consider directly the inter-species repulsive regime (W > 0)
since the attractive-regime phase diagram (2.3) is valid also for L = 3. At first,
the study of phase-separation mechanism has been extended to the ring-trimer
geometry only in the simple case of twin species [61], i.e. species featuring the same
Hopping amplitude T , the same intra-species interaction U , and the same number
of atoms N . Despite its simplicity, the model that was developed had already
shown a non-trivial phenomenology, marked by the presence of an unexpected
intermediate phase which is in between a fully mixed and a completely demixed
phase. After that, steps forward have been made by introducing asymmetries
between species A and species B in the system, i.e. considering different numbers
of particles N /= M , different on-site interactions Ua /= Ub and different Hopping
parameters Ta /= Tb.

The system, also in this case, can be described by the Bose-Hubbard Hamiltonian

H = Ua

2

3Ø
j=1

nj (nj − 1) + Ub

2

3Ø
j=1

mj (mj − 1) +W
3Ø

j=1
nj mj + (2.35)

32



Phase Separation in L = 2, 3 Ring Lattices

−Ta

3Ø
j=1

(a†
j+1 aj + a†

j aj+1) − Tb

3Ø
j=1

(b†
j+1 bj + b†

j bj+1)

where operators aj, a
†
j, bj, b

†
j destroy and create bosons of species A or B, respec-

tively, in site j ∈ [1,2,3]. The bosonic character of these operators, as we have
already seen in the case of the dimer, is enforced by standard commutation relations,
i.e.

[ai, a
†
j] = δij = [bi, b

†
j]

[ai, b
†
j] = 0

After introducing number operators nj = a†
jaj and mj = b†

jbj, one can observe
that the total numbers of bosons of each species (N = q

j nj and M = q
j mj

respectively) constitute two independent conserved quantities, namely [N,H] =
[M,H] = 0. Also in this case, has been exploited the CVP method, resorting to
the replacement of the inherently discrete quantum numbers associated to the
Fock-state basis with continuous variables. As we observed in subsection 2.1.1, this
semi-classical approximation scheme allows one to derive an effective semi-classical
Hamiltonian Heff which well reproduces the low-energy physics of the original
quantum model. As we have already seen, for the search of the GS we need only
one of the two elements that make up Heff : the effective potential V , that in the
case of the trimer reads

V = −2NTa (√x1 x2 + √
x2 x3 + √

x3 x1) − 2MTb (√y1 y2 + √
y2 y3 + √

y3 y1) +

+UaN
2

2 (x2
1 +x2

2 +x2
3) + UbM

2

2 (y2
1 + y2

2 + y2
3) +WMN(x1 y1 +x2 y2 +x3 y3) (2.36)

For what concerns the two constraints, in this approach they become
3Ø

j=1
xj = 1 (2.37)

3Ø
j=1

yj = 1. (2.38)

We discover that, once again, the Ground-State properties of a bosonic binary
mixture in a L-ring lattice (in this case with L = 3) can be conveniently represented
by means of a two-dimensional phase diagram which is, in turn, spanned by the
two specific effective variables α and β, representing functions of the original-model
parameters (see Eqs. (2.8) and (2.9)). As usual, each phase features a characteristic
boson-population distribution, which results in a different degree of mixing and in
a different expression of the GS energy.
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2.2.1 Phase Diagram in the large population limit
Placing ourselves within the limit of large population, i.e. considering Ta

UaN
→ 0 and

Tb

UbM
→ 0 (so we can regard the hopping amplitudes as negligible), four well-defined

phases come to light (see Fig. (2.5)). More specifically, in this limit the effective
potential (2.36) reduces to

V = UaN
2

2 (x2
1+x2

2+x2
3)+UbM

2

2 (y2
1 +y2

2 +y2
3)+WMN(x1 y1+x2 y2+x3 y3) (2.39)

that can be rescaled as

V = 1
2(x2

1 + x2
2 + x2

3) + UbM
2

2UaN2 (y2
1 + y2

2 + y2
3) + WM

UaN
(x1 y1 + x2 y2 + x3 y3). (2.40)

The last expression can be further simplified if one notices that

UbM
2

UaN2 = β2

WM

UaN
= αβ.

Thus, finally, we obtain

V = 1
2(x2

1 + x2
2 + x2

3) + β2

2 (y2
1 + y2

2 + y2
3) + αβ(x1 y1 + x2 y2 + x3 y3) (2.41)

In each phase, the minimum-energy configuration is the one that minimizes
effective potential (2.41). The latter has been found by means of an exhaustive
exploration of the polytope-like domain of such function (for a clear explanation of
how this method works see [61]) and can be presented as:

• Phase 1: (colored in blue) is characterized by a uniform distribution among
the three wells, i.e. xj = yj = 1/3 for j = 1,2,3. In this phase, being α < 1,
the inter-species repulsion is too small to cause spatial separation;

• Phase 2: (colored in orange) is delimited by 1 < α < 2β. It occurs for
intermediate values of α and not-too asymmetric species. In this region, one
has complete demixing in two wells and mixing in the remaining one;

• Phase 3: (colored in purple) is delimited by 1
2α
< β < α

2 . It occurs for high
values of α and not-too asymmetric species. The characteristic of this phase is
that one species clots in one site, while the other spreads the remaining two,
causing the complete demixing of the two condensates;
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Figure 2.5: Phase diagram of a binary mixture in a ring trimer. Each of the four
phases is related to a different functional relationship between the minimum-energy
configuration and effective model parameters α and β. This behaviour has a direct
impact on the mixing properties of the system and on its GS energy. Red dashed (solid)
line represents a mixing-demixing transition across which the components xj and yj of
the minimum-energy configuration feature a jump discontinuity (are continuous). The
plot has been obtained by means of a fully-analytic minimization of potential (2.41)
under the constraints (2.37) and (2.38).

• Phase 4: (colored in green) is delimited by α > 1 and β < 1
2α
. It occurs for

high values of α and sufficiently asymmetric species. The characteristic of this
phase is that one species clots in one site (the one in the minority), while the
other spreads in all three sites, even if in different proportions.

Concerning phases 2, 3 and 4, we remark that, due to the Z3 symmetry of the
system, they are not unique and that other isoenergetic configurations can be
obtained by cyclic permutations of site indexes. The nature of the mixing-demixing
transitions has been highlighted in diagram (2.5) with red dashed lines in the
case of jump discontinuities, while with solid red lines in the case of continuous
transitions.

35



Phase Separation in L = 2, 3 Ring Lattices

2.2.2 Phases and Degree of Mixing
A good indicator for the investigation of the criticalities of the system, without
resorting to the representation of the overall minimizing configuration (þx, þy), turned
out to be the Entropy of Mixing. The latter is able to quantify the degree of mixing
of two different species in discretized domains. At first, it was introduced in the
context of macromolecular simulations [10], while recently it has been introduced
in the world of ultracold atoms in order to investigate the link between chaotic
dynamical regimes and mixing properties of a bosonic binary mixture in a ring
trimer [61].

Therefore, given a certain minimum-energy configuration, the Mixing Entropy
associated with it is defined as

Smix = −1
2

3Ø
j=1

A
xj ln xj

xj + yj

+ yj ln yj

xj + yj

B
(2.42)

Figure 2.6: Entropy of mixing, Smix, in the four phases. Phase 1 (in blue) features
perfect mixing and Smix takes the biggest possible value, i.e. log 2 ≈ 0.69. Conversely,
phase 3 (in purple) features perfect demixing and Smix is therefore zero.

As we can see in Fig. (2.6), Smix is zero in phase 3 (complete demixing) while
achieves the maximum possible value, log 2 ≈ 0.69 in phase 1 (perfect mixing).
It is in this figure of Smix, plotted as a function of model parameters α and β,
that all the criticalities exhibited by the minimum-energy configuration are clearly
visible; in fact, it is discontinuous at transition 1–2 and 1–3 while it is continuous at
transitions 2–3 (apart from the special case β = 1) and 3–4. The special case is due
to the fact that, in the case of perfectly symmetric species, β = 1, the system gains
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an additional symmetry (consisting in the interchangeability of species’ labels in Eq.
(2.42) and a further discontinuity at transition 2–3 appears. The twin-species limit,
widely discussed in [61], therefore features a qualitatively different critical behavior.
For all these reason, it constitutes a valid indicator to capture the occurrence of
mixing-demixing transitions.

Such an indicator can also be used to investigate the effects of moving away
from the limit of large populations, i.e. when one goes to consider ratios Ta

UaN
and

Tb

UbM
as finite. This is equivalent to deal with systems with limited numbers of

atoms and featuring non-vanishing hopping terms. In this regime, all the phases
previously found are still recognizable, even if they get hazy and deformed.

The effects of non-negligible hopping terms can be summarized as follows:

• The minimum-energy configuration (þx, þy), regarded as a function of model
parameters α ∈ (0, 3) and β ∈ (0,1), is continuous and, consequently, so is the
entropy Smix (comparing Figs (2.6) and (2.7), one can notice that the jump
discontinuities are replaced by smooth junctions);

• The completely-mixed phase is favored by the presence of non-negligible
hopping amplitudes, its boundary being given by the inequality

α <

ó3
1 + 9

2
Ta

UaN

43
1 + 9

2
Tb

UbM

4
(2.43)

The latter corresponds to the condition under which the Hessian matrix
associated to effective potential (2.41) (and evaluated for xj = yj = 1/3, with
j = 1, 2, 3) is positive definite. Moving away from the large-populations limit,
the right-hand side of Eq. (2.43) rises above the value 1, thus determining
an enlargement of phase 1 at the expenses of the phases next to it (see the
expansion of the blue region in Fig. (2.7) moving from the panel at left to the
panel at right);

• As one can intuitively imagine, the perfectly demixed phase is hindered by
the presence of hopping processes between the wells and therefore tends to
occur for higher values of α (see the constriction of the purple region in Fig.
(2.7) moving from the left panel to the right panel);

• Remarkably, increasing the hopping amplitudes, phase 4 not only enlarges, but
overruns the β > 1/2 region, squashing and shrinking phases 2 and 3 (moving
from the left to the right panel of Fig. (2.7), one can see that the green phase
expands at the expenses of the regions colored in purple and orange).
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Phase Separation in L = 2, 3 Ring Lattices

Figure 2.7: Mixing Entropy associated to the confgurations (þx, þy) which minimize effec-
tive potential (2.41) sweeping model parameters α and β. The following values/intervals
have been chosen: Ua = Ub = 1, N = 15, M ∈ [0, 15] → β ∈ [0, 1], W ∈ [0, 3] → α ∈ [0, 3],
Ta = Tb = T , where T = 0.1, 0.2, 0.5 in the left, central and right panel respectively.
Colors have been employed as a guide to the eye: blue is used when Smix = log 2, purple
when Smix < 0.05, green for all intermediate values except the domain corresponding to
phase 2 and therefore colored in orange.
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Chapter 3

The Ground State in the
large-population limit

“Physics is really nothing more than a search for ultimate simplicity, but so far all
we have is a kind of elegant messiness.”

Bill Bryson

The time has now come to get to the heart of the purpose of this thesis: the
4-well ring. In this chapter we are going to delve into hitherto unexplored waters,
facing something completely new. In fact, as regards the binary mixture in 4
potential wells, equipped with PBC, only forecasts had been made up to now and
only in the case of twin species (Ua = Ub = U , Ta = Tb = T , N = M) [61]. The
CVP approach has been applied to a generalization of effective potential (2.36)
which, in the case of vanishing tunnelling and at the transition point W/U = 1
(that is, α = 1), can be shown to be minimized by any macroscopic configuration
of the type yj = 1

2 − xj, with j = 1, 2, 3, 4 (four of them are shown in Fig. (3.1)).
As soon as W/U gets larger than 1, the degeneracy of these solutions disappear
and just one of them survives.
What we are going to do now is to investigate not only what happens next, but we
will directly deal with the asymmetric-species case. To this end, we are not going
to use the CVP anymore; instead we will approach the 4-well Hamiltonian in the
Coherent-State Variational Picture (see subsection 1.2.3). This analysis constitutes
a first answer to the question of what happens to the phase separation mechanism
in rings having an even or an odd number of sites: does the parity of L influence
the behaviour of these kind of systems? Should we expect that the case with L = 4
is more similar to the dimer, than to the trimer? So let’s go into the chapter, trying
to answer these questions.
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The Ground State in the large-population limit

Figure 3.1: Possible phase-separation mechanisms for a binary mixture in a 4-well
potential with PBC. Blue (red) color corresponds to species A (B). On the left, the fully
mixed configurations is depicted. On the right, some examples of demixed configurations
(from top to bottom: complete demixing with emulsion-like structure, complete demixing
with well separated structure, and partial demixing). Left panel corresponds to W/U < 1,
right panels to W/U = 1. T/U = 0 has been chosen for all plots.

3.1 The Coherent-State Variational Picture
Let us start to deal with the case with four potential wells (to which we can refer
also as "tetramer"): the model Hamiltonian of the tetramer derived by combining
the TDVP with the coherent-state picture of the BH model reads

H = Ua

2

Ø
j

|aj|4
+ Ub

2

Ø
j

|bj|4
+W

Ø
j

|aj|2|bj|2
 (3.1)

−Ta

 4Ø
j=1

aja
∗
j+1 + aj+1a

∗
j

− Tb

 4Ø
j=1

bjb
∗
j+1 + bj+1b

∗
j


so, finding the corresponding effective Lagrangian, we can write the discrete non-
linear Schrodinger equations related to the problem:

i~a.
j = Ua|aj|2aj +W |bj|2aj − Ta(aj+1 + aj−1)

i~b.
j = Ub|bj|2bj +W |aj|2bj − Tb(bj+1 + bj−1)

for j = 1,2,3,4.
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The Ground State in the large-population limit

Since the number of particles of both species is fixed and
nj = |aj|2

mj = |bj|2

the system features the following dynamical constraints
Na = N = n1 + n2 + n3 + n4 = |a1|2 + |a2|2 + |a3|2 + |a4|2 (3.2)

Nb = M = m1 +m2 +m3 +m4 = |b1|2 + |b2|2 + |b3|2 + |b4|2 (3.3)
The ground state belongs to the class of collective-frequency solutions (these

can be shown to essentially represent the fixed points of the dynamical equations
when the dynamical constraints (3.2) and (3.3) are taken into account). By setting

aj(t) = aje
−iµat

~

bj(t) = bje
−iµbt

~

we can write
µaaj = Ua|aj|2aj +W |bj|2aj − Ta(aj+1 + aj−1)
µbbj = Ub|bj|2bj +W |aj|2bj − Tb(bj+1 + bj−1)

for j = 1, 2, 3, 4.

3.1.1 Solutions for Ta = Tb = 0
First of all, let us place ourselves in the case in which the hopping parameters
(Ta, Tb) are set equal to zero. Obviously, the last terms of our equations disappear
and we get

µaaj = Ua|aj|2aj +W |bj|2aj

µbbj = Ub|bj|2bj +W |aj|2bj

for j = 1, 2, 3, 4. Considering the presence of the four potential wells, we can try
to guess which are the most probable configurations, as well as the most trivial
ones: the completely mixed configuration and the completely demixed one. To do
this, the partially demixed phases already found in the case of the dimer and trimer
can be useful (check out Chapter 2): we can take inspiration from the latter in
order to create our hypotheses for the possible intermediate phases of the tetramer.
In the next pages, all the most reasonable configurations taken into account are
represented, starting from the mixed one, then all the hypotheses for the partially
demixed ones and, finally, two hypoteses for the completely demixed phase. Unlike
the cases with L = 2, 3, the lattice with four wells provides the first case where
more than one completely demixed phase can be guessed. Bosons of species A and
B are represented in Cyan and Pink respectively.
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The Ground State in the large-population limit
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Figure 3.2: Case 1: Mixed (Uniform)
phase.
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Figure 3.3: Case 2: Partially demixed
phase that recalls the trimer’s phase 2. We
can call this one the "half-demixed phase".
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Figure 3.4: Case 3: Partially demixed
phase that recalls the trimer’s phase 4. We
can call this one "phase with mixing in a
single well".
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Figure 3.5: Case 4: Partially demixed
phase that recalls the dimer’s phase 2; let’s
call it the "partially demixed double dimer".
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The Ground State in the large-population limit
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Figure 3.6: Case 5: Partially demixed
phase consisting in the union of a filled well
and a trimer in uniform configuration: a
totally new guess. We can call this one the
"quasi-uniform phase".

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.7: Case 6: Completely demixed
phase that recalls the dimer one. Let’s call
it "dimer-like".
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Figure 3.8: Case 7: Completely demixed
phase that recalls the trimer one. Let’s call
it "trimer-like".

43



The Ground State in the large-population limit

Case 1: mixed (uniform) phase

In order to find the uniform solution, We start by simply assuming that we must
have aj /= 0 and bj /= 0. Then the equations reduce to

µa = Ua|aj|2 +W |bj|2

µb = Ub|bj|2 +W |aj|2

for j = 1,2,3,4.
which we can rewrite in the form

µa = Uanj +Wmj (3.4)

µb = Ubmj +Wnj (3.5)

There are eight unknown populations nj and mj with two constraints N = n1 +
n2 + n3 + n4 and M = m1 +m2 +m3 +m4. Imposing the latter leads to determine
µa and µb. The derivation of n1, n2, n3, n4,m1,m2,m3 and m4 gives

n1 = n2 = n3 = n4 = µaUb − µbW

UaUb −W 2 (3.6)

m1 = m2 = m3 = m4 = µbUa − µaW

UaUb −W 2 (3.7)

showing how this solution features twin populations. Thanks to the constraints
N = n1 + n2 + n3 + n4 and M = m1 + m2 + m3 + m4 we discover that n1 =
n2 = n3 = n4 = N

4 and m1 = m2 = m3 = m4 = M
4 . Substituting these values in

equations (3.4) and (3.5), we are able to find µa and µb

µa = Ua
N

4 +W
M

4

µb = Ub
M

4 +W
N

4
Now, replacing the values founded for µa and µb in equations (3.6) and (3.7), we
have further validation of the previous results, in fact:

nj = µaUb − µbW

UaUb −W 2 = 1
4(UaUb −W 2)(Ub(UaN +WM) −W (UbM +WN)) = N

4

mj = µbUa − µaW

UaUb −W 2 = 1
4(UaUb −W 2)(Ua(UbM +WN) −W (UaN +WM)) = M

4
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The Ground State in the large-population limit

Case 2: half-demixed phase

Let’s assume that b1 = a2 = 0: a situation that recalls one of the intermediate
phases of the trimer. The first well is filled with bosons of species A, while the second
is filled with bosons of species B. In the other two wells we still have a complete
mixing (see Fig. (3.3)). So m1 = n2 = 0 e N = n1 + n3 + n4, M = m2 +m3 +m4.
Our eight equations boil down to

µa = Uan1

0 = 0

µa = Uan3 +Wm3

µa = Uan4 +Wm4

0 = 0

µb = Ubm2

µb = Ubm3 +Wn3

µb = Ubm4 +Wn4

By observing this system, we can see that, putting together the third and seventh
equations, or the fourth and eighth, two systems with two equations and two
unknowns come out. By solving them, we find the following solutions as a function
of µa and µb

n3 = µaW − µbUa

W 2 − UaUb

m3 = µbW − µaUb

W 2 − UaUb

n4 = µaW − µbUa

W 2 − UaUb

m4 = µbW − µaUb

W 2 − UaUb

i.e. we find that
n3 = n4

m3 = m4

With this new information, we can rewrite the constraints as

n1 = N − 2n3

m2 = M − 2m3
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The Ground State in the large-population limit

in this way our problem is reduced to a system with two equations and two
unknowns

N − 2n3 = n3 + W

Ua

m3

M − 2m3 = m3 + W

Ub

n3

from which we obtain

n3 = n4 = 3UaUbM − UbWN

9UaUb −W 2

m3 = m4 = 3UaUbN − UaWM

9UaUb −W 2

Furthermore, introducing the two parameters

α = W√
UaUb

(3.8)

and
β = M

N

ó
Ub

Ua

(3.9)

we can rewrite the last two results as

n3 = n4 = (3 − αβ)N
9 − α2

m3 = m4 =
(3 − α

β
)M

9 − α2

At this point, we are also able to evaluate n1 and m2:

n1 = N(α2 − 3 − 2αβ)
α2 − 9

m2 = M(−2α− 3β + α2β)
(α2 − 9)β

Validity range of the previous solutions Of course, we need to verify that
all of the above solutions are non-negative. In order to do this, let’s continue in
order:

1.
n3 = (3 − αβ)N

9 − α2 ≥ 0
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The Ground State in the large-population limit

we have two possibilities

• positive numerator and denominator

3 − αβ ≥ 0 → β ≤ 3
α

9 − α2 > 0 → α < 3

• negative numerator and denominator

3 − αβ ≤ 0 → β ≥ 3
α

9 − α2 < 0 → α > 3

2.
m3 = (3 − α/β)M

9 − α2 ≥ 0

• positive numerator and denominator

3 − α/β ≥ 0 → β ≥ α

3

9 − α2 > 0 → α < 3

• negative numerator and denominator

3 − α/β ≤ 0 → β ≤ α

3

9 − α2 < 0 → α > 3

3.
n1 = N(α2 − 3 − 2αβ)

α2 − 9 ≥ 0

• positive numerator and denominator

α2 − 3 − 2αβ ≥ 0 → β ≤ α2 − 3
2α

α2 − 9 > 0 → α > 3

• negative numerator and denominator

α2 − 3 − 2αβ ≤ 0 → β ≥ α2 − 3
2α

α2 − 9 < 0 → α < 3
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The Ground State in the large-population limit

4.

m2 = M(−2α− 3β + α2β)
(α2 − 9)β ≥ 0

• positive numerator and denominator

−2α− 3β + α2β ≥ 0 → β ≥ 2α
α2 − 3

α2 − 9 > 0 → α > 3

• negative numerator and denominator

−2α− 3β + α2β ≤ 0 → β ≤ 2α
α2 − 3

α2 − 9 < 0 → α < 3

Figure 3.9: Case 2 solutions: Range of validity.

In Figure (3.9) there are all the curves found by studying the validity conditions.
Following what we have found, we will have that the solutions are valid only within
the triangle identified by the purple asymptote, the orange line starting at (0,0)
and the segment starting from (0,1) and ending in (3,1).
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The Ground State in the large-population limit

Case 3: phase with mixing in a single well

In this case we assume b2 = b3 = b4 = 0, which implies

m2 = m3 = m4 = 0

M = m1

it is reasonable to assume such a behavior when M << N , or in general, when one
of the two bosonic populations is much greater than the other, in analogy with
what has already been seen in the case of one of the trimer’s intermediate phases
(see Fig. (3.4)).
Our eight equations boil down to

µa = Uan1 +Wm1

µa = Uan2

µa = Uan3

µa = Uan4

µb = Ubm1 +Wn1

0 = 0

0 = 0

0 = 0

From the second, third and fourth equation it is evident that n2 = n3 = n4 = n
and N = n1 + 3n. The solutions of the system are then

n = N

4 + WM

4Ua

= N

4 (1 + αβ)

n1 = N

4 (1 − 3αβ)

Since we must have n1 ≥ 0, we find β ≤ 1
3α
. We can identify with the latter the

range of validity of the solution.
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The Ground State in the large-population limit

Case 4: partially demixed double-dimer

Let’s take b1 = b3 = 0. This configuration can be seen as the union of two dimers’
intermediate phases. From (Fig. (3.5)) it is easy to see how the system can be
split in two dimers, each one with a completely filled well and mixing in the other
one. In this sense we can call this configuration the "double dimer". Our equations
become

µa = Uan1

µa = Uan2 +Wm2

µa = Uan3

µa = Uan4 +Wm4

0 = 0

µb = Ubm2 +Wn2

0 = 0

µb = Ubm4 +Wm4

From the first and third equations we have that n1 = n3 = n. Furthermore,
suppose that the remaining bosons are distributed equally in the remaining wells:
n2 = n4 = n0 e m2 = m4 = m0. Constraints therefore become

N = 2n+ 2n0

M = 2m0

At this point it is very easy to find solutions

m0 = M

2

n = N

4 + MW

4Ua

= N

4 (1 + αβ)

n0 = N

4 − MW

4Ua

= N

4 (1 − αβ)

which, just as in the case of two-wells ring, are valid for β ≤ 1
α
.
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The Ground State in the large-population limit

Case 5: quasi-uniform phase

The configuration of this case is a totally new guess; in the sense that it is not
inspired from anything that has been found previously (see Fig. (3.6)). Let’s simply
say b1 = 0 (m1 = 0). So our system of equations will become

µa = Uan1

µa = Uan2 +Wm2

µa = Uan3 +Wm3

µa = Uan4 +Wm4

0 = 0
µb = Ubm2 +Wn2

µb = Ubm3 +Wn3

µb = Ubm4 +Wn4

Now, strengthened by the fact that in the previous case (the "double dimer"),
equally distributed populations were found, we can assume that this is also the
case and therefore m2 = m3 = m4 = m and n2 = n3 = n4 = n. Our constraints
become

N = n1 + 3n → n = N − n1

3

M = 3m → m = M

3
So, we obtain the equation for n1:

Uan1 = Uan+Wm = Ua
N − n1

3 +W
M

3
Solving it, we find

n1 = N

4 (1 + αβ)

n = N

4

A
1 − αβ

3

B
Therefore, in order to have n ≥ 0 we have to impose the condition β ≤ 3

α
, but since

β can be at least equal to 1, it follows that α must be greater than 3. The validity
interval of this solution seems to fall completely in the zone in which we expect the
demixed phase to be stable. Already from this simple reasoning, it seems difficult
that it could be the GS.

Case 6 and 7: fully demixed phases

The configurations associated to the two possible demixed states are trivial (see
Figures (3.7) and (3.8)).
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Chapter 4

Phase Diagram

“Not only is the Universe stranger than we think, it is stranger than we can think.”
Werner Heisenberg

Now that we have the analytical form of all the hypothesized solutions as a
function of the model parameters α and β, we can continue to look for which
of them are part of the minimum-energy configuration. First of all, one has to
compute the Hamiltonian’s value associated to each of these solutions; then, it will
be the turn of the comparisons between these values, in order to determine which
is the minimizing one and - above all - where.
The purpose is to find a Phase Diagram like the ones that has been found in
all previous cases (see Figs. (2.3), (2.4) and (2.5)), where phases are clearly
distinguishable. After that, we will try to find an effective indicator, able to capture
the criticalities of the transitions (as has already been done in the case of the trimer
with the Mixing Entropy; see subsection 2.2.2).

4.1 Evaluation of the energy associated to the
found solutions

Now that we have computed the values of (þn, þm) = (n1, n2, n3, n4,m1,m2,m3,m4),
we can evaluate the values of the Hamiltonian at T = 0 (where T is the hopping
amplitude)

H(þn, þm) = Ua

2 (n2
1 + n2

2 + n2
3 + n2

4) + Ub

2 (m2
1 +m2

2 +m2
3 +m2

4)+ (4.1)

+W (n1m1 + n2m2 + n3m3 + n4m4)
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Phase Diagram

in the various configurations. We will then continue with comparing the results
found in order to understand how many and which phases there are.
A phase associated with a specific configuration is identified where the energy
associated with the same configuration is minimal compared to all the others.
Later, putting together the intervals found in this way with the validity intervals of
the various solutions, we will be able to construct the phase diagram of the system.

4.1.1 Case 1: completely mixed phase
Let’s start with the case corresponding to the mixed phase: in this situation the
two populations are equally distributed in the four wells, therefore

H1

3
N

4 ,
N

4 ,
N

4 ,
N

4 ,
M

4 ,
M

4 ,
M

4 ,
M

4

4
= N2Ua

8 + M2Ub

8 + MNW

4 (4.2)

Now, rembering the definitions of the model parameters α (3.8) and β (3.9), we
can rewrite this expression as

H1 = αβ

4 + β2

8 + 1
8 (4.3)

Where an overall factor N2Ua has been omitted since it is always positive (so, it
does not affect the energy-confrontations) and will be also the collected factor in
front of every other energy function, in this section, written in terms of α and β.

4.1.2 Case 2: half-demixed phase
Let’s now move on to the hypotheses for any intermediate stages. First, let’s see
the energy of the configuration mimicking phase 2 of the trimer:

H = −4MNUaUb(3(Ua + Ub) +W ) +M2Ub(6U2
a + 9UaUb + 4UaW −W 2)

18UaUb − 2W 2 +

+N
2Ua(9UaUb + 6U2

b + 4UbW −W 2)
18UaUb − 2W 2

However, the solution written in this way is very difficult to deal with. So let’s
try to proceed in an alternative way to find the energy in this case: instead of
replacing in the Hamiltonian the solutions expressed as a function of Ua, Ub and
W , we directly replace those expressed as a function of α and β, obtaining:

H = 4MNW (α− 3β)β(−3 + αβ) +M2Ub(6α2 − 4α3β + (27 − 6α2 + α4)β2)
2(−9 + α2)2β2 +
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+N
2Uaβ

2(27 + α2(−6 + α2 − 4αβ + 6β2))
2(−9 + α2)2β2

Let’s focus on the numerator. Collect N2Ua:

N2Ua

C
4MW

NUa

(α− 3β)β(−3 + αβ) + M2Ub

N2Ua

(6α2 − 4α3β + (27 − 6α2 + α4)β2)+

+β2(27 + α2(−6 + α2 − 4αβ + 6β2))]

doveMW
NUa

= αβ e M2Ub

N2Ua
= β2.

Fortunately, the term in square brackets can be simplified and factorized, obtaining
for the energy:

H = N2Ua(−9 + α2)β2(−3 + α2 − 4αβ − 3β2 + α2β2)
2(−9 + α2)2β2

Simplifying

H = N2Ua(−3 + α2 − 4αβ − 3β2 + α2β2)
2(−9 + α2) (4.4)

4.1.3 Case 3: phase with mixing in a single well
In this case

H = N2U2
a + 2MNUaW +M2(4UaUb − 3W 2)

8Ua

(4.5)

The latter can be rewritten as a function of model parameters as:

H3 = 1
8
11

4 − 3α2
2
β2 + 2αβ + 1

2
(4.6)

4.1.4 Case 4: partially demixed double-dimer
In this case

H = N2U2
a + 2MNUaW +M2(2UaUb −W 2)

8Ua

(4.7)

The latter can be rewritten as a function of model parameters as:

H4 = 1
8
11

2 − α2
2
β2 + 2αβ + 1

2
(4.8)
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4.1.5 Case 5: quasi-uniform phase
In this case

H = 1
24

A
3N2Ua + 6MNW + M2(4UaUb −W 2)

Ua

B
(4.9)

The latter can be rewritten as a function of model parameters as:

H = 1
24
1
3 + 6αβ + β2(4 − α2)

2
(4.10)

4.1.6 Case 6: dimer-like demixed phase
For what concerns the demixed phase, it is worth remembering how the latter was
characterized for the dimer and for the trimer:
• in the dimer we observed a perfect division: one species in one well and the

other species in the second well;

• in the trimer one species went to concentrate in one well, while the other split
into the remaining two.

In both cases, there was no other way to have complete separation. When we
consider the four-wells ring, however, two ways to reach it appear for the first time:
a dimer-like way, a species in two wells and the other in the other two (with all
the possible cyclic permutations of the site labels), and a trimer-like way, with a
species concentrated in a single well and the other scattered over the remaining
three.
In the dimer-like case, energy is

Hdd

3
N

2 , 0,
N

2 , 0, 0,
M

2 , 0, M2

4
= N2Ua

4 + M2Ub

4 (4.11)

The latter can be rewritten as a function of model parameters as:

Hdd = 1
4
1
β2 + 1

2
(4.12)

4.1.7 Case 7: trimer-like demixed phase
In the event that complete separation occurs as in the trimer, the energy is

Hdt

3
0, N3 ,

N

3 ,
N

3 ,M, 0, 0, 0
4

= N2Ua

6 + M2Ub

2 (4.13)

The latter can be rewritten as a function of model parameters as:

Hdt = β2

2 + 1
6 (4.14)
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4.2 Comparison between the values of the en-
ergy in the different configurations

We will now proceed with the comparison of the results we found, as anticipated
at the beginning of this chapter.

4.2.1 Comparison between case 1 and case 6
Let’s begin with the mixed phase and one of the demixed phases: the dimer-like
one. We wonder what parameter values it applies to

N2Ua

8 + M2Ub

8 + MNW

4 ≤ N2Ua

4 + M2Ub

4

Bringing all the factors into the r.h.s. of the inequality we find

N2Ua

A
1 + M2

N2
Ub

Ua

− 2M
N

W

Ua

B
≥ 0

Now, since N and Ua are definitely both greater than 0 and remembering the
definitions of α and β, we can further simplify our expression

1 + β2 − 2αβ ≥ 0

and therefore the mixed configuration is actually more advantageous than the
demixed one for

α ≤ 1
2β + 1

2β

Remark: setting β = 1 and thus bringing us back to the symmetric case (that is
the case with twin species, identified by Ua = Ub e M = N and so also by β = 1 ),
we find that the mixed phase is the advantageous one for α ≤ 1

2 + 1
2 = 1, i.e.

W

U
≤ 1

in perfect agreement with what we already know [61].

4.2.2 Comparison between case 1 and case 7
We wonder what parameter values it applies to

N2Ua

8 + M2Ub

8 + MNW

4 ≤ N2Ua

6 + M2Ub

2
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that is, when the energy of the mixed configuration is less than that of the trimer-
like demixed case. Bringing all the factors into the r.h.s. of the inequality we
find

N2Ua

A
1 + 9M

2

N2
Ub

Ua

− 6M
N

W

Ua

B
≥ 0

Now, since N and Ua are definitely both greater than 0 and remembering the
definitions of α and β, we can simplify our expression again

1 + 9β2 − 6αβ ≥ 0

and therefore the mixed configuration is actually more advantageous than the
demixed one for

α ≤ 1
6β + 3

2β

4.2.3 Comparison between case 6 and case 7
At this point one question arises: which of the two demixed phases is the "right"
one? Or are they both, but in different areas of the phase diagram? And it is
precisely here that the peculiarity of the tetramer comes out. So let’s proceed with
the comparison of the two energies:

N2Ua

4 + M2Ub

4 ≤ N2Ua

6 + M2Ub

2

that leads to
M2Ub

N2Ua

≥ 1
3

that is, the dimer-like demixed phase is more advantageous than the trimer-like
phase for

β ≥ 1√
3

≈ 0.58 (4.15)

Now we just have to identify and place the intermediate phases between the mixed
and demixed ones.

4.2.4 Comparison with case 2 in the symmetrical case
To continue with the research of the intermediate phases, we can first try to bring
ourselves back to a simpler case, namely the one in which β = 1 (i.e. when one
deals with twin-species). Given the previous result, we will have that in this regime
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it will be the dimer-like phase to "be the leader" between the two demixed phases.
Comparing the mixed phase

Hsym

3
N

4 ,
N

4 ,
N

4 ,
N

4 ,
N

4 ,
N

4 ,
N

4 ,
N

4

4
= N2(U +W )

4

with the demixed dimer-like

Hsym

3
N

2 , 0,
N

2 , 0, 0,
N

2 , 0,
N

2

4
= N2U

2

both in the symmetrical case, it is quite trivial to verify that the latter is more
advantageous for α ≥ 1. Therefore, in order to find the possible intermediate
phases that could occur for α ≥ 1, it makes sense to compare the energies of the
various partially demixed configuration hypotheses (previously found) with that of
the demixed dimer-like case.
Furthermore, among the four hypotheses presented above, only one is likely to be
(in some range) the Ground State: the one we called "half-demixed phase". In fact,
it is the only one which does not show the numerical predominance of one species
over the other. Moreover, the other hypotheses are probable as Ground State only
in the case of asymmetric populations, thus when β differs from 1. So let’s proceed
with the comparison of the two energies:

N2U

2 − N2U(U +W )
3U +W

≤ 0

Simplifying, we find
N2U(1 − α)

3 + α
≤ 0

So we have two possibilities:

• 1st possibility:
1 − α ≥ 0 → α ≤ 1

3 + α ≤ 0 → α ≤ −3

• 2nd possibility:
1 − α ≤ 0 → α ≥ 1

3 + α ≥ 0 → α ≥ −3

Obviously, the first possibility is to be discarded. We therefore find that the
dimer-like completely demixed phase comes out as soon as we reach α = 1 and we
cross it, going towards higher values of the effective parameter. Only for α exactly
equal to 1, the two energies coincide, showing the existence of a degeneration for
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the GS at this point, as had already been seen with the polytope method in [61]
and pointed out at the beginning of Chapter 3 (see Fig. (3.1)).
We therefore conclude that for β = 1, four wells behave as two: we have a single
phase transition for α = 1, which separates a completely mixed phase from a
completely demixed (dimer-like, to be precise).

4.2.5 Comparisons in the asymmetrical cases for the par-
tially demixed phases

As one has probably noticed, we introduced a certain notation in order to label the
Hamiltonian-functions associated to each phase. For the sack of clarity, we will
report it in the following list, before continuing:

• Hunif =Hamiltonian in the mixed case (case (4.3));

• Hdt =Hamiltonian in the trimer-like demixed phase (case (4.14));

• Hdd =Hamiltonian in the dimer-like demixed phase (case (4.12));

• Hi (for i=2,3,4,5) = Hamiltonian associated with the corresponding partially
demixed phase case.

Case 3: single mixed-well phase

First of all, let’s compare the partially demixed phase hypothesis of case 3 with
the trimer-like totally demixed phase (it makes no sense to compare it with the
dimer-like phase, as the solutions for this case are valid only for β ≤ 1

3α
). Imposing

the comparison, we will get:

Hdt −H3 ≤ 0 → (NUa − 3MW )2

24Ua

≤ 0

It is immediately evident that the condition is never verified. We therefore may
think that the solution of case 3 is more advantageous than the trimer-like phase
everywhere. However, we must remember once again that the solutions are only
valid for β ≤ 1

3α
; thus, this hyperbole will be the line of separation between the

two phases.
With respect to the comparison with the other partially demixed phase hy-

potheses, let’s proceed with seeing where case 3 is more advantageous than case
4:

H3 −H4 ≤ 0 → M2(UaUb −W 2)
4Ua
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Collecting UaUb at the numerator,we notice that what we just need to solve is

1 − α2 ≤ 0 → α ≤ −1 ∪ α ≥ 1

Therefore, for α ≥ 1 the energy of case 3 is more advantageous than that of case 4,
always below the validity line.
There is nothing left to do now, but to compare case 3 with case 5:

H3 −H5 ≤ 0 → M2(UaUb −W 2)
3Ua

that is, also in this case, for α ≥ 1, case 3 always "wins" over case 5.

Case 4: double-dimer

We have already seen that, below β = 1
3α
, case 3 always wins over case 4. But let’s

see, now, how the latter behaves when compared with the remaining hypotheses.
Let’s start as usual with the totally demixed phases.

• dimer-like:
Hdd −H4 ≤ 0 → (NUa −MW )2

8Ua

≤ 0

that is, the configuration of case 4 (blue in (Fig. (4.1)) always seems to
be advantageous compared to the demixed one we are considering (green).
However, even in this case, remember that the solutions associated with H4 are
valid only below β = 1

α
. Furthermore, in correspondence with this hyperbola,

the two energies are equivalent, thus giving rise to degenerate states.

• trimer-like:
Hdt −H4 ≤ 0

that is
N2U2

a − 6MNUaW + 3M2(2UaUb +W 2)
24Ua

≤ 0

Collecting UaUb from the last parenthesis of the numerator:

N2U2
a − 6MNUaW + 3M2UaUb(2 + α2)

24Ua

≤ 0

It is easy to notice that we can simplify Ua everywhere. Collecting MNW
now, we get:

MNW

C
1
αβ

− 6 + 3β
α

(2 + α2)
D

≤ 0
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Figure 4.1: Comparison between case 4 partially demixed phase and the dimer-like
totally demixed phase.

Observing that M, N and W are greater than 0, we can proceed by considering
only what we have in square brackets, and finally obtain

3(2 + α2)β2 − 6αβ + 1 ≤ 0

Solving with respect to β:

3α−
√

6α2 − 6
3(2 + α2) ≤ β ≤ 3α +

√
6α2 − 6

3(2 + α2)
This range can be seen highlighted in blue in Figures (4.2) and (4.3). Since
the hyperbola β = 1

α
cuts this blue region, and that solutions 4 are valid only

below it, we will have that the only remaining yellow portion is the lower right
corner indicated by the two straight lines in Fig. (4.3).

Case 5: quasi-uniform case

First of all, we must verify if case 5 is advantageous with respect to the demixed
phases:

• dimer-like:
Hdd −H5 ≤ 0

and the result of the previous inequality is

3α−
√

8α2 − 2
2 + α2 ≤ β ≤ 3α +

√
8α2 − 2

2 + α2
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Figure 4.2: Comparison between case 4
partially demixed phase and the trimer-like
totally demixed phase.

Figure 4.3: This is nothing but the graph
of figure (3.2) seen from above. The two
straight lines are put there in order to
highlight the small surviving yellow corner,
where the energy of case 4 is smaller than
the one of the demixed phase.

• trimer-like
Hdt −H5 ≤ 0 → 1 − 6αβ + β2(8 + α2) ≤ 0

and the result of the previous inequality is

3α−
ñ

8(α2 − 1)
8 + α2 ≤ β ≤

3α +
ñ

8(α2 − 1)
8 + α2

We can now proceed with the comparison with the other partially demixed states:

• Comparison with case 4

H4 −H5 ≤ 0 → M2(UaUb −W 2)
12Ua

≤ 0

so, trivially, for α ≥ 1 case 4 is the most advatageous;

• Comparison with case 3
H3 −H5 ≤ 0

also in this situation, it is trivial to demonstrate that case 5 is not minimal
compared to the others.
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Case 2: half-demixed phase

Case 2 was placed last not by chance; in fact, attention must be paid to the very
particular conditions of validity of the solutions. Indeed, the "triangle" of validity
of these solutions falls completely within the zone in which the minimum energy is
that of the completely dimer-like demixed configuration (see Fig. (4.4)). Therefore,
it only makes sense to make the following comparison:

Hdd −H2 ≤ 0

that is
−3 − α2 + 8αβ − (3 + α2)β2

4(α2 − 9) ≤ 0

Let’s start with the case with a positive numerator

−3 − α2 + 8αβ − (3 + α2)β2 ≥ 0

3 + α2 − 8αβ + (3 + α2)β2 ≤ 0

4α−
ñ

16α2 − (3 + α2)2

3 + α2 ≤ β ≤
4α +

ñ
16α2 − (3 + α2)2

3 + α2

and negative denominator:

α2 − 9 ≤ 0 → −3 ≤ α ≤ +3

Figure 4.4: The interval of validity of the case 2 solutions (represented by the triangle)
lays entirely in the region where Hdd is the minimal (the outer curve).

In the intervals of α and β that interest us, the area in which Hdd is less than
H2 completely encompasses the triangle in which are valid the solutions of case 2
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(as it is possible to see in Fig. (4.4)). We conclude, therefore, by asserting that
this last case does not appear in the phase diagram and it makes no sense to check
the case with negative numerator and negative denominator, since we have already
found the answer with the alternative.

4.3 Phase Diagram
After making all the comparisons, we can proceed by putting together the results
and plotting the phase diagram in the large-populations limit in the domain
D = {(α, β) : 0 ≤ α ≤ 4, 0 ≤ β ≤ 1}:

1

3

4

6

7

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

α

β

Phase Diagram

Figure 4.5: Phase diagram of a binary mixture in a ring tetramer. Each of the five
phases corresponds to a different functional relationship between the minimum-energy
configuration and effective model parameters α and β. This circumstance has a direct
impact on the mixing properties of the system and on its GS energy. The labels of each
phase are the numbers corresponding to the name of the cases which were "winners" of
the comparisons referred to in the previous paragraphs.

This domain has been chosen since in the given range of parameters the diagram
exhibits all the five phases (notice, in fact, that if β > 1, one can swap species
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labels A and B and, so, we come back to region D). At this point, it is appropriate
to summarize the characteristics of each phase and the boundaries by which they
are delimited

• in Phase 1 (colored in orange in Fig. (4.5), its schematic representation is
reported in panel (a) of Fig. (4.6)), inter-species repulsion W is too small to
allow phase separation; therefore, the species are evenly distributed among
the four wells and completely mixed, i.e. nj = N

4 and mj = M
4 , for j = 1,2,3,4;

• Phase 4 (colored in blue in Fig. (4.5), its schematic representation is reported
in panel (b) of Fig. (4.6)), is delimited by α > 1 and

3α +
√

6α2 − 6
3(2 + α2) < β <

1
α

that is, we are considering intermediate α values and fairly symmetrical species.
This phase is characterized by two wells filled with the same species (say A)
and mixing in the other two (with a clear prevalence of the other species, say
B);

• Phase 3 (colored in pink in Fig. (4.5), its schematic representation is reported
in panel (c) of Fig. (4.6)) occurs for sufficiently high values of α and sufficiently
asymmetric species. It is delimited by α > 1 and β < 1

3α
. This phase occurs

when one species is definitely a minority compared to the other. The bosons
of this species, therefore, will concentrate in a single well, while those of the
other species will scatter, with different proportions, in all four well;

• Phase 6 (colored in green in Fig. (4.5), its schematic representation is reported
in panel (d) of Fig. (4.6)) corresponds to the dimer-like demixed phase. It
occurs for high values of α, but for not too much asymmetrical species. In
particular, it is delimited by β > 1

α
for α <

√
3 and β > 1√

3 for α >
√

3. This
phase is characterized by two wells filled with one species, while the other two
filled with the other species;

• Phase 7 (colored in yellow in Fig. (4.5), its schematic representation is reported
in panel (e) of Fig. (4.6)) corresponds to the trimer-like demixed phase. It
occurs when we are dealing with asymmetrical species. In particular, it is
delimited by β > 1

3α
, β < 1√

3 for α >
√

3 and

β <
3α +

√
6α2 − 6

3(2 + α2)

for α <
√

3. This phase is characterized by three wells filled with one species,
while the other one filled with the other species;
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In conclusion, the great peculiarity of this phase diagram should be underlined:
one half of it strongly recalls the phase diagram of the dimer, while the other half
exhibits a behavior similar to that of the trimer [3]. This division corresponds to
the value of (Eq. 3.9):

β = 1√
3

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

(a) Phase 1
0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

(b) Phase 4
0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

(c) Phase 3

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

(d) Phase 6
0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

(e) Phase 7

Figure 4.6: For convenience, we report here the schematic representations of the
configurations that have become part of the Phase Diagram in Fig. (4.5)

Two critical points can be identified:

(α, β) =
A√

3, 1√
3

B

(α, β) =
3

1, 1
3

4
in correspondence of which many phases’ boundary lines meet.

4.3.1 Behaviour of minimum-energy configuration (þn, þm)
Among the phases we found, one has both continuous and discontinuous mixing-
demixing transitions for the population components nj and mj . In particular, there
is a jump discontinuity in correspondence with the passage from phase one to the
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others confining with it; while another jump is present at the transition from phases
4 and 6 to phases 3 and 7. Instead, transitions from phase 4 to 6, and the one from
phase 3 to 7, are continuous.
The behaviour of the two popolations in the different wells are represented in
Figures (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), (4.13) and (4.14).

Figure 4.7: Behaviour of species A in the
1st well. Figure 4.8: Behaviour of species A in the

2nd well.

Figure 4.9: Behaviour of species A in the
3rd well. Figure 4.10: Behaviour of species A in the

4th well.

67



Phase Diagram

Figure 4.11: Behaviour of species B in the
1st well. Figure 4.12: Behaviour of species B in the

2nd well.

Figure 4.13: Behaviour of species B in the
3rd well. Figure 4.14: Behaviour of species B in the

4th well.

The fact that each graph is represented from a different angle is to emphasize
the discontinuous transitions from time to time. The same angle for all graphics
would certainly have been more elegant, but it would have failed to show all the
mixing-demixing transitions.

Let us remember that, thanks to the symmetry of the system, the minimum
energy configurations shown in the figures are not unique: other isoenergetic
configurations can be obtained through cyclic permutations of the site indices.
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4.3.2 Phases and degree of mixing
When dealing with two different species in discretized domains, an effective indicator
for quantifying the degree of mixing is the Entropy of Mixing Smix. This indicator
comes from the field of macromolecular simulations; only recently it has been
introduced in the world of ultracold atoms as a useful tool for the investigation of
the properties of a bosonic binary mixture. According to the definition given in
[10], the entropy of mixing associated to a certain minimum-energy configuration
(þx, þy) reads

Smix = −1
2

4Ø
j=1

A
xj ln xj

xj + yj

+ yj ln yj

xj + yj

B
(4.16)

Where we based this formula on normalized populations xj = nj/N and yj = mj/M ,
instead of nj andmj , as we did in Eq. (2.42). Note that the contribution of each site
j to the total mixing entropy is not fixed; it is weighted by the number of particles
present in it. As shown in Fig. (4.15), Smix is zero in the two completely demixed
phases (phase 6 and 7) while achieves the maximum possible value, log 2 ≈ 0.69 in
phase 1 (perfect mixing).

Figure 4.15: Entropy of mixing, Smix, in the five phases. Phase 1 (in orange) features
perfect mixing and Smix takes the biggest possible value, i.e. log 2 ≈ 0.69. Conversely,
phase 6 and 7 (in green and yellow) features perfect demixing and Smix is therefore zero.

One of the most useful aspects of mixing entropy is that it reports the same
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criticalities (jump discontinuities) as the minimum energy configuration, but without
the need to investigate all 8 populations, nj and mj, one at a time. However, in
the case of the 4 wells, one of the jumps is not present between the two demixed
phases: both equal to zero from the point of view of this indicator. The latter,
therefore, at this juncture, is not an excellent measure as it was for the dimer and
the trimer. Anyway, it does not fail to capture the jump from phase 1 to the others
and the jump at the transition 4-7 (blue-yellow).

4.3.3 Phases and Free Energy
Since our system is at zero temperature, the free energy F = E − TS coincides
with the internal energy E, i.e. the GS energy. We have already computed the
values of the Hamiltonian (4.1) in the various phases in (sec. 4.1). Let us now
recall how Eqs. (4.3), (4.12), (4.14), (4.8) and (4.6) can be written in term of
model parameters α and β, respectively:

H1 = αβ

4 + β2

8 + 1
8 (4.17)

Hdd = 1
4
1
β2 + 1

2
(4.18)

Hdt = β2

2 + 1
6 (4.19)

H4 = 1
8
11

2 − α2
2
β2 + 2αβ + 1

2
(4.20)

H3 = 1
8
11

4 − 3α2
2
β2 + 2αβ + 1

2
(4.21)

The graphic representation of these expressions (see Fig. (4.16)), shows that H
is indeed continuous everywhere and, in particular, across the transitions.

However, exactly as in the case of mixing entropy, also thanks to energy, we have
a proof of the non-analytic behavior of the system at transitions 1-3, 1-4, and 4-7.
These evidences can be found by computing the first and second derivatives of the
Hamiltonian with respect to α (seen as a control parameter). But, unfortunately,
even in this case we fail to capture the jump at the transition 6-7 (see Figures
(4.17), (4.18) and (4.19)).
The expressions of the first derivatives are, respectively

∂H1

∂α
= β

4 (4.22)
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Figure 4.16: Hamiltonian relevant to the minimum-energy configuration as a function
of the model parameters α and β.

∂Hdd

∂α
= 0 (4.23)

∂Hdt

∂α
= 0 (4.24)

∂H4

∂α
= 1

8
1
2β − 2αβ2

2
(4.25)

∂H3

∂α
= 1

8
1
2β − 6αβ2

2
(4.26)

In the graph of the first derivative we can observe a peculiar behavior, never
observed before. We can see, in fact, that the transitions from phase 1 are
discontinuous everywhere, except at the point

1
1, 1

3

2
.

Instead, for what concerns the second derivatives (obviously excluding the trivial
ones):

∂2H1

∂α2 = 0 (4.27)

∂2H4

∂α2 = −β2

4 (4.28)
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Figure 4.17: First derivative with respect to α of the Hamiltonian relevant to the
minimum-energy configuration, as a function of the model parameters α and β.

∂2H3

∂α2 = −1
4
1
3β2

2
(4.29)

Figure 4.18: Second derivative with re-
spect to α of the Hamiltonian relevant to the
minimum-energy configuration, as a func-
tion of the model parameters α and β.

Figure 4.19: Second derivative of energy
seen from below. This different point of view
is presented with the intention of emphasiz-
ing the new jumps present at the transitions
4-6 and 3-7.

What we can see, in the graph of the second derivative, the occurrence of jumps
at transitions 4-6 and 3-7, at which, instead, the first derivative was continuous.
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Once again, we failed to capture the non-analyticity of the transition 6-7, between
the two demixed phases. In order to do that, we are going to introduce a new
indicator in the next subsection.

4.3.4 Phases and Location Entropy
Since it has not been possible to visualize the complete analytical behaviour at the
transitions plotting the Mixing Entropy, the Hamiltonian and its derivatives, we
need to introduce a different critical indicator: the Location Entropy.
The use of this physical quantity had already become necessary in the case of
attractive inter-species interaction (W < 0), previously discussed in Chapter 2 [55],
and is well known in statistical thermodynamics and physical chemistry [10, 25].
The difference with respect to the Mixing Entropy is that they provide complemen-
tary information: while it describes the degree of mixing between the two species,
the Location Entropy measures the spatial localization of the particles regardless
of their species.

The expression of the Location Entropy is given by

Sloc = −
4Ø

j=1

xj + yj

2 ln xj + yj

2 (4.30)

Inserting the expressions found previously for the xj’s and the yj’s in the various
phases in Eq. (4.30) (remembering that xj = nj/N and yj = mj/M), we can
calculate the value that Sloc assumes in the latter. The results can be seen in Fig
(4.20).

It is immediately clear how necessary the introduction of this different critical
indicator was, given its ability to capture both the criticalities that had already
emerged thanks to the Mixing Entropy (Fig. (4.15)), and the fateful jump at
transition 6-7, which the latter had not been able to represent. Indeed, Phase 6
and Phase 7 are characterized by the same degree of mixing (the two species are
completely separated in both cases, even if in different ways), but the delocalization
of particles among the four wells is completely different.
In conclusion, it is the combined use of Smix (4.16) and Sloc (4.30) that allows us
to appreciate the profound differences between the five phases of the tetramer and
to have a clear and complete view of their critical behavior.
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Figure 4.20: Location Entropy, Sloc, in the five phases. Thanks to the use of this
indicator, one can finally observe the critical behavior at transition 6-7, between the two
demixed phases, as well as at the transitions 1-4, 4-7 and 1-3 already observed in the
Entropy of Mixing.
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Chapter 5

Finite-Size Effects on the
Mixing-Demixing
Transitions

“Knowing is not enough; we must apply. Willing is not enough; we must do.”
Johann Wolfgang von Goethe

As we have seen in the previous chapters, the emergence of the five phases is
completely clear and computable in an analytical way only in the Large Population
Limit, i.e. for Ta

UaN
→ 0 and Tb

UbM
→ 0. Such phases are still recognizable also in

the more realistic case of finite-size systems (i.e. systems with limited numbers of
particles and featuring non-vanishing hopping amplitudes). In this Chapter we are
going to explore the effects of setting Ta /= 0 and Tb /= 0.

5.1 GS configuration with non-vanishing
hopping terms

In the Phase Diagram (4.5) it is possible to visualize the five phases separated
by boundaries that can be find in an analytical way, as well as, the values of the
GS-state configuration (þn, þm), the values of the Energy and its derivatives and,
finally, the ones of the Mixing Entropy and the Location Entropy. Instead, in the
finite-size regime, even if we can still observe the occurrence of five different phases,
the phase diagram gets blurred and deformed.
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The minimum-energy configuration (þn, þm), regarded as a function of model pa-
rameters α ∈ (0,3) and β ∈ (0,1), cannot be evaluated analytically and one has
to resort to numerical techniques. In order to do that, we have to pass from the
Coherent-State Picture, used till now, to the Continuous Variable Picture (see
subsection 2.1.1 and Appendix B for clarifications). In fact, it results simpler to
search numerically the minima of the effective potential V (see Eq, (2.5)), than
the ones of Hamiltonian (3.1).

In the case of the tetramer, such effective potential reads

V = UaN
2

2

4Ø
i=1

x2
i + UbM

2

2

4Ø
i=1

y2
i + WMN

4Ø
i=1

xi yi +

−2NTa

4Ø
i=1

√
xi xi+1 − 2MTb

4Ø
i=1

√
yi yi+1 (5.1)

which comes with the two constraints qi xi = 1 and qi yi = 1, and where variables
xi ≡ ni/N and yi ≡ mi/M represent normalized boson populations and are re-
garded as continuous in view of the fact that the total numbers of bosons N and M
are assumed to be large. Thus, the research of the minimum configuration (þn, þm)
becomes the one of the configuration (þx, þy) that minimizes effective potential (5.1).

Therefore, using the Matlab function ’fmincon’, that finds numerically the
minimum points of a constrained nonlinear multivariable function (see Appendix
A), we have been able to see what happens when finite-size effects matter. For this
purpose, the following values/intervals have been chosen (and maintained also for
the Mixing and Location Entropy plots):

• Ua = Ub = 1;

• N = 15;

• M ∈ [0,15] → β ∈ [0,1];

• W ∈ [0,3] → α ∈ [0,3];

• Ta = Tb = T where T takes the values 0.1, 0.2 and 0.5.

Observing Fig. (5.1), we can notice that the minimum-energy configuration,
regarded as a function of model parameters becomes smoother at the jump discon-
tinuities as the hopping parameter T increases. Moreover, we have a confirmation
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of the behavior of the system analytically predicted in the previous chapters and
of the progress of the 5 phases.

[T = 0.1]
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[T = 0.2]

[T = 0.5]

Figure 5.1: Scatter plot of the minimum-energy configuration (þx, þy) for T = 0.1, 0.2, 0.5
(going from top to bottom). The orange color has been chosen to mark the region in
which the mixed phase persists. All the other phases are colored in blue. The occurrence
of a phase transition at β = 1/

√
3 is clearly recognizable and still discontinuous for the

lowest value of the hopping amplitude T (first panel), but it start to become smoother
as T increases (second and third panels).
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In particular, the presence of the abrupt transition from the mixed phase (rep-
resented in orange in the figures) to the others (colored in blue) stands out, as well
as, the one that occurs at β = 1/

√
3. Confirmation that will become even more

visible if one goes to observe the behaviour of Smix and Sloc as T increases.

One can also notice that the region occupied by the fully-mixed phase enlarges
going from the first panel of Fig. (5.1) to the last one. This is because the uniform
distribution of the two species among the four wells is favored by the presence of
non-negligible hopping terms. The border of this region can be found analytically,
and will be the object of the next section.
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5.2 The border of the fully-mixed phase
In order to find the analytic expression of the mixed-phase border we have to resort
to the Hessian matrix associated to effective potential (5.1). This boundary, in
fact, corresponds to the condition under which the Hessian matrix (evaluated at
point xj = 1

4 and yj = 1
4 , with j = 1, 2, 3, 4) is positive definite. Thus, the first step

is to find the matrix, that is given by

and, subsequently, diagonalize it in order to find its eight eigenvalues and verify
that they are positive. The latter can be listed as

E1 = 1
2

3
−
ñ

−2M2N2UaUb + N4U2
a + M4U2

b + 4M2N2W 2 + N2Ua + M2Ub

4
(5.2)

E2 = 1
2

3ñ
−2M2N2UaUb + N4U2

a + M4U2
b + 4M2N2W 2 + N2Ua + M2Ub

4
(5.3)

E3 = E4 = 1
2

3
−
ñ

(N2Ua + 4NTa −M (MUb + 4Tb)) 2 + 4M2N2W 2+

+N2Ua + 4NTa + M2Ub + 4MTb) (5.4)

E5 = E6 = 1
2

3
+
ñ

(N2Ua + 4NTa −M (MUb + 4Tb)) 2 + 4M2N2W 2+

1
N2Ua + 4NTa − M (MUb + 4Tb)

2
2 + 4M2N2W 2 (5.5)

E7 = 1
2

3
−
ñ

(N2Ua + 8NTa −M (MUb + 8Tb)) 2 + 4M2N2W 2+

+N2Ua + 8NTa + M2Ub + 8MTb) (5.6)

E8 = 1
2

3
+
ñ

(N2Ua + 8NTa −M (MUb + 8Tb)) 2 + 4M2N2W 2+
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+N2Ua + 8NTa + M2Ub + 8MTb) (5.7)

and one can notice that Eqs. (5.2) and (5.3) are equal among them, except for
the sign in front of the term under square root. The same can be said about Eqs.
(5.4) and (5.5), and Eqs. (5.6) and (5.7). In particular, the first two eigenvalues
do not depend on the hopping amplitudes Ta and Tb, so they are not relevant for
the purpose to find a boundary that is an effect of the presence of non-vanishing
hopping terms. Instead, comparing the last two with the remaining four, we
can notice that they have the same form, but with different numerical prefactors.
Obviously, we will choose the one that will probably give us the smallest possible
value (that is Eq. (5.4)) and verify its positivity. After some calculations, we get
the condition

α <

ó3
1 + 4 Ta

UaN

43
1 + 4 Tb

UbM

4
(5.8)

that has the same form as in the case of the three-well potential (see Eq. (2.43)),
but with a different numerical factor in front of Ta

UaN
and Tb

UbM
[3].

One can observe that, walking away from the large-populations limit, the right-hand
term rises above the value 1, thus determining an enlargement of the mixed phase
at the expenses of the neighboring ones (see the enlargement of the orange region
in Fig. (5.1), moving from the first panel to the last). This boundary is a clear
example of how the form of the phases gets deformed in this regime and how strong
is the influence of the hopping terms.

5.3 Mixing and Location Entropy
One can easily guess that the fully demixed phases are mined by the presence
of hopping processes between the wells and therefore occurs for higher values of
α. This effect can be visualized, in particular, in the behaviour of the Mixing
Entropy, in Fig. (5.2), and it reminds, to a certain extent, the messy action of the
hopping amplitude in the Superfluid-to-Mott-insulator transition, which increases
the mobility of bosons and makes the spatial fragmentation characteristic of the
insulating phase increasingly difficult (see subsection 1.2.2). In the figures, we can
observe that, as T increases the two demixed phases (green and yellow) move more
and more towards higher values of α, while the intermediate phases expand their
areas and make the transition from uniform configuration less and less abrupt.

Colors have been chosen in a non-rigorous way, just to remember where the old
phases (for T = 0) were located. For example, the separation line between the
green and the yellow phases has always been put at β = 1/

√
3, even if it is obvious

that it occurs for higher values of β as T grows up (see the end of the "tip" of the
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[T = 0.1] [T = 0.2]

[T = 0.5]

Figure 5.2: Scatter plot of the Mixing Entropy associated to the ground state for
T = 0.1 (the one on the upper left corner), T = 0.2 (the one on the upper right corner),
T = 0.5 (the one below). Colors have been employed as a guide to the eye: orange is
used when Smix ≈ log2, green when Smix < 0.05 and β > 1/

√
3, yellow when Smix < 0.05

and β < 1/
√

3, magenta and blue for all intermediate values, separated by β = 1/3.

blue phase in Fig. (5.2)). This phenomenon is even more visible in the scatter plots
of the Location Entropy for different values of T (see Fig. (5.3)). For what concerns
the latter, in fact, the jump from phase 6 to phase 7 (the two demixed phases;
see section 4.3 for explanation) occurs around the value of β = 0.8 and more, for
lowest values of T . Instead, for T = 0.5, the trimer-like demixed phase (the one
represented in yellow in previous chapters) appears to have been pushed completely
out of the plot range. Moreover, one can notice the narrowing of the green band at
the top (always referring to Fig. (5.3)) and the respective widening of the one at the
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[T = 0.1]

[T = 0.2] [T = 0.5]

Figure 5.3: Scatter plot of the Location Entropy associated to the ground state for
T = 0.1 (the one on the top ), T = 0.2 (the one on the lower left corner), T = 0.5 (the
one on the lower right corner). Colors have been employed as a guide to the eye: orange
is used when Smix ≈ log2, green otherwise.

bottom: further evidence of the shift of the transition line towards higher values of β.

In conclusion, we can assert that the behaviour of Smix (5.2) and Sloc (5.3) is
perfectly coherent with what has already been seen in the case of the trimer. The
results obtained coincide with what was expected by inserting the presence of
non-negligible hopping terms.
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Appendix A

The finding-minima
Numerical Algorithm

In this Appendix we report the complete Matlab code of the iterative algorithm
developed and employed for the search for the minima of the effective potential
(5.1). For completeness, the graphic representation commands have also been
reported, as well as the implementation of the Colormaps (which collect the criteria
on the colors with which it was chosen to mark the different phases).

The main Matlab-function used is ’fmincon’, i.e. a tool that finds the minima of
constrained nonlinear multivariable function. More specifically, it is a nonlinear
programming solver that finds the minimum of a problem specified by

where b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions
that return vectors, and f(x) is a function that returns a scalar. f(x), c(x), and
ceq(x) can be nonlinear functions. For what concerns x, lb, and ub, they can be
passed as vectors or matrices. The meaning of all these elements can be listed as
follow:

• f(x) is the function of which we are looking for the minimum, while x is the
minimum, i.e. the solution of our problem;
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• A and b can be passed to the function ’fmincon’ if the solution has to respect
a condition of the form A · x ≤ b;

• Aeq and beq can be passed to the function ’fmincon’ if the solution has to
respect a condition of the form Aeq · x = beq;

• c(x) and ceq(x) can be passed to the function ’fmincon’ if the solution has to
respect conditions of the form c(x) ≤ 0 or ceq(x) = 0, respectively;

• lb and ub represent the lower and the upper bounds, respectively, that the
solution has to satisfy. They can be set to infinity or minus infinity if the
solution is not bounded.

Moreover, it is necessary to pass to the ’fmincon’ function also a starting point
x0, from which it starts to find a minimizer. In our case, of crucial importance
has been the choice of the starting point and its variation once one crosses the
transition line β = 1/

√
3 ≈ 0.58.

To express the constraints, on the other hand, among the various opportunities
listed above, the use of lb, ub, Aeq and beq has been chosen. Since populations
xj and yj must assume values between 0 and 1, the lower bound has been set to
[0,0,0,0,0,0,0,0], while the upper bound to [1,1,1,1,1,1,1,1]. For what concern the
constraints q4

i=1 xj = 1 and q4
i=1 yj = 1, instead, we set

Aeq =
A

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

B

and beq = [1,1]. This choice proved to be particularly effective and, overall, using
this algorithm allowed us to find all the results we were looking for.

1 bas i s_point = [ 0 . 5 , 0 , 0 . 5 , 0 , 0 , 0 . 5 , 0 , 0 . 5 ] ; %we s t a r t from the demixed
phase

2 bas i s_po int_star t = [ 0 . 5 , 0 , 0 . 5 , 0 , 0 , 0 . 5 , 0 , 0 . 5 ] ;
3

4 t = 0 . 0 3 3 ;
5 lb= [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ; %lower bound
6 ub= [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ; %upper bound
7 AA= [ ] ;
8 bb= [ ] ;
9 Aeq= [1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ; 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ] ; %Aeq x = beq

10 beq = [ 1 , 1 ] ;
11 opt ions = opt imopt ions (@fmincon , ’ Funct ionTolerance ’ , 1e−15, ’

Constra intTolerance ’ ,1 e−15, ’ MaxFunctionEvaluations ’ ,10000) ;
12

13 i =1;
14 f o r B=0.99 : −0 .01 :0 .01
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15 f o r A=3: −0.02:0 .01
16

17 f = @(x ) (1/2) ∗(x (1 ) ^2 + x (2)^2+x (3) ^2 + x (4) ^2) + ( (B^2) /2) ∗(x
(5 ) ^2 + x (6)^2+x (7) ^2 + x (8) ^2) + A∗B∗(x (1 ) ∗x (5 )+ x (2) ∗x (6 )+x (3) ∗x
(7 )+ x (4) ∗x (8 ) ) − 2∗ t ∗( sq r t ( x (5 ) ∗x (6 ) ) + sq r t ( x (7 ) ∗x (6 ) ) + sq r t ( x
(7 ) ∗x (8 ) ) + sq r t ( x (8 ) ∗x (5 ) ) ) − 2∗ t ∗( sq r t ( x (1 ) ∗x (2 ) ) + sq r t ( x (2 ) ∗x
(3 ) ) + sq r t ( x (3 ) ∗x (4 ) ) + sq r t ( x (4 ) ∗x (1 ) ) ) ;

18

19 i f A==3
20 x = fmincon ( f , bas i s_point_start ,AA, bb , Aeq , beq , lb , ub , [ ] ,

opt i ons ) ;
21 e l s e
22 x = fmincon ( f , bas is_point ,AA, bb , Aeq , beq , lb , ub , [ ] , opt i ons ) ;
23 end
24

25 Vstar = (1/2) ∗(x (1 ) ^2 + x (2)^2+x (3) ^2 + x (4) ^2) + ( (B^2) /2) ∗(x (5 )
^2 + x (6)^2+x (7) ^2 + x (8) ^2) + A∗B∗(x (1 ) ∗x (5 )+ x (2) ∗x (6 )+x (3) ∗x (7 )
+ x (4) ∗x (8 ) ) − 2∗ t ∗( sq r t ( x (5 ) ∗x (6 ) ) + sq r t ( x (7 ) ∗x (6 ) ) + sq r t ( x (7 ) ∗
x (8 ) ) + sq r t ( x (8 ) ∗x (5 ) ) ) − 2∗ t ∗( sq r t ( x (1 ) ∗x (2 ) ) + sq r t ( x (2 ) ∗x (3 ) )
+ sq r t ( x (3 ) ∗x (4 ) ) + sq r t ( x (4 ) ∗x (1 ) ) ) ;

26

27 S_mix = −1/2∗( x (1 ) ∗ log (x (1 ) /(x (1 )+x (5) ) ) + x (5) ∗ log (x (5 ) /(x
(1 )+x (5) ) ) + x (2) ∗ log (x (2 ) /(x (2 )+x (6) ) ) + x (6) ∗ log (x (6 ) /(x (2 )
+x (6) ) ) + x (3) ∗ log (x (3 ) /(x (3 )+x (7) ) ) + x (7) ∗ log (x (7 ) /(x (3 )+x (7) )
) + x (4) ∗ log (x (4 ) /(x (4 )+x (8) ) ) + x (8) ∗ log (x (8 ) /(x (4 )+x (8) ) ) ) ;

28

29 S_loc = −((x (1 )+x (5) ) /2∗ log ( ( x (1 )+x (5) ) /2) + (x (2 )+x
(6) ) /2 ∗ log ( ( x (2 )+x (6) ) /2) + (x (3 )+x (7) ) /2 ∗ log ( ( x (3 )+x (7) ) /2) +

(x (4 )+x (8) ) /2 ∗ log ( ( x (4 )+x (8) ) /2) ) ;
30

31 i f A==3 && B>(0.58)
32 bas i s_po int_star t = [ 0 . 5 , 0 , 0 . 4 9 , 0 . 0 1 , 0 , 0 . 5 , 0 . 1 , 0 . 4 9 ] ;
33 bas i s_point = [ 0 . 5 , 0 , 0 . 4 9 , 0 . 0 1 , 0 , 0 . 5 , 0 . 1 , 0 . 4 9 ] ;
34

35 e l s e i f A==3 && B<(0.58)
36 bas i s_po int_star t =

[ 0 . 3 2 , 0 . 3 3 , 0 . 3 1 , 0 . 0 2 , 0 . 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 9 7 ] ;
37 bas i s_point = [ 0 . 3 2 , 0 . 3 3 , 0 . 3 1 , 0 . 0 2 , 0 . 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 9 7 ] ;
38

39 e l s e
40 bas i s_point = [ x (1 ) , x (2 ) , x (3 ) , x (4 ) , x (5 ) , x (6 ) , x (7 ) , x (8 )

] ;
41 end
42

43 vx1 ( i , : ) =[A,B, x (1 ) ] ;
44 vx2 ( i , : ) =[A,B, x (2 ) ] ;
45 vx3 ( i , : ) =[A,B, x (3 ) ] ;
46 vx4 ( i , : ) =[A,B, x (4 ) ] ;
47 vy1 ( i , : ) =[A,B, x (5 ) ] ;
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48 vy2 ( i , : ) =[A,B, x (6 ) ] ;
49 vy3 ( i , : ) =[A,B, x (7 ) ] ;
50 vy4 ( i , : ) =[A,B, x (8 ) ] ;
51 vVst ( i , : ) =[A,B, Vstar ] ;
52 vSmix ( i , : ) =[A,B, S_mix ] ;
53 vSloc ( i , : ) =[A,B, S_loc ] ;
54

55 i=i +1;
56 end
57 end
58

59 l en=length ( vx1 ( : , 1 ) ) ;
60 C=ones ( len , 3 ) ; % Mixing Entropy Colormap
61 K=ones ( len , 3 ) ; % Locat ion Entropy Colormap
62 Q=ones ( len , 3 ) ; % con f i gu r a t i on Colormap
63

64 f o r i =1: l en
65 i f vSmix ( i , 3 ) >=0.68
66 C( i , : ) =[0 .9290 , 0 .6940 , 0 . 1 2 5 0 ] ; %orange
67 e l s e i f vSmix ( i , 3 ) <=0.05 && vSmix ( i , 2 ) <=0.57735
68 C( i , : ) = [ 1 , 1 , 0 ] ; %ye l low
69 e l s e i f vSmix ( i , 3 ) <=0.05 && vSmix ( i , 2 ) >=0.57735
70 C( i , : ) = [ 0 , 1 , 0 ] ; %green
71 e l s e i f vSmix ( i , 1 )>1 && vSmix ( i , 2 ) <=(1/3)
72 C( i , : ) = [ 1 , 0 , 1 ] ; %magenta
73 e l s e
74 C( i , : ) = [ 0 , 0 , 1 ] ; %blue
75 end
76

77 end
78

79 f o r i =1: l en
80 i f vSmix ( i , 3 ) >=0.68
81 Q( i , : ) =[0 .9290 , 0 .6940 , 0 . 1 2 5 0 ] ; %orange
82 e l s e
83 Q( i , : ) = [ 0 , 0 , 1 ] ; %blue
84 end
85 end
86

87 f o r i =1: l en
88 i f vSmix ( i , 3 ) >=0.68
89 K( i , : ) =[0 .9290 , 0 .6940 , 0 . 1 2 5 0 ] ;
90 e l s e
91 K( i , : ) = [ 0 , 1 , 0 ] ;
92 end
93 end
94

95 subplot ( 2 , 4 , 1 )
96 s c a t t e r 3 ( vx1 ( : , 1 ) , vx1 ( : , 2 ) , vx1 ( : , 3 ) ,10 ,Q, ’ . ’ )
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97 x l ab e l ( ’ alpha ’ ) ;
98 y l ab e l ( ’ beta ’ ) ;
99 z l a b e l ( ’ x1 ’ ) ;

100

101 subplot ( 2 , 4 , 2 )
102 s c a t t e r 3 ( vx2 ( : , 1 ) , vx2 ( : , 2 ) , vx2 ( : , 3 ) ,10 ,Q, ’ . ’ )
103 x l ab e l ( ’ alpha ’ ) ;
104 y l ab e l ( ’ beta ’ ) ;
105 z l a b e l ( ’ x2 ’ )
106

107 subplot ( 2 , 4 , 3 )
108 s c a t t e r 3 ( vx3 ( : , 1 ) , vx3 ( : , 2 ) , vx3 ( : , 3 ) ,10 ,Q, ’ . ’ )
109 x l ab e l ( ’ alpha ’ ) ;
110 y l ab e l ( ’ beta ’ ) ;
111 z l a b e l ( ’ x3 ’ ) ;
112

113 subplot ( 2 , 4 , 4 )
114 s c a t t e r 3 ( vx4 ( : , 1 ) , vx4 ( : , 2 ) , vx4 ( : , 3 ) ,10 ,Q, ’ . ’ )
115 x l ab e l ( ’ alpha ’ ) ;
116 y l ab e l ( ’ beta ’ ) ;
117 z l a b e l ( ’ x4 ’ ) ;
118

119 subplot ( 2 , 4 , 5 )
120 s c a t t e r 3 ( vy1 ( : , 1 ) , vy1 ( : , 2 ) , vy1 ( : , 3 ) ,10 ,Q, ’ . ’ )
121 x l ab e l ( ’ alpha ’ ) ;
122 y l ab e l ( ’ beta ’ ) ;
123 z l a b e l ( ’ y1 ’ ) ;
124

125 subplot ( 2 , 4 , 6 )
126 s c a t t e r 3 ( vy2 ( : , 1 ) , vy2 ( : , 2 ) , vy2 ( : , 3 ) ,10 ,Q, ’ . ’ )
127 x l ab e l ( ’ alpha ’ ) ;
128 y l ab e l ( ’ beta ’ ) ;
129 z l a b e l ( ’ y2 ’ )
130

131 subplot ( 2 , 4 , 7 )
132 s c a t t e r 3 ( vy3 ( : , 1 ) , vy3 ( : , 2 ) , vy3 ( : , 3 ) ,10 ,Q, ’ . ’ )
133 x l ab e l ( ’ alpha ’ ) ;
134 y l ab e l ( ’ beta ’ ) ;
135 z l a b e l ( ’ y3 ’ ) ;
136

137 subplot ( 2 , 4 , 8 )
138 s c a t t e r 3 ( vy4 ( : , 1 ) , vy4 ( : , 2 ) , vy4 ( : , 3 ) ,10 ,Q, ’ . ’ )
139 x l ab e l ( ’ alpha ’ ) ;
140 y l ab e l ( ’ beta ’ ) ;
141 z l a b e l ( ’ y4 ’ ) ;
142

143 s c a t t e r 3 ( vSmix ( : , 1 ) , vSmix ( : , 2 ) , vSmix ( : , 3 ) ,50 ,C, ’ . ’ )
144 x l ab e l ( ’ alpha ’ ) ;
145 y l ab e l ( ’ beta ’ ) ;
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146 z l a b e l ( ’ Smix ’ ) ;
147

148 s c a t t e r 3 ( vSloc ( : , 1 ) , vSloc ( : , 2 ) , vS loc ( : , 3 ) ,50 ,K, ’ . ’ )
149 x l ab e l ( ’ alpha ’ ) ;
150 y l ab e l ( ’ beta ’ ) ;
151 z l a b e l ( ’ S loc ’ ) ;
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The link between the CVP
and the Coherent-State
method

It is interesting to highlight the link between the two pictures exploited for the
purpose of this work, i.e. the link of the two-component Bose-Hubbard Hamiltonian
reduced to the form (2.5) (let us take the case of the dimer as an example) with
the its semiclassical version which exhibits, as the most part of multimode boson
models, a dynamics typically described by discrete nonlinear Schrödinger equations
(see Eq. (2.10) in the case of the dimer with negligible hopping amplitudes). The
semiclassical picture applied to the BH model, in which boson operators are replaced
by local order parameters, is discussed in subsection 1.2.3.

The derivation of the generalized version of Eq. (2.10) (i.e. with non-negligible
hopping amplitudes) can be performed by means of the coherent-state variational
method where operators become classical variables within a sort of generalized
Bogoliubov scheme. The semiclassical Hamiltonian associated to

H = Ua

2

2Ø
j=1

a†
j a

†
j aj aj + Ub

2

2Ø
j=1

b†
j b

†
j bj bj +W

2Ø
j=1

a†
j aj b

†
j bj+

−Ta

2Ø
j=1

a†
j aj+1 − Tb

2Ø
j=1

b†
j bj+1 (B.1)

is easily found to be

Hs = Ua

2
Ø

j

|aj|4 + Ub

2
Ø

j

|bj|4 +W
Ø

j

|aj|2 |bj|2+
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−Ta

Ø
j

a∗
j aj+1 − Tb

Ø
j

b∗
j bj+1 (B.2)

where symbols a and b represents now local order parameters. Moreover, we have
already seen how dynamical constraints (2.3) and (2.4) can be rewritten as

N = n1 + n2 = |a1|2 + |a2|2

M = m1 +m2 = |b1|2 + |b2|2

within this scheme. Now, by using the classical version x = (|a1|2 − |a2|2)/N and
y = (|b1|2 − |b2|2)/M of the operators leading to the CVP-form of the Hamiltonian
(see Eq. (2.5)), one obtains, up to a constant term

Hs = ua

4
1
1 + x2

2
+ ub

4
1
1 + y2

2
+ w

2 (1 + xy)+

−
5
τa

√
1 − x2 cos (2 θx) + τb

ñ
1 − y2 cos (2 θy)

6
(B.3)

where θx = (φ1 − φ2)/2 and θy = (ν1 − ν2)/2 are angle variables canonically
conjugate with the action variables x and y satisfying the Poisson brackets

{x, θx} = 1
~N

{y, θy} = 1
~M

Variables φj and νj are the phases of the local order parameters

aj = |aj| ei φj

bj = |bj| ei νj

The Poisson brackets of |aj|2, |bj|2 with φj, νj can be easily inferred from the
canonical ones {aj, a

∗
j} = 1/(i~), {bj, b

∗
j} = 1/(i~) given by the coherent-state

variational method.

Thus, now that we have (B.3), we can find the Hamilton equations, given by

ẋ = {x,Hs}

ẏ = {y,Hs}
and, in the particular case of θx and θy, by equations

~N θ̇x = wy

2 + uax

2 + x τa cos (2 θx)√
1 − x2

(B.4)
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The link between the CVP and the Coherent-State method

~N θ̇y = wx

2 + uby

2 + y τb cos (2 θy)√
1 − y2 (B.5)

The calculation of the minimum-energy states requires that θx = θy = 0, since
at the GS all the order-parameters phases are equal by default (phase coherence).
Such minimum-energy configuration shows that equations (B.4) and (B.5), once
one has replaced θx and θy with 0, exactly reproduce the one that determines the
extremal points of the dimer effective potential within the Continuous Variable
approach. The search of the GS thus appears to be closely related to imposing the
stationarity condition for the effective potential, i.e. to the most important step of
the CVP.
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