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Abstract

From the seventeenth-century Dutch Tulip Bubble and the eighteenth-century
South Sea Bubble to the more recent Dotcom Bubble and U.S. Housing Bubble,
the economic history has been characterized by bubbles and crashes, booms, and
crises of all sorts. To fully understand the financial markets, it is crucial to
embrace the fact that the world economy is a constantly evolving multi-agent
complex system, that can be studied using the tools of complex systems theory.
Among them, the Agent-Based Models (ABMs) are powerful tools to investigate
the dynamics of complex systems, and the Statistical Physics has a history of
success in modeling systems with a large number of components (in this case the
traders) whose collective interactions lead to the emergence of highly not trivial
collective phenomena (the bubbles).

The present thesis proposes an extension of an ABM, first introduced by Kaizoji
et al. (2015) which is able to reproduce faster-than-exponential bubbles growth
together with the “stylized facts” of the financial market. The original model
is constituted by two classes of investors: the fundamentalist traders, rational
risk-averse traders, and the noise traders guided instead by social imitation and
trend following. The traders invest in two assets, one risk-free asset, and one risky
asset. The price dynamics is generated imposing the market clearing conditions
according to Walras’ theory of general equilibrium.

After a review of the original model, we introduce an extension to a multi-asset
framework composed of one risk-free asset and many risky assets. First, we address
the extension of the fundamentalist traders’ class. We then move to the market-
clearing conditions, which involves the solution of a complex non-linear system
that is addressed with numerical techniques.

The remaining and largest part of the work deals with the extension of the noise
traders class. The fundamental feature characterizing it is its Ising-like structure
which models the competition between the ordering force of social imitation and
the disordering impact of idiosyncratic opinion, hence we largely resort to statis-
tical physics to consider its generalization. We propose four statistical models,
deriving the stochastic dynamics characterizing each of them, and discussing their
strengths and weaknesses. We consider a Potts model, an O(n) model, a vectorial
extension of the BEG model, and an n-state extension of the BEG model. All
the models share the same underlying mechanism triggering the bubbles. When
the herding propensity parameter exceeds a certain critical threshold, the noise
traders class undergoes a phase transition from the disordered state dominated by
the idiosyncratic opinion to the ordered state where the class polarizes towards
specific investment preferences. This interaction-driven collective behavior leads



to the emergence of the bubbles. A thorough analysis of the phase transition is
carried out.

In the last part of the work, we deepen the analysis of the ABM with the O(n)
model for the noise traders class. We focus on it due to both the validity of the
resulting price time series and the high controllability of its behavior. We first check
the model’s ability to reproduce the “stylized facts” of financial markets. Then the
ABM is applied to understand the mechanism behind the time synchronization of
bubbles among the assets. Finally, the dynamic of the returns is compared to the
one predicted by the Capital Asset Pricing Model.
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Chapter 1

Introduction

From the seventeenth-century Dutch Tulip Bubble and the eighteenth-century
South Sea Bubble to the more recent Dotcom Bubble and U.S. Housing Bubble,
the financial and economic history have been characterized by bubbles and crashes,
booms, and crises of all sorts.

Despite the very definition of a bubble still being disputed, the impact of such
extreme collective phenomena like those aforementioned is undoubtedly dramatic.
Understanding the origin of these events is arguably one of the most important
problems in economic theory.

Traditional economic and finance theories based on a single representative agent
with unbounded rationality fail to explain and predict such phenomena and other
empirical facts characterizing financial markets. Indeed, the research in this field
is going through a paradigm shift from one representative rational agent towards
many diversified interacting agents with heterogeneous expectations and bounded
rationality as explained among the others in Lux [1], Arthur et al. [2], Brock and
Hommes [3], and Heckman [4].

Numerous empirical evidence has questioned the assumption of fully rational and
homogeneous behavior of the investors, as commented in Conlisk [5] and Rubinstein
[6]. The developments of behavioral economics have pushed this trend even more.
Now it is clear that by reducing all the complexity of the economical and financial
world to a single rational representative agent we are missing a central part of the
phenomena governing the evolution of such an articulated system. The so-called
“stylized facts” of the financial markets, discussed in Cont [7] and Cont [8], emerging
statistical regularities observed across a wide range of instruments, markets, and
time periods, are difficult to be accommodated and explained in a setting that does
not place at the center the role of interactions and heterogeneity.

To fully understand the financial markets, it is crucial to embrace the fact that
the world economy is a constantly evolving multi-agent complex system, that can be
studied using the tools of complex systems theory. Among them, on the one hand,
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the Agent-Based Models (ABMs), as discussed in Axelrod [9], Hommes [10], Chan
et al. [11], are powerful tools to investigate the dynamics of complex systems and
on the other hand, Statistical Physics has a history of success in modeling systems
with a large number of components (in this case the traders) whose collective
interactions lead to the emergence of highly non-trivial collective phenomena (in
this case the bubbles). Its fruitful application in finance is beautifully reviewed in
Sornette [12] Both tools are central to this work.

The present thesis proposes an extension of an ABM, first introduced by Kaizoji
et al. [13] which is able to reproduce faster-than-exponential bubbles growth together
with “stylized facts” of the financial market.

The original model is constituted of two assets. A risk-free asset, representing
a zero-coupon government bond yielding a constant rate of return, and a risky
asset, representing a stock paying a dividend to its holders. The latter asset’s risk
derives from the fact that its rate of return is not known a priori by the investors,
depending on the endogenous dynamics of the asset’s price and stochastic dividend.

The model features two classes of agents, the fundamentalist traders and the
noise traders. The fundamentalists are rational risk-averse traders. Their strategy
consists of maximizing, each trading day, their expectation under a Constant
Relative Risk Aversion (CRRA) utility function, resulting in the diversification of
their investments into a risky and risk-free fraction, as explained in Chiarella et al.
[14].

The noise traders, instead are driven by social imitation and trend following,
from their original introduction in Lux and Marchesi [15]. At odds with the
fundamentalists, each noise trader allocates all his wealth into either the risky asset
or the risk-free asset according to a Bernoulli probability distribution, depending on
the past prices, through the price momentum, and on the investment preferences of
the other traders, through the opinion index. It is this social imitation mechanism
that leads to the Ising-like structure of the noise trader class, which will be the
central element throughout all the following work.

A wealth dynamics equation governs the time evolution of the traders’ wealth.
Finally, the two classes of investors interact in the formation of the price of the
risky asset through the price equation, where both the fundamentalist and noise
investment fractions are present. The price equation is derived from the market-
clearing conditions according to Walras’ theory of general equilibrium, Walras
[16].

After a review of the original model, we introduce an extension to a multi-asset
framework characterized by one risk-free asset and many risky assets. Given that
in the real financial markets lots of risky assets exist and the portfolio theory is one
of the fundamental pillars of modern financial theory, it is clear why we are deeply
interested in extending the original setup in this direction. We need to develop an
extension for all the components of the model.
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First, we address the extension of the dividend process, the wealth dynamics
equation, and the fundamentalist traders’ class. The fundamentalists solve an
optimization problem, this time with respect to many risky investment fractions,
that can still be solved analytically. We then move to the generation of the price
dynamics, which involves the solution of a complex non-linear system that is
addressed with numerical techniques.

The remaining and largest part of the thesis deals with the extension of the
noise traders’ class, which leaves many possible generalization directions open and
requires a deeper theoretical analysis and a careful implementation strategy.

The fundamental feature characterizing the noise traders’ class is its Ising-
like structure which models the competition between the ordering force of social
imitation and the disordering impact of idiosyncratic opinion, hence we largely
resort to statistical physics to consider its generalization.

We propose four statistical models for the noise traders’ class, deriving the
stochastic dynamics characterizing each of them and discussing their strengths
and weaknesses. We consider in order a Potts model, an O(n) model, a vectorial
extension of the BEG model, and an n-state extension of the BEG model.

Despite their differences, all the models share the same underlying mechanism
triggering and generating the bubbles. When the herding propensity parameter
exceeds a certain model-dependent critical threshold, the noise traders’ class
undergoes an actual phase transition from the disordered state dominated by the
idiosyncratic opinion to the ordered state where the class polarizes towards specific
investment preferences. This interaction-driven collective behavior leads to the
emergence of highly non-trivial phenomena, the bubbles. This is a typical feature
of complex multi-agent systems.

A thorough analysis of the phase transition and its impact on the price dynamics
is carried out. In particular, the trend following behavior of the noise traders is
interpreted in a statistical physics fashion as an external field tilting the average
opinion. Several tools of complex systems theory are applied to gain theoretical
insights into the dynamics of the model, e.g. the stability theory of dynamical
systems and the Landau expansion of the free energy.

The core of the present work is constituted by the derivation of a realistic
stochastic dynamics for the investments, from each of the aforementioned statistical
models. The use of Master Equations and balance conditions characterize the
derivation of the simulation algorithms for the market model. Each model is defined
by its Hamiltonian, entering in the Boltzmann weight. The latter constitutes the
probability distribution associated with the possible configurations of the noise
traders class, hence it associates a probability to each possible set of investment
decisions the whole pool of traders can undertake. The Boltzmann weight of the
model completely determines the statistical properties of the system under analysis.

However, we are interested in modeling the dynamics of the class and not just
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its average properties. Hence, the next step for each of the four aforementioned
models is to derive the stochastic dynamics characterizing it. We have at disposal a
powerful tool to define realistic stochastic dynamics while having complete control
of the resulting statistical properties. This tool is constituted by the Markov
Chain Monte Carlo (MCMC) theory together with the detailed balance condition
which allows us to do exactly what we need, to start from the Boltzmann weight
and to obtain through a theoretically solid derivation the transition probabilities
which fully determines the stochastic dynamics of the model and therefore the time
evolution of the investment decisions of the noise traders.

The implementation of the simulations, which constituted a large part of the
work, is done in C++. The results of the simulation are stored in a database using
the HDF5 high-performance data library. Then all the analysis of the data and the
plotting are performed with Python, in particular using the Matplotlib, the Pandas
and the Seaborn libraries and accessing the HDF5 database through the Python
interfacing library h5py.

Another central tool of the work is Decision Theory. Indeed, the analysis of these
models unveils a profound connection between the Ising-like structure of the noise
traders’ class and the Decision Theory framework, in particular concerning the
Logit distribution, constituting the theoretical setting in which we can understand
the decision process characterizing the investments of this type of agents.

Finally, in the last part of the work, we deepen the analysis of the ABM with
the O(n) model for the noise traders’ class. We focus on it due to both the validity
of the resulting price time series and to the high controllability of its behavior,
connected to solid theoretical results on the model itself and the intuitive meaning
of its parameters.

We first check the model’s ability to reproduce the “stylized facts” of financial
markets, in particular, focusing on the hyperbolic decay of the autocorrelation
function of the absolute returns in contrast to the exponential decay of the au-
tocorrelation of the signed returns, together with the fat-tailed behavior of the
distribution of the returns. Then the analysis is carried out in two main directions.
First, the extended ABM is applied to understand the mechanism behind the time
synchronization of bubbles among the assets. The second instead deals with the
comparison of the dynamics of the resulting returns to the one predicted by the
Capital Asset Pricing Model (CAPM).

We close this introduction by presenting the outline of the work. In Chapter
2 we review the original market model setup, but we also expand the analysis
presented in the previous works on the model introducing and discussing new
points. In particular in section 2.6 we deepen the profound connection between
the noise traders class and the Ising model and in section 2.7 we present a new
analysis on two features of the original model’s transition rates which appear to be
fundamental in characterizing a realistic dynamics of the bubbles.

4



Introduction

In Chapter 3 we move towards the multi-asset extension of the market model.
We first discuss the multiple assets and the extended wealth dynamics in section,
then we move to the discussion of the fundamentalist traders class generalization
and extension of the market-clearing conditions and the resulting price equations.
Finally, we discuss the noise traders’ generalization puzzle in section, introducing
the approach we will use in the next Chapter to tackle it.

In Chapter 4 we present the core of the present work, constituting by the
Statistical Physics’s approach to the extension of the noise traders class. We
discuss the four statistical models, a Potts model, an O(n) model, a vectorial
extension of the BEG model, and an n-state extension of the BEG model and for
each of them we derive the characterizing stochastic dynamics and we discuss their
strengths and weaknesses.

Finally, in the last Chapter 5 we move to the comparison of the simulation
results of the O(n) model with the real financial markets and to its application to
investigate interesting financial phenomena. In particular, after having checked the
model’s ability to reproduce the “stylized facts” of financial markets, we try to gain
insights into the mechanism behind the time synchronization of bubbles among the
assets. We close the work comparing the dynamics of the resulting returns to the
one predicted by the Capital Asset Pricing Model (CAPM).

5



Chapter 2

The original Market Model

In this Chapter, we review the original market model, first introduced by Kaizoji
et al. [13]. We present it in a slightly modified version with respect to the original
paper’s one, based on the works of Kohrt [17] and Westphal and Sornette [18]. The
model has been studied and modified in several directions in Ollikainen [19], Conti
[20], Damiani [21], Kopp [22], Drouard [23] and Westphal and Sornette [24].

The market model presented is an Agent-Based Model (ABM), which is able to
reproduce faster-than-exponential bubbles growth together with the “stylized facts”
of financial market. It is constituted of two assets. A risk-free asset, representing
a zero-coupon government bond yielding a constant rate of return, and a risky
asset, representing a stock paying a dividend to its holders. The latter asset’s risk
derives from the fact that its rate of return is not known a priori by the investors,
depending on the endogenous dynamics of the asset’s price.

The model features two classes of agents, the fundamentalist traders and the
noise traders. The fundamentalists are rational risk-averse traders. Their strategy
consists in maximizing, each trading day, their expectation under a Constant
Relative Risk Aversion (CRRA) utility function, resulting in the diversification of
their investments into a risky and a risk-free fraction, as explained in Chiarella
et al. [14].

The noise traders, instead are driven by social imitation and trend following,
from their original introduction in Lux and Marchesi [15]. At odds with the
fundamentalists, each noise trader allocates all his wealth into either the risky asset
or the risk-free asset according to a Bernoulli probability distribution, depending on
the past prices, through the price momentum, and on the investment preferences of
the other traders, through the opinion index. It is this social imitation mechanism
that leads to the Ising-like structure of the noise trader class, which will be the
central element throughout all the following work.

Both the fundamentalist traders class and the noise traders class can be consid-
ered at the aggregate level, yet for different reasons. Each fundamentalist trader
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solves the same optimization problem of all the other traders in its class. They all
optimize the expectation of the same utility function, they are all characterized
by the same constant risk aversion and they all have identical information (price,
dividend and long-term expectations of return and standard deviation). Indeed,
the whole class can be considered at the aggregate level through a representative
agent, whose wealth is equal to the sum of all the wealth of the fundamentalist
investors.

The noise traders instead are characterized by the lack of diversification, investing
in one asset at a time. Hence, their actual impact on the market dynamics has
to be considered at the aggregate level, where the representative noise investor
endowed with the total wealth of the class invests into the risk and risk-free assets
in factions accounting for the respective proportion of traders.

The two classes of investors interact in the formation of the price of the risky asset
through the price equation, where both the fundamentalist and noise investment
fractions are present. The price equation is derived from the market-clearing
conditions according to Walras’ theory of general equilibrium, Walras [16].

In the following, we present in order the various components of the model. We
start in section 2.1 from the two assets, in particular the dividend process of the
risky one, and the wealth dynamics. Then we move in sections 2.2 and 2.3 to
the fundamentalist traders and the noise traders, respectively. Finally, we present
in section 2.4 the market-clearing conditions and we derive from them the price
equation which governs the dynamics of the price of the risky asset and ultimately
the dynamics of the market model.

After having introduced the structure of the original model, we move in section
2.5 to its dynamics. We present in particular the time series resulting from
two simulations, introducing the set of parameters used, commenting on some
implementation details, and then moving to the time series description. In section
2.6 we unveil the profound connection between the noise traders class and the Ising
model, exploiting this correspondence to gain insights into the emergence of the
bubbles. Finally, in section 2.7 we present a new analysis on two features of the
original model’s transition rates which appear to be fundamental in characterizing
a realistic dynamics of the bubbles.

2.1 The assets and the wealth dynamics
The model is characterized by two assets, one risk-free and one risky. The risk-free
asset represents a zero-coupon government bond yielding a constant rate of return
rf . This risk-free rate of return represents the benchmark interest an investor
would expect from an absolutely risk-free investment. In the model rf is defined
such that it represents the daily risk-free rate of return, where the convection is
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that the year is composed of 250 trading days.
The risky asset instead represents a stock paying a stochastic dividend. Its

intrinsic risk derives both from the stochastic character of its dividend and from
the fact that its return rate also depends on the dynamics of its price which is
not known a priori. Following the modification of the original model introduced
by Kohrt [17], the dividends are determined each trading day by a multiplicative
growth process

dt = (1 + rd
t )dt−1, (2.1)

with a stochastic growth factor rd
t modeled by a normal distribution

rd
t ∼ N (rd, σ2

d) (2.2)

with mean rd, representing the constant growth of the dividend, and standard
deviation σd.

The complete dynamics of the dividend process is indeed determined by the
i.i.d. Gaussian random variables rd

i ,

dt = d0

tÙ
i=1

(1 + rd
i ), (2.3)

where d0 is the initial dividend. The total risky rate of return rt of the risky asset
is defined by two contributions

rtot
t = dt

Pt−1
+ rt, (2.4)

where the first quantity is the dividend yield, the return deriving from the payment
of the dividend, while the second is the price rate of return, also called capital
return

rt = Pt

Pt−1
− 1, (2.5)

depending on the price dynamics. From expression (2.4), the two sources of risk
are clearly identifiable, i.e. the stochastic character of the dividend and the not
knowable a priori price dynamics. This enhanced risk with respect to the asset
representing the zero-coupon bond, it’s called risk premium with respect to rf . The
possibility of a more remunerative investment can push the traders to invest in the
risky asset.

As for the quantities already introduced, the evolution of the entire model takes
place according to a discrete-time dynamics in which all the quantities change
discretely each trading day, then holding their values in the interval (t, t + 1).

We have already commented on the possibility to consider the fundamentalist
and noise traders classes at the aggregate level by means of a representative agent.
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We will deepen this topic in the next sections. By now, we simply assume, following
Kaizoji et al. [13], that each trading day the class of fundamentalist (noise) traders
effectively constructs its aggregate portfolio investing a fraction xf

t (xn
t ) of its wealth

W f
t (W n

t ) in the risky asset and a fraction 1 − xf
t (1 − xn

t ) in the risk-free asset.
Borrowing and short-selling are not admitted in the market model, hence the risky
fractions always satisfy xf,n

t ∈ [0,1].
According to this description, we can write the wealth dynamics equation for

both the fundamentalist and noise classes as

W f,n
t = W f,n

t−1x
f,n
t−1

C
1 + dt

Pt−1
+ rt

D
+ W f,n

t−1(1 − xf,n
t−1)(1 + rf ), (2.6)

where the first term accounts for the risky investment while the second for the
risk-free one. Reorganizing the terms we obtain the expression

W f,n
t = W f,n

t−1

C
1 + rf + xf,n

t−1

A
dt

Pt−1
+ Pt

Pt−1
− 1 − rf

BD
, (2.7)

where the quantity

rexcess
t =

A
dt

Pt−1
+ Pt

Pt−1
− 1 − rf

B
=
A

dt

Pt−1
+ rt − rf

B
(2.8)

represents the excess return of the risky asset with respect to risk-free one and
clearly shows the fact that the risky asset can be more profitable (rexcess

t >0), but
also less profitable (rexcess

t <0), with respect to the risk-free asset.

2.2 The fundamentalist traders
The introduction of the fundamentalist traders in the original model of Kaizoji
et al. [13], follows the work of Chiarella et al. [14] and Brock, Hommes, et al. [25].

The fundamentalist traders are rational risk-averse traders maximizing each
trading day their expectation under a Constant Relative Risk Aversion (CRRA)
utility function. They are myopic traders only considering one time-step. Each
fundamentalist trader solves the same optimization problem of all the other traders
in its class, they all optimize the expectation of the same utility function, they
are all characterized by the same constant risk aversion and they have the same
information about the assets. Indeed, the whole class can be considered at the
aggregate level through a representative agent, whose wealth is equal to the sum
of all the wealth of the fundamentalist investors. At each trading day t the
fundamentalist traders decide the value of their risky fraction maximizing the
expected utility function of the future wealth at time t + 1

xf
t = max

xf
t

Et[U(W f
t+1(xf

t )]. (2.9)
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The subscript of the expectation value underline that the expectation is done under
the knowledge of available information up to and including time t. The CRRA
utility function U is defined according to

U(W ) =
log(W ) γ = 1

W 1−γ

1−γ
γ /= 1

(2.10)

where the constant risk aversion γ follows from

γ = −W
U ÍÍ(W )
U Í(W ) . (2.11)

The maximization problem has been solved in Chiarella, He, et al. [26], here we
report the final (approximated to first order) result

xf
t = 1

γ

Et[rexcess
t+1 ]

Vart[rexcess
t+1 ] . (2.12)

From the formula it emerges a mean-variance, or in other words, return-risk trade-
off. The risky fraction is larger, the larger is the expected excess return of the
risky asset and the lower is the uncertainty on its value, measured by its variance.
We underline again that the expectation and the variance is computed under the
knowledge of available information up to and including time t. We also notice that
the risky fraction is independent of the fundamentalist’s wealth, property descending
from the definition of the Constant Relative Risk Aversion utility function.

The expectation of the excess return can be computed using the definition of
the latter as

Et[rexcess
t+1 ] = Et

C
dt+1

Pt

+ rt+1 − rf

D
= dt(1 + rd)

Pt

+ Et[rt+1] − rf , (2.13)

where in the last passage we used the formula for the growth of the dividend (2.1)
and the fact that the risk-free return rate is constant.

Following Kaizoji et al. [13] we also assume that the fundamentalist traders
expect a constant return rate

Et[rt+1] := Er = cst, (2.14)

based on the expected behaviour of the risky asset in the long-run, and a constant
variance of the return

Vart[rt+1] := σ2
r = cst. (2.15)

The latter quantity is related to the variance of the excess return entering in
formula (2.12) by assuming, following Kaizoji et al. [13], Modigliani and Miller [27],
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Modigliani and Miller [28], that the dividend policy is independent of the market
price and vice-versa and that Pt º

ò
Vart[dt+1]
Vart[rt+1] , hence

Vart[rexcess
t+1 ] = Vart[rt+1] + Vart[dt+1]

P 2
t

≈ Vart[rt+1] = σ2
r = cst. (2.16)

Then the risky fraction in formula (2.12) becomes

xf
t = 1

γ

Er − rf + dt(1+rd)
Pt

σ2
r

. (2.17)

Following Ollikainen [19], we comment on the fact that the fundamentalists allocate
their wealth according to the “fundamentals” of the market. Any deviation from the
fundamental value of the risky asset represents an opportunity to gain. In particular,
we can identify the deviations from the fundamental value in the dividend-price
ratio dt

Pt
, since the fundamental value is obtained discounting the stream of dividends

by the constant factor (1 + rd). Indeed, the strategy of the fundamentalist is buying
the risky asset when the dividend-price ratio is high, hence the fundamental value
is higher than the market price, and selling it when the ratio is low, hence the
market price is higher then the fundamental value. From the expression (2.17),
we also notice that the adjustment to the risky fraction are done on top of the
constant quantity 1

γ

Er−rf

σ2
r

.

2.3 The noise traders
The noise traders do not implement a rational maximization process, as the
fundamentalist traders do, to decide their investment decisions. They are instead
driven by social imitation and trend following, allocating each trading day all their
wealth into either the risky asset or the risk-free asset.

The setup of the noise traders class follows the work of Lux and Marchesi [15] and
their “all-or-nothing” investment strategy accounts for the lack-of-diversification
phenomenon, documented among the others in Kelly [29].

Since they are investing in one asset at a time, the noise traders have to be
considered at the aggregate level of their class. Indeed, their actual impact on the
market dynamics can be represented by the investment decisions of a representative
agent, endowed with the total wealth of the class, who invests in the risk and
risk-free assets in factions accounting for the respective proportion of traders.

In particular, the fraction of wealth allocated by the representative noise investor
into the risky asset is given by

xn
t = N+

t

N+
t + N−

t

∈ [0,1], (2.18)
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where N+
t represents the number of noise traders investing in the risky asset, while

N−
t counts the traders investing in the risk-free asset. The total number of traders

N+
t + N−

t = Nn is a constant in the dynamics of the model.
We have to comment on the fact that the risky fraction defined in equation

(2.18), is valid given that no heterogeneity is present among the noise traders, they
all follow the same investment strategy and at each time step they all possess the
same fraction of the total wealth of the class, which in the simulation is redistributed
at the beginning of the trading day accordingly. We assume that we can neglect
the impact on the market of the out-of-average wealth levels of individual noise
traders, such that the representative noise trader correctly models the aggregate
impact of the investment decisions of the class.

The heterogeneity among the noise traders has been shown to lead to a fat-tailed
distribution of the wealth inside the class, through a phenomenon of wealth conden-
sation as explained in Bouchaud and Mézard [30] and Harras et al. [31]. However,
following Kaizoji et al. [13], neglecting this heterogeneity is not a restriction in the
present model since we are interested only in the aggregated impact of this kind of
traders.

The noise trader investment decision process is governed by the social imitation
and the trend-following attitudes and is stochastic. The trader can hold either the
risky asset or the risk-free one and at each trading day t, can switch between them
or hold its previous day position according to a set of transition probabilities. Its
investment strategy can be represented by a discrete-time Markov chain, depicted
in figure 2.1.

Risky Risk-free
p+

t

p−
t

1 − p+
t 1 − p−

t

Figure 2.1: Markov chain for the investment decision of a noise trader.

The two possible states of the Markov Chain are constituted by the investment
in the risky or risk-free asset. The transition probabilities are as follows. The trader
holding the risky asset decides during the trading day t to switch to the risk-free one
with probability p+

t , otherwise he decides to hold its position. Analogously, a trader
investing in the risk-free asset can switch to the risky position with probability p−

t

or otherwise hold the present one.
In light of this setup, the number of noise investors holding the risky asset N+

t

12



The original Market Model

or the risk-free asset N−
t have to be considered as discrete-time stochastic processes

governed by the Markov chain just introduced.
The trend-following and social imitation attitudes of the noise traders are

modeled by two terms entering the form of the transition probabilities and hence
governing the dynamics of the investment decision. Before describing the form of
the probabilities we introduce and analyze the two mechanisms.

The first mechanism of trend-following models the chartist character of this
type of investor. They analyze trends in the price of the risky asset and react to
its movements. This feature models the impact of technical analysis on the noise
traders’ investment strategy.

The investors keep track of the price trend through a price momentum indicator,
which is the expression for an exponential moving average of past returns. The
time dependent price momentum Ht is defined as

Ht = θHt−1 + (1 − θ)rt = θHt−1 + (1 − θ)
A

Pt

Pt−1
− 1

B
, (2.19)

where θ ∈ [0,1) is the memory parameter controlling the characteristic length
of the time window of memory of the past returns. In particular we can define
τmemory = 1

1−θ
as the characteristic memory time length of the noise traders. Clearly

the closer θ is to 1 the longer in the memory, while at the opposite θ = 0 represents
the extreme case of a memory of just one trading day.

The second feature characterizing the noise investors is the social imitation
attitude. It is this social interaction between the agents endowing the noise traders
class with the Ising-like structure, as explained in Harras et al. [31], central in
understanding the emergence of bubbles.

The social imitation leads to the polarization of the investment preferences of the
class and governs the appearance and dynamics of non-trivial collective phenomena
of the investors.

Following Lux and Marchesi [15], in the original model the opinion index st

measures the polarization of the noise traders class. It is defined as

st = N+
t − N−

t

N+
t + N−

t

∈ [−1,1], (2.20)

where at denominator we recognize the constant total number of noise investors Nn.
The sign of the index represents the attitude towards the risky asset. A positive
sign stands for a bullish attitude towards the risky investment, while a negative one
represents a bearish attitude of the class. From the definition of this index taking
value in the interval [−1,1], the connection of the class with the Statistical Physics
Ising model starts to become visible, we will largely deepen it in the following. The
opinion index is directly connected to the risky fraction by the formula

st = 2xn
t − 1. (2.21)
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The two mechanisms, governing the noise traders’ investment decisions, enter
in the transition probabilities. Following Kaizoji et al. [13], the parameters st

and Ht impact linearly on the transition probabilities. Moreover, at odds with
Kaizoji et al. [13], and following the modification presented in Kohrt [17], a bias
is introduced accounting for a greater propensity in investing in the risky asset.
Finally one last fundamental element is present in the transition probabilities, the
herding propensity parameter κt. This quantity represents the linear dependence
coefficient measuring how much the two mechanism considered impact the transition
probability. All in all, the transition rates are defined by

p+
t = p+

2

A
1 − 1

p+
κt(st + Ht)

B
, (2.22)

p−
t = p−

2

A
1 + 1

p+
κt(st + Ht)

B
. (2.23)

The parameters κt, p+ and p− are chosen such that the probabilities are almost
always contained in the interval [0,1]. Yet, we will see in the following that there are
situations (the bubbles) in which the probabilities exit this range and indeed are no
more consistent. In order to solve this to have well defined transition probabilities,
they are redefined including a saturation mechanism

p±
t =



p±

2

A
1 ∓ 1

p+
κt(st + Ht)

B
if p±

2

A
1 ∓ 1

p+
κt(st + Ht)

B
∈ [0,1]

0 if p±

2

A
1 ∓ 1

p+
κt(st + Ht)

B
< 0

1 if p±

2

A
1 ∓ 1

p+
κt(st + Ht)

B
> 1

(2.24)

We now comment further on the quantities entering the transition probabilities.
In particular p+ < p− are the parameters enforcing the bias towards a greater
propensity in investing in the risky asset. The parameter κt, representing the
magnitude of the herding propensity, will be central in understanding the polariza-
tion of the class and the formation of the bubbles. In the present model we will
always consider it strictly positive κt > 0, however here we briefly comment on the
other two possibilities. A negative herding propensity κt < 0 represents contrarian
traders, while κt = 0 characterize the situation where the trend-following and social
imitation attitude are absent. In the last scenario, we would have p+

t = p+
2 and

p−
t = p−

2 , from which the meaning of the parameters p+ and p− becomes clear.
They govern the length of the time window over which the traders hold the same
investment decision in absence of herding behaviour, respectively t+

h = 2
p+

and
t−
h = 2

p−
. We will refer to these two parameters as the average holding time of the

risky and risk-free asset respectively.

14



The original Market Model

The transition probabilities being defined, we can now write a time evolution
equation for the number of traders investing in the two assets. To do so, we notice
that each investment decision can be represented by a Bernoulli random variable
ξ(p), where the probability p defining its distribution is set equal to one of the
transition rates according to the previous asset held by the trader. In particular,
the investment decision for a trader previously holding the risky asset is represented
by

ξ(p+
t−1) =

1 (switch to risk-free) with probability p+
t−1

0 (hold risky) otherwise
(2.25)

while for the trader previously investing in the risk-free asset

ξ(p−
t−1) =

1 (switch to risky) with probability p−
t−1

0 (hold risk-free) otherwise
(2.26)

Then the time evolution of the numbers of traders investing in the risky asset is
described by

N+
t =

N−
t−1Ø

k=1
ξk(p−

t−1) +
N+

t−1Ø
k=1

[1 − ξk(p+
t−1)], (2.27)

where the first sum accounts for the switches towards the risky asset, while the
second accounts for the traders holding their previous bullish position. Analogously
for the risk-free asset we have

N−
t =

N+
t−1Ø

k=1
ξk(p+

t−1) +
N−

t−1Ø
k=1

[1 − ξk(p−
t−1)]. (2.28)

Finally we can derive also the dynamics of the risky fraction

xn
t = N+

t

N+
t + N−

t

= 1
N−

t−1 + N−
t−1

AN−
t−1Ø

k=1
ξk(p−

t−1) +
N+

t−1Ø
k=1

[1 − ξk(p+
t−1)]

B
(2.29)

and consequently the dynamics of the opinion index

st = N+
t−1 − N−

t−1
N+

t + N−
t

= 1
N−

t−1 + N−
t−1

AN−
t−1Ø

k=1
[2ξk(p−

t−1)−1]+
N+

t−1Ø
k=1

[1−2ξk(p+
t−1)]

B
. (2.30)

2.4 The market-clearing conditions and the price
equation

In this section, we present the last part of the model, constituted by the market-
clearing conditions and the resulting price equation. The two classes of investors
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interact in the formation of the price of the risky asset through the price equation,
where both the fundamentalist and noise investment fractions are present. We have
discussed the aggregate interpretation of both the classes in the previous sections,
hence the picture is effectively that of two representative agents endowed with
the total wealth of their classes and investing according to the risky and risk-free
fractions determined by their respective investment strategies in equation (2.17)
for the fundamentalist traders and in equation (2.29) for the noise traders.

The market-clearing conditions are set according to Walras’ theory of general
equilibrium, Walras [16]. Indeed, since we are in absence of external supply, we
have that the risky asset’s aggregate excess demand of fundamentalist and noise
traders perfectly compensate each other,

∆Df
t−1→t + ∆Dn

t−1→t = 0, (2.31)

where ∆Df
t−1→t and Dn

t−1→t represent respectively the risky asset’s aggregate excess
demands of each group. The excess demands can be expressed using the risky
fraction of each class as

∆Df
t−1→t = W f

t xf
t − W f

t−1x
f
t−1

Pt

Pt−1
, (2.32)

∆Dn
t−1→t = W n

t xn
t − W n

t−1x
n
t−1

Pt

Pt−1
. (2.33)

Now using the wealth dynamics equation (2.7) we get

∆Df
t−1→t = W f

t−1x
f
t

C
1+rf +xf

t−1

A
dt

Pt−1
+ Pt

Pt−1
−1−rf

BD
−W f

t−1x
f
t−1

Pt

Pt−1
, (2.34)

∆Dn
t−1→t = W n

t−1x
n
t

C
1+rf +xn

t−1

A
dt

Pt−1
+ Pt

Pt−1
−1−rf

BD
−W n

t−1x
n
t−1

Pt

Pt−1
. (2.35)

Before imposing the equilibrium condition to derive the price equation, we still
need to make explicit the dependence of the fundamentalist’s risky fraction on the
price Pt at time t,

xf
t = 1

γ

Er − rf + dt(1+rd)
Pt

σ2
r

. (2.36)

The noise traders’ risky fraction instead, due to the stochastic character of the
investment decision process of this type of traders, does not depend on the present
price Pt.

Imposing the equilibrium condition (2.31), we obtain a non-trivial equation in
the unknown price Pt. Manipulating its expression, in Kohrt [17] it is shown that
the equation reduces to a quadratic equation in Pt.
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The price equation has the form

atP
2
t + btPt + ct = 0, (2.37)

where the parameters are expressed as follows

at = 1
Pt−1

C
W n

t−1x
n
t−1(xn

t − 1) + W f
t−1x

f
t−1

A
1
γ

Er − rf

σ2
r

− 1
BD

, (2.38)

bt = 1
γ

W f
t−1

σ2
r

I
xf

t−1
dt(1 + rd)

Pt−1
+ (Er − rf )

C
xf

t−1

A
dt

Pt−1
− 1 − rf

B
+ 1 + rf

DJ

+ W n
t−1x

n
t

C
xn

t−1

A
dt

Pt−1
− 1 − rf

B
+ 1 + rf

D
, (2.39)

ct = W f
t−1

1
γ

dt(1 + rd)
σ2

r

C
xf

t−1

A
dt

Pt−1
− 1 − rf

B
+ 1 + rf

D
. (2.40)

From the condition xf,n
t ∈ [0,1] ∀t. it follows that (xn

t −1) < 0 and
A

1
γ

Er−rf

σ2
r

−1
B

=

(xf
min − 1) < 0 so that the coefficient at < 0 ∀t is always negative. Moreover, from

the positivity of the term
A

1
γ

Er−rf

σ2
r

−1
B

> 0 implies the positivity of the coefficients

bt > 0 ct > 0 ∀t.
From the conditions on the parameters at < 0, bt > 0 and ct > 0 we have that

the unique physical solution for the price equation is

Pt =
−bt −

ñ
b2

t − 4atct

2at

. (2.41)

As anticipated, we have that the price equation derived from the market-clearing
conditions fully determines the dynamics of the price.

2.5 The dynamics of the model
In the previous sections, we have introduced the various components of the model.
Now in this section, we move to the analysis of the resulting dynamics characterizing
it. We will first expand the discussion on the quantity κt, representing the herding
propensity of the noise traders class. Then, we will introduce the set of parameters
used in the simulations. We will proceed to present the resulting time series and
finally, we will analyze them. Building on the connection with the Ising model we

17



The original Market Model

will deepen the mechanism leading to the emergence of the bubbles, these collective
phenomena capable of shaking the entire market.

We start by expanding the discussion on the parameter κt. This quantity
measures the noise traders’ propensity to herd, hence constituting the factor
weighing the impact of the trend-following and social imitation attitudes on the
investment strategy of these investors. As explained in the original paper by
Kaizoji et al. [13], the parameter κt accounts for the impact of the economical and
geopolitical climate on financial markets.

Two different setups for the herding propensity parameter are outlined in Kaizoji
et al. [13]. A stable economical and geopolitical climate, represented by a constant
value of κt := κ = cst and a varying environment, modeling the impact of a
changing world on the financial markets,

κt = κt−1 + ηκ(µk − κt−1) + σκvt. (2.42)

The above discrete-time equation defines a time-varying stochastic process for κt,
capturing the dynamical framework of regime-switching characterizing the financial
markets, as explained in Lux [1].

Equation (2.42) defines a discrete Ornstein-Uhlenbeck stochastic process, where
µk represents the mean reversion level towards which the process tends to drift over
time. The quantity ηκ represents the mean reversion rate governing the velocity of
the reversion process towards µk.

Finally, vt represents a Wiener process, hence the variables vt are i.i.d. normal
random variable N (0,1). The standard deviation of the Wiener process governing
its diffusion is set by σκ. We are in presence of a modified random walk, which
on top of its stochastic motion tends to revert to the value µk, with a greater
attraction the farther the process is from that value. The discrete-time version
of the Ornstein-Uhlenbeck process is also known as discrete-time autoregressive
model (AR(1)).

The Ornstein-Uhlenbeck process is the only non-trivial stationary Gaussian
Markovian process, indeed its distribution is fully determined by its first two
moments

E[κt] = κ0e
−ηκt + µk(1 − e−ηκt), (2.43)

Cov[κs, κt] = σ2
κ

2ηκ

(e−ηκ(t−s) + e−ηκ(t+s)) s < t, (2.44)

from which we can see that in the long run t → +∞ the distribution of the process
converge to the stationary Gaussian distribution

κt ∼ N
A

µk,
σ2

κ

2ηκ

B
, (2.45)
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with mean equal to the mean reversion level µk and variance σ2
κ

2ηκ
.

We now move to the introduction of the set of parameters used for the simulations
of the original market model.

2.5.1 The set of parameters
We introduce the set of parameters used to run all the simulations of the original
market model. Their values are motivated by real market behavior and are chosen
such that one time-step corresponds to roughly one trading day. The set of
parameters we use is presented in table 2.1 and is mainly taken from Westphal and
Sornette [18]. Discussions on the choice of their values can be found in Kaizoji

Parameters

Assets rf = 4 × 10−5 rd = 1.6 × 10−4 σd = 1.6 × 10−5

d0 = 1.6 × 10−4 P0 = 1

Fundamentalist traders W f
0 = 109 xf

0 = 0.3 Er = 1.6 × 10−4

σr = 0.02

Noise traders W n
0 = 109 xf

0 = 0.3 Nn = 1000
θ = 0.95 H0 = 1.6 × 10−4 p+ = 0.199375

p− = 0.200625
Herding propensity κ0 = µk µκ = 0.98p+ ηκ ≈ 0.11

σκ ≈ 0.01

Table 2.1: Set of parameters for the original model simulation. Their values are
motivated by real markets data and are mainly taken from Westphal and Sornette
[18].

et al. [13], Kohrt [17] and Ollikainen [19]. Here we review the main reasons for
their choice.

Starting from the analysis of assets’ parameters, the daily risk-free rate is set
to rf = 4 × 10−5, which corresponds to an annualized risk-free rate of return
rannual

f ≈ rf × 250 = 0.01. Following Kaizoji et al. [13] the dividend process’
parameters are calibrated according to Engsted and Pedersen [32]. The average
value of the dividend’s growth factor is set to rd = 1.6 × 10−4, corresponding to
an annualized value of rannual

d ≈ rd × 250 = 0.04. The standard deviation of the
growth rate is instead one order of magnitude smaller σd = 1.6 × 10−5.

We assume such a small value in order to model a more prominent impact of
the stochastic noise traders’ behaviour with respect to the stochastic dynamics of
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the dividend process. Indeed, in the present model we want to focus primarily on
the source of stochasticity coming from the noise traders’ strategy and not on the
actual dividend structure.

The initial value of the dividend d0 = 1.6×10−4 is set in order that its annualized
value is equal to the annual growth rate dannual

0 ≈ d0 × 250 = 0.04. Moreover, the
initial value of the price is set to an unitary value P0 = 1.

Moving to the traders, we have that both the fundamentalist and the noise
investors starts with the same level of wealth W f

0 = W n
0 = 109 and share the same

initial endowment in the risky asset xf
0 = xn

0 = 0.3. Regarding the expectation
of the fundamentalist on the future dynamics of the returns, we have that they
expect an average return equals to the dividend’s growth rate Er = 1.6 × 10−4 = rd

and foresee a standard deviation of the return σr = 0.02.
Moving to the other type of investors, the Nn = 1000 noise traders are char-

acterized by a memory length τmemory = 1
1−θ

= 20 trading days, roughly one
month, which corresponds to a value for the parameter θ = 0.95. The initial
price momentum is set to be equal to the average growth rate of the dividend
H0 = 1.6 × 10−4 = rd. Finally, according to Kohrt [17] the parameters introducing
the bias towards the risky asset are set equal to p+ = 0.199375 and p− = 0.200625,
leading to a higher frequency of positive bubbles with respect to negative ones as
observed in real markets.

Moving to the herding propensity, we first comment that the set of parameters
already discussed are used for the simulation with both the Ornstein-Uhlenbeck
kappa process and the constant one. The constant herding propensity setup
is characterized by the constant value κt = κ0 = µk, where as for the varying
parameter the mean reversion level is set according to µκ = 0.98p+. Besides, for
the Ornstein-Uhlenbeck kappa we have two more parameters to calibrate. The
mean reversion rate ηκ and the standard deviation of the Wiener process σκ are set
such that the limiting Gaussian distribution for t → +∞ has standard deviation of
0.1p+ and a deviation of the kappa process two standard deviation above µκ will
revert within ∆T = 20 trading days. Since the standard deviation of the limiting
Gaussian distribution is σκ√

2ηκ
, from the first condition we have

σκ = 0.1p+√
2ηκ. (2.46)

The parameter ηκ can be fixed according to the second condition. Indeed, from
equation (2.43) we can estimate the time ∆T needed by the process to revert to
µκ in case it is somewhere above the value of p+, κt > p+, as

∆T = 1
ηκ

log
A

κt − µκ

p+ − µκ

B
. (2.47)

Inverting the expression to have an equation for ηκ, subjected to the aforementioned
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condition on ∆T we get

ηκ = 1
∆T

log
A

µκ + 2 · 0.1p+ − µκ

p+ − µκ

B
= 1

20 log
A

0.2p+

0.02p+

B
= 1

20 log(10) ≈ 0.11.

(2.48)
Plugging the result for ηκ = 0.11 into (2.46), we get

σκ = 0.1p+√
2ηκ ≈ 0.01. (2.49)

The parameter representing the constant risk aversion γ of the fundamentalist
traders, characterizing their investment strategy (2.17), is not present in 2.1 since
is not imposed exogenously but is calculated endogenously at the beginning of each
simulation from the other parameters and initial condition. Inverting equation
(2.17) evaluated at t = 0 the risk aversion is set according to the initial risky
investment of the fundamentalist traders as

γ = 1
xf

0

Er − rf + d0(1+rd)
P0

σ2
r

. (2.50)

The risk aversion depends only on the initial dividend-price ratio, on the initial
risky fraction and on the expectation on the future dynamics of the returns.

Finally, we comment on the relation between the model’s trading day represented
by one time-step of the simulation and the real trading day of the financial markets.
To connect the two we follow the same reasoning adopted in Ollikainen [19]. The
expression for the simulated trading day time in function of the real trading day
time is derived imposing the equality between the daily standard deviation of
the realized returns in the simulations and the empirical one. The latter is set
accordingly to the representative value of daily volatility of the stock markets,
which is around σmarket ≈ 0.01 as explained in Sornette [33].

First the returns are roughly approximated by a Wiener process, for which the
standard deviation depends on time according to σt = σ0

√
t. Hence, the standard

deviations at two different times t1 and t1 of a Wiener process are related by the
formula

σt2 = σt1

ó
t2

t1
. (2.51)

Using this expression one can express the time corresponding to a simulated trading
day in unit of real trading days as

tsim

tmarket

= σ2
sim

σ2
market

, (2.52)

which leads to
tsim = σ2

sim

0.012 , (2.53)
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whose value expresses the simulated trading day in unit of real days. The simulations
are run for T = 5000 time-steps, which corresponds to T

250 = 20 trading years of
the model.

2.5.2 Simulation implementation and time series descrip-
tion

In this section, we present the time series resulting from two simulations with the
set of parameters introduced in the last section. The only difference between the
two is constituted by the herding propensity, the first is characterized by a constant
one, the second by an Ornstein-Uhlenbeck one.

Before moving to the presentation of the time series, we spend some time com-
menting on the computational aspects of the simulation. The code used here to
simulate the model was originally written by Kohrt [17], with some modification
by Ollikainen [19] and Westphal and Sornette [18]. The core of the model imple-
mentation is written in C++. Each part of the model, (e.g. the fundamentalist
traders, the risky asset, the price equation) is implemented by one specific class,
following an object-oriented programming paradigm. To have reproducible results,
a pseudo-random number generator with a random seed specified as a run-time
parameter is used. The results of the simulation are stored in a database using
the HDF5 high-performance data software library. Then all the analysis of the
data and the plotting are performed with Python, in particular using the Matplotlib
library and accessing the HDF5 database through the Python interfacing library
h5py.

We present in figure 2.2 the time series from a simulation characterized by a
constant herding propensity and in figure 2.3 the time series from a simulation
featuring an Ornstein-Uhlenbeck κt.

We comment now one by one on the eight-time series presented for each simula-
tion, analyzing similarities and differences between the constant kappa (CK) and
the Ornstein-Uhlenbeck (OU) kappa setups.

The first panel presents price dynamics. The price time series of the CK
simulation is characterized by moderate fluctuations around a roughly linear
growth. The linear growth is identifiable with the average exponential growth,
being the plot in log-linear scale, of the dividend which indeed features an average
constant growth factor rd. The time series in the OU case is strikingly different.
Huge deviations from the fundamental value of the asset, governed by the average
dividend growth, are clearly identifiable for example around t ≈ 500, t ≈ 1800 and
t ≈ 3700. These rapid build-ups in the graph are exponential hence, being the
plot in log-linear scale, these spikes testify a super-exponential growth of the price,
characteristic of the dynamics of the bubbles, as commented in Kaizoji et al. [13].
The presence of these endogenous bubbles in the most remarkable feature emerging
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Figure 2.2: Time series of the main quantities characterizing the model’s dynamics
resulting from a simulation featuring a constant kappa process κt = κ0 = 0.98p+.
The first panel shows the price dynamics Pt in a log-linear plot, the second shows
the returns rt in green and the price momentum Ht in blue. The third panel
features again the price momentum Ht in blue and its initial value in red, the fourth
shows the dividend-price ratio dt

Pt
. The fifth presents the noise traders switching

probabilities p±
t and the sixth the risky fractions of both the fundamentalist xf

t

(in red) and the noise traders xn
t (in blue). Finally, the last two panels feature in

order, the wealth ratio νt = W n
t

W f
t

and the constant value for the herding propensity.
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Figure 2.3: Time series of the main quantities characterizing the model’s dynamics
resulting from a simulation featuring an Ornstein-Uhlenbeck kappa process κt. The
first panel shows the price dynamics Pt in a log-linear plot, the second shows
the returns rt in green and the price momentum Ht in blue. The third panel
features again the price momentum Ht in blue and its initial value in red, the fourth
shows the dividend-price ratio dt

Pt
. The fifth presents the noise traders switching

probabilities p±
t and the sixth the risky fractions of both the fundamentalist xf

t

(in red) and the noise traders xn
t (in blue). Finally, the last two panels feature in

order, the wealth ratio νt = W n
t

W f
t

and the Ornstein-Uhlenbeck kappa process κt.
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from the simulations and the main difference between the two setups.
This difference manifests itself also in the price return behavior. Indeed, while on

the one hand for the CK simulation the daily returns are roughly uniform along the
simulation and mainly comprised in the range [−0.05, +0.05], following empirical
observations from the tranquil periods of real financial markets, on the other hand,
the price returns of the OU simulation shows picks in their absolute value near the
price’s bubbles. While the range of values of the returns in periods far from the
bubbles is similar to the CK one, during the boom and crashed characterizing the
bubbles, the returns highly exceed this range.

This is evident also from the third panel presenting the exponential average of
the returns. This alternation of tranquil periods to turbulent regimes, characterized
by high returns (both positive and negative), is known as volatility clustering and
is widely documented in real markets. On the contrary, in the CK simulation,
the price momentum has relatively smaller deviations around the initial value
of H0 = 1.6 × 10−4, also representing the average constant growth factor of the
dividend.

The fourth frame presents the dividend-price ratio dt/Pt which for both the
simulations represents the mirror image of the price dynamics, as expected from
its definition and the small value of the dividend standard deviation σd.

Moving to the noise traders switching probabilities, we first notice that they
are exactly specular as expected from the constant sum condition to which they
are subjected p+

t + p−
t = p++p−

2 = cst. More interestingly, we observe that the
probability to switch towards the risky asset p−

t has a correspondent dynamics to
the noise traders’ risky fraction. It is indeed p−

t which governs the polarization
towards the risky asset and by consequence the value of the risky fraction. Another
interesting observation is constituted by the correspondence emerging from a careful
analysis, between the fundamentalist’s risky fraction and the dividend-price ratio.
Recalling equation (2.17), we have indeed that being all the other quantities entering
in the formula constant, there exists a perfectly linear relation between the two
quantities, with a constant linear coefficient. The last comments are valid for both
the simulations.

The main difference in the risky fractions between the CK and the OU setup
is represented by the time series of the noise traders’ risky endowment xn

t . While
for the CK simulation the oscillations are smaller and its value never exceeds 0.8,
for the OU setup the noise traders’ risky fraction is characterized by spikes which
reaches the limiting value of 1, corresponding to a full polarization of the class
towards the risky asset. An analogous phenomenon, yet rarer due to the imposed
imbalance between p+ and p−, characterize the polarization towards the risk-free
asset. We can recognize an example of it near time-step t ≈ 4400.

These polarizations correspond to values of the switching probability p+
t (p−

t

for the negative bubble, where noise traders move in mass towards the risk-free
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investment) which tends to the limiting value of 1. During the bubble, the polariza-
tion of the class becomes so strong that the probability to sell the risky asset and
buy the risky one (the opposite for a negative bubble) becomes extremely small.
We are in presence of an irrational wave of enthusiasm, the “irrational exuberance”
of the investors described by Shiller [34], which creates a self-reinforcing loop of
investment towards the asset undergoing the bubble. Furthermore, there are even
periods in which the probability to go against the rest of the class predicted by
formulas (2.22) and (2.23) would become negative, as is visible in the fifth panel
where the actual p+

t and p−
t predicted by the above formulas are plotted. Whereas,

we have modified the definition of the switching probability introducing a saturation
mechanism to have well-defined quantities. What happens indeed is that in these
periods the probability is saturated to p−

t = 0 (p+
t = 0 for negative bubbles). The

polarization of the class is complete, the noise traders experience the so-called
lock-in effect, analyzed in Ollikainen [19], unless this fragile transient equilibrium
is broken and the bubble bursts. We will deepen this phenomenon together with
the analysis of the full dynamics of the bubble in the next section.

We underline again that all these phenomena characterizing the bubbles are
present only in the Ornstein-Uhlenbeck setup. In the next section, we will ana-
lyze this fact, unveiling the fundamental importance of the time-varying herding
propensity parameter κt in the formation of the bubbles. In the meanwhile, we
comment that comparing the price dynamics and the noise traders’ risky fraction
time evolution it becomes clear that it is indeed the stochastic investment strategy
of the noise traders characterized by social imitation and trend following that drives
the actual dynamics of the price. The correspondence between the two time series
is evident. This is true both for the OU setup and the CK one.

We comment finally on the second-last panel featuring the wealth ratio defined
by the ratio between the noise traders’ total wealth and the fundamentalist’s one
νt = W n

t

W f
t

. The resulting spikes in this quantity correspond to the bubbles of the
price. During these periods both investors get richer thanks to the increasing of the
risky asset’s price. But while the noise traders invest more in it the more its price
rises, the fundamentalist traders follow the opposite strategy reducing the risky
fraction. This is understandable in light of the inverse proportionality between xf

t

and Pt mediated by the dividend-price ratio. This reasoning explains the fact that
the noise traders become much richer than the fundamentalists during the bubbles.

Nevertheless, from the long-run trend emerging in the wealth ratio we see that
at the end of the simulation the fundamentalist’s strategy results to be more
remunerative than the noise traders one. This concludes the qualitative analysis of
the time series.

We still have to give an idea of the typical real time length of one trading day
of the simulation. The standard deviation of the realized returns are computed
over all the simulation discarding the first 500 time-steps in order to neglect the
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misleading phenomena related to the initial equilibration of the market model from
the initial conditions. The resulting standard deviations are

σCK
simm = 0.017 (2.54)

for the constant kappa simulation and

σOU
simm = 0.021 (2.55)

for the Ornstein-Uhlenbeck simulation. We comment that these values are in
agreement with real markets behavior and motivate ex-post the constant value of
the expected standard deviation of σr = 0.02 by the fundamentalist traders.

Now, using formula (2.52) derived in section 2.5.1, we obtain that one trading
day of the simulation corresponds to tsim = 2.89 real days for the CK simulation
and tsim = 4.41 for the OU simulation. We underline that these results are just a
rough approximation to give an idea of the time length of the simulation. Moreover,
the relatively large number of real days for OU simulation has to be understood
also considering that the assumed approximation of the returns as a Wiener process
is inappropriate during the bubbles periods.

2.5.3 The stylized facts of the financial markets
In this section we close the presentation of the time series, bringing evidence to
our claim that the original model is able to reproduce the “stylized facts” of the
financial markets. Postponing a wider discussion on the stylized facts to Chapter
5, here following Kaizoji et al. [13], we check the model is able to reproduce two
of them, the fat-tailedness of the absolute returns and the long memory in the
autocorrelation of the same quantities.

These emerging empirical properties have been observed across a wide range of
instruments, markets, and time periods and it is important for a well-grounded
representation of the financial markets to be able to reproduce them.

In figure 2.4, we present the autocorrelation function (ACF) of both signed
and absolute returns for the two simulations, one characterized by a CK herding
propensity 2.2 and the other by an OU one 2.3.

We recall that the l-lag autocorrelation function of a stochastic process Xt is
defined at each time τ as

ACFl(Xt)(τ) = Cov[Xt(τ)Xt(τ − l)]ñ
Var[Xt(τ)]Var[Xt(τ − l)]

. (2.56)

Basically, it is the Pearson correlation between the stochastic process and time-
shifted copy of itself by l time-steps. The empirical ACF is computed substituting
the covariance and the variances by their empirical counterparts.
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Figure 2.4: The first panel shows the autocorrelation function (ACF) of signed
(red) and absolute (blue) returns resulting from the simulation with constant kappa
process presented in figure 2.2. The second panel features the ACF from the
simulation with OU kappa process presented in figure 2.3. The autocorrelation
functions are computed for the data after the 500th trading day in order to exclude
possible misleading contributions due to the initial conditions.

Comparing the two panels the difference is remarkable. Indeed, in the case of
constant kappa, the ACF for both the signed and absolute returns quickly decays
to zero. Whereas, for the OU simulation, while the ACF for the signed returns
still decays exponentially fast to zero, the ACF for the absolute returns has a
slower hyperbolic decay, in agreement with Kaizoji et al. [13]. As commented in
the original paper, the fast decay in the case of signed returns is consistent with an
almost absence of arbitrage opportunities in presence of transaction costs, moreover,
the slower decay in the case of absolute returns testify the presence of long-memory
properties, the signature of the phenomenon of volatility clustering.

This is the quantitative counterpart to the qualitative observation of the phe-
nomenon from just a visual inspection of the returns time series, characterized by
the alternation of tranquil periods to turbulent regimes. We have that the OU
setup, which gives rise to super-exponential bubbles can correctly reproduce the
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stylized facts characterizing the autocorrelation functions, whereas the CK lacking
the presence of clear bubbles is not able to do that. This will repeat again for the
fat-tailedness of the distribution of absolute returns.

Moving to the latter phenomenon’s analysis, we want to compare the realized
distribution of absolute returns to the observed leptokurtic behavior of their
empirical counterparts. The empirical fat-tail decay of the distribution

p(x) ∼ x−1−α (2.57)

is characterized by an exponent α in the range [2,4]. As shown in figure 2.5, the
fitted parameter from the simulated time series falls in this range of values in
the case of the Ornstein-Uhlenbeck kappa process, while does not in the case of
constant herding propensity.

10 4 10 3 10 2
x (absolute value of returns)

10 3

10 2

10 1

100

P(
X

x)

= [5.05864123]

Distribution of absolute returns constant kappa

10 3 10 1
x (absolute value of returns)

10 3

10 2

10 1

100
P(

X
x)

= [2.73540732]

Distribution of absolute returns OU kappa

Figure 2.5: Log-log plots of the complementary cumulative distribution functions
of the returns for the CK simulation presented in figure 2.2 (on the left) and for the
OU simulation presented in figure 2.3 (on the right). The exponent is found fitting
data from the last 10th percentile of the cumulative distribution, disregarding the
largest ten values. The linear regression line is visible in red.

Again the presence of the bubbles seems to be fundamental in correctly repro-
ducing the stylized facts of the financial markets. Aware of the importance of these
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emerging collective phenomena, in the next section, we deepen the analysis of the
mechanism triggering and governing their dynamics.

2.6 The bridge between the noise traders class
and the Ising model

In this section we comment on the connection between the noise traders class and
the Ising model and its importance in understanding the formation of bubbles,
building on top of the analyses present in Damiani [21], Kaizoji et al. [13], Harras
et al. [31], Ollikainen [19] and Sornette [12] among the others. The fundamental
feature characterizing the noise traders class is the competition between the ordering
force of social imitation and the disordering impact of idiosyncratic opinion.

One of the key concepts in complex systems theory is the emergence of highly
non-trivial collective phenomena from the interactions between a large number
of agents. It is the presence of interactions, the crucial element governing these
phenomena. It is the interacting character of a group of agents that leads to the
emergence of cooperative behaviors.

Statistical Physics has a history of success in modeling and explaining exactly
this concept of emergence from interactions and the Ising model represents one of
its pillars. Being first introduced as a mathematical model of ferromagnetism in
statistical mechanics, its application has now covered the most varied branches of
science. In particular, in Sornette [12] the fruitful use of the Ising model in financial
economics together with the reasons for this success is beautifully explained.

A clear analogy can be imagined between the interactions of the spins in a fer-
romagnetic material which tends to align their orientations, while the temperature
tends to push the system towards a disordered state, with the social imitation
between the noise traders which tends to polarize the class towards a common
investment preference, while the stochastic character of the investment decisions
favors the idiosyncratic opinion. It is a representation of the never-ending fight
between the order (modeled in physics by the minimization of some sort of en-
ergy) against the disorder (embodied in physics by the concept of the entropy)
characterizing each interacting system, from a ferromagnetic material to a group of
investors.

Having introduced this analogy, it is now not surprising that the transition rates
defined in formulas (2.22) and (2.23), that we recall here,

p+
t = p+

2

A
1 − 1

p+
κt(st + Ht)

B
, (2.58)

p−
t = p−

2

A
1 + 1

p+
κt(st + Ht)

B
, (2.59)
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only based on the assumption of a linear impact of the two phenomenon in analysis,
social imitation and trend-following, actually corresponds to the linearized form
of the Glauber transition rates, characterizing the well-known Glauber stochastic
dynamics of the Ising model first introduced in Glauber [35].

The Glauber transition rates are defined by

p+
G(m, h) = 1

2[1 − tanh (β(m + h))] (2.60)

and
p−

G(m, h) = 1
2[1 + tanh (β(m + h))], (2.61)

where m is the average magnetization, h is the external field and β is the inverse
temperature. In order to define the quantities entering their expressions and to
argument on our strong claim, we have to recall briefly the Ising model definition
and what we quantities entering in the above rates represent.

First of all, we underline that the transition rates (2.60) and (2.61) are charac-
teristic of a particular version of the Ising model, the mean-field, or fully-connected
one. Hence, we introduce the Hamiltonian, representing the energy of the system,
of the fully connected Ising model

HN({s1, . . . , sN}) = − J

2N

NØ
i /=j=1

sisj − h
NØ

i=1
si. (2.62)

The fully-connected Ising model is constituted by N spins si which can take value
si ∈ {−1,1}, each of them interacting with all the others. Moreover, an uniform
external field h acts on each spin. Finally, J represents the interaction coupling,
entering halved in the Hamiltonian since the double sum qN

i /=j=1 counts twice each
interaction.

The equilibrium statistical properties of the model are governed by the standard
Boltzmann weight

Peq({s1, . . . , sN}) = e−βHN , (2.63)

where β = 1
kBT

is the so-called inverse temperature.
The Ising model is a statistical model of an interacting system. Hence, from

the theory of Statistical Physics we know that, while the statistical properties are
determined by the form of the Hamiltonian, the actual time-evolution dynamics of
the model is not fixed a priori. Different dynamics may lead to the same statistical
properties and hence to the same Ising model. This is an important point of the
discussion and we will come back to it extensively in Chapter 4 together with a
deep discussion of the Statistical Physics tools available to define such a dynamics.
For the moment, we refer to Glauber [35], where in a groundbreaking work, Glauber
introduced the transition rates bearing his name, defining a stochastic dynamics
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which correctly generates the statistical properties of the Ising model. The Glauber
rates are obtained imposing the detailed balance condition

p(si = 1 → si = −1)
p(si = −1 → si = 1) = Peq(si = −1)

Peq(si = 1) (2.64)

where p(si = 1 → si = −1) is the transition probability associated to the spin
flip from 1 to −1 of spin si = 1 and P (si = −1) is the Boltzmann weight (2.63)
associated to a configuration with the spin si = 1. Then rearranging the terms we
get

p(si = 1 → si = −1)
p(si = −1 → si = 1) = Peq(si = −1)

Peq(si = 1) = e−β(Jm+h)

eβ(Jm+h) = 1 − tanh (β(Jm + h))
1 + tanh (β(Jm + h)) ,

(2.65)
where we have introduced the quantity m =

qN

k=1 sk

N
, representing the average

magnetization. To be rigorous, we have to comment that the third equality in
(2.65) is exact only in the limit N → +∞. Indeed, the actual ratio of the Boltzmann
factors, after having simplified the common terms, is given by

Peq(si = −1)
Peq(si = 1) = e

−β

1
J

1qN

k /=i=1 sk

N

2
+h

2

e
β

1
J

1qN

k /=i=1 sk

N

2
+h

2 . (2.66)

The sum does not include the spin si, yet this difference is negligible in the large N
limit, which is the case in the present model. This fact constitutes also the difference
between the fully connected version of the Ising model, here presented, and the
mean-field one, characterized by the Glauber rates. The fact that this distinction
vanish in the large N limits is referred in Statistical Physics as the equivalence
of the fully connected and mean-field Ising model in the thermodynamical limit,
which is indeed N → +∞.

Now considering the final ratio in (2.65), we just multiply and divide as a matter
of normalization by the same quantity 1

2 and we finally recognize the Glauber
transition rates (2.60), (2.61), which govern the probability of a spin flip in the
dynamics of the Ising model,

p+
G(m, h) = 1

2[1 − tanh (β(Jm + h))], (2.67)

p−
G(m, h) = 1

2[1 + tanh (β(Jm + h))]. (2.68)

Linearizing the transition probabilities we get

p+(m, h) = 1
2[1 − β(Jm + h)] (2.69)
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and
p−(m, h) = 1

2[1 + β(Jm + h)]. (2.70)

The connection with the noise traders transition rates is almost manifest, we just
need to multiply both terms by a constant p, which tunes the probability to hold
the previous value, while not impacting the statistical properties of the model,
since it cancels out in their ratio. We refer again to Chapter 4 for the discussion of
this point. We get

p+(m, h) = p

2[1 − β(Jm + h)] (2.71)

and
p−(m, h) = p

2[1 + β(Jm + h)]. (2.72)

Two remaining differences with respects to the rates (2.58) and (2.58) need to be
commented. The first is given by the introduction of an asymmetry between the
two rates defining a slightly larger value p− for the p−(m, h) with respect to p+ for
p+(m, h). The second is just a rescaling of β by a factor p+.

The correspondence between the transition rates characterizing the noise traders’
investment decision and the Glauber rates is finally manifest and with it the
profound connection between the noise traders class and the Ising model.

The Statistical Physics average magnetization m corresponds to the time-
dependent opinion index st

m ⇔ st. (2.73)
The external field h applied to each spin corresponds to the time-dependent price
momentum Ht influencing the trader decision

h ⇔ Ht. (2.74)

The inverse temperature β corresponds to the time-varying herding propensity κt

β ⇔ κt. (2.75)

Finally, each noise trader is subjected to the social imitation of all the other trader
in its class in the same way, independently of the specific investor. We are assuming
that the investment decision of each trader impacts the decisions of all the others in
the same way. This is represented by a constant homogeneous value of the coupling
constant which we set for simplicity to J = 1.

What we have just demonstrated is that the noise traders class can be effectively
represented by a fully connected Ising model, where each spin si represents a noise
investor which can alternatively invest in the risky asset (si = 1) or the risk-free
asset (si = −1). Each noise trader interacts with all the others in the same way
and there is a uniform external field constituted by the price momentum which
influences each investor in the same way.
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Now that the correspondence between the noise class and the Ising model has
been established, we can exploit the large corpus of theoretical results on the latter
to study and try to explain the emergence of the bubbles in the first.

Indeed, it is the very existence of a phase transition in the Ising model and hence
in the noise traders class, which gives rise to the bubbles. The phase transition
separates the disordered regime where the idiosyncratic opinion dominates from
the ordered regime where the full class polarizes towards one asset, in analogy to
the collective alignment of the orientation in the ferromagnetic phase of a magnetic
material. When the noise traders class undergoes the phase transition, the average
opinion starts to polarize towards one asset, this triggers the bubble’s emergence.

Moreover, it is the parameter κt correspondent to the inverse temperature β,
which governs the phase transition. This explains the presence of the bubbles
in the Ornstein-Uhlenbeck setup but not in the case of constant kappa. Indeed,
the constant kappa value is set equal to κ = 0.98p+, slightly below the critical
value βc corresponding to the critical inverse temperature of the Ising model. We
know from Statistical Physics, that the critical point of the fully connected Ising
model is at βc = 1

J
= 1, being J = 1. Moreover, in the transition rates we have

rescaled the kappa process by the factor p+, hence we expect a phase transition
at κc = p+. In the constant kappa setup, the system remains in the disordered
regime throughout the whole simulation, hence no bubbles can emerge. On the
contrary, the Ornstein-Uhlenbeck herding propensity fluctuates around the mean
reversion level µκ = 0.98p+, very close to the critical point, hence sometimes κt

stochastically enters in the ordered regime, triggering the polarization of the class
and ultimately the super-exponential growth of the price.

This effect is further amplified by the price momentum Ht. When the bubbles
develop, the price momenta increases following the price dynamics, pushing more
and more noise investors to switch to the asset undergoing the bubble. Sometimes
this self-reinforcing loop can last until all the traders hold the same asset. At this
point the noise traders experience the lock-in effect, the probability to switch to
the other asset is saturated to zero.

When the herding propensity reverts to the sub-critical regime the polarization
of the noise traders class starts to decrease, the idiosyncratic opinion starts to gain
back importance and the noise traders start to switch to the other asset. Focusing
for a moment on the case of a positive bubble, this selling phenomenon decreases
the price, as an effect the price momentum becomes negative pushing more and
more traders to sell the risky asset. The bubble bursts and the price come back to
its fundamental value.

In light of this discussion, the name given to the herding propensity κt assumes
all its meaning. It is this parameter accounting for the impact of a changing
economical and geopolitical world on the financial markets to govern the propensity
of the traders to herd, according to their social imitation and trend-following
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attitudes.
Summarizing, we have demonstrated that it is mainly the noise traders class

which triggers the emergence of the bubbles and governs their dynamics, through a
polarization phenomenon which constitutes an actual phase transition from the
disordered regime dominated by the idiosyncratic opinion to the ordered state
characterized by the polarization of the investment preferences. This interaction-
driven phase transition is controlled by the herding propensity parameter κt, which
stochastically enters and exits the ordered regime, triggering the bubbles.

The fruitful connection between the noise traders class and the Ising model will
be crucial also in extending the class to the multi-risky-asset framework and will
be central throughout all the following work.

We close this Chapter on the original market model presenting in the next
section the discussion on two important, “critical” features of the transition rates
of the original model. This analysis is not present in any of the previous works
on the original model and we think it is important to present it, not only for its
significance for the original model itself but also for the resulting implication on
the derivation of a new model in the extended framework.

2.7 Two “critical” features of the transition prob-
abilities

In this section, we deepen two features of the original model’s transition rates,
which appear to be fundamental in characterizing realistic dynamics, in particular
regarding the shape of the bubbles. These two crucial points are the average
holding time and the linearization of the transition rates. An explicit analysis of
them is lacking in the previous works on the original model, moreover, they have
to be taken carefully into account in deriving new transition rates and analyzing
the applicability of a new model for the multi-asset extension.

The adjective “critical” in the title of the section stands both for the importance
of these two features and for their particular relevance near criticality when the
kappa process enters the critical regime.

2.7.1 The average holding time
The first feature we analyze is the average holding time, defined as the average
number of trading days the noise trader keeps its asset in absence of herding
behavior κt = 0. In the original model, the average holding time is controlled
by the constant p (or the related p+ and p−, which also introduce the imbalance
between positive and negative bubbles), which is directly connected to th by the
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relation
th = 2

p
. (2.76)

The way the constant p (i.e. p+, p−) is introduced in the original model does not
introduce modifications to the aforementioned detailed balance condition (2.64) and
hence does not impact on the statistical properties of the simulation. In particular,
having set a value of p ≈ p+ ≈ p− ≈ 0.2, the resulting average holding time is
given by

th = 2
p

≈ 10 (2.77)

trading days.
Moreover, we stress that the average holding time should be always taken into

account in constructing a new model and a realistic value for th should be always
set, possibly without introducing errors in the detailed balance condition.

The importance of the parameter th representing the average holding time is
clear comparing figure 2.6 and figure 2.7.

They represent two simulations of the original model with the same set of
parameters, same initial condition, same transition rates, and same random seed.
The only difference is the parameter p.

The first is characterized by p ≈ p+ ≈ p− ≈ 0.2, i.e. th ≈ 10. The second
instead has p ≈ p+ ≈ p− ≈ 1, indeed a less realistic th = 2. The difference in
the modeling accuracy is dramatically evident. In particular, the time series in
figure 2.7, characterized by the shorter average holding time, are dominated by an
unrealistic oscillating behavior. The price builds up and fall too rapidly, leading
to an extremely high frequency in the appearance of the bubbles. The problem
is ultimately traced back to the unrealistic oscillating nature of the noise traders’
risky fraction.

2.7.2 The linearization of the transition probabilities
The second feature we analyze is the linearization of the transition probabilities.
We have commented in the previous section that the transition rates of the original
model (2.58) and (2.59),

p+
t = p+

2

A
1 − 1

p+
κt(st + Ht)

B
, (2.78)

p−
t = p−

2

A
1 + 1

p+
κt(st + Ht)

B
, (2.79)
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Figure 2.6: Original model Ornstein-Uhlenbeck kappa simulation with p ≈ 0.2.
The figure shows the time series of the standard implementation of the original
model.

corresponds to the linearized form of the Glauber transition rates (2.60) and (2.61),

p+
G(m, h) = 1

2[1 − tanh (β(m + h))] (2.80)

and
p−

G(m, h) = 1
2[1 + tanh (β(m + h))]. (2.81)
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Figure 2.7: Original model Ornstein-Uhlenbeck kappa simulation with p = 1.
The figure shows the time series of a simulation of the original model with the
same set of parameters as the one in figure 2.6, differing only for the value p = 1.
The loss of modeling accuracy is evident.

One may wonder if the linearization procedure is just an accessory step or represent
an indispensable point in defining the transition rates of the model. It turns out
that the second is the case since the linearized form is fundamental in defining the
correct shape of the bubbles and, for some values of the parameters, their existence
itself. The extreme representation of this is evident from figure 2.8 and figure
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2.9, where are presented the time series of two simulations of the original model
with exactly the same set of parameters, the same initial conditions, and the same
random seed, differing only in that the first features the linearized rates and the
second the non-linear Glauber rates.
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Figure 2.8: Original model Ornstein-Uhlenbeck kappa simulation with linearized
rates. The figure shows the time series of the standard implementation of the
original model.

Quite remarkably, for the specific set of parameters used the existence itself of
clearly recognizable bubbles depends on the linearization procedure. For other sets
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Figure 2.9: Original model Ornstein-Uhlenbeck kappa simulation with non-linear
Glauber rates. The figure shows the time series of a simulation of the original
model with the same set of parameters as the one in figure 2.8, differing only for
the non-linear form of the rates.

of parameters, even if they still exist, the shape of the bubbles appears dramatically
different with respect to the linearized case. This can be traced back to the fact
that with non-linear rates, the noise traders class never fully polarizes as visible in
figure 2.9, at odds with the linear case in figure 2.8.

The explanation of this phenomenon becomes clear analyzing the form of the
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transition rates. Indeed, in the non-linear case, a saturation mechanism is already
implied by formulas (2.60) and (2.61). When the argument of the hyperbolic
tangent increases during a bubble overcoming the value 1

2 , the very form of the
function makes the transition probability grows slower and slower. The transition
rate eventually tends to the value 1, never reaching it. Instead in the case of
linearized probability, the value of 1 is reached linearly for a finite value of the
argument. From figure 2.10, the distinct form of the two transition probabilities is
clear, and with it the remarkably different behavior of the resulting time series.
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2(1 + tanh(x))

Figure 2.10: Linearized and non-linear forms of the transition probabilities for
a range of values x ∈ [−1,1]. The two functions clearly differs for relatively large
values of the argument, near −1 and 1.

In conclusion, the linearization of the form of the transition rates derived from
the Ising-like model could be a crucial point to take into account when analyzing
the applicability of the model.
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Chapter 3

Towards the
multi-risky-asset extension
of the Market Model

After having presented the original model characterized by one risk-free and one
risky asset, in this Chapter we move to the primary aim of the present work, the
extension to the multi-risky-asset framework. Given that in the real financial
markets lots of risky assets exist and the portfolio theory is one of the fundamental
pillars of modern financial theory, it is clear why we are deeply interested in
extending the original setup in this direction. Will the bubbles still be present
in a more realistic model of this kind? And if it will be the case, how will the
interplay between their dynamics impact on the properties of the market? Will
the bubbles be synchronous or asynchronous? How will the possibility to diversify
among different risky assets affect the trader classes’ behavior?

The multi-asset nature is a central feature of the financial markets, which has to
be taken into account in modeling and studying their complex dynamics. Important
works from the literature dealing with the extension of ABMs to the multi-asset
framework are constituted by Chiarella et al. [14], Chiarella et al. [36], Böhm and
Chiarella [37], Xu et al. [38], Borghesi and Bouchaud [39] and Chen and Huang
[40]. In particular, the extension of the original model by Kaizoji et al. [13] has
been already addressed in two works, Damiani [21] and Kopp [22].

In the first work, the model has been enlarged to the case of one risk-free and
two risky assets. We will discuss the interesting approach used in it, in particular
regarding the generalization of the noise traders class. It will be a useful starting
point and will inspire the first extension attempts, but eventually, we will detach
from it due to the difficulty in scaling the approach to the general n-asset case and
being the present work’s purpose exactly to develop a well scalable extension in
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the number n of risky investments.
The second work, truly remarkable in our opinion, deals instead mainly with

the extension of the model to the n-bonds framework, to formulate a fixed income
market model. While our approach will be similar regarding the extension of the
fundamentalist traders and the price equation, for the noise traders class we will
follow a radically different direction. Nevertheless, the comparison of the multi-asset
Ising-like modeling we will develop in Chapter 4 to the approaches presented in
the aforementioned studies is extremely useful and interesting.

In moving towards the multi-risky-asset (for the sake of conciseness from now
on we will omit the adjective risky, being at this point clear our work deals with a
multiplicity of risky investments) framework we have to work out the extension
of each of the four components of the original model presented in Chapter 2. In
this Chapter, we present the multiple assets and the extended wealth dynamics in
section 3.1. Then we move to the discussion of the fundamentalist traders class
generalization in section 3.2. Then, before moving to the noise traders we present
the extension of the market-clearing conditions and the resulting price equations in
section 3.1. Finally, we discuss the noise traders’ generalization puzzle in section
3.4, introducing the approach we will use in the next Chapter to tackle it.

3.1 The assets and the wealth dynamics
The extended model is constituted of one risk-free asset, still representing a zero-
coupon government bond yielding a constant rate of return rf , and n risky assets,
representing n stocks paying stochastic dividends. The first component whose
extension needs to be defined is indeed the dividend process, which is substituted
by n stochastic processes dk,t with k ∈ {1, . . . , n}.

Since we want to allow for the possible interplay between their dynamics, we
describe their time evolution through n multiplicative growth processes

d1,t = (1 + rd,1
t )d1,t−1

d2,t = (1 + rd,2
t )d2,t−1

...
dn,t = (1 + rd,n

t )dn,t−1

(3.1)

where the stochastic growth factors follows a multivariate normal distribution

(rd,1
t , rd,2

t , . . . , rd,n
t ) ∼ N (þµ, Σd), (3.2)

with mean
þµ = (rd,1, rd,2, . . . , rd,n) (3.3)
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and covariance matrix Σd, the latter governing the relationship between the divi-
dends. As a quick note, we comment that in the simulation the covariance matrix
is implemented into a vector of variances and a matrix of correlations, in order to
be able to change the variances and the correlations in an independent and easier
way. The correlation matrix Cd and the covariance matrix are connected by the
relation

Cd = (diag(Σd))− 1
2 Σd(diag(Σd))− 1

2 , (3.4)

where diag(Σd) represents the diagonal matrix of the variances. We wanted to insist
on the implementation of the covariance matrix because the dividend processes
represent the component of the model which takes into account the impact of the
real economy evolution on the stocks’ value.

Even if in the present work we will not deepen this aspect, the possibility to
introduce and study the effect of correlations among the dividends represents an
interesting simulation playground. Through the correlation matrix Cd and the
vector of variances, it is possible to analyze the impact of the correlation coming
from the real economy on the price formation mechanism and the synchronization
of bubbles.

As a last implementation note, we comment that in the simulation the dividend
processes are generated sampling at each time-step the stochastic growth factors
in an i.i.d. manner from the multivariate normal distribution (3.2). First, n i.i.d.
zero mean and unit variance normal distributions N (0,1) are sampled. Then the
vector of growth factors is obtained through the linear transformation

rd,1
t
...

rd,n
t

 = Σ
1
2
d


N (0,1)

...
N (0,1)

+


rd,1
...

rd,n

 (3.5)

where the matrix Σ
1
2
d is computed by means of the Cholesky decomposition.

As in the original model the enhanced risk of these assets with respect to the asset
representing the zero-coupon bond derives both from the stochastic character of
their dividends and from the fact that their returns depend on the prices dynamics,
which is not known a priori. This is clear from the expression of the total risky
return rates, which in the multi-asset framework reads

þrtot
t = þyd

t + þrt, (3.6)

where now the dividend yields þyd
t and the price returns þrt are n-components vectors.

In particular the dividend yields vector is defined as

þyd
t =

A
d1,t

P1,t−1
, . . . ,

dn,t

Pn,t−1

B
(3.7)
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and the price returns vector as

þrp,t =
A

P1,t

P1,t−1
− 1, . . . ,

Pn,t

Pn,t−1
− 1

B
. (3.8)

The fundamentalist and noise traders classes are still considered at the aggregate
level by means of two representative agents. The difference is that now both
the aggregate portfolios are constituted by n risky fractions {xf,n

1,t , . . . , xf,n
n,t } and

one risk-free fraction xf,n
rf,t. Borrowing and short-selling are again not admitted in

the market model, hence the risky fractions always satisfy xf,n
k,t ∈ [0,1]. Also the

risk-free fraction satisfies the same constraint xf,n
rf,t ∈ [0,1]. Moreover, the fractions

are subjected to the condition that they must sum to one at each time step t

xf,n
rf,t +

nØ
k=1

xf,n
k,t = 1, (3.9)

from which we can express the risk-free fraction as

xf,n
rf,t = 1 −

nØ
k=1

xf,n
k,t . (3.10)

According to this description, the wealth dynamics equation generalizes to

W f,n
t = W f,n

t−1

C
1 + rf +

nØ
k=1

xf,n
k,t−1

A
dk,t

Pk,t−1
+ Pk,t

Pk,t−1
− 1 − rf

BD
, (3.11)

where the quantity in parenthesis represents the excess return of the risky asset k
with respect to the risk-free return rf

rk,excess
t =

A
dk,t

Pk,t−1
+ Pk,t

Pk,t−1
− 1 − rf

B
, (3.12)

measuring the higher profitability (rk,excess
t >0) or lower (rk,excess

t <0), with respect
to the risk-free asset.

3.2 The fundamentalist traders
For the extension of the fundamentalist class we refer mainly to Damiani [21],
Kopp [22] and Chiarella et al. [14]. We keep the original structure, with rational
risk-averse traders who at each time-step maximize the expected CRRA utility
function of the future wealth in terms of the risky fractions and for a given level of
risk. The difference is that now the number of risky assets in which it is possible
to invest is n.
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At each time step, each fundamentalist trader constructs its portfolio solving
the maximization problem

(xf
1,t, . . . , xf

n,t) = max
xf

1,t,...,xf
n,t

Et[U(W f
t+1(xf

1,t, . . . , xf
n,t)], (3.13)

where U represents the CRRA utility function with constant risk aversion γ

U(W ) =
log(W ) γ = 1

W 1−γ

1−γ
γ /= 1

(3.14)

Again each fundamentalist trader solves the same optimization problem of all the
other traders in its class. Hence, the whole class can be considered at the aggregate
level through a representative agent, who solves the same optimization problem
(3.13) and whose wealth is equal to the sum of all the wealth of the fundamentalist
investors. The maximization problem (3.13) is not trivial and has been solved
in Xu et al. [38], here we report the final solution. The fundamentalist portfolio
allocation strategy condenses into the equation


xf

1,t
...

xf
n,t

 = 1
γ

Cov−1


Er,1 + d1,t(1+rd,1)

P1,t
− rf

...
Er,n + dn,t(1+rd,n)

Pn,t
− rf

 (3.15)

where Cov−1 is the inverse matrix of the expected covariances of the future price
returns foresee by the fundamentalist traders, which are assumed equal to the
expected covariances of the future excess returns following as for the original model
Kaizoji et al. [13], Modigliani and Miller [27] and Modigliani and Miller [28].

We underline the term expected because in the covariance matrix enter the
covariances between the risky assets expected by the fundamentalist traders be-
fore the effective realization of the random process representing the prices. The
expectation of the fundamentalists on the correlations in the future evolution of
the prices is then condensed in the matrix Cov which in principle could depend
on time, but which we assume, for simplicity, time-independent. In the equation
(3.15) enter also the quantities {Er,1, . . . , Er,n} which represent the expected price
return by the fundamentalist traders.

We notice from the formula that the mean-variance trade-off present in the
original model, characterizes also the multi-asset framework. We refer the interested
reader to Kopp [22], where two captivating alternative solutions of the optimization
problem (3.13) coming from the field of stochastic optimal control are proposed.
One is based on the Bellman’s dynamic programming approach, the other on the
Pontryagin’s maximum principle.
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Finally, we comment on the fact that the constant risk aversion is endogenously
computed at the beginning of the simulation from the initial conditions as

γ =
Er,1 + d1,0(1+rd,1)

P1,0
− rf

Cov1,1x
f
1,0 + . . . + Cov1,nxf

n,0
, (3.16)

which constitutes a natural generalization of the original model’s formula (2.50),
also adopted in Damiani [21] and Kopp [22].

Before moving to the extension of the noise traders class, which will be also the
central topic of the whole Chapter 4 and constitutes the main part of all the present
work, in the next section we present the generalization of the market-clearing
conditions and the resulting price equations.

3.3 The market-clearing conditions and the price
equations

In the original model, the price dynamics is determined from the market-clearing
conditions. The market price is set according to Walras’s theory of general equi-
librium, Walras [16], i.e. at each time-step the supply and the demand must
equilibrate.

Setting to zero the aggregate excess demand in the original case of only one
risky asset leads to a second-order equation in the unknown Pt. The equation can
be explicitly solved giving a unique physical solution, i.e. a positive price, which
represents the new price of the risky asset.

Extending the model to n risky assets, the equilibrium condition has to hold at
the same time for each asset.

Defining the excess demand from time t − 1 to t for each risky asset k for the
fundamentalists and noise traders classes respectively as

∆Df,k
t−1→t = W f

t xf
k,t − W f

t−1x
f
k,t−1

Pk,t

Pk,t−1
(3.17)

and
∆Dn,k

t−1→t = W n
t xn

k,t − W n
t−1x

n
k,t−1

Pk,t

Pk,t−1
(3.18)

we have that the equilibrium condition translates into the system

∆Df,1
t−1→t + ∆Dn,1

t−1→t = 0
∆Df,2

t−1→t + ∆Dn,2
t−1→t = 0

...
∆Df,n

t−1→t + ∆Dn,n
t−1→t = 0

(3.19)
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The system (3.19) is a system in the n unknowns P1,t, . . . , Pn,t.
The increase in complexity is clear. Passing from the one risky asset framework

to the n risky asset framework, the price equations change from a single second-
order polynomial equation to a complex non-linear system of n equations in n
unknowns where each equation is a polynomial equation of degree n + 1 in all the
unknowns. The system is hardly manageable in an analytical way.

We have considered various possible solutions modifying the market-clearing
conditions to set the equilibrium in a simpler and more manageable manner with
respect to this “detailed equilibrium” conditions. Nevertheless, eventually, we opted
for a numerical solution to maintain the original structure of the price equations
and the original equilibrium assumption. This turns out to be also the solution
adopted in Kopp [22].

Indeed, even if the system is not manageable analytically, it can be tackled with
numerical techniques. In particular, we implemented an iterative method using the
C++ GNU Scientific Library (GSL), based on the Hybrid algorithm proposed in
Powell [41] and Powell [42], derived from the classical Newton–Raphson algorithm.
With careful manipulation of the equations and choice of the initial guess (prices in
previous time-step as initial conditions), the method consistently converges to the
correct physical solution for a wide range of parameters close to the real market
quantities. The iterative method is fast and stable, hence we opted to rely on it.
Nevertheless, a different way to determine the price dynamics is always possible
and the analysis of different equilibrium conditions could be deepened.

3.4 Noise traders: Can Statistical Physics solve
the extension puzzle?

We now move to the extension of the last component of the model, the noise traders
class. The generalization of the noise traders to the n risky assets framework is
extremely delicate and a multiplicity of possibilities can be considered.

As in the original setup, the noise traders do not implement a rational maximiza-
tion process to decide their investments, as the fundamentalist traders do. They
are instead driven by social imitation and trend following. These two attitudes
govern their intrinsically stochastic investment strategy.

In Chapter 2 we explained that the fundamental feature characterizing the noise
traders class is its Ising-like structure which models the competition between the
ordering force of social imitation and the disordering impact of idiosyncratic opinion.
We showed that it is this very Ising-like structure that explains the emergence
of the bubbles and governs their dynamics. These highly non-trivial collective
phenomena emerge through a polarization phenomenon which constitutes an actual
phase transition from the disordered state to the order one. We also argued that
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this interaction-driven phase transition is controlled by the herding propensity
parameter κt, which stochastically enters and exits the ordered phase, triggering
the bubbles.

Now that we want to move to the multi-asset framework we have to generalize the
social imitation and trend following attitudes allowing for many risky assets while
preserving the Ising-like structure responsible for the polarization phenomenon
governing the bubbles. Many models can be considered to pursue this goal and
many factors have to be taken into account in comparing their effectiveness. Should
we still rely on the standard Ising model or should we move to the generalizations
of it? How should the noise traders’ strategy account for the n risky assets? Should
they still invest all their wealth into one single asset at a time, or should we allow
them to construct a portfolio of different assets and focus on the social imitation
and trend following’s impact on this stochastic diversification process? Ultimately,
which formal rule should we use to define the transition rates, if a systematic rule
should be used at all?

The task is challenging. The same extension puzzle has been tackled by Damiani
[21] and Kopp [22], hence we start analyzing their approaches. We first mention
that we tried to extend the approach of Damiani [21]. Staying on a qualitative
explanation, in the latter work the noise traders’ model is generalized to the case
of one risk-free and two risky assets coupling two distinct Ising models, one for
each risky investment. Each of them models the polarization phenomenon towards
either one of the risky investment or the risk-free asset. Then, since only one asset
of the latter type is present, the two resulting indistinguishable risk-free assets
are identified as a unique one. Moreover, the risky assets are connected allowing
for switches between them. The model just presented constitutes a discrete-time
Markov Chain that we can effectively represent in figure 3.1.

Risky 1 Risky 2

Risk free Risk free

Figure 3.1: Markov chain for the “two coupled Ising” model

In Damiani [21] this setup is shown to still give rise to bubbles, governed basically
by the distinct but related phase transitions characterizing the two Ising model. To
extend the approach just presented, we considered n Ising model, one for each risky
asset, each one representing the possibility for a trader investing in a particular
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risky asset to move all his wealth towards the risk-free asset and vice versa. The
Ising models are then connected through the risky states by means of a complete
graph, i.e. each trader investing in a risky asset, besides the possibility to switch
to the risk-free asset or keep its position, has also the possibility to switch to any
other risky asset.

The resulting n risk-free assets are then considered indistinguishable, effectively
representing one unique risk-free asset, or from the modeling point of view the
bond market at the aggregate level.

Again from a dynamical point of view, the scheme presented constitutes a
discrete-time Markov chain and a useful graphical representation of it can be made.
Figure 3.2 shows the resulting Markov chain in the case of three risky assets.

Risky 1

Risky 2Risky 3

Risk free

Risk freeRisk free

Figure 3.2: Markov chain for the “n (n = 3) coupled Ising” model

Eventually, we decided to abandon this approach since growing the number n
of risky assets leads to a poorly controllable behavior of the class considered at
the aggregate level. The Ising-like structure suggests the form of the transition
probabilities between risky and risk-free investments, as in the original setup. Nev-
ertheless, it does not tell us anything about the form of the transition probabilities
inside the complete graph. This total freedom in defining the latter rates is a
double-edged sword, this large arbitrariness is priced by the lack of control on the
emerging statistical property of the system. We will soon come back to this crucial
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point.
In the meanwhile, we comment that the other possibility we have considered,

which gives rise to a different Markov chain structure is inspired by the solution
adopted in Kopp [22]. We can model the transition from the unique risk-free asset
towards the risky assets market, i.e. the stock market, considered at the aggregate
level and vice-versa through an Ising model and then we can construct a mechanism
to specify the investment decision inside the stock market. The resulting Markov
chain, again for three risky assets, is represented in figure 3.3.

Risk free

Risky 1

Risky 2Risky 3

Stock market

Figure 3.3: Markov chain for the “aggregate stock market” model (with n = 3
stocks)

In the following Chapter we will use a radically different approach to construct
other models for the noise traders class, here however we explain why we have
discarded both the two possibilities just presented.

The two models share the same “microscopic” approach used to derive them.
Indeed, we have started to build the models defining a stochastic dynamics, which
is completely specified by a discrete-time Markov chain. This approach boils down
to defining the possible states, assets in this case, and the transition rates among
them which together specify the dynamics of our microscopic agent, the noise
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trader. Then we can study the emerging statistical properties of the “macroscopic”
system composed by the whole class of noise traders.

The method gives us complete freedom in defining the stochastic dynamics
which best models the system under analysis. Yet, in our opinion without other
constraints the method would suffer from a major drawback, indeed it would give
little or no a priori control, at least quantitatively, on the resulting “macroscopic”
statistical properties of the model. The resulting lack of solid theoretical results
regarding the emerging statistical properties could be an important problem in
modeling a complex system such as the financial market.

For this reason, in the following, we will adopt a different, in some sense specular,
approach starting from modeling the statistical property of the noise traders class
and then deriving from them the stochastic dynamics governing the time evolution
of the investment decisions. Moreover, this is actually the approach underlying the
definition of the transition rates in the original model by Kaizoji et al. [13].

Furthermore, we have a strong ally to proceed in this direction. Indeed, a huge
amount of work has been done in the field of Statistical Physics to tackle the
problem of simulating the stochastic dynamics of a system with specified statistical
properties and extremely powerful tools have been developed. We will extensively
make use of them. Statistical Physics has a history of success in modeling systems
with a large number of components (in this case the traders) whose collective
interactions lead to the emergence of highly not trivial collective phenomena (in
this case the bubbles).

Basically, in the next Chapter, we will put in the center the Ising-like structure
of the noise traders class. We will start from it, trying to generalize the original
model framework characterized by the standard Ising model to the multi-asset case.

Fortunately, the Ising model has been extended in many directions to account
for the presence of many states. We will largely make use of this rich literature.

In Chapter 4 we will propose four multi-state Ising-like statistical models for the
noise traders class, deriving the stochastic dynamics characterizing each of them
and discussing their strengths and weaknesses.

Each model has its peculiarities and is able to better depict particular features of
the noise traders class we are trying to model. As always in modeling, the trade-off
between the accuracy in representing different features of the system under analysis
has to be taken into account. We will present in order the four multi-state Ising-like
models: a Potts model, an O(n) model, a vectorial extension of the BEG model,
and an n-state extension of the BEG model.

Finally, we anticipate that the analysis of these models will unveil a profound
connection between the Ising-like modeling of the noise traders and the Decision
Theory, in particular concerning the Logit distribution, constituting the theoretical
framework in which we can understand the decision process characterizing the
investments of this type of agents.
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Chapter 4

Ising-like modeling for the
extended Noise traders class

We have largely discussed in the last section of the previous Chapter on the
difficulties in extending the noise traders class to the multi-asset framework. In
this Chapter, we tackle the extension puzzle by applying the tools of Statistical
Physics. We have already commented on the effectiveness of Statistical Physics in
modeling systems with a large number of components whose collective interactions
lead to the emergence of highly non-trivial collective phenomena.

In this Chapter, in particular, we refer to the large literature concerning the
multi-state extension of the Ising model to preserve also in the enlarged framework
the fundamental Ising-like structure of the noise traders class that we showed to
govern the emergence and the dynamics of the bubbles.

As we have already anticipated our approach starts from modeling the “macro-
scopic” statistical properties of the noise investors through an Ising-like model. We
will introduce in order four models of this type: a Potts model, an O(n) model, a
vectorial extension of the BEG model, and an n-state extension of the BEG model.

Each model is defined by its Hamiltonian, entering in the Boltzmann weight.
The latter constitutes the probability distribution associated with the possible
configurations of the noise traders class, hence it associates a probability to each
possible set of investment decisions the whole pool of traders can undertake. The
Boltzmann weight of the model completely determines the statistical properties of
the system under analysis.

However, we are interested in modeling the dynamics of the class and not just
its average properties. Hence, the next step for each of the four aforementioned
models is to derive the stochastic dynamics characterizing it. From Statistical
Physics’ theory, we know that different stochastic dynamics can exist that give rise
to the same statistical model.
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Nevertheless, this is radically different from the situation we where facing
in the last Chapter commenting on the total freedom’s problem concerning the
other extension approaches. In that case, we were referring to this freedom as a
double-edged sword, commenting that the resulting lack of solid theoretical results
regarding the emerging statistical properties could be an important problem in
modeling a complex system such as a financial market.

Instead, now we have at disposal a tool to define realistic stochastic dynamics
while having complete control of the resulting statistical properties. This tool is
constituted by the Markov Chain Monte Carlo (MCMC) theory together with the
detailed balance condition which allows us to do exactly what we need, to start
from the Boltzmann weight and to obtain through a theoretically solid derivation
the transition probabilities which fully determines the stochastic dynamics of the
model and therefore the time evolution of the investment decisions of the noise
traders.

We briefly summarize the approach we adopt for each of the four Ising-like models.
We start with the Boltzmann weight defined by the Hamiltonian of the particular
model under analysis, then we write down the discrete-time Master Equation
describing its stochastic dynamics. Applying the detailed balance condition to it
we can derive the non-normalized transition probabilities. Finally, we proceed with
the normalization obtaining the transition probabilities among the various assets.
At this point, the dynamics of the noise traders’ investment decision is completely
determined by the quantities just computed. The next step is to implement the
simulation of the Markov Chain Monte Carlo thus obtained. We will see that this
implementation step is in general non-trivial, sometimes constituting a real obstacle
to overcome. At this point, we can insert the designed extension of the noise
traders class into the whole enlarged model, defined by the components introduced
in Chapter 3. We have finally a complete market model extended to the multi-asset
framework. Implementing its simulation, we can study the resulting time series
and analyze the interesting collective phenomena characterizing them.

One of the most interesting points that will emerge in the following discussion
is the profound connection between the transition probabilities derived with this
method and the Logit probability distribution. This will create a bridge between
the Ising-like modeling of the noise traders and the framework of Decision Theory
in which we can understand the decision process of each agent. Building on this
connection we will see that all the modeling could be reformulated in terms of the
maximization process of a specific deterministic utility function, common to all
the agents, in presence of the random impact of the idiosyncratic opinion of each
individual. This will allow us to understand how the “macro” statistical properties
emerge from the “micro” stochastic decision process of each noise investor.

The whole Chapter is dominated by the application of the tools of Statistical
Physics, we will adopt its natural language and we will deepen some important
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points insisting in particular on their theoretical implications.
We now move to outline the structure of the Chapter. There are four main

sections corresponding to the four Ising-like models analyzed, plus one extra section
devoted to a digression on the modeling of the social imitation mechanism in a
wider sense, useful for the introduction of the last of the four models.

Here we briefly introduce the four main sections. The detailed presentation of
the structure of each section, with the overview of its subsections, is present at the
beginning of each of the four parts.

Section 4.1 is dedicated to the Potts model. In particular, we consider a fully
connected Potts model with an external field representing the various price momenta.
Then, in section 4.2 we present a fully connected O(n) model with a vectorial
external field representing the price momenta. In section 4.3 we then move to a
vectorial extension of the BEG model. Section 4.4 is instead dedicated to a more
general discussion on the task of modeling the social imitation phenomenon in the
noise traders class. Finally, in section 4.5 we discuss the last of the four Ising-like
statistical models of the Chapter, an n-state extension of the BEG model.

4.1 The Potts model

In this section, we propose a multi-asset extension to the original noise traders
class introducing a fully connected Potts model with an external field representing
the price momenta.

In subsection 4.1.1 we introduce the Hamiltonian defining the model. In sub-
section 4.1.2 we derive the transition probabilities and we study their interesting
properties, in particular, we find that the resulting transition probabilities coincide
with the Logit distribution, thoroughly studied in the Discrete Choice Theory. In
the subsection 4.1.3 we present the time series of two simulations and we comment
on their qualitative behavior. The time series generated by the implementation
of this model are qualitatively and quantitatively very different from the original
model ones and very far from real markets’ behavior. To understand this unex-
pected behavior we deepen the theoretical analysis of the model by means of two
main tools, the dynamical systems theory to study the mean value equations and
the emerging bifurcation diagram, in subsection 4.1.4, and the Landau expansion
of the free energy, in subsection 4.1.5. This analysis unveils the reasons for the
strange behavior of the time series and points out the limits of applicability of the
Potts model in representing the noise traders class. The latter point is addressed
in subsection 4.1.6, where we summarize the results found and we comment on
the aforementioned limits of applicability, also concerning possible different models
which share some features with the Potts’ one.
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4.1.1 The Potts model on the fully connected graph
To extend the noise traders class to the multi-asset framework we introduce a
q-state Potts model with an external field defined on the fully connected graph
KN , with N nodes and N(N−1)

2 edges. The number q = n + 1, represents the total
number of assets, constituted in particular by n risky and one risk-free asset. The
Hamiltonian of the model is

HN({s1, . . . , sN}) = − J

2N

NØ
i,j=1

δsi,sj
−

qØ
k=1

hk

NØ
i=1

δsi,k (4.1)

where N represents the total number of noise traders. Each noise trader invests
all his wealth in only one asset at a time, hence is modeled by a spin which can
assume q discrete values si ∈ {1, . . . , q}. Each value representing the unique asset
held by the investor. In particular, the first n = q − 1 represent the risky assets,
while the last one the risk-free investment. From now on we will refer to si both
with the terms spin and trader.

Moreover, each noise trader interacts with all the others through a Kronecker
delta-like interaction δsi,sj

. This interaction models the social imitation attitude of
this type of agent. In particular the interaction will be attractive − J

2N
(δsi,sj

= 1) =
− J

2N
in the case of two traders investing in the same asset, or absent in case of

different investment decisions − J
2N

(δsi,sj
= 0) = 0. Basically, the interaction term

of the Hamiltonian (4.1) models an effective pairwise force pushing the traders
to invest in the same asset. This intuitively motivates the expression modeling
the social imitation, but we refer to section 4.4 for a deeper discussion on the
topic. Finally, the second attitude characterizing this type of agent, the trend
following, is modeled by an external field acting on each spin, i.e. trader, with an
intensity-dependent on the state of the spin hkδsi,k. The external field is composed
of the price momenta of the risky assets so that the field h “felt” by the investor
is constituted exactly by the price momentum corresponding to the asset he is
holding.

In the Hamiltonian (4.1) there is a slight difference with respect to the standard
form of the Potts model which needs to be clarified. Indeed, the Hamiltonian
accounts also for a self-interaction of each spin with itself, being the double sum
not subjected to the condition si /= sj, at odds with the standard version of the
model. We have allowed for the self-interaction because in the following it will
simplify the calculations. The central point is that this modification is negligible
in the large N case, which is exactly the present one. This negligible difference
is actually what distinguishes the fully connected formulation of the Potts model
from the mean-field one, in the finite N regime. Indeed, it can be shown that the
fully connected Potts model is equivalent to the mean-field Potts model in the
thermodynamical limit N → +∞. Since it will be useful to compare our results
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to the well-known properties of the mean-field models and since we are in a large
N regime in which we know that the difference between the two is negligible, we
simply slightly modify the fully connected model to extend the equivalence of the
two also at finite N . Hence, from now on we will use the two terms, fully connected
and mean-field interchangeably, referring always to the Hamiltonian in equation
(4.1). We take the standard Boltzmann weight as the equilibrium distribution,

P ({s1, . . . , sN}) = e−βHN . (4.2)

This multivariate distribution, assigning a probability to each possible investments’
configuration of the whole class, completely determines the statistical properties of
the system.

In the next section, we introduce the procedure to derive from the Boltzmann
distribution (4.2) the stochastic dynamics of the noise traders. This procedure, with
the proper modifications, will be also applied to derive the transition probabilities
of all the other three models we will introduce.

4.1.2 The transition probabilities and their connection to
Decision Theory

In order to derive the stochastic dynamics of the statistical model, we construct a
Markov Chain Monte Carlo (MCMC) having (4.2) as its equilibrium distribution.
The dynamics is completely determined by the transition probabilities. In the next
paragraph, we present the derivation of the transition probabilities, while in the
following paragraphs we study their properties.

The derivation of the transition probabilities

We start from the discrete-time Master Equation governing the evolution of the
time-dependent conditional probability distribution

P (sl | {s1, . . . , sl−1, sl+1, . . . , sN}, t) (4.3)
of a single spin sl given all the other spins fixed in their states. From now on
{s1, . . . , sl−1, sl+1, . . . , sN} will be considered as fixed parameters each having a
specific value among {1, . . . , q}. We stress the fact that we have to consider the
time evolution of this conditional probability because the time evolution of the full
joint probability is not manageable. We also underline the fact that the following
derivation relies on the key mean-field assumption, exact (minus an error that
is negligible for large N) in the fully connected case, of statistical independence
between the spins. This allows us to write

P (sl | {s1, . . . , sl−1, sl+1, . . . , sN}, t) = P (sl, t) (4.4)
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crucial point in the subsequent passages. The discrete time master equation for
the conditional probability to have sl = a reads

P (sl = a, t + ∆t) − P (sl = a, t)
∆t

=
qØ

b=1
b /=a

W (b → a)P (sl = b, t) − W (a → b)P (sl = a, t). (4.5)

We will assume an unit time increment ∆t = 1, representing one trading day. The
transition rates W (a → b) have to be understood as conditional rates, having all
the spins except sl fixed. To lighten the notation we denote

P (sl = a | {s1, . . . , sl−1, sl+1, . . . , sN}, t) = P (a, t). (4.6)

To construct a MCMC for the Potts model we need to sample the desired equilibrium
statistical distribution, effectively making the discrete-time derivative equal to zero.
This can be done in different ways, here we use the classical detailed balance
condition which reads

W (a → b)
W (b → a) = P (b)

P (a) (4.7)

being P the equilibrium Boltzmann weight (4.2) for the Potts model, now indepen-
dent of time.

At this point, a little theoretical discussion on why we choose the detailed
balance condition to set to zero the discrete-time derivative of the Master Equation
has to be addressed. What we need to do to proceed with this derivation is just to
impose the stationarity condition on the system, expressed indeed by setting to
zero the time derivative. The detailed balance condition is just one of the possible
choices. It implies, but not vice-versa, the global balance condition, which instead
is the actual condition equivalent to the stationarity constraint we want to impose.
The global balance condition is expressed byØ

b

W (b → a)P (b) =
Ø

a

W (a → b)P (a) (4.8)

In more formal terms, we have that the stationarity condition is necessary and
sufficient, hence equivalent, to the global balance condition. Instead, the detailed
balance condition is just a more restrictive specific condition, sufficient for the
stationarity but not necessary. The detailed balance condition corresponds to the
Statistical Physics condition of equilibrium, characterized by spacial and temporal
symmetries, where the last in turn corresponds to the reversibility condition of
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the equilibrium dynamics. The global balance condition, in the case in which the
detailed one is broken, corresponds instead to the stationary out-of-equilibrium
systems.

The theoretical discussion on the relationships between detailed balance and
global balance is extremely wide and in our opinion represents one of the most
interesting and challenging aspects of modern Statistical Physics theory. Neverthe-
less, a deeper discussion on this topic goes far beyond the scope of this work. We
refer in particular to Bouchaud [43], where the author discusses the implication of
the relation between the two balance rules for the modeling of financial markets.

In the present work, we can motivate the decision to adopt the detailed balance
condition as a way to restrict all the sources of non-equilibrium to the stochastic
wandering of the herding propensity parameter κt. Since we are interested in
the out-of-equilibrium effects deriving from a change in herding propensity κt of
the noise traders, in turn modeling the changes in geopolitical and economical
situation as in Kaizoji et al. [13], we assume the system is constantly pushed out of
equilibrium solely by the parameter κt. The system tries always to relax to the new
equilibrium imposed by that trading day value’s of κt, but since the parameter is
constantly changing the system is always out-of-equilibrium. Moreover, the choice
of the detailed balance condition characterize also the definition of the transition
probability in the original model introduced in Kaizoji et al. [13] and we want to
keep the same structure of the original model from this point of view.

Nevertheless, to conclude this theoretical digression we point out that trying to
move from the more restrictive detailed balance to the more general global balance
condition can be extremely interesting (and challenging) from the point of view of
modeling the extremely complex phenomena characterizing the financial markets.
This could be a fruitful direction to pursue in order to push further the study of
this model.

Coming back to the main speech, we stress again the fact that the probability
P (a) entering in expression (4.7) has to be understood as a conditional probability.
Nevertheless, using the definition of conditional probability we can easily switch to
the joint probabilities

P (b)
P (a) = P (sl = b | {s1, . . . , sl−1, sl+1, . . . , sN})

P (sl = a | {s1, . . . , sl−1, sl+1, . . . , sN})

=
P (sl=b,{s1,...,sl−1,sl+1,...,sN })

P ({s1,...,sl−1,sl+1,...,sN })
P (sl=a,{s1,...,sl−1,sl+1,...,sN })

P ({s1,...,sl−1,sl+1,...,sN })

. (4.9)

The denominators simplify and we get the ratio between the joint probabilities,
which we can explicitly compute as
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P (sl = b, {s1, . . . , sl−1, sl+1, . . . , sN})
P (sl = a, {s1, . . . , sl−1, sl+1, . . . , sN})

=
1
Z

e
−β(− J

2N

q
i /=l

q
j /=l

δsi,sj − J
2N

q
j

δsl=b,sj
− J

2N

q
i

δsi,sl=b+ J
2N

δsl=b,sl=b−
qq

k=1 hk(
q

i /=l
δsi,k+δsl=b,k))

1
Z

e
−β(− J

2N

q
i /=l

q
j /=l

δsi,sj − J
2N

q
j

δsl=a,sj − J
2N

q
i

δsi,sl=a+ J
2N

δsl=b,sl=b−
qq

k=1 hk(
q

i /=l
δsi,k+δsl=a,k))

.

(4.10)

Simplifying the common factors at numerator and denominator we get

P (b)
P (a) = e−β(− J

N

q
i

δsi,sl=b−
qq

k=1 hkδsl=b,k+ J
N

q
i

δsi,sl=a−
qq

k=1 hkδsl=a,k)

= e−β(− J
N

(
q

i
δsi,sl=b−

q
i

δsi,sl=a)−(hb−ha))

= eβ(J
q

i
δsi,sl=b−

q
i

δsi,sl=a

N
+hb−ha). (4.11)

Now we set J = 1, as a remark we note that in order to have a meaningful
mean-field assumption we need that all spins interact with the same strength
J = const. Doing that we effectively drop the topology of the graph representing
the interaction between the spins, i.e. the traders. If in the future different
interactions strength between the traders, i.e. a non-uniform social imitation
strength, will be investigated, it will be necessary to derive the transition rates in
a different way, being the mean-field assumption no more justified.

Now we identify the inverse temperature with the herding propensity β = κt,
as we have done for the original model, and the external field intensities with the
corresponding price momenta hk = Hk. Moreover, qi δsi,sl=a = Na represents the
number of spins in state a, i.e. the number of traders holding the asset a. Here
becomes also clear why we had to consider also the self interaction in the Potts
model. We then finally get

W (a → b)
W (b → a) = P (b)

P (a) = eκt( Nb−Na
N

+Hb−Ha). (4.12)

Now to get the transition rates we have different possibilities. We could use the
standard Metropolis-Hastings rule, presented in an historical work by Metropolis
et al. [44], i.e. we assume that the transition rate is composed by a move proposal
probability P and a move acceptance probability A

W (a → b) = P(a → b)A(a → b) (4.13)
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and assuming the move proposal probability to be uniform on the arrival states,
we get from the Metropolis rule

A(a → b) = min

I
1,

P (b)P(b → a)
P (a)P(a → b)

J
= min

I
1,

P (b)
P (a)

J
(4.14)

where in the last equality we have simplified the two uniform probabilities. In our
case we get

A(a → b) =
1 if (Nb−Na

N
+ Hb − Ha) > 0

eκt( Nb−Na
N

+Hb−Ha) otherwise
(4.15)

This would work but it is clearly a very bad modeling of the real actions of the
traders, indeed (4.14) and (4.15) define a dynamics where at each time step, each
noise trader chooses at random a new asset to switch to and its trade decision
is arbitrarily accepted or rejected according to a probability A(a → b). For this
reason this choice will be discarded.

To construct more realistic dynamics, we need a rejection-less MCMC. Indeed,
imposing

A(a → b) = A(b → a) = 1 (4.16)

we get

min

I
1,

P (b)P(b → a)
P (a)P(a → b)

J
= 1 (4.17)

from which follows

P(a → b)
P(b → a) = P (b)

P (a) = eκt( Nb−Na
N

+Hb−Ha). (4.18)

This condition is satisfied, for example, setting

P(a → b) = e
1
2 κt( Nb−Na

N
+Hb−Ha). (4.19)

In this way, we have obtained rejection-less and more realistic moves. From
the theory of Markov Chain Monte Carlo, we know that our Markov chain will
correctly simulate the dynamics of our Potts model if it satisfies three conditions, i.e.
ergodicity, aperiodicity, and respect of probability axioms. The first two descend
directly from the method we used to construct the move probabilities. For the
third, we already have non-negative transition rates, we have only to ensure that
they are correctly normalized to one, that they are indeed well-defined transition
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probabilities. We know that a Markov chain is completely determined by its
transition matrix T . In our case, it takes the form

T =

P(1 → 1) P(1 → 2) . . . P(1 → q)
. . . . . . . . . . . .

P(q → 1) P(q → 2) . . . P(q → q)

 (4.20)

hence we need to have a matrix normalized by row, ensuring it is a well defined
stochastic matrix. The normalization procedure however introduce new terms in
the detailed balance condition which have to be taken into account. Indeed, we
have

W (a → b)
W (b → a) = P(a → b)

P(b → a) =
1

Z1
e

1
2 κt( Nb−Na

N
+Hb−Ha)

1
Z2

e
1
2 κt( Na−Nb

N
+Ha−Hb)

, (4.21)

where
Z1 =

qØ
k=1

e
κt
2 ( Nk−Na

N
+Hk−Ha) (4.22)

and
Z2 =

qØ
k=1

e
κt
2 ( Nk−Nb

N
+Hk−Hb) (4.23)

Being Z1 and Z2 different, the detailed balance condition is no longer satis-
fied. Nevertheless, the solution is readily found. We collect from the Z1 sum
a term e

1
2 κt(− Na

N
−Ha) common to all the addends and we simplify it with the same

term present at the numerator. In an analogous way, we collect from Z2 a term
e

1
2 κt(− Nb

N
−Hb) and we simplify it. We then get

W (a → b)
W (b → a) =

1
c
e

1
2 κt( Nb

N
+Hb)

1
c
e

1
2 κt( Na

N
+Ha)

= e
κt
2 ( Nb−Na

N
+Hb−Ha). (4.24)

Unexpectedly the β-like term results halved. This would lead to a doubled crit-
ical value of the kappa process in the simulation. The problem is easily solved
multiplying by 2 the β-like term.

Doing that we finally get the following transition probability

W (a → b) = P(a → b) = eκt( Nb−Na
N

+Hb−Ha)qq
k=1 eκt( Nk−Na

N
+Hk−Ha)

. (4.25)

Interestingly, P(a → b) defines a probability distribution over the arrival states
which coincides with the Logit probability distribution. This is once again an
example of the connection between the discrete choices models and Ising-like models
in modeling social systems, as pointed out in Sornette [12].
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The Decision Theory framework: the Logit probability distribution and
the transition probabilities

The Logit model of discrete choices has many interesting properties. McFadden
has shown in McFadden [45], that the Logit probability distribution actually
models individuals who maximize a utility function which has an implicit random
idiosyncratic part. Indeed, if each agent makes its choice maximizing

s∗ = arg max
s

{βus + ηs}, (4.26)

where s represents the possible choices, us is the deterministic part of the utility
function, ηs is a random variable and β plays the role of the inverse temperature,
McFadden proved that P (s∗ = s) coincides with the Logit distribution if the random
variable ηs is distributed according to the Gumbel distribution, with cumulative
distribution function

Fη(x) = e−e
− x−µ

λ . (4.27)

The choice of the Gumbel distribution is unique in that it leads to the Logit model
which satisfies the axiom of independence from irrelevant alternatives. The Logit
model has many other interesting properties, but a deeper analysis goes beyond
the scope of this thesis.

Having established the equivalence between the transition rates characterizing
the noise traders’ investment strategy and the Logit distribution we have unveiled
the bridge between the present Ising-like model of the noise traders and the
framework of Decision Theory in which we can understand the decision process
undertaken by each agent. In light of this, all the modeling of the noise traders
class can be understood starting from the “micro” stochastic decision process of
each noise investor. In particular, in formula (4.26) it is clear how the parameter β
which corresponds to the herding propensity κt governs the relative importance
of the deterministic part of the utility function common to all the traders, hence
pushing the traders to polarize towards the same investments, with respect to the
random part modeled by the Gumbel distribution representing the importance of
the idiosyncratic opinion of each individual. From this decision theory’s point of
view, the meaning of the herding propensity parameter and the transition between
disordered states and a polarized state takes all its meaning.

The properties of the transition probabilities

We comment also on the fact that the transition probabilities (4.25) have an-
other important property, indeed simplifying a common term at numerator and
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denominator e
1
2 κt(− Na

N
−Ha) we get

P(a → b) = eκt( Nb−Na
N

+Hb−Ha)qq
k=1 eκt( Nk−Na

N
+Hk−Ha)

= eκt( Nb
N

+Hb)qq
k=1 eκt( Nk

N
+Hk)

. (4.28)

Remarkably, the transition probability from state a to state b is independent of
the initial state a. This could be surprising from a modelistic point of view, but it
is actually a typical property of mean-field models and is ultimately connected to
the fact that each traders interacts with all the others in the same way (J = 1)
and that the number of interacting agents is large (N º 1).

Summarizing, at each time step, i.e. trading day, each noise trader decides to
hold its asset or to buy another one according to the probability distribution (4.25)
defined over the assets.

It is important to notice that the probability distribution is updated only at
the end of the trading day after all the traders have made their decisions, hence
each trader decides based on the investment decisions of all the other traders of the
previous day. This is motivated from a modeling point of view, but it introduces a
problem from a theoretical point of view that needs to be discussed.

Usually, the Markov Chain Monte Carlo used for simulating spin systems
proceeds to select one spin or one cluster of spins at random, proposing a move
according to a certain proposal probability and then accepting or rejecting the move
according to a certain acceptance probability. After each move, all the quantities
are then updated according to the new configuration of the system.

The simulation algorithm here proposed is different for at least two reasons.
The first is that at each time step all the spins are sequentially updated, so there
is not a random choice of the spin to update and the second is that the quantities
entering in the transition probabilities are updated only after all the spins have
been updated.

The first issue can be understood and the consistency of the method can be
proved in the framework of the Gibbs sampling. In this framework, it can be
proved that if each component of the vector of spins defining the state of the
system is updated sequentially, according to the conditional probability of that
spin conditioned to all the others, the Markov chain defined by the full vector of
spins considered after all the updates have taken place is correctly sampling the
joint probability distribution.

In formulas, given a vector state of spins (s1, . . . , sl−1, sl, sl+1, . . . , sN ), if at each
time step t all the components of the vector are updated, sampling each spin sl

from the conditional probability P (sl | {st
1, . . . , st

l−1, st−1
l+1, . . . , st−1

N }), then the full
vector of updated spins (st

1, . . . , st
l−1, st

l , st
l+1, . . . , st

N) represents the state at time
t of a Markov chain which is correctly sampling the statistical model defined by
P , i.e. correctly simulating its dynamics. The key point is that the conditional
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probabilities must be updated after each single spin flip as underlined by the time
superscripts. This is connected to the second point aforementioned, indeed in
our simulation algorithm we are updating the probabilities only at the end of the
trading day. Eventually, the method’s consistency is assured by the mean-field
assumption which allows us to drop the dependence on all the other spins in the
conditional probability. This relies on the asymptotic equivalence for N → +∞
of the fully connected and mean-field Potts models and on the fact that we are
indeed in the large N regime.

The average holding time

In this paragraph, we comment on the fact that the dynamics defined by the
transition rates (4.25) could lead to an excessively oscillating behavior, where the
noise traders change asset at an unrealistically high rate, too far from real markets
behavior. For example, discarding for a moment the herding behavior, i.e. setting
κt = 0, we would get a probability to hold the asset from one trading day to the
next one of P(a → a) = 1

q
, which for a large number of assets q º 1 leads to

unrealistic market behavior.
Moreover, in the present implementation, we lack a parameter allowing us to

tune the average propensity of each noise trader to hold its asset instead of changing
it.

To introduce the holding propensity parameter th, we have to break the detailed
balance condition, yet in the following, we show that we can quantify the error
introduced, proving it is negligible in the not-polarized phase, i.e ordinary regime,
but not negligible, yet determinant in the bubble regime when the class becomes
polarized.

Indeed, we multiply the holding probability by a constant, chosen to have an
average holding time in absence of herding propensity, κt = 0, roughly equals to th

trading days, where th represents the holding propensity parameter. The constant
is readily found from

th = 1
1 − P(a → a)|κt=0

, (4.29)

from which

P(a → a)|κt=0 = 1 − 1
th

, (4.30)

hence, using equation (4.28), we get

cqq
k=1
k /=a

e0 + ce0 = 1 − 1
th

, (4.31)
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finally

c = (th − 1)Nstocks. (4.32)
Inserting this new constant, the transition probabilities change to

P(a → b) = (1 + δa,b(c − 1))eκt( Nb−Na
N

+Hb−Ha)qq
k=1(1 + δk,a(c − 1))eκt( Nk−Na

N
+Hk−Ha)

. (4.33)

It follows that the detailed balance condition modifies to

W (a → b)
W (b → a) = P(a → b)

P(b → a) =

(1+δa,b(c−1))eκt(
Nb−Na

N
+Hb−Ha)qq

k=1(1+δk,a(c−1))eκt(
Nk−Na

N
+Hk−Ha)

(1+δb,a(c−1))eκt(
Na−Nb

N
+Ha−Hb)qq

j=1(1+δj,b(c−1))eκt(
Nj −Nb

N
+Hj −Hb)

. (4.34)

Simplifying the common terms we get

W (a → b)
W (b → a) = e

κt
2 ( Nb−Na

N
+Hb−Ha)

qq
k=1(1 + δk,a(c − 1))eκt( Nk

N
+Hk)qq

j=1(1 + δj,b(c − 1))eκt(
Nj
N

+Hj)

= e
κt
2 ( Nb−Na

N
+Hb−Ha) x + (c − 1)eκt( Na

N
+Ha)

x + (c − 1)eκt( Nb
N

+Hb)
, (4.35)

where in x are collected all the addends in common between numerator and
denominator. It is clear that if c = 1, i.e. holding probability not tuned, the
detailed balance is exactly satisfied. Instead, if we increase the holding probability,
c = (th − 1)Nstocks > 1, we introduce an error

Errora,b = 1 − x + (c − 1)eκt( Na
N

+Ha)

x + (c − 1)eκt( Nb
N

+Hb)
. (4.36)

The errors depend only on the differences

Na − Nb

N
+ Ha − Hb (4.37)

where (a, b) varies among all the possible couples of assets. Moreover, the errors
vanishes (exponentially fast) at the disordered configuration of the noise traders
class, where on average Na

N
≈ N

q
, Ha ≈ H ∀a. Yet, the impact of the errors are not

negligible in the ordered configuration characterizing the bubble regimes.
As a last remark, we notice that this approximation is equivalent, for the error

neglected, to considering the linearized transition probabilities in the original
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model by Kaizoji et al. [13]. However, at odds with the original model the present
implementation appears extremely susceptible to the holding propensity parameter
th, giving unrealistic simulation results for values around the original model one,
th = 10.

4.1.3 Time series description
In this section, we introduce the parameters used for the simulations and we
comment on the qualitative behavior of the resulting time series.

Choice of parameters

In 4.1 are present some of the parameters maintained fixed throughout all the
subsequent analysis.

Parameters

Assets q = n + 1 = 5 rf = 4 × 10−5

rd,i = 1.6 × 10−4 ∀i di,0 = 1.6 × 10−4 ∀i
Pi,0 = 1 ∀i Σd

i,i = 1.6 × 10−5 ∀i

Fundamentalist W f
0 = 109 Er,i = 1.6 × 10−4 ∀i

traders Σf
i,i = 0.0004 ∀i

Noise W n
0 = 109 Nn = 1000

traders θ = 0.95 Hi,0 = 1.6 × 10−4 ∀i

Table 4.1: Set of parameters for the simulations of the extended model endowed
with a Potts-like noise traders class. Their values constitute the natural general-
ization of the original models’ one being motivated by real markets data and are
mainly taken from Westphal and Sornette [18].

In all the subsequent simulations no correlation among the dividend processes
for different risky assets is assumed, even if the code is implemented to consider
also the possibility of correlated dividend processes.

Regarding the fundamentalist traders, following what we did for the dividends
processes, the expected covariance matrix is implemented into a vector of expected
variances and a matrix of expected correlations, in order to be able to change the
variances and the correlations in an independent and easier way. In the following
simulations, the variances are as in the table

Σf
i,i = 0.0004 i = 1, . . . ,4 (4.38)
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and the correlation matrix is set equal to

Cf =


1.0 0.5 0.0 0.0
0.5 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

 (4.39)

in order to analyze the impact on the market of a non-zero expected correlation
between two assets.

The correlation matrix Cf and the covariance matrix Σf are connected by the
relation

Cf = (diag(Σf ))− 1
2 Σf (diag(Σf ))− 1

2 , (4.40)
where diag(Σf ) represents the diagonal matrix of the variances.

The initial investment decisions for fundamentalist and noise traders are as
follows

þxf
0 = (0.075,0.075,0.075,0.075,0.7) (4.41)

þxn
0 = (0.2,0.2,0.2,0.2,0.2), (4.42)

where the last component represents the unique risk-free fraction while the others
stand for the n = 4 risky assets.

The kappa process properties are instead varied among the two different simula-
tions and presented in the following.

The time series

In this section we present the time series from two different simulations. The first
with an Ornstein-Uhlenbeck kappa process defined by

κt − κt−1 = η(µk − κt−1) + σkvt, (4.43)

with mean reversion level µk = 0.98βc, where βc represents the theoretical value for
the critical inverse temperature of the mean-field q-state Potts model

βc = 2(q − 1)
q − 2 log(q − 1). (4.44)

Which, in our case of q = 5, specifies to

βc = 2(5 − 1)
5 − 2 log(5 − 1) ≈ 3.697. (4.45)

Moreover, the mean reversion speed η and the step size σk are set, as in the original
model by Kaizoji et al. [13], such that the Ornstein–Uhlenbeck process has a
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standard deviation of 0.1βc and a deviation of κt two standard deviations above µk

in the super-critical regime will revert within ∆T = 20, i.e.

η = 1
∆T

log
A

µk + 0.2βc − µk

βc − µk

B
(4.46)

and
σk = 0.1βc

√
2η. (4.47)

The second simulation instead is characterized by a constant kappa in the critical
phase

κ = 3.9 > βc ≈ 3.697. (4.48)

The resulting time series presents noticeably unexpected features and are presented
in figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7.

The two simulations are characterized by a set of parameters very close to the
original model ones, yet the time series are very different and they are very far from
the real market behavior. Different sets of parameters produce a more realistic
time series but the present ones are useful to explore the key limits of the Potts
model. First of all, the exaggerated oscillating behavior of the time series comes
from the fact that the probability P (a → a) to hold the asset is not magnified at
all. Nevertheless, this is not the main point, since the behavior can be smoothed
multiplying a constant to P (a → a) as we have previously shown. We have also
to stress again that, at odds with the original model, the present implementation
appears extremely susceptible to the holding propensity parameter th, which for
the simulation presented is set equal to one.

Besides the exaggerated oscillating behavior, two main problems emerge. The
first is the abrupt change of regime characterizing the bubbles. The second is the
unexpected persistence of the ordered (disordered) phase when κt exits (enters) the
critical region.

The second problem is hardly visible at first sight in the Ornstein-Uhlenbeck
kappa process simulation but is evident in the constant kappa simulation, where
for a κt = 3.9 above the critical value κc ≈ 3.697 the disordered phase persist
throughout the simulation. To address these two problems we proceed with a linear
stability analysis of the mean value dynamical equations, which is developed in the
next subsection.

4.1.4 The mean value dynamical equations approach
In this section, we try to gain insight into the emergence of bubbles studying the
dynamical equations of the mean value of the number of noise traders investing
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Figure 4.1: Ornstein-Uhlenbeck kappa simulation. The figure shows the time
series of the four prices. Three bubbles are clearly identifiable as the peaks in the
prices 2 and 3.
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Figure 4.2: Ornstein-Uhlenbeck kappa simulation. The figure shows the time
series of the Ornstein-Uhlenbeck kappa process and the time series of both the four
risky fractions and the risk-free fraction of the noise traders class at the aggregate
level.
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Figure 4.3: Ornstein-Uhlenbeck kappa simulation. The figure shows the detailed
time series characterizing the risky asset 2. Two bubbles are clearly identifiable.
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Figure 4.4: Ornstein-Uhlenbeck kappa simulation. The figure shows the detailed
time series characterizing the risky asset 3. One bubble is recognizable at the
beginning of the simulation.
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Figure 4.5: Constant kappa simulation. The figure shows the time series of the
four prices. Remarkably, even if the noise traders class should be in the ordered
regime, since κ = 3.9 > βc, there are no signs of bubbles.
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Figure 4.6: Constant kappa simulation. The figure shows the time series of both
the four risky fractions and the risk-free fraction of the noise traders class at the
aggregate level. Remarkably, even if the noise traders class should be in the ordered
regime, since κ = 3.9 > βc, there are no signs of bubbles
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Figure 4.7: Constant kappa simulation. The figure shows the detailed time series
characterizing the risky asset 2. No bubble is present.
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in each asset. To derive the set of differential equations, we first define the mean
value of the number of noise traders investing in the asset a

na =
K

NØ
i=1

δsi,a

L
. (4.49)

The average value of each Kronecker delta function reads

éδsi,aê = P (si = a, t) = P (si = a | {s1, . . . , si−1, si+1, . . . , sN}, t), (4.50)

where in the last step we used again the crucial mean-field assumption. Since we
know the time evolution of the conditional probability through the Master Equation
we can write

dna

dt
=

NØ
i=1

d

dt
P (si = a | {s1, . . . , si−1, si+1, . . . , sN}, t)

=
NØ

i=1

A qØ
b=1
b /=a

W (b → a)P (sl = b | {s1, . . . , sl−1, sl+1, . . . , sN}, t)

− W (a → b)P (sl = a | {s1, . . . , sl−1, sl+1, . . . , sN}, t)
B

=
qØ

b=1
b /=a

W (b → a)
NØ

i=1
P (sl = b | {s1, . . . , sl−1, sl+1, . . . , sN}, t)

−
qØ

b=1
b /=a

W (a → b)
NØ

i=1
P (sl = a | {s1, . . . , sl−1, sl+1, . . . , sN}, t). (4.51)

Identifying the mean values na and nb we finally get the mean value dynamical
equation

dna

dt
=

qØ
b=1
b /=a

A
W (b → a)nb − W (a → b)na

B
. (4.52)

Actually we have a system of q mean value dynamical equations one for each asset.
Substituting the expression (4.25) for the transition probabilities we get

dna

dt
=

qØ
b=1
b /=a

A
1
Zb

eκt( na−nb
N

+Ha−Hb)nb − 1
Za

eκt( nb−na
N

+Hb−Ha)na

B
a = 1, . . . , q, (4.53)
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where the transition probabilities are written in terms of the mean values and Zb

and Za are the normalisation constants. We use two different indices for them to
underline they are different.

Equation (4.53) can be rewritten, simplifying the common terms at numerator
and denominator, as

dna

dt
=

qØ
b=1
b /=a

A
eκt( na

N
+Ha)qq

k=1 eκt( nk
N

+Hk)
nb − eκt( nb

N
+Hb)qq

j=1 eκt(
nj
N

+Hj)
na

B
a = 1, . . . , q, (4.54)

The set of equations (4.54) defines a system of q non-linear ordinary differential
equations in the q unknowns n1, . . . , nq. To study the dynamical properties of the
mean value equations we proceed with the linear stability analysis of the system.
In order to do that we have to compute the Jacobian matrix of the system. We
write the system in the compact form

dna

dt
= fa(na, {ni}i /=a) a = 1, . . . , q. (4.55)

After collecting the common denominator, we get

fa =
qØ

b=1
b /=a

1qq
k=1 eκt( nk

N
+Hk)

A
eκt( na

N
+Ha)nb − eκt( nb

N
+Hb)na

B
. (4.56)

We compute the derivatives of fa as

∂fa

∂na

= 1
(qq

k=1 eκt( nk
N

+Hk))2

qØ
b=1
b /=a

(κt

N
eκt( na

N
+Ha)nb − eκt( nb

N
+Hb))(

qØ
k=1

eκt( nk
N

+Hk))

− (eκt( na
N

+Ha)nb − eκt( nb
N

+Hb)na)κt

N
eκt( na

N
+Ha)

, (4.57)

∂fa

∂ni

= 1
(qq

k=1 eκt( nk
N

+Hk))2

− (κt

N
eκt( ni

N
+Hi)na − eκt( na

N
+Ha))(

qØ
k=1

eκt( nk
N

+Hk))

−
qØ

b=1
b /=a

(eκt( na
N

+Ha)nb − eκt( nb
N

+Hb)na)κt

N
eκt( ni

N
+Hi)

 i /= a. (4.58)

We focus on the fixed point of the system (4.54) ni = N
q

∀i, which represent the
disordered state fixed point and we study its stability for varying κt. To further
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simplify the picture we arbitrarily consider the fixed point for the price momentum
Hi = H ∀i and we get

∂fa

∂na

-----
N
q

,H

=
qØ

b=1
b /=a

1
q

A
κt

q
− 1

B
= q − 1

q

A
κt

q
− 1

B
, (4.59)

∂fa

∂ni

-----
N
q

,H

= −1
q

A
κt

q
− 1

B
. (4.60)

The Jacobian of the system evaluated at the fixed point reads

J
---

N
q

,H
= 1

q

A
κt

q
− 1

B
q − 1 −1 −1 . . . −1
−1 q − 1 −1 . . . −1
. . . . . . . . . . . . . . .
−1 −1 −1 . . . q − 1

 (4.61)

Neglecting for a moment the multiplicative constant we have that the eigenvalues
of the matrix are λ1 = 0 with multiplicity 1 and λ2,...,q = q with multiplicity q.
Considering also the multiplicative constant we can identify a change of stability of
the disordered fixed point at κc = q. For κt < q all the eigenvalues are non-positive
pointing out to a stable fixed point. For κt > q the eigenvalues become positive
and the fixed point loses its stability.

This is an interesting result, because we found a change of stability at a
critical value different from the standard value of the mean-field Potts model
βc = 2(q−1)

q−2 log(q − 1). However, we have to underline that the presence of a
zero-valued eigenvalue denotes that we are in presence of a marginal case. Hence,
from the theory of dynamical systems, we don’t have any theorem stating that
the stability results of linear analysis well represent the true stability of the full
non-linear systems. Stated otherwise, the linearization results could be wrong.

Nevertheless, the previous result is an interesting clue driving us to study the
critical behavior of the model employing other techniques, both numerical and
analytical. Before doing that in the following paragraph, we mention that we tried
to go to the second order in the stability analysis, computing the Hessian matrix
Ha for each component fa of the system. However, the Hessian seems not to do
add any new information about the aforementioned change of stability or about
other changes of stability.

Numerical analysis of the bifurcation diagram

The fact that the standard critical inverse temperature of the mean-field Potts
model βc = 2(q−1)

q−2 log(q − 1) does not emerge from this stability analysis, is an
interesting unexpected point.
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This pushed us to try to study the stability phase diagram numerically, varying
the constant kappa parameter and the initial conditions through different simu-
lations. In the literature there are several works addressing exactly the change
of stability problem and the presence of metastable states, we cite among them
Cuff et al. [46], Kirkpatrick and Wolynes [47], Ostilli and Mukhamedov [48], and
Thirumalai and Kirkpatrick [49]. The simulations, by now, are in accord with the
results from the literature.

We refer to Ostilli and Mukhamedov [48] for a complete bifurcation diagram. In
a few words, from the bifurcation diagram we identify two changes of stability, one
occurring at κt = 2(q−1)

q−2 log(q − 1) with a pitchfork subcritical bifurcation which
correspond to a first-order transition and another one at κt = q.

This picture unveils the main reason for the problems of the simulation. First,
being the phase transition of first-order, i.e. discontinuous, the time series jumps
discontinuously in the simulation and the bubbles do not grow continuously as it
happens for the original Ising model, which features a second-order phase transition.
Instead, the discontinuous jump leads to a full polarization of the noise traders
class in few trading days, characterizing the bubbles as real changes of regime.

Moreover, a second problem adds to the first, the particular phase transition of
the mean-field Potts model is characterized by the presence of metastable states.
Starting from a disordered state below the critical kappa, when the κt enters in
the critical region, even if from a statistical point of view the thermodynamical
equilibrium has changed, from a dynamical point of view the system remains frozen
in a metastable disordered state until a sufficiently strong stochastic perturbation
breaks the metastability and the system jumps discontinuously to the new ordered
state, or κt becomes greater than q exiting the metastability region and the
metastable state ceases to be locally stable.

The same problem is present when vice-versa κt decreases from the critical
region to the disordered region, the system could remain ordered even below the
critical temperature.

To deepen the analysis of the metastability region, in the next section we study
the system with a classical tool of Statistical Physics, the Landau expansion of the
free energy.

4.1.5 The Landau expansion approach

For this section we refer to [50]. We recall that the Hamiltonian of our model is

HN({s1, . . . , sN}) = − 1
2N

NØ
i,j=1

δsi,sj
−

qØ
k=1

Hk

NØ
i=1

δsi,k. (4.62)
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As an approximation we neglect the external field part of the Hamiltonian, hence
in the following analysis we consider the approximated Hamiltonian

HN({s1, . . . , sN}) = − 1
2N

NØ
i,j=1

δsi,sj
. (4.63)

We recall that the free energy is defined as

F = éHê − TS (4.64)

where éHê represents the average total energy of the system, T is the temperature,
which in our case we can define as T = 1

κtkB
with kB being the Boltzmann constant

and S is the thermodynamical entropy.
From the mean-field assumption, it follows that

P ({s1, . . . , sN}) = P (s1)P (s2) · · · P (sN). (4.65)

We expect that the disordered phase is characterised by P (si) = 1
q

∀i. Instead in
the ordered phase, the probability that a noise trader holds a particular asset, say
for example the asset number 1, is higher than the others. From this reasoning
and to then work out a Landau expansion we introduce an order parameter m and
we assume, following a variational method, that the probability for the single noise
trader reads

P (si) =


1+(q−1)m
q

si = 1
1−m

q
si = 2, . . . , q

(4.66)

where

m ∈
C

− 1
q − 1 ,1

D
. (4.67)

As a remark, we underline that the asset number 1 has nothing special and we could
choose any other asset. Making this arbitrary choice we are effectively breaking
the symmetry of the system, a necessary step in this derivation.

Using (4.66) we can compute the average value of the delta-like interaction term

éδsi,sj
ê =

qØ
si=1

qØ
sj=1

δsi,sj
P (si)P (sj) =

qØ
si=1

(P (si))2

=
A

1 + (q − 1)m
q

B2

+ (q − 1)
A

1 − m

q

B2

= 1 + (q − 1)m2

q
. (4.68)
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Using this result we can compute the average total energy as

éHê = − 1
2N

N2 1 + (q − 1)m2

q
. (4.69)

The entropy term is readily computed from the definition of Shannon entropy as

S = −kBN

A
1 + (q − 1)m

q
log 1 + (q − 1)m

q
+ (q − 1)1 − m

q
log 1 − m

q

B
. (4.70)

Hence the variational free energy reads

F = éHê − TS = − 1
2N

N2 1 + (q − 1)m2

q

+ 1
κt

N

A
1 + (q − 1)m

q
log 1 + (q − 1)m

q
+ (q − 1)1 − m

q
log 1 − m

q

B
. (4.71)

From which the variational free energy density per spin easily follows

f(m) = F

N
= −1

2
1 + (q − 1)m2

q

+ 1
κt

A
1 + (q − 1)m

q
log 1 + (q − 1)m

q
+ (q − 1)1 − m

q
log 1 − m

q

B
. (4.72)

We are finally able to compute the Landau expansion of the free energy density,
which is a Taylor expansion in powers of m.

f(m) = f0 + f2m
2 + f3m

3 + f4m
4 + . . . (4.73)

Expanding up to the fourth order the logarithms present in the entropy expression
and collecting the terms we get

f0 = − 1
2q

− 1
κt

log q, (4.74)

f2 =
(q − 1)( q

κt
− 1)

2q
, (4.75)

f3 = −1
6

1
κt

(q − 1)(q − 2), (4.76)
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f4 = 1
12

1
κt

(q − 1)(q2 − 3q + 3). (4.77)

We are interested in the presence of absolute and relative minima of the free
energy, corresponding respectively to stable and metastable thermodynamical
configurations of the system. The four coefficients are sufficient to identify the
interesting minima and their nature. Indeed, while the zeroth-order term represents
only a shift of the free energy, the fourth-order term being always positive ensures
the presence of at least one minimum in the allowed range of m values. Being
f3 always negative and considering the change of sign of f2 at κt = q the picture
which emerges is the following. For κt > q the only (absolute) minimum is at a
positive value of m > 0. At κt = q, a new local minimum appears at m = 0, while
the minimum at m > 0 remains the absolute thermodynamical stable minimum.
At a critical value κc > q to be determined, a first-order phase transition takes
place, with the minimum at m = 0 becoming the absolute one. The value κc can
be determined from the conditions characterising the transition

f(mc) = f(0), (4.78)

df

dm

-----
mc

= 0, (4.79)

which lead to

κc = 2(q − 1)
q − 2 log(q − 1), (4.80)

the standard critical inverse temperature for the mean-field Potts model and

mc = q − 2
q − 1 . (4.81)

This picture is in agreement with the results from the linear stability analysis,
confirming the presence of metastable states and a region of metastability of the
disordered state, for values of κt in the interval

2(q − 1)
q − 2 log(q − 1) < κt < q, (4.82)

which divides the stable and unstable regions.
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4.1.6 Limits of applicability of the Potts model

In this section we summarize the results found, pointing out the limits of applica-
bility of the Potts model in modeling the noise trader class.

Both the mean value dynamical equation approach and the Landau expansion
approach have shown the presence of metastable states characterizing the range
of κt near the critical value. Even if, from a thermodynamical point of view, the
thermodynamical stable equilibrium is always unique, from a dynamical point of
view, the presence of metastable states, i.e. local minima of the free energy, is
not negligible. As we have shown, simulating the dynamics of the system with a
varying κt, the system can get stuck in local minima of the free energy leading to
the persistence of the ordered (disordered) phase even outside (inside) the critical
region. To address this problem, one could imagine (as we tried) to “delete” the
metastable region, effectively making the κt process jumping the entire metastable
region with some if conditions in the code, this would solve the problem of the
metastable states but won’t solve, rather will aggravate the second main problem
concerning the applicability of the Potts model, the discontinuous character of the
transition.

From the previous analysis, in particular, considering the bifurcation diagram,
we see that the metastable region for the disordered state

2(q − 1)
q − 2 log(q − 1) < κt < q, (4.83)

is smaller the smaller is q. In the limiting case of q = 2, the metastable region
disappears and the two change of stability points merge. From a dynamical
theory point of view, the character of the bifurcation changes, the subcritical
pitchfork bifurcation becomes a supercritical pitchfork bifurcation. The first-order
discontinuous transition becomes a second-order continuous one. In the limiting case
of q = 2 the Potts model reduces to the Ising model and, considering the linearized
form of the resulting transition probabilities, we get the original implementation
of the noise traders class. The different qualitative behavior of the time series
of the present implementation with respect to the original model is ultimately
related to the different character, first-order or second-order, of the underlying
phase transition.

This is also a warning in choosing in the future new models for the noise traders
class. Indeed, leaving the safe haven of the second-order continuous transition of
the Ising model, many other models present first-order phase transitions which will
lead to abrupt changes of regime in the time series instead of nice smooth bubbles.
Hence, a preliminary study of the phase transition and the bifurcation diagram of
the model will be needed.
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Possible directions for further analysis

The last paragraph concludes the analysis of the limits of the Potts model, neverthe-
less, something more could be done. For example, a parametric scan of the stability
phase portrait could be worked out to quantitatively confirm the qualitative analysis
of the bifurcation diagram.

Some play with the code and parameters of the Ornstein–Uhlenbeck kappa
process could be done to find the best parameter settings to see, still discontinuous
but nicer bubbles, which could have a meaning for real markets modeling or could
be useful to compare to the results of the future models that will be considered.

But probably the most interesting further analysis which could be done is the
study of the rich physical picture which emerges considering also negative value for
the kappa process, i.e. contrarian noise traders. We found an extremely interesting
analysis in Ostilli and Mukhamedov [51], addressing exactly the dynamical behavior
of the mean-field Potts model in presence of anti-ferromagnetic couplings. In a
few words, in presence of anti-ferromagnetic couplings for a particular range of
parameters the system never reaches the unique thermodynamical Boltzmann
equilibrium settling instead on a period-2 stable trajectory. This is a peculiar effect
of the discrete-time dynamics, in contrast to the continuous-time dynamics for
which this strange behavior does not emerge. This is not the only peculiar behavior
of the discrete-time anti-ferromagnetic dynamics and the paper points out many
other effects coming from the discrete nature of time characterizing the model.

We report a comment present in the paper, underlining the importance of
this discrete nature of time: “We stress also that the discrete-time dynamics we
shall focus on, is not meant as an approximation of the continuous-time dynamics
(as is instead usually done for practical simulations). There are infinitely many
remarkable examples where the dynamics is intrinsically discrete. Whereas only a
continuous-time dynamics can represent some description of a system of physical
particles each other interacting via a physical medium, a discrete- time dynamics can
represent a system of agents which interact via, e.g., exchange of information taking
place at discrete random times, as in fact occurs in the actual world, especially in
social or economical contexts, but also in ecosystems”

Considering negative values for the kappa process in our simulations we found
indeed peculiar oscillating behaviors of all the quantities.

This analysis goes far beyond the scope of this thesis but we report it because
it is engaging and challenging from a physical and mathematical point of view and
could be useful also from the modelization point of view.

As a last comment, we notice that in Ollikainen [19] the same oscillating behavior
is found and analyzed in the case of the standard Ising model (indeed the Ising
model correspond to a Potts model with q = 2). Yet, the work concludes by
stating that: “The exact mechanism behind the oscillating phase is still unknown.
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This is a question for future work”. The interesting analysis present in Ostilli and
Mukhamedov [51] could be a satisfying theoretical explanation of this phenomenon.

4.2 The O(n) model
In this section, we move to a different Ising-like statistical model to represent the
noise traders class: the O(n) model, also known as n-vector model. In subsection
4.2.1 we introduce a fully connected version of the O(n) model with a vectorial
external field representing all the price momenta. This time the resulting transition
rates derived in section 4.2.2 constitute a complicate multivariate probability
distribution, still resembling however a continuous version of the Logit distribution,
from which is difficult to sample. Two different approaches are then presented to
construct a sampling procedure to simulate the model.

The first is presented in section 4.2.3 and is based on the McFadden result
for the Logit distribution. It is based on an interesting connection between the
Ising-like modeling of the noise traders class and the Decision Theory’s framework
in which we can understand the decision process of each investor. Nevertheless, the
resulting algorithm is particularly expensive from a computational point of view.
In section 4.2.4 we then move to the second method, which exploits the geometrical
symmetries of the distribution to generate samples in a rejection-less manner. The
method is constituted by two steps. In the first, we sample an angle theta from
a univariate distribution and then in the second we sample uniformly at random
from a particular hypersphere Sn−2, a subset of the original space of choices Sn−1.
This second method is promising, being fast and well scalable with the number of
risky assets. The simulations presented are obtained with its implementation.

In section 4.2.5 the portfolio interpretation of the spin vector þSi is discussed.
Two main possible interpretations emerge. In the first, the first n − 1 components
represent the risky assets, while the last component represents the unique risk-free
asset. In the second, that in our opinion is more promising, the negative components
represent at the aggregate level the risk-free asset, while the positive represents the
respective risky assets.

The time series resulting from the O(n) model are presented is section 4.2.6.
They are encouraging in terms of a realistic description of the market behavior, at
least from a qualitative point of view. Quantitatively some problems have to be
further analyzed, in particular, a problem regarding the critical value κc for the
kappa process, which will be also extensively discussed in the next Chapter.

4.2.1 The O(n) model on the fully connected graph
To model the noise traders class in the multi-asset framework we introduce an O(n)
model with an external field of price momenta. We will discuss two slightly different
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versions of the model. One where the first n − 1 components of the spin vector
represent the risky assets, while the last component represents the unique risk-free
asset. The other where each positive component of the spin vector represents a
risky asset while the risk-free asset is accounted for by the negative components at
the aggregate level. In each version the number n will assume a different meaning,
in the first case representing the total number of assets, hence the number of
stocks plus one, instead in the second case being equal to only the number of risky
investments.

To fix the ideas, we start by considering the first version of the model, postponing
the discussion of the second version to a later section. Hence, in the present case,
n = number of stocks + 1 represents the total number of risky and risk-free assets.
The model is defined on the fully connected graph KN , with N nodes and N(N−1)

2
edges.

The Hamiltonian of the model is

HN({þS1, . . . , þSN}) = − J

2N

NØ
i,j=1

þSi · þSj −
NØ

i=1

þh · þSi, (4.84)

where the spin
þSi = (si1, . . . , sin) ∈ Sn−1 (4.85)

lives on the (n − 1)-sphere and represents the portfolio allocation of noise trader i.
More precisely,

s2
ia = xia a = 1, . . . , n. (4.86)

The squared component s2
ia of the spin vector represents the fraction of wealth xia

invested by the trader i in the asset a. The modeling is consistent since þSi satisfies
ëþSië = 1, therefore at each time step the investment fractions for each noise trader
correctly sum to one,

nØ
a=1

xia = 1. (4.87)

As an implementation note, we assume that the first n − 1 components represent
the risky assets, while the last component represents the unique risk-free asset.

The interpretation of the components of the spin is a delicate point and different
modeling strategies can be applied. This issue will be deepened in the following.

Each spin, i.e. noise trader, we will use as usual the two terms interchangeably,
interacts with all the others, and, at odds with the classical O(n) model, also with
itself. This will be useful later on and in any case, this introduces a negligible
correction to the Hamiltonian for large N . This negligible correction corresponds to
the one introduced for the Potts model and we refer to section 4.1.1 for the detailed
discussion of it. As in the case of the Potts model, it can be shown that in the
thermodynamical limit N → +∞, the fully connected O(n) model is equivalent to
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the mean-field O(n) model. From now on we will use the two terms interchangeably
since we are in a large N regime.

Finally, a vectorial external field þh acts on each spin. It models the trend following
attitude of the noise investors. In particular, we have that each component of the
vector h corresponds to the price momentum associated with the respective asset
hk = Hk, where we have defined a fictitious price momentum of the risk-free asset
and we have set it to zero hn = Hn = 0 for simplicity. Its actual value should be
Hn = rf but the difference, being just a rescaling of the risky price momenta, is
negligible.

As for the Potts model we take the standard Boltzmann weight as the equilibrium
distribution,

P ({þS1, . . . , þSN}) = e−βHN , (4.88)

fully describing the statistical properties of the model. In the next section we apply
the method already used in the case of the Potts model, to derive the transition
probabilities characterizing the stochastic dynamics of the O(n) model and hence
defining the investments’ dynamics of the noise traders class.

4.2.2 The transition probabilities
The derivation of the transition probabilities follows closely the passages of the
derivation for the Potts model. To easily compare the two derivations we use the
same notation.

Again, as in the case of the Potts model, one important point has to be
preliminarily considered before constructing the MCMC. Indeed, the algorithm we
are going to construct is different from the standard MCMC algorithms used for
simulating spin systems for two main reasons that we briefly review in the next
section.

Parallel update vs random update in the MCMC algorithms

Usually, the Markov Chain Monte Carlo used for simulating spin systems proceeds
to select one spin or one cluster of spins at random, proposing a move according to
a certain proposal probability and then accepting or rejecting the move according
to a certain acceptance probability.

After each move, all the quantities are then updated according to the new
configuration of the system.

In the setup we will derive instead, at each time-step all the spins are updated
in parallel, considering sequentially all the spins inside the same time-step, without
any random choice of one single spin to update. Moreover, all the quantities
entering the transition probabilities are updated only after all the traders have
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made their decisions, hence each trader decides based on the investment decisions of
all the other traders of the previous day, i.e. after all the spins have been updated.

As explained in the Potts model’s Chapter, in particular in subsection 4.1.2 the
sequential update’s validity can be proved in the framework of the Gibbs sampling.
Indeed, if each component of the vector of spins defining the state of the system is
updated according to the conditional probability of that spin conditioned to all the
others, the Markov chain defined by the full vector of spins considered after all the
updates have taken place is correctly sampling the joint probability distribution.

If at each time step t all the components of the vector

(þS1, . . . , þSl−1, þSl, þSl+1, . . . , þSN) (4.89)

are updated, sampling each spin þSl from the conditional probability

P (þSl | {þSt
1, . . . , þSt

l−1,
þSt−1

l+1 , . . . , þSt−1
N }), (4.90)

then the full vector of updated spins (þSt
1, . . . , þSt

l−1, þSt
l , þSt

l+1, . . . , þSt
N) represents a

correct sample of the statistical model defined by P , i.e. is correctly simulating its
dynamics. The key point is that the conditional probabilities must be updated after
each single spin flip as underlined by the time superscripts. This is connected to the
second point aforementioned, indeed in our simulation algorithm we are updating
the probabilities only at the end of the trading day. Eventually, as explained in
subsection 4.1.2, the method’s consistency is assured by the mean-field assumption
which allows us to drop the dependence on all the other spins in the conditional
probability. This relies on the asymptotic equivalence for N → +∞ of the fully
connected and mean-field O(n) models and on the fact we are in the large N º 1
case.

The derivation of the transition probabilities

We start again from the discrete-time Master Equation governing the evolution of
the time-dependent conditional probability distribution

P (þSl | {þS1, . . . , þSl−1, þSl+1, . . . , þSN}, t) (4.91)

of a single spin þSl given all the others. As for the Potts model, from now on
{þS1, . . . , þSl−1, þSl+1, . . . , þSN} will be considered as fixed parameters, each having a
specific value, this time on the (n − 1)-sphere Sn−1.

From the mean-field assumption it follows

P (þSl | {þS1, . . . , þSl−1, þSl+1, . . . , þSN}, t) = P (þSl, t). (4.92)

The discrete-time master equation for the conditional probability to have þSl =
þA ∈ Sn−1 reads
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P (þSl = þA, t + ∆t) − P (þSl = þA, t)
∆t

=
Ú

þB∈Sn−1
W ( þB → þA)P (þSl = þB, t) − W ( þA → þB)P (þSl = þA, t). (4.93)

We assume again an unit time increment ∆t = 1, corresponding to one trading day.
As for the Potts model, to effectively set the discrete-time derivative equal to zero
we use the detailed balance condition which in this case reads

W ( þA → þB)
W ( þB → þA)

= P ( þB)
P ( þA)

. (4.94)

We refer to the discussion in subsection 4.1.2 to motivate our choice in using
the detailed balance, instead of other balance conditions, e.g. the global balance
presented in the aforementioned subsection.

Using the definition of conditional probability we can easily switch to the joint
probabilities

P ( þB)
P ( þA)

= P (þSl = þB | {þS1, . . . , þSl−1, þSl+1, . . . , þSN}
P (þSl = þA | {þS1, . . . , þSl−1, þSl+1, . . . , þSN}

=
P (þSl= þB,{þS1,...,þSl−1,þSl+1,...,þSN }

P ({þS1,...,þSl−1,þSl+1,...,þSN })
P (þSl= þA,{þS1,...,þSl−1,þSl+1,...,þSN }

P ({þS1,...,þSl−1,þSl+1,...,þSN })

.

(4.95)

Simplifying the denominators we get the ratio between the joint probabilities, which
we can explicitly compute as

P (þSl = þB, {þS1, . . . , þSl−1, þSl+1, . . . , þSN}
P (þSl = þA, {þS1, . . . , þSl−1, þSl+1, . . . , þSN}

=
1
Z

e
−β(− J

2N

q
i /=l

q
j /=l

þSi·þSj− J
2N

q
j

þB·þSj− J
2N

q
i

þSi· þB+ J
2N

þB· þB−
q

i /=l
þh·þSi−þh· þB)

1
Z

e
−β(− J

2N

q
i /=l

q
j /=l

þSi·þSj− J
2N

q
j

þA·þSj− J
2N

q
i

þSi· þA+ J
2N

þA· þA−
q

i /=l
þh·þSi−þh· þA)

. (4.96)

Simplifying the common factors at numerator and denominator we get

P ( þB)
P ( þA)

= e−β(− J
N

q
i

þSi· þB−þh· þB+ J
N

q
i

þSi· þA−þh· þA)

= e−β(− J
N

(
q

i
þSi· þB−

q
i

þSi· þA)−(þh· þB−þh· þA))

= eβ(J
q

i
þSi·( þB− þA)

N
+þh·( þB− þA)). (4.97)
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We set J = 1 and we identify the inverse temperature with the herding propensity
β = κt. The external field vector components are set equal to the corresponding
price momenta hk = Hk, where the price momentum of the risk-free asset is set to
zero. We then finally get

W ( þA → þB)
W ( þB → þA)

= P ( þB)
P ( þA)

= eκt(
q

i
þSi·( þB− þA)

N
+ þH·( þB− þA)). (4.98)

Now to get the transition rates we have different possibilities. We again discard,
as for the Potts model’s case, the standard Metropolis-Hastings rule proposed in
Metropolis et al. [44] due to the unrealistic modeling we would obtain.

To construct a more realistic rejection-less MCMC we impose

P( þA → þB)
P( þB → þA)

= P ( þB)
P ( þA)

= e
κt

1q
i

þSi·( þB− þA)
N

+ þH·( þB− þA)
2
. (4.99)

This condition is satisfied setting

P( þA → þB) = e
κt

1q
i

þSi· þB

N
+ þH· þB

2
. (4.100)

The ergodicity and the aperiodicity of the MCMC constructed descend directly
from the method used to derive it. We only need to correctly normalize the resulting
transition rates. Normalizing we finally get the following transition probability

W ( þA → þB) = P( þA → þB) = e
κt

1q
i

þSi· þB

N
+ þH· þB

2
s

þK∈Sn−1 e
κt

1q
i

þSi· þK

N
+ þH· þK

2 . (4.101)

To generate the dynamics of our model we have to sample realizations of the
random vector þB = (B1, . . . , Bn) from the multivariate probability distribution
(4.101). Unfortunately, constructing a sampling procedure is difficult due to the
high dimensionality of the distribution and to the non-trivial relation between the
components of the random vector qn

k=1 B2
k = 1.

We mention that first, we tried to apply unsuccessfully two methods to attack
the problem, the rejection sampling and the copula method. On the one hand,
rejection sampling has been discarded due to its possible inefficiency caused by a
high rejection ratio connected to the high dimensionality. The method suffers from
the so-called curse of dimensionality.

On the other hand, the possibility to construct a copula function of the n
correlated random variable Bk, appears soon unfeasible due to their non-trivial
relation qn

k=1 B2
k = 1.

The approach we develop in the next section to tackle the problem starts
from noting that the form of the probability distribution (4.101) coincides with a
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continuous version of the Logit probability distribution for the arrival states. The
Logit distribution is throughout used and studied in the discrete choice theory.
In our case the space of choices is continuous, the choices live on the (n − 1)-
sphere, þB ∈ Sn−1. As for the Potts model’s case, this is once again an example of
the connection between the discrete choices models and the Ising-like models in
modeling social systems, as pointed out in Sornette [12].

We finally comment on the fact that the transition probabilities (4.101) have
the remarkable property that the transition probability from state þA to state þB is
independent of the initial state þA. This is a typical property of mean-field models.

4.2.3 Discretization and McFadden result approach
McFadden has shown in McFadden [45], that the Logit probability distribution
actually models individuals who maximize a utility function that has an implicit
random idiosyncratic part distributed according to the Gumbel distribution. Indeed,
if each agent makes its choice maximizing

s∗ = arg max
s

{βus + ηs}, (4.102)

where s represents one of the possible choices, us is the deterministic part of
the utility function, ηs is a Gumbel random variable and β plays the role of the
inverse temperature, McFadden has proved that P (s∗ = s) coincides with the Logit
distribution.

Now we take advantage of this result to construct a sampling procedure for the
multivariate probability distribution (4.101). If we discretize the space of choices
Sn−1 we end up exactly with a Logit distribution and instead of sampling the
choices directly from the probability density function we can model each decision
as a maximization problem

þB∗ = arg max
þB∈Sn−1

{κtu þB + η þB}. (4.103)

Where in our case the utility function is

u þB =
Aq

i
þSi

N
+ þH

B
· þB. (4.104)

We used a subscript for the Gumbel distribution η þB to stress the fact that we have
to use a different realization of the Gumbel distribution for each possible decision
þB.

There are different ways to discretize the space of choices Sn−1. We decided to
consider choices sampled from a uniform distribution on the hypersphere. To do so,
we generate samples from n i.i.d. zero mean and unit variance Normal distributions
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N (0,1). Now, due to the spherical symmetry property of the multivariate normal
distribution, we have the beautiful result, as pointed out by many sources as for
example in Muller [52], that the random vector

þB = 1
ë(N1(0,1), . . . Nn(0,1))ë

A
N1(0,1), . . . Nn(0,1)

B
(4.105)

is distributed uniformly at random on the (n − 1)-sphere. Due to the finite number
of points we consider on the hypersphere, the sum over all the vectors representing
the points could not be the zero vector. We then enforce it considering for each
vector also the corresponding symmetric one with respect to the origin, i.e. with
all components with opposite signs.

Summarizing, at the beginning of the simulation we generate the uniform
discretization of the space of choices Sn−1 with the following algorithm. The
discretization will be kept fixed throughout the whole simulation to preserve the
detailed balance condition.

Algorithm 1: Uniform discretization of the space of choices Sn−1

Result: Npoints vectors (choices) uniformly distributed on the hypersphere
for (i = 0; i < Npoints

2 ; i + +) do
for (k = 0; k < n; k + +) do

Bk = N (0,1);
end
r =

ñqn−1
k=0 Bk ;

1
r
(B0, . . . , Bn−1) is a new point on Sn−1;

1
r
(−B0, . . . , −Bn−1) is a new point on Sn−1;

end

Moreover, at each time-step, the trading decisions of the noise traders, i.e.
reallocation of their portfolios, are generated according to the following algorithm.

Algorithm 2: Trading decisions of the noise traders
Result: Noise traders dynamics satisfying detailed balance
þM = (

q
i

þSi

N
+ þH) (compute average magnetization + external field);

for each noise trader i do
for (i = 0; i < Npoints; i + +) do

generate i.i.d. Gumbel RV η þB;
end
choicei = arg max

þB

{κt
þM · þB + η þB}

end
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It is clear that also this procedure suffers from the curse of dimensionality. The
computational cost of the simulation is exponential in the number Npoints used to
discretize the hypersphere and clearly a large number of points is needed to have a
good uniform distribution and a realistic simulation. Nevertheless, the simulations
presented in the following are run with a number of points of the order of the
thousands, which gives already good results in terms of the uniform distribution
on the hypersphere. The problem aggravates with an increasing number of risky
assets, i.e. increasing dimensionality n.

Besides the computational problems, this method worth presenting because
gives an interesting interpretation of the modeling of the noise trader’s decision
process we are building.

Indeed, modeling the trading decisions with the multivariate distribution (4.101),
we are modeling traders which due to their herding behavior tend to “align” their
portfolio allocation to the average portfolio allocation of the aggregate class of
traders to which they are in contact to. The herding behavior represents the
deterministic part of the utility optimization, which we can consider the rational
part of the choice process undertaken by each agent. In absence of clear information,
imitate others can be the unique rational strategy possible. The Gumbel random
variable instead models the random idiosyncratic part, peculiar of each trader,
which enters in the decision process.

To overcome the computational problems of the present method, in the next
subsection we derive a different algorithm to generate the stochastic dynamics
governed by the transition rates (4.101).

4.2.4 A new sampling algorithm

In this subsection we propose a different sampling algorithm to overcome the
drawbacks of the method proposed in the last subsection. We focus in particular
on the task of sampling from the linearized form of the probability distribution
(4.101). Indeed, from the discussion presented in subsection 2.7.2 on the importance
of the linearization step in the original model, we know that it is significant to
be able to test the simulation of the model also with the linearized form of the
transition probabilities. Nevertheless, the method we present in this section is
directly applicable also to the non-linear form of the transition rates with just
a minor implementation modification. To fix the ideas, we focus from now on,
on the linearized form of the transition probabilities, hence we start from the
non-normalized form of the transition rates

W ( þA → þB) = P( þA → þB) = e
κt

1q
i

þSi

N
+ þH

2
· þB (4.106)
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and linearizing it, we obtain

1 + κt

Aq
i
þSi

N
+ þH

B
· þB. (4.107)

We are back to the problem of sampling a multivariate probability distribution for
the random vector þB subjected to the non-trivial constraint

þB = (B1, . . . , Bn)
nØ

k=1
B2

k = 1. (4.108)

Moreover, this time we cannot use the “McFadden trick” since we have linearized
the form of the distribution.

Yet, the density function (4.107) has interesting symmetry properties, which we
will exploit to propose a sampling algorithm.

We first make explicit the symmetry property of the dot product entering the
density function, expressing it in terms of the angle θ between the vector

þM :=
q

i
þSi

N
+ þH (4.109)

and the vector þB. It is always possible to define a unique angle between two vectors
in any inner product space and in particular in the Euclidean space Rn to which
our vector belongs to. Hence, we can write

P (θ) = 1 + κtë þMëë þBë cos θ. (4.110)

The norm of þB is exactly equals to one, since þB ∈ Sn−1, hence the expression
simplifies to

P (θ) = 1 + κtë þMë cos θ. (4.111)

The probability distribution effectively depends only on one variable

θ ∈ [0,2π). (4.112)

The sets of equiprobable choices, i.e. equiprobable vectors þB, are defined by the
conditions 

1
ë þMë

þM · þB = cos θ

ë þBë = 1
(4.113)

The second condition enforces the choice vectors to belong to the (n − 1)-sphere.
The first condition instead defines an hyperplane in Rn, in fact it can be written as

m1b1 + m2b2 + . . . + mnbn = cos θ, (4.114)

95



Ising-like modeling for the extended Noise traders class

where m1, . . . , mn are fixed coefficients. We now use a beautiful geometric property,
indeed the intersection of a (n − 1)-sphere and a n-dimensional hyperplane, is still
a hypersphere, yet of one less dimension. Indeed, the system (4.113) defines a
(n − 2)-sphere in Rn, with centre

þC = cos θ
1

ë þMë
þM (4.115)

and radius
r =

√
1 − cos2 θ = sin θ. (4.116)

This fact will be crucial in constructing the sampling algorithm.
First of all, we focus on the angle θ. The expression (4.111) is not yet a

well-defined probability distribution. Indeed, for some range of θ values and for
large κt and ë þMë, the expression becomes negative. To handle it we simply set
equal to zero the probability of the θ values for which (4.111) becomes negative.
The error introduced in this way is small and it is equivalent to the linearization
error introduced considering only the linear term instead of the full non-linear
distribution (4.106). Moreover, the probability distribution obtained has to be
normalized.

Both problems can be overcome with rejection sampling. At odds with the
rejection sampling applied to (4.101), the method this time does not suffer from
the curse of dimensionality since we are dealing with a univariate distribution.

We sample from (4.111) with the following algorithm.

Algorithm 3: Rejection sampling from the P (θ) distribution
Result: An angle θ sampled from P (θ)
while (u ∗ (1 + κtë þMë)) > (1 + κtë þMë cos(θ)) do

θ = Uniform(0,1) ∗ 2π;
u = Uniform(0,1)

end
return θ;

We keep drawing uniformly at random angles θ ∈ [0,2π) until the value of the
probability density function computed for that specific angle is greater than a
uniform RV times the maximum of the distribution, i.e. 1 + κtë þMë. Then the
value of θ is correctly sampled from (4.111).

We can imagine pictorially the method in the following way. We draw a rectangle
[0,1) × [0,2π), then we superimpose the graph of the density function, even if not
always positive and not normalized. Now, we pick uniformly at random points
from the rectangle, if the point stays below the graph, its x-coordinate is a valid

96



Ising-like modeling for the extended Noise traders class

sample for θ. Points for which the graph is negative are never chosen, indeed we
are effectively setting their probability to zero.

Now that we have correctly sampled a value for the angle, we have to choose
a vector uniformly at random from the equiprobable set defined by that angle.
Fortunately, the set is just a hypersphere Sn−2 and we have already presented in
formula (4.105) and in Algorithm 1 a way to generate uniformly at random a vector
on a hypersphere. Indeed, the vector

þB∗
n−1 = 1

ë(N1(0,1), . . . Nn−1(0,1))ë

A
N1(0,1), . . . Nn−1(0,1)

B
(4.117)

will be uniformly distributed on Sn−2. To have a vector in Rn we have to add
one extra zero component, for example at the beginning of the vector, effectively
increasing its dimensionality by one. The new vector is

þB∗
n = 1

ë(N1(0,1), . . . Nn−1(0,1))ë

A
0, N2(0,1), . . . Nn(0,1)

B
. (4.118)

Moreover, the hypersphere has to be translated and its radius rescaled following
(4.115) and (4.116). Finally, one last important step has to be worked out. The Sn−2

hypersphere will correctly represent the intersection between the higher dimensional
Sn−1 hypersphere and the hyperplane only after it will be rotated in such a way
that the unit versor, corresponding to the extra component added in (4.118), will
be rotated to the direction of the normalized vector 1

ë þMë
þM .

We have to construct the orthogonal matrix R representing the rotation of the
unit versor

þX = (1, 0, 0, . . . , 0), (4.119)

to the direction of the vector 1
ë þMë

þM . The matrix R has to satisfy

1
ë þMë

þM = R þX. (4.120)

In two or three dimensions, such a rotation is given by the standard matrices
containing sine and cosine functions. For example, in two dimension the rotation
matrix would be

Rn=2 =
A

cos θ − sin θ
sin θ cos θ

B
(4.121)

where θ is the angle between the two vectors.
In the general case of n dimension finding an efficient and numerical stable

algorithm is not an easy task. There are many strategies to attack the problem, one
is based on the Householder reflection matrices, another one on the Gram–Schmidt
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orthonormalization process. Here we use an approach based on Givens rotations
and to construct the algorithm we thoroughly refer to Zhelezov [53].

Eventually, the choice vector þB sampled from the distribution (4.107), repre-
senting the noise trader’s portfolio reallocation, is given by

þB = sin θR þB∗
n + cos θ

1
ë þMë

þM. (4.122)

Summarizing, the sampling algorithm is as follows.

Algorithm 4: Simulating the investment choice for a noise trader
Result: A vector þB representing the new portfolio
sample an angle θ from P (θ) using Algorithm 3;
sample uniformly at random a vector þB∗

n−1 on Sn−2;
þB∗

n = (0, þB∗
n−1) ∈ Sn−1;

construct the rotation matrix R following [53];
þB = sin θR þB∗

n + cos θ 1
ë þMë

þM ;
return þB;
As a final comment, we underline that the algorithm developed applies directly

also to the case of non-linear transition probability. It is sufficient to modify the
form of the univariate distribution from which we sample the angle theta. All
the subsequent steps concerning the sampling from the hypersphere Sn−2 are not
affected at all.

The average holding time

In the last implementation of the stochastic dynamics for the O(n) model no
parameter to control the average holding time is present. From the discussion in
section 2.7.1 we know it is a crucial quantity in defining a realistic form of the
bubbles. Hence in this section, we introduce a parameter to modify the average
holding time in the O(n) algorithm just presented.

Before sampling an angle θ from the probability distribution (4.111) which
represents for a noise trader the reallocation of its portfolio, we take into account
the status-quo bias which could push the noise trader to maintain its present
portfolio composition through a Bernoulli random variable.

Each trading day, before proceeding with its trading decisions, the noise trader
first decides if to perform any trading moves at all or to just be inactive on the
financial market for that day and hold its previous portfolio allocation position
which he considers solid and profitable.
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The trader decides to be active in the financial market and modifies its portfolio
allocation with a probability

P (active) = min
I

1,
1
th

A
1 + κt

n
ë þMë

BJ
(4.123)

The probability to be inactive and hold the previous portfolio allocation is clearly

P (holding) = 1 − P (active). (4.124)

The parameter th represents again the average number of trading days the noise
traders keep its asset in absence of herding behaviour. In this way, we can directly
control the trading frequency and the intensity of the oscillating behavior of the
time series characterizing the resulting market dynamics.

The Algorithm 4 modifies to
Algorithm 5: Simulating the investment choice for a noise trader with
average holding time parameter
Result: A vector þB representing the investment choice
if Uniform(0,1) > 1

th
(1 + κt

n
ë þMë) then

þB =previous portfolio allocation;
else

Sample an angle θ from P (θ) using Algorithm 3;
Sample uniformly at random a vector þB∗

n−1 on Sn−2;
þB∗

n = (0, þB∗
n−1) ∈ Sn−1;

Construct the rotation matrix R following [53];
þB = sin θR þB∗

n + cos θ 1
ë þMë

þM ;
end
return þB;
We close this paragraph commenting on the fact that this approach to introduce

the average holding time parameter th easily applies also to the simulation method
based on the McFadden result, presented in subsection 4.2.3. We just model
the trader’s decision to be active or inactive before the implementation of the
“McFadden’s maximization problem”, through the same Bernoulli trial expressed
by the equation (4.123).

The approach presented to impose the average holding time is rather general
and an analogous Bernoulli trial can be implemented in the case of the Potts model,
hence solving the problem presented in subsection 4.1.2. Clearly, in that case the
term entering in the minimum, defining the probability to be active, has to be
properly modified. The same approach is also applicable to the following models
we are going to present, as we will explicitly point out.
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4.2.5 The portfolio interpretation of the spin vector
We recall that in the present implementation, the spin

þSi = (si1, . . . , sin) ∈ Sn−1 (4.125)

represents the portfolio allocation of noise trader i. More precisely,

s2
ia = xia a = 1, . . . , n, (4.126)

i.e. the squared component a of the spin vector represents the fraction of wealth
xia invested by the trader i in the asset a. The modeling is consistent since þSi

satisfies ëþSië = 1, at each time step the investment fractions for each noise trader
correctly sum to one,

nØ
a=1

xia = 1. (4.127)

We notice that in the present implementation, the first n − 1 components represent
the risky assets, while the last component represents the unique risk-free asset.

This interpretation presents two main problems, the first is that it is introducing
a degeneracy in the portfolio representation. Indeed, the spins

þSi = (si1, . . . , sin) (4.128)

and
−þSi = (−si1, . . . , −sin) (4.129)

represent the same portfolio. This does not have any relevant effect in the model,
the statistical properties are not affected at all by this interpretation of the spins, yet
this represents an unmotivated introduction of a degeneracy from a modelistic point
of view. The second problem, which is instead not negligible, is the inconsistent
effect of the sign of the external field, i.e. the price momentum, on the noise traders’
strategy. Unexpectedly, this seems to not have an impact on the realism of the
resulting time series, but in any case, this is a problem that has to be solved.

One possible solution is to consider the action of the external field not as the
standard dot product

þH · þS (4.130)
but as the dot product where the components of the spin are taken in absolute
value

þH · þSabs =
nØ

k=1
Hk|Sk|. (4.131)

Another promising solution is to change the interpretation of the spin þS. The
action of the external field price momenta is consistent if the components of the
vectors interpretation is such that

s2
ia = xia if sia ≥ 0 (4.132)
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represents the risky fraction invested in a, if sia is non-negative. Instead the sum of
all the negative components at the aggregate level represent the risk-free fraction

nØ
a:sia<0

s2
ia = xf . (4.133)

The condition
nØ

a=1
xia = 1. (4.134)

is still satisfied. We underline that in this interpretation the number of components
of the spin is exactly equal to the number of risky assets, n = number of stocks.
The risk-free asset is taken into account at the aggregate level by the negative com-
ponents. Moreover, as a final remark, we comment that in this last interpretation
the ABM endowed with the O(n = 1) model actually corresponds to the original
market model. This O(n = 1) model is indeed equivalent to the standard Ising
model characterizing the original formulation of the noise traders class. This as
opposed to the previous interpretation we have considered, indeed the O(n = 2)
model with one component for the risky asset and one for the risk-free one is not
equivalent to the Ising structure of the original setup.

4.2.6 Time series description
In this section, we introduce the parameters used for the simulation and we comment
on the qualitative behavior of the resulting time series.

Choice of parameters

In table 4.2 are present some of the parameters maintained fixed throughout all
the subsequent analysis.

As for the Potts model, no correlation among the dividend processes is assumed.
Regarding the fundamentalist traders, the expected covariance matrix implemen-
tation is divided into a vector of expected variances and a matrix of expected
correlations. Their values coincides with the Potts model ones. The variances are
as in the table

Σf
i,i = 0.0004 i = 1, . . . ,4 (4.135)

and the correlation matrix is set equal to

Cf =


1.0 0.5 0.0 0.0
0.5 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

 (4.136)
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Parameters

Assets Nstocks = 4 rf = 4 × 10−5

rd,i = 1.6 × 10−4 ∀i di,0 = 1.6 × 10−4 ∀i
Pi,0 = 1 ∀i Σd

i,i = 1.6 × 10−5 ∀i

Fundamentalist W f
0 = 109 Er,i = 1.6 × 10−4 ∀i

traders Σf
i,i = 0.0004 ∀i

Noise W n
0 = 109 Nn = 1000

traders θ = 0.95 Hi,0 = 1.6 × 10−4 ∀i

Table 4.2: Set of parameters for the simulations of the extended model endowed
with a O(n)-like noise traders class. Their values constitute the natural general-
ization of the original models’ one being motivated by real markets data and are
mainly taken from Westphal and Sornette [18].

The initial investment decisions for fundamentalist and noise traders are as
follows

þxf
0 = (0.075,0.075,0.075,0.075,0.7) (4.137)

þxn
0 = (0.2,0.2,0.2,0.2,0.2), (4.138)

where the last component represents the unique risk-free fraction while the others
stand for the n = 4 risky assets.

Finally, an average holding time of ten trading days is imposed with the param-
eter th = 10.

The time series

In this section we present the time series from two different simulations. Both of
the simulations are characterized by an Ornstein-Uhlenbeck kappa process defined
by

κt − κt−1 = η(µk − κt−1) + σkvt, (4.139)

with mean reversion level µk = 0.98βc, where βc represents the theoretical value for
the critical inverse temperature of the mean-field O(n) model

βc = n. (4.140)

Moreover, the mean reversion speed η and the step size σk are set, as in the original
model, such that the Ornstein–Uhlenbeck process has a standard deviation of 0.1βc
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and a deviation of κt two standard deviations above µk in the super-critical regime
will revert within ∆T = 20, i.e.

η = 1
∆T

log
A

µk + 0.2βc − µk

βc − µk

B
(4.141)

and
σk = 0.1βc

√
2η. (4.142)

The two simulation differ only for the interpretation of the spin vector as explained in
section 4.2.5. The first one is characterized by the interpretation with n = Nstocks+1
components, where the spin

þSi = (si1, . . . , sin) ∈ Sn−1 (4.143)

representing the portfolio allocation of noise trader i, has the meaning

s2
ia = xia a = 1, . . . , n, (4.144)

i.e. the squared component a of the spin vector represents the fraction of wealth
xia invested by the trader i in the asset a. Hence, in this case

n = βc = 5. (4.145)

In the second simulation instead

s2
ia = xia if sia ≥ 0 (4.146)

represents the risky fraction invested in a, if sia is non-negative. Instead the sum of
all the negative components at the aggregate level represent the risk-free fraction

nØ
a:sia<0

s2
ia = xf . (4.147)

Hence, in this case
n = βc = 4. (4.148)

Moreover, the two simulations share also the same random seed. To distinguish
between the two simulations we will refer in the following to the first version, with the
risk-free asset represented by the last component of the vector, as “n = Nstocks + 1”
version, while we will refer to the second one, with the risk-free fraction accounted
at the aggregate level by the negative components, as “n = Nstocks” version. The
simulation results are qualitatively similar and are presented in figure 4.8, 4.9, 4.10,
and 4.11.
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Figure 4.8: Ornstein-Uhlenbeck kappa simulation, “n = Nstocks + 1” version. The
figure shows the time series of the four prices. The simulation is characterized by
5-components spin vectors, where the last component represents the risk-free asset.
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Figure 4.9: Ornstein-Uhlenbeck kappa simulation, “n = Nstocks + 1” version. The
figure shows the time series of the Ornstein-Uhlenbeck kappa process and the time
series of both the four risky fractions and the risk-free fraction of the noise traders
class at the aggregate level. The simulation is characterized by 5-components spin
vectors, where the last component represents the risk-free asset.
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Figure 4.10: Ornstein-Uhlenbeck kappa simulation “n = Nstocks” version. The
figure shows the time series of the four prices. The simulation is characterized by
4-components spin vectors, where the negative components at the aggregate level
represents the risk-free asset.
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Figure 4.11: Ornstein-Uhlenbeck kappa simulation “n = Nstocks” version. The
figure shows the time series of the Ornstein-Uhlenbeck kappa process and the time
series of both the four risky fractions and the risk-free fraction of the noise traders
class at the aggregate level. The simulation is characterized by 4-components
spin vectors, where the negative components at the aggregate level represents the
risk-free asset.
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Most important the resulting time series are much more realistic than the Potts
model ones. Yet, the bubbles are a delicate point. We can recognize some bubbles in
the time series, but with respect to the original model their intensity, in particular,
their height is much smaller in the order of magnitude.

The main problem which emerges from the times series is that the noise traders
class, even if the polarization phenomenon is clearly present, never fully polarizes.
The maximum polarization is around x ≈ 0.5, too small to have bubbles of intensity
comparable with the original model ones.

After an extensive analysis of the problem, the main point emerging is summa-
rized by figure 4.12.

Figure 4.12: Average magnetization characterizing the constant kappa simulations
for various κ values.

In figure 4.12, the average magnetization emerging in different constant kappa
simulation is plotted. The average magnetization is defined as the time average
over all the simulation of the value of the norm of the mean spin vector.

The simulations used to realize the plot of the average magnetization are all
characterized by the “n = Nstocks + 1” version of the model (nevertheless, we find
the same behavior with the other “n = Nstocks” version). Indeed, we expect that
the critical kappa for these simulations is κc = n = 5.
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Figure 4.13: Ornstein-Uhlenbeck kappa simulation “n = Nstocks” version with
µk = 0.98 · 2. The figure shows the time series of the four prices. The simulation is
characterized by 4-components spin vectors, where the negative components at the
aggregate level represents the risk-free asset. Moreover the parameters are slightly
modified with respect to the other simulations, in particular the main difference is
in the mean reversion level of the kappa process µk = 0.98 · 2.
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Instead, unexpectedly the transition happens around a value κc ≈ 2. The
problem represents the main issue in the applicability of this model. We will
extensively discuss it in Chapter 5, hence we refer to it for a broader analysis.

Nevertheless, setting the mean value of the Ornstein-Uhlenbeck kappa process
µk ≈ 0.98 · 2 and varying a little bit the parameters, we obtain promising time
series in terms of qualitative realistic behavior emerging from the implementation
of the simulation. They are presented in figure 4.13.

4.3 A vectorial extension of the BEG model
In this section, we present a different Ising-like model for the noise traders, a
vectorial extension of the BEG model. We start from the classical Blume-Emery-
Griffiths (BEG) model, introduced in Blume et al. [54] and first used to model
the superfluid transition of 3He - 4He mixtures, and we generalize it to the case of
n-vector spins.

In subsection 4.3.1 we introduce the Hamiltonian of the statistical model,
explaining its connections to the noise traders class. Then in subsection 4.3.2, as
we have done for the Potts and O(n) models, we derive the transition probabilities
characterizing the stochastic dynamics of the present model and defining the
investments’ dynamics of the noise traders class. In doing so, we will find interesting
analogies with both the O(n) model and the standard Ising model. We will exploit
these analogies to proceed with the derivation, yet at one point we will face a
problem in normalizing consistently the transition probability derived. To find a
solution to this non-trivial problem we will have to present section 4.4 and 4.5.

4.3.1 The vectorial extension of the BEG model on the
fully connected graph

To model the noise traders class we consider a n-vector extension of the BEG
model with an external field and Van der Waals-like interactions. In our case, n =
number of stocks represents the total number of risky assets.

The model is defined on the fully connected graph KN , with N nodes and N(N−1)
2

edges. The Hamiltonian of the model is

HN({þS1, . . . , þSN}) = − J

2N

NØ
i,j=1

þSi · þSj −
NØ

i=1

þh· þSi −µ
NØ

i=1

þS2
i − K

2N

NØ
i,j=1

þS2
i
þS2

j , (4.149)

where the spin
þSi = (si1, . . . , sin) ∈ Sn−1 ∪ þO (4.150)

lives on the (n − 1)-sphere plus a point representing the null vector (0, . . . ,0).

110



Ising-like modeling for the extended Noise traders class

The spin vector represents the portfolio allocation of noise trader i as in the
O(n) model, but at odds with it, also the null vector is a valid state for the spin
and represents a trader investing only in the risk-free asset. More precisely,

s2
ia = xia a = 1, . . . , n, (4.151)

i.e. the squared component a of the spin vector represents the fraction of wealth
xia invested by the trader i in the asset a.

The trader can alternatively decide to invest in the stock market constructing
a portfolio modeled by the vector þSi ∈ Sn−1 satisfying ëþSië = 1, or can decide to
invest all its wealth in the risk-free asset, being effectively represented by the null
vector

þO = (0, . . . ,0). (4.152)

We notice that the first two terms of the Hamiltonian coincide exactly with the
O(n) Hamiltonian (4.84). We will fruitfully exploit this fact since many results
and computations done for the O(n) model will be useful in this derivation.

4.3.2 The transition probabilities
As for the Potts and the O(n) models, we want to construct the stochastic dynamics
characterizing the statistical model defined by the probability distribution

P ({þS1, . . . , þSN}) = e−βHN . (4.153)

The stochastic dynamics is defined by the transition rates and as usual, we
derive them starting from the discrete-time Master equation and effectively setting
to zero the time derivative through the detailed balance condition.

All the theoretical consideration regarding the consistency of the MCMC we are
going to derive are the same as for the case of the Potts and O(n) models and for
them, we refer to sections 4.1.2 and 4.2.2.

The derivation of the transition probabilities

There are two kinds of moves for which we have to compute the respective transition
rates. The moves representing a reallocation of the trader portfolio and the moves
representing the traders entering or exiting the stocks market moving from or to
the risk-free asset.

The first kind of moves are modeled by a rotation of the spin on the hypersphere
Sn−1. The detailed balance condition for them reads

W ( þA → þB)
W ( þB → þA)

= P ( þB)
P ( þA)

. (4.154)
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Remarkably we notice that being the norm of the vector equals to one both before
and after the move, the third and fourth terms of the Hamiltonian are not affected
by the move and the corresponding terms in P ( þA) and P ( þB) exactly simplify. The
ratio defining the detailed balance condition (4.156) coincides exactly with the one
for the O(n) model. The same derivation as in section 4.2.2 leads to the O(n)
result

W ( þA → þB) = P( þA → þB) = e
κt

1q
i

þSi· þB

N
+ þH· þB

2
s

þK∈Sn−1 e
κt

1q
i

þSi· þK

N
+ þH· þK

2 . (4.155)

The second kind of moves is instead different. The choices of a trader to enter or
exit the stock market are modeled by a move from the null vector to a point of the
hypersphere and vice versa respectively. The detailed balance condition for this
kind of moves reads

W ( þA → þO)
W ( þO → þA)

= P ( þO)
P ( þA)

. (4.156)

Using the definition of conditional probability we get

P ( þO)
P ( þA)

= P (þSl = þO | {þS1, . . . , þSl−1, þSl+1, . . . , þSN}
P (þSl = þA | {þS1, . . . , þSl−1, þSl+1, . . . , þSN}

=
P (þSl= þO,{þS1,...,þSl−1,þSl+1,...,þSN }

P ({þS1,...,þSl−1,þSl+1,...,þSN })
P (þSl= þA,{þS1,...,þSl−1,þSl+1,...,þSN }

P ({þS1,...,þSl−1,þSl+1,...,þSN })

.

(4.157)

Simplifying the denominators we get the ratio between the joint probabilities, which
we can explicitly compute as

P (þSl = þO, {þS1, . . . , þSl−1, þSl+1, . . . , þSN}
P (þSl = þA, {þS1, . . . , þSl−1, þSl+1, . . . , þSN}

=
1
Z

e
−β(− J

2N

q
i /=l

q
j /=l

þSi·þSj− J
2N

q
j

þO·þSj− J
2N

q
i

þSi· þO+ J
2N

þO· þO−
q

i /=l
þh·þSi−þh· þO)

1
Z

e
−β(− J

2N

q
i /=l

q
j /=l

þSi·þSj− J
2N

q
j

þA·þSj− J
2N

q
i

þSi· þA+ J
2N

þA· þA−
q
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Simplifying the common factors at numerator and denominator and neglecting J
2N

and K
2N

, negligible for large N , we get

P ( þO)
P ( þA)

= e
−β

1
J

q
i

þSi· þA

N
+þh· þA+µ+ K

N

q
i

þS2
i

2
. (4.159)
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We set J = 1 and K = 1 and we identify the inverse temperature with the herding
propensity β = κt. The external field vector components are set equal to the
corresponding price momenta hk = Hk. We then finally get

W ( þA → þO)
W ( þO → þA)

= P ( þO)
P ( þA)

= e
κt

1
−
1q

i
þSi

N
+þh

2
· þA−
1

µ+
q

i
þS2

i
N

22
. (4.160)

Expression (4.160) can be further elaborated as
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Now we apply the “Glauber trick” to the second ratio in the last passage. Indeed,
by means of the identity

e−x

ex
= 1 − tanh x

1 + tanh x
(4.162)

we finally get
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22 (4.163)

We recognize in the second ratio the classical Glauber transition rates for a mean-
field Ising model with a uniform constant external field µ and a halved coupling
intensity K = JIsing

2 , where JIsing is the coupling of the standard mean-field
Ising model. This is not surprising, since the third and fourth elements on the
Hamiltonian (4.149) are actually an effective mean-field Ising model

H3,4({þS1, . . . , þSN}) = −µ
NØ

i=1

þS2
i − K

2N

NØ
i,j=1

þS2
i
þS2

j = −µ
NØ

i=1
si − K

2N

NØ
i,j=1

sisj,

(4.164)
where the spins takes values si = 0,1. More precisely, si = 0 represents a trader
investing in the risk-free asset while si = 1 represents a trader investing in the
stock market. Moreover, s+

i − s−
i = 1 − 0 = 1, i.e. half the value for the classical

Ising model, from which the effective halving of the coupling intensity.
The first ratio in (4.163) instead exactly coincides with the rates characterizing

the O(n) model.
However, splitting the expression (4.163) into two well-defined transition proba-

bilities is not an easy task. In particular, correctly considering the normalization
of the probabilities represents a tricky point.

113



Ising-like modeling for the extended Noise traders class

The solution we have adopted implies a different interpretation of the spin vector
and a slightly different derivation of the transition rates. We will present it in the
following.

Before that, in the next section, we focus on the modeling of the social imitation
phenomenon between the traders and their relation with the portfolio interpreta-
tion of the spin. This is a fundamental point in the construction of our model.
By now we have considered it implicitly every time we have introduced a new
Hamiltonian. In the next section, we focus explicitly on it, both for its importance
for the aforementioned alternative derivation and its stand-alone significance for
the modeling effectiveness.

4.4 The social imitation mechanism in the noise
traders class

In this section, we focus on the modeling of the social imitation phenomenon
between the traders and its relation with the portfolio interpretation of the spin.

Fundamentally, the concept underlying every possible modeling of the social
imitation mechanism among two noise traders is constituted by the minimization
of some sort of distance between their investment decisions.

The problem of defining the best representation of the imitation behavior boils
down to defining the best representation of the investment decisions and associating
to it the correct notion of distance, the two being closely related.

In absolute generality, what we are searching for is a distance, also called a
metric, which mathematically is a function

d : X × X → [0, +∞), (4.165)

which associates to each pair of elements from a set X, in our case the set of the
investment representations, a non-negative real number and which just need to
satisfy the three axioms of distance, i.e.

• d(x, y) = 0 ↔ x = y Identity of indiscernibles,

• d(x, y) = d(y, x) Symmetry,

• d(x, y) < d(x, z) + d(z, y) Triangle inequality.

This gives a huge freedom in defining the function d and indeed a large number of
metrics have been thoroughly studied.

For example in the Potts model analyzed in section 4.1, each noise trader decides
at each time step to invest all his wealth into a single asset, then the natural
representation of its investment is simply a q-state spin where q = number of assets.
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In this setting, a natural choice of the distance between the investments of different
traders, which the imitation mechanism tends to minimize, is the discrete distance,
defined by

d(si, sj) =
1 if si = sj

0 if si /= sj.
(4.166)

The discrete distance together with a q-state representation of the investment
decision gives rise to the Kronecker delta interaction term, characteristic of the
Potts Hamiltonian

− J

2N

NØ
i,j=1

δsi,sj
. (4.167)

Moving from a picture in which each trader holds just one asset at a time, to a
setting where each trader can diversify its investment constructing a portfolio of
different assets, the modeling is less straightforward and multiple possibilities are
present.

Quite confidently we can affirm that we need a vector with many components
to take into account the various investment fractions, both risky and risk-free. Yet,
the best way in which the portfolio representation is implemented through the
various components is not clear a priori. We have already partly addressed this
issue in section 4.2.5, here we deepen its analysis.

Both in the O(n) model and in the BEG model the social imitation phenomenon
characterizing the noise traders class is modeled by the maximization of the dot
product between the spins. For example, considering two noise traders i and j, the
social imitation mechanism among them tends to “align” their investment decision,
effectively maximizing the dot product between the two vectors representing their
portfolios.

This dot product maximization process, modeling the social imitation, justifies
the presence of the term

− J

2N

NØ
i,j=1

þSi · þSj (4.168)

in the Hamiltonian of the system, indeed the principle of energy minimization in
this case implies exactly the maximization of the dot products. From this, also the
presence of the minus sign appears clear.

This seems a rather natural choice in modeling the social imitation mechanism,
yet a deeper analysis is important since this point represents one of the features at
the foundation of the model itself.

Indeed, we have considered different possible solutions characterized by the
different representation of the investment decisions and different distances. Among
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them, we have in particular considered an interesting distance, which is the Ham-
ming distance. Studied in the context of information theory and coding theory,
the Hamming distance counts the number of different symbols at corresponding
positions between two strings of equal length.

In section 4.2.5 we have discussed how the interpretation of the spin vector

þSi = (si1, . . . , sin) ∈ Sn−1 (4.169)

where the squared component a of the spin vector represents the fraction of wealth
xia invested by the trader i in the asset a and the first n − 1 components represent
the risky assets, while the last component represents the unique risk-free asset

s2
ia = xia a = 1, . . . , n, (4.170)

suffers from an unmotivated degeneracy in the portfolio representation and, more
seriously, from an inconsistency with the sign of the price momenta external field.

As a possible solution we have proposed a different promising interpretation
where the components of the vector

s2
ia = xia if sia ≥ 0 (4.171)

represents the risky fraction invested in a, if sia is non-negative. Instead the sum of
all the negative components at the aggregate level represents the risk-free fraction

nØ
a:sia<0

s2
ia = xf . (4.172)

With the Hamming distance we can propose a radically different solution. We
define the n-components spin vector

þSi = (si1, . . . , sin), (4.173)

where each component represents a risky asset and can assume values

sia =
1 if the trader i invests in risky asset a

−1 otherwise.
(4.174)

With this definition of the spin vector, the Hamming distance becomes the proper
measure of the distance between the two investment decisions, counting the number
of assets for which the choice to invest or not differs among the two traders. In
this picture, all the −1 components contribute to defining at the aggregate level
the wealth invested in the risk-free asset.

Despite its interesting properties, this modeling suffers from a major drawback,
indeed a clear notion of investment fractions in the various risky assets is missing
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and a trivial interpretation where the wealth is uniformly split among the different
assets, with the −1 accounting at the aggregate level for the risk-free asset, seems
inappropriate.

We have considered other spin representations with different distances, like the
L1 distance or the Chebyshev distance, but in our opinion, they are less effective
from the modelization point of view with respect to the Euclidean metric, which is
the actual distance underlying the dot product between the spin vectors as we will
show in the following.

The Euclidean distance is induced by the standard Euclidean norm

d( þX, þY ) = ë þX − þY ë =
ñ

(x1 − y1)2 + · · · + (xn − yn)2. (4.175)
It is easy to show that the minimization of the distance between two spin vectors is
equivalent to the maximization of their dot product, indeed considering the squared
Euclidean distance we have

(d(þSi, þSj))2 = ëþSi − þSjë2 = (þSi − þSj) · (þSi − þSj) = ëþSië2 + ë þSjë2 − 2þSi · þSj (4.176)

which in case of spins living on the n − 1-sphere becomes

(d(þSi, þSj))2 = 2(1 − þSi · þSj). (4.177)

The factor 2 and the additive constant do not affect the minimization procedure,
hence the minimum for the distance is obtained maximizing the dot product.

In the next section, we move back to the vectorial BEG model and instead
of trying to change the notion of distance implied in the modeling of the social
imitation, we focus on the constraints in the definition of the spin vector and
modifying them we propose an alternative to the O(n) model. This choice will
result in the fourth statistical model of the present Chapter.

4.5 A n-state extension of the BEG model
We come back to the extension of the BEG model presented in section 4.3 and, as
anticipated in that section, we modify the definition of the spin vector to be able
to explicitly compute the transition rates and to have a model giving rise to an
interesting dynamics.

In subsection 4.5.1 we introduce the modified Hamiltonian of the n-state ex-
tension. In subsection 4.5.2 we derive the transition probabilities, commenting on
their interesting connection with the Potts model and the Logit distribution. Then,
in the subsection 4.5.3, we deepen again one recurrent topic of this Chapter, the
average holding time. Finally, in subsection 4.5.4 we present the resulting time
series and we comment on them.
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4.5.1 The n-state extension of the BEG model on the fully
connected graph

Starting from the Hamiltonian of the vectorial BEG model

HN({þS1, . . . , þSN}) = − J

2N

NØ
i,j=1

þSi · þSj −
NØ

i=1

þh · þSi −µ
NØ

i=1

þS2
i − K

2N

NØ
i,j=1

þS2
i
þS2

j (4.178)

we modify the definition of the spin

þSi = (si1, . . . , sin) (4.179)

assuming that the vector can have either only one component equal to 1

þSi = (0,1,0, . . . ,0) (4.180)

representing a trader investing all its wealth in that specific risky asset, or all the
components equal to zero

þSi = (0, . . . ,0) (4.181)

representing a trader investing in the risk-free asset. In this setting the n components
of the vector represent the n risky assets.

With this new definition of the spin, the first two terms in the Hamiltonian
become equivalent to the Potts model Hamiltonian

HN({þS1, . . . , þSN}) = − J

2N

NØ
i,j=1

δzi,zj
−

nØ
k=1

hk

NØ
i=1

δzi,k − µ
NØ

i=1

þS2
i − K

2N

NØ
i,j=1

þS2
i
þS2

j ,

(4.182)
where the new variable zi is either equal to the number of the unique non-zero
component of the spin or is equal to zero in the case of a trader investing in the
risk-free asset.

4.5.2 The transition probabilities
Following the same approach used for the other models, we derive the transition
rates starting from the discrete-time Master Equation and then imposing the
detailed balance condition. As in the derivation for the vectorial BEG model in
section 4.3.2, we have to consider two kinds of moves.

The first being constituted by the reallocation of the investment inside the stock
market, when the traders decide to switch from one risky asset to another one.
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For this kind of moves, the detailed balance condition reads

W (zi = a → zi = b)
W (zi = b → zi = a) = P (zi = b)

P (zi = a) . (4.183)

Noting that the third and fourth terms are not affected by a change of value of the
spin variable zi as long as it remains non-zero, expression (4.183) becomes
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qq
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q

i /=l
δzi,k+δzl=a,k)) . (4.184)

Which exactly coincides with the Potts model result. Indeed simplifying the
common terms we get

P (zi = b)
P (zi = a) = eβ(J

q
i

δzi,zl=b−
q

i
δzi,zl=a

N
+hb−ha). (4.185)

Splitting the exponential among the two transition rates and normalizing them to
obtain well defined transition probabilities we get exactly the same result as for
the Potts model, i.e. the Logit probability distribution

W (a → b) = eκt( Nb
N

+Hb)qn
k=1 eκt( Nk

N
+Hk)

, (4.186)

where Nb is equal to the number of noise traders investing in that specific risky
asset and we have identified the vectorial external field with the vector of price
momenta þh = þH.

The second possible kind of move is constituted by the moves from a risky asset
to the risk-free asset and vice versa. Following the calculation for the vectorial
BEG model in section 4.3.2, we have

W (zi = a → zi = 0)
W (zi = 0 → zi = a) = P (zi = 0)

P (zi = a) = e
κt

1
−
1

Na
N

+Ha

2
−
1

µ+
q

i
þS2

i
N

22
. (4.187)

Thanks to the effective Kronecker delta interactions, at odds with the corresponding
expression for the vectorial BEG model (4.160), in formula (4.187) no dot product
between vectorial quantities is present. This solves the problems related to the
definition of the transition probabilities. Indeed splitting the rates

W (zi = a → zi = 0)
W (zi = 0 → zi = a) = 1

e
κt

1
Na
N

+Ha

2 · e
κt
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i
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i
N

22
(4.188)
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we can identify the transition probabilities

W (zi = a → zi = 0) = e
κt

1
−
1

µ+
q

i
þS2

i
N

22
(4.189)

and
W (zi = 0 → zi = a) = e

κt

1
Na
N

+Ha

2
. (4.190)

We now have to correctly normalize the probability distribution not only over all
the risky assets but also over the risk-free asset. This was the main problem in
the previous derivation for the vectorial BEG model, this time instead the result is
readily found. For the risky assets we have

W (a → b) = eκt( Nb
N

+Hb)

qn
k=1 eκt( Nk

N
+Hk) + e

κt

1
−
1

µ+
q

i
þS2

i
N

22 b ∈ 1, . . . , n (4.191)

while for the risk-free asset we have

W (a → 0) = e
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qn
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22 . (4.192)

We can represent both the expression in a unique form, defining

N0 = −
NØ

i=1

þSi

2
H0 = −µ (4.193)

we get

W (a → b) = eκt( Nb
N

+Hb)qn
k=0 eκt( Nk

N
+Hk)

b ∈ 0, . . . , n (4.194)

which is noticeably another Logit distribution over the possible investment choices.

4.5.3 The average holding time
We now discuss the implementation in the present model of the average holding
time parameter th, which we recall to be the average number of trading days the
noise trader holds its asset in absence of herding behavior. It gives us also the
possibility to discuss a general issue in the implementation of this parameter.

We follow what we have done for the O(n) model, i.e. each trading day, before
proceeding with its trading decisions, the noise trader first decides if perform any
trading moves at all or to just be inactive for that day holding its previous portfolio
allocation.
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The trader decides to be active with probability

P (active) = min
I

1,
1
th

A
1 + κt

µk

BJ
(4.195)

where µk is the mean reversion level of the kappa process.
Now it comes the crucial implementation point, indeed if the trader decides to

be active one could expect that the probability from which the trading decision is
sampled does not take into account the asset the trader was previously holding.
Yet, in this case the form of the probability distribution would break the detailed
balance, indeed we would have

P(a → b) = P (active) · eκt( Nb
N

+Hb)qn
k=0
k /=a

eκt( Nk
N

+Hk)
b ∈ 0, . . . , n (4.196)

and

P(b → a) = P (active) · eκt( Na
N

+Ha)qn
k=0
k /=b

eκt( Nk
N

+Hk)
a ∈ 0, . . . , n (4.197)

and the detailed balance condition would not be satisfied, since the two different
normalization constants would not cancel out. Basically, the error introduced in this
way would be equivalent to the error studied for the Potts model in section 4.1.2,
when the parameter th was introduced by means of the constant c = (th − 1)Nstocks,
which was breaking the detailed balance.

The solution is straightforward, after having sampled from a Bernoulli random
variable with parameter P (active), if the trader has decided to be active, its trading
decision is sampled from the full probability distribution including also the asset
previously held.

This is actually what has been done for the O(n) model, but if in that case
the probability P( þA → þA) had zero measure, this time the probability to hold
the previous position even if the trader has decided to move is finite and need to
be motivated. Nevertheless, this is reasonable from a modelization point of view,
since the trader can decide a priori at the beginning of the trading day to hold its
position whatever happens or can decide to actively trade but by the end of the
day figure out that its previous investment decision was the best.

4.5.4 Time series description
In this section, we present a time series resulting from the implementation of the
model.
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Choice of parameters

The set of parameters is similar to the other models’ simulations, with small
differences.

Parameters

Assets n = Nstocks = 4 rf = 4 × 10−5

rd,i = 1.6 × 10−4 ∀i di,0 = 1.6 × 10−4 ∀i
Pi,0 = 1 ∀i Σd

i,i = 1.6 × 10−5 ∀i

Fundamentalist W f
0 = 109 Er,i = 1.6 × 10−4 ∀i

traders Σf
i,i = 0.0004 ∀i

Noise W n
0 = 109 Nn = 1000

traders θ = 0.95 Hi,0 = 1.6 × 10−4 ∀i
µ = −0.5

Table 4.3: Set of parameters for the simulations of the extended model endowed
with a n-state BEG model-like noise traders class. Their values constitute the
natural generalization of the original models’ one being motivated by real markets
data and are mainly taken from Westphal and Sornette [18].

No correlation among the dividend processes for different risky assets is assumed.
Regarding the fundamentalist traders we have

Σf
i,i = 0.0004 i = 1, . . . ,4 (4.198)

and the correlation matrix is set equal to

Cf =


1.0 0.5 0.0 0.0
0.5 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

 (4.199)

The initial investment decisions for fundamentalist and noise traders are as follows

xf
0 = (0.075,0.075,0.075,0.075,0.7) (4.200)

and
xn

0 = (0.2,0.2,0.2,0.2,0.2), (4.201)
where the last component represents the risk-free asset. The simulation is charac-
terized by an Ornstein-Uhlenbeck kappa process defined by

κt − κt−1 = η(µk − κt−1) + σkvt, (4.202)
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with mean reversion level µk = 0.98c, where for this time series c = 3.4. Moreover,
the mean reversion speed η and the step size σk are set, as in the original model
[13], such that the Ornstein–Uhlenbeck process has a standard deviation of 0.1c
and a deviation of κt two standard deviations above µk in the super-critical regime
will revert within ∆T = 20, i.e.

η = 1
∆T

log
A

µk + 0.2c − µk

c − µk

B
(4.203)

and
σk = 0.1c

√
2η. (4.204)

Finally an average holding time of ten trading days is imposed with the parameter
th = 10.

The time series

The resulting time series, presented in figures 4.14, 4.15, 4.16, and 4.17, are
interesting. Several bubbles in different assets are clearly identifiable.

Yet, an unrealistic behavior is present at the beginning of the time series, when
in the first trading days the noise traders, who were investing in the risk-free
asset, due to the initial condition, moves in mass towards the stock market. This
phenomenon is governed by the µ parameter, which represents a measure of the
risk aversion of the noise traders, minus the risk aversion to be more precise.

This is also introductory to the fundamental new feature of the present model
with respect to the previous ones, an extra degree of freedom constituted by the
µ parameter. The average number of noise traders investing in the risk-free asset
can be tuned through this parameter, which not by chance is the equivalent of the
chemical potential in the physical interpretation of the BEG model.

This concludes the presentation of the n-state extension of the BEG model and
with it the present Chapter concerning the Ising-like modeling of the extended
noise traders class. In this Chapter, we have proposed and analyzed four Ising-like
statistical models for the noise traders, in order: a Potts model, an O(n) model, a
vectorial extension of the BEG model, and an n-state extension of the BEG model.
We have derived their stochastic dynamics and we have discussed their strengths
and weaknesses in modeling the investments’ dynamics of the noise traders. In the
next Chapter, we will compare the four models, to focus on one of them, in order
to move to the comparison of the simulation results to the real financial markets
and to the application of the model to investigate interesting financial phenomena.
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Figure 4.14: Ornstein-Uhlenbeck kappa simulation for the n-state BEG model.
The figure shows the time series of the four prices. Several bubbles are clearly
identifiable
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Figure 4.15: Ornstein-Uhlenbeck kappa simulation for the n-state BEG model.
The figure shows the time series of the Ornstein-Uhlenbeck kappa process and the
time series of both the four risky fractions and the risk-free fraction of the noise
traders class at the aggregate level.
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Figure 4.16: Ornstein-Uhlenbeck kappa simulation for the n-state BEG model.
The figure shows the detailed time series characterizing the risky asset 2.
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Figure 4.17: Ornstein-Uhlenbeck kappa simulation for the n-state BEG model.
The figure shows the detailed time series characterizing the risky asset 3.
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Chapter 5

The extended Market
Model with the O(n) Noise
traders class

In the last Chapter, we have introduced four Ising-like statistical models for the
noise traders class. We have considered in order: a Potts model, an O(n) model, a
vectorial extension of the BEG model, and an n-state extension of the BEG model.

Despite their differences, all of them share the same underlying mechanism
triggering and generating the bubbles. This mechanism is the same mechanism
characterizing the original model and that we have deeply discussed in section 2.6.
When the herding propensity parameter exceeds a certain model-dependent critical
threshold, the noise traders class undergoes an actual phase transition from the
disordered state, dominated by the idiosyncratic opinion to the ordered state where
the class polarizes towards specific investment preferences. This interaction-driven
collective behavior leads to the emergence of highly non-trivial phenomena, the
bubbles. This is a typical feature of complex multi-agent systems.

Each model has its strengths and weaknesses, we have addressed many of them
in the last Chapter. We now want to move to the comparison of the simulation
results with the real financial markets and to the application of the model to
investigate interesting financial phenomena.

To proceed in this direction we have to choose the model that best suits the
modelization goal, constituting the finest middle way between modelization accuracy
and manageability.

In section 5.1 we address this topic, comparing the four setups presented and
deciding on the one that, in our opinion, best fits the aforementioned requirements.
The selected one turns out to be the O(n) model, in particular in the version
where the sum of all the negative components at the aggregate level represents the
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risk-free fraction. We decide to focus on it due to both the validity of the resulting
price time series and to the high controllability of its behavior, connected to solid
theoretical results on the model itself and the intuitive meaning of its parameters.

Nevertheless, in modeling not all that glitters is gold. We can metaphorically
say that modeling, like life, is a constant balancing act. We will never find the
perfect model, but we have to search for useful imperfect ones. In this situation, we
have a further representation of this point. Indeed, despite this model represents
the most solid one from a theoretical point of view and gives rise to a realistic
and interesting dynamics, we have to address one problem in its implementation.
We have already mentioned it in subsection 4.2.6, it is a problem regarding the
critical point resulting from the simulations of the O(n) model. We can’t hide the
dust under the carpet and, before moving to the application part, we will deeply
discuss the topic in section 5.2. Nevertheless, we will see that despite the problem,
the O(n) model is still extremely valid, and that, always keeping in mind this
implementation detail, we can move safely and solidly to its application. We will
show that this implementation detail does not affect at all the properties of the
resulting dynamics.

Reassured by this analysis, we finally move to the application part. In section
5.3 we first check the model’s ability to reproduce the stylized facts of financial
markets, in particular, focusing on the fat-tailed behavior of the distribution of
the absolute returns in subsection 5.3.1, together with the hyperbolic decay of the
autocorrelation function of the absolute returns, discussed in subsection 5.3.2.

Then the analysis is carried out in two main directions. First, in section 5.4,
the extended ABM is applied to understand the mechanism behind the time
synchronization of bubbles among the assets. Then in section 5.5, we present the
comparison of the dynamics of the resulting returns to the one predicted by the
Capital Asset Pricing Model (CAPM).

5.1 Comparison between the models
In the last Chapter we have discussed four Ising-like models to represent the noise
traders class: a Potts model, an O(n) model, a vectorial extension of the BEG
model, and an n-state extension of the BEG model. In this section, we compare
their effectiveness from the point of view of modeling a real financial market.

This is also the occasion to present a quick digression on the computational
aspects of the simulations of the extended ABMs characterized by the various setups
for the noise traders class. Despite the differences between them characterizing
the implementation of the noise investors, they all share the same implementation
regarding the other components of the market model. A large part of the work
carried out in the thesis has been dedicated to the extension of the original C++
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code written by Kohrt [17], with some modification by Ollikainen [19] and Westphal
and Sornette [18], to take into accounts the enlarged multi-asset framework. The
core of the extended model is still written in C++, following an object-oriented
programming paradigm where each part of the model, (e.g. the fundamentalist
traders, the risky asset, the price equation) corresponds to one specific class.

One of the advantages of such a coding strategy is that we can switch from
one model with a particular structure of the noise traders class, to another one,
just changing the header file in which the noise traders’ strategy is implemented.
Indeed, one header file for each of the Ising-like models is present.

Moreover, to have reproducible results, as for the original setup, a pseudo-
random number generator with a random seed specified as a run-time parameter is
used. The results of the simulation are still stored in a database using the HDF5
high-performance data software library. Then all the analysis of the data and the
plotting are performed with Python, in particular using the Matplotlib, the Pandas
and the Seaborn libraries and accessing the HDF5 database through the Python
interfacing library h5py.

Coming back to the main discussion we start from the analysis of the first model
presented in section 4.1, the Potts one.

As we have already discussed in subsection 4.1.6 the Potts model presents
two main limits of applicability. First, it features a first-order phase transition,
hence in the simulations the time series jump discontinuously and the bubbles do
not grow continuously as it happens for the original Ising model, which features
a second-order phase transition. Instead, the discontinuous jumps lead to a full
polarization of the noise traders class in few trading days, characterizing the bubbles
as unrealistic changes of regime.

Moreover, a second problem adds to the first, the particular phase transition of
the mean-field Potts model is characterized by the presence of metastable states.
Starting from a disordered (ordered) state below (above) the critical kappa, when
the κt enters in the supercritical (subcritical) region, even if from a statistical point
of view the thermodynamical equilibrium has changed, from a dynamical point of
view the system remains frozen in a metastable disordered (ordered) state until a
sufficiently strong stochastic perturbation breaks the metastability and the system
jumps discontinuously to the new ordered (disordered) state, or κt becomes greater
(smaller) than q exiting the metastability region and the metastable state ceases to
be locally stable.

These two points represent real obstacles to obtain a realistic dynamics of the
market model, a fortiori given that these are two intrinsic features of the statistical
model under analysis. Given these facts, we will not select the Potts model in view
of the application’s part.

We have already anticipated that we will select the O(n) model, but before
moving to it we first comment on the two versions of the BEG model.
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Only the second of these two versions give rise to real implementable transition
probabilities. Indeed, we recall that the transition probabilities derived from the
vectorial extension of the BEG model, presented in 4.3, were characterized by huge
difficulties in performing a correct normalization procedure of them. Moreover,
this was the very problem that pushed us to move to sections 4.4 and 4.5, and
eventually to present the second extension of the BEG model.

Discarded the first version of the extended BEG model, we then move to the
aforementioned second one, presented in section 4.5. This time the transition rates
can be easily normalized and the stochastic dynamics generated by them can be
implemented. The resulting time series presented in subsection 4.5.4 are realistic
and present several bubbles in the different assets. Moreover, the model features a
further important parameter with respect to the previous ones, the µ parameter.
It represents a measure of the risk aversion of the noise traders, a risk seeking
parameter to be more precise. The average number of noise traders investing in
the risk-free asset can be tuned through this parameter.

On the one hand, this is an interesting possibility, since the presence of µ
allows the explicit modeling of a risk aversion trait for the noise traders. On the
other hand, this quantity represents a further degree of freedom for which the
empirical calibration is difficult. The presence of this parameter results, through
the Hamiltonian 4.178 in which it enters, in a complex Statistical Physics picture,
characterized by phase transitions of different natures (first and second-order)
depending on the value of the parameters entering in the Hamiltonian, together
with the presence of another important object studied in Statistical Physics, a
tricritical point.

The complex picture emerging would require a large theoretical investigation
with the tools of Statistical Physics (e.g. the linear stability analysis of the mean
value dynamical equations, introduced in subsection 4.1.4, and the Landau approach,
discussed in subsection 4.1.5), to clarify the important properties that could have
an impact on the dynamics of the bubbles. The task would be challenging and
time-consuming, but also extremely interesting from a theoretical point of view.

Nonetheless, this goes beyond the scope of the present work, indeed at this point,
we want to favor a model which is both effective in generating realistic time series
and highly controllable, to be able to use it as a sharp and flexible instrument in
the analysis of complex financial phenomena, how are the bubbles.

Proceeding with this latter model would be forced and clumsy, given the little
theoretical mastery that we have on it and the presence of a further parameter that
should be deeply discussed and motivated from a modelization point of view. On
the other hand, we have an extremely effective model, on which we have a large
theoretical knowledge and an intuitive motivation for its parameters, it is the O(n)
model. At this point it is clear why we decided to proceed with it, postponing the
anyway interesting discussion on the n-state BEG model to a future work.
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Summarizing, after careful analysis, we decided to work with the O(n) model due
to both the validity of the resulting price time series and to the high controllability
of its behavior, connected to solid theoretical results on the model itself and the
intuitive meaning of its parameters.

In particular, we decided to proceed with the the version of the O(n) model
where the sum of all the negative components at the aggregate level represents
the risk-free fraction. This interpretation of the spin vector is more consistent
with respect to the one with n − 1 risky components and the last one risk-free.
First, because it does not introduce any unmotivated degeneracy in the portfolio’s
representation and it does take into account the sign of the price momentum in a
coherent way. Moreover, it is easier to be understood intuitively from the point of
view of bullish vs bearish attitudes towards the assets and does not consider the
risk-free asset in the same way as any other risky asset, which would be bad from
a modelization point of view.

We now briefly review the O(n) model presented in section 4.2 underlining the
characteristic of the spin vector’s interpretation we use.

The Hamiltonian of the model is

HN({þS1, . . . , þSN}) = − J

2N

NØ
i,j=1

þSi · þSj −
NØ

i=1

þH · þSi (5.1)

where the spin
þSi = (si1, . . . , sin) ∈ Sn−1 (5.2)

lives on the (n − 1)-sphere and represents the portfolio allocation of noise trader i.
More precisely,

s2
ia = xia if sia ≥ 0 (5.3)

represents the risky fraction invested in a, if sia is non-negative. Instead the sum of
all the negative components at the aggregate level represent the risk-free fraction

nØ
a:sia<0

s2
ia = xf . (5.4)

The modeling is consistent since þSi satisfies ëþSië = 1, i.e. at each time step the
investment fractions for each noise trader correctly sum to one,

nØ
a=1

xia = 1. (5.5)

We notice that in this interpretation n = number of stocks. A vectorial external
field þh of price momenta acts on each spin, in particular, Hk represents the price
momentum of the risky asset k.
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In section 4.2.2 we have derived the transition rates defining the stochastic
dynamics of the model. We report here the final result of the derivation, the
transition probability from a portfolio þA to a different portfolio þB is given by

W ( þA → þB) = P( þA → þB) = e
κt

1q
i

þSi· þB

N
+ þH· þB

2
s

þK∈Sn−1 e
κt

1q
i

þSi· þK

N
+ þH· þK

2 . (5.6)

Generating the stochastic dynamics from these transition rates is a delicate task
as already largely discussed in sections 4.2.2. We have presented two methods to
derive an algorithm to sample from this multivariate distribution and hence to
implement the simulation of the noise traders class dynamics.

In particular in subsection 4.2.3, we have presented a method based on the Mc-
Fadden result for the Logit distribution, while in subsection 4.2.4, we have presented
a method exploiting the geometric symmetries of the multivariate distribution.

Generating the stochastic dynamics of the O(n) model from this multivariate
probability density is a delicate point. Moreover, as anticipated, we need to tackle
directly a problem regarding the second approach we have set aside so far. This
will be the main topic of the next section.

5.2 Generating the stochastic dynamics of the
O(n) model: McFadden result approach vs
geometric symmetries approach

The stochastic dynamics characterizing the noise traders investment’s decisions in
the O(n) setup is governed by the transition probabilities

W ( þA → þB) = P( þA → þB) = e
κt

1q
i

þSi· þB

N
+ þH· þB

2
s

þK∈Sn−1 e
κt

1q
i

þSi· þK

N
+ þH· þK

2 . (5.7)

To generate the dynamics of our model we have to sample realizations of the
random vector þB = (B1, . . . , Bn) from the multivariate probability distribution
(5.7). Unfortunately, constructing a sampling procedure is difficult due to the
high dimensionality of the distribution and to the non-trivial relation between the
components of the random vector qn

k=1 B2
k = 1. In subsection 4.2.3 and 4.2.4, we

have proposed two methods to address this task.
The first method based on the McFadden result for the Logit distribution,

despite the interesting connection with Decision Theory upon which has been built,
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is really expensive from a computational point of view and hence not well scalable
in the number of assets.

To react to this problem, we have developed the second method based instead
on the symmetry properties of the multivariate probability distribution (5.7). This
second method has been proved promising, being fast and well scalable with the
number of risky assets. Indeed, all the simulations of the O(n) model presented in
section 4.2 were obtained with its implementation.

Nevertheless, at the end of the aforementioned section, in particular in subsection
4.2.6 we have commented that the main problem emerging from the times series
was that the noise traders class, even if the polarization phenomenon was clearly
present, never fully polarized. The maximum polarization was around x ≈ 0.5,
too small to have bubbles of intensity compared with the original model ones.
Eventually, we have led back the problem to the fact that unexpectedly the phase
transition happened around a value κc ≈ 2, even if the model was featuring n = 5
components and hence we would have expected a critical value κc = 5. We have
said that we couldn’t hide the dust under the carpet and, before moving to the
application of the model, we should have discussed deeply this problem. The time
to do that has come.

We briefly recall here the ideas under the formulation of the simulation method
based on the symmetry properties of the transition probabilities. In particular, at
odds with the derivation presented in subsection 4.2.4, here we focus on the case of
non-linear rates, showing that the resulting algorithm is completely equivalent.

The method is constituted by two steps. In the first, we sample an angle theta
from a univariate distribution and then in the second we sample uniformly at
random from a particular hypersphere Sn−2, a subset of the original space of choices
Sn−1.

We first make explicit the symmetry property of the dot product entering the
non-normalized form of the density function (5.7), expressing it in terms of the
angle θ between the vector

þM :=
q

i
þSi

N
+ þH (5.8)

and the vector þB. It is always possible to define a unique angle between two vectors
in any inner product space and in particular in the Euclidean space Rn to which
our vector belongs to. Hence, we can write

P (θ) = eκtë þMë cos θ, (5.9)

since the norm of þB is exactly equals to one.
The sets of equiprobable choices, i.e. equiprobable vectors þB, are defined by the
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conditions 
1

ë þMë
þM · þB = cos θ

ë þBë = 1
(5.10)

the first defining an hyperplane in Rn, the second a (n − 1)-sphere.
We proceed using the beautiful geometric property that the intersection of a

(n−1)-sphere and a n-dimensional hyperplane, is still a hypersphere, yet of one less
dimension. Indeed, the system (5.10) defines a (n − 2)-sphere in Rn, with centre

þC = cos θ
1

ë þMë
þM (5.11)

and radius
r =

√
1 − cos2 θ = sin θ. (5.12)

First of all, we focus on the angle θ. This time the expression (5.9) is always
non-negative. Hence, we can directly sample from it with rejection sampling without
introducing any approximation. The rejection sampling method is presented in the
following algorithm.

Algorithm 6: Rejection sampling from the non-linear P (θ) distribution
Result: An angle θ sampled from P (θ)
while (u ∗ eκtë þMë) > eκtë þMë cos θ do

θ = Uniform(0,1) ∗ 2π;
u = Uniform(0,1)

end
return θ;

We can notice that we only difference compared to algorithm 3, is constituted
by the argument of the while condition. Ultimately, this is the only difference
between the non-linear and the linearized probabilities implementations.

Now that we have correctly sampled the value for the angle, we have to choose
a vector uniformly at random from the equiprobable set defined by that angle. The
method to do that has been detailed presented in subsection 4.2.4, here we review
the main points. We generate uniformly at random a vector on the hypersphere
Sn−2 through algorithm 1. The resulting vector

þB∗
n−1 = 1

ë(N1(0,1), . . . Nn−1(0,1))ë

A
N1(0,1), . . . Nn−1(0,1)

B
(5.13)

is uniformly distributed on Sn−2. We add one extra zero component at the beginning
of the vector to have a vector in Rn. The new vector is

þB∗
n = 1

ë(N1(0,1), . . . Nn−1(0,1))ë

A
0, N2(0,1), . . . Nn(0,1)

B
. (5.14)
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Moreover, the hypersphere has to be translated and its radius rescaled following
(5.11) and (5.12). Finally, the Sn−2 hypersphere will correctly represent the inter-
section between the higher dimensional Sn−1 hypersphere and the hyperplane only
after it will be rotated in such a way that the unit versor, corresponding to the
extra component added in (5.14), will be rotated to the direction of the normalized
vector 1

ë þMë
þM .

We construct the orthogonal matrix R representing the rotation of the unit
versor

þX = (1, 0, 0, . . . , 0), (5.15)

to the direction of the vector 1
ë þMë

þM using an approach based on Givens rotations,
for which we thoroughly refer to Zhelezov [53].

Eventually, the choice vector þB sampled from the distribution (4.107), repre-
senting the noise trader’s portfolio reallocation, is given by

þB = sin θR þB∗
n + cos θ

1
ë þMë

þM. (5.16)

Summarizing, the sampling algorithm is as follows.

Algorithm 7: Simulating the investment choice for a noise trader (non-
linear transition probabilities)
Result: A vector þB representing the new portfolio
sample an angle θ from P (θ) using Algorithm 6;
sample uniformly at random a vector þB∗

n−1 on Sn−2;
þB∗

n = (0, þB∗
n−1) ∈ Sn−1;

construct the rotation matrix R following [53];
þB = sin θR þB∗

n + cos θ 1
ë þMë

þM ;
return þB;
The derivation appears to be solid and the algorithm performs very well. Never-

theless, as commented in subsection 4.2.6, albeit modeling in the correct way the
phase transition characterizing the noise traders class, the algorithm locates it at
an incorrect value κc.

Comparing figures 5.1, 5.2, 5.3, and 5.4, the problem is clear.
The plots are obtained from simulations characterized by a constant value of

the kappa process κ, reported on the abscissa. Moreover, we have set to zero
the external field effectively decoupling the noise traders class from the rest of
the market model. Doing that, the part of the model representing the noise
traders becomes completely equivalent to a fully-connected O(n) model without
an external field. Hence, the resulting dynamics is effectively the actual dynamics
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Figure 5.1: Time-average and standard deviation of the magnetization (norm of
the mean spin vector of that trading day) of the noise traders class, characterizing
the constant kappa simulations for various κ values. The model simulated is the
O(n = 3), using the geometric symmetries approach.
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Figure 5.2: O(n = 4) geometric symmetries approach. We refer to figure 5.1 for
a detailed description.
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Figure 5.3: O(n = 10) geometric symmetries approach. We refer to figure 5.1 for
a detailed description.
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Figure 5.4: O(n = 20) geometric symmetries approach. We refer to figure 5.1 for
a detailed description.

of the Statistical Physics’ O(n) model. Having “cleaned” the simulation from
the effects coming from the other parts of the model (e.g. dividend processes,
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fundamentalist traders, price equations) we can focus on the problem concerning
the O(n) model simulation, being certain that it is not influenced by other factors.

Indeed, we observe that the proposed algorithm can correctly reproduce the
phase transition characterizing the model. The mean magnetization is defined as
the time-average over all the simulation’s steps of the value of the spin vector’s
norm (i.e. average opinion of the class for that day). This time-average presents
the correct behavior expected from Statistical Physics theory. A zero value in the
subcritical region (here the small but non-zero value is due to the finite size effects)
and an increase starting from the critical point representing the phase transition.
Also, the shape of the curve is in good qualitative agreement with the theoretical
one. Moreover, the phase transition is correctly marked by an increase in the
standard deviation of the spin’s vector norm.

Despite this good agreement with the results expected from the theory, we notice
that the phase transition is located always at the same value of κc = 2, instead of
the expected value κc,theory = n fixed by the number of components of the spins
characterizing the model.

This is something unexpected. Given the apparent correctness of the derivation
of the algorithm, we initially supposed the problem could be related to an error in
the coding implementation of the method.

Therefore, we moved to a detailed analysis of the code. To gain insight into
the dynamics generated, we worked out a way to have a visual representation of
the simulated noise traders’ decision. After some implementation work in Python
together with some Bash scripts, we effectively represented the actual dynamics of
the investment choices of the noise traders class in the case of n = 3 components,
i.e. risky assets. Indeed, in the case of O(n = 3) we can plot the decision of
the traders as three-dimensional unit vectors on the S2 hypersphere, the viewable
three-dimensional sphere.

First, we have been able to plot the actual set of equiprobable choices generated
by the second part of the algorithm at a fixed angle theta. We plotted it to exclude
the chance that some errors in the code could give rise to the definition of an
incorrect set of equiprobable choices in each trading decision process. Conversely,
figures 5.5 and 5.6 show that the method correctly generates, as set of equiprobable
choices, a circle. Which is indeed the intersection of a (3 − 1)-sphere S2 and a
3-dimensional hyperplane (a three-dimensional sphere and plane), i.e. a hypersphere
of one less dimension S1 (a circle).

After a careful analysis of the code, no implementation error has been found. We
then moved to test more deeply the theoretical derivation of the method. First, we
examined again the correctness of the form of the transition probabilities (5.7). An
error in its expression would invalidate a priori any subsequent sampling procedure.

In order to have an independent check of its validity, we repeated the constant
kappa simulations’ experiment presented in figures 5.1, 5.2, 5.3, and 5.4, for the O(n)
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Figure 5.5: Set of equiprobable choices at fixed theta. Each point represents one
of the 1000 choices sampled for a given value of theta. The blue vector constitutes
the average spin vector þM . We observe that the choices correctly distributes
uniformly on a circle around þM .

Figure 5.6: Another set of equiprobable choice at a fixed value of theta (different
from figure 5.5). Again the choices correctly distributes uniformly on a circle
around þM . The value of theta is smaller, hence the circle has a smaller radius.

model simulated with the McFadden result’s method. Again we set the external
field to zero, decoupling the noise traders class from the rest of the model to be
certain that no external factor influenced the results. The resulting time-average

140



The extended Market Model with the O(n) Noise traders class

and standard deviation plots of the norm of the mean spin vector are presented in
figures 5.7 and 5.8. Remarkably, the phase transitions are present at the correct
critical values. In particular κc ≈ 4 for the O(n = 4) model and κc ≈ 10 for the
O(n = 10) model, the negligible differences attributable to the finite size effects.
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Figure 5.7: O(n = 4) McFadden result’s approach. Time-average and standard
deviation of the magnetization (norm of the mean spin vector of that trading day)
of the noise traders class, characterizing the constant kappa simulations for various
κ values. The model simulated is the O(n = 4), using the McFadden result’s
approach.

The interpretation is clear. The transition probabilities form is the correct one
characterizing the stochastic dynamics of the O(n) model. The problem concerns
only the derivation of the method based on the symmetries approach.

We thoroughly analyzed the derivation and the implementation of the latter
method, but surprisingly no error has been found. At the time of writing the
problem in the symmetry-based algorithm has not been identified and the author
would be extremely grateful to anyone who could spot the problem or give a hint
for its individuation.

Nevertheless, as we have commented, the phase transition is correctly modeled
and the dynamics of the O(n) model are correctly generated minus a rescaling of
the parameter κ by a factor 1

n
. The only problem in the simulation of the model is

constituted by this effective rescaling. Comparing the results of the two method’s
application, we have observed that none of the properties of the dynamics of the
model is affected by the aforementioned issue. Given this absence of any further
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Figure 5.8: O(n = 10) McFadden result’s approach. We refer to figure 5.7 for a
detailed description.

impact on the simulation of the noise traders with respect to this acceptable point
(it is just a matter of remembering that the critical point is effectively rescaled
to be always located at κc = 2 for any n), and pushed by the effectiveness of the
algorithm from the point of view of both computational efficiency and realistic time
series, we decide to rely on it for the following application of the market model.

We stress again that the resulting time series are not affected by the aforemen-
tioned problem, we just have to keep in mind this discussion.

As a final representation of the critical value’s rescaling problem, we present the
visualization of the actual dynamics of the noise traders’ decisions. In particular, in
figures 5.9, 5.10, and 5.11, we present all the one thousand noise traders’ investment
choices for the trading days 0, 2 and 6 respectively, taken from a simulation of
O(n = 3) model with a constant kappa value κ = 2.5 above the actual critical
point, but below the theoretically expected one. We observe indeed that the noise
traders class polarizes as the days pass, as remarked by the increasing norm of
the mean spin vector. For the simulation of the O(n = 3) model simulation with
a constant kappa value κ = 1.5 below the actual critical point, the behavior is
the opposite. As presented in figures 5.12, 5.13, and 5.14, as the days pass, the
idiosyncratic opinion tends to dominate the class more and more and hence the
norm of the mean spin vector decreases.

This is again a representation of the effectiveness of the algorithm to simulate
correctly the phase transition yet at a rescaled critical point κc = 2.
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Figure 5.9: Trading day 0 of the dynamics of the O(n = 3) noise traders class
with a constant kappa value κ = 2.5. The class starts from a partially ordered
configuration set by the initial conditions.

Figure 5.10: Trading day 2 of the dynamics of the O(n = 3) noise traders class
with a constant kappa value κ = 2.5. The class starts to polarize even more towards
a specific shared opinion.

5.3 The stylized facts of the financial markets
To fully understand the financial markets, it is crucial to embrace the fact that the
world economy is a constantly evolving multi-agent complex system, that can be
studied using the tools of complex systems theory. The complex systems theory
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Figure 5.11: Trading day 6 of the dynamics of the O(n = 3) noise traders class
with a constant kappa value κ = 2.5. The class now is rather dominated by a
common investment preference represented by the growing mean spin vector in
magenta.

Figure 5.12: Trading day 0 of the dynamics of the O(n = 3) noise traders class
with a constant kappa value κ = 1.5. The class starts from a partially ordered
configuration set by the initial conditions.

can constitute the theoretical framework to explain the presence of ubiquitous
statistical properties in the financial time series independent of the details of the
series itself.

These emerging empirical properties have been observed across a wide range of
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Figure 5.13: Trading day 2 of the dynamics of the O(n = 3) noise traders class
with a constant kappa value κ = 1.5. The class starts to randomize, the mean spin
vector’s norm decreases.

Figure 5.14: Trading day 6 of the dynamics of the O(n = 3) noise traders class
with a constant kappa value κ = 1.5. The idiosyncratic opinion is now dominating
the class.

instruments, markets, and time periods and they constitute the so-called stylized
facts of the financial markets.

To test the validity of the time series generated by the simulation of our model,
it is important to check if the model can reproduce some of these stylized facts.

Here we focus in particular on two of them, the fat-tailedness of assets’ absolute
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returns and the long memory in the autocorrelation of the same quantities. We
focus in particular on the simulations characterized by an Ornstein-Uhlenbeck
kappa process to test the two stylized facts. We do that since we know that the
simulations characterized by an Ornstein-Uhlenbeck κt can produce clear bubbles
at odds with the constant kappa one.

We want to remark again on this point because it will be important also in the
next section. The discussion on the mechanism generating the bubble in the original
model, presented in section 2.6, directly applies also in the case of the O(n) model.
Indeed, as we have already commented, despite their differences, all the models
presented, and hence the O(n) one too, share the same underlying mechanism
triggering and generating the bubbles. When the time-varying herding propensity
parameter exceeds a certain model-dependent critical threshold, the noise traders
class undergoes an actual phase transition from the disordered state dominated
by the idiosyncratic opinion to the ordered state where the class polarizes towards
specific investment preferences. This interaction-driven collective behavior leads to
the emergence of the highly non-trivial phenomena which we identify as bubbles.

5.3.1 The fat-tailedness of absolute returns
In this section, we compare the decay of the distribution of assets’ absolute returns
resulting from the simulation of the O(n) model to the observed leptokurtic behavior
of their empirical counterparts [7], [8]. This leptokurtic trait can be understood
from the point of view of extreme value theory. Indeed, the empirical distribution
of absolute returns has fatter tails with respect to the Gaussian distribution. This
means that rare events, represented by remarkably high or low returns (trading
days characterized by booms or crashes), happen more frequently with respect
to what the standard Normal distribution would predict. The relatively frequent
presence of bubbles and crashes represents one distinctive feature of the financial
markets.

The empirical fat-tail decay of the distribution

p(x) ∼ x−1−α (5.17)

is characterized by an exponent α in the range [2,4]. As shown in figure 5.15, the
fitted parameter from the simulated time series falls in this range of values.

5.3.2 The long memory in the autocorrelation of absolute
returns

The daily returns are not independent random variables. In the financial markets
periods of tranquility alternate to periods of high volatility. A common observation
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Figure 5.15: Log-log plot of the complementary cumulative distribution functions
of the returns of the four risky assets from a simulation of the O(n = 4) model, with
Ornstein-Uhlenbeck process with mean reversion level µk = 0.98 · 2. The exponent
is found fitting data from the last 20th percentile of the cumulative distribution,
disregarding the largest ten values.

characterizing the financial time series is the concentration of high price’s exuberance
in definite time windows [7], [8].

This clustering phenomenon goes under the name of volatility clustering. Its
presence can be analyzed by looking for patterns in the time evolution of the market.
An effective tool to accomplish this task is constituted by the autocorrelation
function. Indeed, the presence of long memory in the autocorrelation function
is an indication of time inhomogeneity in the time distribution of the returns,
characteristic of the volatility clustering phenomenon. The signed returns

þrp,t =
A

P1,t

P1,t−1
− 1, . . . ,

Pn,t

Pn,t−1
− 1

B
. (5.18)

are empirically characterized by a fast-decaying autocorrelation, while the absolute
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returns |þrp,t| have instead an autocorrelation with longer memory. In figure 5.16 we
check if the ABM with O(n) model is able to reproduce this empirical fact. Indeed,
the emerging autocorrelation functions show exactly this behavior.

0
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ACF for risky asset 0

signed returns
absolute returns

0

1
ACF for risky asset 1

signed returns
absolute returns

0

1
ACF for risky asset 2

signed returns
absolute returns
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1
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signed returns
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Figure 5.16: Autocorrelation function of signed and absolute returns of the four
risky assets from a simulation of the O(n = 4) model, with Ornstein-Uhlenbeck
process with mean reversion level µk = 0.98 · 2. The autocorrelation functions are
computed for the data after the 500th trading day in order to exclude possible
misleading contributions due to the initial conditions.

5.4 The time synchronization of bubbles among
different risky assets

In this section, we move to the application of the extended market model endowed
with the O(n) noise traders class to investigate interesting financial phenomena. In
particular, here we are interested in analyzing the synchronous or asynchronous
character of the emergence of the bubbles.
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Will the assets develop faster-than-exponential growths in their prices at the
same time or will the market be dominated by alternating picks in different risky
assets? There exists a correlation in the prices time series between different risky
assets? If it will be the case, would such a correlation be positive or negative? And
still, if it is present, can we understand the mechanisms generating this endogenous
correlation?

After an extensive analysis of the resulting time series and a comprehensive
testing process of different speculations about the phenomena governing the time
dependence between the bubbles, we can come up with a hypothesis, that in the
following we will support bringing evidence in favor of it.

We hypothesize the existence of three regimes characterizing the time synchro-
nization of the bubbles. The three regimes depend on the value of the herding
propensity κt.
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Figure 5.17: The figure presents the time series from an Ornstein-Uhlenbeck
simulation of the O(n = 4) model, characterized by a mean reversion level µk =
0.98 · 1, far below the critical value κc = 2. The systems is clearly in the disordered
regime dominated by the idiosyncratic opinion. No bubble is present.
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Figure 5.18: The figure presents the time series from an Ornstein-Uhlenbeck
simulation of the O(n = 4) model, characterized by a mean reversion level µk =
0.98 ·2, near the critical value κc = 2. The bubbles develop asynchronously, through
an analogous process to the one described in subsection 2.6.

In particular, the first regime corresponds to small values of κt far from the critical
value κc. In this first regime, the market model does not produce super-exponential
bubbles, since the noise traders class is in the disordered phase dominated by the
idiosyncratic opinion. This is true for both constant and Ornstein-Uhlenbeck kappa
processes, provided that the latter moves stochastically in a range of values far
from the critical point.

The second regime corresponds to values of the herding propensity near the
critical one κt ≈ κc. In this regime we observe the emergence of clear bubbles if the
simulation is characterized by an Ornstein-Uhlenbeck kappa process, stochastically
fluctuating near the critical threshold. The bubbles originating through this
mechanism, analogous to the original model’s one, are asynchronous among the
different risky assets. The lack of time synchronization is confirmed by the small
values of the correlations among the stocks. The prices time series follow almost
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Figure 5.19: The figure presents the time series from an Ornstein-Uhlenbeck
simulation of the O(n = 4) model, characterized by a mean reversion level µk = 0.98·
20, far above the critical value κc = 2. The noise traders class is completely polarized.
Remarkably, several synchronous bubbles are identifiable. The mechanism triggering
their emergence is fundamentally different from the one studied for the other bubbles
until now and is discussed in subsection 5.4.1.

uncorrelated time evolutions. We further observe that in this regime the emergence
of the bubbles is mainly governed by the social imitation attitude of the noise
traders.

The third and last regime is instead characterized by a large value of the herding
propensity, far above κc. The noise traders class is deeply inside the ordered
phase, being dominated by a common investment’s preference. This regime was not
considered in the original model discussion. First of all, remarkably, also this regime
presents bubbles in the prices. We have to understand the phenomena taking place
at these large values of herding propensity, indeed the bubbles characterizing these
values are of an intrinsically different nature with respect to the bubbles studied
until now. The discussion of this delicate point will be presented in the following
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subsection 5.4.1. From the point of view of the correlation among the assets,
this regime presents a remarkably different situation with respect to the second
one. Indeed, we observe synchronous bubbles mainly driven by the trend-following
attitude of the traders.

Moreover, the trend that emerges from this analysis is that the synchronization of
bubbles increases with the increasing of the range of value of the herding propensity
parameter κt.

In figures 5.17, 5.18, and 5.19, we present respectively the three regimes. The
qualitatively and quantitatively different behavior between their time series is
evident.

We start from the first regime, for which the analysis is straightforward. Indeed,
as appears in figure 5.17, the prices do not present bubbles. The noise traders class
is deeply in the disordered phase dominated by the idiosyncratic opinion, hence
there is simply no polarization phenomenon triggering the emergence of collective
phenomena capable of resulting in super-exponential-growth of the prices.

We then move to the analysis of the second regime. Here we have the clear
presence of bubbles in the different assets. As we have commented, the mechanism
triggering their emergence is analogous to the original model’s one presented in
section 2.6. The appearance of super-exponential-growths in the prices time series
is asynchronous. We can understand this fact resorting to Statistical Physics.
Indeed, the underlying O(n) model introduces no correlation among the different
components of the spin vector. The dynamics of each of this component evolves
in a statistically uncorrelated way with respect to the others, hence we expect
that the noise traders’ strategy does not introduce any correlation among the asset
prices.

We can further analyze this point looking at the realized correlations among
the different risky assets’ prices. In figure 5.20, we present the realized correlations
between the prices coming from the time series of the simulation already presented
in figure 5.18. We observe small but not negligible positive correlations. This is not
due to the traders’ strategies, instead, it is ultimately connected to the constant
exponential growth characterizing the prices and the whole market model. This
constant exponential growth is generated by the constant growth of the dividends
processes. Hence, to focus on the analysis of the correlations coming from the
traders’ strategies we have to subtract this effect from the prices time series.

Doing that, in figure 5.21 we observe vanishing values for the correlations,
confirming the asynchronous character of the bubbles. Neither the fundamentalists’
strategy nor the noise traders’ one introduces correlation among the asset.

In the case of the fundamentalists, this is clear from the equation governing
their portfolio allocation strategy (3.15) and from the fact that in these simulations
we always assume that no correlation is expected between the risky asset by this
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Figure 5.20: Realized prices’ correlations from an Ornstein-Uhlenbeck simulation
of the O(n = 4) model, characterized by a mean reversion level µk = 0.98 · 2, near
the critical value κc = 2. Their small but not negligible positive values are due
to the constant exponential growth characterizing the prices, deriving from the
constant growth factor present in the dividend processes. In figure 5.21 we subtract
the impact of this constant growth.

type of agents

Cf =


1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

 (5.19)

Clearly, non-zero values in this matrix would introduce some correlation in the
prices. Studying the impact of the expected correlations by the fundamentalists
on the realized correlations constitutes an interesting further direction of analysis.
Nevertheless, here we are mainly interested in the correlations introduced by the
noise traders, hence we always set to zero the non-diagonal elements of matrix
(5.19). For the latter agents, we know that the O(n) model does not introduce
correlation among different components of the spin vector, hence the vanishing
values in figure 5.21 are explained.

Finally, in the following subsection, we move to the analysis of the third regime
characterized by large values of κt, far above κc.
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Figure 5.21: Realized prices’ correlations as in figure 5.20, yet this time we
subtract the constant exponential growth from the prices in order to focus on
the correlations emerging from the traders’ strategies. As expected the values are
vanishing, confirming the asynchronous character of the bubbles. The O(n) model
does not introduce correlation in the prices.

5.4.1 The supercritical herding propensity regime: Mexi-
can hat potential and synchronous bubbles

In this subsection we deepen the analysis of the supercritical herding propensity
regime, trying to gain theoretical insights into the phenomena taking place. This
regime, in which the noise traders class is deep inside the ordered phase polarized
towards a common investment preference, was not considered in the previous works
on the original model.

We have anticipated that remarkably also this regime is characterized by the
emergence of super-exponential bubbles, nevertheless, we will show that these
bubbles are of an intrinsically different nature with respect to the ones studied
until now in the present work and the other works on this model.

We have presented in figure 5.19, the time series from a setup with an Ornstein-
Uhlenbeck κt wandering around a mean reversion level µk = 0.98 · 20, deeply inside
the ordered supercritical phase. An important point is that the phenomena we are
going to analyze in this regime do not depend on the nature of the kappa process.
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Figure 5.22: Realized prices’ correlations from an Ornstein-Uhlenbeck simulation
of the O(n = 4) model, characterized by a mean reversion level µk = 0.98 · 20, far
above the critical value κc = 2. At odds with the critical regime’s case, we observe
relatively large positive correlations.

Indeed, both constant kappa and Ornstein-Uhlenbeck one lead to the same
situation, provided κ, being time-varying or not, is always deep inside the ordered
phase. At odds with the critical regime with κt ≈ κc, the time-varying nature of
the herding propensity is no more important being only the supercritical nature of
noise traders class the very element governing this regime.

We start presenting the realized correlations of the prices from the time series
in figure 5.19. In figure 5.22 we present the full correlations, while in figure 5.23
the ones resulting from the subtraction of the constant exponential growth from
the price. The correlations are always relatively large and positive, even discarding
the fictitious positive correlation introduced by the constant trend. The situation
is fundamentally different from the second regime’s. The bubbles are indeed
synchronous and the positive correlations quantify this behavior.

At this point, we have to tackle the two unknown points. First, what is the
mechanism governing this type of bubbles since we know that the explanation
formulated for the bubbles near criticality does no longer apply? Second, can we
understand how this mechanism introduces the time synchronization feature in the
emergence of the bubbles?
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Figure 5.23: Realized prices’ correlations as in figure 5.20, yet this time we
subtract the constant exponential growth from the prices in order to focus on the
correlations emerging from the traders’ strategies. Remarkably, the correlations
values are relatively large and positive. This quantifies the synchronous character
of the emergence of the bubbles in the supercritical regime.

The bubbles’ triggering mechanism in the supercritical regime

To answer the first question we resort again to Statistical Physics. We have to
understand how it is possible the presence of the super-exponential-growths in
the supercritical region far from the phase transition. The answer will be that
these bubbles are triggered by the finite response of the system to an infinitesimal
field applied in a perpendicular direction to the magnetization. In other words,
small changes in the external field of price momenta trigger a collective response of
the noise traders class. Even if we are far from the phase transition, the system
behaves like at criticality with respect to fluctuations parallel to the valley of
minima characterizing the system’s potential.

Indeed, the supercritical O(n) model is characterized by the Mexican hat po-
tential, well-known in Statistical Physics and represented, in the viewable case of
n = 3, in figure 5.24.

The continuous phase transition from disorder to order of the O(n) model
is characterized by the smooth deformation of the paraboloid, constituting the
subcritical potential of the system, into the Mexican hat. The single minimum
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Figure 5.24: Mexican hat potential of the supercritical O(n = 3) model.

located in the origin for the paraboloid, transform into a degenerate valley of
minima in the supercritical case. This phase transition is the underlying mechanism
triggering and governing the bubbles in the second regime.

In the supercritical regime, the situation is different and it is the very presence
of the degenerate valley of minima to govern the bubbles. Indeed, even if we are
inside the ordered phase far from the critical point, the system is characterized
by a diverging susceptibility in the directions perpendicular to the magnetization,
defining the valley. The noise traders class reacts with a collective behavior in
response to small changes in the external field of price momenta. The price momenta
can tilt the common investments’ preferences of the class at the “macro” level.

This emerging collective behavior governed by the price momenta is ultimately
the mechanism governing the super-exponential bubbles in this regime. Now we
can understand why we stated that in the critical regime the bubbles are governed
by the social imitation attitude, while in the supercritical one they are dominated
by the trend-following attitude. In the first case, it is the transition to the ordered
phase generating the bubbles, in the second instead the class is already polarized
and it is the tilting effect of the external field to drive them. Indeed, these are
fundamentally different mechanisms. We now move to the second question, why
are the resulting bubbles synchronous?

The supercritical bubbles’ synchronization

In the last subsection, we have understood the mechanism underlying the emergence
of the bubbles in the supercritical regime. Nevertheless, the synchronous character
of their appearance is unexpected.

Indeed, on one hand, we know that the fundamentalists’ strategy cannot intro-
duce correlation among the prices since the expected correlations are set to zero
and hence the system (3.15) defining their allocation strategy is constituted by in-
dependent equations for the different risky fractions. Moreover, we again explicitly
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Figure 5.25: Time series from an Ornstein-Uhlenbeck simulation of the O(n = 4)
model, characterized by a mean reversion level µk = 0.98 · 20, far above the critical
value κc = 2. A clear pattern emerges in the prices time series. A first bubble in
an asset, cascades into synchronous bubbles in all the other assets.

state for clarity that as assumed throughout the present work no correlation has
been introduced between the dividends processes.

Furthermore, we know from Statistical Physics that the components of the spin
vector are uncorrelated, hence neither the noise traders’ strategy can introduce
correlation among the prices. Then, where does the correlation come from?

There is only one component of the model we have not considered, the price
equations. Indeed, the price equations are a set of non-linear coupled equations
for the prices. The correlation can only come from the coupled character of
these equations. Yet, the complex structure of the non-linear system makes an
analytical study of the correlation introduced by the coupling between the equations
unfeasible.

Nonetheless, after a deep analysis of the time series, we find that the large κt

regime can give us a clue to understanding the origin of the positive correlation.
Indeed, for large values of the herding propensity, a clear pattern emerges in the
time series, as represented in figure 5.25.

The first bubble stochastically develops in one asset. Its price starts to grow
super-exponentially. Then on average the investors, both fundamentalist and noise,
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get richer. Since their strategy leads to a different response to the bubble event,
their increase in wealth is different. The noise traders push by the social imitation
and trend following attitudes invest more on the asset undergoing the bubble the
more its price rises. The fundamentalist instead decreases their exposition on
the asset the more its price rises, following their risk-averse strategy. Hence is
understandable how the noise traders get richer with respect to the fundamentalist
investors during the bubbles. Nevertheless, both the investors get richer when a
bubbles develops as we can see in figures 5.26 and 5.27, showing the traders’ wealth
dynamics characterizing the simulation in figure 5.25.

Figure 5.26: Fundamentalist traders’ wealth dynamics characterizing the simula-
tion in figure 5.25.

Figure 5.27: Noise traders’ wealth dynamics characterizing the simulation in
figure 5.25.
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Since the traders’ wealth increases, in order for the Walresian equilibrium to be
still satisfied, the other assets’ prices must grow. This is evident from the market
clearing condition characterizing the Walresian equilibrium

∆Df,k
t−1→t + ∆Dn,k

t−1→t = 0 ∀k (5.20)

where ∆Df,k
t−1→t and Dn,k

t−1→t represent respectively the aggregate excess demands
of risky asset k for each group. Expressing the equation in a more explicit form

W f
t xf

k,t − W f
t−1x

f
k,t−1

Pk,t

Pk,t−1
+ W n

t xn
k,t − W n

t−1x
n
k,t−1

Pk,t

Pk,t−1
= 0 (5.21)

and assuming constant all the quantities not dependent on the other assets prices,
in particular on the one undergoing the bubble, we observe that the effect of the
bubble of a specific asset on the other assets price equations, is represented by an
increase of both the wealth of the fundamentalist and noise traders.

The only effect of a bubble of asset i /= k on the price equation 5.21 of any other
asset k emerging from this differential analysis is an increase of the quantities W f

t

and W n
t . The only way in which the equilibrium equation could be still satisfied is

that the price Pk,t is larger than the previous time-step’s one Pk,t−1. We have indeed
proved that an increase in one price triggers a positively correlated increase in all
the other prices. If the increase is strong enough to have a relevant impact on the
price momenta associated to the other asset, as in the case of a super-exponential
bubble, the increase of the price momenta triggers the emergence of synchronous
bubbles in all the other risky assets, through the tilting mechanism explained
before.

Since the investment strategies of both the classes of traders do not depend on
the magnitude of their total wealth but only on the characteristic of the assets,
the increase of wealth from which the traders benefit during the super-exponential
growth of a bubble, cascades in the synchronous emerging of bubbles in all the
risky assets market.

Ultimately, this explains the pattern in figures 5.19 and 5.25, and constitutes
the mechanism at the origin of the positive correlation among the risky assets.

5.5 The limit towards the Capital Asset Pricing
Model

We conclude the Chapter and with it, the work, comparing in this section the
dynamics of the returns generated by the extended ABM endowed with the O(n)
noise traders class to the ones predicted by the Capital Asset Pricing Model
(CAPM). The analysis will be shorter with respect to the wide discussion on the
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topic of the synchronization of the bubbles, nevertheless, it worths presenting a
comparison of our model results to the classical CAPM extensively studied and used
in the modern financial theory. Moreover, the introductory study here presented
can constitute a first starting point for a further direction of analysis of the market
model.

The Capital Asset Pricing Model is one of the pillars of the modern Portfolio
Theory. It was introduced in the mid-1960s by economists Sharpe, Lintner, and
Treynor in [55] as a model to price the risk associated with assets present in a
portfolio. Despite more recent models have been proposed that better work with
respect to the CAPM, the latter still represents the reference model in the portfolio’s
optimization due to its simplicity and intuitive understanding.

The risk of the stock market originates from the uncertainty in its evolution.
The standard measure of this risk is the variance characterizing the stochastic
nature of the assets’ price and returns. From finance theory, we know that the risk
permeating the stock market can be understood as composed of two parts. The first
represents the specific risk of a single stock and it is called diversifiable risk. Indeed,
it can be reduced or even eliminated by constructing a well-diversified portfolio.
The second instead is the market risk, the risk component coming from the intrinsic
uncertainty of the stock market in its entirety. This is the risk remaining in a
portfolio when it reaches the limit of full diversification, i.e. it represents itself the
full market.

In Portfolio Theory a measure of the risk associated with a specific stock entering
a fully-diversified portfolio has been formulated, it is commonly referred to as β.
The β of a specific stock represents the sensitivity of that stock to the market
changes. From a statistical point of view, it is readily identifiable as the ratio of
the covariance between the stock returns and the market returns divided by the
variance of the market returns

βi = σi,m

σ2
m

(5.22)

Its range of values falls in the interval [−1,1]. A zero value of β represents a
stock perfectly uncorrelated with the market and hence not sensitive at all to the
market’s movements, The situation of β = 1 represents instead a stock moving
exactly together with the market.

The fundamental principle on which the CAPM is built is that the investors
search for high expected returns and low risk, i.e. low variance. This is also the
foundation of modern Portfolio Theory, the best portfolios, commonly known as
efficient portfolios, are the ones which offer the maximum expected return for a
given level of risk, measured by the variance or standard deviation.

An increased risk has to be paid by higher expected returns. The risk has
a price and the investors do not take risk for free. The Capital Asset Pricing
Model quantifies this qualitative principle. The model boils down to a simple single
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formula
E[ri] − rf = βi(E[rm] − rf ), (5.23)

where E[ri] is the expected return of stock i, rf is the risk-free rate and E[rm] is the
expected return of the market. The mathematical structure of the model is clear, we
are in presence of a linear model. From the financial point of view, understanding
is likewise explicit. The expected risk premium of the stock E[ri] − rf , i.e. the
reward from the point of view of the expected return to take the extra risk with
respect to the risk-free landmark, is linearly dependent on the risk premium of the
market E[rm] − rf through the coefficient βi. The model is as simple as powerful
since it embodies in a simple linear relation the risk-return trade-off characterizing
the investment decision process.

In this section, we are interested in the comparison of the realized returns
generated by the simulation of our market models to the one predicted by the
CAPM. In particular, our question is whether the dynamics of our market model
would converge to the market obeying the CAPM and under which condition.

The topic is vast and the possible directions of analysis manifold. Here we
focus in particular on finding the correct definition of the limit under which we
can observe the convergence of our market’s dynamics to the one predicted by the
CAPM and then test if the convergence is present.

First, we have to compute the quantities entering formula (5.23) from our time
series. The risk-free rate is readily identified with the one introduced in our model.
The expected rate of return of a stock E[ri] corresponds in our model to the
historical average of the returns of a specific risky asset, over a time window that we
will define. The expected rate of return of the market E[rm] is defined analogously,
we just need to identify the market return rm. In our model, the market return rm

simply corresponds to the arithmetic average of the returns of all the risky assets
for that trading day. Finally, the βi can be computed through their definition
(5.22), where the variance of the the market returns is simply equal to the historical
variance of the stochastic process rm, σ2

m = Var(rm), and the covariance σi,m, is the
historical covariance between the stochastic processes ri and rm, σi,m = Cov(ri, rm).

Having defined the quantities entering the CAPM formula, we can move to the
analysis of the limit procedure we could implement. The solution is found in the
definition of the strategies of the two classes of traders. While the noise traders
follow their social imitation and trend following attitudes, the fundamentalist
traders implement a rational risk-averse strategy. Moreover, we have already
commented in section 2.2 and 3.2 how the investment allocation equation for this
type of agent is dominated by the risk-return trade-off. Analyzing that equation
and its derivation it is clear that is indeed the fundamentalist traders class to follow
the principle at the foundation of the CAPM, i.e. that the investors search for high
expected returns and low risk.
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Indeed, what we expect is that the more the fundamentalist rational strategy of
this type of agent is important with respect to the irrational component represented
by the noise traders, the more the resulting dynamics of the market will adhere to
the one predicted by the CAPM.

Following this reasoning, we implement a limit procedure with respect to the
initial wealth of noise traders. We expect that the more the relative importance of
noise trader, represented by their initial wealth, with respect to the fundamentalist
ones is small, the more the prediction of the CAPM will be correct.

In the limit of the initial wealth’s value of the noise traders going to zero, the
prediction of the CAPM should become exact with respect to the actual dynamics
generated by our simulation.

In figures 5.28, 5.29, 5.30, 5.31, and 5.32, we present exactly this limit. The
simulations are obtained from the implementation of the O(n = 4) version of the
ABM characterized by Ornstein-Uhlenbeck kappa process with with mean reversion
level µk = 0.98 · 2.

500 1000 1500 2000 2500 3000 3500
time steps

0

2

4

6

8

10

12
Relative error of the CAPM prediction (Wn

0 = 109)

Figure 5.28: Relative error of the CAPM prediction defined as the average (over
the four risky assets) relative difference between the realized annual return and the
annual return predicted by the CAPM, fitted on the previous two years returns.
Each point of the graph refers to the annual return of the year starting at that time-
step. The CAPM fitting is done on the previous 500 time-steps. In particular, in
this figure, we report the result for an initial wealth of the noise traders W n

0 = 109.

The figures present the relative error of the CAPM prediction defined as the
average (over the four risky assets) relative difference between the realized annual
return and the annual return predicted by the CAPM, fitted on the previous two
years returns. The initial wealth of the noise traders is decreased along the figures
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Figure 5.29: Relative error of the CAPM prediction with W n
0 = 108. We refer to

figure 5.28 for a detailed description.
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Figure 5.30: Relative error of the CAPM prediction with W n
0 = 106. We refer to

figure 5.28 for a detailed description.

from a value of W n
0 = 109, equal to the fundamentalist wealth W f

0 = 109 that
instead remains fixed across the figures, to a value of W n

0 = 102, negligible with
respect to the fundamentalist’s one.

From the comparison of the figures, it emerges that the convergence of our model
dynamics to the one predicted by the CAPM is indeed present in the limit of the
initial wealth of the noise traders going to zero. Indeed, the range of values of the
relative errors of the CAPM prediction substantially decreases with the decreasing
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Figure 5.31: Relative error of the CAPM prediction with W n
0 = 104. We refer to

figure 5.28 for a detailed description.
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Figure 5.32: Relative error of the CAPM prediction with W n
0 = 102. We refer to

figure 5.28 for a detailed description.

of W n
0 .

For completeness, we also report the plots of the realized annual return together
with the annual return predicted by the CAPM for two of the above situations,
in particular in figure 5.33 we present the W n

0 = 106 case and in figure 5.34 the
W n

0 = 109 case.
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Figure 5.33: Time series of the realized annual return and the annual return
predicted by the CAPM, in the case of W n

0 = 109.
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Figure 5.34: Time series of the realized annual return and the annual return
predicted by the CAPM, in the case of W n

0 = 106.
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Chapter 6

Conclusion

The goal of the present work has been to introduce a multi-risky-asset extension of
the ABM first introduced by Kaizoji et al. [13] which is able to reproduce faster-
than-exponential bubbles growth together with “stylized facts” of the financial
market.

We dedicated Chapter 2 to review the original setup, composed of a risk-free asset,
representing a zero-coupon government bond yielding a constant rate of return,
and a risky asset, representing a stock paying a dividend to its holders. We then
reviewed the other components of the model: the fundamentalist traders, rational
risk-averse traders, and the noise traders guided instead by social imitation and
trend following, and the price dynamics generated imposing the market clearing
conditions according to Walras’ theory of general equilibrium. We have also
expanded the previous analysis on the model, deepening the profound connection
between the noise traders class and the Ising model and discussing two features of
the original transition rates which appear to be fundamental in characterizing the
realistic dynamics of the bubbles.

We then moved towards the multi-asset extension of the market model discussing
in Chapter 3 the presence of multiple risky investments and detailing the general-
ization of the fundamentalist traders’ solution to the rational optimization problem
characterizing their CRRA utility maximization. We then tackled the solution of
the complex non-linear system characterizing the extended price equations through
numerical techniques. At the end of the Chapter, we discussed the noise traders’
generalization puzzle, introducing the Statistical Physics approach we have applied.

We discussed the crucial modelization point of the present work. Indeed,
modeling the noise traders class boils down to defining a stochastic dynamics for
their investment’ decisions. Such a stochastic dynamics is completely specified by
a discrete-time Markov chain, defined by the possible states, the assets in this case,
and the transition rates among them. The central problem was indeed constructing
well-chosen transition probabilities that govern the dynamics of our microscopic

167



Conclusion

agent, the noise trader.
We had complete freedom in defining the stochastic dynamics which best modeled

the system under analysis. Yet, we have commented that this freedom could have
been a double-edged sword, indeed the resulting lack of solid theoretical results
regarding the emerging statistical properties could have represented an important
problem in modeling a complex system such as a financial market.

For this reason, we decided to start by modeling the statistical property of the
noise traders class and then derive from them the stochastic dynamics governing
the time evolution of the investment decisions.

Fortunately, we found a strong ally to accomplish this task: Statistical Physics.
Indeed, Statistical Physics has a history of success in modeling systems with a
large number of components (in this case the traders) whose collective interactions
lead to the emergence of highly non-trivial collective phenomena (in this case the
bubbles). A huge amount of work has been done in the field of Statistical Physics
to tackle the problem of simulating the stochastic dynamics of a system with
specified statistical properties and extremely powerful tools have been developed.
We extensively made use of them.

We used the powerful tool constituted by the Markov Chain Monte Carlo
(MCMC) theory together with the detailed balance condition to define realistic
stochastic dynamics while having complete control of the resulting statistical
properties.

This Statistical Physics approach has been implemented in Chapter 4, where we
have presented four statistical models, a Potts model, an O(n) model, a vectorial
extension of the BEG model, and an n-state extension of the BEG model and
for each of them we derived the characterizing stochastic dynamics through the
aforementioned method.

Despite their differences, we commented on how all the models share the same
underlying mechanism triggering and generating the bubbles. When the herding
propensity parameter exceeds a certain model-dependent critical threshold, the
noise traders’ class undergoes an actual phase transition from the disordered state
dominated by the idiosyncratic opinion to the ordered state where the class polarizes
towards specific investment preferences. This interaction-driven collective behavior
leads to the emergence of highly non-trivial phenomena, the bubbles. This is a
typical feature of complex multi-agent systems.

Then for each model, we have deeply discussed its strengths and weaknesses.
We really tried to present in this Chapter the largest analysis possible regarding
the Ising-like modeling of the noise traders class, we did our best to construct a
collection of useful suggestions, warnings, possible dangers, and fruitful directions
for anyone who would face the problem to model the social imitation and trend
following attitudes in a multi-asset framework. In particular, we focused on
both the theoretical aspects of the derivation of the simulation’s method and its
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implementation’s side. We underlined the good results but also the big problems
faced, some of them not yet completely solved.

Finally, in Chapter 5 we moved to the comparison of the effectiveness of the
various setups in modeling a real financial market. We decided to use for the
application part the ABM with the O(n) model for the noise traders’ class. We
focused on it due to both the validity of the resulting price time series and to the
high controllability of its behavior, connected to solid theoretical results on the
model itself and the intuitive meaning of its parameters.

We first checked the model’s ability to reproduce the “stylized facts” of financial
markets, in particular, focusing on the hyperbolic decay of the autocorrelation
function of the absolute returns in contrast to the exponential decay of the au-
tocorrelation of the signed returns, together with the fat-tailed behavior of the
distribution of the returns. We happily found that the model was indeed able to
reproduce them. Then the analysis has been carried out in two main directions.
First, the extended ABM has been applied to understand the mechanism behind
the time synchronization of bubbles among the assets. The interesting analysis
emerging showed the importance of the herding propensity parameter in governing
the synchronous or asynchronous character of the bubbles. The second direction
instead dealt with the comparison of the dynamics of the resulting returns to
the one predicted by the Capital Asset Pricing Model (CAPM), we showed how
the dynamics of our model converge to the one predicted by the CAPM in the
limit of the negligible relative importance of the noise traders with respect to the
fundamentalist ones.

The research on the extended market model is far from being over and complete.
The possible further directions of analysis are manifold and in our opinion extremely
interesting. Here we just mention some of them.

The dividends dynamics modelization can be expanded and made more realistic,
in particular, through the covariance matrix of the dividends processes, the effect
of the correlations among the assets coming from the real economy on the realized
financial correlations can be studied.

The extremely challenging analysis of the possibility to construct stochastic
dynamics for the noise traders through the more general global balance rule instead
of the more restrictive detailed balance one could be tackled. The theoretical
discussion on the relationships between detailed balance and global balance is
extremely wide and in our opinion represents one of the most interesting and
challenging aspects of modern Statistical Physics theory. Its application in financial
modeling constitutes a frontier research topic. For a great discussion on it, we refer
to Bouchaud [43].

A further analysis that could be done is the study of the rich physical picture
which emerges considering also negative value for the kappa process, i.e. contrarian
noise traders. For it we refer to the last part of section 4.1 on the Potts model and
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on the captivating discussion in Ostilli and Mukhamedov [51].
In our opinion, one of the most appealing further directions of analysis is

doubtless constituted by a deeper study of the n-state BEG model, presented in
section 4.5. In particular regarding the possibility to introduce a notion of risk
aversion for the noise traders and to work with the extremely rich physical picture
emerging from the phase diagram of the model, characterized by phase transitions
of a different order and an intriguing tricritical point.

Finally, on the application side, the interesting results concerning the Mexican
hat picture presented in section 5.4 could be explored in a wider manner as well as
the topic of the limit towards the CAPM.

We truly hope this work could be a reference and a starting point for further
direction of analysis on this rich and effective Agent-Based Model.
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