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Summary

In condensed matter and molecules, light nuclei, mainly hydrogen, exhibit the so
called Nuclear Quantum Effects (NQEs), such as zero-point energy motion and
tunneling, due to their intrinsic quantum delocalization. NQEs can have a large
impact on the structure and the dynamics of materials. Any approximated method
that treats light nuclei as classical objects cannot reproduce correctly predict their
quantum behaviour. Real applications of this problem are, for example, solid fuel
cells, which are relevant for energy harvesting.

The most used approach to study the NQEs is the Feynman Path Integral (PI)
formalism, which conserves the concept of trajectories in the quantum picture,
hence the use of Molecular Dynamics simulation techniques, such as Ring Polymer
Molecular Dynamics. However, PI-based methods present high computational costs,
urging the development of simpler alternative techniques. A promising method is the
Quantum Thermal Bath (QTB). Its main idea is to maintain the classical equations
of motion and trajectories, but to use a generalized Langevin equation with colored
noise to mimic quantum delocalization of light nuclei. Although QTB has proven
efficient for a variety of problems, it suffers from a major drawback, namely the
Zero-Point Energy Leakage. Therefore, the method is refined into the Adaptive
Quantum Thermal Bath (adQTB), thanks to the Quantum Fluctuation-Dissipation
theorem, which allows to recover the correct quantum energy distribution during
the simulation.

This work is a comparative study of these methods on a simple model of a 2D
solid material, in which protons or hydrogen can diffuse. We have designed the
model system in a way to set various time and energy scales that are connected
to hydrogen diffusion in real materials. By using this model, we discuss classical
diffusion (used as a reference) and approximate quantum simulation methods (QTB
and adQTB). We show that nuclear quantum effects can play an important role on
diffusion and modify the rate constants substantially. Before discussing the results
of numerical simulations in Chapter 4, we present in Chapters 2 and 3 the main
methods in statistical physics that are relevant in this context.
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Chapter 1

Introduction

1.1 Nuclear Quantum Effects

Even if the laws of Quantum Mechanics are well known and formulated, many-body
quantum physics still presents a major theoretical challenge. Indeed, when it
is necessary to deal with a system of many quantum particles, it is practically
impossible to solve the Schrödinger equation for an high number of degrees of
freedom. Therefore, one first step to deal with complex quantum multi-atomic
systems is to decouple the electronic and nuclei degrees of freedom i.e. assuming
an adiabatic separation between the electronic and nuclear time scales. This is
the so-called Born-Oppenheimer approximation, which is based on the assumption
that all nuclei of a quantum system are much heavier than the electrons, so their
behaviour can be considered classical and simply Newton’s second law describes their
dynamics. Electrons are considered to be always in the ground state configuration
corresponding to a given nuclear configuration. This electronic ground state can
be approximated using a variety of methods, depending on the required accuracy
and on the computational resources available. Some approaches rely on an explicit
calculation of the ground state energy (within certain approximations, such as
the Density Functional Theory which allows to treat relatively large systems -
up to hundreds of atoms - at a limited computational cost). In other cases, the
Born Oppenheimer energy is modeled through analytical expressions, that depend
on the nuclei position and on parameters that are fitted to best reproduce the
experimental observation. Once the electronic ground state energy is determined,
the nuclei, because of their mass, are often considered as classical objects, following
Newton’s law of motion in the potential energy landscape given by the Born
Oppenheimer approximation. This classical representation of the atomic nuclei
allows to dramatically simplify the calculations and it provides good results for
heavy atoms. However, when light atoms are considered in the systems, classical
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framework cannot provide an exhaustive description of the microscopic phenomena.
Indeed, light nuclei present a number of purely quantum properties, known as
Nuclear Quantum Effects (NQEs).

Experimental evidences of NQEs have shown that they are present not only in
typical quantum regimes, such as at low temperature [1], or in extreme conditions,
like high pressure [2], but also surprisingly close to ambient conditions, as in the
case of reactions involving proton transfer [3] or displaying isotopic effects [4, 5].
Therefore, the understanding of NQEs and in general of quantum dynamics has
become crucial for the development of numerous applications in material science
and energy storage [6, 7].

There is no general classification of light and heavy nuclei. Therefore, in order
to have an approximate idea of the elements that could present some NQEs, it is
possible to consider the de Broglie thermal wavelength, where, kB is the Boltzmann
constant, T the temperature, m the mass of the particle and h the Planck constant

λ = h√
2πkBT

(1.1)

If de Broglie wavelength is of the order of magnitude of the characteristic length
scale of the system (lattice parameters, inter-atomic distances, mean free path ...),
the quantum nature of the nuclei cannot be neglected.

In this thesis, we consider mainly hydrogen as light nuclei and the aim is to
illustrate and study new methods that allow the simulation of its diffusion properties
in solids. Although its mass is much heavier than the electron mass (mH = 1836me)
hydrogen has a De Broglie wavelength at room temperature of the order of the Å.
For a generic solid material, we then expect that the quantum delocalization of
the hydrogen has a major impact on the properties of the system and the NQEs
cannot be neglected [8], and more particularly zero-point motion which allows the
hydrogen to diffuse even in a very low temperature regime. Tunnelling, another
typical quantum phenomena, can also influence hydrogen diffusion. In the following
paragraphs, review some examples of NQEs in real systems, in order to explain
their importance and motivate the field of research.

1.1.1 Quantum-driven phase transitions
NQEs are necessary to reproduce accurately the phase diagram of many molecular
materials, such as ferroelectric crystals like BaTiO3 [9] or even simple molecules
like water. Indeed, ice presents many exotic phases under pressure, which can be
observed for examples on planets inside [10] and outside [11] our Solar systems. In
many of these phases, NQEs play a major role in both the structural properties
and in the phase transitions [12].

2
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Let us consider an example more in details [13, 2]. Ice under pressure has a
quantum-driven phase transition between the so-called Phase VII and the Phase
X. In the former, ice has a cubic structure with disordered hydrogen bonding. As
pressure increases to 65GPa, Raman and infrared spectra show a transition towards
a more symmetric phase, namely ice Phase X. At the atomic scale, simulations
show that the distance dOO between the oxygens atoms decreases and that for
dOO Ä 2.42Å, the proton sits at mid-distance of the two oxygen atoms instead
of off-centre. This proton-centered structure shows that the difference between
covalent and hydrogen bond does not apply in this symmetrized state as in ordinary
ice.

This quantum phase transition can be modeled with a one-dimensional model,
using the position of the hydrogen x along the oxygen-oxygen distance as coordinate
and writing a potential V (x), in which the pressure P is a variable parameter. The
classical phase transition is simply given by the Landau picture [14] as

F (x; P ) = Ax4 + B(P − Pc)x2

where A and B are two parameters, the pressure plays the same role as the
temperature in typical phase transitions and x is the order parameter.

As P increases, a classical phase transition occurs when the form of the potential
passes from a double well potential to a single well, at a Pc Ä 100GPa. However,
the quantum delocalization of the proton allows the quantum phase transition
to occur before the classical one. The NQE at the base of the quantum phase
transition is the zero-point energy E0. As P increases, the barrier passes from
V (x) > E0 to values V (x) ≤ E0, shifting down the Pc from around 90-100 GPa
in classical nuclei simulations dwon to 65GPa in quantum simulations (and in
agreement with experimental measurements).

Therefore, in this example we have two main quantum effects: the tunneling
of the proton in the Phase VII and the zero-point energy in the quantum phase
transition to Phase X. Analogous quantum-driven phase transitions can be observed
in salty ice as well [5].

1.1.2 Isotope effects
Most isotope effects cannot be captured within a classical description of the nuclei.
These effects are therefore a signature of NQEs. They can have major impact on
dynamical, elastic and thermal properties in condensed matter [15]. For example,
in the case of lithium hydride (LiH) and lithium deuteride (LiD) [16], we observe
changes in the vibrational spectra due to the dependence of phonons on atomic
masses. The isotope masses has then an influence only on the optic modes, because
they depends on the reduced mass, in which the lighter atom have an important
weight. On the other hand, the acoustic modes depends in general only on the

3



Introduction

total mass, so a change from H to D does not change the phononic DOS. Moreover,
isotope effects are at the base of anharmonicity differences between LiH and LiD
and, in general, it is often an experimental hint of the presence of NQEs in the
system.

We note that the classical Equipartition theorem, which we will review in
Section 3.2, states that each degrees of freedom has a mean kinetic energy equal to
kBT/2.This is approximately valid at higher temperatures than Debye temperature,
while below it NQEs become really relevant. Furthermore, within the Born-
Oppenheimer approximation, the potential energy as well does not depend on the
mass of the nuclei. Therefore, the isotope effect cannot be explained within a
purely classical framework.

1.1.3 Proton diffusion in materials
An interesting quantum dynamics problem is that of proton or hydrogen diffusion in
solid materials [17]. Many efforts are done in this regards because proton conduction
and diffusion is at the core of the developments of hydrogen solid fuel cells [6, 7].

In general, NQEs, and particularly zero-point energy and tunneling tend to
increase the proton diffusion, particularly at low temperatures: for a classical
proton, diffusion is completely suppressed when T → 0, whereas it is not the case
for the quantum problem. In actual materials, proton and hydrogen diffusion
mechanisms can be quite complex, as for instance in hydroxides, such as brucite
[18]. These materials, under high pressure conditions, can have dramatic changes in
their geometrical structure and therefore many interesting phenomena arise, such
as proton frustration and proton diffusion. NQEs such as zero-point energy and
tunneling can then enhance the diffusion and make possible the rearrangement of
the protons.

Finally, possible applications of proton diffusion involving NQEs can be found
also in biological system, such as water wires [19], which have also promising
application in fuel cells.

1.1.4 Chemical reaction rates and hydrogen bond
The study of kinetics of chemical reactions very often involve the computation of
chemical reaction constants, which determine the direction of the reactions (from
reactants to products), and reaction rates, which quantify the speed at which
reactants are converted to products. Reaction rates depend in general on the
temperature and on the activation energy (see. in Section 2.6 Arrhenius law (2.55)
[20]).

The problem can be described as a two states system, A for the reactants
and B for the products, separated by an energy barrier, along a certain reaction
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coordinate ξ. One simple but interesting example are unimolecular dissociation
[21], which can be described as a decaying process N(t)/N(0) ∝ e−k(T )t, where N is
the concentration of reactants and k(T ) is the reaction rate. In many dissociations
reaction involving light nuclei, such as hydrogen, NQEs can play a major role in
the computation of reaction rates. Classical quantum simulations lead to different
kinetic results, in particular the difference between classical and quantum activation
energies.

1.2 The open question of Quantum Dynamics
The main fundamental problem of quantum dynamics is the impossibility of
resolution of the time-dependent Schrödinger equation for large systems, due to its
exponential scaling with the number of degrees of freedom. This is not only valid
for electrons but also for light nuclei, even if we are not interested in the exchange
and quantum coherence properties.

We have shown that NQEs of light nuclei are fundamental phenomena in a vast
amount of complex systems. Despite the fact that much progress has been done, the
computation of time-dependent properties of the nuclei, remains a very important
theoretical challenge. These dynamical properties are captured by time correlation
functions (see Section 2.3) which are of fundamental importance since they can
be probed through different experimental techniques such as infrared/Raman
spectroscopy or measurement of rate constants.

Many techniques and methods are being developed in recent years. However,
currently, these methods are all approximations and there is not a unified quantum
theory for non-static systems. Only two limit cases acan be shown to be exactly
captured by most of approximated methods: the classical (high temperature) limit
and the case of system with harmonic potential. Outside these limiting case,
precise criteria for comparing different approximate methods are lacking. The
discussion of the full extent of simulation methods to compute dynamical properties
is outside the scope of this work. Here, we will focus on trajectory-based methods
as they provide computationally efficient approximations for treating light nuclei
as quantum particle in complex environments.

1.3 Structure of the dissertation
The aim of this work is discussing in details a new quantum Molecular Dynamics
(MD) approach, called Quantum Thermal Bath (QTB) [22], which allows to simulate
NQEs in real applications. This method is inspired by classical Langevin-based
MD methods. We present also the recent refinement of QTB, namely the adaptive
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QTB (adQTB) [23], which solves one of the issues of QTB and makes it more
reliable, while cost-efficient simulation methods for NQEs in anharmonic systems.

In the first Chapter of the dissertation, we present Langevin equations in
detail and the classical theory of stochastic processes linked to this fundamental
equation. Moreover, we introduce the definitions of time-correlations functions and
the Wigner-Khinchin, which, in the context of this work, are fundamental to the
implementation of the quantum MD simulations studied in this work.

The second main chapter is dedicated to the Molecular Dynamics methods that
are relevant to the study of NQEs. In particular, the classical Langevin thermostat
is discussed in details, since it constitutes the basis for further quantum methods.
We describe the Ring-Polymer Molecular Dynamics (RPMD) method, which is one
of the main standard MD approach used for quantum systems. After the discussion
of its drawbacks, we present in full details the two alternative quantum Langevin-
based methods, namely the Quantum Thermal Bath and the Adaptive Quantum
Thermal Bath, providing both theoretical explanations and computational details

Finally, a simple model to study the diffusion of hydrogen in solids is introduced
and all results from classical and quantum simulations are discussed. A particular
attention is dedicated to spectra and diffusion coefficients, with the aim of highlight
NQEs and confront the different methods in their strength and drawbacks. Diffusion
coefficients, which characterize the hydrogen diffusion process in materials, are
computed with different techniques. The major result is the implementation of
the innovative adaptation for the QTB, which is a completely new MD technique.
Indeed, once the method is assessed and probed for simple systems, it can be
actively used as a cost-efficient method to simulate NQEs in complex systems.
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Chapter 2

Theoretical Background

In this chapter we present the basic theory and the fundamental equations that we
have used all along this master thesis work. In particular, we concentrate on the
Langevin equation: we introduce the study of Brownian motion and diffusion. Then
we demonstrate how the it is possible to study a vast range of stochastic process
with a generalized version of the Langevin equation. Then, we will introduce the
study of time-correlation functions, which they will be the main tool to study the
diffusion as a dinamical phenomena. The main references are [24, 25, 26, 27].

2.1 Langevin equation

2.1.1 Brownian motion
The Langevin equation was introduced for the first time by the French physicist
Paul Langevin [28] as an approach to model Brownian motion. Brownian motion is
the random motion of a small particle in a fluid and it was discovered by biologist
Robert Brown [29] when he observed the motion of pollen grains and dust particles
in a viscous medium. Its experimental results found a first theoretical explanation
by Einstein [30], which was later confirmed by Perrin in 1909 [31]. He firstly
described the problem in terms of a diffusion equation for the Brownian particle:
he considered a one dimensional system, in which he defined a continuous density
of the Brownian particles ρ(x, t), function of both the position x and the time t,
and he introduced also a diffusion coefficient Dx. Then, Einstein wrote a diffusion
equation for the particle’s density

∂ρ(x, t)
∂t

= Dx
∂2ρ(x, t)

∂x2 (2.1)

7
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The formal solution of this equations gives a normal density distribution of the
form ρ(x, t) ∝ e− x2

4Dt . Hence, the first two moments of the distribution are derived:
the mean displacement (first moment) is vanishing, resulting in the absence of a
drift in the motion of the Brownian particle; however, the variance (second moment)
or mean-squared displacement - defined as (2.3) - is non-vanishing

éx2ê ∼ 2Dxt (2.2)
where we considered the initial position x(0) = 0. In all previous formulas we also
denoted the diffusion constant with a subscript x to indicate that Einstein’s result is
valid in the positions’ space. Thus, Einstein’s main result is that the displacement
of Brownian particle is proportional to the squared root of the time. This is truly
remarkable result because it means that the Brownian particle follows a random
walk in its diffusive motion [24]. Furthermore, Einstein derived an expression for the
diffusion coefficient directly from the definition of the mean-squared displacement

Dx = lim
t→∞

1
2t
é(x(t)− x(0))2ê (2.3)

which is extended in 3D as

Dx = lim
t→∞

1
6t
é|þx(t)− þx(0)|2ê

The average é. . . ê is taken over the ensemble - in our case, Canonical ensemble -
at thermal equilibrium. Thanks to the classical Equipartition theorem 3.2.1, we
obtain

Dx = kBT

mγ
(2.4)

The formula (2.4) above, known as Einstein’s relation for the diffusion coef-
ficient, relates directly the friction parameter of the fluid to the main transport
coefficient of diffusion. This result has a more wider meaning, since is part of
the Fluctuations-Dissipation Theorem [26]. The theory of Brownian motion is
one of the simplest approximate way to treat a non-equilibrium systems in which
fluctuations play a major role into the the dynamics. In Section 3.4 this main
concept will be explained in a more general way.

2.1.2 Langevin method
For a particle in a conservative force field, we can proceed as follows. Instead
of using the Newton’s equations of motion, which would conserve the energy, we
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build a microscopic and stochastic dynamics by the addition of two main terms: a
frictional force and a random force. The former models the systematic effect of
the viscous medium in which the Brownian particle moves. Therefore, this force
has the usual form proportional - with a negative sign - to the velocity of the
particle and a friction coefficient γ is introduced as a proportionality constant. The
random force aims at modeling the random collisions that the Brownian particle
has with the surrounding particles of the medium. Thus, Langevin equation has
the following form:

m
d2x

dt2 = −γm
dx

dt
+ F (t) + mξ(t) (2.5)

which is equivalent to the system of equations

v(t) = dx
dt

mdv
dt

= −γmv(t) + F (t) + mξ(t)
(2.6)

The force mξ(t) is a random variable, for which the two following properties
hold:

• éξ(t)ê = 0

• éξ(t1)ξ(t2)ê = 2Dδ(t2 − t1)

The physical reason behind this stochastic process introduced by Langevin is to
model the random collisions in the viscous medium. These collisions result in no net
drift for the particle, hence the first property. Moreover, after a punctual collision
in time, the second property makes the system lose memory of its condition before
the collision, in such way any time correlations vanish.

2.1.3 Diffusion in the velocity space
For simplicity, we consider a 1D particle of mass m with speed v(t). We assume
also to be in a pure diffusion regime, i.e. there is no external forces F (t). Therefore,
Langevin equation for the velocity (2.6) takes the form

dv

dt
= −γv(t) + ξ(t) (2.7)

If we consider the random variable dχ(t) = ξ(t)dt, it is possible to show, thanks
to the Central Limit Theorem [24], that dχ(t) is a Gaussian random variable and
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the stochastic process takes the name of Wiener process. We can solve this equation
multiplying both sides by eγt

d

dt

1
eγtv(t)

2
= eγtξ(t)

and integrating both sides from 0 to t, we obtain the solution:

v(t) = v(0)e−γt +
Ú t

0
dtÍξ(tÍ)e−γ(t−tÍ) (2.8)

Two quantities are relevant in the study of diffusion. The first is the mean
velocity

év(t)ê = v(0)e−γt (2.9)

obtained thanks to the property éξ(t)ê = 0. The second important quantity is the
variance σ2

v . We focus on the quantity

v(t1)v(t2) = v2(0)e−γ(t1+t2) +
Ú t1

0
dtÍ
Ú t2

0
dtÍÍe−γ(t1+t2−tÍ−tÍÍ)ξ(tÍ)ξ(tÍÍ)

We compute the average é. . . ê exploiting the second property of the random
process ξ(t) 2.1.2, in order to obtain

év(t1)v(t2)ê = v2(0)e−γ(t1+t2) + D

γ
e−γ(t1+t2)

1
e−γ|t1−t2| − e−γ(t1+t2)

2
For t1 = t2 = t, we have

év2(t)ê = v2(0)e−2γt + D

γ

1
1− e−2γt

2
and finally

σ2
v = év2(t)ê − év(t)ê2 = D

γ

1
1− e−2γt

2
(2.10)

We have obtained in this way two different diffusion regimes:

• for t¹ γ−1, the average speed recalls the initial condition évê ∼ v(0) and the
mean value has a diffusive behaviour σ2

v Ä 2Dt, independent from the friction;

• for tº γ−1, the average speed tends to 0 for large t, which is the correct pure
diffusion behaviour we were expecting for the Brownian particle. Moreover,
the variance tends to constant value σ2

v ∼ D
γ
, which is time independent.
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The latter result is particularly important because this means that the velocities
at large time have a (Gaussian) Maxwell-Boltzmann distribution, of the form:

P (v, t; v,0) =
ó

1
2πσ2

v

e
− (v−v(0)e−γt)2

2σ2
v (2.11)

Furthermore, thanks to the Equipartition theorem 3.2.1, we obtain the following
relation between the diffusion constant in the velocity space D and the friction γ

D

γ
= kBT

m
(2.12)

2.1.4 Diffusion in the position space
If we consider the first equation in (2.6), we can easily obtain the formal solution
for the position of the particle x(t) as

x(t) = x(0) + v(0)
γ

1
1− e−γt

2
+
Ú t

0
dtÍ
Ú tÍ

0
dtÍÍe−γ(tÍ−tÍÍ)ξ(tÍÍ) (2.13)

Again we compute the mean value of the position

éx(t)ê = v(0)
γ

1
1− e−γt

2
(2.14)

the mean squared position

éx2(t)ê =
A

v2(0)− D

γ

BA
e−γt − 1

γ

B2

+ 2D

γ3

1
γt + e−γt − 1

2
and the variance

σ2
x = 2D

γ2 t− D

γ3

1
1− e−γt

22
− 2D

γ3

1
1− e−γt

2
(2.15)

We consider these quantities in the two different time regimes. For t ¹ γ−1,
the mean value of the position is x(t) Ä v(0)t, as expected. For the variance, we
expand all exponential to O(t3) in (2.15) and the following expression is obtained:

σ2
x Ä

2
3Dt3 → σx ∼ t3/2

In the other regime tº γ−1, we obtain instead that the mean value is again a
constant, as expected, depending on the friction

11



Theoretical Background

éxê Ä v(0)
γ

and the variance from (2.15) takes the form

σ2
x Ä

2Dt

γ2

which recovers Einstein’s result (2.2). We also notice that, in this regime, we
recover Einstein’s relation (2.4):

Dx Ä
σ2

x

2t
= D

γ2 = kBT

mγ

where we used the relation (2.12) for the diffusion constant in the velocity space.

2.2 Fokker-Plank Equation
In general, we can use Langevin equation to study many different systems, for
which the macroscopic behaviour is known and we also assume that fluctuations
are present. ’Langevin method’ [27] is then a way to describe these fluctuations of
the system. It consists in considering the deterministic equations of motion of the
system and add a ’Langevin force’, given by two contributions, the damping term
and the random noise. Therefore, we obtain a stochastic process that can be studied
in all generality through the equivalent description of the Fokker-Plank equation,
which describes the evolution of the probability density for a stochastic process. In
the particular case of the Langevin stochastic dynamics, the Fokker-Plank equation
is in fact equivalent to Einstein’s diffusion equation (2.1), which allows to link the
two different approaches. In the following section we demonstrate this link in full
generality and we discover how Langevin equation can be used to study a wide
spectrum of stochastic phenomena.

2.2.1 Kramers-Moyal expansion
We consider, for simplicity, the one-dimensional stochastic process y(t), for which
the dynamics is expressed by the following general Langevin equation:

dy

dt
= A(y, t) + B(y, t)ξ(t) (2.16)

where A, B are two generic - regular enough - functions and ξ(t) is a stochastic
process, that we assume to be Gaussian. We assume also the following properties
on ξ:
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• éξ(t)ê = 0

• éξ(t1)ξ(t2)ê = 2Dδ(t2 − t1)

These are the properties that Langevin assumed on the random force in his
model 2.1.2. From these elements, the Kramers-Moyal coefficient for the Langevin
equation can be obtained. Firstly, we consider the integral expression of (2.16),
with y as initial condition at t and a finite increment ∆t

y(t + ∆t)− y =
Ú t+∆t

t
[A(y(tÍ), tÍ) + B(y(tÍ), tÍ)ξ(tÍ)] dtÍ

and we expand the coefficients around the initial y to the first order in y(t),
obtaining

y(t + ∆t)− y =
Ú t+∆t

t

C
A(y, tÍ) + ∂A(y, tÍ)

∂y
(y(tÍ)− y)

D
+C

B(y(tÍ), tÍ)ξ(tÍ) + ∂B(y, tÍ)
∂y

(y(tÍ)− y)ξ(tÍ) + ...

D
dtÍ

where . . . indicates the presence of higher orders terms, which are neglected in the
expansion. Iterating for y(tÍ)− y, we obtain

y(t + ∆t)− y Ä
Ú t+∆t

t
[A(y, tÍ) + B(y(tÍ), tÍ)ξ(tÍ)] dtÍ+Ú t+∆t

t
A(y, tÍ)

IÚ tÍ

t
[A(y, tÍÍ) + B(y(tÍÍ), tÍÍ)ξ(tÍ) + ...] dtÍÍ

J
dtÍ+

Ú t+∆t

t
B(y(tÍ), tÍ)

IÚ tÍÍ

t
[A(y, tÍÍ) + B(y(tÍÍ), tÍÍ)ξ(tÍÍ) + ...] dtÍÍ

J
ξ(tÍ)dtÍ

Then, we consider the average é...ê over many realizations of the stochastic
process and exploit the properties of ξ(t). All terms with éξ(t)ê vanish and we
use the property éξ(t)ξ(tÍ)ê = 2Dδ(tÍ − t) to further simplify the expression, hence
obtaining

y(t + ∆t)− y Ä
Ú t+∆t

t
A(y, tÍ)dtÍ+Ú t+∆t

t
A(y, tÍ)

CÚ tÍ

t
A(y, tÍÍ)dtÍÍ

D
dtÍ + D

Ú t+∆t

t
B(y(tÍ), tÍ)2dtÍ
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Finally, dividing by ∆t and taking the limit for small ∆t, we obtain the series
of Kramers-Moyal coefficients

a(1)(y, t) = A(y, t) + DB(y, t)∂B(y,t)
∂y

a(2)(y, t) = 2DB2(y, t)
a(n)(y, t) = 0, n ≥ 3

(2.17)

2.2.2 Fokker-Plank equation
The general form of the Fokker-Plank equation involves only the first two Kramers-
Moyal coefficients

∂P (y, t)
∂t

= − ∂

∂y

è
a(1)(y, t)P (y, t)

é
+ 1

2
∂2

∂y2

è
a(2)(y, t)P (y, t)

é
(2.18)

Substituting (2.17) into (2.18), we obtain the Fokker-Plank equation, com-
pletely equivalent to the general Langevin equation (2.16)

∂P (y, t)
∂t

= − ∂

∂y

CA
A(y, t) + DB(y, t)∂B(y, t)

∂y

B
P (y, t)

D
+ D

∂2 [B2(y, t)P (y, t)]
∂y2

(2.19)

2.2.3 Multivariate Fokker-Plank equation
For a multivariate stochastic process þy = (y1, ..., yN), there is a set of generalized
Langevin equations of the form

dyi

dt
= Ai(þy, t) +

Ø
k

Bik(þy, t)ξk(t) ∀i = 1, ...N (2.20)

where for each ξk(t) properties 2.1.2 hold. For each of these equations, Kramers-
Moyal coefficients and the Fokker-Plank equations can be derived following the
same computation as before:

a
(1)
i (þy, t) = Ai(þy, t) + D

q
j,k Bjk(þy, t)∂Bjk(þy,t)

∂yj

a
(2)
i (þy, t) = 2D

q
k Bik(þy, t)Bjk(þy, t)

a
(n)
j1,...jm(þy, t) = 0, n ≥ 3

(2.21)
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∂P (þy, t)
∂t

= −
Ø

i

∂

∂yi

Ai(þy, t)P (þy, t) + D
Ø
j,k

Bjk(þy, t)∂Bjk

∂yj

P (y, t)


+ D
Ø
i,j

∂2

∂yi∂yj

CØ
k

Bik(þy, t)Bjk(þy, t))P (þy, t)
D

(2.22)

2.2.4 Klein-Kramers equation for diffusion
We consider, for simplicity, a one dimensional particle of coordinate x(t) and mass
m in an external potential U = U(x), which obeys to the following Langevin
equation

m
d2x

dt2 = −mγ
dx

dt
− dU

dx
+ mξ(t) (2.23)

which is equivalent to the following system of Langevin equationsv = dx
dt

dv
dt

= −γv − 1
m

dU
dx

+ ξ(t)

From this system of equations we can derive the bi-variate Kramers-Moyal
coefficients

a(1)
x (v, x, t) = v

a(2)
x (v, x, t) = 0

a(1)
v (v, x, t) = −γv − 1

m
dU
dx

a(2)
v (v, x, t) = 2D

and the bi-variate Fokker-Plank equation

∂P (v, x, t)
∂t

= −∂ [vP (v, x, t)]
∂x

+ ∂

∂v

CA
γv + 1

m

dU

dx

B
P (v, x, t)

D
+ D

∂2P (v, x, t)
∂v2

(2.24)

If we consider by hypothesis that the stationary distribution is the Boltzman
distribution P0 ∝ e−( 1

2 mv2+U(x))/kBT , we can insert it into the stationary condition
of (2.24), i.e.

v
∂P

∂x
− γ

C
P (v, x, t) + v

∂P

∂v

D
− 1

m

dU

dx

∂P

∂v
= D

∂2P

∂v2
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and obtain the following relation between the γ and D

D

γ
= kBT

m
(2.25)

This is exactly the same relation that we obtained with the Langevin method
in the velocity space (2.12). Using this relation into (2.24), we obtain, after few
algebraic passages, the Klein-Kramers equation

∂P

∂t
= −v

∂P

∂x
+ 1

m

dU

dx

∂P

∂v
+ γ

C
∂(vP (v, x, t))

∂v
+ kBT

m

∂2P

∂v2

D
(2.26)

2.2.5 Free particle case: Ornstein-Uhlembeck process
In the case of U(x) = 0, we obtain a simplified version of equation (2.26).

∂P

∂t
= −v

∂P

∂x
+ γ

C
∂(vP (v, x, t))

∂v
+ kBT

m

∂2P

∂v2

D
(2.27)

The general solution of this equation is obtained by applying the Fourier trans-
form of P (v, t) and then using the method of characteristics. It reads

P (v, t; v,0) =
ó

γ

2πD (1− e−2γt)e
−
γ(v−v(0)e−γt)2

2D(1−e−2γt) (2.28)

This stochastic process with this Gaussian distribution takes the name of
Ornstein-Uhlembeck process. We notice that we have recovered the exact results
- (2.9) and (2.10) - obtained from Langevin equation in the velocities’ space for
tº γ−1. Indeed, the average value of the speed from (2.28) is

év(t)ê = v(0)e−γt

and the variance is

σ2
v = D

γ

1
1− e−2γt

2
This is the formal derivation stating that the stochastic process of Langevin equation
in the velocity space is a Ornstein-Uhlembeck process.

16



Theoretical Background

2.2.6 Overdamped-Smoluchowski equation
We consider equation (2.23) in the overdamped regime i.e. when d2x

dt2
= 0 and the

force is proportional to the speed of the particle

dx

dt
= v = − 1

mγ

dU

dx
+ ξ(t)

γ
(2.29)

Another way to express this regime - more convenient from a computational
point of view - is to have the friction much grater than the integration time-step
i.e. γ º ∆t. This is a one variable differential equation, so it is possible to find
the uni-variate Fokker-Plank’s equation form the Kramers-Moyal coefficients

a(1)
x (v, x, t) = − 1

mγ
dU
dx

a(2)
x (v, x, t) = 2D

γ2

∂P (x, t)
∂t

= − ∂

∂x

CA
− 1

mγ

dU

dx

B
P (x, t)

D
+ D

γ2
∂2P (x, t)

∂x2 (2.30)

If we consider as stationary distribution the Boltzmann’s distribution P0 ∝
e−(U(x))/kBT , again the relation (2.12) is obtained and, by substituting it into (2.30),
the Smoluchowski equation is obtained.

∂P (x, t)
∂t

= 1
mγ

∂

∂x

C
dU

dx
P (x, t)

D
+ kBT

mγ

∂2P (x, t)
∂x2 (2.31)

Free particle: pure diffusion equation

An important sub-case of (2.31) is the free particle case i.e. U(x) = 0. Then,
Smoluchowski equation reduces to the diffusion equation

∂P (x, t)
∂t

= kBT

mγ

∂2P (x, t)
∂x2 (2.32)

The solution of this equation is found with the Fourier transform method. Using
the initial condition P (x, t = 0) = δ(x), the solution is an Orstein-Uhlembeck
process in the positions’ space

P (x, t) =
ò

γ

4πDt
e− γ

4Dtx2 (2.33)
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We obtain the same relations for the diffusion constant in the position space
(2.4)

D

γ
= kBT

m

2.3 Time correlation functions
Time-correlation functions (TCFs) have the same role in non-equilibrium statistical
mechanics as the partition functions have in equilibrium statistical mechanics. Many
transport coefficients, which are associated and characterize each non-equilibrium
or transport property of the system under study, can be expressed in terms of
TCFs [32]. Furthermore, they can be also related to many experimental techniques,
such as spectroscopy and measurements of rate constants.

In general, any TCF is given by the average in some equilibrium ensemble of two
time-dependent quantities A(t) and B(tÍ), where t /= tÍ are the times at which they
are evaluated. It is worth noticing that there exists many types of TCFs because
there are many possible non-equilibrium states, while from the sole equilibrium
partition function is possible to derive all static properties.

2.3.1 Classical TCFs
Consider a system of N , one-dimensional (for simplicity) particles of positions
and momenta {xi(t), pi(t)},∀i = 1, . . . , N . They form a time dependent trajectory
(þx(t), þp(t)) in the phase space, which evolves according to Hamilton’s equations,
starting from the initial point (þx(0), þp(0)). The ensemble is assumed to be Canonical,
with the equilibrium phase space distribution function given by the Boltzmann
distribution and Canonical partition function. We define the classical time
correlation function [33] of A and B as

CAB(t) = éA(0)B(t)ê = 1
Z

Ú
dþx
Ú

dþpA( þx(0), þp(0))B( þx(t), þp(t))e−βH(þx(t),þp(t))

(2.34)
The time auto-correlation function is defined as CAA(t). The detailed balance

condition is given by CAB(t) = CBA(−t). We define also the Fourier transform of
CAB as

CAB(ω) = F{CAB(t)}(ω) = 1
2π

Ú
dtCAB(t)e−ıωt (2.35)
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2.3.2 Application to classical diffusion
The classical study of a diffusion process uses TCFs to express the diffusion constant
in the positions’ space Dx (2.4), and in the velocities’ space D (2.12), which are
the main transport coefficients involved in this problem. As already stated by
Einstein, diffusion coefficient in the positions’ space is given by the mean squared
displacement (2.3). It is easy to show that the diffusion coefficient can be written
in terms of the velocity-velocity TCF. Indeed, we know that

x(t)− x(0) =
Ú t

0
v(t)dt

Substituting this into (2.3), we obtain

Dx = lim
t→∞

1
2t

Ú t

0
dt1

Ú t

0
dt2év(t1)v(t2)ê =

Ú ∞

0
dt év(0)v(t)ê = lim

t→∞
Cvv(t)

(2.36)
The full derivation of this result can be found in the Linear Response Theory

[25], which is not reported in this work. An analogous relation is true for the
diffusion coefficient in the velocity space:

D = 1
m

Ú ∞

0
éR(0)R(t)ê = lim

t→∞
CRR(t) (2.37)

where R(t) = mξ(t) is the random force in the Langevin equation (2.5).

2.3.3 Quantum TCFs
Quantum TCFs are given in different forms [33, 34], which are all related to
the classical TCFs in the limit of high temperature. Given two observables with
operators Â and B̂, we define then the standard form of the quantum TCFs
as

CAB(t) = Tr[ρ̂ÂeıĤt/~B̂e−ıĤt/~] (2.38)
where eıĤt/~ and e−ıĤt/~ are the forward and backward time propagator respec-

tively and B̂t = eıĤt/~B̂eıĤt/~ is the time propagated operator in the Heisenberg
picture. CAB is a complex quantity and the equivalent detailed balance condition
is CAB(t) = C∗

BA(−t).
Another common form of the quantum TCF is the Kubo-transformed time

correlation function [26], defined as

KAB(t) = 1
βZ

Ú β

0
dλTr[e−(β−λ)ĤÂe−λĤeıĤt/~B̂e−ıĤt/~] (2.39)
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This version seems more complicated but it is real and the detailed balance
condition is simply KAB(t) = KBA(−t). It is related to the standard TCF using
the relation:

F{CAB(t)}(ω) = β~ω

1− e−β~ω
F{KAB(t)}(ω) (2.40)

2.4 Harmonic Analysis of Stationary Stochastic
Processes

In this Section, we introduce some basic concepts which are fundamental for the
theoretical explanation of Langevin-based algorithms in Section 3.2, 3.4 and 3.5.
For this part we refer to [35].

2.4.1 Spectral Density
Let us suppose s(t) is a stationary stochastic process i.e. its probability distribution
does not change in time.

For any signal s(t) in a limited temporal window, it is possible to compute
its energy spectral density and the power spectral density i.e. the energy
spectral density per unit time. The spectrum of a physical phenomena contains
interesting information about its properties and it is particularly useful in the study
of stochastic processes. Consider a signal s(t), its total energy E is given by

E =
Ú +∞

−∞
dt |s(t)|2 (2.41)

for which we can define the energy spectral density (ESD) as

Ŝ(λ) = |s(λ)|2 (2.42)

where we defined s(ω) as the Fourier transform F{s(t)} in the following way:

s(λ) =
Ú +∞

−∞
dt s(t)e−2πıλt

The same definitions are valid in the case of the total power of a signal:

P = lim
T →∞

1
T

Ú T

0
dt |s(t)|2 (2.43)

The Fourier transform of s(t) now is defined as
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s(ω) = 1
T

Ú T

0
dt s(t)e−ıωt

and the power spectral density (PSD) as

Ŝ(ω) = lim
T →∞

E
è
|s(ω)|2

é
(2.44)

where E is the expected value, which can be written explicitly in the following way,
for s(t) complex in general:

E
è
|s(ω)|2

é
= E

C
1
T

Ú T

0
dt s∗(t)eıωt

Ú T

0
dtÍ s(tÍ)e−ıωtÍ

D
=

1
T

Ú T

0
dt

1
T

Ú T

0
dtÍ E [s∗(t)s(tÍ)] eıω(t−tÍ) (2.45)

2.4.2 Wiener–Khinchin theorem
We consider the definition of the PSD (2.44) and we take the limit with T →∞.
In this way, we obtain is the Wiener–Khinchin theorem

Theorem 2.4.1 (Wiener–Khinchin) For an absolutely integrable Css(t), the
PSD is given by:

Ŝ(ω) =
Ú +∞

−∞
Css(t)e−ıωtdt = Css(ω) = F{Css(t)} (2.46)

where the expected value E [s∗(t)s(tÍ)] is expressed as a TCF with ∆t = (t− tÍ):

E [s∗(t)s(tÍ)] = és∗(t)s(t + ∆t)ê = Css(∆t)

Application to diffusion

Wiener-Khinchin theorem has a fundamental role in the implementation of both
classical and quantum Langevin-based simulation methods. In particular, we will
use the following form of the theorem:

CRR(τ) = éR(t)R(t + τ)ê =
Ú +∞

−∞

dω

2π
CRR(ω)eıωτ (2.47)

where R(t) will be a stationary stochastic process that plays the role of the
random force in a generalized Langevin equation. Therefore this formula gives
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a general procedure to obtain, for example, the main property 2.1.2 from the
assumption of a power spectral density suitable for the problem under study. In
Section 3.2, this concept is used to generalize the classical approach of Langevin
thermostat. Furthermore, in Section 3.4 and 3.5, this result becomes very useful to
develop the new MD approaches to quantum systems.

2.5 Feynman’s Path Integrals
The most reliable MD methods used to simulate real systems in which NQEs
are present is based on the Feynman’s formalism of Path Integrals [36]. This
is a framework of Quantum Mechanics (QM) alternative to Schrödinger’s wave
mechanics and Dirac’s theory.

Feynman’s theory is closer to the Classical picture and it is very useful for MD
techniques because it preserves the concept of trajectories of the particles. For the
following exposition, we refer to [25].

2.5.1 Heuristic picture
Let us consider a quantum particle with position operator x̂ which evolves in time
thanks to the propagator operator Û(t) = e− ıĤt

~ . The particle starts in position x
and we perform a measure in position xÍ. The Hamiltonian operator is defined as:

Ĥ = p̂

2m
+ V̂ (x̂)

Until a measure is performed, we are completely ignorant on the possible path the
quantum particle is following, accordingly to the laws of QM. Therefore, instead of
introducing a probability distribution for the particle’s position, we state Feynman’s
hypothesis: the quantum particle follows an infinite number of paths from the
starting point x to the point in which its position is measured xÍ.

The link with the probabilistic picture is given by the measured amplitude
A(xÍ, x): the probability distribution for the position of the particle when it is
measured is given by |A(xÍ, x)|2. This amplitude has the contributions of all possible
paths followed by the quantum particle going from x to xÍ, so the probability reads
to find in xÍ the particle starting in x :

P (xÍ, x) =
------
Ø

paths

Apath(xÍ, x)
------
2
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2.5.2 Time evolution operator and density matrix
We consider for simplicity one particle in a 1D system, prepared initially in state
|xê, which evolves with the time evolution operator Û(t) = e− ıĤt

~ until state |xÍê.
We define the amplitude as the time propagator’s coordinate-space matrix
as

Û(x, xÍ, t) = éxÍ| e− ıĤt
~ |xê (2.48)

There is an analogy between this operator and the density matrix of the system
ρ̂(β) = e−βĤ in the following way:

ρ̂(β) = e−βĤ = Û(−ıβ~) (2.49)

which is equivalent to

Û(t) = e− ıĤt
~ = ρ̂( ıt

~
) (2.50)

This means that we have two times in our system:

• the density matrix ρ̂ corresponds to the imaginary time propagator, where we
defined the imaginary time as Ú[θ] = −ıβ~;

• the real time propagator Û(t), which can be obtained from ρ̂ by defining the
imaginary inverse temperature β = ıt

~ .

Therefore, if Û(t) is the quantum real-time propagator, the operator ρ̂(β) = e−βĤ

is also called the quantum imaginary-time propagator. The precise mathematical
relation between U(t) and ρ̂(β) is given by a Wick rotation [37]. The density matrix
is defined by an analytical continuation of its argument in the complex plane. Here,
we do not go through the mathematical theorems about the Wick’s transformation,
rather we stress that in quantum statistical mechanics, PI do not have the same
meaning This use of PI was also introduced by Feynman, even though later they
refer to systems at thermal equilibrium, not to the real system dynamics.

2.5.3 Quantum Canonical partition function
The density matrix in coordinates’ space is in general given by

ρ̂(x, xÍ, β) = éxÍ| e−βĤ |xê (2.51)
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In order to compute the explicit expression of the density matrix, the Baker-
Campbell-Hausdorff formula [38] is used, with a splitting in N steps, as in (3.8).
For the full derivations, we refer to [25]. The final expression reads

ρ̂(x, xÍ, β) = lim
N→∞

A
mN

2πβ~2

BN/2 Ú xÍ=xN+1

x=x1
dx2 . . . dxN

exp
C
−1
~

NØ
k=1

A
mN

2β~
(xk+1 − xk)2 + β~

2N
(V (xk+1)− V (xk)

BD
(2.52)

where the index N discretizes the path into N →∞ intermediate positions, the
integration is over all these intermediate positions and there is a resulting term
of harmonic nearest-neighbours coupling between the intermediates points of the
path. The only fixed point are the start x and the end xÍ.

The most important result obtainable from the density matrix ρ̂ is the quantum
Canonical partition function (QCPF), as

Z(L, T ) = lim
N→∞

A
mN

2πβ~2

BN/2 Ú
dx1 . . . dxN

exp
C
−1
~

NØ
k=1

A
mN

2β~
(xk+1 − xk)2 + β~

2N
V (xk)

BD
(2.53)

where we used the periodic boundary conditions (PBC) x1 = xN+1 and we integrate
on the whole spatial domain. Once the QCPF is know, the whole quantum
Canonical thermodynamics can be found, using the following definition for the
ensemble average of an operator Ô:

éÔê = 1
Z

Tr
è
Ôρ̂
é

In Section 3.3 we will explain how it is possible to use the fundamental expression
of the QCPF (2.53) in Molecular Dynamics simulations for quantum systems via
the so-called Path-Integral Molecular Dynamics method. In particular, we will
explain the classical isomophism between (2.53) and the classical partition function
of a ring-polymer with N harmoically interacting beads.

We note that, using the equivalence (2.50), we can find the expression for the
time propagator
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Û(x, xÍ, t) = lim
N→∞

3
mN

2πı~t

4N/2 Ú xÍ=xN+1

x=x1
dx2 . . . dxN

exp
C
− ı

~

NØ
k=1

3
mN

2t
(xk+1 − xk)2 − t

2N
(V (xk+1)− V (xk)

4D
(2.54)

Although this formula is very useful conceptually and for the development of
perturbation and exact theories, this expression is not practical for numerical
computations because of the phase term eı which oundergoes strong oscillations
and is very difficult to converge (contrary to the case of imaginary time PI where
the factor in the exponential is real). This is the so-called sign problem [39].

2.6 Rate processes
We introduce briefly the classical Arrhenius law, which will be an important tool
for the analysis of the diffusion coefficient in Section 4.2. We refer for this part to
[20].

2.6.1 Arrhenius law
As already mentioned in the Introduction, all chemical reactions can be studied
from a kinetic point of view. The main quantities involved are the chemical
reaction constants, which determine the direction of the reactions (from reactants
to products), and reaction rates, which quantify the speed at which reactants are
converted to products.

Let us consider a general reaction, which involves reactant and products. From
a physical point of view, the reactants are particles, atoms or molecules, which
can collide and give rise to the products. Therefore, we are in the general context
of a collision theory, which aims of explaining the kinetics of a reaction. We
introduce the reaction rates k, depending in general on many quantities, such as
the concentration of reactants, the pressure of the system or the surface area of
contact between the reactants. It has been observed that k is a generally function
of the temperature, following a specific law

log(k) = log(C)− E

kBT

where C is defined as the collision number or frequency factor - giving then
the frequency/probability of collision between reacting molecules - and E is the

25



Theoretical Background

activation energy of the reaction. Thus, we obtain the so-called Arrhenius law

k(T ) = Ae−E/kBT (2.55)

where e−E/kBT can be seen as the probability of occurrence of the reaction or
equivalently the fraction of molecules that possess the required activation energy. It
is clear from this simple arguments that the computation of reaction rates involves
the computation of two main quantities: the activation energy E and the frequency
factor A.

In general, A is obtained by the kinetic theory of gasses or other more complicated
theories. Instead, the activation energy involves a study of the potential energy or
free energy surface according to the Eyring-Polanyi semi-empirical method, which
is in general a very complex problem.

The simplest possible description of this problem is a two states model, as the
one used in [21]. Let us consider a two state reactions, where A is the state of
the reactants and B is the state of the products. As an example, on Figure 2.1
we illustrate the double-well potential appearing in the hydrogen diffusion model
that we study in Section 4.1.2 (it will reproduce this situation in the case of the
problem of hydrogen’s diffusion). As function of a given reaction coordinate ξ, the
two states are separated by a free energy barrier. The height of this barrier is the
activation energy i.e. the energy needed by the reactants to overcome the barrier
and pass to the state of the products. The reaction rates is then the probability to
overcome the barrier, express as a frequency of the passage from A to B.

We can state the Eyring-Polanyi equations for a two states system

k(T ) = 2πkBT

~
e

− ∆F
kBT (2.56)

where ∆F is the free-energy of activation. The most important point of this new
equation is the use of the free energy, instead of the activation energy E, which is
a much more general quantity and takes into account the complex thermodynamic
aspects of the kinetic problem. We comment also that ∆F does not depends
on the mass of the particles of the system. On the other hand, the prefactor of
Eyring-Polanyi law can have a strong dependence on the mass.

2.6.2 Transition State Theory
Equation (2.56) is the starting point of the so-called Transition State Theory
(TST), which is the general theory that aims to compute chemical reactions rates
between two or more chemical states in a reaction. In particular, it focuses
on the computation of the free-energy barrier ∆F in Eyring-Polanyi equation.
The Quantum TST is an extension of the classical theory, for which the goal is
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Figure 2.1: Model system: double-well potential between two lattice cells (zoom of
Figure 4.5, reported in Section 4.1.2).

to compute reaction rates in processes dominated by quantum effects, such as
tunneling and zero-point energy.

Time-correlation functions play a major role in both classical and quantum
TST. This is because the reaction rates can be expressed mainly by the so-called
Flux-Side Time Correlation Function. The computation of this TCF cannot be done
exactly for many systems, hence the need of approximated method and low-cost
simulation techniques. Molecular Dynamics methods are particularly useful to
study the dynamics of this systems in terms of trajectories crossing the free energy
barrier.
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Chapter 3

Methods

The core of this work is a study of different methods of simulation of a simple system
both in a classical and a quantum picture. The physical problem is the diffusion of
a single hydrogen atom in a solid lattice. As already explained, hydrogen has a light
nucleus, which makes imperative considering its quantum nature because of the
presence of NQEs. In order to study this problem from a computational point of
view, most methods are based on Molecular Dynamics (MD) techniques. These
methods have become a useful numerical tool to investigate physical, chemical and
biophysical systems at molecular and atomic scale [40]. Classical MD consists in the
simulation of the trajectories of the atomic nuclei, within the Born-Oppenheimer
approximation, by numerically solving their newtonian equations of motion. This
provides a clear classical picture of the properties of the system and, relying on
the Ergodic hypothesis (3.4), which ensures the equivalence with the ensamble’s
formalism, allows to compute both static and dynamic properties of the system.

On the other hand, considering the nuclei as quantum objects is way more
complex. Solving numerically Schrodinger’s evolution equation for the nuclei
wave-function is impossible for realistic condensed matter system, as it scales
exponentially with the number of atoms involved. For static properties at thermal
equilibrium, reliable results can be obtained within Feynman’s Path Integral (PI)
formalism of Quantum Mechanics. Although these methods are very computation-
ally demanding and cannot be used safely for quantum dynamics. Therefore, the
study of dynamical properties in quantum system remains a theoretical opened
challenge for which different approximations have been proposed but none of them
is fully general and reliable for all real systems. Some of these approaches are based
on PI formalism and take the name of Ring Polymer Molecular Dynamics (RPMD)
[34, 41, 42] and Centroid Molecular Dynamics (CMD) [43]. However, they rely on
approximations with accuracy not always accessible [44] and they are particularly
heavy. We discuss briefly RPMD in Section 3.3.

In this work, we present a different approach based on a generalized Langevin
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equation and called Quantum Thermal Bath (QTB) and its refinement, the adaptive
QTB. This is an approximated method which is able to access directly dynamic
properties and to reproduce NQEs with a computational cost of the same order
of standard classical MD. These new methods are shown to give exact results
for harmonic systems and approximated results for anharmonic systems, which is
satisfactory for some cases [45].

3.1 Classical Molecular Dynamics
3.1.1 Integration of Newton’s second law
MD consists in integrating directly the equations of motion of the nuclei in order
to have a full knowledge of the trajectory of the system in the phase space. This
is particularly useful to study non-equilibrium time-dependent properties, which
are not always linked to an equilibrium ensemble. MD is then preferred to Monte
Carlo techniques, that are largely used to study static properties [46].

Let us consider a general system of N classical particles, in a 1D space for
simplicity. The extension to 2D or 3D is straightforward. For each particle i of
mass mi and position xi, i = 1, . . . , N , Newton’s second law states its dynamics:

mi
d2xi

dt2 = fi (3.1)

where the force fi = f(x1, . . . , xN)i acting on the particle i, which depends in
general by the positions of all particles of the system. Newton’s law for the particle
i is equivalent to Hamilton’s equations of motion, where we introduced pi = mi

dxi
dt

as the momentum of particle i and H(þx, þp) is the Hamiltonian of the system, which
depends in general on all momenta and positions and it physical correspondence is
the total energy of the system. In particular, we assume that the Hamiltonian has
the form

H(þx, þp) =
NØ

n=1

p2
i

2mi

+ U(þx)

where the U = U(þx) is the potential energy of the system and its first derivative
with respect to particle i gives the force fi = −∂U(þx)

∂xi
. The resulting Hamilton’s

equations are:


dxi
dt

= ∂H(þx,þp)
∂pi

= pi
mi

dpi
dt

= −∂H(þx,þp)
∂xi

= f(x1, . . . , xN)i

(3.2)
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These equations describe the evolution of the system, drawing a trajectory
(þx(t), þp(t)) in the phase space. They have two major properties:

• conservation of energy: dH
dt

= 0

• time reversibility under the change: xÍ = x(−t), pÍ = −p(−t)

Conservation of energy is particularly relevant, because it means that, no matter
how long the total time of the evolution of the system, the points explored by the
trajectory in the phase space are always on a iso-energetic (hyper-)surface. In a
statistical mechanics contexts, this means we are in the Microcanonical ensemble
(N, V, E), with fixed energy H = E constant in time.

The MD starting point is the integration of Hamilton equations or Newton’s
second law, for example via the Verlet algorithm [47]. Starting from an initial
point (þx0, þp0), for each discrete time step ∆t, we compute the forces acting on the
system and update positions and momenta iteratively, until we reach the final
point.

3.1.2 Ergodic hypothesis
The main goal of MD is to compute the values of macroscopic observables from the
evolution of the microscopic particles of the system. Consider a general observable
O = O(þx, þp, t) which depends explicitly on the system’s trajectory in the phase
space. We define the time average of O as

Ō = lim
T →∞

1
T

Ú T

0
O(þx, þp, t)dt (3.3)

MD simulations which aim at studying equilibrium properties are usually based
on the following assumption, namely the Ergodic hypothesis:

éOê = Ō (3.4)

The Ergodic hypothesis is true in the case of Hamilton’s equations in the
thermodynamic limit, i.e for very large number of particles at fixed density. Indeed,
sampling from the (N, V, E) ensemble is perfectly equivalent to the exploration of
the (hyper-)surface at constant energy in the phase space, if the total time of the
simulation is long enough to allow the system to explore all possible states.

3.1.3 Liouville’s operator formalism
Given the generalized positions þq = (þx(t), þp(t)) in phase space, we can introduce
the generalized density ρ(þq(t), t). Therefore, the evolution of the system is given
by the time evolution of the generalized density
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dρ

dt
= ∂ρ

∂t
+

NØ
i=1

C
∂ρ

∂pi

dpi

dt
+ ∂ρ

∂xi

dxi

dt

D

Theorem 3.1.1 (Liouville’s theorem) Under Hamilton’s equations,

dρ

dt
= 0

Another way to express Liouville’s theorem is to state the incompressibility of
the flux in the phase space i.e. the volume occupied by the system in the phase
space does not change in time. Therefore, we can write Liouville’s equation

∂ρ

∂t
= −ıL̂ ρ (3.5)

where L̂ is Liouville’s operator, defined as follows:

ıL̂ =
NØ

i=1

C
∂H

∂pi

∂

∂xi

− ∂H

∂xi

∂

∂pi

D
(3.6)

Hence, the solution of the (3.5) for a small time interval ∆t

ρ(t + ∆t) = e−ıL̂ ∆tρ(t) (3.7)

We can also write Liouville’s operator in the following way, in order to highlight
explicitly the contribution coming from the positions and the contribution of the
momenta

ıL̂ = ı(L̂x + L̂p) =
NØ

i=1

C
pi

mi

∂

∂xi

+ fi
∂

∂pi

D

The effects of the two contributions on the density of the system during the
integration are the following

• L̂x: if fi = 0,∀i, we obtain ρ(t + ∆t) = ρ(þp, þx + þm
m

∆t, t), which is a general
translation of all positions;

• L̂p: if fi = 0,∀i, we obtain ρ(t + ∆t) = ρ(þp + þf∆t, þx, t), which is a general
translation of all momenta.
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However, the combined effect is not trivial and we need to rely on an approxima-
tion to split the two contribution and integrate separately positions and momenta.
We consider the general operators/matrices n × n A, B and a real parameter λ.
We state the Lie-Trotter product formula [48]

eλ(A+B) = lim
N→∞

1
eλA/NeλB/N

2N
(3.8)

This formula is generalized by the Baker–Campbell–Hausdorff formula for non
commutative operators [38]. Then, if we consider the following splitting:

eλ(A+B) Ä eλAeλB

it is easy to demonstrate that it would lead to an error O(λ2) i.e. of the second
order in λ. In order to obtain an error O(λ3), we use the following symmetric
splitting:

eλ(A+B) Ä eλB/2eλAeλB/2

which in terms of Liouville’s operator becomes

eıL̂ ∆t Ä eıL̂B∆t/2eıL̂A∆teıL̂B∆t/2 (3.9)

Therefore, it is possible to integrate the equations of motion with an error of
the order of ∆t3, which is negligible if the integration time step is small enough.
The latter integration scheme that is applied is the Velocity-Verlet algorithm
[49]. The formalism of Liouville’s operator is particularly elegant to evaluate the
different integration steps and it is widely used in MD techniques.

3.2 Classical Langevin Thermostat
3.2.1 Sampling the Canonical ensemble
As we mentioned in the previous section, simply integrating Hamilton’s equations
leads to the exploration of the isoenergetic surface H({xi, pi}) = E. A more realistic
situation is a system with a variable total energy and at fixed temperature. These
conditions are expressed by the Canonical ensemble (N,V,T). Here, the system is
in contact with an infinite thermal source, called thermostat or bath. Energy is
not conserved, but it is possible to show that, in the thermodynamic limit i.e. if
the number of particles N →∞ at constant density, relative fluctuations tend to
vanish.
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As explained in the previous section, if we simply integrate Hamilton’s equations
of motion, all time averages of macroscopic observables are equivalent to ensemble
averages, where the understood ensemble is the (N, V, E). In order to sample from
the (N, V, T ) ensemble instead, various MD methods are used, both deterministic
[50, 51, 52] and stochastic [53, 54]. Usually, they are based on a rescaling of the
velocities of the system via a thermostat. This rescaling is implemented thanks
to the knowledge of the Equipartition Theorem, which imposes a constraint on
the kinetic energy of a system of N classical particles in the Canonical ensemble,
following the Maxwell-Boltzmann distribution, at thermal equilibrium.

Theorem 3.2.1 (Equipartition Theorem) For a particle of mass m in a 3D
space at thermal equilibrium with a bath at temperature T , then:

é12mv2ê = 3
2kBT (3.10)

Each velocity degrees of freedom contributes to the total kinetic energy pro-
portionally to the temperature T. Deterministic algorithms, such as Berendsen’s
[50] and Nose-Hoover’s [55, 51], usually obtain the correct rescaling of velocities in
terms of a variable γ, which gives the coupling between Hamilton’s equations and
the thermal bath, by integrating a new equation of motion for the γ to make the
rescaling smoother.

3.2.2 Langevin thermostat
Langevin equation (2.5) offers a simple and efficient way to couple the equations of
motion with a thermostat which gives the correct classical energy distribution [56,
57, 58]. The main idea is always a form of velocity rescaling, obtained with the
two contributions of the Langevin equation, explained in Section 2.1: a friction
parameter γ and a stochastic process that allows to randomize the velocities
imposing the correct Canonical energy distribution.

For simplicity, we consider the 1D problem and recall the Langevin equation
(2.5). Then, the equations of motion of the particle i are:

dxi
dt

= pi
mi

dpi
dt

= −γpi + fi + R(t)
(3.11)

The term −γpi is the damping force acting on the particle i, fi = − ∂U
∂xi

is an
external force given by the presence of an external potential U = U(x1, . . . , xN).
Finally, the random force R(t) is assumed to be a stationary random process - for
which is valid the Wiener-Khinchin theorem 2.4.1 - and it needs to have éR(t)ê = 0
and the following property:

éR(t)R(t + τ)ê = 2miγkBTδ(τ) (3.12)
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From Klein-Kramers equation for diffusion (2.26), it is possible to show that
these equations of motion ensure that the system reaches the equilibrium with the
proper Boltzmann distribution and the proper classical energy density such that
the Equipartition theorem 3.2.1 is recovered.

Note that Langevin equation was originally introduced to model an actual
physical process - the Brownian motion, as explained in Section 2.1 - whereas in
the MD algorithm it is a simulation tool to ensure the sampling from the (N, V, T )
ensemble, instead from the (N, V, E) ensemble of standard, non-thermostated MD.

In order to better express this result, which is central also in Langevin-based
quantum methods exposed in Sections 3.4 and 3.5, we state the generalized Langevin
equation as:


dxi
dt

= pi(t)
mi

dpi
dt

= − ∂U
∂xi
−
s∞

0 Γ(τ) pi(t− τ) dτ + R(t)
(3.13)

where the momentum pi is convoluted with the memory function Γ(t), used to
obtain a generalized friction force

s∞
0 Γ(τ)pi(t− τ) dτ . The stochastic process R(t)

has éR(t)ê = 0 and power spectral density given by Wiener-Khinchin’s formula
(2.47) in terms of the time auto-correlation function

CRR(ω) =
Ú +∞

−∞
éR(t)R(t + τ)êe−ıωτ dτ = 2mikBTγ(ω) (3.14)

where we defined γ(ω) as the Fourier transform F{Γ(t)}(ω) of the memory function.
The memory kernel Γ(t) can be chosen arbitrarily; the standard choice is

Γ(t) = γδ(t) (3.15)

where δ(t) is the Dirac delta function. This means that the stochastic process
loses memory immediately of itself i.e. we recover condition (3.12), exactly as it
was supposed in the Brownian motion for the random collisions with the fluid’s
particles. In this way, we obtain R(t) to be a white noise, with constant PSD

CRR(ω) =
Ú +∞

−∞
éR(t)R(t + τ)êe−ıωτ dτ = 2miγkBT (3.16)

In order to integrate the equations of motions, we use Liouville’s operator
formalism and we apply the so called BAOAB integration scheme [58], which has
been shown to optimally perform with respect of other possible integration schemes
of Langevin equation. The integration of position and momentum of each particle
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i is split in the following steps, each of them corresponding to a specific Liouville’s
operator:

• step B: momenta are updated with the forces computed in the positions þx(t)
of an half-step ∆t, as:

pi(t + ∆t/2) = p(t) + fi(þx(t))
mi

∆t/2

The extension to more dimensions is straightforward;

• step A: the positions are updated with the momenta of a half-step ∆t.
Explicitly, this is:

xi(t + ∆t/2) = xi(t) + pi(t)
mi

∆t/2

As shown in (3.9), steps A and B symmetrically split integrates Hamilton’s
equations of motion with an error of O(∆t3);

• step O: the core of the Langevin thermostat is the rescaling of the velocities,
which is obtained by two terms, the friction and the ramdom force, depending
explicitly on the integration step ∆t. A full step integration of the momenta
by the Langevin thermostat states:

pi(t + ∆t) = pi(t)e−γ∆t +
ñ

(1− e−2γ∆t) mikBTg (3.17)

where g is a Gaussian random number, sampled independently at every
step ∆t from a normal distribution with zero mean and unitary variance i.e.
g ∼ N (0,1). This expression is obtained from the solution of the following
differential equation:

dp(t)
dt

= −γp(t) + R(t)

where we dropped the index i for simplicity. By multiplying both sides by eγt,
we obtain:

d

dt

1
eγtp(t)

2
= eγtR(t)

Then, integrating both sides from t to t+∆t, we obtain the following expression:

p(t + ∆t) = p(t)e−γ∆t + e−γ∆t
Ú ∆t

t
dtÍR(tÍ)eγtÍ
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We consider then the second term, that we denote as N(t), and we compute:

éN(t)2ê = e−2γ∆t
Ú ∆t

t
dtÍ
Ú ∆t

tÍ
dtÍÍéR(tÍ)R(tÍÍ)êeγ(tÍ−tÍÍ) (3.18)

Using the property of R(t) (3.12) and the property of the Dirac delta, the
following expression is derived, with the final integral taken between 0 and ∆t:

éN(t)2ê = mkBT
1
1− e−2γ∆t

2
which leads to the integration step O.

The symmetric decomposition of Liouville’s operator for the scheme BAOAB is
then:

eıL̂ ∆t = eıL̂B∆t/2eıL̂A∆t/2eıL̂O∆teıL̂A∆t/2eıL̂B∆t/2

which has an overall error O(∆t3), which is negligible for a small integration step ∆t.
It is worth noticing that the shorter the time step, the longer the total simulation
time becomes. However, too large ∆t would alter the phase-space distribution that
would not correspond to Boltzmann distribution anymore. A qualitative criteria to
choose the integration step is to compare it with the largest vibrational frequency
of the system, or the shortest period. Therefore, the integration step is chosen as
∆t¹ 1/νmax.

Particular attention must be given to the friction parameter γ. Indeed, it is
also the strength of the coupling of equations of motion with the thermal bath.
This means that the higher the value of γ, the stronger the damping term and the
influence on the dynamics. The effect of γ can be clearly seen in the shape of the
spectra shown in Section 4.2, where they appear to broaden as the friction increase.
To explain this effect, let us consider the case of a damped harmonic oscillator of
frequency ω. The effect of the damping term result in an exponential decrease of
the amplitude of oscillations. In the frequency domain, this means that the spectra
is not anymore a δ(ω), but the spectral profile is given by a Lorentzian distribution.
As long as the damping term is kept in a small range of values, the broadening of
the spectra has no serious consequence on the dynamics. However, for large values
of γ compared to the typical frequencies of the system, we fall in the overdamped
regime 2.2.6 and the dynamics is compromised.

Figure 3.1 shows the pseudo-code of Langevin thermostat coupled to Hamilton’s
equations. For simplicity, momenta and positions are one-dimensional, since the
generalization to more dimensions is straightforward. The vector sign indicates
that we are dealing with many particles with index i = 1, . . . , N .

In our work, Langevin thermostat is implemented with a slight optimization
change, namely the Leapfrog Velocity-Verlet, which allow to compute only once
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Data: þv(0), þr(0),∀i =
1, . . . , N + 1

Initialization:
þf ← þf0

þR ←
ñ

kBT (1− e−2γ∆t)/þm

B: þv ← þv + þf ∆t
2þm

A: þr ← þr + þv ∆t
2

O: þv ← þve−γ∆t + þRg

A: þr ← þr + þv ∆t
2

B: þv ← þv + þf ∆t
2þm

Force:
fi ← − ∂U

∂ri

Also for the
next step

For all steps
n = 1, . . . , Nsteps

Output: þv(τ), þr(τ),∀i =
1, . . . , N + 1

Figure 3.1: Flowchart of the Langevin thermostat with BAOAB integration scheme,
where g ∼ N (0,1)

the forces - usually the most time-demanding computation in a MD algorithm -
and update the momenta with þf of a full step ∆t, instead of ∆t/2 twice.

3.2.3 Computation of TCFs
Using MD algorithms, it is possible to access the full trajectory of the system in
the phase space i.e. all positions and momenta are know at each time-step n∆t,
where the index n = 1, . . . , Nsteps. We consider two general (classical) observables
A and B and their TCFs, given by the definition (2.34). For simplicity, we consider
a system of N , 1D particles with trajectory (þx(t), þp(t)) in the phase space. For this
computational part, we refer mainly to [25].

Direct method

The direct method to compute the CAB(n∆t) involves an average over many
trajectories, which means many MD simulation of the same system, and the direct
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evaluation of A at the time t = 0 and B at time t = n∆t. For k trajectories, we
have

CAB(n∆t) = 1
k

kØ
j=1

A(þxj(0), þpj(0))B(þxj(n∆t), þpj(n∆t)) (3.19)

The direct method is simple because involves only the definition of TCF, but it
is really inefficient because usually requires many trajectories’ evaluation.

Single trajectory methods

Another possible direct method, which leads to a more efficient computation of
TCFs, involves the evaluation of only one, very long trajectory, which is divided in
segments of k steps. To exploit this method the following assumptions must be
valid:

• the system is large enough such that the thermodynamic limit is valid and
Microcanonical and Canonical ensembles are equivalent;

• the system is ergodic, such that the Boltzmann distribution can be obtained
by the trajectory - solution of the Hamilton’s equations - itself.

Therefore, it is possible to exploit the Ergodic hypothesis (3.4) and define the
TCFs as

CAB(t) = éA(0)B(t)ê = lim
T →∞

1
T

Ú T

0
dtA( þx(0), þp(0))B(þx(t), þp(t)) (3.20)

Under the assumptions above - which are true for the Langevin thermostat -
correlations are local in time i.e. the system has a finite correlation time. After
a period longer than the correlation time, the system loses memory of the initial
condition and TCFs decay to zero. Hence, each segment can be considered as
an independent replica of system. The computation of TCFs is then completely
equivalent to the direct method and simplified as

CAB(n∆t) = 1
Nsteps − n

Nsteps−nØ
j=1

A(þx(j∆t), þp(j∆t))B(þx((j + n)∆t), þp((j + n)∆t))

(3.21)
where n = 1, . . . , k and k is the total number of time-steps of each segment.
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Fast Fourier Transform method

A more efficient method to compute TCFs is based on the spectral analysis of the
observables involved and on the general method to compute Fourier transforms
in a time O(N log(N)), where N is the number of data [59]. Note that the direct
computation via equation (3.19) is O(N×Nmax, where Nmax∆t is longest coherence
time in the TCF. We consider (3.20) and we introduce the Fourier coefficients

a(ω) = 1
2π

s+∞
−∞ dt A(þy(t))e−ıωt

b(ω) = 1
2π

s+∞
−∞ dt B(þy(t))e−ıωt (3.22)

where we denoted þy(t) = (þx(t), þp(t)) for simplicity. It is easy to show thatÚ +∞

−∞
dω a∗(ω)b(ω)eıωτ =

Ú +∞

−∞
dt A(þy(t))B(þy(t + τ))

and finally obtain, for very large T , a good approximation of the TCF in terms of
the Fourier coefficients (3.22)

CAB(t) = 1
T

Ú +∞

−∞
dω a∗(ω)b(ω)eıωt (3.23)

This expression is an extension of Wiener-Khinchin theorem 2.4.1. For the
actual computation, we have a discrete time step ∆t. So we define the discrete
Fourier coefficients

ak = qNsteps−1
j=0 A(þy(j∆t))e− 2πıkj

Nsteps

bk = qNsteps−1
j=0 B(þy(j∆t))e− 2πıkj

Nsteps

(3.24)

where ωk = 2πk/Nsteps∆t are the discrete frequencies and tj = j∆t are the discrete
time points. We can compute then the TCF as

CAB(n∆t) = 1
Nsteps

Nsteps−1Ø
k=0

a∗(ωk)b(ωk)eıωktj (3.25)

With this method two FFT operations are required to compute the TCFs.
Moreover, in order to compute the spectra, only (3.23) is required, allowing the
use of FFT only once for A and once for B.

3.2.4 Application to diffusion
The diffusion coefficient is related to the velocity-velocity TCF (2.36), as shown in
Section 2.4.2. We define the discrete time version of the velocity-velocity TCF as:

Cvv(n∆t) = 1
Nsteps

Nsteps−1Ø
j=0

v(j∆t)v((j + n)∆t) (3.26)

39



Methods

The discrete Fourier transform of the velocity is:

v̂(k∆ω) = 1ñ
Nsteps

Nsteps−1Ø
j=0

v(j∆t)e−ık∆ωj (3.27)

where ∆ω = 2π/Nsteps∆t. With this definition, we can compute the velocity-velocity
TCF, using the FFT method, substituting (3.27) into (3.26):

Cvv(n∆t) = 1
Nsteps

Nsteps−1Ø
k=0

|v̂(k∆ω)|2eık∆ωn (3.28)

where we used the following property, given the Kronecker delta δij = 1 if i = j
and 0 otherwise:

Ø
jk

e
2πıjk
Nsteps = Nstepsδ0k

There is a subtlety about the periodicity of the Fourier transform of the Cvv(ω).
Indeed, when computing a discrete Fourier transform, the function is made periodic
in time and unphysical time correlations can appear into the correlation function
due to periodicity of the function over the total time of the simulation Nsteps∆t.
In order to eliminate these time correlations, a number of Nsteps zeros is added to
the vector containing the discrete components of the Cvv.

The same method can be used to compute the CRR and all other correlations
function that are needed. We note that the velocity-velocity TCF, as well as
the (random-)force-velocity TCF CvR, acquires a fundamental importance in the
methods based on quantum baths that are described in Section 3.4 and 3.5.

3.3 Path Integral Molecular Dynamics

3.3.1 Classical isomorphism
Path-Integrals Molecular Dynamics (PIMD), based on Feynman’s Path Inte-
gral formalism explained in Section 2.5, is a reliable method to compute quantum
static properties usign the imaginary-time propagator ρ̂(β) = e−βĤ (2.52). The
main idea of PIMD is to exploit the so-called classical isomorphism, which is
derived naturally from the expression of the quantum Canonical partition function
(QCPF) (2.53). This isomorphism allows to introduce a MD scheme with classical
Hamiltonian and classical equations of motion right at the core of the quantum
problem.

We have written the discrete QCPF (2.53) in the following way:
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Z(L, T ) = lim
N→∞

A
mN

2πβ~2

BN/2 Ú
D(L)

dx1 . . . dxN

exp
C
−1
~

NØ
k=1

A
mN

2β~
(xk+1 − xk)2 + β~

2N
V (xk)

BD

The QCPF can be also seen as the classical partition function of a ring-polymer
with N beads moving in a classical potential (see Figure 3.2)

Z
(N)
RP (L, T ) =

Ú
dp1 . . . dpN

Ú
dx1 . . . dxN

exp
C
−βN

NØ
k=1

A
p2

k

2m
+ 1

2mω2
N(xk+1 − xk)2 + V (xk)

BD
(3.29)

where we defined βN = β
N
, ωN = 1

βN~ as chain frequency of the coupled beads in the
ring-polymer and we applied PBC x1 = xN+1. Hence, {xk, pk} are the positions and
momenta of the k = 1, . . . , N beads. This corresponds to a classical Hamiltonian
for the ring-polymer of the following form:

H
(N)
cl ({xk, pk}) =

NØ
k=1

A
p2

k

2m
+ 1

2mω2
N(xk+1 − xk)2 + V (xk)

B
(3.30)

Thus, the classical equations of motion of the ring-polymer are written as
dxk
dt

= pk(t)
m

dpk
dt

= − ∂V
∂xk
−mω2

N(2xk − xk+1 − xk−1)
(3.31)

The classical isomorphism is exact in the limit of infinite number of beads, i.e.

Z(L, T ) = lim
N→∞

Z
(N)
RP (L, T ) (3.32)

For a real computation with a finite number of beads N , the error given by the
splitting in deriving (2.52) is of O( 1

N3 ) for each bead, which means a total error of
O( 1

N2 ). If we couple the equations of motion (3.31) with Langevin thermostat, we
can sample from the Canonical distribution as shown in Section 3.2.

3.3.2 Ring-Polymer Molecular Dynamics
Path-Integrals Molecular Dynamics (PIMD) is an important computational tool for
quantum static properties but it does not allow in general to compute dynamical
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Figure 3.2: Schematic representation of the ring-polymer for a free quantum particle
with gyration radius given by (3.34) (from [41])

properties that involve real time quantum propagation. Therefore, numerous
approximated theories had been proposed to compute dynamical properties in
terms of time correlation functions, such as Kubo’s (2.39). In this section, we
consider a particular approximation, the Ring Polymer Molecular Dynamics
(RPMD) [34, 41, 42] which is able to compute approximate (Kubo-transformed)
TCFs from the dynamics of imaginary-time path integrals.

Considering the dynamics of a ring polymer path integral, RPMD obtains the
following definition of the Kubo-transformed time correlation function [33] of two
observables A and B is the following:

éA(0)B(t)ê = 1
Z(N)(2π~)N

Ú
dx1 . . . dN

Ú
dp1dpN

e−βH
(N)
cl

(xk,pk)A(N)(0)B(N)(t) (3.33)

where A(N)(0) = 1
N

qN
k=1 A(xk(0), pk(0)) and B(N)(t) = 1

N

qN
k=1 B(xk(t), pk(t))

and Z(N) given by (3.29).
In general, the RPMD Kubo-transformed TCF is a refinement of Matsubara

dynamics, which relies on delicate approximations. The full derivation of this
expression and the analysis of the approximations are discussed in detail in [60].

3.3.3 NQEs in RPMD
The main point of the ring-polymer description is that the swelling of the quantum
particle due to the combination of thermal and quantum fluctuations is reproduced
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by the interacting chain [41]. Indeed, we can define the gyration radius of the
ring-polymer of a free particle

∆q =

öõõôé 1
N

NØ
k=1

(xk − q̄)2ê (3.34)

where

q̄ = 1
N

NØ
k=1

xk

is the position of the centroid of the polymer. For N → ∞, the gyration radius
has the following limit for a free particle:

∆q =
ó

β~2

12m

3
1− 1

N2

4
→ ~√

12mkBT
(3.35)

In Figure 3.2 a schematic representation is shown, taken from [41].
Therefore, the smaller the mass and the lower the temperature, the more

pronounced is the swelling of the polymer and the quantum distribution of the
particle is recovered. With this picture, it is possible to include naturally into a
MD method the NQEs due to the quantum delocalization of the particle.

Figure 3.3: Qualitative representation of the tunneling (a) and zero-point energy (b) in
the RPMD method (from [41])

Zero-point Energy

A classical particle, with initial position at the bottom of a well, has no zero-point
potential energy. For a quantum, particle instead, the energy has a non-zero
distribution. The same happens in a system at T = 0K: the classical particle is
completely frozen, while a quantum particle still has some zero-point quantum
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fluctuations. The RPMD picture captures the qualitative aspect of the zero-point
energy thanks to the dispersion of the beads, which are not experiencing all the
same zero-point potential at the bottom of the well, and the QCPF reduces to
e−βE0 in the limit of low temperature, where E0 is the ground state of the system.
In Figure 3.3 a schematic representation is shown, taken from [41].

Tunneling

If we are in presence of a potential barrier, a classical particle cannot overcome
it unless it has an energy equal or higher than the top of the barrier Vmax. The
Canonical probability to find the classical particle at the top of the barrier is
e−βVmax . Instead, a quantum particle can tunnel through a potential barrier with
exponentially low but finite probability depending on the width of the potential.
A ring-polymer reproduces qualitatively this quantum effect. Indeed, the beads
are not feeling all the potential Vmax but some potential V (xk) ≤ Vmax. For the
probabilities, this means that e−βV (xk) ≥ e−βVmax . Therefore, the polymer can cross
the barrier even if the mean energy (averaged over the different beads) is lower
than the barrier height. In Figure 3.3 a schematic representation is shown, taken
from [41].

3.3.4 Problems with PIMD
As already mentioned, PIMD allows to compute exactly quantum static properties
but it cannot provide a unified and exact theory for quantum dynamics.

RPMD has some drawbacks due to the fact that it is based on the imaginary time
representation of the density matrix in Feynman’s picture. First of all, we have to
deal with an imaginary time, due to the Feynman’s picture explained in Section 2.5,
and not on real time dynamics. Therefore, for the Kubo-transformed TCF, there
is no actual rigorous derivation to prove this result. Moreover, RPMD simulations
involve a significant increase of the computational cost (equal to the number N
of beads) for each quantum particle with respect to a classical MD simulation,
although the computation could be parallelized on many processors. Finally, there
are problems in which interference between the intrinsic chain frequencies of the
ring-polymer with physical frequencies of the system can be observed causing
spurious resonances [44].

Apart RPMD, other PIMD methods exists, such as Linearized Semi-Classical
Initial Value Representation (LSC-IVR) [61] and Centroid Molecular Dynamics,
which is the mean-field version of Matsubara dynamics [60]. These methods linked
to the PI framework have to rely on approximations, which are not always valid for
every quantum system. Moreover, real-time path integral formulations, in principle,
would allow the computation of dynamical properties, but it suffers of the so-called
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sign problem, which derives from the oscillations of the phase factor when very large
number of paths are summed (as qualitatively explained in Section 2.5). For these
reasons, even if PIMD remains the favourite tool to deal with NQEs, alternative
approaches are needed.

3.4 Quantum Thermal Bath
The drawbacks of PIMD require to find a suitable alternative to simulate dynamical
properties of quantum systems in which are present NQEs. One promising quantum
MD alternative method is the Quantum Thermal Bath [22]; a similar algorithm,
called Quantum thermostat, have been implemented by several groups and all of
them are based on Langevin equations [62, 63].

The main idea of the QTB is similar to the classical case and consists in mimicking
the quantum delocalization of a light nucleus with a stochastic process. As for
the classical Langevin thermostat, two contributions are added to the Hamilton’s
equation of motions: a frictional force with parameter γ and a random force which
makes explicit the quantum nature of the particle via its power spectral density.
Indeed, the bath now is a quantum version of the Langevin thermal bath and it
is given by the quantum Fluctuation-Dissipation theorem (3.38). The random
force is therefore not a white noise, but a coloured ’quantum’ noise. The main
advantages of the QTB are the reduced computational costs compared to PIMD
methods and the use of a clear classical picture, in which the concept of particle’s
trajectories in real time is well defined and can be easily simulated with well known
MD techniques.

QTB method is based on the Langevin equation of the form of (2.5). We recall
also the generalized Langevin equation (3.13). For simplicity, we consider a 1D
system, which can be easily generalized to more dimensions and more particles as
shown below. The main difference from the classical case is the implementation of
the random force R(t), which now is a random process with éR(t)ê = 0 and the
force-force TCF CRR(τ) by defining the following power spectral density for the
quantum problem

CRR(ω) = 2mγθ(ω, T ) (3.36)

and relating to CRR(τ) via the Wiener-Khinchin theorem (2.47). Here, we assume
the quantum energy density function θ(ω, T ) is given by the following formula:

θ(ω, T ) = ~ω

A
1
2 + 1

e
~ω
kBT − 1

B
= ~ω

2
1

tanh
1

~ω
kBT

2 (3.37)
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This expression correspond to the average energy of an harmonic oscillator of
frequency ω at thermal equilibrium. The idea of the QTB is therefore to thermalize
each vibration mode of the quantum system, not with the classical distribution of
energy - given by the Equipartition theorem 3.2.1 - but with the quantum energy
distribution θ(ω, T ). In particular, the first term ~ω

2 corresponds to the zero-point
energy and ensures that, even when T = 0K, the system does not freeze but insead
continues to fluctuate with an average probability distribution that mimics the
delocalization of the quantum ground state.

For a many particles and more (2 or 3) dimensions, the power spectral density
takes the form of:

CRiαRjβ(ω) = 2mγθ(ω, T )δijδαβ

for α, β = 1, 2, 3, . . . and i, j = 1, . . . , N .

3.4.1 Fluctuation-Dissipation Theorem
The relation between the frictional force and the random force in Langevin equation
- expressed by Wiener-Khinchin’s formula (3.14) - is related a much more general
result [26], which takes the name of Fluctuation-Dissipation therorem (FDT).
It sates that the response of a system to an external disturbance is related to the
internal fluctuations of the system in absence of the disturbance. Time-correlation
functions can express and characterize internal fluctuations - or their fluctuations
spectra - and they are linked in general to quantities such as admittance or
impedence. Knowing one side of the theorem allows to know also the other in full
generality. The expression of (3.37) is then derived by using the quantum version
of the Fluctuation-Dissipation theorem in [64] and it is not reported in this work.

A condensed way to express the FDT is the following:

1
2mCvv(ω) = Ù [åχvx(ω)] kBTκ(ω, T ) (3.38)

where Cvv is the FT of the velocity-velocity TCF (2.36), the function κ(ω, T )
is a spectral ’thermal energy distribution function’ which can be specified for the
problem under study. Finally, the åχvx(ω) is the linear generalized susceptibility
- defined in full generality in [26] - which, in this case, characterize the velocity
response ∆v(ω) to a small perturbative force in the frequency domain

∆v(ω) = åχvx(ω)∆F (ω)

What is most important is the interpretation of the (3.38) and its use in the
context of Langevin methods presented in this work. First of all, let us consider
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the classical case in which the function κ(ω, T ) = 1. What we obtain is the
classical Equipartition theorem (3.10), in which every mode posses the same energy.
Therefore, the quantity 2Ù [åχvx(ω)] can be seen also as the vibrational density of
state of an harmonic system.

For the quantum case, κ(ω, T ) = θ(ω,T )
kBT

. Then, from the FDT (3.38) we recover
exactly the distribution of energy of the QTB (3.37), and the new quantum density
distribution is inserted into the system by the random force R(t).

For a full derivation of the Linear Response Theory we refer to [25] and to a
general discussion of the generalized susceptibility and the FDT we refer to [64]
and [23].

3.4.2 Integration of Equations of Motion with QTB
Again, the QTB algorithm integrates the equations of motion with the BAOAB
scheme already employed for classical Langevin thermostat. The only difference is
in the step O of the velocity rescaling (3.17) and in particular in the expression
of the random noise coefficient (3.18), which is now correlated in time. Hence we
want to compute

éN(t)N(tÍ)ê = éN(0)N(τ)ê

where τ = Nsteps∆t. We have then

éN(0)N(τ)ê = e−2γ∆t
Ú ∆t

0
dtÍ
Ú ∆t

0
dtÍÍeγ(tÍ+tÍÍ)éR(t + tÍ)R(t + tÍÍ)ê

Using the definition of CRR(τ) given by (3.36), we have

éN(0)N(τ)ê = e−2γ∆t
Ú ∆t

0
dtÍ
Ú ∆t

0
dtÍÍ eγ(tÍ+tÍÍ)

Ú +∞

−∞

dω

2π
eıω(tÍ−tÍÍ) 2mγ θ(ω, T )

which can be rearranged into

éN(0)N(τ)ê = e−2γ∆t2mγ
Ú +∞

−∞

dω

2π
θ(ω, T )eıωt

Ú ∆t

0
dtÍ
Ú ∆t

0
dtÍÍ e(ıω+γ)tÍ

e(−ıω+γ)tÍÍ

Integrating over tÍ and tÍÍ and rearranging the expression, we obtain the final
shape of the coefficient we need to apply in order to rescale the momenta

éN(0)N(τ)ê = 2mγ
Ú +∞

−∞

dω

2π

C
1− 2cos(ω∆t)e−γ∆t + e−2γ∆t

ω2 + γ2

D
θ(ω, T )eıωt
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To simplify the notation, we call the factor between [. . . ] = φ(ω, γ, ∆t). Then,
finally, we obtain the following integration step O of the BAOAB integration
scheme:

pi(t + ∆t) = pi(t)e−γ∆t +
ó

2mγ
Ú +∞

−∞

dω

2π
φ(ω, γ, ∆t)θ(ω, T )g(∆t)eıωt

(3.39)
where g is a Gaussian random number sampled from a normal distribution with
zero mean and unitary variance i.e. g(t) ∼ N (0,1). The steps A and B remain
unchanged.

Three important subtleties must be discussed. First of all, since the random
noise is now correlated in time, we need to compute it all before the integration.
Therefore, it is necessary to divide the full integration time τ in segments of length
Nsteps∆t. Hence, the total time of the simulation is τ = Nseg × Nsteps∆t. This
segmentation here it is only a computational trick to not have to save too long
vectors in the memory, but it will have a important role in the implementation of
the Adaptive QTB (see Section 3.5).

The second subtlety is the need of a cut-off frequency ωcut [65]. Indeed, the
spectral energy density (3.37) diverges proportionally to ω at high frequencies.
Thus, the QTB includes fluctuations at arbitrary high frequencies, most of which
are not physical. We introduce then a cutoff function of the form:

fcut(ω; ωcut, ωsmear) = 1
e

(ω−ωcut)
ωsmear + 1

(3.40)

The parameter ωcut gives the maximal frequency, few times higher than the
physical maximal frequency ωmax observed in the spectrum. The parameter ωsmear

makes the cutoff smoother. The final version of the O step becomes

pi(t + ∆t) = pi(t)e−γ∆t +
ó

2mγ
Ú +∞

−∞

dω

2π
κ(ω, γ, ∆t)θ(ω, T )gfcut(ω)eıωt

The other important parameter that must be chosen wisely is again the ’friction’
γ. As in the classical case described in Section 3.2, it cannot be too small if we
want to keep the simulation total time to a accessible order but it must be smaller
than a typical frequencies of the system. However, γ gives also the strength of
the coupling between the quantum thermostat and the equations of motion. This
means that its value must be large enough to have the correct quantum energy
distribution given by (3.37).
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Figure 3.4 is the pseudo-code of the QTB algorithm. The routine QTB-noise
generates the quantum noise for the whole sequence of Nsteps before each segment
of the simulation, exactly as described by (3.39). The total time of the simulation
is τ = Nseg ×Nsteps∆t.

Data: þv(0), þr(0),∀i =
1, . . . , N + 1

Initialization:
þf ← þf0

þR(t) ← QTB-noise*

BA: see Figure 3.1

O (QTB version):
v ← ve−γ∆t + þR(∆t)

AB: see Figure 3.1

For all steps
n = 1, . . . , Nsteps

For all segments
m = 1, . . . , Nseg

Output: þv(τ), þr(τ),∀i =
1, . . . , N + 1

Figure 3.4: Flowchart of the QTB thermostat

3.4.3 Zero-Point Energy Leakage
Although the QTB gives exact results in the simulation of NQEs in harmonic
systems [16, 2, 5] in presence of anharmonicity it fails, due to the so-called Zero-
Point Energy Leakage (ZPEL) [45].

In the QTB method, the quantum bath given by the stochastic process R(t) is
coupled with Hamilton’s equations via the parameter γ. The higher the value of
γ, the stronger the coupling and thus the effect of the bath on the dynamics. As
a general rule of thumb, the friction should be chosen small enough to avoid to
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fall in the overdamped regime and completely modify the dynamical properties of
the system. The quantum bath thermalizes each vibrational mode of the quantum
system at the correct energy density θ(ω, T ), given by (3.37).

However, the presence of classical external forces −∂U(þx)
∂xi

which couple the modes
(creating anharmonicity) leads to the ZPEL. The energy of high frequency modes
is transfered to the low frequency ones, because classical equations of motions
enforces the Equipartition theorem (3.10). As a results, the effective energy density
distribution will be lower than θ(ω, T ) for high ωs and higher than θ(ω, T ) for low
ωs.

The first approach to solve the ZPEL is to use higher values of the friction,
which has been shown to reduce - but not eliminate - the drawback, at the cost of a
stronger influence on the dynamics by the bath [45]. Indeed, as already explained in
Section 3.2, the friction γ is the strength of the coupling between the quantum bath
and the equations of motion. By increasing γ, the system is forced to thermalize
with the quantum distribution, even though the spectra may significantly change
due to the damping term in Langevin equation. The best compromise between
these two aspects must be found to ensure correct dynamical results.

A second, more sophisticate and precise method used to correct the ZPEL takes
the name of adaptive QTB and is described in the following section.

3.5 Adaptive Quantum Thermal Bath

3.5.1 Diagnosis of the ZPEL
The main idea to quantify the error given by the ZPEL is to measure the violation
of the quantum Fluctuation Dissipation Theorem involved in the Langevin-based
process of QTB [23].

We recall the FDT (3.38) in terms of the generalized susceptibility Ù [åχvx(ω)].
From the Linear Response Theory, we have the following result for the position
and velocity operators x̂ and v̂:

Ù [åχvx(ω)] = ω

2ıθ(ω, T )

Ú +∞

−∞
éx̂(0)v̂(t)êe−ıωtdt = Cvv(ω)

2θ(ω, T ) (3.41)

This result is valid for every frequency and it is exact for quantum operators
which evolves with the correct quantum dynamics. However, in the QTB we are
using classical equations of motion and classical variables as observable. Thus,
this relation is not exact anymore and we can measure the difference of the two
quantities in order to correct the ZPEL.
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The velocity-velocity TCF can be computed in QTB in the way described by
(3.19). This is not the case for the generalized susceptibility, which in general
cannot be computed analitically and must be integrated with numerical methods.
Therefore, we look for an expression of (3.41) in terms of TCFs. We consider the
following property for the spectral component of the random force R(t):

é åR(ω) åR(ωÍ)ê = 0,∀ω /= ωÍ

Based on the fact that the forces at distinct frequencies are not correlated, the
quantum Fluctuation-Dissipation theorem is fulfilled for each frequency (for details,
see [23]). This is also true for simulations, provided ∆ω = 2π

Nsteps∆t
be small i.e.

for long enough simulations. Therefore, we have the following relation for the
generalized susceptibility:

Ù [åχvx(ω)] Ä Ù [CvR(ω)]
CRR(ω) (3.42)

This relation can be rewritten using (3.41) and (3.36) in the following way:

mγCvv(ω) = Ù [CvR(ω)] (3.43)

The interpretation of this formula is the equivalence between the spectrum
of the power injected in the system by the random force CvR and the spectrum
of the power dissipated by the frictional force mγCvv. Any deviation from the
quantum FDT in (3.43) is due to the energy that is transferred from a frequency
to another one. Therefore, equation (3.43) provides a measure of the ZPEL. The
velocity-(random) force TCF can be computed in the same way of the Cvv.

3.5.2 Cure of the ZPEL
The main idea of the adQTB is to use a frictional coefficient that is a function
of the frequencies γ(ω) and adapt on the fly the dynamics in such way that it
compensate the error given by the ZPEL on the energy distribution, using (3.43).
We define then a new power spectral density

CRR(ω) = 2mγ(ω)θ(ω, T ) (3.44)

such that (3.43) takes the form:

CvR(ω) = mγ(ω)Cvv(ω) (3.45)
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and we can compute the difference

∆F DT (ω) = Ù [CvR(ω)]−mγ(ω)Cvv(ω) (3.46)

From this quantity we have a estimation of the ZPEL for each frequency, hence
we can correct it by adapting the γ(ω) in a way such that it increases at high ωs
and decreases at low ωs. Another possible method could be to adapt the memory
function Γ(τ) [23] - or rather its spectral component Γ(ω) - but this method has
not been used in this work.

3.5.3 Adaptation of the friction
Once Cvv, CvR and the difference (3.46) are computed, the main goal is to adapt
γ(ω) such that ∆F DT Ä 0,∀ω < ωcut. We have therefore an equation for the friction
function for every frequency:

dγ(ω)
dt

= γAγ
∆F DT (ω)
||∆F DT (ω)|| (3.47)

where γ is the friction parameter, Aγ is the velocity of adaptation and ||∆F DT (ω)||
is the norm

||∆F DT (ω)|| =
ó Ø

ω<ωcut

∆2
F DT (ω) (3.48)

The integration of the adaptive γ(ω) is not done over a single time step ∆t
but over a full segment Nsteps∆t, where the total time of the simulation is τ =
Nseg ×Nsteps∆t (see Section 3.4 for the explanation). We obtain therefore

γ(n+1)(ω) = γ(n)(ω) + γAγ
∆F DT (ω)
||∆F DT (ω)||Nsteps∆t (3.49)

where the index n indicates the segment of the simulation (n = 1, . . . , Nseg). We
note that a large value of the Aγ, compared to the friction parameter, leads to a
fast convergence. However, the faster the adaptation process, the larger are the
fluctuations, which can have repercussions on the dynamics. Figure 3.5 shows the
implementation of the adQTB, following the implementation of the QTB in Figure
3.4.
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Data: þv(0), þr(0),∀i =
1, . . . , N + 1

Initialization:
þf ← þf0

þg ← QTB-noise* with γ(n)(ω)

BA: see Figure 3.1

O (QTB version):
v ← ve−γ∆t + gξ(∆t)

AB: see Figure 3.1

For all steps
n = 1, . . . , Nsteps

For all segments
m = 1, . . . , Nseg

Compute Cvv(ω) and CvR(ω)

Compute ∆F DT (ω)
and adapt γ(n+1)(ω)

Output: þv(τ), þr(τ),∀i =
1, . . . , N + 1

Figure 3.5: Flowchart of the adQTB thermostat
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Chapter 4

Results

In this Chapter the main results of classical and quantum MD simulations are
discussed. First, we describe the simple model for hydrogen’s diffusion. This model
is created in such a way it has physical properties of a quantum diffusion problem
but it is simple enough to be easily tested with different methods. Then, this
model was studied with the classical Langevin thermostat described in Section 3.2,
characterize the classical diffusion effect and its temperature dependence. Then,
both QTB and adQTB - described in Section 3.4 and 3.5 respectively - were tested
on the same system, and their results are evaluated. We show that even in this
simplified model, complex physical behaviors can arise, in particular, we evidence
the effect of phonon-assisted hopping on diffusion and its interplay with NQEs,
such as zero-point motion.

A FORTRAN molecular dynamic code was developed from scratch in order to
easily test all tree main MD methods - Langevin thermostat, QTB and adQTB,
presented in Section 3.2, 3.4 and 3.5 respectively - and their assumptions. All
problems due to convergence and numerical evaluations, some of which are discussed
in Chapter 3, were solved for this simple system. This code can be easily extended
to incorporate other MD methods (such as RPMD, see Section 3.3) and more
sophisticated problems in the future.

4.1 System description
The goal of this work is to study the diffusion of an hydrogen atom in a solid
material, in order to highlight the capacity of Langevin-based methods, both
classical and quantum to simulate such phenomenon.

The system is then composed by a 2D triangular lattice of ’heavy atoms’, named
in this way because their mass is many times heavier than the hydrogen atomic
mass, which is mH = 1,00784u = 1836 in atomic units (a.u.). We recall that atomic
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units means ~ = e = me = 1 = 4πÔ0. The two elementary direction’s vectors are:

• þa1 = (1,0)a;

• þa2 = (1
2 ,

√
3

2 )a;

where a is the distance between two lattice atoms in a.u.. The two principal
diagonals of the system are a linear combination of the elementary vectors:

• principal diagonal: þd1 = (
√

3
2 , 1

2)a = 1√
3(þa1 + þa2);

• normal diagonal: þd2 = (−1
2 ,

√
3

2 )a = (þa2 − þa1);

where all distances are in a.u. We preferred a 2D version of the problem to better
picture the system and have a better idea of the qualitative diffusion of the hydrogen.
Moreover, the triangular shape is preferred to other geometries, such as a squared
lattice, because we want to avoid instabilities with respect to shearing.

Figure 4.1: Model system: 3D representation of the elementary triangular lattice cell.
On the z-axis the interaction potential U(r) between heavy atoms and the hydrogen (4.2)
is shown in a.u.

A 3D representation of two nearest neighbours elementary lattice cells is shown
in Figure 4.1. We can have then a qualitative picture of the interaction potential
(4.2) seen by the hydrogen in its diffusion: the highest peak of the lattice are the
heavy atoms of the lattice, whereas the hydrogen equilibrium position is likely to
be the bottom of a potential well in the middle of a elementary triangular cell.

In Figure 4.2 the same potential is shown as a 2D map, on which the two main
directions of the lattice þd1 and þd2 are drawn. The main feature of interest is at the
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center of this image, along direction þd1: the saddle point between two elementary
cell.

Figure 4.2: Model system: 2D map of the interaction potential U(r) (4.2) for two
elementary triangular lattice cells, shown in a.u., with the main direction vectors þd1 and
þd2.

It is worth noticing that the images show only a portion of the full system
because periodic boundary conditions (PBC) are applied in order to recover the
thermodynamic limit i.e. very large number of particles.

4.1.1 Interaction potential

The main computation effort of a MD simulation is usually the computation of
the forces acting on each particle. We decided to use an empirical force field in
order to have few parameters under control, which can be tuned to obtain the
different conditions for the diffusion problem. In particular, the height of the
potential barrier between two adjacent cell is the most important parameter of the
system. Indeed, a very high barrier can suppress diffusion even up to the melting
temperature, loosing any possibility of simulation of diffusion in a solid. On the
other hand, a very low barrier allows a classical particle to hop between the cells
even at low temperature, making it impossible to distinguish evident NQEs such
as zero-point motion.

The interaction potential of the ’heavy atoms’ between themselves is a Morse
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Figure 4.3: Example of Morse potential V (r) (4.1)

potential [66] of the form

V (r) = V0
è1

1− e−λ(r−r0)22− 1
é

(4.1)

where r = |þr| is the distance between the heavy atom nuclei, r0 is the equilibrium
distance, V0 is a parameter that gives the depth of the potential well and λ = 1/α
set the width of the potential well.

Figure 4.3 provides a representation of the empirical potential that is felt by
a hydrogen on the scale of the unit 2D cell of the system. In general, the full
interaction potential depends on the positions of all the atoms in the system.
Therefore, the calculation of the forces acting on an atom would include a sum over
all neighbors, whatever the distance, which would diverge in the thermodynamic
limit. Instead, we adopt a cutoff in the real space: for all neighbors with a distance
bigger than the cutoff radius rcut, their contribution is neglected. rcut is chosen in
such a way that the residual potential energy, would give a small contribution to
the total energy:

s∞
rcut

4π r2 dr |V (r)| ¹
s rcut

0 4π r2 dr |V (r)|.
The interaction potential between the heavy atoms and the hydrogen that we
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Figure 4.4: Model system: interaction potential U(þr) (4.2) between the hydrogen and
the lattice along direction þd2.

chose is simple repulsive potential

U(r) = U0e
−r/α (4.2)

where the parameters U0 and α are chosen carefully, together with the parameters
of the Morse potential, in order to obtain physically relevant properties, first of all
to allow the diffusion and to avoid the melting of the lattice at room temperature.
Furthermore, we are interested to create a system in which the hydrogen has higher
typical frequencies than the vibration frequencies of the lattice, as is generally
the case in actual materials. Once all parameters are fixed, we will vary only the
masses of the heavy atoms, in order to understand the possible effects on hydrogen
diffusion. Table 4.1 summarizes the values of the parameters used in our code.

In Table 4.2, we report also the main values of the physical units, derived from
the use of [a.u.]

In Figure 4.4 the profile of the interaction potential between the hydrogen and
the lattice is shown along þd2, i.e. from one heavy atom to the next. This is also
depicted in a different way by Figure 4.1 and 4.2. We can see that along d2 there is
quite a large barrier, of about 6eV , in correspondence of the position of the heavy
atoms of the lattice. This barrier is huge compared to the thermal energy at the
ambient conditions, which amounts to about 25meV . We can thus anticipate that
hydrogen diffusion would be negligible in any direction that links two main heavy
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Parameters values [a.u.]
rcut 25.0
r0 5.0
V0 0.05
α 1.0
U0 0.25
λ 1.3

Table 4.1: Values of the parameters of the Morse potential (4.1) and the hydrogen-heavy
atom interaction potential (4.2) used in the simulations.

Physical quantity unit
distances 0.520Å
times 2.41× 10−5ps

energies 27.2eV
temperatures 3.158× 105K

Table 4.2: Units of measured converted from the [a.u.].

atoms, like þd2.
This fact restricts drastically the possible direction of diffusion. Indeed, as

shown in Figure 4.5 along direction given by the diagonal þd1 i.e. from one minimum
to the next, it is present the potential barrier - which become a saddle point in 3D
space, as shown in Figure 4.2 - through which is most likely the hydrogen hops
from one cell to another.

Note that the description of the hydrogen diffusion problem in terms of a 1D
double-well allows to state the physical problem in very simple terms, but it has
applications also in real systems. Indeed, in the Introduction, we explained briefly
the quantum phase transition between ice phases VII and X, where the oxygen-
oxygen distance was the order parameter [2]. Also in that system, using as main
spatial coordinate the distance between two oxygen atom, a double-well potential
was considered and the quantum dynamics of proton was studied.

4.1.2 Static estimation of the free energy barrier
Once all parameters of the interactions potentials (4.1) and (4.2) are fixed, it is
possible to estimate the height of the potential barrier of the double-well shown in
Figure 2.1. This will be useful later as a comparison with the dynamical measure
of the diffusion coefficient and the assessment of the classical Langevin thermostat
via the Arrhenius law (4.3), which is expected to hold for the simple system in the
classical (high temperature) regime.
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Figure 4.5: Model system: interaction potential U(þr) (4.2) between the hydrogen and
the lattice along direction þd1.

Figure 4.6 gives the static estimation of ∆U = 135meV , which will be compared
in the next section with the values of the free energy barrier ∆F extracted by the
dynamical measure of the diffusion coefficient.

Finally, we show a simplified picture of the full system in Figure 4.7. This
picture gives a qualitative idea of the classical dynamics of the system, integrated
with the classical Langevin thermostat. In this specific case, we plot the positions
that have been visited by the hydrogen along 10ps Langevin dynamics at ambient
temperature (300K). The heavy atoms are only represented at their equilibrium
position.

Although the hydrogen spends much of the simulation time around the equilib-
rium position, it is clear that, at room temperature, the hydrogen atom has enough
thermal energy to hop from the equilibrium position of a cell to another through
the saddle point. When the temperature decreases, the hopping becomes a rare
event and requires longer simulations to be studied.

4.2 Classical results
In this Section, we present the results of the classical Langevin simulation, empha-
sizing some important points:

• the influence of the friction coefficient on the computed diffusion coefficients as
shown in Section 3.2, the presence of a thermostat (in our case, the Langevin
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Figure 4.6: Model system: static estimation of the potential barrier (zoom from Figure
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Figure 4.7: Model system: ’heavy atoms’ lattice (blue points in their equilibrium
positions) with a single hydrogen atom diffusing, for t = 10ps and a T = 300K (red
trajectory)
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thermostat) can influence the results obtained for dynamical observables
such as time-correlation functions (TCFs) and diffusion rates. It is therefore
important to ensure that, for the Langevin’s parameters that we use in this
study, the diffusion coefficient is not strongly altered with respect to the one
that would be obtained from non-thermostated (NVE) simulations;

• the diffusion of light particles can in some systems be activated by the motion
of the heavier particles. In this case, one speaks of Phonon-Assisted Hopping
(PAH) [...]. We will assess the importance of this effect by studying the
influence of the heavy atom mass on the hydrogen diffusion.

Therefore, for all results, we consider three different types of lattice:

• oxygen lattice: mO = 29376a.u. = 16mH . We expect the spectra of the
hydrogen and the oxygen lattice to be so close that the specific modes of the
two elements cannot be decoupled, and correlations will play a role in the
dynamics;

• niobium (Nb) lattice: mNb = 150552a.u. = 82mH . We chose this element in
order to have an intermediate situation between the two extremes of oxygen
and lead;

• lead (Pb) lattice: mP b = 301104a.u. = 164mH . The difference of masses is
huge, so we expect the spectrum of the hydrogen to be very well separated from
the one of the Pb lattice. Therefore we assume that is possible to decouple
the two elements and observe their quasi-pure spectral modes.

In the following spectral analysis, the importance of using different masses is
explained.

4.2.1 Classical spectral analysis
The first main goal of the analysis of the performance of classical Langevin thermo-
stat is the evaluation of the effect of the mass and the friction γ on the dynamical
properties of the system. In order to accomplish the first goal, the vibration
spectra of the lattice and the hydrogen are computed after the integration of the
equations of motions, by saving the velocities and the random forces on the fly
along the trajectory. All spectra are then averaged over many trajectories: O(102).
The spectral analysis gives important insight on the physical properties of the
system and it is of crucial importance for the implementation and evaluation of
the quantum Langevin-based MD techniques.

The spectra are obtained from the computation of the TCFs Cvv (3.26) and CvR

with the Fast Fourier method (3.25). We spend few words about the computation.
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Figure 4.8: Spectra of oxygen lattice (darker colours) and hydrogen (lighter colours)
for different values of γ at T = 16K.
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Figure 4.9: Spectra of Nb lattice (darker colours) and hydrogen (lighter colours) for
different values of γ at T = 16K

During each integration step, the v(∆t) and the forces R(∆t) are saved for each
atom of the system. Then, the two correlation functions are computed for both
the hydrogen atom and the lattice atoms, using their velocities v(t) and random
force R(t) respectively (the formulas are reported in 1D but in the simulation
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two dimensional quantities are computed). For example, for the hydrogen atom,
referring to formula (3.28), we have

CH
vv(n∆t) = 1

Nsteps

Nsteps−1Ø
k=0

|v̂H(k∆ω)|2eık∆ωn
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Figure 4.10: Spectra of Pb lattice (darker colours) and hydrogen (lighter colours) for
different values of γ at T = 16K

The same computation is done for the atoms of the lattice. Notice that the
lattice spectra are obtained by averaging on the number of particles of the lattice,
in order to reduce the noise. Moreover, we consider a very low temperature
(T = 16K). Indeed, at this low temperature, the vibrations are essentially harmonic
whereas anharmonicity becomes more apparent at higher temperatures and causes
a broadening of the spectral peaks.

Figures 4.8, 4.9 and 4.10 shows the spectra obtained from the Cvv and CvR

using the classical Langevin thermostat. The difference between the two TCFs
will be analyzed later and it will be of fundamental importance for QTB and
adQTB methods, as explained in Sections 3.4 and 3.5. We use the following colours
convention:

• darker colours for lattice spectra;

• lighter colours for hydrogen spectra.

We use also three different chromatic scales for the three different lattice types,
to facilitate the confront between different methods.
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Figure 4.11: Spectra of oxygen lattice (darker colours) and hydrogen (lighter colours)
at T = 16K, for γ = 1THz. No separation between the two elements’ spectra.

The first thing we can deduce by the spectra in Figure 4.8, 4.9 and 4.10, is
the effect of the damping term. Clearly, for values of γ of the same order of the
typical frequencies of the system, the spectra are significantly broadened. Indeed,
as explained in Section 3.2, higher values of the friction have stronger effect on
the dynamics. The ideal classical limit can be found for γ → 0, when we recover
exactly Hamilton’s equations. Later in this Section we analyze the dependence of
the diffusion rate on the friction coefficient γ. This is the main effect of the friction
on classical Langevin thermostat.

We note that, for very small values of γ, the thermalization time increases and
longer simulations are needed before it is possible to compute physical properties
safely. A way to understand how much time is required for the system to thermalize
is computing on the fly the kinetic energy of the system. Once it reaches an average
value given by the Equipartition theorem 3.2.1, i.e. éKê Ä NkBT , where N is the
number of particles, then it means the Canonical distribution is reached thanks
to the action of Langevin thermostat. Although a thermalization period is always
necessary, a simple trick to reduce its time is to use a larger value of γ at the
beginning of the simulation and after the system is thermalized, decrease the value
of γ to have a gentle effect of the damping term on the dynamics.
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Figure 4.12: Spectra of Nb lattice (darker colours) and hydrogen (lighter colours) at
T = 16K, for γ = 1THz. The two spectra are mostly well separated.

4.2.2 Coupling of spectra

From Figures 4.8, 4.9 and 4.10 it is also possible to see clearly how the spectrum of
the hydrogen can be superposed to the spectrum of the lattice, depending on the
mass of the different elements. Before considering the three cases more in details,
we make the following clarification: the distinction between the hydrogen and the
lattice spectra is due to the fact we are computing the TCFs for the two different
degrees of freedom. The system has a unique coupled spectrum and this coupling
can be more or less pronounced according to the mass of the lattice.

In Figure 4.11, the spectra are clearly on top of the other, which means that we
cannot decorrelate the modes of the two elements and we expect the coupling have
stronger anharmonic effects.

In Figure 4.12, the two spectra are better separated, but still a small coupling
for the high frequencies of the lattice is present.

Finally, in Figure 4.13, the modes are well separated due to the huge difference
between the masses. In this case, we can approximately distinguish between
hydrogen and lattice modes.

To conclude, let us consider also the following Figure 4.14 and 4.15 for the Nb
lattice. Together with the spectrum, also the difference ∆F DT between the Cvv and
CvR is shown, with reference to Formula (3.46).

It is clear that the difference is extremely small and it is appreciable only in
the case of the hydrogen 4.15. However, it does not show a clear trend (as the
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Figure 4.13: Spectra of Pb lattice (darker colours) and hydrogen (lighter colours) at
T = 16K, for γ = 1THz. Full separation of the two elements’ spectra.
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Figure 4.14: Spectra of Nb lattice and difference between the two TCFs

one expected from the ZPEL described in Section 4.3 below) and it disappears
when a larger statistic is considered, as in 4.14, where the spectra is obtained also
averaging on the number of particles of the lattice. This is perfectly expected,
because, in the classical Langevin thermostat, the (classical) fluctuation-dissipation
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Figure 4.15: Spectra of hydrogen in the case of Nb lattice and difference between the
two TCFs
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Figure 4.16: Oxygen lattice: Diffusion coefficient as a function of the inverse tempera-
ture for different values of γ.

theorem is naturally enforced so that the two spectra are always superimposed.
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4.2.3 Diffusion coefficient
The diffusion coefficient is computed in two main ways:

• as the direct evaluation of the mean squared displacement, following Einstein’s
formula (2.3). Even if this is not an efficient way, the system is simple enough
to use this direct method and it allows to have a rough estimation of the
diffusion constant Dx;

• with the use of the velocity time autocorrelation function (2.36). This is a
much more efficient way to compute the diffusion coefficient and it has a direct
link with the spectral analysis explained in previous Section. Indeed, the long
time limit of formula (2.36) can also be seen as

Dx = lim
ω→0

Cvv(ω)

In this way, from the values of Cvv(0) obtained in the spectra, it also possible
to compute the main dynamical coefficient of diffusion.
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Figure 4.17: Nb lattice: Diffusion coefficient as a function of the inverse temperature
for different values of γ.

Figure 4.16, 4.17 and 4.18 report the diffusion constant Dx as a function of
the inverse temperature 1

T
. At low temperature, diffusion is suppressed because

hydrogen does not posses enough energy to overcome the free energy barrier 4.6 and
to hop between to adjacent cells. Therefore, the hydrogen atom remains confined
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inside the elementary cell where it was originally placed and even for simulation
of O(102)ps, no or very few hopping are observed. Hence, diffusion coefficient
values are saturating to zero for T → 0, as expected in a classical system where no
zero-point energy is present. We will see how this result remarkably changes in
Section 4.3, when the quantum nature of the nuclei is implemented by QTB.
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Figure 4.18: Pb lattice: Diffusion coefficient as a function of the inverse temperature
for different values of γ.

As temperature increases, diffusion starts to appear but is still rare and requires
long simulation to be studied. Here, the hydrogen spends most of its movement
oscillating around the equilibrium position. Finally, on the opposite side of the
graph, in the highest temperature’s regime, hydrogen can easily diffuse due to the
fact that it has higher thermal energy than the potential barrier 4.6. This is the
regime depicted in Figure 4.7 and it remains unchanged until temperature is so
high that the lattice melts. At that point, after a brief transition period in which
it moves near the melted lattice, hydrogen behaves as a free particle, due to the
cutoff rcut.

4.2.4 Arrhenius law
In Figure 4.19, 4.20 and 4.21 the relation between the diffusion coefficient and the
inverse of the temperature is shown in logaritmic scale. Those graphs allow to
obtain a rough estimate of the influence of the friction coefficient γ on the diffusion.

This is the usual way to report these data in a chemical contest, when transition
rates are studied. We recall the Arrhenius law (2.56) for a 1D diffusion process in

70



Results

a double-well potential of the form of 2.1:

D ∝ e−∆F/kBT (4.3)

where ∆F is in general the free energy barrier between the equilibrium state at
the bottom of the well and the saddle point (saddle point in 3D space). We used a
linear function with two parameters: f(x) = ax + b to fit the data of Dx vs 1/T .
From the values of the parameter a, it is possible to find the free energy barrier
∆F . The values of the diffusion coefficients are reported in Table 4.3.

Free-energy barrier
γ [THz] ∆F Oxy

lattice [eV]
∆F Nb lat-
tice [eV]

∆F Pb lat-
tice [eV]

0.1 115 111 113
0.5 111 115 116
1.0 118 111 116
10.0 114 113 110
100.0 114 107 109

Table 4.3: Classical values of the free energy barrier obtained from the dynamic measure
of D, using the Arrhenius law

Now, we can compare the dynamical measure of the height of the barrier with
the static estimation, which is ∆U = 135meV . In general, the dynamical values
are all lower than the static estimation. In Section 4.2.6 we explain the possible
physical explanation to this result.

4.2.5 The role of the friction
Once the integration time-step is chosen as ∆t < 1/νmax, only the friction γ
remains as a main free parameter of the Langevin thermostat that needs to be
chosen carefully. Indeed, it must be small enough to limit the thermostat effect on
the dynamics and not to fall into the overdamped regime given by equation (2.29),
but also large enough not to have to wait a long time before the convergence to
the equilibrium Boltzmann’s distribution. We have also discussed previously the
role of the damping term in the broadening of the spectra.

Furthermore, dynamical observables can be functions of γ. In Figure 4.19, 4.20
and 4.21, classical Arrhenius law is shown for different values of the friction γ.
This allows to show the dependence D(γ) and select a ’safe’ windows of values of
γ such that the dynamical properties are not much affected by the choice of this
parameter.
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Figure 4.19: Oxygen lattice case: Arrhenius plot of the hydrogen diffusion coefficient
for different values of γ.
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Figure 4.20: Nb lattice case: Arrhenius plot of the hydrogen diffusion coefficient for
different values of γ.

It is clear that when γ = 100THz, much larger than the highest frequency of the
system - typically the hydrogen frequency - the system is in the overdamped regime
and diffusion is strongly hindered. However, for all the other values of gamma used
in this study, the values obtained for D are equivalent within the statistical error,
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Figure 4.21: Pb lattice case: Arrhenius plot of the hydrogen diffusion coefficient for
different values of γ.

which seems to indicate that γ has little impact on the diffusion (at least up to
10THz).

4.2.6 Phonon assisted hopping
In condensed matter, atoms vibrate around their equilibrium positions at much lower
temperatures than the melting temperature. In the classical picture , vibrations
are due to thermal excitations. The simplest way to model this phenomenon is
to consider a lattice as a chain of springs. Their motion can be studied via the
Fourier analysis, which allows to study the modes distribution. Therefore, it is
possible to describe this phenomenon with a discretized description, introducing
the quasi-particles called phonons with energy modes given by the vibrations of
the lattice.

In our system, phonons can have a impact on the diffusion coefficient. In
particular, we are interested in the coupling of the hydrogen atom hopping with
lattice vibrations of the heavier atoms. Indeed, the vibration of the lattice can
modify the potential barrier - which now is a function of time - and allow the
hydrogen to hop easily from one cell to the other. The variation of the potential
will lead to a modification of the free energy barrier ∆F , which is part of the
Eyring-Polanyi law (2.56), here applied to diffusion. This effect is called Phonon
assisted hopping (PAH). We notice that we expect the presence of phonons will
enhance the diffusion because even a small modification of the potential barrier
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leads to a exponential change in the probability factor in Arrhenius law (4.3).
In order to probe the presence of the PAH, we consider other two other ’types’

of lattice:

• ’heavy’ lattice, with a mass 10 times heavier than the mass of lead atom;

• ’fixed’ lattice: all atoms of the lattice are fixed in their equilibrium positions
and they cannot move, removing, in theory, completely the effect of PAH.

What we observe in Figure 4.22 is that the values of the diffusion coefficient
in the fixed lattice are significantly lower with respect to the other lattices in
which phonons are present. Thus, we have a direct observation of the PAH in our
system, which can enhance the diffusion of the hydrogen. We highlight that it is
extremely interesting that even in our simple model for diffusion such complex
physical properties can be observed and characterized at least qualitatively.

0.0

0.1

1.0

10.0

0.001 0.002 0.003 0.004 0.005

D
 [

A
2
/p

s]
 l

o
g

1
0
 s

ca
le

1/T [K-1]

 For γ= 1 THz 
 fixed lattice

 heavy lattice
 Oxy lattice

 Pb lattice
 Nb lattice

Figure 4.22: Phonons assisted hopping for γ = 1THz

Another important feature of the model can be derived from the study of PAH.
In Tables 4.4 the values of the free-energy barrier - computed from the dynamical
measure of the diffusion coefficient - are compared.

In particular, we observe that the values of the energy barrier in the case of
the fixed lattice are higher than the dynamical values obtained with a moving
lattice. Moreover, as expected, we have an agreement on the dynamical measure
of free-energy barrier, which is now a pure potential energy, with the static esti-
mation presented in Section 4.1.2. Both measures give an average ∆U = 135meV .
Therefore, we have the direct observation of how the change from a static to a
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Phonon assisted hopping
γ [THz] ∆F fixed

lattice [eV]
∆F ’heavy’
lattice[eV]

∆F Oxy
lattice [eV]

∆F Nb lat-
tice [eV]

∆F Pb lat-
tice [eV]

0.1 135 117 115 111 113
0.5 147 111 111 115 116
1.0 135 117 118 111 116

Table 4.4: Classical values of the free energy barrier obtained from the dynamic measure
of D, using the Arrhenius law, with the intent of highlight PAH, with γ = 1THz

moving lattice changes the nature of the activation energy (2.55) to a free-energy
barrier, as stated by the Eyring-Polanyi law (2.56), explained in Section 2.6.

On the other hand, when the lattice is not static, we observe very small changes
in the diffusive behaviour (see Figure 4.22) and no significantly changes in the
free energy barrier values. This was expected, as already explained in Section
2.6. Indeed, according to Eyring-Polanyi law, the slope of the plot ∆F which
is independent on the atomic masses (it is by definition a static quantity, that
can be computed from the Boltzmann probability density, and which therefore
depends on the form of the potential only and not on the mass). On the other
hand, the prefactor in front of the exponential in the Eyring-Polanyi law depends
on the heavy atom mass and light atoms seem to favor diffusion, which is a further
indication of the importance of the coupling between the hydrogen and the lattice
dynamics, i.e. PAH, in this system.

4.3 Quantum Thermal Bath results
In this Section, we present the results obtained with the QTB method discussed
in Section 3.4. In particular, the aim is to obtain the measurements of quantum
diffusion coefficients, in order to compare them with the classical results and have a
qualitative but direct observation of the NQEs. In our system, two types of NQEs
can impact the diffusion coefficient: zero-point motion - which we expect to be well
captured by QTB, at least in its adaptive version -, and tunnelling - which we do
not expect to be determinant in this case but if present - it is not captured by QTB
(only RPMD or other more sophisticated methods could give us an indication).

Moreover, we want to observe and characterize the Zero-Point Energy Leakage,
described in Section 3.4.3, through the quantitative measure of the difference
∆F DT (ω) (3.46) between the injected power and the dissipated power. We then
implement the Adaptive QTB (see. Section 3.5 for the theoretical discussion and
Section 4.4 for the adQTB results).

In Table 4.5 we report the main parameters used for the QTB simulations
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Parameters values [a.u.]
ωcut 0.007

ωsmear 0.0006
Nseg 20

t 106

Table 4.5: Values of the parameters for the QTB used in the simulations.

4.3.1 Quantum spectra
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Figure 4.23: QTB spectra of Oxy lattice (darker colours) and hydrogen (lighter colours)
for different values of γ

Using the QTB method, we have studied three main cases of different masses:
oxygen, naiobium and lead. This is done because it is crucial to see whether, in
the quantum case, the zero-point energy leakage, that is, the irreversible transfer
from high-frequency to low-energy modes, occurs and quantify it. We compute
the spectra for the different lattices and different values of γ. The spectra of the
hydrogen into a oxygen, Nb and Pb lattice respectively. Both Cvv and CvR functions
are shown, with the same colours convention as before, to help the confront. We
consider very low temperature - T = 16K - as in the classical case (see Section
4.2).

The spectra of oxygen, Nb and Pb lattices, and the corresponding hydrogen
results are reported in Figure 4.23, 4.24 and 4.25. The effect of the damping term is
once again clearly evident, making the broadening of the spectra more pronounced
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Figure 4.24: QTB spectra of Nb lattice (darker colours) and hydrogen (lighter colours)
for different values of γ

as the γ increases. This means that, even in a simple system, the idea of increasing
the coupling strength γ between the the quantum bath and the equations of motion,
as explained in Section 3.4.3, must be considered with particular care. We notice
also that the broadening of the spectra is more pronounced than the respective
classical cases, even for small values of γ. This is a first remarkable hint of the
presence of the zero-point energy of the proton.

In these pictures we are not focusing on the difference between Cvv and CvR.
However, it is already possible to see the effect of the ZPEL, explained in Section
3.4.3, in particular in the hydrogen spectra, due to larger fluctuations. Let us
consider the Nb as main example to highlight this important effect which is
remarkably well depicted even by the simple model of diffusion we are considering.

4.3.2 Zero-Point Energy Lekeage
Let us now concentrate on the ZPEL with more attention. We consider the case of
Nb as main illustrative example.

For the lattice spectra of Figure 4.27, it is possible to see that the CvR is lower
than Cvv at low frequencies and becomes grater than Cvv at higher frequency. In
order to show the net effect of ZPEL, for both the hydrogen and the Nb lattice the
difference ∆F DT (3.46) is plotted in Figure 4.27 and 4.29. Here, the ZPEL trend is
clearly apparent.

Let us consider the case of the Nb lattice spectra in Figure 4.27. At low
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Figure 4.25: QTB spectra of Pb lattice (darker colours) and hydrogen (lighter colours)
for different values of γ
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Figure 4.26: Comparison of the spectra of the hydrogen (lighter colours) in the Nb
lattice (darker colours) (in arbitrary units). Clear sight on the difference between the
Cvv and the CvR spectra, which is the sign of the ZPEL (see Section 3.4.3)

frequency, the difference ∆F DT = Ù [CvR]−mγCvv (3.46) is negative. This means
that the spectral power dissipated by the frictional force is greater than the spectral
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Figure 4.27: Spectra of the Nb lattice and the corresponding difference between Cvv

and CvR

power pumped to the system via the random force. On the other hand, at high-
frequencies, the spectral dissipated power is lower than the spectral power injected
by the quantum bath. This reveals the presence of an energy leakage from the
high-frequency modes to the low-frequency modes.

4.3.3 Effect of γ on the leakage

Another important result that we can deduce from the spectral analysis is the
dependence of the ZPEL on the parameter γ, which is the strength of the coupling
between the system and the bath. Let us consider once again the Nb spectra
reported in Figure 4.24. We observe that the leakage seems less pronounced,
especially on the spectra of lattice, as γ increases. In Figure 4.28 we show then the
difference ∆F DT (ω) for different values of γ in the case of the niobium lattice.

It is clear that the difference ∆F DT (ω) constant with γ, compared to the values
of the spectra in Figure 4.24, which increases of one order of magnitude with
γ. This is a remarkable result because it is in perfect accordance with what we
expected from [45]. Indeed, we proved that the ZPEL is reduced with by increasing
the strength of the coupling with the quantum bath i.e. by forcing the system to
have the quantum energy distribution (3.37), as explained in Section 3.4.
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Figure 4.28: Difference between Cvv and CvR for the Nb lattice spectra (see Figure
4.37) for different values of γ.

4.3.4 Couplings of modes
Of even more relevance to the problem of diffusion is the ZPEL observed from the
hydrogen spectra. Let us consider fist the case of the Nb lattice: the hydrogen
spectra and the difference ∆F DT are shown in Figure 4.29. Here, ∆F DT is positive
for most of the frequencies, which means that the hydrogen mostly looses energy
to the lattice. The same is true for the lead case, shown in Figure 4.30, in which
again the two parts of the spectra are well separated.

In the case of the oxygen lattice instead, the modes of the hydrogen and the
lattice are coupled, as is shown in Figure 4.31. This means that the hydrogen both
loses (at high frequencies) and gains (at lower frequencies) energy interacting with
the lattice. Therefore, in Figure 4.32, it is possible to see that mγCvv > Ù [CvR]
for the low frequencies of the hydrogen in the oxygen lattice and vice-versa for the
high frequencies. This is a very complex effect due to the high level of coupling
between the two elements.

In Section 4.4 we will discuss again this problem and show how the adaptive
QTB, presented in Section 3.5, can definitively solve the leakage problem.

4.3.5 Diffusion coefficient
As mentioned before, the QTB allows to introduce the quantum delocalization
of the hydrogen into the dynamics of the classical system. Thus, we expect the
emergence of NQEs, in particular the zero-point energy..
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Figure 4.30: Spectra of the hydrogen in the Pb lattice and the corresponding difference
between Cvv and CvF

The perhaps most remarkable observation is obtained from the dynamical
measure of the diffusion coefficients Dx as a function of 1/T , which are shown in
Figure 4.33, 4.34 and 4.35. Note that the Arrhenius behaviour is not expected
anymore, since it was a purely classical law (although it should still be recovered
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Figure 4.32: Spectra of the hydrogen in the oxygen lattice and the corresponding
difference between mγCvv and Ù [CvR]

in the high temperature classical limit). However, we choose to plot the diffusion
coefficient as in Section 4.2 in order to facilitate the comparison and show how, in
the high temperature limit, the classical diffusion regime is recovered, given the
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characteristic of our system.
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The main NQE that is highlighted by this confront is the saturation of the
quantum curves at low temperature. This means that the quantum delocalization
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of hydrogen and its zero temperature motion enhance diffusion, which is suppressed
in the classical case because the classical proton cannot overcome the barrier and
hop to one cell to the other if not helped by thermal fluctuations. These quantum
fluctuations are thus at the origin of the saturation of the diffusion coefficient to a
non-zero value .
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Figure 4.35: Pb lattice: Diffusion coefficient in logaritmic scale as a function of the
inverse temperature for different values of γ.

This is an indication that, even for a simple model like the one we created,
the QTB takes into account the quantum nature of the hydrogen and the correct
qualitative trend is observed. In particular, we are able to reproduce the zero-point
energy motion of the light nucleus with the same computational cost of a classical
MD simulation.

As already explained in Section 3.4 and Section 4.3.3, when the values of γ
increases, the system is forced to have the quantum energy distribution (3.37).
In the results of the diffusion coefficients we observe another confirmation of this
behaviour of the QTB method. Indeed, as γ increases, the values of D at low
temperature saturates to an higher constant, which means the zero-point energy is
a stronger NQEs in this case. However, once the γ is so large that we fall in the
overdamped regime, this effect is completely reversed.

We notice that a quantitative confirmation of the accuracy of these results can
be achieved only with a confront with results obtained with RPMD. In particular,
the case of the oxygen, in which strong couplings are present, may hide interesting
differences with respect to the other cases. Furthermore, we need still to take care
of the ZPEL.
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Finally, we observe that, for very large values of the friction parameter γ, it is
very hard to recover any quantum behaviour. Indeed, in this overdamped regime,
the spectra are so broaden and the dynamics so effected by the bath that no reliable
measure can be obtained, even using the correct quantum distribution of energy.
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Figure 4.36: Oxygen lattice: comparison of diffusion coefficient in logaritmic scale as a
function of the inverse temperature for classical (with Arrhenius fit) and QTB cases.

In Figure 4.36, 4.37 and 4.38 we confront QTB Pb lattice cases with the classical
results. As expected, for high temperature, the values of the quantum diffusion
coefficients tends to the classical values and, for temperature of the order of
500K, and the diffusion of the hydrogen driven by nuclear quantum effects is
indistinguishable from classical thermal diffusion.

However, the most important result is that at ambient temperature i.e. at
about 300K, the two behaviours start to diverge one from another. Therefore,
in our system, we observe the action of NQEs not only in the limit of very low
temperature but even at ambient conditions. It is worth noticing that this result
depends on the interaction potential (4.2) and on the choice of the parameters
which characterize the double-well shown in Figure 2.1. Indeed, for lower values
of the barrier, classical diffusion can happen even at low temperature. On the
other hand, for very high or very large barriers, also quantum-driven diffusion is
suppressed, regardless of the presence of the zero-point energy.

We have concluded the presentation of QTB results. The main problem, as
already discussed in Section 3.4 and Section 4.3, is still the ZPEL. We aim to solve
this problem with the use of the adaptive QTB (see Section 3.5).
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Figure 4.37: Nb lattice: comparison of diffusion coefficient in logaritmic scale as a
function of the inverse temperature for classical (with Arrhenius fit) and QTB cases.
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Figure 4.38: Pb lattice: comparison of diffusion coefficient in logaritmic scale as a
function of the inverse temperature for classical (with Arrhenius fit) and QTB cases.

4.4 Adaptive QTB results
The main goal of the adaptive Quantum Thermal Bath (adQTB) is to recover
the correct quantum energy distribution, given by the quantum FDT (3.38), by
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eliminating the problem of the ZPEL, as explained in Section 3.5.

Parameters values [a.u.]
ωcut 1× 10−2

Nseg 2× 103

t 105

Aγ 10−6

A(H)
γ 10−7

γ0 5× 10−5

Table 4.6: Values of the parameters for the adQTB used in the simulations.

4.4.1 Adaptation of γ(ω)
As explained in Section 3.5, the main new feature of the adQTB is the introduction
of the frequencies depending function γ(ω). The algorithm adapts on the fly the
values of this function for each frequency in order to compensate the difference
∆F DT (ω), which detects and quantify the ZPEL. Therefore, when convergence is
reached, the quantum Fluctuation-Dissipation theorem (3.38) is satisfied and we
expect to recover the correct energy distribution.

In Figures 4.39 and 4.40, the values of γ(ω) are shown as they evolve and adapt
along the simulation (i.e. for different values of Nseg, which is the integration step
for γ(ω). We expect to see a trend which is directly related to the difference ∆F DT :
at low frequencies, the adaptation will tend to compensate the dissipated energy by
decreasing the Cvv values and eliminate the energy leaking from the highest modes,
whereas in the high frequency regime, we expect the γ(ω) to increase the values of
Cvv in order to counter the leakage and obtain the correct quantum distribution
(3.37).

From Figure 4.39, we can observe that the adaptation for the lattice is relatively
fast and after few hundreds of integration steps the initial trend is modified and
we reach a configuration for γ(ω) which is mostly stable.

In the Figure 4.40 we have the same plot as before for the adaptation of γ(ω)
for the hydrogen degree of freedom. First of all, we noticed that the adaptation
requires much more time, due to the fact that the hydrogen is a single atom, while
for the lattice we averaged over the number of particles. Moreover, we have used a
smaller adaptation velocity A(H)

γ as reported in Table 4.6. After many hundreds of
segments, the γ(ω) has acquired a peculiar shape, due to the fact that the potential
in which the hydrogen diffuses is very anharmonic. In particular, for very low
frequency, the values of γ(ω) reaches zero, whereas, at high frequencies they have
very high values with respect to the initial γ0 = 2THz. This fact indicates that the
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Figure 4.39: Nb lattice:
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Figure 4.40: Nb lattice:

initial value γ0 was chosen too low and further simulations are needed to explore
this problem.
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4.4.2 Spectral analysis
In Figure 4.41 we report the spectra of the hydrogen (light colour) and the Nb
lattice (darker colour) after the adaptation of the γ(ω) (the same colour convention
of previous section is maintained).
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Figure 4.41: Nb lattice spectra (darker colour) and hydrogen spectra (lighter colour)
at T = 16K

At first, we concentrate on the lattice spectrum. It is clear that the adaptation
of γ effectively eliminated the ZPEL: the two power spectra Ù [CvR] and mγ(ω)Cvv

( which is now different from the dissipated power spectrum mγCvv) are now
superimposed and the difference ∆F DT is almost zero.

In Figure 4.42, the removal of the ZPEL is depicted in detail. We note that still a
small difference between the two spectra still persists but only consist on statistical
fluctuations around zero. Moreover, we notice that the spectra are broader than
what was shown previously for small values of γ. However, the feature of the peaks
are still observed, which means that the adaptation process stabilize the gamma to
values much lower than the overdamped regime.

We analyze now the spectra of the hydrogen, shown in more details in Figure
4.43, together with the difference ∆F DT . Again, the adaptation process removes
the ZPEL on the main peak of the hydrogen around 20THz. We notice that, in
order to recover this results for the hydrogen, the adaptation process needs more
time and an adaptation velocity Aγ lower, at least of one order of magnitude, in
accordance with [23].

The hydrogen spectra present an interesting feature with respect to its classical
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Figure 4.42: Nb lattice spectra and the corresponding difference ∆F DT

and QTB counterparts. In Figure 4.43, we observe a strange asymmetric shape
for frequencies higher than 20THz and we observe a peak at about 38THz. This
peak is an overtone peak. The overtone peaks are the results of the anharmonicity
present in the system and their positions and features, such as symmetry and shape,
depend in general on the type of interaction potential of the hydrogen with the
lattice.

The presence of overtone peaks and other asymmetric features in the hydrogen
spectra was not observed in previous QTB spectral analysis. This is because the
γ(ω)Cvv is not physically accurate quantity, because γ(ω) is now only a computa-
tional tool. This means that the features after observed in the hydrogen’s spectrum
after 20THz are artificially enhanced by γ(ω).

The solutions to this problem are two: we can simply use a smaller ωcut, such
that the adaptation of γ(ω) does not reaches the frequencies of the overtone peaks
and thus does not detect a grater difference ∆F DT . However, this solution is not
preferred since the we might lose some physical information from the spectrum at
higher frequencies.

The second solution is to increase the initial value γ0, which allows the adaptive
γ(ω) not to reach zero. This solution is preferred in order to still reproduce the
overtone peaks but must be applied carefully. Indeed, as we discussed in Section
4.3, the γ0 cannot be increased arbitrarily because the overdamped regime must be
avoided.
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Chapter 5

Conclusions

The main goal of this work is to analyze different Langevin-based MD methods to
simulate hydrogen and proton diffusion in which NQEs are present. In particular,
the new Quantum Thermal Bath method and its refinement, the adaptive QTB, are
discussed in details, from a theoretical, computational and practical point of view.
Classical Langevin thermostat is also presented with particular interest because it
constitute the very basis of the quantum methods, due to the presence of the same
equations and the use of many classical concepts, such as trajectories and classical
potential, in the quantum picture. In order to study in details the performances
and the limits of these methods, a simple 2D triangular lattice is created and the
diffusion problem of a single hydrogen particle is considered.

The results obtained from the simulations are divided in three parts. First,
classical Langevin thermostat is used to study the dependence of spectra and
diffusion coefficient from the frictional parameter γ. We found that for values
of γ of the order of 10THz, the spectra are broaden but still accurate dynamics
results, such as the diffusion coefficient, can be obtained. Moreover, the static and
dynamics measures are compared with the Arrhenius law and they are in agreement,
as expected. Finally, the interesting and complex phenomenon of phonon assisted
hopping was studied. Our results indicate that the presence of phonons enhances
diffusion of the proton almost regardless on the values of the mass of the lattice’s
atoms. The appearance of this feature is a remarkable physical result for the simple
model under study. Further developments of the classical simulations can include
the study of the free energy profile of the saddle point and a more precise study of
the effect of phonons on the diffusion coefficient.

Then, the QTB was implemented with the aim of computing the diffusion
coefficient and find evidence of NQEs, in particular zero-point energy, which can
play a role in the diffusion behaviour of the hydrogen. Moreover, we wanted to
analyse the spectra and probe the Zero-Point Energy Leakage for different values
of γ. For both objectives, we obtained interesting results: the ZPEL shows a strong
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dependence on the parameter γ, which strongly motivates the implementation of
the adaptation. Then, we were able to correctly quantify this dependence and use
it in the Adaptive QTB method, which is one of the most advanced MD method
proposed to study efficiently NQEs in complex systems. Moreover, a clear sign of
the zero-point energy was observed in both the spectral analysis and the dynamical
measurements of the diffusion coefficients. Quantitative evaluation of the results of
this work can be achieved by RPMD techniques, through which we will be also
able to assess the effect of tunneling on hydrogen diffusion.

Overall, this work constitutes a first step for the study of quantum diffusion of
the hydrogen, from both theoretical and computational points of view. Through a
simple system and the problem of the diffusion of a quantum particle in a solid
lattice, we had the opportunity to grasp the great complexity of modeling correctly
quantum dynamical phenomena. This was achieved not only by the deepening on
the state-of-the-art literature but also with the active challenge of implementing and
assessing new quantum MD approach which are extremely advanced and promising
in the future applications to real systems.
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