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Abstract

With the recent developments in robotics, mobile robots are gaining momentum and

are increasingly involved in our lives. Robot exploration and mapping are essential

tasks for robot navigation in unknown environments. In the last three decades

the challenge has grown and many researches have tried to accomplish these tasks

through a team of robots. The use of multi-robot systems represents a big challenge

because they require robots able to collaborate each other and, then, to create coor-

dination techniques to make the multi-robot system efficient. Multi-robot mapping

introduces many advantages, providing a faster and efficient map building even in

high dimensional unknown environments. In a multi-robot system, each robot has

to be able to move autonomously in the map, avoiding obstacle and reaching de-

sired goals to explore the environment. Furthermore, in order to explore optimally

the environment, e.g. minimizing the exploration time, it is necessary to define an

efficient technique to determine optimal target points to each robot, considering the

multi-robot context, that makes the exploration fast. In this work five algorithms

for multi-robot exploration have been evaluated; four of these are defined and used

in other works and represent the state-of-art in this field, whereas the fifth strat-

egy is a novel solution proposed in this work as a valid and effective multi-robot

exploration strategy. Each of these algorithms is frontier-based, i.e., exploiting the
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frontier-detection approach, which is one of the most common and efficient explo-

ration strategy. These algorithms are tested and analyzed, as well as compared with

each other. Moreover, evaluation criteria are presented and discussed to efficiently

evaluate the proposed frontier-based algorithm. Finally the outcome of the tests are

provided with a discussion emphasizing the difference between different strategies

and the improvements of the proposed technique.
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Chapter 1

Introduction

Building a map of an unknown environment is a critical problem in autonomous

robotics. The generation of a map can be done for various reasons, for example, to

find an object of interest in a rescue environment, as happen in many military oper-

ations, where it is needed to find a victim as quickly as possible without jeopardizing

soldiers. Learning maps has therefore been a major research issue in the robotics

community over the last decades. Map building methods can be passive or active.

The passive ones only perceive information about the environment to build a map.

On the other hand, the active ones additionally plan the motion of the vehicle in

order to guide it through the environment.

Maps are [21]:

“an inexhaustible fund on interest for any man with eyes to see or with

two pence worth of imagination to understand with”

-R.L. Stevenson, Treasure Island

and the mapping problem can be referred to as “What does the world look like?”.
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2 CHAPTER 1. INTRODUCTION

Since the robot does not have eyes to see the world, the only solution for it to build

a map of the environment is to gather all the information it can obtain by its sensors

into a given representation. The mapping problem becomes more difficult in the case

where the environment changes over time. Most mapping techniques assume that

the environment is static and does not change over time even if, it is clear that this is

an unrealistic assumption since most places where robots are used are populated by

humans. In general, learning maps with single-robot systems requires the solution

of three tasks, which are mapping, localization and path planning. Building a map

without being able to estimate the position of the robot in the environment is use-

less and the wrong interpretation of it would produce a fake result in the mapping

process. For this reason, it is fundamental to be able to localize the robot time by

time in order to efficiently answer to the question “Where am I?”.

In the area of localization there exist two cases: (i) the initial position of the robot

is known a priori, also know as pose tracking, and (ii) no prior knowledge about the

robot position is given, also called global localization problem [61]. Finally there is

the path planning or motion control problem, i.e., the techniques used to move the

robot from a starting point to a target point, which takes into account the question

of “How can I reach a certain point in the map?”. The interaction of these tasks in

a robotic system is also known as Simultaneous localization and mapping, simply

called SLAM, that is the problem of building a map, while, at the same time, local-

izing the robot within that map.

SLAM has been widely studied in the last decades and several techniques and im-

provements have been introduced. The huge interest in this area, has lead several

researches to think about what could improve using a multi-robot approach. This
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consideration has brought the born of a new robotics field that considers all the

problems previously mentioned using a multi-robot approach, sometimes described

as a swarm, as a colony or a collective. In general the problem can be addressed

as the cooperation of multiple robots all aiming at solving the same objective [21].

The use of multiple robots has several advantages and at the same time arises the

problem of choosing the most appropriate design to let the robots to cooperate ef-

fectively, without increasing too much the complexity of the solution. The definition

of an appropriate technique to solve this problem introduces many improvements,

such as the use of a fleet of simple robots, rather than a complex and more expensive

one able to efficiently work alone. Moreover, the use of multiple robots makes the

system less susceptible to failures, that, in many cases, just thinking of a medical

field, it is a primary requirement.

In order to summarize, the basic questions this projects tries to answer to are:

• How to estimate the position of the robotic?

• How to guide the robot during autonomous exploration?

• How to create a map of an unknown environmental?

• How to efficiently coordinate a team of mobile robots?

In the following chapters some solutions to solve these problems will be discussed.

Chapter 5 defines the evaluation criteria used to evaluate the performances of the

five exploration strategies compared in this thesis.

The comparison is done by performing several simulations. Anyway it is clear that

the effective feedback about the efficiency of an algorithm has to be checked in a real

environment, where there exist many variants and aspects that don’t take place in a
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simulated environment. Nevertheless, the employment and testing of algorithms is

more difficult in a real environment rather than in simulations and also more time

demanding. For this reason the use of simulations is a necessary step in order to

optimize the test operation, provided that appropriate experimental methodology

[5] that follows experimental principles well established in science [4] are applied.

Since the aim of this work is the investigation of methodologies for mobile robot

exploration, it is needed to define how to compare different approaches. The simplest

solution is to test the algorithms in the same framework and perform several trials in

the same scenario. It is evident that this is a peculiarity of a simulation environment

that provides a controllability of the scenario, differently from a real environment

in which is quite impossible to reproduce the same framework for a number of tests

[26].

In the Section 5.6.3, three performance indicators will be introduced. Finally tests

will be executed in simulation performed using ROS (Robot Operating System) and

Gazebo simulator.

1.1 Problem Statement

The goal of this thesis is the definition of a frontier-based algorithm able to manage

a fleet of robots to explore autonomously an unknown structured environment, in

order to create a grid map of the environment optimizing the exploration time. The

map creation is performed using an occupancy grid mapping [42]. In the occupancy

grid mapping the map is divided in cells and to each cell is assigned a value that

can be “free”, “occupied” or “unknown”. Each robot moves in a <2 space and is

labeled as R1, R2, ..., Rn. The robot model is the differential drive and it is endowed
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of two encoders, a GPS and a 360 degrees lidar with a limited sensing range ρ.

Each robot is equipped of the following algorithms:

1. A localization algorithm

2. A path planning algorithm

3. A mapping algorithm

Finally a map-merge algorithms merges all the maps generated by each robot and

a centralized algorithm takes care of assigning to each robot the best goal point to

visit, basing on the merged-map.

1.2 Problem Specification

In this work, a frontier based exploration method is developed to create a grid map

of the environment. The aim of robot exploration is exploring the environment in

the shortest possible time, thus it’s clear that the performance parameter is the

exploration time which can be measured as the longest exploration path traveled

by a single robot in the team [26]. Furthermore, another interesting parameter is

the longest length applied to one robot between to consecutive exploration point.

This can help to understand how the strategy assigns a goals given an initial pose

and to quantify how one goal influences the overall length traveled by one robot and

consequently the exploration time.

Exploration strategies for multi-robot systems are mainly divided into centralized

and decentralized. In this paper only centralized algorithms are used to simplify the

problem.
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Many parameters influence the ability of a robot of gaining information, just think-

ing about the path the robot follows to go from one point to another, which is clearly

related with the motion planner used. In this work three motion planning strategies

have been taken into account which are the Artificial Potential Field (APF), the

Vector Field Histogram (VFH) and finally the ROS Navigation stack.

Another parameter that leverage the algorithm outcome is the decision-making fre-

quency [3], which is usually set as: (a) goal replanning (GR), in which the assignment

of a new goal is assigned when a robot reaches its previously assigned goal, or (b)

immediate replanning (IR), that means in the case of frontier based exploration al-

gorithm, that a new goal position is assigned as soon as the current goal is no more

a frontier point. Another important parameter is the sensing frequency, i.e. the fre-

quency at which the robot gathers new information through its sensors. Authors of

[3] experimentally confirm that, generally, a higher frequency provides better results,

i.e., a shorter exploration path that consequently affect the exploration strategy re-

sult. On the other hand, it may not be the case of the computationally demanding

methods because of limited computational power. Hence, a less sophisticated strat-

egy may perform better than a more demanding approach on the same hardware

because of a more frequent decision-making [26]. A problem in almost all the ex-

ploration algorithms is their high demanding computational burden, that can be

decreased adopting approaches like [37].



Chapter 2

Robot Operating System (ROS)

2.1 Overview

”ROS is an open-source, meta-operating system for your robot. It provides the ser-

vices you would expect from an operating system, including hardware abstraction,

low-level device control, implementation of commonly-used functionality, message-

passing between processes, and package management. It also provides tools and li-

braries for obtaining, building, writing, and running code across multiple computers”

[54] . ROS is an abbreviation of Robot Operating System and is a Meta-Operating

System, i.e., a system that performs processes such as scheduling, loading, moni-

toring and error handling by utilizing virtualization layer between applications and

distributed computing resources.

This framework works on Linux distributions, even if a beta version is developed for

Windows 10 and MacOS.

7
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Figure 2.1: ROS as a Meta-Operating System [75]

One of the most important feature of ROS is that data communication is sup-

ported not only on one operating system, but by multiple operating systems, hard-

ware, and programs. In fact in the execution of this work, three laptop have been

used concurrently to perform experiments, each one executing certain tasks. The

main characteristics of ROS are [75]:

1. Distributed Process: each process runs independently and exchanges data.

2. Package management: multiple processes having the same purpose are treated

as packages

3. Public repository: every package is public and each developer can access to

them in specific repository (e.g. GitHub, GitLab, etc.)
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4. API: for each program, ROS calls an API and merges it into the code mak-

ing possible every ROS product and service to communicate with the other

products and services without knowing their implementation

5. Supporting various programming languages, such as C++, Pytohn and LISP

6. Supporting third-party libraries such as OpenCV, PCL, and many others

2.2 Concepts

ROS executable files are called nodes that are the smallest unit of processes running

in ROS. This nodes can publish or subscribe to a topic, i.e., buses over which nodes

exchange messages. Furthermore nodes can provide or use services, that are syn-

chronous bidirectional communication between the service client, i.e., the entity that

asks for a service, and a service server, the provider of the service. Another type of

communication present in ROS is the action used when a requested task (or action)

takes long time to respond after receiving a request and intermediate responses are

required until the result is returned. ROS nodes use a ROS client library to commu-

nicate with other nodes. The communication between nodes occurs in a network.

The use of a network make possible and simple the communication between multiple

machines connected to the same ROS network, in which each machine is identified

with an URI (Uniform Resource Identifier). In any ROS communication it must be

specified the master, that is the server for node-to-node connections and message

communication. Without the master registration to the network, nodes can’t com-

municate and no topics or services are provided. If the master is registered, then

the communication with the slaves happen through XMLRPC (XML-Remote Pro-
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cedure Call) that is an HTTP-based protocol and also nodes uses this protocol for

the communication with the master. Figure 2.2 provides an example of interaction

among nodes, exchanging messages, and the master.

Figure 2.2: Ros nodes [75]

To have a graphical interpretation of all the message types listed so far and to

describe how nodes communicate, the figure 2.3 is depicted below:
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Figure 2.3: Message Communication between Nodes [75]

2.3 Tools

Since ROS is a robotic tool, it disposes about 180 types of robots in the Wiki page.

Anyway it is possible to create customized robots and add all the functionality a

robot could have to the customization. In this work, since there was not a specific

requirement in the typology of robot, one of the most simple and used robot in

the ROS environment has been used. In particular, the choice is the TurtleBot3.

“TurtleBot3 is a small, affordable, programmable, ROS-based mobile robot for use

in education, research, hobby, and product prototyping.” [49] Turtlebot3 is a dif-

ferential drive mobile robot, which mathematical model is given in section 2.1, and

one of the main characteristics of this robot is the significantly reduced size and the

good accuracy. Turtlebot3 has many sensors integrated, anyway it is possible to
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customize the payload for the specific needs.

There exist three models of TurtleBot3 which are TurtleBot3 Burger, Waffle and

Waffle Pi that differ each other for the shape and dimension. The model used in

this thesis is the Burger, depicted in figure 2.4:

Figure 2.4: TurtleBot3 Burger

Sensor plugged with the Turtlebot3 model are: two encoders, one 360 degree

lidar (LDS-01) with modifiable range distance (max 10m) and a GPS.

Among all the ROS tools, a really useful one is Gazebo, which is a 3D robotic

simulator environment that provides robots, sensors, environment models for 3D

simulation required for robot development, and offers realistic simulation with its

physics engine.

Another important tool that can be used together with the Gazebo simulator is
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Rviz (ROS Visualizer). Rviz is a 3D robot topic visualizer software that makes easy

to see the Gazebo simulation topics. The utility of Rviz consists for example in

the possibility to visualize the map that a robot is creating, plot topics published

by a certain robot in order to have a graphical interpretation of its results or, for

example, examine the coordinate transformations between robot links. Coordinate

transformation between robot’s links is essential to define the geometrical relation

between all the part of a robots (see figure 2.5). If the transform between all the part

of a robots are not well defined, it is difficult to execute simple computations. For

example when the robot finds the distance to an object, this distance is evaluated

by the lidar sensors that are positioned in a certain point on the robot. Clearly the

distance from the lidar to an object and the distance between the base footprint

of the robot are not the same because have different position. Then, to define this

distance it is needed to define the geometrical relation between the coordinate of the

lidar with the one of the base of the robot. These geometrical relations are defined

through transformations, supported by the TF package.

The TF package allows also to extract the full tree of robot coordinate transforms;

an example of it is provided by figure 2.6.
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Figure 2.5: Link Transforms in Rviz

Figure 2.6: Tf view Turtlebot



Chapter 3

Mobile robot

3.1 Mobile Robot Model

”A mobile robot is the combination of various physical and computational compo-

nents” and can be described as a collection of four subsystems [21]:

• Locomotion: How the robot moves through the environment

• Sensing : How the robot measures properties of itself and the environment

• Reasoning : How the robot converts measurements into actions

• Communication: How the robot communicates with an outside operator or

with other entities

”Locomotion is the process by which an autonomous robot or vehicle moves” [21].

The analysis of the motion of a mobile robot is performed through the study of

dynamics, so the study of the motion in relation to the forces applied to the robot,

and the kinematics, i.e., the study of the motion without considering the forces

15
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affecting the motion. The strategy through which a robot performs a locomotion

task depends on the type of robot we are focusing on. In case of wheeled mobile

robots these strategies can be effectively described only considering the kinematics

of them, whereas in case of legged, space, aquatic and flying robots, it is usually

necessary to consider the dynamics of the robot [21].

Depending on the application domain in which the robot operates, four categories

of mobile robots can be listed [21]:

• Terrestrial, i.e., robots that operates on the ground. This kind of robots, also

known as ground-contact robots, are usually wheeled even if there are a huge

variety of robots that can walk, climb, roll, use tracks or crawl.

• Aquatic, robots that are able to navigate in the water, travel over its surface

or dive into it.

• Airborne, so all the robots able to freely move in the aire, such as helicopters,

fixed-wings aircraft or dirigibles. Usually these kinds of robot share many

issues of the aquatic ones.

• Space, probably the robots that have to overcome the greatest issue of oper-

ating in the microgravity of outer the space, usually for space station mainte-

nance. Typically this kind of robots are divided into climbing robots and free

flyers.

In this work a terrestrial mobile robot has been used and, in particular, a differential

drive kinematic model robot has been exploited.

Differential drive is the simplest drive mechanism for a ground contact mobile robot.

This robot consists of two wheels mounted on a common axis controlled by separate
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motors in the backside of the robot. The rotation of the robot occurs by varying the

relative velocity of the two wheels, greater is the velocity of one wheel with respect to

another, greater will be the rotation of the robot. Due to the structure of the model,

at each time instant, the point at which the robot rotates must have the property

that the left and right wheel follow a path that moves around the Instantaneous

Center of Curvature (ICC), that is a point around which each wheel on the vehicle

follows a circular course, at the same angular rate ω. For this property the following

equations hold [21]:

ω · (R +
l

2
) = vr (3.1)

ω · (R− l

2
) = vl (3.2)

where l is the distance of the axle between the center of the two wheels, vr and vl

are the velocity of the right and the left wheel, respectively, and R is the signed

distance from the ICC of the midpoint to the two wheels.

Figure 3.1: Differential Drive Model
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Solving the equations (3.1) and (3.2) and considering that all those quantities

are functions of the time we find:

R =
l · (vr + vl)

2 · (vr − vl)
(3.3)

ω =
(vr − vl)

l
(3.4)

From these equations a number of observations can be drawn. For example, if the

left and the right velocity are equal in module and direction, the consequent angular

velocity is zero and the radius R is infinite, so the robot moves on a straight line.

On the contrary, if the velocities are equal in module and with opposite direction,

then the radius is null and the robot rotates around the mid point between the two

wheels, i.e., rotates in place.

The ability of differential drive wheeled robot of rotating in place is the reason why

this kind of robot is popular and is preferred to other types of robot, since it makes

possible to effectively move in complex and cluttered spaces.

Anyway the kinematic structure has some limitations, for example the robot is not

able to directly move along the wheel axle and the error in the trajectory is strongly

dependent on the relative velocity between the two wheels, so it is quite difficult

to have a perfectly straight trajectory since in many cases is not possible to have a

complete identical velocity between the two wheels.

By manipulating the control parameters vr and vl we can get the robot to move to

different positions and orientations. Knowing velocities vr and vl and using equations

(3.3) and (3.4) , we can find the ICC location:
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ICC = [x−R · sin(θ), y +R · cos(θ)] (3.5)

and at time t+ δt the robot’s pose will be:
x′

y′

θ′

 =


cos(ωδt) −sin(ωδt) 0

sin(ωδt) cos(ωδt) 0

0 0 1



x− ICCx

y − ICCy

θ

+


ICCx

ICCy

ωδt

 (3.6)

Without enter in details, the motion equations, also known as forward kinematics

problem, of a robot able to move at velocity v(t) in a certain direction θ(t) are:

x(t) =

∫ t

0

v(t) · cos(θ(t))dt (3.7)

y(t) =

∫ t

0

v(t) · sin(θ(t))dt (3.8)

θ(t) =

∫ t

0

ω(t)dt (3.9)

Characterizing these equations for the case of differential drive robot, equations 3.7,

3.8 and 3.9 can be written as:

x(t) =
1

2

∫ t

0

(vr(t) + vl(t)) · cos(θ(t))dt (3.10)

y(t) =
1

2

∫ t

0

(vr(t) + vl(t)) · sin(θ(t))dt (3.11)

θ(t) =
1

l

∫ t

0

(vr(t)− vl(t))dt (3.12)

Since these equations describe a constraint on the velocity of the robot that cannot

be integrated to get the positional constraint, they are known as non-holonomic

constraints of the model. This kind on constraints make difficult to compute the

inverse kinematics for a differential drive robot. Anyway, it is possible to study the
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inverse kinematic problem in a simple way, considering particular classes of control

functions vr(t) and vl(t) (e.g. vr(t) = vr and vl(t) = vl).

The reason of the choice of this robot model in this work is due to its simplicity and

effectiveness, since it would have been useless to use a more complex model which

would not lead to more significant results.

3.2 Odometry motion model

Odometry motion models is part of the probabilistic motion model theory and is

deeply described in [61].

The motion model can be defined as a conditional density:

p(xt|ut, xt−1) (3.13)

in which xt and xt−1 are robot poses in certain time instant and ut is the motion

control at time t. This density function describes the posterior distribution of the

kinematic states of a robot when a motion control ut is applied at xt. One way to

calculate the robot motion over time is to exploit odometry measurements. Odom-

etry combine wheel encoder information to estimate the robot pose in periodic time

intervals. Even if odometry readings suffer from drift and slippage errors, it is

often useful especially when used as parameters in localization algorithms. Further-

more this measurement is more used for filter algorithms such as localization and

mapping algorithms rather than for accurate motion planning and control for its

intrinsic characteristic to be available in retrospect so only when the robot moved.

The odometry model uses the relative motion information measured by the robot’s

internal encoders. Considering the time interval (t−1, t] let’s assume that the robot
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advances from a pose xt−1 to pose xt. What we can observe from odometry are

xt−1 = (x y θ)T and xt = (x′ y′ θ
′
)T , where the bars represent the measurements

expressed in the robot coordinate whose relation to the global world coordinates is

not known a priori. The difference, under an appropriate definition of the term, of

these two values is a good estimator of the difference between xt−1 and xt. Let’s

now define the motion information ut as:

ut =

xt−1
xt

 (3.14)

To extract relative odometry, three steps are performed starting from ut:

1. Rotation δrot1

2. Straight line motion (Translation) δtrans

3. Rotation δrot2

Figure 3.2: Odometry model

The assumption that probabilistic motion model assumes on these three parameter is

that they are corrupted by independent noises. Finally the algorithm for computing

p(xt|ut, xt−1) from odometry is explained in Algorithm 1.
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Algorithm 1 Odometry Motion Model Pseudo-Code

1: function Algorithm motion model odometry(xt, ut, xt−1)

2: δrot1 = atan2(y′ − y, overlinex′ − x)− θ;

3: δtrans =
√

(x− x′)2 + (y − y′)2;

4: δrot2 = θ′ − θ − δrot1;

5: δ̂rot1 = atan2(y′ − y, x′ − x)− θ;

6: δ̂trans =
√

(x− x′)2 + (y − y′)2;

7: δ̂rot2 = θ′ − θ − δ̂rot1;

8: p1 = prob(δrot1 − δ̂rot1, α1δ̂rot1 + α2δ̂trans);

9: p2 = prob(δtrans − δ̂trans, α3δ̂trans + α4(δ̂rot1 + δ̂rot2));

10: p3 = prob(δrot2 − δ̂rot2, α1δ̂rot2 + α2δ̂trans);

11: return p1, p2, p3

3.3 Robot components

3.3.1 Lidars

Lidar is a sensor that allows to measure distances, or ranging, by illuminating the

target with laser light and measuring the reflection with a specific sensor. The term

lidar comes from the fusion of the worlds light and radar and it is recently used as

acronym of “light detection and ranging” [70]. The main use in robotic applications

is to create maps, detect obstacles and localize the robot. The main idea behind this

tool is depicted in figure 3.3. This means that lidar measures the “time of flight” of

the laser, and knowing the speed that the pulse travels, it computes the distance from

the obstacle. Since light travels at 300 million meters per second (186,000 miles per
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Figure 3.3: Basic time-of-flight principles applied to laser range-finding

second), very high precision equipment is needed to be able to generate data about

distance. Lidar does not use only one laser usually, it is composed of a number of

laser basing on the type of lidar we are using. Basing on the number of channels the

lidar has, that is the number of couple emitter/receivers the instrument is equipped

of, the number of beams is defined. In order to have a wider field of view many

lidar systems exploit rotating assemblies, or rotating mirrors to enable the channels

to sweep around the environment 360 degrees in order to avoid to build systems

with too many channels that would have a higher cost. This instrument usually

works at really high sampling rate on the individual emitters/receivers in order to

produce a complete point cloud of the environment. Lidars are able to detect targets

with different types of materials including non-metallic objects, rocks, rain, chemical

compounds and many other. The lidar used by the TurtleBot3 is the LDS-01, which

is a 2D laser scanner capable of sensing 360 degrees.
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3.3.2 Wheel Encoders

An encoder is a sensor of mechanical motion that generates digital signals in response

to motion. It is used to measure rotational speed of motors or wheels. Usually,

encoders are divided in two types:

• Linear, that responds to motion along a path

• Angular, that responds to rotational motion

Figure 3.4: Encoder Block-Diagram

Furthermore, linear and rotatory encoders are ulteriorly spit in absolute encoder and

the incremental encoder. Absolute encoders measure absolute or true angular posi-

tion.This contrasts with incremental encoders which measure the change in angular

position. The most famous types of encoders in the field of mobile robots are:

• Light based encoders, in which a series of markings or holes are made around

the rotating disk that are used to break a light beam or change reflectivity

that is detected using an infrared sensor.

• Magnetic based encoders, which use a disk with alternating magnetic orienta-

tion as markings around it that are read by a Hall effect sensors.

The type of encoder used by the TurtleBot3 Burger is the Dynamixel XL430-W250,

which is a high performance networked actuator module endowed with a contactless

absolute encoder.
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3.3.3 Global Positioning System (GPS)

Global Positioning System, simply called GPS, is a satellite navigation system used

to determine the ground position of an object. GPS works with multiple satellites,

equipped with a high accuracy clock that continuously transmit their own position

along with a transmission time. A receiver on the ground, by triangulating the

signals sensed by at least four satellites, estimates its own position measuring the

time of flight of each satellite signal. The receiver on ground has to solve the set of

equations shown in compact way in 3.15:

c · (tTOT,i − tTOA,i + ts) =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 (3.15)

where:

• c = 3 · 108 m
s

- speed of light

• tTOT,i - time of transmission of satellite i of its position (xi, yi, zi)

• tTOA,i - time of reception of position information of satellite i

• ts - time skew between transmitter clock-receiver clock

Figure 3.5: GPS Position Estimation [31]
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Chapter 4

Autonomous Navigation

4.1 Localization Algorithm

“Using sensory information to locate the robot in its environment is the most fun-

damental problem to providing a mobile robot with autonomous capabilities.” [64]

Robots have to have the ability of localize themselves accurately in order to know

where they are and consequently in order to know where they have to go to reach

the assigned goal, because the goal information for a robot is meaningless if it does

not know where it is currently located. The localization is usually referred to as

strong localization if it is possible to estimate the position of the robot in a certain

global representation of the space, or weak localization if we can only pronounce on

the fact that a robot has already been in a certain problem, so it only answers to the

question “have I been here before?” [21]. In the case of SLAM it is almost always

needed a strong localization. The simplest approach for estimating the position of

the robot is known as dead reckoning, which is the procedure of modeling the pose

of a robot by updating a pose estimate obtained measuring internal quantities of

27
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velocity acceleration and time, while the robot is moving. In most mobile robots

this is achieved with the use of wheel encoders and is called odometric estimation.

The estimate of the pose of the robot is usually corrupted with errors resulting from

conditions such as: unequal wheel diameters, misalignment of wheels, finite encoder

resolution (both space and time), wheel-slippage, travel over uneven surfaces [47].

Another way to localize the the robot can be obtained through Landmark Measure-

ments, which consists in localizing the robot knowing the position of fixed sensor.

This is a similar concept to the Global Positioning System (GPS), which, actually

is a type of landmark. The landmarks send a certain signal over a certain frequency

and the robot, receiving these signal is able to localize itself. In order to do so, the

robot uses techniques like triangulation or trilateration. Anyway, also this technique

is not optimal since it is really few robust. To exploit the methods discussed so far

it is needed to filter out the error introduced by the readings and the most com-

mon way to do it in mobile robotics is through recursive filtering methods. These

methods aim at estimating variables from noise observations over time. The main

filter in this field is the Bayes filter, that in the localization problem is referred to

as Markov localization [61]. The Bayes algorithm and the Markov localization are

reported in Algorithm 2 and 3:
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Algorithm 2 Bayes Filter Pseudo-Code

1: function Algorithm Bayes filter(bel(xt−1), ut, zt):

2: for all xt do

3: bel(xt) =
∫
p(xt|ut, xt−1)bel(xt−1)dxt−1;

4: bel(xt) = ηp(zt|xt)bel(xt);

5: endfor

6: return bel(xt)

Algorithm 3 Bayes Localization Pseudo-Code

1: function Algorithm Markov localization(bel(xt−1), ut, zt, m):

2: for all xt do

3: bel(xt) =
∫
p(xt|ut, xt−1,m)bel(xt−1)dxt−1;

4: bel(xt) = η p(zt|xt,m)bel(xt);

5: endfor

6: return bel(xt)

In the Markov localization framework, the localization problem is described as

estimating a posterior belief of the robot’s pose at present moment conditioned

on the whole history of available data and a given map as it can be seen in the

above pseudo-code in the line 3, p(xt|ut, xt−1,m), and line 4 p(zt|xt,m). Markov

localization addresses the position tracking problem, the global localization problem

and the kidnapped robot problem in static environments. Extended Kalman Filter

(EKF) localization, grid localization and Monte Carlo localization (MCL) are three

most common Markov localization algorithms.
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4.1.1 Extended Kalman Filter

In this work, an EKF has been used. The EKF is the nonlinear version of the Kalman

Filter (KF) algorithm and it exploits the multivariate Taylor series expansions in

order to linearize the model about a working point to finally apply the Kalman filter

algorithm. This because as assumption the Kalman Filter only works for Gaussian

distributions and linear functions only. Since in the real world there don’t exist

linear systems, an extended version of the Kalman filter is needed.

Figure 4.1: Linear Function

Anyway also the Extended Kalman Filter is based on Gaussian Distributions and the

problem with non linear functions is that they lead to non Gaussian distributions.

Thus it is necessary to linearize the input function and for doing it the EKF makes

use of Taylor expansion. Taylor expansion approximate a g function starting from

g′s value and slope [61]:

g′(ut, xt−1) =
∂g(ut, xt−1)

∂xt−1
(4.1)



4.1. LOCALIZATION ALGORITHM 31

The point by which the function is linearized is it median value µt−1 (and µt) that

is:

g(ut, xt−1) ≈ g(ut, µt−1) + g′(µt, µt−1) · (xt−1 − µt−1) = g(ut, µt−1) +Gt(xt−1 − µt−1)

(4.2)

Figure 4.2: Function Linearization

Written in Gaussian form, the state probability is then:

p(xt|ut, xt−1) ≈ det(2πRt)
− 1

2 ·

·exp
{
−1

2
· [xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]TR−1t [xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]

}
(4.3)

p(zt|xt) ≈ det(2πQt)
− 1

2 ·

· exp
{
−1

2
· [zt − h(µt)−Ht(xt − µt)]TQ−1t [zt − h(µt)−Ht(xt − µt)]

}
(4.4)

Where Gt is a n× n matrix, with n equal to the number of states, and it is known

as Jacobian matrix, Rt describes the noise of the motion and Qt describe the mea-

surement noise. The reason for the choice of this algorithm is for its simplicity and
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efficiency. Furthermore this algorithm presents the peculiarity to be really useful for

sensor fusion, which makes the algorithm even more precise for the localization.

Figure 4.3: EKF example

Extended Kalman Filter is based on the Algorithm 4.

Algorithm 4 EKF Pseudo-Code

1: function Extended Kalman Filter(µt−1,Σt−1, ut, zt)

2: Prediction :
3: µt = g(ut, µt−1)

4: Σt = GtΣt−1G
T
t +Rt . Gt =

∂g(ut, µt−1)

∂xt−1
5: Correction :

6: Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1 . Ht =
∂h(µt)

∂xt
7: µt = µt +Kt(zt − h(µt))
8: Σt = (I −KtHt)Σt

9: return µt,Σt

In this work the predicted state includes the pose and the velocity of the robot,

the input vector is composed of linear and angular velocity of the robot taken from

the encoder readings and the observation vector takes the position and orientation

from GPS. Actually, the robot does not dispose of a real GPS sensor, in fact the
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observation vector is composed of a fake localization system carried out by the

simulation environment which describes the global position of the robot in the world

it is simulated. Since conceptually the meaning of this measurements is equal to the

concept of Global Positioning System, these quantities will be referred to as GPS

measurements.

zt =


xGPS

yGPS

φGPS

 Observation V ector

ut =

vencoder
ωencoder

 Input V ector

Gt =


1 0 −vencoder · sin(φencoder) cos(φencoder · dt)

0 1 −vencoder · cos(φencoder) sin(φencoder · dt)

0 0 1 0

 Jacobian Matrix

Where φencoder = φencoder + ωencoder · dt.

Important considerations have to be done for what concern R and Q matrices, which

choice has to be done efficiently because they have repercussions on the accuracy of

the algorithm.

1. R matrix is a covariance matrix associated with the errors in the state vector

2. Q matrix corresponds to the expect uncertainty in the state equations



34 CHAPTER 4. AUTONOMOUS NAVIGATION

R =



σ2 0 0 0

0 σ2 0 0

0 0 σ2 0

0 0 0 σ2


Covariance Matrix

Q =



σ2 0 0 0

0 σ2 0 0

0 0 σ2 0

0 0 0 σ2


State Uncertainty Matrix

The reason for the choice of an EKF Algorithm born due to the low accuracy of

the odometric and GPS readings. GPS in simulation provide almost perfect results

because clearly they don’t have any type of interference, but thinking about the real

world, many error sources may affect the GPS measurements. In particular, the

most evident errors are due to:

• Propagation in troposphere and ionosphere; since the speed of light is not

constant, due to weather conditions the traveling time of the light through

troposphere and ionosphere may be different from the expected one and then

causing errors in position evaluation

• Multipath effect, due to the signal bounce between buildings that then add

traveling time lateness and so error in the position computation

• Satellite position inaccuracies

Also odometry position estimation has shown many inaccuracies. In particular
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tests has shown that the odometry readings have a derive especially when the path

followed by the robot is on straight line. In the figure 4.4 position measurements of

odometry, GPS and EKF estimation are shown.

Figure 4.4: Noiseless EKF measurements

In the figure 4.4 green circles are GPS position estimations, yellow one are odometry

measurements and red circles are EKS position estimations. As it can be noticed

by the figure, odometry readings are really ineffective and GPS and EKF positions

estimations are almost equal.
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Figure 4.5: Noisy EKF measurements

In the figure 4.5 instead, 10 % of noise is added to GPS measurements to test

the robustness of EKF simulating a situation similar to the real one where the GPS

measurements are affected by the errors previously mentioned. From this figure it is

possible to notice the robustness of the EKF even in a noisy situation. To conclude,

the Extended Kalman Filter is a really useful tool for state estimation and has as key

points the simplicity and computational efficiency due to the use of a multivariate

Gaussian distribution. Nevertheless the most penalizing limitation is the fact that

the EKF is based on an approximation state transitions and measurements using

Taylor expansions. Another variation of the Kalman Filter is the Unscented Kalman

Filter which performs a stochastic linearization with a weighted statistical linear

regression process [61].
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4.2 Collision avoidance approaches

Motion planning and collision avoidance approaches (also known as the navigation

problem) compute a movement from a start configuration to a desired goal config-

uration that satisfies dynamic constraints and, at the same time, optimizes some

aspects of the movement itself. In this way each robot is a specific entity, able to

freely move in a structured environment, being able of reaching a desired point while

avoiding obstacles. Collision avoidance approaches for mobile robots are usually di-

vided in two categories: global and local. The global techniques generally assume

that a complete model of the robot’s environment is available and that the trajectory

from the current position of the robot to the goal-point can be computed off-line

[27]. Examples of global collision avoidance approaches are Voronoi graph, cell de-

composition, Visibility graph and potential field methods. The main problem with

these techniques arises when the goal-point is not reachable, as typically happen in a

populated environment. Another problem of global motion planning systems is the

inherent complexity that creates even greater problem in a simulation environment

with multiple robots in which the simplicity of the algorithm and the preservation

of the hardware resources is fundamental. On the contrary, local approaches make

use of only a small portion of the world model to generate the robot control. The

main improvement of local approaches consists in their low computational burden

that allows the robot to move without problems and adapt quickly even in a fast

changing scenario.

Local approaches create the path to be followed usually in two steps :

1. First the desired motion direction is determined
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2. Then an appropriate combination of steering commands to accomplish the

desired direction are sent to the robot

Anyway a problem that could arise is that the desired direction is not reachable to

the robot for its own physical limitations. In this work three approaches have been

evaluated:

1. Artificial Potential Field (APF)

2. Vector Field Histogram (VFH)

3. The move base ROS Package (NavFN global planner and DWA local planner)

4.2.1 Artificial Potential Field

The Artificial Potential Field method was developed as a basis for generating smooth

trajectories for both mobile and manipulator robotic systems. Many variations of

the method have been developed and used [46] [48] [15] [35], but the basic idea is

that the robot moves in an abstract artificial field force, in which the robot is a

positive particle, as well as obstacles, and the goal has a negative charge. Thus the

robot is attracted by the goal-point and repulsed from obstacles, as figure 4.6 shows.

Even if there exist a lot of versions and different implementation of this algorithm,

the most used formulas are the ones reported from equation 4.5 to 4.14 [2].

Uatt(q) =
1

2
ζρ2(q, qgoal) (4.5)

where, Uatt(q) is the attractive potential, ζ is a positive scaling factor, ρ(q, qgoal) is

the distance between the robot q and the goal qgoal. Since the force is nothing but
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Figure 4.6: Attraction and repulsion by goal and obstacle [45]

the negative gradient of the potential function, the attractive force can easily be

derived as:

Fatt(q) = −∇Uatt(q) = ζ(qgoal − q) (4.6)

So the attractive force is directly proportional to the distance and it becomes null

as soon as the robot position equals the desired goal position. For what concerns

the repulsive potential, it is described by the function in 4.7:

Urep(q) =


1
2
η

(
1

ρ(q, qobs)

)2

if ρ(q, qobs) ≤ ρ0

0 if ρ(q, qobs) > ρ0

(4.7)

where η is a negative scaling factor, ρ(q, qobs) denotes the shortest Euclidean distance

from the robot q to the obstacle, ρ0 is the largest impact distance of the obstacle.

The negative gradient of the repulsive potential function:

Frep = −∇Urep(q) =


η

(
1

ρ(q, qobs)
− 1

ρ0

)
· 1

ρ2(q, qobs)
5 ρ(q, qobs) if ρ(q, qobs) ≤ ρ0

0 if ρ(q, qobs) > ρ0

(4.8)



40 CHAPTER 4. AUTONOMOUS NAVIGATION

Equation 4.8 shows clearly that, when the robot is far from the obstacle with a

distance greater than the threshold ρ0 , the repulsive force is negligible and we set it

to zero. On the contrary, the repulsive force is inversely proportional to the distance

between the robot and the obstacle, creating repulsion. The applied total force to

the robot will finally be: Ftotal = Fatt(q) + Frep(q) which determines the robot mo-

tion. A graphical interpretation of the potential field is provided by the figure 4.7.

Figure 4.7: Potential field: field lines [45]

The reason why this method is so popular is because of its simplicity and effective-

ness in almost every situation. Despite its utility, potential field has some intrinsic

problems, for example the Local minima, that is the situation in which the robot

faces to in particular spacing configuration in which the sum of repulsive and at-

tractive force is zero, i.e:

||~Ftot|| = ||~Fatt +
N∑
i=1

~Frep,i|| = 0 (4.9)

Anyway the Local minima problem can be overcome by determining an escaping

strategy. A solution for escaping local minima is described by Wilschut [71]. Ac-

cording to Wilschut [71], a local minimum is identified when the following conditions
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Figure 4.8: Local minima

are true, i.e. 4.10 and 4.11, where b and c are arbitrary chosen constants.

||~Ftot||
||
∑N

i=1
~Frep,i||

< b (4.10)

cos( 6 ~Fatt − 6
N∑
i=1

~Frep,i) < −cos(c) (4.11)

When a local minimum is identified, an escape force ~Fescape is introduced in the

direction perpendicular to ~Frep. This steers away the robot from the local minimum

since ~Ftot is not pointing to the local minimum anymore causing the robot to go

around the obstacle.

Figure 4.9: Escaping force for local minima [45]

The angle 6 ~Fatt − 6
∑N

i=1
~Frep,i can be computed as:

6 ~Fatt − 6
N∑
i=1

~Frep,i = acos(
~Fatt

∑N
i=1

~Frep,i

||~Fatt|| ·
∑N

i=1
~Frep,i)

(4.12)

One additional condition is added to assure the escape force does not steer the robot

away from the target position which is explained by Wilschut [71]:

||~ptar − ~pr|| > d (4.13)
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Where d is the minimum distance between the robot and the target for the escape

force to be applied. Then the escaping force is evaluated as:

~Fe = αe
1

(ρs − ρr − ρm)2
· ~nrep⊥ (4.14)

where ~nrep⊥ is a unit vector perpendicular to the repulsive force ~Fe and αe = 10z,

with z = log10(Frep)

4.2.2 Vectorial Field Histogram

The Vector Field Histogram (VFH) was originally proposed by Borenstein and Ko-

ren in 1991 as local obstacle avoidance method for mobile robot applications. In

[63] the authors propose an improved version of the original technique applied on

GuideCane,a robotic platform developed for blind people. This algorithm takes as

input the map grid of the local environment, called histogram grid. The VFH+

works in a four stage data reduction processes in order to compute each time the

new motion goals to be performed. In the first stage, the primary polar histogram is

built. In this stage a specific region of the map grid around the robot called active

region Ca, is mapped onto the primary polar histogram Hp. The active region has a

circular shape with a diameter ws which is set according to the specific application

in which the robot is used. This region is used to create an obstacle vector. The

vector direction Bi,j is defined by the direction formed by the active cell and the

robot center point (RCP ) according to the following motion model:
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Figure 4.10: VFH Motion Model [63]

βi,j = tan−1(
yo − yj
xi − xo

) (4.15)

where:

xo, yo : coordinates of the RCP

xi, yj : coordinates of the active cell Ci,j

The vector magnitude of Ci,j is given by:

mi,j = c2i,j · (a− bd2i,j) (4.16)

where:

ci,j: coordinates of the active cell Ci,j

di,j: distance from the active cell Ci,j to the RCP

and the parameters a and b are chosen as:

a− b ·
(
ws − 1

2

)2

(4.17)
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As it can be seen from formula 4.16 the vector magnitude is directly proportional

to the certainty value ci,j and the distance di,j. Thus, as an obstacle is near to the

robot, the vector magnitude becomes high. Having the obstacle vector, the primary

polar histogram Hp can be built, with a resolution α such that n = 360o

α
, the number

of angular sectors, is an integer. Each angular sector k corresponds to a discrete

angle ρ = k ·α. To get a more significant polar histogram, the obstacles in the map

are enlarged of a quantity rr equal to the radius of the robot. Moreover, in order to

have a security distance, another parameter ds is used to enlarge the obstacles cells,

having as a result robst = rs + ds.

The enlarged angle is defined as:

γi,j = arcsin
robst
di,j

(4.18)

For each sector k, the polar obstacle density is defined as:

Hp
k =

∑
i,jεCa

mi,j · h′i,j (4.19)

where:

h′i,j =


1 if k · α ε [βi,j − γi,j, βi,j + γi,j]

0 otherwise

(4.20)

In the second stage, called the binary polar histogram creation, in which the

aim is to avoid the steering oscillations to make the trajectory smooth and safe.

To this aim, differently from the classic VFH which defines a fixed threshold τ , a

two threshold selection is applied. Starting from the primary polar histogram Hp

is filtered through two thresholds τlow and τhigh, obtaining a binary polar histogram
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Hb such that:

Hb
k,i =



1 if Hb
k,i > τhigh

0 if Hb
k,i < τlow

Hb
k,i−1 otherwise

(4.21)

The third stage consists in the creation of a masked polar histogram. The basic

idea under this stage is to consider the mobile robot trajectory composed of circular

arcs, of curve k = 1/r, and straight lines. Using the definition of curve for both

side of the robot we have rr = 1/kr and rl = 1/kl. Using these definitions and

with the map grid it is possible to say which sectors are blocked by obstacles. The

trajectories positions for each wheel, with respect to the robot are then:

xr = rr · sin(θ) yr = rr · cos(θ)

xl = −rl · sin(θ) yl = −rl · cos(θ)

The distance from an active cell Ci,j to the trajectory centers are:

dr =
√

(xr − x(j))2 + (yr − y(i))2 (4.22)

dl =
√

(xl − x(j))2 + (yl − y(i))2 (4.23)

So, an obstacle would block the right direction if d2r < (rr+robst) and the right one if

d2l < (rl+robst). Then two limit angles φr and φl are computed. Furthermore a third

angle, representing the backward direction with respect to the current direction of

motion, is defined as φb = θ + π. The procedure to determine these angles is:

1. Determine φb. Set φr and φl equal to φb

2. For every active cell Ci,j in the active window Ca with ci,j > τ :
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• If βi,j is to the right of θ and to the left φr, check condition 1. If condition

is satisfied, set φr equal to βi,j.

• If βi,j is to the left of θ and to the right φl, check condition 2. If condition

is satisfied, set φl equal to βi,j.

Having φr and φl and the binary polar histogram found in the precedent stage, the

masked polar histogram is found as:

Hm
k =


0 if Hb

k = 0 and k · αε {[φr, θ], [θ, φl]}

1 otherwise

(4.24)

At the last stage, the selection of the steering direction is managed. In this step,

basing on the masked polar histogram that takes into account the free directions in

the map, a set of possible direction candidates are selected. Then a cost function is

applied to these candidates to evaluate the most opportune one. The openings in the

masked polar histogram that are divided as wide and narrows. An opening is wide

if the difference between its two borders is greater than smax sectors, otherwise the

opening is considered narrow. A narrow opening has only one candidate direction

and is defined as:

cn =
kr + kl

2
(4.25)

For a wide opening the candidate are instead:

cr = kr +
smax

2

cl = kl −
smax

2
(4.26)

ct = kt if kt ε [cr, cl]
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where ct is the target direction. The candidate directions cr and cl make the robot

follow an obstacle contour at a safe distance, while ct leads the robot towards the

target direction. To these candidates, the cost function to be applied is:

g(c) = µ1 · (c, kt) + µ2 · (c,
θi
α

) + µ3 · (c, kn,i−1) (4.27)

Where the function (c1, c2) is defined as:

(c1, c2) = min {|c1 − c2|, |c1 − c2 − n|, |c1 − c2 + n|}

µ1, µ2 and µ3 are weighting parameters. Experimentally, the author in [63] shown

that a good set of weights for a goal-oriented mobile robot is: µ1 = 5, µ2 = 2 and

µ3 = 2.

The VFH is in general a good and simple obstacle avoidance algorithm for mobile

robots. Anyway one of the main drawback is its local nature that often leads to

bring the robot into dead-ends.

4.2.3 Move base

The move base node [52] is the core element of the ROS Navigation stack [53]. It

consists in global and local planners to accomplish the global navigation task. This

package handles two distinct costmaps, a global and a local one, that contains in-

formation that represent the projection of the obstacles in a 2D space, as well as a

security inflation radius, an area around the obstacles to prevent the collision of the

robot with obstacles. While the global costmap represents the whole environment

(or a huge portion of it), the local costmap is, in general, a dynamic rolling window

that moves in the global costmap in relation to the robot’s current position. Inside
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these two costmaps the global and the local planner generates a plan in the respec-

tive map. The interactions between the elements of the Navigation Stack discussed

so far are shown in figure 4.11.

Figure 4.11: ROS Navigation Stack [52]

Both the global and local planner strategies can be defined by the user, determin-

ing the so called plugins. For the global planner there are three popular plugins

commonly used by ROS users: the Navfn, a grid-based global planner that uses

a navigation function to compute a path for a robot, and the carrot planner, that

attempts to find a legal place to put a carrot for the robot to follow by moving back

along the vector between the robot and the goal point and finally global planner

which is similar to the Navfn but it has more flexible options, including [76]:
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1. A∗ algorithm

2. toggling quadratic approximation

3. toggling grid path

. In general, the global planner takes the current robot position and the goal and

traces the trajectory of lower cost in respect to the global costmap. For what concern

the choice of the local planning algorithm, popular local planner plugins are: the

dwa local planner, which is the implementation of the Dynamic Window Approach,

the teb local planner, that implements the Time-Elastic-Band (TEB) method for on-

line trajectory implementation, and the mpc local planner, which collects a number

of model predictive control (MPC) approaches. Since the local planner works in the

local costmap that for definition is smaller than the global one, it allows to detect

small obstacle with respect to the global costmap, because of its greater definition.

The role of the local planner is to follow the path designed by the global planner

avoiding obstacles. In order to synthesize the roles of the two planner it can be said

that:

1. Global motion planning : used to create paths for a goal in the map or a far-off

distance

2. Local motion planning : used to create paths in the nearby distances and avoid

obstacles not considered with the global planner

Figure 4.12 shows all these elements of the Navigation Stack; in particular, it is

possible to recognize the global costmap, which is the one in light blue with an

almost circular shape, the local costmap, which is the squared blue map around the
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Figure 4.12: Example of ROS Navigation Stack

robot, the global motion planning trajectory which is the green line connecting the

robot with the goal position, and the local planner which is the small semicircular

arrow in red. Furthermore in figure 4.12 it is possible to see the so called inflation

in both local and global costmaps, that usually it is set as the radius of the robot

in order to prevent the robot collision with obstacles. When a goal is passed to the

move base through, this will create a path and will try to bring the robot to that

specific goal pose. The goal is achieved when the robot position is in the goal pose

range with a tolerance specified by the user (usually 0.1 − 0.2 m). The expected

robot behaviors are described in figure 4.13.

If for any reason the move base fails in the production of the plan, a set of recovery

behaviors intervenes. After each behavior completes, move base will attempt to

make a plan. If planning is successful, move base will continue normal operation,
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Figure 4.13: Robot behavior during a Move Base Navigation [52]

otherwise, the next recovery behavior in the list is executed. The execution practice

in a stuck situation is divided in the following steps: first, obstacles outside of a user-

specified region will be cleared from the robot’s map. Next, if possible, the robot

will perform an in-place rotation to clear out space. If this too fails, the robot will

more aggressively clear its map, removing all obstacles outside of the rectangular

region in which it can rotate in place. This will be followed by another in-place

rotation. If all this fails, the robot will consider its goal infeasible and notify the

user that it has aborted.

The overview of a typical system running the navigation stack is provided in figure

4.14.

The ROS move base node requires a localization system to work. Usual choices for

it is through the Gmapping ROS node or with the AMCL (Adaptive Monte Carlo

localization). The former is able to localize the robot in unknown environment

performing SLAM, while the latter can only work in a known map and it’s based

on Monte Carlo localization approach. In this work, even if the EKF has been
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Figure 4.14: move base configuration

created as mentioned in Section 4.1.1, the Gmapping has been preferred to be used

as localization for the move base because of simplicity.

Global Planner: Navfn

”Navfn provides a fast interpolated navigation function that can be used to create

plans for a mobile robot” [56]. The robot shape is assumed to be circular and the

planner works on a costmap trying to find a minimum cost plan from a start point

to an end point in the grid. The ROS Navfn is based on [12]. The navigation

function is computed with Dijkstra’s algorithm, which is an algorithm for finding

the shortest paths between nodes in a graph [68]. The algorithm was concieved

by Edsger W. Dijkstra in 1956 and then published in 1959 in [17]. It generates a

SPT (shortest path tree) with given source as root and maintains two sets, one set

contains vertices included in shortest path tree, other set includes vertices not yet

included in shortest path tree. At every step of the algorithm, a vertex in the other

set (set of not yet included) with a minimum distance from the source is found.
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Figure 4.15: Dijkstra path [52]

Considering an initial node and the distance between one node and the starting one,

the algorithm performs the following steps [68]:

1. find all the unvisited node and add them in a list called unvisited set.

2. Set to zero initial node distance and to infinity for all other nodes. Set the

initial node as current node.[8]

3. For the current node calculate the tentative distance with all it neighbors.

Compare the newly calculated tentative distances to the current assigned value

and assign the smaller one.

4. Once all the neighbors of the current node are visited, this will considered

visited. A visited node will never be checked again.

5. If the destination node has been marked visited (when planning a route be-
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tween two specific nodes) or if the smallest tentative distance among the nodes

in the unvisited set is infinity (when planning a complete traversal; occurs

when there is no connection between the initial node and remaining unvisited

nodes), then stop. The algorithm is finished.

6. Otherwise, select the unvisited node that is marked with the smallest tentative

distance, set it as the new ”current node”, and go back to step 3.

The Dijkstra’s pseudo code is depicted in Algorithm 5 [68].

Algorithm 5 Dijkstra’s Pseudo-Code

1: function Dijkstra(Graph, Source):

2: create vertex set Q

3: for all vertex v in Graph do

4: dist[v]← INFINITY ;

5: prev[v]← UNDEFINED;

6: add v to Q;

7: dist[source]← 0

8: while Q is not empty : do

9: u← vertex in Q with min dist[u]

10: remove u from Q

11: for all neighbor v of u : do

12: only v that are still in Q

13: alt← dist[u] + length(u, v)

14: if alt < dist[v] : then

15: dist[v]← alt

16: prev[v]← u

17: return dist[ ], prev[ ]

The use of Dijkstra’s algorithm as global planner for mobile robots is possible

converting the problem into a graphic search method using the information of a
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grid cell map. This method first considers nodes reachable by the robot, called free

spaces and assigns a cost to each of them. From the starting point, this value is

increased basing on the number of nodes the robot will pass through to reach each

node [41].

Figure 4.16: Dijkstra method to find the optimal path

Local Planner: Dynamic Window Approach

As suggested by the name, this approach makes use of dynamic windows in order to

reduce search space into the reachable velocities within a predefined time interval.

The created dynamic window only admissible velocities yielding a trajectory on

which the robot is able to stop are considered. Among the admissible velocities, a

combination of transnational and rotational velocities is computed in such a way

an objective function is maximized. Let’s define the kinematic configuration of the
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robot as the triplet 〈x, y, θ〉 where x and y describes the position of the robot and θ

is its heading. Considering the translational (v(t)) and rotational velocity (ω(t)) of

the robot, it can be say that [27]:

x(tn) = x(t0) +

∫ tn

t0

v(t) · cos(θ(t))dt (4.28)

y(tn) = y(t0) +

∫ tn

t0

v(t) · sin(θ(t))dt (4.29)

In order to take into account only the reachable point in the window, we have to

consider that v(t) and θ(t) cannot be chosen arbitrarily, but they depends on the

initial value at time zero and on the admissible acceleration of the robot. Then the

equation can be rewritten as:

x(tn) = x(t0)+

∫ tn

t0

(v(t0)+

∫ t

t0

v̇(t̂)dt̂)·cos(θ(t0)+

∫ t

t0

(ω(t0)+

∫ t̂

t0

ω̇(t̃)dt̃)dt̃)dt (4.30)

Considering that we are dealing with a digital system (microprocessor of the robot)

and after some simplification, the above equation can be written as:

x(tn) = x(t0) +
n−1∑
i=0

∫ ti+1

ti

(vi + cos(θ(ti) + ωi · (t̂− ti))dt̃) (4.31)

which by solving the integral, can be simplified to:

x(tn) = x(t0) +
n−1∑
i=0

(F i
x(ti+1)) (4.32)

where

F i
x(t) =


vi
ωi

(sin(θ(ti))− sin(((θ(ti)) + ωi · (t− ti))) if ωi 6= 0

vicos(θ(ti)) · t if ωi = 0

(4.33)

Similarly, for the y-coordinates equations are:

y(tn) = y(t0) +
n−1∑
i=0

(F i
y(ti+1)) (4.34)
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where

F i
y(t) =


− vi
ωi

(cos(θ(ti))− cos(((θ(ti)) + ωi · (t− ti))) if ωi 6= 0

visin(θ(ti)) · t if ωi = 0

(4.35)

In the dynamic window approach the search for commands controlling the robot

is carried out directly in the space of velocities. The dynamics of the robot is

incorporated into the method by reducing the search space to those velocities which

are reachable under the dynamic constraints. After the first skimming of the set of

velocities, the definitive velocity is chosen in such a way to maximize an objective

function. A nutshell of the dynamic window approach is shown in the next page.
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1. Search space: The search of the possible velocities is reduced in three steps:

(a) Circular trajectories: The dynamic window approach considers only

circular trajectories (curvatures) uniquely determined by pairs (v, ω) of

translational and rotational velocities. This result in a two dimensional

velocity search space.

(b) Admissible velocities: The restriction to admissible velocities ensures

that only safe trajectories are considered. A pair (v, ω) is considered

admissible, if the robot is able to stop before it reaches the closes obstacle

on the corresponding curvature.

(c) Dynamic window: The dynamic window restricts the admissible veloc-

ities to those that can be reached within a short time interval given the

limited accelerations of the robot.

2. Optimization: The objective function:

G(v, ω) = σ(α · angle(v, ω) + β · dist(v, ω) + γ · vel(v, ω))

is maximized. With respect to the current position and orientation of the

robot this function trades off the following aspects:

(a) Target heading: angle is a measure of progress towards the goal loca-

tion. It is maximal if the robot moves directly towards the target.

(b) Clearance: dist is the distance to the closest obstacle on the trajectory.

The smaller the distance to an obstacle the higher is the robot’s desire

to move around it

(c) Velovity: vel is the forward velocity of the robot and support fast move-

ments.

The function σ smoothes the weighted sum of the three components and results

in more side clearance from obstacles
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Then the algorithm draws the dynamic window in which only the points corre-

sponding to the reachable velocities are contained, in order to take into account the

accelerations that the robot motors can provide in a certain instant.Let’s call the

search space inside the window Vr.

Figure 4.17: Dynamic Window [27]

The dynamic window is centered around the actual velocity and the extensions

of it depend on the accelerations that can be exerted. Once determined Vr, the

objective function G(x, ω) is computed over Vr as [27]:

G(v, ω) = σ(α · angle(v, ω) + β · dist(v, ω) + γ · velocity(v, ω)) (4.36)

which takes into account the target heading, clearance and velocity. In the objective

function we find:

• angle(v, ω), which measures how much the robot is aligned with the target

direction
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• dist(v, ω), which is the distance to the closest obstacle that intersects with the

curvature. If there are not obstacles, then a high value is assigned to dist(v, ω)

• velocity(v, ω), which measures the progress of the robot on the corresponding

trajectory

These components are normalized in the range of [0, 1] and then are weighted through

the parameters α, β and γ.

4.3 Map Building

The creation of a map with a mobile robot is a challenging problems for many

reasons. However, the two main problems are described in [61]:

1. The hypothesis space, that is the space of all the possible maps is really huge.

Maps are described in a continuous space, so the space of all maps is infinite.

Even discretizing the space, it can be shown that map cannot be described

with less then 105 variables.

2. The map building is strictly related with the accuracy of the localization esti-

mation and the knowledge of the initial pose of the robot.

Anyway the difficulty in the map building is not equal for all the environmental

situations. Parameters that affect the hardness of the mapping problem are [61]:

• Size. The vastness as could be easily be understood is a parameter than

increases the complexity of this job. The measurement of the vastness has to

be compared with the robot’s perceptual range in order to have a measure of

the level of complexity.
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• Noise in perception and actuation. Mapping is also really affected by the

level of noise the robot’s sensors are subjected to. Being sure about the sensor

measurements makes things easier, but in a real world this condition is never

verified

• Perceptual Ambiguity. That is the difficulty in understanding the cor-

respondence between the sensed information about a same area of the map

traversed at different points in time.

• Cycles. Mapping a corridor is simpler than mapping a path containing loops,

where measurements about position can become less precise.

In the field of mobile robotics, different model for representing the environment have

been introduced over the years. The most common ones are feature maps, geometric

maps, and grid maps [58]. The feature maps creates the map representation through

the features extracted by the robot sensors. Usually the features consist in lines and

corners; an example of a feature map is depicted in figure 4.18.

Figure 4.18: Feature Map

Geometric map instead, represents all the obstacles detected by the robot sensors

as geometric entities, like circles or polygons.
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Figure 4.19: Geometric Map

Finally, occupancy grid maps that represent environment by a grid.

Figure 4.20: Occupancy Grid Map
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The model used in this work to generate the map is the occupancy grid map.

The reasons for this choice are described in the following section.

4.3.1 Occupancy Grid Mapping

Occupancy grids were first proposed by H. Movarec and A. Elves in 1985 [39] and

today is one of the most used mapping algorithm because of its robustness from

uncertain sensor measurements, assuming known robot pose. The occupancy grid

defines the map as a field of random variables, arranged in a equally spaced grid,

each one with a binary value corresponding to the occupancy of the location it

covers.

Figure 4.21: Grid Mapping Example

The algorithm takes into account a sequence of sensor observations zi:t obtained

by the robot at the positions xi:t and seeks to maximize the occupancy probability

for the grid map [61]. The goal of an occupancy mapping algorithm is to estimate

the posterior probability over maps given the data:

p(m|z1:t, x1:t) (4.37)
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where m is the map, z1:t is the set of all measurements until time t and x1:t is

the path followed by the robot. An occupancy grid mapping algorithm provides a

partitioned configuration of the map m such that m = {mi} where mi is the i− th

grid cell of the map. At each grid cell it is associated a binary value such that “1”

denotes occupied cells and “0” denotes free cells. Then 4.37 can be decomposed

as p(mi|z1:t, x1:t), for each grid cell mi. This decomposition is useful but it does

not allow to represent the dependencies between neighboring cells [61]. Thus the

following approximation is needed:

p(m|z1:t, x1:t) =
∏
i

p(mi|z1:t, x1:t) (4.38)

The formula 4.38 is a binary estimation problem with static state which can be

solved with a binary Bayes filer. A binary estimation problem with static state is a

problem where states don’t change over time and so its belief is a function only of

the measurement:

belt(x) = p(x|z1:t, u1:t) = p(x|z1:t) (4.39)

Considering p(¬x) = 1 − p(x) and defining the log odds l(x) := log p(x)
1−p(x) the final

equation of the Bayes filter in log odds form, after some equations is:

lt(x) = log
p(x|zt)

1− p(x|zt)
− log p(x)

1− p(x)
+ lt−1(x) (4.40)

The pseudo code of this estimation problem is shown in Algorithm 6 [61].
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Algorithm 6 Occupancy Grid Pseudo-Code

1: function Algorithm occupancy grid mapping({lt−1,i}, xt, zt):

2: for all cells mi do

3: if mi in perceptual field of zt then

4: lt,i = lt−1,i + inverse sensor model(mi, xt, zt)− l0;

5: else

6: lt,i = lt−1,i;

7: endif

8: endfor

9: return {lt,i}

As it can be seen in the Algorithm 6, the Occupancy grid algorithm makes use

of log odds representation of occupancy:

lt,i = log
p(mi|z1:t, x1:t)

1− p(mi|z1:t, x1:t)
(4.41)

This, inversely, can be written as:

p(mi|z1:t, x1:t) = 1− 1

1 + exp {lt,i}
(4.42)

Moreover, the function inverse sensor model used in the algorithm 6 is the inverse

measurement of p(mi|zt, xt) in its log odds forms:

inverse sensor model(mi|zt, xt) = log
p(mi|zt, xt)

1− p(mi|zt, xt)
(4.43)

The reason why this algorithm uses the log odds is to avoid numerical instabilities

due to probabilities near zero or one.
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Figure 4.22: Map through occupancy grid representation

4.3.2 Gmapping

To build the maps, the ROS gmapping package has been used [51]. This package,

as mentioned in the ROS gmapping documentation, provides laser-based SLAM.

This package does not just create a map of the environment surrounding a robot,

but it also estimates the robot pose inside this map. Gmapping employs a Particle

Filter (PF) called Rao-Blackwellized Particle Filter (RBPF), which is a technique

for model-based estimation. RBPF used as solution of SLAM has been introduced

by Murphy, Doucet and colleagues [18], [44]. As discussed in his work, Murphy

affirms that the aim of Rao-Blackwellized Particle Filter in the SLAM context is

to estimate the posterior probability p(x1:t,m|z1:t, u1:t−1) about the map m and the

trajectory x1:t = x1, ..., xt of the robot given the observations z1:t and the odometry

measurements u1:t−1 from the robots. The estimation p(x1:t,m|z1:t, u1:t−1) is defined

as:

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t) · p(x1:t|z1:t, u1:t−1) (4.44)
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Having this formula and assuming that we are mapping with known poses, then

p(m|x1:t, z1:t) is known.

For what concerns p(x1:t|z1:t, u1:t−1) the computation is more difficult. For this reason

a particle filter is applied in which each particle represents a potential trajectory of

the robot. Usually the sampling importance resampling (SIR) filter [32] is used. In

particular the Rao-Blackwellized SIR filter makes use of the sensor observations and

the odometry readings when they are available. It updates the set of samples that

represents the posterior about the map and the trajectory of the vehicle through

four steps:

1. Sampling: the generation of particles at time t xit is obtained from the gen-

eration xit−1

2. Importance Weighting: a weight ωit is assigned to each particle according

to the following formula:

ωit =
p(xi1:t|zi:t, u1:t−1)
π(xi1:t|zi:t, u1:t−1)

(4.45)

3. Resampling: particles are resampled according to their importance weight so

that a less amount of particles will result important for the approximation of

the distribution. After the resampling all the particles have the same weight.

4. Map Estimation: for each particle the corresponding map estimate p(mi|xi1:t, z1:t)

is computed based on the trajectory xi1:t of the particle and the history of ob-

servations z1:t

Anyway as it is described the problem becomes really inefficient as the length of

the trajectory, and so the observations grow over time. Then a reformulation is
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proposed in [19], in which:

π(x1:t|z1:t, u1:t−1) = π(xt|x1:t−1, z1:t, u1:t−1) · π(x1:t−1|z1:t−1, u1:t−2) (4.46)

and

ωit =
p(xi1:t|z1:t, u1:t−1)
π(xi1:t|z1:t, u1:t−1)

=
η · p(zt|xi1:t, z1:t−1) · p(xit|xit−1, ut−1)

π(xit|xi1:t−1, z1:t, u1:t−1)
·
p(xi1:t−1|z1:t−1, u1:t−2)
π(xi1:t−1|z1:t, u1:t−2)

∝
p(zt|mi

t−1, x
i
t) · p(xit|xit−1, ut−1)

π(xt|xi1:t−1, z1:t, u1:t−1)
· ωit−1

(4.47)

where η =
1

p(zt|z1:t−1, u1:t−1)
is a normalization factor. The authors in [32] describe

techniques to compute accurate proposal distributions, and to adaptively determine

when it is necessary to resample in order to improve the mapping technique. First

of all, according to the optimal choice proposal distribution suggested in [16], it is

possible to write:

p(xt|mi
t−1, x

i
t−1, zt, ut) =

p(zt|mi
t−1, xt) · p(xt|xit−1, ut)∫

p(zt|mi
t−1, x

′) · p(x′|xit−1, ut)dx′
(4.48)

Furthermore the author in [32] asserts that the use of the odometry motion model

p(xt|xt−1, ut) as the proposal distribution can be sub optimal when used with a

mobile robots equipped with laser range finder. This because due to the accuracy

of the laser range finder, the likelihood function is extremely peaked.

A graphical interpretation is given by the figure 4.23:
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Figure 4.23: Robot Position vs Likelihood [32]

Thus the author proposes to approximate p(xt|xit−1, ut) by a constant k within

the interval Li defined as:

Li =
{
x | p(zt|mi

t−1, x) > ε
}

(4.49)

Under this approximation, the equation 4.48 can be written as:

p(xt|mi
t−1, x

i
t−1, zt, ut) '

p(zt|mi
t−1, xt)∫

x′εLi p(zt|mi
t−1, x

′) · dx′
(4.50)

Furthermore, the author approximates the distribution around the maximum of the

likelihood function as a Gaussian function:

p(xt|mi
t−1, x

i
t−1, zt, ut) ' N (µit,Σ

i
t) (4.51)

For each particle i, parameters µit,Σ
i
t can be determined as:

µit =
1

η
·

k∑
j=1

xj · p(zt|mi
t−1, xj) (4.52)

Σi
t =

1

η
·

k∑
j=1

p(zt|mi
t−1, xj) · (xj − µit) · (xj − µit)T (4.53)
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where η =
∑k

j=1 p(zt|mi
t−1, xj) is a normalizer.

Furthermore, without going into the mathematical process, the final formula for the

importance weights ωi is approximated as:

ωit = ωit−1kη (4.54)

The proposal distribution described so far allows a robot with laser range finder

good results in terms of particle accuracy.

Figure 4.24: In a featureless open space the proposal distribution is the raw odometry

motion model (a). In a dead end corridor the particles uncertainty is small in all of the

directions (b). In an open corridor the particles are distributed along the corridor (c). [32]

Finally, the authors in [32] propose a selective resampling step, proposed in [40]

where the so-called effective number of particles Neff is defined as:

Neff =
1∑N

i=1(ω
i)2

(4.55)

Neff can be regarded as a measure of the dispersion of the importance weights and

through the formula 4.55 it is possible to pronounce on the efficiency of the particle

set approximation of the true posterior.
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The technique proposed by [32] is to resample when Neff gets lower of a certain

threshold, that is set as N/2 where N is the number of particles.

Figure 4.25: Particle mapping a Lab

As said so far, the gmapping more that just create a map of the environment,

performs the Simultaneous Localization and Mapping (SLAM) it is also used as

localization system [33] by the move base node.

Costmap

The costmap is a map of the environment that divides the space into cells and

assigns a cost to each cell. Each cell can be free, occupied or unknown, as for the

occupancy grid representation. Anyway, the peculiarity of this map is to assign

a further information around the occupied cells to which it is assigned a “lethal

cost” and an inflation around the cell is applied. The inflation is the process of
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propagating cost values out from occupied cells that usually decays as [25]:

e−k·(dobst−rinfl) (4.56)

Where k is a cost scaling factor, dobst is the distance from obstacle and rinfl is the

inflation radius.

The inflation radius rinfl, i.e., the radius to which the cost scaling function is applied,

is set by the user and usually it is choose as at least the radius of the robot, in

order to prevent a collision with obstacles. Then the cost scaling factor k is just

a parameter that sets the scaling factor that applies over the inflation in order to

obtaining a more aggressive or conservative behavior near obstacles. Finally the

distance from obstacle dobst is the minimum distance dividing the robot with an

obstacle. According to the definition of the inflation radius, five specific symbols for

costmap values are defined [50]:

• ”Lethal” cost means that there is an actual (workspace) obstacle in a cell. So

if the robot’s center were in that cell, the robot would obviously be in collision.

• ”Inscribed” cost means that a cell is in a position with a distance, from the

nearest obstacle, lower than the robot’s inscribed radius. So the robot is

certainly in collision with some obstacle if the robot center is in a cell that is

at or above the inscribed cost.

• ”Possibly circumscribed” cost is similar to ”inscribed”, but using the robot’s

circumscribed radius as cutoff distance. Thus, if the robot center lies in a cell

with this mark, the robot may collide with an obstacle. However, since we are

evaluating the circumscribed radius, the collision depends on the orientation

of the robot. The term ”possibly” is used because it might be that it is not
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Figure 4.26: Inflation [50]

really an obstacle cell, but some user-preference, that put that particular cost

value into the map. For example, if a user wants to express that a robot should

attempt to avoid a particular area of a building, they may inset their own costs

into the costmap for that region independent of any obstacles.

• ”Free space” cost is assumed to be zero, and it means that there is nothing

that should keep the robot from going there.

• ”Unknown” cost means there is no information about a given cell. The user

of the costmap can interpret this as they see fit.

• All other costs are assigned a value between ”Freespace” and ”Possibly cir-

cumscribed” depending on their distance from a ”Lethal” cell and the decay
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function provided by the user.

In figure 4.27 there is an example of a costmap, in which red cells represent the

obstacles, the blue cells have a cost defined using the inflation radius of the robot,

as previously described, and the red polygon is the footprint of the robot.

Figure 4.27: Costmap example [50]
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4.4 Exploration

”Exploration is the problem of controlling a robot so as to maximize its knowledge

about the external world” [61]. Given all the algorithms explained so far the robot

is able to localize itself, move autonomously and map the environment surrounding

the robot. The next question to answer to is: ”Where should the robot go to

increase its knowledge of its workspace?”. Exploration problems are usually divided

in three main cases [61]. The first one is the exploration of a static map, in which

in the case of occupancy grid map , as the case of this thesis, the robot tries to

maximize the cumulative information about each grid cell. An other exploration

problem is the mapping of a dynamic environment populated of moving subjects.

This is the case of finding a person in a known environment that can also moves

in the environment making necessary for the robot to visit the map areas multiple

times. Finally, another exploration type is the exploration of a map gaining as much

information as possible in order to increase robot’s information about its own pose,

also called active localization. Even if a really simple choice to visit an unknown

map could be to assign random-goal to a robot until the full map is available, this

would lead to a really inefficient and non-deterministic approach. To this aim many

researches over the years proposed always more efficient techniques. In [61] the

authors explain some basic probabilistic exploration algorithms, that are:

• Information Gain, in which a specific formula is in charge of evaluating the

expected information gain associated with an action u in belief b:

Ib(u) = Hp(x)− Ez[Hb(x
′|z, u)] (4.57)
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Hp is the entropy and can be computed as:

Hp(x) = −
∫
p(x) · logp(x)dx

(
or −

∑
x

p(x)logp(x)

)
(4.58)

and Hb(x
′|z, u) is the conditional entropy, such that:

Hb(x
′|z, u) = −

∫
B(b, z, u)(x′)logB(b, z, u)(x′)dx′ (4.59)

• Greedy Techniques, that treats the exploration problem as a decision the-

oretic problem, takes into account both the information gain and the cost of

applying a control action u in a state x. In particular the exploration of the

optimal exploration for the belief b is the one that maximizes the following

function:

πb(b) = argmax
u

α ( Hp(x)− Ez[Hb(x
′|z, u)])︸ ︷︷ ︸

expected information gain

+

∫
r(x, u)b(x)dx︸ ︷︷ ︸
expected cost

(4.60)

• Monte Carlo Exploration, that replaces the integrals in the greedy tech-

nique by sampling it. This in order to make the computational burden of the

greedy approach faster. Anyway since in a real situation a robot gets many

measurements z coming from, for example, lidars, the approximation intro-

duced by this technique could not be enough to overcome the computational

problems.

Another famous technique in the autonomous exploration area is the topological

exploration method. This technique considers the world defined as an embedding

on undirected graph G such that G = (V,E), in which V are a set of vertices and

E the edges that are enumerated in a systematic way. The robot moves from one

vertex to another traversing an edge. In [20], author describes an algorithm for
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exploring a graph using k markers. Every time a new vertex is encountered, it is

added to the ”explored graph” an its outgoing edges are added to a set of edges

describing the edges to be traversed to reach unexplored areas.

In this work, the exploration technique proposed is the so called Frontier Detection.

4.4.1 Frontier Detection

The frontier detection strategy has been firstly introduced by Yamauchi in 1997 [72]

and the name of the algorithm is based on the concept of frontier. The heart of the

idea is that: ”To gain the most new information, move to the boundary between

open space and uncharted territory”[72]. This last sentence is exactly the concept

of frontier, i.e., the segment that separates known regions from unknown regions.

Formally, a frontier is a set of unknown points that each have at least one open-space

neighbor [72].

Figure 4.28: Frontier Definition [72]

A graphical interpretation of the concept of frontier is shown in figure 4.29.
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(a) Robot’s surrounding (b) Resultin Frontier

Figure 4.29: Example of frontier in a real situation

In the first figure, 4.29(a), a robot is depicted within a three-wall structure in

Gazebo and its lidar beams painted in blue while in the second figure, 4.29(b), the

mapped representation of this situation is shown in RVIZ. From these two images

it can be visualized how a frontier is defined and evaluated. When the lidar detects

an object, then the space between the robot and the object is revealed and selected

as known area, whereas the open areas without obstacles are unknown parts. In

4.29(b), the two frontiers are shown by a number of red points that are, as previously

said, the lines separating a known part (the light one) from unknown part (the dark

one). There exist many implementations of Frontier Detection Algorithms, the one

chosen in this work is named Wavefront Frontier Detector (WFD) [62], which is

based on two nested Breadth-First Searches [14]. A Breadth-First Search is an

algorithm for traversing a tree or graph data structures. The algorithm allows to

traverse a layered graph starting from a selected node, that represents the root, and

exploring the neighbor nodes. As the name suggests, the algorithm traverses the

graph breadthwise as follows [1]:

1. First move horizontally and visit all the nodes of the current layer
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2. Move to the next layer

Figure 4.30: Layered Diagram [1]

The pseudo-code of the BFS is shown in Algorithm 7 [1].

Algorithm 7 BFS Pseudo-Code

1: function Algorithm BFS(G, s): . Where G is the graph and s the source

node

2: let Q be queue.

3: mark s as visited.

4: while Q is not empty do . Removing that vertex from queue, whose

neighbor will be visited now

5: Q.dequeue()

6: for all neighbours w of v in Graph G do

7: if w is not visited then

8: Q.enqueue(w); . Stores w in Q to further visit its neighbor

9: mark w as visited

Applying this pseudo code, it is possible to traverse a layered diagram, as it is

depicted in figure 4.31.
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Figure 4.31: Algorithm application [1]
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In the case of the Wavefront Frontier Detector, a first BFS is applied on the

entire grid to find frontier points. Once a frontier point is found, another BFS is

run to extract its frontier. As the authors states in [36], in this way we scan only

the known regions of the occupancy grid as opposed to the original approach which

scans the entire grid at every run of the algorithm. This has been possible by the

use of appropriate point classifications based on four indications:

1. Map-Open-List : points that have been enqueued by the outer BFS

2. Map-Close-List : points that have been dequeued by the outer BFS

3. Frontier-Open-List : points that have been enqueued by the inner BFS

4. Frontier-Close-List : points that have been dequeued by the inner BFS

The full pseudo-code of the WFD algorithm is depicted in Algorithm 8 [36]. This

approach proposes that moving to the frontiers the robots will gain as much infor-

mation as possible. With this algorithm we obtain the list of all points locations that

belongs to the lines separating known areas from unknown areas. Since this step is

needed to propose a number of possible goal points for the robots, it is needed to

group all the points belonging to a same frontier and then elect some representative

points that represent potential goals for the robots. To this aim, after all the frontier

points have been computed, a clustering algorithm is needed to groups these points

in group of frontiers and, in particular, a K − means strategy has been chosen.

Through the K −means algorithm all the frontiers are grouped and the informa-

tion about how many points belong to them is stored. Finally the median point for

each frontier is found so that it can be offered as goal points. A representation of
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this process is depicted in figure 4.32 [74].

Figure 4.32: (a) Frontier detection in the evidence grid, (b) frontier edge clustering, (c)

frontiers median points
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Algorithm 8 WFD Pseudo-Code

Require: queuem ‖ queue, used for detectionfrontier points from a given map

Require: queuef ‖ queue, used for extracting a frontier from a given frontier cell

Require: pose ‖ current global position of the robot
1: queuem ← ∅
2: ENQUEUE(queuem, pose)

3: mark pose as ”Map-Open-List”

4: while queuem is not empty do

5: p← DEQUEUE(queuem)

6: if p is marked as ”Map-Close-List” then

7: continue

8: if p is a frontier point then

9: queuef ← ∅
10: NewFrontier← ∅
11: ENQUEUE(queuef , p)

12: mark p as ”Frontier-Open-List”

13: while queuef is not empty do

14: q ← DEQUEUE(queuef )

15: if q is marked as {”Map-Close-List”, ”Frontier-Close-List”} then

16: continue

17: if q is a frontier point then

18: add q toNewFrontier

19: for all w ε adj(q) do

20: if w not marked as ”Frontier-Open-List”, ”Map-Close-List”,

”Frontier-Close-List” then

21: ENQUEUE(queuef , w)

22: mark w as ”Frontier-Open-List”

23: mark q as ”Frontier-Close-List”

24: save data of NewFrontier

25: mark all points of NewFrontier as ”Map-Close-List”

26: for all v ε adj(p) do

27: if v not marked as {”Map-Open-List”, ”Map-Close-List”}
28: and v has at least one ”Map-Open-Space” neighbor then

29: ENQUEUE(queuem, v)

30: mark v as ”Map-Open-List”

31: mark p as ”Map-Close-List”
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Chapter 5

Multi robot Scenario

5.1 Multiple Robot System

For a Multi Robot System, many classifications can be done, for example homoge-

neous and heterogeneous systems can be distinguished; a system of multiple robots

is said homogeneous if all the elements of the systems are of the same type and

heterogeneous if it is composed of different types of robots. [24], [23] and indepen-

dently [13] created a taxonomy or collection of axes to classify a swarm or collective

or robot collaboration research. The classification is reported in [22]:

• Size of collective: the number of robots in the system. The greater the number

of robot, the greater the complexity of the strategies that have to be designed

to guarantee the effectiveness and the safety of the system.

• Communication range: the maximum distance between two robots that allows

them to communicate.

• Communication topology: so the topology with which the communication hap-

85
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pens within the communication range.

• Collective reconfigurability: the ability of the system to react if something

goes wrong, for example one robot stops working of the communication falls

down.

• Processing ability: the computational model utilized by individual elements

of the collective.

• Collective composition: that describes if the system is heterogeneous of homo-

geneous.

Multi-robot systems may perform a given task faster and more robustly than a

single robot system, but in order to take full benefit of using these systems, the

work performed by each robot should be effectively allocated.

This allocation can be done in a different ways [22]:

• Centralized control structure has the coordination control of the elements of

the collectives in one central entity. Each robot shares its informations, ob-

tained from sensors, and its position to a central coordinator that, basing on

certain reasonings, assigns a goal to each robot. This kind of control architec-

ture is the simplest to be implemented and in many cases the most effective in

terms of task assignment. Anyway the biggest problem of this kind of choice

derives to the poor robustness since if the coordinator gets damaged the entire

system crashes down.

• Hierarchical architecture, that assigns at each element of the collective a

hierarchy with well-defined lines of communication and authority among the
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members. In extreme cases the hierarchy is similar to the one used in military

units. This kind of solution is more robust than the centralized one but it

presents problems when some superior is damaged since it implies that all the

lower robot in the hierarchy would not be able to work anymore too.

• Decentralized control structure, conversely, considers each robot in the multi

robot system as an individual entity, able to make it own decision basing on

the information it gets. This kind of control structure requires deeper design

and computational needs might be higher on the robots’ side that can be

critical for platforms with limited resources, but it guarantees a significant

redundancy and robustness that may be the most important requirements in

many cases.

• Hybrid system, in which all the control structure described so far are com-

bined opportunely to get the best system for specific cases.

Anyway in the fields of multi-robot exploration and mapping, the main control

architectures are centralized and decentralized, which their graphical interpretation

is provided by figure 5.1.

Figure 5.1: (a) Centralized system (b) Decentralized system [7]
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A further decision that has to be taken when dealing with a multi robot system

is about the level of coordination. In particular the multi-agent communication can

be:

• Full, that means that each robot can communicate and exchange information

with other robots

• Limited, that means that the communication is possible only in some cases

• None, so each agent don’t directly communicate with other robots.

Full communication is usually very difficult to achieve. In real situations, the com-

munication is possible when robots are within certain distances and when the com-

munication terminal is free i.e. when a robot is not talking with some other agents

yet.

5.2 Multi Robot Exploration Strategies: Back-

ground

Multi robot exploration strategies have been studied for almost three decades. Many

researches in this field have been conducted due to its huge potentiality and many

control policies for optimally explore unknown environments have been introduced.

According to the different robot coordination approaches mentioned in the previous

section, most algorithms are usually centralized or decentralized. Each coordination

policies have advantages and disadvantages and the choice is really dependent on

the application field. The simplest way to allocate goal to each robot can be in

a random way. For sure this method will lead to fully explore a map but in this



5.2. MULTI ROBOT EXPLORATION STRATEGIES: BACKGROUND 89

way the exploration is inefficient and not deterministic. One of the most popular

solutions in the area of centralized approaches is a solution based on auction among

the communicating agents. The method assumes that each robot, disposing of a

set of possible goals, shares this set among a central entity. Once all the goals are

communicated, each robot bids on the goals according to a certain metric, that

usually involves the distance between the robot and the goal. Finally robots share

their bids and the central authority decides the winner for each goals basing on

a first-price auction format. Anyway many variants of this idea have been done

and also distributed versions of this algorithm have been introduced to overcome

the centralization mechanism limitations. Many works on this approach have been

conducted, such as [10], [59], [28]. Another strategy used in many researches is

called Iterative Assignment (IA), based on the Broadcast of Local Eligibility (BLE)

algorithm [65], in which after all the pairs 〈robot, task〉 are collected, they are ordered

according to the highest utility, i.e. the distance cost, Ω such that Ω(p1) ≤ Ω(p2) ≤

... ≤ Ω(pl); the ordered sequence is traversed starting from its first element and

the first not already used goal is iteratively assigned to a robot without goal. Both

centralized and decentralized versions of this method exist. In this work four state-

of-art algorithms have been studied and tested. Moreover another novel strategy is

introduced. The algorithms tested and discussed in the following sections are:

• Greedy Algorithm

• MinPos

• Hungarian Method

• Cost-Utility Function
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5.2.1 Greedy Algorithm

One of the most used technique in the area of multi robot exploration is surely the

Greedy algorithm, introduced by Brian Yamauchi, which in 1998 proposed a really

simple but very effective frontier navigation strategy [73]. The idea of the Greedy

algorithm is that, once frontiers are detected, each robot “attempts to navigate

to the nearest accessible, unvisited frontier” [73]. Once the robot determines the

nearest frontier, exploiting a path finding that returns the shortest obstacle-free

path, the robot moves towards its destination for a certain amount of time, after

that the robot declares that point inaccessible and that location is inserted in a

list of inaccessible frontiers. The algorithm proposed by Yamauchi considers each

robot as a central entity, which makes its own choice basing on the nearest frontier.

While moving each robot builds a Global map. When a robot arrives at a frontier, it

builds a local grids through its sensors and this grid is integrated with its global map

and it’s shared with the global grid of each robot (figure 5.2). This approach has

the advantage of being both cooperative and decentralized. All of the information

obtained by any robot is available to each robot. This allows robots to use the data

from other robots to determine where to navigate. Yamauchi’s method introduces a

certain coordination among robots since each robot shares the gathered information

to all the other robots. Anyway, the coordination is an “implicit coordination” that

in many cases could not be enough. In fact, the main inefficiency of this approach

is that since there is no shared information about the point that each robot is going

to visit, so it may happen that two or more robots navigate to the same frontier.

The pseudo-code of the Greedy Algorithm is shown in Algorithm 9.

Algorithm 9 Nearest frontier

Input: Ri, Ci Cost V ector of Ri

Output: αij assignment of robot Ri to frontier Fj

begin

αij = 1 with j = argmin
∀FjεF

Cij

end
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Figure 5.2: Information Sharing [73]

5.2.2 MinPos

Minimum Position (MinPos) algorithm is based on the distribution of robots among

the frontiers [9]. This algorithm does not just try to assign the best goal for one

robot with respect to its position, as Greedy algorithm does, but it tries to choose

the most convenient goal point with respect to the other robots. In order to do this,

the MinPos algorithm considers the notion of position or rank of a robot towards a

frontier, by counting how many robots are closer to the frontier. The original paper

[9] proposes an exploration strategy articulated as follow:

• Frontiers identification and clustering

• Computation of the distances to frontiers

• Assignment to a frontier

• Navigation towards the assigned frontiers for a fixed time period
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In practice, this approach consists in assigning to a robot a frontier for which it is in

best position, i.e. the frontier having the less robots closer than itself. Considering

Pij the position of the robot Ri towards a frontier Fj as:

∑
∀RkεR,k 6=i,Ckj<Cij

1 (5.1)

which computes the cardinal of the set of robots closer to the considered frontier

than the robot being assigned. This approach is based on the concept of positions

and not of distances as Greedy algorithm does. With this approach, one robot will

be assigned to one frontier only if it is the nearest one with respect to the other for

that frontier, whatever the distances, thus favoring a better spatial distribution of

robots on frontiers. Let’s take as an example the situation depicted in figure 5.3.

Figure 5.3: MinPos example [9]

As it can be seen in the figure 5.3, R5 is the nearest robot to the frontier F0

and is in second position for frontiers F1, F2 and F3. The situation described in the

figure 5.3 can be translated in the table 5.1:
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Table 5.1: Table of positions

F0 F1 F2 F3

R0 2nd 1st 3rd 3rd

R2 3rd 3rd 1st 1st

R5 1st 2nd 2nd 2nd

Each robot will be assigned to the frontier in which they are in first position and

in case a robot is first for more than one frontier, as for the robot2 in the example,

the robot will be assigned to the nearest frontier (in the example to the frontier

F2). In case of the Greedy algorithm, in which each robot would consider only the

nearest frontier to itself, both R0 and R5 would select as goal point the frontier F1.

In this terms, the MinPos method gives a better spatial distribution. Finally:

R0 → F1

R2 → F2

R5 → F0

The MinPos pseudo code is given in Algorithm 10.

Algorithm 10 MinPos

Input: Ri, C cost matrix

Output: αij assignment of robot Ri

for all Fj ε F do

Pi,j =
∑

∀Rk ε R, k 6=i, Ck,j<Ci,j

1

αij = 1 with j = argmin
∀FjεF

Pi,j

In case of equality choose the minimum cost among min Pi,j
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5.2.3 Hungarian Method

This multi-robot exploration strategy is based on the Hungarian algorithm, a combi-

natorial optimization algorithm that solves the assignment problem for m machines

and m tasks. It was developed by Hatold Kuhn in 1955, an American mathemati-

cian, who dedicated the name “Hungarian method” to the two Hungarian scientists

that started before him the basis of the algorithm. The original algorithm had a

time complexity of O(n4) and Prof. James Munkres observed that the algorithm is

strongly polynomial [43]. Nevertheless, the algorithm has undergone variations that

brought it to be O(n3) [69].

The first step of the algorithm consists in creating a n× n table that describes the

cost of a machine with respect to a certain work. In the case of goal assignment of

multi robot system, the costs are the distance between robots and goals:

Table 5.2: Table of costs

Goal1 Goal2 Goal3 Goal4 ... Goaln

R0 d1,1 d1,2 d1,3 d1,4 ... d1,n

R2 d2,1 d2,2 d2,3 d2,4 ... d2,n

R5 d3,1 d3,2 d2,3 d3,4 ... d3,n

R4 d4,1 d4,2 d4,3 d4,4 ... d4,n

... ... ... ... ... ... ...

Rn dn,1 dn,2 dn,3 dn,4 ... dn,n

The next step is to translate this table into a n× n cost matrix:
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C =



d1,1 d1,2 d1,3 ... d1,n

d2,1 d2,2 d2,3 ... d2,n

... ... ... ... ...

... ... ... ... dn,n



The aim of the algorithm is to find the assignments goal−robot, such that the

total cost of assignments is minimum. This can be expressed by permuting the rows

and columns of a cost matrix C to minimize the trace of a matrix:

min
L,R

Tr(LCR) where L and R are permutation matrices [69]. The method can be

more easily be expressed in terms of bipartite graph:

Figure 5.4: Hungarian Method: graph representation

in which vertices are represented by robots (R) and goals/tasks (T) and lines

connecting them represents the weights, so the costs. Given the bipartite graph, the

Hungarian method is able to find the maximum-weight matching. The Hungarian

algorithm is divided into four steps. Let’s apply the algorithm for the minimization

problem shown in table 5.3.
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Table 5.3: Minimization problem example

Goal1 Goal2 Goal3 Goal4

R0 20 25 22 28

R2 15 18 23 17

R5 19 17 21 24

R4 25 23 24 24

1. Identify the minimum element in each row of the cost matrix C and subtract

it from every element of that row.

Table 5.4: Minimization problem example: Step 1

Goal1 Goal2 Goal3 Goal4

R0 0 5 2 8

R2 0 3 8 2

R5 2 0 4 7

R4 2 0 1 1

2. Identify the minimum element in each column of the cost matrix C and sub-

tract it from every element of that column.
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Table 5.5: Minimization problem example: Step 2

Goal1 Goal2 Goal3 Goal4

R0 0 5 1 7

R2 0 3 7 1

R5 2 0 3 6

R4 2 0 0 0

3. Draw lines through appropriate rows and columns so that all the zero values

of the cost matrix are covered and the minimum number of such lines is used.

Table 5.6: Minimization problem example: Step 3

Goal1 Goal2 Goal3 Goal4

R0 0 5 1 7

R2 0 3 7 1

R5 2 0 3 6

R4 2 0 0 0

4. If the minimum number of lines required to cover all the zeros is exactly n, then

choose the combination of robot-goal with zero to obtain the optimal solution.

If the number of covering lines is less than n, then an optimal solution cannot

be defined yet and step 5 has to be executed

5. Considering the minimum vertical and horizontal lines necessary to cover all

zeros in the reduced matrix obtained in step 3, then considering the elements
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not covered by these lines, choose the smallest one and subtract it from all the

uncovered elements and add it to the elements lying on the intersection of two

lines. Return to step 3.

Table 5.7: Minimization problem example: Check Step

Goal1 Goal2 Goal3 Goal4

R0 0 4 0 6

R2 0 2 6 0

R5 3 0 3 6

R4 3 0 0 0

The final optimal solution for the example will be:

Robot 1 −→ Goal 1

Robot 2 −→ Goal 4

Robot 3 −→ Goal 2

Robot 4 −→ Goal 3

with a total cost of assignment equal to: 20 + 17 + 17 + 24 = 78.

The Hungarian algorithm is based on the following theorem:

if a number is added to or subtracted from all of the entries of any one row or

column of a cost matrix, then on optimal assignment for the resulting cost matrix

is also an optimal assignment for the original cost matrix. Since the Hungarian

Algorithm is based on a square matrix, some problems can arise in a real situations
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in which a number m of goals are present in a certain instant and we are using n

robots such that n < m. To overcome this problem it is possible to add a number

m− n of “dummy robots” with high costs that make the cost matrix C square and

do not have any importance in the computation of the optimal goal points for the

real robots. Since in the simulations four robots (m = 4) have been used, each time

the frontier exploration algorithm gives a number n of frontier representatives, the

algorithm finds the number of “dummy robots” to add as p = n−m and assigns as

costs to them 1000:

Table 5.8: Hungarian Algorithm: real application

Goal1 Goal2 Goal3 Goal4 ...Goaln

R0 d1,1 d1,2 d1,3 d1,4 d1,n

R2 d2,1 d2,2 d2,3 d2,4 d2,n

R5 d3,1 d3,2 d2,3 d3,4 d3,n

R4 d4,1 d4,2 d4,3 d4,4 d4,n

Dummy1 1000 1000 1000 1000 1000

... 1000 1000 1000 1000 1000

Dummyn 1000 1000 1000 1000 1000

In order to improve the algorithm efficiency, the distance between the robots and

the goals is not just the Euclidean distance, but it is the distance statically evaluated

by the path planner. This because the Euclidean distance does not take into account

the obstacles, thus a point that is really near in terms of Euclidean distance, would

mean a huge travel distance in case several obstacle divide the robot and that point.
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5.2.4 Cost-Utility Function

Another navigation strategy tested is a reinterpretation of [30] for the case of frontier-

based exploration strategy. Since there is not a real name for this implementation,

the name Cost-Utility Function will be used to refer to this approach since it makes

use of a cost utility function. The central point of [30] addresses is “where should the

robot go next?”. According to the authors, this problem is similar to the Next-Best

View (NBV) problem studied in Computer Vision and Graphics. The paper also

describes an NBV algorithm that uses the safe-region concept to select the next robot

position at each step. The safe region is defined as the largest region guaranteed

to be safe given the history of sensor readings. The new position is chosen within

the safe region in order to maximize the expected gain of information under the

constraint that the local model at this new position must have a minimal overlap

with the current global map. Anyway, using a frontier-based algorithm the notion

of safe region is implicitly considered as the proposed goal lays on the frontier which

are the separation between the known and the unknown part of a map. Having the

representatives of each frontier, let’s identify them as q ε Fr where Fr is the set of all

the frontier representatives present in a certain instant in the map, then the score

of each candidate is defined by the following function:

g[q] = A(q) · e−λL(q) (5.2)

where λ is a positive constant, L(q) is the length of the collision-free path computed

by the planner, and A(q) is, according to a frontier-based exploration, the width of

the frontier. The idea that the formula wants to implement is that for a robot the

best goal to visit is the one that allows the robot to visit a big area of the map and

we know that a huge frontiers will offer a bigger range to acquire new information of
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the environment. Furthermore, as it has been exploited in the Greedy algorithm, we

want to visit the near points so that the robot can acquire new information about

the map in the least possible time.

The constant λ is used for trading off between the two parameters A(q) and L(q).

In particular, a small λ means that the motion is “cheap” and then also longer path

can be chosen, contrary, with a high λ , the travel cost increases and closer points

are preferred. So practically, when a robot computes the frontiers of its map, it

evaluates for each frontier the equation aforementioned; the frontier that maximizes

that function is the best frontier to visit and it’s assigned as the next goal of the

robot.

Figure 5.5: Cost Function Example [29]

For example, let’s take into account the scenario in the figure 5.5. As it can

be seen when a robot is in point start, tho frontier points are proposed as goal

candidates by the frontier detection algorithm, which are Frontier1 and Frontier2.

Assuming that the distance between the start and these two points is equal, what

is important to maximize the cost-utility function g[q] is the width of the frontier.

This example let to visually understand why it is important to choose the bigger

one. This is because a higher frontier will open the robot to visit a much higher

area of the map and so this let the robot to improve the fastness of the exploration.
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Assuming for example that Frontier1 is closer to the start point with respect to

Frontier2, even if with a small quantity of 0.1m, with a strategy like the Greedy

algorithm that always chooses the nearest one, the robot would go to the Frontier1,

loosing time in visiting a useless frontier. A similar and interesting variation of this

algorithm is provided in [29] that uses a similar cost function with respect to the one

described so far, but also mentions another parameter that takes into account the

semantic utility of a frontier, preferring doors and transit area instead of corners and

less useful frontier, with a cost-utility function equal to: g[q] = A(q) ·S(q) · e{1/C(q)}.

5.3 Proposed method

Each of the four algorithms proposed so far tries to answer to a basic question:

“How can I exploit at best the use of multiple robots to make the exploration

faster?”. Each algorithm answers to this question in a different way, someone trying

to make the algorithm as simpler as possible, avoiding the communication between

robots to make them autonomous and accepting some defects in terms of efficiency,

someone else aims at finding the most efficient task allocation having as drawbacks

a huge computational burden and assuming the explicit coordination among robots.

Anyway, also taking into account the experimental results it is evident that some

algorithms have better outcome in terms of efficiency. Analyzing the results and

make use of the results proposed in many papers, this work proposes a new strategy

for the management of multiple robots for mapping an unknown environment.

How many times we heard in a detective film the sentence “Let’s split up and sweep

the area” when a task of policemen has to explore an unknown environment to find

hostages in the shortest possible time? This is the main idea on which it insists
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the proposed strategy, that is to make the robot to be far from each other in order

to have a better spatial distribution of a map. Anyway as the other algorithms

discussed sentence, it is also important for a robot to choose near points to visit in

order to acquire new information as soon as possible. In order to balance between

these two aspects a cost-utility functions is proposed in order to find a frontier point

that is as near as possible to the robot that is searching its goal and as far as possible

from the other robots in order to distribute the overall group of robot in the best

way in the discovered part of the map. In order to maximize the distance from the

other robot it is needed to find a metric able to maximize such a distance. Since in

this thesis the work has been conducted with four robots, when a robot wants to find

the best frontier point to visit, according to the idea mentioned before, it should

evaluate the distance from each frontier point to the other three robot and then

maximize the distance with these robots at the same time. Thus, the question to

answer is “which is the point equidistant from the three robot locations?”; for this,

a geometric definition comes in handy, which is the circumcenter. According to [66],

the circumcenter of a polygon is the center of the circle, called circumcircle, that

passes through all the vertices of the polygon. In the case of this work, having four

robot, when a robot asks for a goal, the other three robot locations are considered

and the circumcenter is the point where the perpendicular bisectors of the triangle

formed by these locations intersect.
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Figure 5.6: Circumcenter: A, B, C correspond to robots positions

The main property that makes this geometric definition perfect for the problem

analyzed is that this point is equidistant from vertices of the triangle formed by the

robots locations. In order to evaluate this point it is possible to exploit another

mathematical theorem that states that through three non-collinear points passes

one and only one circle. Then finding the equation of this circle and extracting it’s

center we have exactly the circumcenter.

The canonical equation of a circle is for definition:

x2 + y2 + ax+ by + c = 0 (5.3)

In order to find the circle passing through the three robot locations [x1, y1], [x2, y2]
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and [x3, y3] , the following system of equations has to be solved:

x21 + y21 + ax1 + by1 + c = 0

x22 + y22 + ax2 + by2 + c = 0

x23 + y23 + ax3 + by3 + c = 0

(5.4)

Since quantities (x2i + y2i ) are known terms, the system in 5.4 can be rewritten as:

ax1 + by1 + c = −(x21 + y21)

ax2 + by2 + c = −(x22 + y22)

ax3 + by3 + c = −(x23 + y23)

(5.5)

In order to summarize these three equations in just one it is possible to write:

axi + byi + c = −(x2i + y2i ) where i = 1, 2, 3 (5.6)

In which a, b and c are the unknowns, xi is the coefficient of the unknown variable

a, yi is the coefficient of the unknown variable b, 1 is the coefficient of the unknown

variable c and −(x2i + y2i ) are the known terms. A possible way to solve this system

of three equations in three unknowns is the Cramer’s rule. The Cramer’s rule is a

linear algebra formula that allows to determine the solution of a system of linear

equations with n equations in n unknowns [67]. The formula expresses the solution

in terms of the determinant of the square coefficient matrices obtained replacing

one column by the column vector of right-hand-sides of the equations. This, in the

treated case, translates in:
x1 y1 1

x2 y2 1

x3 y3 1

 ·

a

b

c

 =


−(x21 + y21)

−(x22 + y22)

−(x23 + y23)

 (5.7)
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The Cramer’s rule states that values a, b and c can be determined as follows [67]:

a =


−(x21 + y21) y1 1

−(x22 + y22) y2 1

−(x23 + y23) y3 1



x1 y1 1

x2 y2 1

x3 y3 1


(5.8)

b =


x1 −(x21 + y21) 1

x2 −(x22 + y22) 1

x3 −(x23 + y23) 1



x1 y1 1

x2 y2 1

x3 y3 1


(5.9)

c =


x1 y1 −(x21 + y21)

x2 y2 −(x22 + y22)

x3 y3 −(x23 + y23)



x1 y1 1

x2 y2 1

x3 y3 1


(5.10)

Knowing the equations of the circle, the center position is easily computed as:

O = (−a
2

;− b
2

) (5.11)

Once computed the center of the circumference, we know the circumcenter of the

triangle formed by the three robot positions. The position of point O depends of
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the type of triangle formed by the three points.

In particular [66]:

• if the triangle is acute, the point will be inside it

• if the triangle is rectangle, the circumcenter is the median point of the hy-

potenues

• if the triangle is obtuse, the point is outside the triangle

Before computing the circumcenter is essential to verify that the three points are

not aligned, because, if it happens, a circle passing through the three points does

not exist. To check this condition it is needed to check if the following equation

holds:

y3 − y1
y2 − y1

=
x3 − x1
x2 − x1

(5.12)

If this happens, the robot will choose the nearest frontier, behaving as the Greedy

algorithm. If the three points are not aligned, and then it’s possible to evaluate

the circumcenter with coordinates O = (−a
2
;− b

2
) , then the distance between each

frontier representatives and this point is evaluated, let’s call it dcc(q) | q εFr where

Fr is the set of frontier representatives.

The next goal that the robot will visit is the one the maximizes the following cost-

utility function:

g[q] =
dcc(q)

L(q)
(5.13)

where L(q) is the distance between the robot and the frontier q and dcc(q) is the

distance between frontier q and the circumcenter found. The idea that the function

tries to implement is to choose a frontier that is as near as possible to the robot
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that is asking for a goal and as far as possible from the other robot. Let’s imagine

to have the four robots that form a square as shown in figure 5.7.

Figure 5.7: Circumcenter Rule Example1

In this example we have a robot R1 searching for a new goal. First of all a

central unit takes the position of the other three robots evaluated from the Extended

Kalman Filters. Then it computes the circle passing through their position. Since

in this case the robots are positioned on the vertices of a square, clearly the triangle

formed by any combination of three robots is a rectangular triangle. For the reasons

explained before, the circumcenter is positioned on the middle of the hypotenuse of

the triangle formed by the three robots locations. In the picture it is depicted as a

white box in the center of the three axes. Then the robot evaluates the equation

g[q] =
dcc(q)

L(q)
for each frontier median point that the frontier detection algorithm

extracts and it chooses the one that maximize such function. In this case it the
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point is the circular white one and the path the robot R1 will travel is the green

one, as shown in figure 5.8.

Figure 5.8: Circumcenter Rule Example2

5.4 Map Merge

Since in this work the aim is to build a map of an environment exploiting multiple

robots, it is important that each robot shares its map with the other robot and

viceversa, by merging all the maps in a unique one. The map merging problem , ”is

an interesting and difficult problem, which has not enjoyed the same attention that

localization and map building have” as Konolidge et al. wrote in [38]. Techniques

of map merging are usually divided into direct map merging, in which the algorithm

relies on sensors to directly compute transformation between reference frame of
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robots, and indirect map merging, that uses overlapping areas in maps to estimate

transformation between maps. In this work an indirect approach has been used, in

which a central entity is responsible for collecting local maps created by each robot

and merge them into a global map which is used by the robots to navigate, explore

and coordinate.

Figure 5.9: Map Merge [57]

In particular, a specific ROS package called multirobot map merger tries to
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match patterns within the local maps from each robot to determine the transfor-

mation. The ROS multirobot map merge node was created by [34], anyway it is

not the unique one implemented in ROS. For instance, it exists a package called

map stitch which has a strong limitation, since it can only produce a merged map

given static maps. The multirobot map merge node, instead, is able to execute and

update online during exploration. The map merger computes the transformation

between two local maps M1 and M2 constructing the global map by joining the

local maps maximizing the match over overlapping areas. The mathematical model

of the map merging problem is described in [11]. As said before, the map merging

problem has as objective to find the transformation between two maps that returns

the best merging. Let m1 and m2 be two maps expressed in terms of matrices with

dimensions N ×M . The overlapping between these two maps is defined as:

ω(m1,m2) =
N−1∑
i=0

M−1∑
j=0

Eq(m1[i, j],m2[i, j]) (5.14)

where:

Eq(m1[i, j],m2[i, j]) =


1 if m1[i, j] = m2[i, j]

0 otherwise

ω, called overlapping function, is a measure of how much two maps can be

overlapped. In an ideal world, in which the map created by any single robots is

equal to the real representation of the map, it exists a transformation which yields

a perfect overlapping function. In the real applications this is not possible, so what

it is possible to search is the transformation that maximizes the overlapping values.

The problem can be then defined as finding the transformation T (x, y, θ) such that

ω(m1, Tx,y,θ(m2)) is maximized.

Then, the problem is an optimization problem in a three dimensional space, which
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goal function is the overlapping function ω. To perform this optimization problem

a heuristic function δ is used to guide the search process. This function defines

a metric that indicates the overlapping regions. Formulas introduced so far only

deal with two merging maps. Anyway when more then two robots are used, a more

structured model definition is required.

In particular, let m1,m2, ...,mn be the matrix representations of the maps produced

by robots r1, r2, ..., rn respectively, with dimensions N ×M .

The overlapping between m1,m2, ...,mn is defined as:

ω(m1,m2, ...,mn) =
N−1∑
i=0

M−1∑
j=0

Eq(m1[i, j], ....,mn[i, j]) (5.15)

where:

Eq(m1[i, j], ....,mn[i, j]) =


1 if m1[i, j] = m2[i, j] = ... = mn[i, j]

0 otherwise

Also in this case, ω is called overlapping function and the map merging problem is

solved finding n− 1 transformations T 1(x1, y1, θ1) up to T n−1(xn−1, yn−1, θn−1) such

that ω(m1, T
1
x1,y1,θ1

(m2), ..., T
n−1
xn−1,yn−1,θn−1

(mn)) is maximized.

The map merge node works in two modalities:

1. Merging with known initial positions: in which the user declares the initial

position of its robots and make the merging problem easier

2. Merging without known initial positions: in which the algorithm itself has to

find the merged map only observing the overlapping area of the various map.

If the number of overlapping areas is not enough, the node won’t find the

merged map
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The architecture of the ROS multirobot map merge is shown in figure 5.11 [55].

Figure 5.10: ROS Multirobot Map Merge Architecture

An example of the map merge node output in a four robot application is depicted

in figure 5.11.

Figure 5.11: Map Merge example with 4 robots

The map merge node is a really useful node, anyway it presents some inefficien-

cies. Sometimes the map produced is not coherent with the actual map. This usually
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happen when robot maps are not so equal each other making difficult the job of the

merger to find enough fitting point to create a good transformation. In other cases,

the merger computes wrongly the position of the map and shifts it with respect to

the center. When these situations happen it is a problem for the simulation, then

it is needed to chest such experiment and perform it again.

(a) Wrong map (b) Real map, wrongly centered

Figure 5.12: Problems of Map Merge node

As shown in figure 5.12(a), due to the wrong map created, the frontier detection

computes frontiers that actually don’t exist, but are a result of the fact that the

maps that should be merged are not completely fused and the holes that born due to

this inefficiency are considered as frontiers by the frontier detection node. Instead,

in figure 5.12(b), the problem that arises is that robots get confused about the

point to go since the merged map give them a certain position as goal, but it may

happen that in their personal map that point lays on a wall thus creating conflict

and impossibility to continue the experiment.
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5.5 Experiment Outlines

5.5.1 Experimental Principles

In order to carry experiments in an efficient and proper way, the following principles,

already treated in [26] and based on [4], are adopted:

• Comparison – is one of the main principles to measure and decide whether an

algorithm is better than another basing on results. Anyway it is important

to state in which conditions an algorithm provides better algorithms than

another. To this aim three approaches are described in [6]:

1. usage of the same implementations used in the previous experiments;

2. development of a new implementation based on the available description;

3. usage of the results reported by other authors in their publications.

• Reproducibility – concerns the level of detail of experiments to allow to other

researches to replicate it

• Repeatability – that is related with the capacity of getting the same results

among various trials, thus it is related to the controllability of the experiment

• Justification and Explanation – which deal with the general conclusions about

some experiment and the motivation of results given the collected data. To

efficiently execute this phase, it is useful to compare the obtained results with

the one expected by the theory or reference result.
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5.5.2 Views on Experimentation

Following the strict process used in [26], five views on experimentation are described

[60]:

• Feasibility Experiment, which aims at demonstrating that a certain approach

works, so it’s feasible

• Trial Experiment, provides complex results in view of several experiment at-

tempts providing performance indicators

• Field Experiment, which is the employment of the experiment into the real

world in order to show validity and robustness of a certain solution

• Comparison Experiment, that is the demonstration of improvement brought by

a solution rather than another by comparing different solutions and showing

what the improvements consist of

• Controlled Experiment, i.e., testing of a solution controlling all the variable

that could influence the response of the experiment, under specific protocol

rules, so that the obtained result can be extended and generalized.

The previously mentioned techniques will then be employed to test algorithms cited

in order to find out which algorithm is the most effective for multi-robot exploration.

Anyway what mentioned so far does not take into account in which environment tests

should be carried out. At this aim it is quite important to answer to this question

proposing also for this problem opportune methods and techniques to efficiently

create suitable environments for tests. According to [26] a suitable way to test

multi-robotic exploration is to follow an approach based on three-pillars. The first
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pillar consists in the description of the exploration framework, which gives a rough

idea on what the exploration strategy is and what parameters could influence the

outcome of that strategy. The second pillar is the benchmark that consists of en-

vironments, particular frameworks and methods, reference solutions, and statistical

evaluation. The third pillar is the experimental protocol, i.e. the set of procedures

and experiment methodology applied for a specific test. Furthermore, in order to

check all the aspects of a certain experiment, tests can be divided into level of re-

alism, in which going deeper in the levels we will have much more reality and so

variable parameters to check for robustness and effectiveness of algorithms in a real

world. In particular:

• Level 0, fixes all parameters and aspects that could influence the exploration

strategy, in order to provide an absolute controller evaluation environment. At

this level of realism we are more focused on the strategy outcome regardless of

computational resources and influencing parameters. With these constraints it

is not possible to use the real required time for the exploration as performance

indicator because clearly it would be meaningless, due to the facilitating condi-

tions; the traveled distance is instead in this case a good evaluating parameter

since it is only related with the throughput of the algorithm.

• Level 1, differently from the Level 0, we aim at testing the algorithm taking

into account also computational requirements and a physical simulation is used

to test the actual exploration time. In this work the simulation environment

used is the 3D Gazebo Simulator.

• Level 2, is the employment of the real robot in the real world. As stated
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before, this part is the crucial part in which the algorithm is finally deployed

to test its validity in real world where a lot of variable exists, both in the

environment setting and for the physical limitations of the robot. Anyway in

this work this level or realism is not applied.

Further level of realism can be the field experiment, in which not only the working

of an algorithm is tested, but also its robustness and efficiency in always more

unstructured and uncontrolled conditions are applied in order to check the robot

outcome in emergency and dangerous situations. Anyway for sake of simplicity

in this work the experiments have been only carried in a Level 1 of abstraction.

Nevertheless the aim of this work out of the thesis is to tests all the strategies

proposed in a real environment in a future work.

5.5.3 Exploration Framework

The exploration framework is a fundamental choice in the strategy testing since

it influences the overall system performance. In the case of a multi-robot system

R = {r1, ..., rm}, the exploration procedure has been stated in [26] and costs of the

following steps:

1. Initialize the model of the environment and set the initial plans to

P = {P1, ..., Pm}, where Pi = {∅} for each robot 1 ≤ i ≤ m

2. Repeat

• Navigate robots using the plans P ;

• Collect new measurements;
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• Update the navigation map M ;

Until replanning condition is met.

3. Determine goal candidates G from M .

4. If |G| > 0 assign goals to the robots

• (〈r1, gr1〉, ..., 〈rm, grm〉) = assign(R,G,M), riεR, giεG;;

• Plan paths to the assigned goals P = plan(〈r1, gr1〉, ..., 〈rm, grm〉,M);;

• Go to Step 2;

5. Stop all robots and navigate them to the starting position.

5.6 Tests

5.6.1 Generalities about the tests

First of all, every algorithm has been managed as centralized algorithm for a matter

of limitations in terms of resources. Frontiers are directly evaluated in the centralized

map created by the map merge node, which takes the single map from each robots

and create a unique map. The reason for this choice is multiple. First of all because

of hardware limitations. Even if three laptop have been used concurrently to perform

tests, the use of multiple frontier detection nodes running each one for one robot,

has put a strain on the pc resources, instead, using a unique map, makes possible

to have more efficient results from simulations because there are not slowdowns

caused by the hardware performances. Furthermore, the use of the merged map

allows to take into account the information gained by all the robots. Not having an
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algorithms for the global map broadcast of each robot map, this choice resulted to be

the most efficient compromise. Secondly, the collision avoidance algorithm chosen

for performing tests is the move base from ROS Navigation Stack. This because

testing all three approaches described in Section 4.2, the most effective in terms of

robustness and performances it is for sure the move base. Moreover, the use of the

move base node made possible to exploit the make plane, which is a service of the

move base node to evaluate the path length from robot position to one hypothetical

goal point. The service is requested from a robot only when it does not have a

goal to be reached in its current plan. Lastly the robots initial positions are fixed

to simplify the simulation observations and always for sake of simplicity, the map

merge node is informed about the initial positions of the robots. This is a really

strong assumption because in rare cases, in a real situation, we know the position of

a robot and, in general, it would be better that the robot localizes itself without any

information. Nevertheless, the use of the map merge node makes necessary to do

this assumption because, even if it allows to merge maps without known positions,

the outcome of the merge is not always positive. To lighten the map merge workload

to focus only on the multi robot exploration strategies, robots will always start from

fixed positions, that are:

• Robot1 → (1, 1);

• Robot2 → (−1, 1);

• Robot3 → (1,−1);

• Robot4 → (−1,−1);
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5.6.2 Scenario Setup

Tests have been performed in two different maps, in order to get more information

about the outcome of an algorithm. This because the behavior of an algorithm is

not the same for every map, in fact there are maps in which an algorithm performs

better and other maps in which the outcome of the algorithm is worse. The first

map, let’s call it house, is a home-like environment, with eight rooms, one corridor

and some separation walls.

Figure 5.13: House map
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Instead, the second map, called boxed map, is an open-space area with a number

of boxes situated in a random order inside it.

Figure 5.14: Boxed map

Both maps are 18m × 18m .
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5.6.3 Test evaluation criteria

Using these two maps the five algorithms described have been tested. For each

algorithm 20 tests have been conducted, 10 on the house map and 10 on the boxed

map. During the tests three parameters have been collected:

1. The mapping time, i.e., the time needed to map the whole environment

2. The length of the longest path assigned between two consecutive goal points

3. The length of the longest path, i.e., the longest path traveled by any robot

5.6.4 Results

Results in the two maps are shown in the figures 5.15 and 5.16 where, to make they

simpler to read, brief acronyms are used to identify the algorithm used.

In particular:

HM → Hungarian Method

MP → MinPos

CU → Cost-Utility Function

GA → Greedy Algorithm

CR → Circumcenter Rule

Results are shown in the following two pages.
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Figure 5.15: Tests on House Map
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In these figures (5.15 and 5.16) both the mean value and the respective standard

deviations are shown through boxes. In particular the central line of each box

represents the mean value of tests that, as said before, are 10 per each algorithm.

The width of the boxes represents the standard deviation around each mean value.

In order to clarify this the following formula is shown to explain in analytical way

the meaning of results:

µi
mean value of algorithm i

± σi
standard deviation of algorithm i

(5.16)

As it can be seen from results, Circumcenter rule has good results for both maps,

especially in the case of the boxed map. Furthermore as anticipated before, tests

in different maps provided different results in terms of efficiency. For example for

the house map, the Hungarian method provides worse results with respect to the

MinPos, whereas in the case of the boxed map we have the opposite behavior. This

is the reason why more than one map has been exploited, so that now it is possible

to assert for example that the Greedy algorithm has good results in a map in which

there are small frontiers (i.e. boxed map), due to the nearness of the various boxes,

instead of maps with more open areas, like the house map, in which it is important to

take into account the hugeness of a frontier as the result of the Cost-Utility Function

confirms. Anyway the outcome of the results is also influenced by some limitations

of certain algorithms. For what concerns the Hungarian method, for example, its

limitation is that it has to evaluate the next goal when all the robots require a goal.

This means that if three robots out of four have already reached their goal, whereas a

robot is still trying to reach its goal, the other three robot have to wait until the last

one requires a new goal to have new positions to visit. To mitigate this inconvenient

that may become very penalizing in the case a robot fails, two preventive measures



5.6. TESTS 127

have been introduced. First a goal point remains so if and only if when the frontier

detection algorithm updates new frontiers and deletes the old ones, the goal point

is still a frontier point. For example, if a robot that was reaching a goal, moved

near the goal point of another robot, updating the map and so the position of the

new frontiers, that goal is deleted from the list of goal to visit and new goals are

computed. This helps to not waste time for searching a frontier that does not exist

anymore. This type of decision making frequency is known as immediate replanning

(IR) that differs from the goal replanning (GR) in which the assignment of newly

determined goals whenever a robot reaches its previously assigned goals. Another

precautionary measure is to activate a timer when a robot stops before reaching its

goal so that, if it remains stuck for a certain amount of time, it means that something

did wrong in the planning task and it’s better to eliminate the goal it has and, then,

assign a new goal. The first security measure is present in all the other algorithms,

in order to have more significant results. Anyway these checks and precautions in

a certain way influence the efficiency of the code. That’s why, another important

parameter for the comparison of various algorithms is the computational burden

and the simplicity of the code. For example even if the Hungarian method shown

good results for the boxed world, the code to implementation is quite complex and

it’s really heavy to run. Even the MinPos needs a lot of calculations. Since the

aim of the simulation is to evaluate the performance of an algorithm because we

want to deploy it in a real robot in the future, it is really important to choose the

most efficient algorithms also in terms of resources since physical robots have limited

resources. The algorithms with computational simplicity are the Greedy algorithm,

the Cost-Utility Function and the Circumcenter rule. Furthermore, these algorithms
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can easily be transformed into decentralized algorithms. The difference about this

observation is that, while the Greedy algorithm and the Cost-Utility Function do

not require any communication between robots, the method proposed in this work,

requires that each robot has to be able to send its communication to the other

robots of the collective. This may cause problems in the real world, in which this

communication can be complex in noisy situations and sometimes impossible for

example when robots are very far from each other. Furthermore in a real situation

in which one fundamental resource is the economical affordability of the project,

the use of effective means of communication could be too exogenous. So, as usually

happen for any engineering project, the choice of the strategy to use is a matter

of cost-utility with respect to the application field. A resuming table to depict

important parameters characterizing the exploration procedures is shown in table

5.9.

Table 5.9: Resuming table

Parameter Value

Sensor model 360◦ Lidar with 10m sensing range

Environment map Occupancy Grid map

Global path planner Dijkstra’s Algorithm (ROS Navfn)

Local path planner Dynamic Window Approach

Path finder move base/make plan

Coordination Centralized

Decision-making Immediate Replanning

Communication Full without restriction

Initial Positions Known
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Conclusions

In this thesis, five multi-robot frontier-based exploration strategies have been tested.

The aim of each exploration strategy is to enable a team of robots to explore and

map environments in the most efficient way. To accomplish the mapping task, robots

have to be able to solve the SLAM problem. To this aim, each robot is equipped of:

• A localization algorithm, in particular, an Extended Kalman Filter has been

implemented

• A collision avoidance package, the ROS move base node has been exploited,

with Navfn as global planner and Dynamic Window Approach (DWA) as local

planner

• A mapping algorithm, the ROS gmapping package has been used, which ex-

ploits the occupancy grid map representation

When a group of robot explores an environment, the fundamental challenge to be

addressed is the coordination of the team. In this work, only centralized coordination

129
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approach has been tested because of resources limitation. The centralized algorithm

makes use of the central map, created by the ROS multirobot map node. The map

merge problem has been simplified assuming known initial position. This is a strong

assumption because it may happen in real scenarios that initial positions of the

robots are not known a priori. The centralized approach has the cons of being

susceptible to failures, because if errors occur in the central entity, the whole multi-

robot system fails. Tests have been conducted in the Gazebo simulation environment

with four differential robots (TurtleBot3 Burger model), exploiting two different

maps. Results show that the outcome of an exploration strategy depends on the

map in which it is tested.

The five exploration strategies have been compared collecting three parameters:

• Mapping time, the time required by the team of robots to map the whole

environment

• The length of the longest path assigned between two consecutive goal points

• The length of the longest path traveled by any robot

Finally, an Immediate Replanning (IR) decision-making frequency has been adopted,

which means that as soon as the goal of a robot is no more a frontier, then a new

goal is assigned to it.

6.1 Contributions

In Chapter 5, four state-of-art multi-robot exploration strategy have been analyzed

and a novel exploration strategy approach, called Circumcenter Rule, has been pre-

sented. Circumcenter Rule tries to answer to the question: ”How can I exploit at
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best the use of multiple robots to make the exploration faster?”. The proposed

strategy provides the following answer: ”Let’s split up and sweep the area”. To

do this, a cost-utility function has been created in such a way the robot navigates

through frontier points that are as close as possible to itself and as far as possible

from the other robots. To this purpose, the concept of circumcenter has been intro-

duced. When a robot asks for a goal, it finds the circle passing through the locations

of the other three robots exploiting the Cramer’s rule and then it extracts its center

that, for definition, corresponds to the circumcenter. Finally, the robot will reach

the frontier q that maximizes the quantity g[q] =
dcc(q)

L(q)
, where L(q) is the length of

the collision-free path between the robot and the frontier q and dcc(q) is the distance

between frontier q and the circumcenter found. The proposed method has shown

positive results in terms of exploration time, classifying as the fastest exploration

strategy among the other exploration strategies compared.

6.2 Future Work

Since the proposed multi robot strategy ”Circumcenter Rule” has brought inter-

esting result, future works will include tests of the multi-robot strategy in a real

environment, as well as extend the formulation for more then four robot. Further-

more the implementation of this algorithm with physical robot would make possible

to modify the centralized formulation into a decentralized one since, having per-

formed the tests in a unique system didn’t make possible to use decentralization

in the simulations. Anyway a group of mobile robot has already been created but

due to impossibility to be in lab because of Covid-19 emergency, the employment of

these robot could not have been done. In particular the robot it would have been
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used is shown in figure 6.1.

Figure 6.1: Real Robot

The schematic of all components and their interaction is depicted in figure 6.2.

In particular a brief list of the main components and their use is:

• ESP32: is a low-power system on a chip microcontroller equipped of Wi-Fi

module and dual-mode Bluetooth. This MCU is used as high level layer and

is the bridge between the user and the robot. ESP32 has 32-bit dual-core CPU

operating at 160 or 240 MHz, 520 KB of SRAM and 448 KB of Rom. A huge

utility of this instrument is that allows communication both through UART
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and I2C.

• STM32: is a microcontroller based on Arm R Cortex R - M7 core. These 32-

bit MCUs have from 256 Kbytes to 2 Mbytes of Flash memory. In the robot

configuration it is the lower level MCU that occupies of sending commands to

motors and receiving information by encoders.

• ADS1115: is an 16-bit analog-to-digital converter, I2C compatible and low-

power device. It’s scope is to convert the Mox sensor readings into digital

information.

• IMU: not a specific model has been used as IMU. An example of IMU used is

the GY-80, which is a 9-axis sensor, provided by a 3-axis gyroscope (L3G4200D

0x69), a 3-axis accelerometer (ADXL345 0x53), a 3-axis magnetometer (MC5883L

0x1E) and a Barometer + Thermometer (BMP085 0x77).
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Figure 6.2: Hardware Components Interaction



135



List of Abbreviations

Abbreviation Meaning

AMCL Adaptive Monte Carlo Localization

APF Artificial Potential Field

BLE Broadcast of Local Eligibility

BFS Breadth-First Search

CPU Central Processing Unit

CR Circumcenter Rule

CU Cost-Utility Function

DWA Dynamic Window Approach

EKF Extended Kalman Filter

GA Greedy Algorithm

GPS Global Positioning System

GR Goal Replanning

HM Hungarian Method

IA Iterative Assignment

ICC Instantaneous Center of Curvature

IMU Inertial Measurement Unit

IR Immediate Replanning
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Abbreviation Meaning

KF Kalman Filter

MCL Monte Carlo Localization

MCU Micro Controller Unit

MinPos Minimum Position

MP MinPos

MPC Model Predictive Control

NBV Artificial Potential Field

PF Particle Filter

RBPF Rao-Blackwellized Particle Filter

RCP Robot Center Point

ROS Robot Operating System

RVIZ ROS Visualizer

SIR Sampling Importance Resampling

SLAM Simultaneous Localization And Mapping

SPT Shortest Path Three

SRAM Static Random Access Memory

TEB Time-Elastic-Band

UART Universal Asynchronous Receiver Transmitter

URI Uniform Resource Identifier

VFH Vector Field Histogram

WFD Wavefront Frontier Detection

XMLRPC XML-Remote Procedure Call

XML eXtensible Markup Language
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