
POLITECNICO DI TORINO

Master Thesis in Mechatronics Engineering

A ROS-based motion planning for
socially-aware navigation

Relatori
prof. Alessandro Rizzo
dott. Stefano Primatesta

Studente
Daniele Fidelio
matricola: 245397

Academic Year 2019-2020

Abstract

In the last years, autonomous mobile robots are increasingly present in our daily life and,
in the next future, they will be increasingly present in our house, offices and in public
environments. Today, it is quite common to see a robot cleaner. But, in the future we will
have a complete coexistence between humans and robotic platforms.

The presence of robots in populated areas could cause some issues. The main one is the
co-presence of humans and robots in the same environment. The robot should consider the
presence of humans, respecting social rules and providing a safe and comfortable motion,
to achieve human acceptance and trust. The robot should imitate humans, providing
a human-like motion. In this way the humans will accept the presence of the robot,
considering the robot like a one of them.

The research field of studying how to move a robot evaluating the presence of humans
is called socially-aware navigation.

The goal of this work is to develop an algorithm to compute a socially-aware trajectory
for mobile robots. In particular, the trajectory must be accepted by humans. To do that,
the robot should have a human-like behavior. Generally, humans move with a collision-
free trajectory, observing other movements and anticipating other people, to avoid possible
further collisions.

Our aim is to “anthropomorphize” the robot behavior. In the literature, many studies
have already published on this topic. Many approaches try to solve this problem focusing
only on the robot, without considering humans as social entities. In this work, we consider
humans on the populated environment.

Many common motion planning approaches provide a reactive behavior. The robot sees
the obstacle and, then, tries to avoid it just reacting on the obstacle motion. However,
humans use a predictive approach to move in crowded environments. Humans observe the
obstacles and other humans and avoid them by predicting their motion.

In order to solve the socially-aware navigation problem, we use a game theory approach.
For instance, assuming the chess game scenario, we try to predict the further moves of other
player in order to decide the next move. Similarly, we apply this idea in our algorithm.

The proposed approach is based on the implementation of a game theory method. We
choose a particular type of game. This game has the following features:

1. Dynamics. The game evolves during the time.

2. Non-cooperative. Each player thinks only to its own goal.

3. Non-zero sum. The sum of all gains and losses, of all players, is not strictly equal to
0.

3

Using this solution, each player moves toward the goal and interacting with other players.
In order to find an optimal action, we use the concept of Nash equilibrium. This concept
is applied to reach a feasible solution between all the players.

Moreover, the proposed approach considers the presence of physical objects to avoid.
In this way, the robot plays with other players, but avoiding at the same time, obstacles
present on the environment. To do that, we define a cost function to evaluate the cost
of actions and a cost map of the environment, to define the probability of collision with
obstacles. We assume that the robot knows its pose in the environment and, then, it
continuously computes the action to reach the goal by computing the cost of actions, to
chose the best one for itself and other neighbor players.

The algorithm will be validated using real-world surveillance videos, often used on this
field. In this way, we can verify the quality of algorithm. We check if the trajectories
computed by algorithm are feasible and human-like. In the first part of development, we
checked how robot manages the movement in some particular environments. After this
first step, we tested the algorithm with the video surveillance. Here, we put the robot
inside the environment that will move toward a specified goal, among other players.

4

Contents

List of Figures 8

1 Introduction 10
1.1 People behaviour . 11

1.1.1 Human inclination to anthropomorphize 11
1.1.2 A solution . 12
1.1.3 Human spatial interaction . 12
1.1.4 Socially-aware navigation requirement 12

1.2 Thesis explaination . 14

2 State of Art 17
2.1 Robot navigation . 17
2.2 Motion Controller . 19
2.3 Motion Planning models . 20

2.3.1 Predictive model . 20
2.3.2 Reactive model . 22
2.3.3 Learning model . 23
2.3.4 Game theory model . 25

3 Game Theory and ROS environment 27
3.1 History . 27
3.2 General concept . 27
3.3 Keywords . 28
3.4 Game Types . 29
3.5 Nash equilibrium . 29
3.6 Examples of Game Theory . 30

3.6.1 The Prisoner’s Dilemma . 30
3.6.2 Dictator Game . 31
3.6.3 Volunteer’s Dilemma . 31
3.6.4 The Centipede Game . 31

3.7 ROS environment . 32
3.7.1 Design Goals . 32
3.7.2 RVIZ . 33

3.8 ROS Concepts . 33
3.8.1 Master . 33

6

3.8.2 Nodes . 35
3.8.3 Topics . 35
3.8.4 Services . 35
3.8.5 Messages . 35

4 Code Development 37
4.1 Cost Function solution . 37
4.2 Code . 39
4.3 Flow Chart . 41

4.3.1 Pose Acquisition . 42
4.3.2 Players Paths Computation . 42
4.3.3 Robot Path Computation . 42
4.3.4 Movement of Players and Robot . 45
4.3.5 Robot reach the goal or not . 45
4.3.6 Update Positions of Players and Robot 46

5 Validation and Test 47
5.1 Test 1: fictitious players . 47

5.1.1 Obstacle Avoidance . 48
5.1.2 Player Avoidance . 50
5.1.3 Test result . 56

5.2 Test 2: real-world surveillance video . 57
5.2.1 Video . 57
5.2.2 Extrapolated data from video . 57
5.2.3 Costmap . 59
5.2.4 Test . 60

6 Conclusions 77

Bibliography 81

7

List of Figures

1.1 The space saw by human being . 13
1.2 Personal and O-shape space . 14
3.1 John Nash . 28
3.2 Images available. 33
3.3 Images published. 33
3.4 Images acquired. 34
4.1 Choices with the weighting factor . 44
5.1 The Costmap created for the test. 48
5.2 The path followed by the player to avoid the obstacle 49
5.3 The path followed by the robot to avoid the obstacle 50
5.4 Players paths without Nash Equilibrium 51
5.5 Players paths with Nash Equilibrium . 52
5.6 Second Test without Nash Equilibrium . 53
5.7 Second Test with Nash Equilibrium . 54
5.8 Third Test without Nash Equilibrium . 55
5.9 Third Test with Nash Equilibrium . 56
5.10 Example of scenario represented in the surveillance video 57
5.11 Data extracted from video analysis . 58
5.12 The Costmap used for the scenario with the surveillance video of Figure 5.10 59
5.13 First step of movement . 61
5.14 Stream of the execution of the algorithm during the first step 62
5.15 Second step of movement . 63
5.16 Data of algorithm for the second step . 64
5.17 Third step of movement . 65
5.18 Data of algorithm for the third step . 66
5.19 Fourth step of movement . 67
5.20 Data of algorithm for the fourth step . 68
5.21 Fifth step of movement . 69
5.22 Data of algorithm for the fifth step . 70
5.23 Sixth step of movement . 71
5.24 Data of algorithm for the sixth step . 72
5.25 Seventh step of movement . 73
5.26 Data of algorithm for the seventh step . 74
5.27 Eighth step of movement . 75
5.28 Data of algorithm for the eighth step . 76

8

Chapter 1

Introduction

In 1495, Leonardo da Vinci realized the first Humanoid robot. Reading the notes of
Leonardo, the mechanic knight realized was able to stand up, move its arms, head and
jaw, thanks to a complex system of pulley.

In the eighties, the idea of smart robots starts to become true. This idea creates an
industrial revolution. In these years, in fact, many robots are developed to help humans
in heavy and repetitive work. The japanese manufacturers redesign their own production
lines in order to introduce robots.

Over the years, robots become more and more present. This spread are helped to the
introduction of AI, artificial intelligence, onto robots. This evolution allows robots to do
a enormous leaps forward. Many bounds have been overcome and nowadays robots are
present in many fields.

In the future, the robots can hold limitless possibilities. The evolution of AI and the
rapid implementation on robots leads to create independent and smarter devices. Soon,
humans and robot will be able to works closely and realize complex jobs.

Nowadays, robots are present in many field, in order to improve the final result, to
reduce time and final cost. The main application are:

1. Industrial Robots. These robots are useful to replace humans in simple and repetitive
task.

2. Autonomous Mobile Robots. These robots can be remotely controlled and perform
task that are impossible or very dangerous by humans, as pipe inspection or bombs
deactivation

3. Educational Robots. These robots are quite inexpensive and are deployed in schools
to improve the quality of learning.

4. Humanoid Robots. These kind of robots is used many fields. For example, these
robots are used to reproduce mechanics walking or some particular aspect of humans.
This ability allows robots to interact easily with humans.

10

1.1 – People behaviour

1.1 People behaviour
Today, the interaction between people and robots is becoming very common. During the
twentieth century, the world has seen a widespread of robots and artificial intelligence to
solve problems in other ways unsolvable for humans or that would need an enormous loss of
lifes. Nowadays, instead, robots are far more common in all places, such as homes, hospitals
etc, helping people in everyday. This spread highlighted an issue that was unthinkable
before. How do people react in front of a so wide presence of robot? How do people
interact with them? What is an acceptable robot behavior for a human being? Which
should be the rules a robot must follow to be human-safe?

This challenge creates coming goals that engineers must solve to create robots that
are acceptable for an everyday use, with human beings. The navigation issue will be the
main problem to solve. In fact, we interact everyday with other people and in future we
expect our feeling towards this interaction and robots movements to be similar with that
we experience with common people. The main aspect to improve, in order to increase the
quality of collaboration between people and robots are:

1. Human-likeness motion: the human beings use a smooth trajectory to reach the goal,
robot must do the same movement.

2. Safe motion: human beings usually avoid both inter-human collisions and abnormal
movement and behaviors that could worry the others.

3. Effective and reliable motion: the robot could reach the goal according to its own
characteristics and physical principles.

4. Interaction awareness: humans can predict were people would probably go, and know-
ing it, they modify their own trajectory.

If the previous requirements are respected, the cooperation between people and robots will
became easy to understand and intuitive, avoiding strange situation.

1.1.1 Human inclination to anthropomorphize

Human beings always try to attribute human aspects to a biological agents such as wind,
sun, water, supernatural, like gods, witch, wizard and so on [1]. This behavior is very
common in many fields, also in computer science. If the robot is perceived as an human, it
would be able to have social influence or moral care. considering the anthropomorphization
as the main goal in robot designing the major efforts are in this direction.

With evolution and toward centuries and millennia, humans have developed a strong
sense of interpersonal cooperation in order to facilitate everyday tasks [2]. Nowadays,
with robots entering in everyday life, a similar behavior of cooperation and interaction
should be developed towards them. The appearance of robot must be similar to a simple
transposition of humans. The autonomous movement is the most important aspect to
develop in order to avoid interference with human mind.

11

Introduction

1.1.2 A solution
To find a possible solution of socially aware robot navigation, we need to analyze in deep
the human behavior and state of mind.Using all information coming from psychology and
cognitive science [3]. In fact, as previously said, while till now complex robots have worked
only in controlled spaces such as laboratories and under extremely controlled and strict
conditions, our aim is to adapt them to social and complex life, being able to move in the
real world and in unpredictable conditions.

1.1.3 Human spatial interaction
Inter-human interactions when moving in the same space are the first point that should
be analyzed. When people move in public and private spaces their trajectories frequently
intersects each other, obviously this intersections should be solved to avoid collisions. While
the trajectories changes can appear completely casuals in truth they always follow complex
and methodical schemes. To correctly interact with us also robots should follow these
schemes when moving in human populated spaces [4]. To do that, we can use the wide
knowledge available in literature. In fact, this aspect of human being has been widely
studied in psicology. We can take information from the work of Aiello [5] and Burgoon
[6]. In these works, the authors explain how humans reacts when something ore someone
occupies the space around them. In particular, they described 4 different ranges of distances
in which the behavior strongly differs:

1. Intimate: this range is less than 45 cm from the item in analysis. The interaction in
this space implicate a physical contact.

2. Personal: the range is between 45 cm and 120 cm. These distances are normally
present between friends and family components when interacting in everyday life.
Similarly, this range is used in well organized social interaction, like queue.

3. Social: the range is between 1.2 m and 3.5 m. This range is used normally to have
interaction with unknown people and it is the distance that separates people in public
space, like shops, beaches, etc.

4. Public: more than 3.5 m. We don’t have interaction with other people in this range.
It is the distance between unknown people.

1.1.4 Socially-aware navigation requirement
If inter-human distances and robot-human distances represent a starting point in social
interactions also social-awareness has an important role. With the term "social-awareness"
we refer to robot abilities to interact with a crowd without disturb it. Similarly, when
we refer to robots navigation we talk of socially-aware navigation referring to move and
interact with crowd seeming human. According a survey done by Kruse et al.(2013) [7],
normal interactions are based on three different aspects that make them socially accepted,
these aspects must be guaranteed also by robots:

1. Confort: the absence of stress coming from the interaction between human and robots.

12

1.1 – People behaviour

Figure 1.1. The space saw by human being

2. Naturalness: the low-level behavior between human and robot must be similar.

3. Sociability: the capability of robot to learn high-level cultural convention

To accomplish these requirements, we need to understand and predict conditions in
which the robot can create discomfort. To sum up, robots must respect the following
aspects:

1. Respect personal space. The distance between people is very important. If a person
is too near to another, this situation can generate peeve. To avoid that, we need
to respect social distances according to the situation. The robot must evaluate the
distance from a human being, in order to avoid complaint and fear.

2. Respect activity space. Robot should recognize and avoid the zone that human could
occupy to perform some actions. This bond is hard to reach because the robot needs
to understand what the human is planning to do and calculate the space that he
should avoid.

3. Respect group of agents zone. When interacting people occupy a different kind of
space, called O-space. This space has a O shape and is variable. In fact, it depends on
the number of people, their orientation, and speed of action and movement. Studies
reveal that usually people interact while positioned on circles [8].

13

Introduction

Figure 1.2. Personal and O-shape space

1.2 Thesis explaination
The goal of the thesis is the development of a method for a socially-ware navigation. This
solution is chosen in order to realize robots with a human-like behavior. The starting point
is the issue of navigation and we choose this solution thanks to its completeness. The work
is based on a methodology proposed in [1], a thesis project developed by a colleague at the
“Complex Systems Lab”. Specifically, in this thesis the socially-aware navigation proposed
in [1] is implemented with the ROS (Robot Operating System) framework.

After analizing the behaviour that our robot should have to be socially accepted we
tried to translate this knowledge into a code that respects the bonds analyzed.

To develop a suitable code, the main concepts of game theory was studied and analyzed.
This branch of science is very useful because a lot of models can be used to perform the
correct behavior that should be given to a robot. In particular, in the game theory we
have players that are allowed to do everything they need to reach a goal. But the main
characteristic is the independence of each player. At the same time, every player plans
its moves taking apart the other players’ possible decision. This is the powerful aspect of
game theory, that will be useful in the developing of code.

The development of code follows the microscopic approach. This solution permit to
predict the movement of each other player, without considering the general movement
of players. Instead, if it was chosen the macroscopic approach, the general movement of
players was analyzed.

Also, the game was selected as no-cooperative. Each player decide its own movement.
Other features of the game were the dynamic and non-zero-sum solution. The main

goal of the game was to avoid the collision between player, predicting how the players will
move in future.

To chose which path are more feasible then other, the Nash equilibrium was used. The
game ends only when the Nash equilibrium was reach, i.e. this equilibrium measure the
best response for all players to the problem presented. The algorithm developed improve
the standard approaches. In fact, usually the motion planning was developed taking in
consideration only to avoid collisions with people and object. This algorithm, instead, can
be considered predictive. Every player adapts its strategies considering the other players
decision. We also implement a human-like way to avoid obstacle. According with the work

14

1.2 – Thesis explaination

presented in article [9], the robot must be interact with the obstacle. In this algorithm we
didn’t take in consideration the activity space because we consider the robot operating in
an urban space, without any specific activities. Summarizing, the goal of this thesis is:

1. Improve existing motion planing algorithm to make it acceptable by humans.

2. Develop a ROS software implementing the method proposed in [cit Giada] to be
implemented on a real robotic platform.

15

16

Chapter 2

State of Art

2.1 Robot navigation
The navigation is a main aspect of robots. Today, how the robot moves itself in the world
is the target of many researches. Making this aspect correct and acceptable for our way of
thinking is the core of further implementation of robotic system. The main characteristics
of robot navigation are:

1. Localization: to estimate a position for the robot, according to a reference system, in
order to localize the robot inside the map.

2. Mapping: the Robot analyzes the environment and it creates a map, in order to
recognize its own position in the operational space.

3. Planning: the Robot elaborates a sequence of poses, in order to reach the goal with
consecutive feasible positions.

4. Motion Control: once that the goal are chosen, the ability of robot to move itself,
according to the chosen path, to reach the goal.

The robots have many sensors installed to know what kind of environment surrounds
them. They use these devices to sense the environment. In this way, they can use an active
localization:

The Active localization consists in the ability of the robot of using the data coming
from the propioceptive sensors to elaborate the odometry. It also combines these data
with the data coming from exteroceptive sensors, thanks to some kind of probabilistic
filters. Usually, we have two kinds of filters: parametric and no-parametric. The more
important parametric filter is the Kalman filter, with extended or unscented versions. The
Particle filter, instead, is the more important no-parametric filter, based on the Montecarlo
Localization.

For what concern the mapping process, we can use two kinds of approaches:

1. Landmarks: they build a stochastic map where we can find a probabilistic description
of environment and obstacles.

17

State of Art

2. Occupation grids: create a map divided in sectors. Each sector has an occupation
probability.

When the robot decides to move, it usually uses the SLAM, Simultaneous Localization and
Mapping. This solution solves concurrently the issue of Localization and mapping.

For this thesis, the localization issue is bypassed. For simplicity, the robot will know
the map before the game, and that map will have static obstacles. Knowing it the robot
will apply the SLAM algorithm to localize itself in the environment. Also, it will recognize
the obstacle and where they will be. After this preliminary stage, the developed algorithm
will be launched.

18

2.2 – Motion Controller

2.2 Motion Controller
When we deal with the path planning, we need to consider the necessity of avoiding obsta-
cles. In fact, the robot must avoid the obstacle in order to reach the goal. The robot will
use the sensors to localize the obstacle and calculate the movement to reach the target,
knowing where the obstacle is. Doing that, the robot creates a path in a local manner.
According with the work done by Khatib [11], the problem could be solved using a time-
varying potential field. The space that surrounds the robot will be modified in order to
create an attractive force to the goal and a repulsive force to the obstacle. Another example
in literature is the solution found by Boreinstein et al. [12]. In this case, the researcher
use a Vector Field Histogram algorithm (VFH) to compute a polar obstacle histogram. In
this way, the algorythm studies each histogram and chooses the more acceptable to a given
threshold. The biggest problem of this technique is the possible oscillation between posi-
tions in a world full of bonds. This issue can generate a non-smooth path. To improve this
algorithm, researchers developed two evolutions of that. The VFH+ [13] and the VFH*
[14].

1. VFH+: we have two phases. Firstly, we read the angle and distance from the obstacle
using the sensors. In this way, we can build a polar histogram where we can find
the obstacle. After that the algorithm chooses an histogram, solving the oscillating
behavior of the robot characteristics of the VFH algorithm. VFH+ inserts a variable
cost according to the steering direction and chooses the direction with the minimal
cost.

2. VFH* : is an enhanced version of VFH+, obtained applying heuristic functions.

Until now, we consider only the local view of the space. This approach represents a
limitation for the optimal solution. The optimal solution for the local view couldn’t be the
optimal for the goal solution. To solve this issue, some researchers found a way to link the
local and global planning. An example is the Elastic Bond approach developed by Quinlan
and Khatib [15]. This algorithm changes the parameter of global planning in real-time
according with the internal and external forces available in the field. Thanks to that we
can create a smooth path to reach the goal.

19

State of Art

2.3 Motion Planning models
2.3.1 Predictive model
For the predictive model we have some examples in literature. One of the more interesting
was Paris et al. [21] work. They create a velocity-based model that improves the Fiorini
and Shiller [22] model. In the Fiorini and shiller model we have a model that avoid collision
knowing the current positions and speeds of the robot and the obstacles. This model has
an issue, the oscillating behavior of robot. The Paris’ technique solves the issue of speed
oscillation of player. This problem comes out due to the lack of knowledge and prediction
of external world. With this solution the subject is not pushed away from the other entity,
but it finds a free way to reach the goal through the crowd. The parameters evaluated by
the model are:

1. All possible directions.

2. A restricted set of speeds.

These parameters are evaluated simultaneously.
After that model knows these data, it looks for all possible collisions between player and

other pedestrians. It calculates the path that reduces cost, and applies it for the successive
instants.

Another work that improves the previous model is Karamouzas et al. [23]. This model
is based on Paris et al. [21]. With this different approach, the aim is to reduce the
computational cost. More in particular, the cost reduction is focused when the algorithm
elaborate the path to avoid proximate collisions.

The continuous improvement of this idea, leads to a new model developed by War-
ren [24]. In this case, pedestrians compute their path considering at the same time 3
frameworks:

1. The closest framework.

2. An intermediate framework.

3. The furthest framework.

In the closest framework, the pedestrian repulses every person, because this framework
correspond with the personal Hall space [25]. The intermediate area is where the algorithm
calculates the speed and direction in order to avoid the collision with other pedestrians.
The furthest area, instead is where all pedestrians can move freely.

In a continuous model, the margin of error increases similarly with the horizon of events.
This issue is well-known and some researcher tried to find a solution, that was reached by
Trautman et Al. [26]. In this work, the crowd is studied continuously, as time passes,
and pedestrian reactions have a Gaussian distribution. The development starts from the
Freezing Robot Problem, where we have players that are stuck because they cannot perform
a successful movement. It can happen if the scenario is too crowded. In this condition,
players remain stuck or move randomly without any sense. To solve this problem, the robot
computes also the data coming from the external environment in a Gaussian process, and
try to find the solution.

20

2.3 – Motion Planning models

This technique has some advantages. The most important is the ability to represent
the human navigation in a realistic way. This technique is more feasible and can store a
lot of information respect to a reactive model. The disadvantages are the computational
cost and the uncertain when we have a crowded scenario.

21

State of Art

2.3.2 Reactive model
The reactive model is another model that can be useful to represent human crowds. This
model has been developed comparing the human crowd with physical particles, more in
particular the attractive and repulsive forces between particles have been compared to
those used by the crowd to evolve [27].

In this model we have two kinds of forces:

1. Attractive forces: allow pedestrians to move towards the goal.

2. Repulsive forces: allow pedestrians to avoid collision.

The Hoeller et al. approach [31] goes towards this direction. their hypothesis was that
humans move similarly to particles in physics. Humans are subjected to repulsive and
attractive forces that change their trajectory. The combination of these forces generates
the path that human follow to reach their own goal. To model this behavior one main
problem must be overcome: the goal of people is unknown.

To solve this issue, the idea was to create a possible area that people apparently want
to reach. Pedestrians are considered only passive, and the external forces manage their
movement. This is a big limitation, because Hoeller did not manage the interaction between
humans, that was the main problem when trying to reproduce a correct human-like motion.
In fact, human beings are active and check thee environment to move, constantly. This
aspect was completely deleted with the Hoeller’s model.

Other works solved the problem using the same idea of particles. Considering the idea
of two kind of forces, repulsive and attractive, both depend from the distance, similarly
to particles. An issue is that in the local point of view, the movements are chaotic and
do not represent a human-like behavior. To solve the problem of local movement some
authors [28] try to lock the behavior of the players. They impose that players could go
only straight on the current direction and at a fixed speed.

Another approach is the Cellular Automation [29]. This model is based on a grid motion
decision, it represents in a discrete way the scenario around the human being. In this way
the human being has a finite number of choices to manage the environment. Once that
we have a specific number of choices, we can apply a probability distribution to create a
predictive model that will manage the movement of human in the near future.

After this new concept, Schadschneider [30] improves it introducing the idea of Floor
Field. This Floor Field is another grid that follow exactly the Cellular Automation aspects.
This second grid can be dynamic, evolve during the time, or constant, its remain always
the same during the time. It is used to improve the Cellular Automation (CA). In fact,
the CA is a grid independent by the time, instead the Floor Field is dependent and can
be used to better implement the point of interest on the map. Also, the Floor Field can
manage the evolution of grid due to the interaction between pedestrian, and improve the
computation.

22

2.3 – Motion Planning models

2.3.3 Learning model
This kind of approach is different from the ones already explained. The previous model
was focused on pedestrian and how they decide to move and behave when they find a
problem. In the Learning model, instead, the near-future decision is estimated considering
the observed behavior of each player. We also include the observation of environment
and how it changed during the past. This idea is based on machine learning. This new
branch became more and more popular due to its ability to reproduce and adapt behavior
of players if something unexpected happens. It has a ductile approach that can adapt and
manage the unexpected situations. Also, we can play in advantage. We can educate the
player before the beginning, i.e. the majority of computational cost can be done a priori.
This process request a lot of data, but the a priori possibility solves the problem.

Bennewitz et al. [32] created a model that can be used to manage the trajectory
path of players in a crowded environment. Their model take as input a various set of
trajectories. Also, they insert some point for each player, where the player can stop and
remain for a specific amount of time. These places are called Resting Place. This model
observes how the environment and player evolve during the time and learn which regulate
the movement. After that, it individuates the group of trajectory that each player can
follow in the near-future. The algorithm chooses which motion pattern are feasible using
Expectation-Maximization algorithm.

An improvement of this model came with Foka et al. [33]. They applied a neural
network to elaborate speed and trajectories of human beings. This approach improves the
prediction of non-linear behavior. In this way, we can have a better prevision of near-future
instances.

Other improvements follow the same concept. A better implementation of neural net-
work. In particular, the Recurrent Neural Network (RNN) was a step further in the ability
of prediction of future human motion.

A limitation of this model was that it does not consider how other people move in the
proximity of the analyzed player. An improvement came with the idea of Alahi et al. [34].
They proposed the implementation of Long short-term memory (LSTM) applied to a social
purpose. They insert a common sense rule that each player must follow to create its own
path. Moreover, this must be applied inside a crowded scenario and must share the space
between the players. Remind that, this algorithm evaluates how pedestrian can be move
in the future, but don’t analyses how these players can be interact each other. The output
of this algorithm is a path, that the authors call Average Behavior.

An improvement of this algorithm came with Gupta et al.. They overcome the limit of
previous algorithm introducing the Generative Adversarial Networks. This solution permits
to improve the previous algorithm without not so high computation cost. The GAN is a
learning method where two neural networks are in challenge inside the same framework.

The GAN solution seen previously was improved with the addition of LSTM model by
Liang et al. [36]. Here we have the prediction of future, thanks to the data coming from
various videos. The main advantages are exactly the data coming from the reality. Thanks
to it, the path chosen by player are "real" and permit to player to seem human and manage
a crowded scenario like an human being.

The learning approach permit to the algorithm to evaluate also the knowledge coming
from experience. The experience gives the possibility to recreate a path acceptable or

23

State of Art

followed in the past. Also, in the interaction with other people, the player already knows
some cases and how it behaves on them. The only issue is how generalize it. If we change
the scenario or we introduce a new player, the player must be retrained to behave in the
correct way. This issue create a loss of time and has a computational cost that decrease
the efficiency of the algorithm.

24

2.3 – Motion Planning models

2.3.4 Game theory model
Here we speak about the last type of model analyzed. Nowadays, the game theory is
becoming more and more present in the computer science. The main reason is the ability
to reproduce the behavior that players have in the real world. The game theory can
reproduce rational decision. Also, it can take in consideration the presence or not of other
players. It can cooperate with the other player or go alone. The application fields of this
theory are very wide. Mainly, game theory find his fortune with the Artificial Intelligence
field.

The Game theory, instead, has only few application on the human motion planning. In
literature are present only some examples and the information are very limited. The more
valuable work was done by Hoogendoorn er al. [37]. This study develops the idea to apply
the game theory to the pedestrian navigation in a particular scenario. The idea is to realize
a motion planning that reproduce an human-like movement. To do that, the researchers
use a differential game. Here, we have the players that try to reach the goal using the
optimal path, this computation returns a feedback and algorithm tries to minimize the
cost, including the data coming from the path of other players. The solution is an optimal
solution of the problem because we have the minimum cost. The problem is the lack of an
equilibrium during the game.

The game theory was combined with the Cellular Automata [38]. With this implementa-
tion, the researchers Mesmer and Boebaum [39] develop a model that can be implemented
in the human navigation. In particular, they enhanced the game theory introducing the
speed of human being and obstacle avoidance. This method is useful to simulate the emer-
gency. In particular, it is used to create a correct emergency plan to evacuate building and
so on.

Turnwald et al. [40] study how humans interact each other during the navigation. This
study analyzes this aspect in a microscopic way. First of all, the researchers choose a non-
cooperative game, then they apply 5 different cost functions and see the results. To receive
a better solution, they applied this algorithm to a real experiment with two persons. They
found that the most suitable cost function depends on the lengths of the path done. Also,
they success to validate the application of Nash Equilibrium in a human motion planning
algorithm. In fact, the result of their work shows that the path chosen, i.e. the optimal
solution, correspond to the path that generate the Nash Equilibrium.

Some other models are developed to represent how the humans react in a crowded
scenario. One of these is the Roy et al. [41]. Here, the authors develop an algorithm that
shows how two players avoid the collision between them. They applied the Fokker-Plank
Nash game. We have a differential game on a particular scenario. This game tries to
minimize the cost function of each player. This cost function depends on the collision of
the players and the capability of them to avoid it.

All the methods showed are implemented with a low number of players. In fact, if
the number of players increases, the computation cost became bigger and bigger. If this
cost becomes too big to manage, the algorithm cannot find the solution and becomes
impossible to manage. To manage it, the solution was find in the Main Field Game. Here
the algorithm neglects the players that don’t have impact with the system, decreasing the
complexity and the computational cost.

25

26

Chapter 3

Game Theory and ROS
environment

We choose to apply the Game theory in the thesis development. The game theory is chosen
because is very useful and powerful to create a human motion model. In particular, the
application of this solution in this field is quite new and we are free to apply it how we
consider it appropriate. At the end, the game theory is included in a ROS code that allows
to implement game theory concepts in a physical device.

3.1 History
Game theory is a branch of applied mathematics used to find the optimal strategy in
uncertainly situations or with incomplete information. This theory models the situations
of every day and finds a solution.

While the academic world formally established that the game theory was born in the
1950s, the game theory-like insight can be seen in centuries old history.

Ideas of game theory appear many times during the history. From the war solutions of
Sun Tzu to the Charles Darwin discoveries. The basis of primal game theory can be seen
in three specific works

1. Researches into the Mathematical Principles of the Theory of Wealth by Augustin
Cournout.

2. Mathematical Psychics by Francis Ysidro Edgeworth.

3. Algebre et calcul des probabilites by Emile Borel
Each of this works introduces the basics ideas of the future game theory. They attempt to
use math and computation to predict and map the human behavior.

3.2 General concept
Nowadays, the game theory is a wide used discipline. We can find the application of game
theory in many fields like biology, computer science, economy, politics, etc. Game theory is

27

Game Theory and ROS environment

a way to find model to reproduce common behavior, i.e. it creates a mathematical model
able to reproduce the strategy behind a rational decision.

The concept of game theory was developed by Von Neumann in the 1928. Von Neumann
creates a theory to solve a particular game, the zero-sum cooperative. After some years,
he improves the game theory [16]. But the real revolution on this field happens when
John Nash develops his theory. In particular, in 1950 John Nash develops the John Nash
equilibrium applied in the non-cooperative game [17].

Figure 3.1. John Nash

3.3 Keywords
The following legenda explains the more common words used in the game theory.

1. Players: in a game, the members of it are called players.

2. Actions: well-known move that each player can use to reach the goal.

3. Stages: the number of steps that create the whole game.

4. States: here the game stores the data of each player in that particular stage.

5. Strategy: the state of mind that each player follows during the game to reach the
goal.

6. Cost Function: each player has a variable that leads the choice of it.

7. Rational Behavior : The player tries to minimize its cost function.

28

3.4 – Game Types

3.4 Game Types
Games are various and exist many types of them. Games are collected accordingly to the
features available. For simplicity, we enroll only the games that are linked with the thesis
scope and could be used to represent the interaction between people and crowded scenario
[18].

1. Non-cooperative or cooperative Each player works individually and tries to maximize
its own profit. Players could cooperate, only if the cooperation give some advantages
to the players themselves. When the game reaches the situation where all players
maximize their profit, the Equilibrium point was set. In the Non-cooperative game
the equilibrium point is the Nash Equilibrium. Instead, in the cooperative game, the
success of the group or coalition is the goal of each player and it comes before its own.

2. Zero-Sum or Non-Zero-Sum In a zero-sum game, the sum of loss and gain of all
players are always 0. In particular, if some player gains something another player loss
the same quantity. Instead, in the Non-zero-sum game, the sum is not constant and
equal to 0. If some player losses something it isn’t recovered from the others.

3. Static and Dynamic games In a static games we don’t have changes during the time.
Due to this solution, the moves of all players are taken at the beginning. All the players
analyze the scenario, chose the best path to follow and play. Instead, when we play a
dynamic game each player takes decision sequentially. For each instance, the players
recalculate their paths. In this solution we need to indicate how information each
player can have about the current and previous state of other players.

4. Perfect information game In this kind of game, each player knows exactly the action
of the other players. Moreover, the player knows the previous, current and future
state of the game.

5. Finite game The game has a prefixed number of stages and players, i.e. the actions
of players are a limited number.

3.5 Nash equilibrium
Nash develops a theory that is in contradistinction with the Von Neumann and Morgenstein
theory [19]. In the Nash theory, we have absence of dependence between player. The
concept behind this theory is the equilibrium point. This equilibrium is a game strategy
that allows to player to find a a trade-off between all self interest. I.e a strategy respects the
Nash Equilibrium if there aren’t players that can do better their goal changing strategies.
Each player thinks that the other players will use the strategy chosen and if it can receives
an advantage changing its own strategy.

The response, that correspond to a Nash equilibrium, is: each player prefers to don’t
switch its strategy. The Nash equilibrium is the best response in that situation and in that
conditions.

Sometimes, the Nash equilibrium may appear irrational from an external point of view
and it is normal because it is not necessary Pareto optimal [20].

29

Game Theory and ROS environment

From the mathematical point of view, Nash Equilibrium is:

sj∗
i = (sj∗

1 , ..., s
j∗
N), N ∈ R (3.1)

where i indicates the players and j the stage of the game.
If the following N inequalities are verified, then the N strategies satisfy the Nash equi-

librium

where Ji elements are the cost function related to i-th player.

3.6 Examples of Game Theory
The game theory is used to analyzed some "games". These games are explained in the
below chapter.

3.6.1 The Prisoner’s Dilemma
This example is the most famous analyzed by the game theory. Here we have two prisoners
arrested for the same crime. The prosecutor doesn’t have any evidence able to convict the
two criminals to confess.

In order to reach the confession, the prisoners are isolated alone. Then the officials
question each prisoner. The two prisoners haven’t a way to communicate.

Each prisoner receives four deals:

1. Both prisoners confess: each prisoner receives five years prison

2. Prisoner 1 confesses, prisoner 2 not: prisoner 1 receives three years, prisoner 2 instead
nine years.

3. Prisoner 2 confesses, prisoner 1 not: prisoner 1 receives ten years, prisoner 2 instead
two year.

4. Either of them confess: both receive two years.

The most favorable strategy is to avoid confession. But, the two prisoners haven’t any idea
of the other’s strategy. For this reason the most likely solution is that the two prisoners
confess. The Nash Equilibrium suggests that the player do the best for them individually,
but the worst solution for them collectively.

30

3.6 – Examples of Game Theory

3.6.2 Dictator Game
In this game, we have two players. The player A must decide how to divide a cash price
with the other player. The player A takes this decision without interference from player
B. The result of people behaviour is:

1. 50% of people keep all the price to themselves.

2. 45% of people divide the price but the player B receives a smaller quantity.

3. 5% of people divide the price equally.

3.6.3 Volunteer’s Dilemma
In this game, someone must make a job for the common good. The worst possible result
is that nobody decides to do that.

For example, we have a rampant fraud in a company. Some junior employees know it,
but don’t tell it to top management because they could be fired. Also, being labeled as a
spy may also have repercussions.

If nobody volunteers, the fraud leads the company to the bankruptcy and everyone loss
their jobs.

3.6.4 The Centipede Game
This game is an extensive-form game in the game theory. Here we have two players and a
pot.

The players have alternatively the chance to get the bigger part of a increasing money
stash. If the player passes the stash, the latter can take the price increased slightly.

The game ends when one player takes the stash. The player that take the stash receives
the bigger quantity and the other the smaller portion.

31

Game Theory and ROS environment

3.7 ROS environment
When programming a robot, two of the most complex aspects are the development and
writing of a suitable code for robot motion planning and execution with people, object
or other robots. In fact, an almost infinite numbers of configurations are available and
a simple difference in the configuration of the robot could mean a completely different
software inside and, as a consequence, a different behavior in the space [10]. To reach
this goal, many frameworks have been crated by researchers all over the world, in order to
manage the complexity of robots and to make easier their prototyping. The final result is
an environment where you can manage the robot.

3.7.1 Design Goals
The Robotic Operating System (ROS) is only one of the frameworks available for robotics.
ROS was developed with the diffusion of service robots that would be diffused on a large
scale; for this reason it has a very general architecture that can be suitable for different
conditions.

The goals of ROS are:

1. Peer-To-Peer : the ROS idea is a universe of different hosts connected together thanks
to a peer-to-peer topology. ROS uses this solution due to the heterogeneous type of
members. In fact, a framework based on a central server can realize the same things,
but isn’t able to manage different type of robots.

2. Multi-lingual: nowadays we have many types of languages, that can be used to write
a code. Each programmer uses the language that he prefers. We can find many
different reasons behind the chosen language, such as the syntax, easy-debugging,
the run-time efficiency. In order to reach the widest number of users, the ROS was
developed to be independent, for this reason it is defined as language-neutral. ROS
fully support 4 programming languages: C++, Python, Octave and LISP

3. Tools-based: ROS design is based on a micro-kernel that helps us manage ROS com-
plexity. Thanks to micro-kernel we have a lot of tools that can be used to build and
run different ROS components. The micro-kernel is more versatile than a monolithic
Kernel.

4. Thin: ROS has a modular structure. The ROS allows us to use standalone libraries
without dependencies. In this way, we can write simple codes, using a lot of already
available libraries, decreasing the complexity of code development. This solution
makes code debugging easier. In fact, we can test only the portion that create issue.
With this solution, we don’t need to write a code only to manage different functions
of common libraries.

5. Free and Open-Source: the developer of ROS decided that it must be publicly avail-
able. This solution is very smart, because it makes the debug of all level software
easier. This is very important and convenient when we have many hardware and
software developed and analyzed in parallel. ROS uses also the BSD license. This
kind of license allows users to develop both commercial and no-commercial projects.

32

3.8 – ROS Concepts

3.7.2 RVIZ
We use RVIZ a powerful tool of a ROS. This tool is a graphic visualizer developed for the
ROS. RVIZ mean, in fact, ROS Visualizer. Thanks to this useful tool, we can show the
result of the code developed. It is used to draw trajectories and costmap of our test. To
do that, we implement inside the code, the instructions to start and use RVIZ.

3.8 ROS Concepts

3.8.1 Master
Master has the role to provide the names and to register all the nodes inside the ROS
system. It checks which are publishers or subscribers to specific services or topics. Master
permits to nodes to locate themselves inside the ROS system. Once that the nodes are
located, they can communicate each other.

In the following figure we show the working process of master. In this example we have
two nodes, a View-image node and a Camera node. At the beginning, camera node notifies
to master that it wants to acquire an image. The topic used is called "images".

Figure 3.2. Images available.

The Camera node publishes the "images", but we haven’t another node that subscribes
that topic. The image is still blocked. Then the View-image node asks to master if there
are images available.

Figure 3.3. Images published.

33

Game Theory and ROS environment

Now, the topic "images" has either publisher or subscriber. The master manages the
two nodes and the image transfer starts.

Figure 3.4. Images acquired.

34

3.8 – ROS Concepts

3.8.2 Nodes
A Node in ROS is a process that develops computation. ROS uses many node together,
in order to combined them together. Once that the nodes are linked in a graph, they use
topics, RPC services and Parameter server to communicate each other.

Usually, a robot control system has many nodes inside. Each node has some specific
role and interact with the other to reaches the goal. For example, one node controls the
drive wheels, one node manages localization, one node creates path planning and so on.

The ROS system, based on the idea of nodes, creates an affordable system. In fact, if
some node failed, the issue remains limited to that node. This system has a complexity
reduced respect to a monolithic system.

All nodes are represented inside a graph. In this graph, the node is called with a Graph
Resource Name, a unique name that identifies that node. Also, each node has a Node Type
according with the function developed on it.

The nodes are written using specific libraries of ROS, called roscpp and rospy, according
with the language chosen to write the node.

3.8.3 Topics
Topics are the virtual buses where the Nodes send and receive messages. Topics have a
specific semantics in order to publish and subscribe data. Thank to these semantics, the
Topics are able to distinguish the production of information from their destruction.

Usually, nodes don’t know from which the information are coming or which other node
tries to communicate with them. For this reason, the nodes, that want to know which other
node sends the information, subscribe to the pertinent topic. In the opposite direction, the
node publish to the pertinent topic. Obviously, we can have more than one node that
subscribe or publish a topic.

Topics represent a unidirectional communication. If we need that nodes perform a
remote call, we need to use a service.

3.8.4 Services
Services are used when we need to respond to RPC request/reply action. In this situation,
the services send a couple of messages, one for the question and one for the answer. This
utility is more efficient than the publish and subscribe model that we see before with
Topics.

The services use a supplier ROS node that offers a string name. The client node calls
the service sending a messages and waiting the response.

Services use srv files to instantiate themselves. These files are compiled inside the code
thanks to a ROS library.

3.8.5 Messages
The nodes communicate each other using messages. These messages are published inside
the topics.

Messages are simple data structure composed by specific fields. They supported stan-
dard primitive types and they can include array and structure as the struct in C.

35

Game Theory and ROS environment

Nodes can receive and send messages to answer to ROS service call.
Messages are sent in a msg files. These files are saved inside a msg subdirectory inside

the packages.

36

Chapter 4

Code Development

In this chapter the code developed and implemented is explained in details. Specifically,
the code consist in two main elements: the core code and the edge one.

The core code is the main element, because it implements the socially-aware movement
for the robot. On the contrary, the edge software is used to interface the navigation
environment with the core part of the code and to create a dynamic flow of data, able to
reproduce a real-time scenario where the robot behaves in a human-like manner.

4.1 Cost Function solution
This thesis is based on a previous work, developed by Giada Galati [1] where she found
and validated an algorithm that was able to move robot in a human-like manner.

The algorithm is based on the implementation of a cost function. This cost function is
used to select the successive poses used by the robot. Thanks to these poses, the robot is
able to move itself in a human-like manner.

For this reason, each point that player can reach has a cost. This cost is computed
following the below formula 4.1:

Cost =FatherCost+ CostmapCost ∗WeightCostmap+
+NewPositionCost ∗ PenalityAngle ∗WeightPosition

(4.1)

Each formula’s member has a specific role in the whole computation of the cost. Now
we will explain the meaning fo each parameter:

1. FatherCost: the new point, also called daughter point, is generated from a previous
one, called father point. The father point is obtained at previous time. This value is
used to give at the daughter point the cost of the father position. In this way, at the
end of the computation, the cost of last point is equal to the sum of all previous. I.e.
it is the cost of the path.

2. CostmapCost: This value is read from the costmap loaded at the beginning. This
value represents how much cost this position on that map. In our case if the place is
free, we don’t have a cost. Instead, if we have an obstacle or we are near of it, the
cost is different.

37

Code Development

3. WeightCostmap: we insert this multiplicative factor to tune in the right way the
CostmapCost.

4. NewPositionCost: This cost is dependent from the position itself. In fact, it depends
on the distance between the positions of this point and the goal. The algorithm
measures the distance between these two points, and convert it in a value. In this
way, a point nearer to the goal cost less than another furthest.

5. PenalityAngle: This multiplicative factor is inserted to increase the cost of those path
that deflects from the straight. This solution is chosen to introduce the human-like
movement. In fact, humans prefer to move straight on and this factor works exactly
to introduce a penalty if the robot chooses to move differently. Also, this weight
increases accordingly with the angle amplitude.

6. WeightPosition: we insert this multiplicative factor to tune in the right way the
NewPositionCost.

38

4.2 – Code

4.2 Code
Now, we try to explain all of features of the two main parts of code.

1. Core Code
The Core Code is the most important part of the software. It Implements all the
assumptions and the logic previously described to create a socially-aware movement.
Here, we create a code that develops a motion for the robot, acceptable for the human
being.
In order to compute the optimal and a socially-aware motion, we calculate all the
possible paths that all players of the game will follow. The goal is to find the optimal
paths with the lower cost. After this step, the code checks if we have intersections
between the computed by all players. If not, the code controls if the other players
change their paths, knowing the new path of the player analyzed. This process goes
on until the paths chosen of all player remain the same for two consecutive iterations.
Once that the code reaches this status, it means that we have the Nash Equilibrium.
The Nash Equilibrium between players is the goal of the core part of the code.

2. Edge Code
The Edge Code is the software developed around the Core Code. It has the role to
make more dynamic the internal code. It reads the values of players positions from
a file. This file can be generate by the sensor of robot or, like in our case, analyzing
a video surveillance. Once that the code has these information, it imports the data
regarding the robot. The information used are:

RobotData =
numRobotØ

n=0
Robot[X(t), Y (t),Θ(t), t], n ∈ R (4.2)

Where:

(a) X(t) is the x coordinate at that time instant.
(b) Y(t) is the y coordinate at that time instant.
(c) θ(t) is the angle at that time instant.
(d) t is time instant.

The time instant is used inside the code to manage all the features. The most impor-
tant is the robot time instant, i.e. when the robot appear on the scenario. It establish
the starting point of the software. Knowing the robot time instant, the code starts
to analyze which players are present on scenario at that instant. Now, it send the
information to Core Code that elaborates the paths and so on. The game ends when
the robot goal is reached or if the time instant reaches the last value stored in the
data coming from the video surveillance .
Now we can represent the paths using specific tool of ROS. In particular, we use RVIZ,
a visualizer of ROS, to see the path in 3D vision. In this way we can appreciate the
result of the software.

39

Code Development

RVIZ uploads every time the new poses of all present players. After that, the code
increases the time instant by one and repeat all the process, until the Core Code
return that robot reached the goal. If it receives that information, it stop the process
and the code ends.

40

4.3 – Flow Chart

4.3 Flow Chart
The thesis work follows a specific development. To better understand how the code works,
we create a flow chart. The following flow chart explains the developing process of the
thesis.

Each block will be explain in the following pages.

Start

Position Acquisition

Players Paths Computation

Robot Path Computation

Movement of Players and Robot

Robot Reach the goal? Update Positions of Players and Robot

Stop

t

t+∆t

no

yes

41

Code Development

4.3.1 Pose Acquisition
In this stage, the code acquires information from the external environment. It finds the
pose of each player in the space and the relative pose of the robot.

This data comes as result of process, that analyses environment with camera and sensors
present on the robot, or from an external database. In our case, we use the data coming
from a surveillance video .

These data are read by the code and stored inside it, in order to be elaborate in the
future processes. These data include: the pose of each player, x and y coordinates, time
instant and angle orientation. These information will be used by the robot to move itself
in the correct way.

In our case the data are saved in a file that software reads at the beginning. In this
way the code knows how many players are present on the scenario. Also, it knows where
players will be and when them start to play.

The code creates C structures where information are stored and it tunes the process to
manage each player.

4.3.2 Players Paths Computation
From the data acquired in the previous stage, we check which players are present in that
instant on the scenario.

The algorithm uses the positions at the time t and t- ∆t and the orientation to compute
the paths of each player. Knowing this data, the code estimates the future poses of each
player. The code use the hypothesis that all the players go straight on. In this way, the
code computes the future pose from t until t+3 time instant.

Using this information, the code compute three successive fictitious steps. In this way,
for each player we have a path composed by four steps, one known and three fictitious.

4.3.3 Robot Path Computation
The computation of the path followed by the robot differs from the estimation of the path
of other players. In fact, we know exactly the position of robot, X and Y coordinate, and
the coordinate of goal. We impose that the velocity of the robot is constant, in order to
simulate a movement similar to an human being. I.e. the steps of robot path are constant.
With this assumption, the robot computes four steps in order to reach the goal.

42

4.3 – Flow Chart

Number of steps

The robot computes how many steps it needs to reach the goal. To do that, it computes
the distance between robot position and goal and divides it for the step wide.

NumSteps = GoalP osition−RobotP osition
LengthStep (4.3)

Where:

1. NumSteps is the number of steps that robot needs to reach the goal.

2. GoalPosition is the absolute position of the robot goal.

3. RobotPosition is the current position of robot.

4. LengthStep is the wide of step that robot can perform.

The code uploads the result of the previous equation and shows it. After that, it
computes again how many steps must be created to reach the goal. We can find 4 different
situations:

1.
NumSteps > 4 (4.4)

The code computes 4 steps and the Robot still doesn’t reach the goal.

2.
NumSteps = 4 (4.5)

The code computes 4 steps and the Robot reaches exactly the goal.

3.
NumSteps < 4 (4.6)

The code rounds down the number of steps and uploads the numbers of steps com-
puted, according with the previous result.

4.
NumSteps < 1 (4.7)

The code doesn’t compute a further step because the robot is too close to the goal.
The distance between robot and goal is less then a step and a further movement can
ruined the process.

43

Code Development

Number of choices

Now the code elaborates the poses that the robot can occupy during the movement. For
each step, the robot can chose 7 options in order to reproduce the real movement of an
human being.

The choices are the following:

1. Go straight with a Wp1 as weighting factor.

2. Turn left by 30° with a Wp2 as weighting factor.

3. Turn left by 60° with a Wp3 as weighting factor.

4. Turn left by 90° with a Wp4 as weighting factor.

5. Turn right by 30° with a Wp5 as weighting factor.

6. Turn right by 60° with a Wp6 as weighting factor.

7. Turn right by 90° with a Wp7 as weighting factor.

Each choice has a different cost, according with the weighting factor. The cost depends on
how much the movement can be unusual for a human being. In fact, we prefer to move
straight or in a smooth manner. If we need to avoid a player or an obstacle, we prefer
to use a low steering angle and plan it with some advance. For this reason the cost of a
direction change is lower when the angle is smaller.

The following figure shows the possible choices with the related weighting factors.

Figure 4.1. Choices with the weighting factor

44

4.3 – Flow Chart

Number of possible position

Now, the algorithm computes each positions that player can occupy in the next time
instant. To do that the code use the following equation:

NumPosition =
numSteps+1Ø

n=0
Choicesn, n ∈ R (4.8)

Thanks to this equation we have all the possible position that player can use. The
members of equation are:

1. NumPosition: This number represents all the position that player can occupy.

2. numSteps: the number of steps that each player will do accordingly with the numbers
that algorithm found before.

3. Choices: the number of choices that each player has to move in the scenario. In our
case the number is equal to 7.

Now the robot computes a large number of possible paths, computing the effective cost
of each path. The algorithm searches for the path with the minimum cost. Now it checks
this path with the players paths and verifies if there is a collision with trajectories of other
players. If the algorithm doesn’t find intersection, it chooses this path, instead if it finds
an intersection, it labels the path as not usable and checks the other path accordingly with
increasing cost and repeats it until it finds an usable one. When we have the path, the
algorithm returns the pose that robot will occupy.

4.3.4 Movement of Players and Robot
Once that all the paths are available, the code decides how to move the robot. Here we
apply the Nash Equilibrium.

The code finds the optimal paths for all the players and robot. It continues until all
the players don’t change their paths for at least two iterations. After that, the poses of
all characters are available. The code sends to the RVIZ, a tool of ROS, the poses that
members will occupy at the next step. Then we can see how the movement evolve.

After this process, we see that the paths of all players available and robot increase by
one step. Then the code ends this phase and moves on.

4.3.5 Robot reach the goal or not
Now the code checks if the robot, with the path increased, reached the goal or not. To do
that, the code controls if the distance between goal and robot is more or less than a fixed
step.

The step was always the same computed before. After this check, we can have two
responses:

1. Yes, the robot reached the goal. It means that the distance between goal and robot
is less than a step and the code ends with success.

2. No, the robot didn’t yet reach the goal. It means that the distance between goal and
robot is more than the fixed step and the code continues to elaborate.

45

Code Development

4.3.6 Update Positions of Players and Robot
This stage is reachable only if the robot didn’t reach the goal. Now it is necessary to update
the data used by the algorithm, using the data coming from the result of the previous step.
In fact, now the algorithm needs to upload the old starting positions, because robot and
players move.

The new poses are saved as a new initial pose, useful for the further iterations. Now
the code has the new, players and robots, positions. With these updated data, the code
could manage again the process without any particular issue.

46

Chapter 5

Validation and Test

The proposed algorithm was tested evaluating the Core Code individually and the whole
proposed framework with also the so-called Edge Code. With the same idea, the test have
been done following the same process.

Firstly, we show the results of the test performed with only the Core Code. At this
stage, we adapt the code to manage 4 players to provide a simple simulation scenario. We
want to verify if the algorithm is correctly implemented and if it works correctly. The
turning point is the correct application of Nash Equilibrium. To check it, we include inside
the code the possibility to enable and disable the Nash Equilibrium.

After this first test, we check the effectiveness of the code that elaborates external data
input. Hence, we check if the input data received from external are read correctly by the
code. In order to verify it, we test the algorithm with a group of 3 players and a robot,
where the robot position can be defined arbitrary to test the code with different conditions.

5.1 Test 1: fictitious players
This test is useful to check the effectiveness of the main part of the algorithm.

A malfunction of the main part of the algorithm, could compromised all the subsequent
developments. Moreover, this test is essential to find any problem and error, because could
be difficult or impossible to find it after this step. To check the code properly, we perform
two different kinds of test.

1. Obstacle Avoidance: we check if the player is able to avoid a fixed obstacle.

2. Players Avoidance: we check if the player succeed to avoid the other players, by
applying the proposed method.

Now we will explain the examples and the results obtained.

47

Validation and Test

5.1.1 Obstacle Avoidance
In this paragraph we report the first test. The player must avoid the obstacle that intersects
his trajectory. To do that, we insert a customized costmap inside the code. The following
image 5.1 shows the map used for the test.

Figure 5.1. The Costmap created for the test.

This costmap is used by ROS to calculate the cost to insert to each possible position.
The costmap returns a value depending on the spatial position occupies by the player. In
particular:

1. If the player is on the free space, the costmap assigns a cost equal to zero.

2. If the position of player is near to the obstacle , we have a proportional cost depending
on the distance between player and obstacle.

3. If the position of player is inside the obstacle, we have the maximum cost.

This cost can be assigned with a finite value, if we want that player takes in consideration
the position or an infinite value if we want that player excludes it.

Figure 5.2 shows the test performed. We have a player that must avoid obstacle to
reach the goal. To avoid it, the algorithm chooses a path reaching the goal and avoiding
the obstacle. In particular, the player chooses the following poses:

48

5.1 – Test 1: fictitious players

1. First movement: the player goes right with 30° degree.

2. Second movement: the player goes right with 30° degree.

3. Third movement: the player goes straight on.

4. Fourth movement: the player goes left with 30° degree.

In this way, the player avoids the obstacle and goes as close as possible to the goal.

Figure 5.2. The path followed by the player to avoid the obstacle

To be sure that the code works properly, we perform another test with, this time, the
Robot and other three players. In particular, we insert the robot goal position inside the
obstacle, and we see how the code react to this challenging scenario. The Robot is placed
in the position A(8,8) and the goal is in G(13,10) in the map reference frame.

The robot avoids the obstacle and tries to reach the goal. It stops its path near the
goal position.

49

Validation and Test

Figure 5.3. The path followed by the robot to avoid the obstacle

5.1.2 Player Avoidance
In this section, we perform tests to verify the ability of the algorithm to create paths
without intersections with other players.

First Test

In the following figures, we have 3 players that have intersections. In figure 5.4 is reported
a simple elaboration to avoid the collision between players without the implementation of
Nash Equilibrium. Here we have:

1. Player1, in blue, steers on the right with 30° degree angle to avoid collision with
Player2, and Player3, according to the hypotheses that all players go straight on.

2. Player2, in green, steers on the right with 30° degree angle to avoid collision with
Player1, according to the hypotheses that all players go straight on.

3. Player3, in red, steers on the right with 30° degree angle to avoid collision with
Player1, according to the hypotheses that all players go straight on.

This solution is the starting point for our algorithm. The solution found in this case
is acceptable but it is not the optimal. In fact, all the players change their own direction,
but in this way they waste time and increase the costs. Moreover, players reach the final
poses with a certain distance from the original goal.

The two deviations and the distance from the goal increase the cost function.

50

5.1 – Test 1: fictitious players

Figure 5.4. Players paths without Nash Equilibrium

Now, instead, we implemented in the code the Nash Equilibrium. On figure 5.5, we have
the result of the whole algorithm. This setup goes in deep respect to the previous example.
Once that the algorithm finds the previous solution, it calculates again the possible path.
This time, it uses the result obtained in the previous computation, instead to use the
hypotheses that all players go straight on. In this way, it finds the optimal solution. The
iterations continue until for two subsequent results all players choose the same paths. The
differences respect the test done before are:

1. Player1, in blue, goes straight on

2. Player2, in green, steers on the right with 30° degree angle to avoid collision with
Player1, due to the decision of Player1 to go straight on.

3. Player3, in red, goes straight on.

Now the solution is optimal, because only one player decided to change its path in
order to avoid collisions. In this way, the cost functions of other players remain the lowest
possible.

51

Validation and Test

Figure 5.5. Players paths with Nash Equilibrium

Second Test

Another test is performed to verify the avoidance between players. In this test the robot
intersects only one player. The other two players are inserted to see how the algorithm
manages it. In fact, these two players have free path and the algorithm, if it works correctly,
should send it to goal directly. Figure 5.6 shows the obtained results.

1. Robot, in green, steers on the right with 60° degree angle to avoid collision with
Player1, according to the hypotheses that Player1 goes straight. After this movement,
it steers to the left with 30° degree angle to go toward the goal in position G(4,3).

2. Player1, in yellow, goes straight on from A0(1,1) to B1(4,4). The player doesn’t make
deviation because the robot already avoids it.

3. Player2, in blue, goes straight on from B0(1,0) to B1(4,0).

4. Player3, in red, goes straight on from C0(0,1) to C1(0,4).

This solution is found without the implementation of Nash game.

52

5.1 – Test 1: fictitious players

Figure 5.6. Second Test without Nash Equilibrium

Now, we repeat the same test but enabling the Nash game, in order to reach the Nash
Equilibrium. The following figure 5.7 shows the result obtained.

In this scenario, the result is different. In fact, we have a different interaction between
the Robot and the Player1. Now we have the solution that satisfies the Nash Equilibrium
and has the lowest cost function.

1. Robot, in green, steers on the left with 30° degree angle to avoid collision with Player1.

2. Player1, in yellow, goes straight on from A0(1,1) to B1(4,4). The player turns right
by 30° degree angle to avoid the Robot path.

3. Player2, in blue, remains the same: it goes straight on from B0(1,0) to B1(4,0).

4. Player3, in red, remains the same: it goes straight on from C0(0,1) to C1(0,4).

53

Validation and Test

Figure 5.7. Second Test with Nash Equilibrium

Third Test

A third test is done to check how the algorithm reacts to a robot that tries to cut the path
of others two players. The starting point of Robot, Player1 and Player2 are set in order
to have an intersection in two different instants. Moreover, here we insert 5 poses in order
to increase the computational cost.

The following figure 5.8 shows the result obtained with the algorithm without Nash
Equilibrium.

1. Robot, in green, steers on the right with 60° degree angle to avoid collision with
Player1. After that, it turns left with 30° angle to avoid the Player2. Then it goes
straight and at the end it turns left with 30° degree angle to get close to the goal.

2. Player1, in yellow, goes straight on from A0(1,1.3) to A1(4.6,2).

3. Player2, in blue, goes straight on from B0(1,2) to B1(4.6,1).

4. Player3, in red, goes straight on from C0(1,0) to C1(5,0).

54

5.1 – Test 1: fictitious players

Figure 5.8. Third Test without Nash Equilibrium

In the following figure 5.9 we apply the concept of the Nash Equilibrium and see the
result.

Here, we can observe that the result of algorithm doesn’t change. In fact, also in this
case, the Robot chooses to avoid the player using the same path. This mean that the
Nash Equilibrium is already reached in the previous case. This could be possible if the
assumption, that all players go straight on, results also the optimal solution for Nash game.

This optimal solution doesn’t change with the implementation of Nash game because
the others solutions aren’t advantageous respect to the already found.

55

Validation and Test

Figure 5.9. Third Test with Nash Equilibrium

5.1.3 Test result
These test have been made to verify the correctness and effectiveness of the algorithm.
Moreover, we perform different kinds of test to check if the algorithm is stable and to find
always a feasible result.

First of all, the main goal is to check the ability to avoid collisions between players. we
find that the algorithm is able to do that and to define the correct poses to players and
robot.

Also, the algorithm is able to avoid an obstacle inserted with a cost-map. During the
test done, the algorithm computes the correct poses to avoid the obstacle. The robot,
following these data, reaches a position near the goal without collides with the obstacle.

56

5.2 – Test 2: real-world surveillance video

5.2 Test 2: real-world surveillance video
This test has been done to demonstrate the effectiveness of the algorithm implemented on
a real world scenario. To do that, we use a video used during the testing phase on software
of this kind. The video is elaborated and the data of players are extrapolated in a file. In
this way, we can send it to the algorithm and manage it. Moreover, we design the costmap
that represents the scenario of video to be used by the algorithm.

5.2.1 Video
Figure 5.10 shows the video used. This video is chosen to evaluate many algorithm due to
its completeness and useful properties. In fact, we have pedestrians, groups of them and
also fixed obstacles.

The algorithm takes information from this video and elaborates it. The fixed obstacles
are loaded into the costmap. Instead, the poses of pedestrians are elaborated and extrap-
olated in a input file read by the code and, then, managed as players of the game theoric
approach.

Figure 5.10. Example of scenario represented in the surveillance video

5.2.2 Extrapolated data from video
The video is analyzed. The pedestrians poses and, then, the paths are extracted and saved
in a file. This file can be read by the algorithm. In particular, in this file we have groups
of data. Each group is a spline curve that represent the path of that specific player in that
period of time. Figure 5.11 shows an example of data saved inside the file. Specifically, we
have the following information:

1. Number of Spline: The number after the # character indicates the sequence number
of spline. The code elaborates this number as a player.

2. First row: it indicates the X coordinates.

57

Validation and Test

3. Second row: it indicates the Y coordinates.

4. Third row: it indicates the time instant.

5. Fourth row: it indicates the orientation of the player.

Figure 5.11. Data extracted from video analysis

58

5.2 – Test 2: real-world surveillance video

5.2.3 Costmap
The following figure 5.12 shows the costmap created from the video. This image was loaded
inside the ROS code as costmap. In this way, we can avoid the obstacle simply reading
the costmap. In fact, inside the cost function we have the value read from the costmap.

Each cell of costmap has a different value, depending on the presence or not of obstacle.
This value is added to the cost function of each path. In this way, the player tries to find
another path with the lowest cost and, then, avoiding the obstacle.

Figure 5.12. The Costmap used for the scenario with the surveillance video of Figure 5.10

59

Validation and Test

5.2.4 Test
The test performed is explained in the following paragraphs.

In this test, we read the data of three spline from the file. In this way we have three
players that will be displayed in the test. Also, we have the complete costmap. The
following legenda helps us to understand the figures:

1. Black spaces: the free space that is present on the costmap

2. Purple space: the obstacles that are present on the costmap.

3. Light purple space: these areas, that surround the obstacles, are in the inflation
radius. This technique to inflate the dimensions of obstacles is used to avoid obstacle
maintaining a safety distance.

4. Green line: the robot path.

5. Red line: the first player path.

6. Blue line: the second player path.

7. Yellow line: the third player path.

We perform a simulation on the real world scenario. In the following pages we will explain
each single step performed by the algorithm. Each step corresponds to a single iteration
of the algorithm. We perform 8 sequential steps.

First Step

At the beginning, the robot moves towards the goal. During the computation the robot
doesn’t intersect any other player. For this reason, the compute path chosen by the robot
goes straight.

The algorithm computes also the future positions of the other three players. In par-
ticular, it returns that, in the next steps we could have intersection between the second
player and third. To avoid these possible collisions, we have to find a feasible solution. At
the end, the algorithm finds that game reached the Nash Equilibrium.

Once that we have reached the Nash equilibrium, the algorithm publish the trajectory
on the ROS Visualizator (RVIZ).

The robot position is obtained by the algorithm to obtain the Nash equilibrium. On
the other hand, players positions, drawn in RVIZ, are not computed by the algorithm, but
they follow the trajectory defined in the surveillance video. In this way, the algorithm
computes how the robot and players can interact, but the players positions are always the
real ones coming from the real-world scenario.

60

5.2 – Test 2: real-world surveillance video

Figure 5.13 shows the result obtained in the first step.

Figure 5.13. First step of movement

61

Validation and Test

Instead, figure 5.14 shows the terminal during the execution of the algorithm to find
the robot path. Only a few part the the stream on the terminal is reported.

Once that the algorithm excludes the path unusable, it checks if for two iterations all
the players and robot choose the same paths. If yes, we have reached Nash Equilibrium
and we can conclude the game and, then, draw the result on RVIZ.

Figure 5.14. Stream of the execution of the algorithm during the first step

62

5.2 – Test 2: real-world surveillance video

Second Step

The algorithm reloads the new poses of players, reading them from the input file, and the
new poses of robot, obtained as result of last iteration.

In this second step, the robot intersects the path of first player.
The code finds a new path to avoid the collision. To do it, the code analyses new

reachable poses, according to the increasing cost. At the end, if the game reached the
Nash Equilibrium, the code shows the result in the RVIZ environment. This result is
showed in figure 5.15.

Figure 5.15. Second step of movement

63

Validation and Test

Here, we have the result of computation. In figure 5.16, we have the terminal during
the last part of the process.

In the upper part of image, the code applies the Nash Game to reach the equilibrium.
The code excludes the paths that creates intersection. At the end, the code sees that for
two iterations, the paths chosen are the same. The equilibrium is reached.

Now the positions are uploaded and the process goes above to the next step.

Figure 5.16. Data of algorithm for the second step

64

5.2 – Test 2: real-world surveillance video

Third Step

Now the code reloads the new positions of players, reading them from the input file, and
the new position of robot, obtained as result of last iteration.

In this third case, the robot intersects again the path of first player.
The code finds a new path to avoid the collision. To do it, the code explores new

reachable poses, according to the increasing cost. At the end, if the game reached the
Nash Equilibrium, the code shows the result in the RVIZ environment. This result is
showed in figure 5.17.

Figure 5.17. Third step of movement

65

Validation and Test

Here, we have the result of computation. In figure 5.18, we have the last part of the
process.

In the upper part of image, the algorithm applies the Nash Game to reach the equi-
librium. The algorithm excludes the paths that creates intersection. At the end, the
algorithm detects that for two iterations, the paths chosen are the same. The equilibrium
is reached.

Now the positions are uploaded and the process goes above to the next step.

Figure 5.18. Data of algorithm for the third step

66

5.2 – Test 2: real-world surveillance video

Fourth Step

Now the algorithm reloads the new positions of players, reading them from the input file,
and the new position of robot, obtained as result of last iteration.

In this fourth case, the robot doesn’t intersect any players.
The code finds the least expensive path. At the end, if the game reached the Nash

Equilibrium, the algorithm shows the result in the RVIZ environment. This result is showed
figure 5.19. This time the result comes very fast due to the lack of collisions.

Figure 5.19. Fourth step of movement

67

Validation and Test

Here we have the result of computation. In figure 5.20, we have the whole process.
In the upper part of code, we have the algorithm that finds beginning path. After this

phase, called by the algorithm "FASE INIZIALE", the algorithm applies the Nash Game
to reach the equilibrium. The algorithm finds that the paths are the same for two iteration.
This means that we don’t have intersection between players, and the first path found is
also the optimal. Then the Nash equilibrium is reached.

Now the positions are uploaded and the process goes above to the next step.

Figure 5.20. Data of algorithm for the fourth step

68

5.2 – Test 2: real-world surveillance video

Fifth Step

Now the algorithm reloads the new positions of players, reading them from the input file,
and the new position of robot, obtained as result of last iteration.

In this fifth case, the robot doesn’t intersect any players.
The algorithm finds the least expensive path. At the end, if the game reached the

Nash Equilibrium, the algorithm shows the result in the RVIZ environment. This result is
showed in figure 5.21. This time, the result comes very fast due to the lack of collisions.

Figure 5.21. Fifth step of movement

69

Validation and Test

Here we have the result of computation. In figure 5.22, we have the whole process.
In the upper part of algorithm, we have the algorithm that finds beginning path. After

this phase, called by the algorithm "FASE INIZIALE", the algorithm applies the Nash
Game to reach the equilibrium. The algorithm finds that the paths are the same for two
iteration. This means, that we don’t have intersection between players, and the first path
found are also the optimal. Then the Nash equilibrium is reached.

Now the positions are uploaded and the process goes above to the next step.

Figure 5.22. Data of algorithm for the fifth step

70

5.2 – Test 2: real-world surveillance video

Sixth Step

Now the code reloads the new positions of players, reading them from the input file, and
the new position of robot, obtained as result of last iteration.

In this sixth case, the robot doesn’t intersect any players.
The algorithm finds the least expensive path. At the end, if the game reached the

Nash Equilibrium, the algorithm shows the result in the RVIZ environment. This result is
showed in figure 5.23. This time the result comes very fast due to the lack of collisions.

Figure 5.23. Sixth step of movement

71

Validation and Test

Here we have the result of computation. In figure 5.24, we have the whole process.
In the upper part of algorithm, we have the algorithm that finds beginning path. After

this phase, called by the algorithm "FASE INIZIALE", the algorithm applies the Nash
Game to reach the equilibrium. The algorithm finds that the paths are the same for two
iteration. This means, that we don’t have intersection between players, and the first path
found are also the optimal. Then the Nash equilibrium is reached.

Now the positions are uploaded and the process goes above to the next step.

Figure 5.24. Data of algorithm for the sixth step

72

5.2 – Test 2: real-world surveillance video

Seventh Step

Now the algorithm reloads the new positions of players, reading them from the input file,
and the new position of robot, obtained as result of last iteration.

In this seventh case, the robot doesn’t intersect any players.
The algorithm finds the least expensive path. At the end, if the game reached the Nash

Equilibrium, the code shows the result in the RVIZ environment. This result is showed in
figure 5.25. This time the result comes very fast due to the lack of collisions.

Figure 5.25. Seventh step of movement

73

Validation and Test

Here we have the result of computation. In figure 5.26, we have the whole process.
In the upper part of code, we have the algorithm that finds beginning path. After this

phase, called by the algorithm "FASE INIZIALE", the algorithm applies the Nash Game
to reach the equilibrium. The algorithm finds that the paths are the same for two iteration.
This means, that we don’t have intersection between players, and the first path found are
also the optimal. Then the Nash equilibrium is reached.

Now the positions are uploaded and the process goes above to the next step.

Figure 5.26. Data of algorithm for the seventh step

74

5.2 – Test 2: real-world surveillance video

Eighth Step

Now the algorithm reloads the new positions of players, reading them from the input file,
and the new position of robot, obtained as result of last iteration.

In this eighth case, the robot doesn’t intersect any players.
The algorithm finds the least expensive path. At the end, if the game reached the

Nash Equilibrium, the algorithm shows the result in the RVIZ environment. This result is
showed in figure 5.27. This time the result comes very fast due to the lack of collisions.

Figure 5.27. Eighth step of movement

75

Validation and Test

Here, we have the result of computation. In figure 5.28, we have the whole process.
In the upper part of algorithm, we have the code that finds beginning path. After this

phase, called by the algorithm "FASE INIZIALE", the algorithm applies the Nash Game
to reach the equilibrium. The algorithm finds that the paths are the same for two iteration.
This means, that we don’t have intersection between players, and the first path found are
also the optimal. Then the Nash equilibrium is reached.

Now the positions are uploaded and the process goes above to the next step.

Figure 5.28. Data of algorithm for the eighth step

76

Chapter 6

Conclusions

The goal of the thesis is to create a software, that could be implemented on robots to
emulate an human-like behavior. In particular, we focus the work on how the robot can
interact with humans in a crowded and unknown scenario.

In order to reach this goal, we search in literature all the methods that could be useful
to reach a feasible solutions. We find different approaches leading to different results. In
particular, the models analyzed are:

1. Predictive model: the player "predicts" how the other players could move in the future.
This model creates possible oscillation on the player movement and this cannot be
acceptable for human-being.

2. Reactive model: the player "reacts" based on the motion of other players. I.e. The
player changes its path and trajectory every time that it finds a possible collision.
This solution creates a "rough" behavior of player. This kind of model generates a
behavior far from an human-like.

3. Learning model: The player "learns" how to behave using the information stored in a
database. This model is very useful if the robot works always in the same environment.
Moreover, the database can be reloaded if the scenario change. The negative aspect
is that the robot needs a lot of computation to reload the data and cannot be used
in a real-time crowded scenario.

4. Game theory model: the player "plays" with the others gamers during the process.
The Game theory is useful because can reproduce rational decision. Also, according
to the kind of game chosen, it can create different solutions tuned on the requirements.

After this phase, where the literature is analyzed, the Game Theory Model is the choice
taken in order to reach the goal of thesis. This solution is chosen due to its versatility. In
fact, it could be tuned according to the requirements of the target. The features of the
game chosen are:

1. Dynamics. The game evolves during the time.

2. Non-cooperative. Each player thinks only to its own goal.

77

Conclusions

3. Non-zero sum. The sum of all gains and losses, of all players, is not strictly equal to
0.

At the end the game, the Nash Equilibrium must be reach. I.e. each player, knowing the
other players paths, cannot change its own for at least two iteration.

At the end, we create two codes to reach the final goal. In particular the two codes are:

1. Core code. knowing the data of players, this code implement the core element of the
proposed algorithm, by implementing the Nash Equilibrium to compute the solution
of the game and, then, a suitable path.

2. Edge code. This code includes the Core code to be used in specific applications, such
as with a realistic scenario in this thesis. I.e. it includes the dynamic requirement
chosen at the beginning.

In order to validate the codes, we perform specific tests. These test are created accord-
ingly to the specs that the codes have to reach, according to the thesis goals. The tests
performed show that the robot is able to avoid obstacle and interact with humans. Also,
the robot creates smooth trajectories in order to move with a human-like motion. To do
that, the robot prefers to steer with low angle if it interacts with an human or an obstacle.
The test demonstrates that the codes are able to avoid the intersections between robot and
players, creating usable paths without collisions.

The Edge Code is tested also in a realistic scenario, i.e. using a real-world surveillance
video, the code is able to create robot path that is acceptable for humans.

Our work could be improved and implemented in autonomous cars and many robotic
fields. In the future, this solution could be useful to manage cleaning robot, delivery robot
and many others that need to interact with humans.

In future, some other improvements could be done on the algorithm to make it more
complete and applicable in real scenarios. Moreover, the multi robot scenario should be
considered by using the proposed game theoretic approach to compute the path of more
robots.

78

80

Bibliography

[1] Giada Galati, Learning from humans to improve Socially-Aware Motion Planning. Rel.
Alessandro Rizzo, Sergio Grammatico. Politecnico di Torino, Corso di laurea magistrale
in Mechatronic Engineering (Ingegneria Meccatronica), 2019

[2] Damiano L, Dumouchel P. Anthropomorphism in Human-Robot Co-evolution. Front
Psychol. 2018;9:468. Published 2018 Mar 26. doi:10.3389/fpsyg.2018.00468.

[3] Luber, Matthias, Spinello, Luciano, Silva, Jens, Arras, Kai, 2012/10/01, 902-
907, 978-1-4673-1737-5, Socially-aware robot navigation: A learning approach,
doi:10.1109/IROS.2012.6385716.

[4] Embodied social interaction for service robots in hallway environments. Elena Pac-
chierotti, Henrik I. Christensen, and Patric Jensfelt

[5] Aiello, J. R. (1987). Human Spatial Behaviour. In D. Stokels & I. Altman (Eds.),
Handbook of Environmental Psychology. New York, NY: John Wiley & Sons.

[6] Burgoon, J., Buller, D., & Woodall, W. (1989). Nonverbal Communication: The Un-
spoken Dialogue. New York, NY: Harper & Row.

[7] Human-Aware Robot Navigation: A Survey, Thibault Kruse, Amit Pandey, Rachid
Alami, Alexandra Kirsch, 2013, 61 (12), pp.1726-1743. hal-01684295

[8] Karamouzas, I., & Overmars, M. (2010). A Velocity-Based Approach for Simu-
lating Human Collision Avoidance. Lecture Notes in Computer Science, 180–186.
doi:10.1007/978-3-642-15892-6-19

[9] Turnwald, A., Althoff, D., Wollherr, D., & Buss, M. (2016). Understanding Human
Avoidance Behavior: Interaction-Aware Decision Making Based on Game Theory. In-
ternational Journal of Social Robotics, 8(2), 331–351. doi:10.1007/s12369-016-0342-2

[10] Morgan Quigley, Brian Gerkeyy, Ken Conleyy, Josh Fausty, Tully Footey, Jeremy
Leibsz, Eric Bergery, RobWheelery, Andrew Ng, ROS: an open-source Robot Operating
System, Conference Paper, (2009)

[11] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
In Autonomous robot vehicles, pages 396–404. Springer, 1986.

81

Bibliography

[12] Johann Borenstein, Yoram Koren, et al. The vector field histogram-fast obstacle avoid-
ance for mobile robots. IEEE transactions on robotics and automation, 7(3):278–288,
1991.

[13] Iwan Ulrich and Johann Borenstein. Vfh+: Reliable obstacle avoidance for fast mobile
robots. In Proceedings. 1998 IEEE international conference on robotics and automation
(Cat. No. 98CH36146), volume 2, pages 1572–1577. IEEE, 1998.

[14] Iwan Ulrich and Johann Borenstein. Vfh/sup*: Local obstacle avoidance with look-
ahead verification. In Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), volume 3, pages 2505–2511. IEEE, 2000.

[15] Sean Quinlan and Oussama Khatib. Elastic bands: Connecting path planning and
control. In [1993] Proceedings IEEE International Conference on Robotics and Au-
tomation, pages 802–807. IEEE, 1993.

[16] John Von Neumann, Oskar Morgenstern, and Harold William Kuhn. Theory of games
and economic behavior (commemorative edition). Princeton university press, 2007.

[17] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

[18] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory: A concise multidis-
ciplinary introduction. Synthesis lectures on artificial intelligence and machine learning,
2(1):1–88, 2008.

[19] Nash, John. "Non-Cooperative Games." Annals of Mathematics, Second Series, 54, no.
2 (1951): 286-95. Accessed August 12, 2020. doi:10.2307/1969529.

[20] von Ahn, Luis. "Preliminaries of Game Theory" (PDF). Archived from the original
(PDF) on 2011-10-18. Retrieved 2008-11-07.

[21] Sébastien Paris, Julien Pettré, and Stéphane Donikian. Pedestrian reactive navigation
for crowd simulation: a predictive approach. In Computer Graphics Forum, volume 26,
pages 665–674. Wiley Online Library, 2007.

[22] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using velocity
obstacles. The International Journal of Robotics Research, 17(7):760– 772, 1998.

[23] Ioannis Karamouzas and Mark Overmars. A velocity-based approach for simulating
human collision avoidance. In International Conference on Intelligent Virtual Agents,
pages 180–186. Springer, 2010.

[24] William H Warren. Collective motion in human crowds. Current directions in psycho-
logical science, 27(4):232–240, 2018.

[25] Edward Twitchell Hall. The hidden dimension, volume 609. Garden City, NY: Dou-
bleday, 1910.

[26] Pete Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause. Robot

82

Bibliography

navigation in dense human crowds: Statistical models and experimental stud-
ies of human–robot cooperation. The International Journal of Robotics Research,
34(3):335–356, 2015.

[27] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical
review E, 51(5):4282, 1995.

[28] Kai O Arras, Slawomir Grzonka, Matthias Luber, and Wolfram Burgard. Efficient
people tracking in laser range data using a multi-hypothesis leg-tracker with adap-
tive occlusion probabilities. In 2008 IEEE International Conference on Robotics and
Automation, pages 1710–1715. IEEE, 2008.

[29] Satoshi Tadokoro, Masaki Hayashi, Yasuhiro Manabe, Yoshihiro Nakami, and Toshi
Takamori. On motion planning of mobile robots which coexist and cooperate with
human. In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Human Robot Interaction and Cooperative Robots, volume 2, pages
518–523. IEEE, 1995.

[30] Andreas Schadschneider. Cellular automaton approach to pedestrian dynamicstheory.
arXiv preprint cond-mat/0112117, 2001.

[31] Frank Hoeller, Dirk Schulz, Mark Moors, and Frank E Schneider. Accompanying
persons with a mobile robot using motion prediction and probabilistic roadmaps. In
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1260–1265. IEEE, 2007.

[32] Maren Bennewitz, Wolfram Burgard, Grzegorz Cielniak, and Sebastian Thrun. Learn-
ing motion patterns of people for compliant robot motion. The International Journal
of Robotics Research, 24(1):31–48, 2005.

[33] Amalia F Foka and Panos E Trahanias. Predictive autonomous robot navigation. In
IEEE/RSJ international conference on intelligent robots and systems, volume 1, pages
490–495. IEEE, 2002.

[34] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-
Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 961–971, 2016.

[35] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. So-
cial gan: Socially acceptable trajectories with generative adversarial networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2255–2264, 2018.

[36] Junwei Liang, Lu Jiang, Juan Carlos Niebles, Alexander G Hauptmann, and Li Fei-
Fei. Peeking into the future: Predicting future person activities and locations in videos.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5725–5734, 2019.

83

Bibliography

[37] Serge Hoogendoorn and Piet HL Bovy. Simulation of pedestrian flows by optimal con-
trol and differential games. Optimal Control Applications and Methods, 24(3):153–172,
2003.

[38] Jun Tanimoto, Aya Hagishima, and Yasukaka Tanaka. Study of bottleneck effect at
an emergency evacuation exit using cellular automata model, mean field approxima-
tion analysis, and game theory. Physica A: statistical mechanics and its applications,
389(24):5611–5618, 2010.

[39] Bryan L Mesmer and Christina L Bloebaum. Modeling decision and game theory
based pedestrian velocity vector decisions with interacting individuals. Safety science,
87:116–130, 2016.

[40] Annemarie Turnwald, Daniel Althoff, Dirk Wollherr, and Martin Buss. Understanding
human avoidance behavior: interaction-aware decision making based on game theory.
International Journal of Social Robotics, 8(2):331–351, 2016.

[41] Souvik Roy, A Borzì, and Abderrahmane Habbal. Pedestrian motion modelled by
fokker–planck nash games. Royal Society open science, 4(9):170648, 2017.

[42] Waytz A, Epley N, Cacioppo JT. Social Cognition Unbound: Insights Into
Anthropomorphism and Dehumanization. Curr Dir Psychol Sci. 2010;19(1):58-62.
doi:10.1177/0963721409359302

84

	List of Figures
	Introduction
	People behaviour
	Human inclination to anthropomorphize
	A solution
	Human spatial interaction
	Socially-aware navigation requirement

	Thesis explaination

	State of Art
	Robot navigation
	Motion Controller
	Motion Planning models
	Predictive model
	Reactive model
	Learning model
	Game theory model

	Game Theory and ROS environment
	History
	General concept
	Keywords
	Game Types
	Nash equilibrium
	Examples of Game Theory
	The Prisoner's Dilemma
	Dictator Game
	Volunteer’s Dilemma
	The Centipede Game

	ROS environment
	Design Goals
	RVIZ

	ROS Concepts
	Master
	Nodes
	Topics
	Services
	Messages

	Code Development
	Cost Function solution
	Code
	Flow Chart
	Pose Acquisition
	Players Paths Computation
	Robot Path Computation
	Movement of Players and Robot
	Robot reach the goal or not
	Update Positions of Players and Robot

	Validation and Test
	Test 1: fictitious players
	Obstacle Avoidance
	Player Avoidance
	Test result

	Test 2: real-world surveillance video
	Video
	Extrapolated data from video
	Costmap
	Test

	Conclusions
	Bibliography

