
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Implementation of a serverless
application

Supervisors Candidate
Prof. Maurizio MORISIO Antonio D’Amore

October 2020

A mamma e papà

Table of Contents

Acronyms viii

1 Introduction 1
1.1 Motivations . 2
1.2 Problem statements . 2
1.3 Methodology . 2
1.4 Structure of the thesis . 3

2 State of the art 5
2.1 Serverless computing . 5

2.1.1 Benefits . 7
2.1.2 Drawbacks . 9
2.1.3 Future of serverless . 10

2.2 Serverless in AWS . 10
2.2.1 AWS Lambda . 11
2.2.2 AWS DynamoDB . 13
2.2.3 AWS Fargate . 14

2.3 Security in AWS . 14
2.3.1 Shared-responsibility model 15
2.3.2 SECurity as a Service . 15
2.3.3 Least Privilege Principle . 16
2.3.4 AWS IAM . 16
2.3.5 AWS VPC . 18
2.3.6 AWS Secrets Manager . 19
2.3.7 Microservices and serverless 19

2.4 Serverless in DevOps . 20
2.4.1 Moving to a new culture . 20
2.4.2 Serverless breaking changes 21

2.5 Infrastructure as Code . 22
2.5.1 AWS CloudFormation . 22
2.5.2 AWS CDK . 23

iii

2.5.3 Serverless Framework . 23
2.6 Monitoring . 24

2.6.1 Possible issues in serverless 24
2.6.2 Observability . 25
2.6.3 AWS CloudWatch . 26
2.6.4 AWS X-Ray . 26

2.7 CI/CD pipeline . 26
2.7.1 AWS CodePipeline . 27
2.7.2 AWS CodeBuild . 27

2.8 Service virtualization . 28
2.9 Hoverfly . 28

2.9.1 Simulations . 29
2.9.2 Working modes . 29

2.10 Conclusions . 30

3 Case study 31
3.1 The case under consideration . 31

3.1.1 The idea . 32
3.1.2 The focus of this thesis . 32

3.2 Designing solution . 32
3.2.1 Requirements . 33

3.3 Proxy . 33
3.3.1 Modes . 33
3.3.2 Key features . 34

3.4 Simulation . 35
3.4.1 Scenarios . 36

3.5 Two units . 36
3.5.1 Umarell Backend . 36
3.5.2 Proxy farm . 37

3.6 Placement of the proxy farm . 37
3.6.1 Flexibility . 40

3.7 Conclusions . 40

4 Implementation 43
4.1 Requirements . 43
4.2 Architecture overview . 43

4.2.1 Proxy . 44
4.2.2 Umarell Backend . 45
4.2.3 Proxy farm . 46
4.2.4 Communication layer . 47
4.2.5 Testbox . 47

iv

4.3 Customer REST API . 48
4.4 Technical stack . 50

4.4.1 Umarell Backend . 51
4.4.2 Proxy . 51
4.4.3 Proxy farm . 52
4.4.4 Testbox . 54
4.4.5 Placement of proxies . 54

4.5 Projects organization . 57
4.5.1 Umarell Backend project . 57
4.5.2 Umarell Proxy Farm project 58

4.6 Asynchronous workflows . 59
4.6.1 Creating, starting and stopping a proxy 59
4.6.2 Handling scenarios . 63

4.7 Adapt to pay-per-use model . 64
4.8 Study of Hoverfly . 65

4.8.1 Working modes . 65
4.8.2 How to run it . 66
4.8.3 Commands coverage problem 67

4.9 Networking and security management 68
4.10 Infrastructure as Code . 69

4.10.1 Umarell Backend . 70
4.10.2 Proxy farm . 70

4.11 DevOps Pipeline . 71
4.11.1 Stages . 71
4.11.2 Security . 73
4.11.3 CI/CD pipeline . 74
4.11.4 Monitoring and observability 74

4.12 Conclusions . 76

5 Evaluation 77
5.1 A microservices application . 77
5.2 Handling consistency . 78

5.2.1 Proxy farms managed by customers 79
5.3 DevOps pipeline . 80

5.3.1 Monitoring and observability 80
5.3.2 Testing . 81
5.3.3 Consequences of serverless 81

5.4 Costs . 81
5.4.1 Umarell Backend . 82
5.4.2 Umarell Proxy Farm . 83

5.5 Conclusions . 85

v

6 Conclusions 87

Bibliography 91

vi

Acronyms

ACL
Access Control List

AWS
Amazon Web Services

BaaS
Backend as a Service

B2B
Business-to-business

CDK
Cloud Development Kit

CIDR
Classless Inter-Domain Routing

DSL
Domain-Specific Language

EC2
Elastic Compute Cloud

ECS
Elastic Cloud Service

EKS
Elastic Kubernetes Service

viii

FaaS
Function as a Service

GUI
Graphic User Interface

IaaS
Infrastructure as a Service

IaC
Infrastructure as Code

IAM
Identity and Access Management

IP
Internet Protocol

NAT
Network Address Translation

PaaS
Platform as a Service

PCI DSS
Payment Card Industry Data Security Standard

PUE
Power Usage Effectiveness

SECaaS
SECurity as a Service

VPC
Virtual Private Cloud

ix

Chapter 1

Introduction

Today human activities are strictly dependent on the Internet. People can commu-
nicate, make money transfers, manage their jobs and a lot more.
Problems with increasing complexity require information technology to find simpler
and simpler ways to face against them. The concept of abstraction is what allows
to deal with this purpose.
Serverless computing in an abstraction model which allows to execute some code
in isolated environments, while hiding the provisioning and management of servers,
which are under the cloud provider responsibility. Applications can leverage several
paradigms, like Function as a Service, in which code is executed in ephemeral
stateless containers, and Backend as a Service, in which the server-side logic relies
on third-party services, generally used for providing authentication, cloud storage,
and more.
Serverless is meant to help IT teams to build easily scalable architectures, eco-
nomically convenient and with low effort in maintenance. Furthermore, it allows
organizations to reallocate time and people to problems unique to the product.
Serverless is an architectural style brought to the fore a few years ago by leading
cloud providers. Today it is mainly spread for executing automation tasks, data-
processing pipelines, or as general purpose glue code in operations, but it is difficult
to find serverless to manage the core logic of applications. Therefore, despite the
fact that serverless promises a lot of benefits in operations, there is still a lack of
experience with it.
It is still unclear how serverless affects DevOps, therefore it is necessary to enlarge
the general background, and consolidate a real culture, and this can happen thanks
to the joint research of universities and organizations.
The main activity on which this thesis focuses is the implementation of a serverless
application and the designing of a continuous delivery pipeline on behalf of Con-
soft Sistemi S.p.A., specialized in systems integration. The project requires the
orchestration of multiple and different infrastructure components, even not thought

1

Introduction

specifically for serverless environments, therefore they have to be allocated and
dismissed as needed, in order to enable a pay-per-use pricing model.

1.1 Motivations
The greatest wish and aim of this thesis, first of all, is to allow that general
background, mentioned before, to expand further.
To begin, the term "serverless" will be explored, because it has not an official
definition, but is a concept shaped by communities of engineers and developers. It
is often interchanged with FaaS, but this thesis will keep these terms separated,
treating FaaS as a subset of serverless. The reason is that developing "with no
servers" is a promise which is not strictly related to run single stateless functions.
Understanding the most subtle differences helps to appreciate the various levels of
abstraction.
Serverless architecture can be complicated to design, because of the fragmentation
of the model which can bring to a poorly comprehensive overview. It is necessary
to detect common and best practices and analyzing a given application in the
perspective of microservices application, examining common key features, and how
consistency is handled in a distributed environment of this type.
Behind the apparent simplicity of the model, one of the biggest difficulties of
serverless is dealing with operations. While promising freedom from managing
servers, it still requires DevOps practices to be deepened.
Finally the maturity level of serverless will be examined, in order to understand
what today is missing, and what cloud providers need to focus on to fully exploit
the benefits that serverless can bring.

1.2 Problem statements
This thesis addresses the following research questions:

• How can a serverless architecture be designed?

• How can a software not meant for serverless be adapted to this cloud model?

• How a serverless application affects operations?

• What is the maturity level of serverless?

1.3 Methodology
Design science research has been chosen for guiding this work, since it aims to
develop knowledge that the professionals of the discipline in question can use to

2

1.4 – Structure of the thesis

design solutions for their field problems, and focuses on production of an artifact,
which makes this methodology suitable for many Engineering and Computer Science
disciplines.
The developed artifact must be a viable technology-based solution to a relevant
business problem. Its design must be evaluated about its utility, quality and
efficiency and its result must be presented effectively to technology-oriented as well
as management-oriented audiences.
The artifact enables the researcher to get a better grasp of the problem, which is
then re-evaluation in order to improve the designed artifact. Therefore, a build-
and-evaluate loop is generated, which makes this methodology a continuous and
iterative process.

1.4 Structure of the thesis
This work is developed over several chapters, following the methodology described
above, and which try to start from a wide overview, up to the most minute details.
In particular:

• chapter 2 makes an analysis of the state of the art of serverless and its
ecosystem;

• chapter 3 illustrates the business problem and the core concepts of the designed
solution;

• chapter 4 describes the designed architecture, the chosen technical stack and
how relevant problems have been addressed;

• chapter 5 evaluates the implemented artifact, with respect to most theoretical
and practical aspects.

• chapter 6 exposes the conclusions about the artifact and the serverless vision;

3

4

Chapter 2

State of the art

This chapter is meant to give a general knowledge about the serverless computing
and the contexts in which it operates. Section 2.1 explores the meaning of the
term serverless, benefits and drawbacks of the model. Section 2.2 and 2.3 show
the offer of serverless services in AWS, and how the provider handles security
and networking. Section 2.4 explains how serverless affects DevOps. Section 2.5
illustrates the Infrastructure as Code approach. Section 2.6 examines the impact of
serverless on monitoring, and section 2.7 describes principles for a CI/CD pipeline
and the AWS solution for managing it. Finally sections 2.8 and 2.9 give brief
theoretical notes on concepts useful for understanding this work.

2.1 Serverless computing
In the last decade, several cloud computing execution models have emerged and
one of these is severless computing. There is not an universally accepted definition
of this model, therefore the meaning suggested by the word itself will be analyzed
in the first place.
It hints that there are not servers, virtual machines or containers, therefore a series
of responsibilities are eliminated. While, in reality, physical supports where code is
executed, i.e. servers, still exist, the second statement is true, because serverless
eliminates the responsibility of their provisioning. In practice, like in the spirit
of cloud computing itself, serverless introduces an abstraction layer between the
application and the underlying layers.
Being a model delivered as a service, serverless is provided by cloud providers. In
a private cloud the consequence of this approach is a more definite decoupling of
responsibilities among different teams, e.g. one for providing the cloud, one for the
development. But the organization still has costs linked to servers, also for idle
resources. Instead, serverless is more beneficial in a public cloud because it gives

5

State of the art

the opportunity of reallocating resources to problems unique to the organization,
so that the effort in operations can be reduced. Using serverless in the public cloud
also means that a series of considerations about costs can be freed, since it allows a
pay per use model, to run applications on demand, with no extra costs. Moreover,
since cloud providers make available a series of predefined services that many other
people use, the Economy of Scale is leveraged in order to offer relatively low prices.
The term "serverless" has been introduced in the cloud context during an AWS
re:Invent event in 2014 [1], when Amazon has published AWS Lambda 1, a FaaS
solution, which allows to run stateless code in an isolated environment.
With FaaS, code is executed in ephemeral stateless "compute containers", which are
created and destroyed as needed at runtime. Most important, the vendor handles
provisioning and allocation of all underlying resources.
Today the market offers very similar solutions, like Microsoft Azure Functions 2,
IBM Cloud Functions 3, Google Cloud Functions 4 and Alibaba Cloud Function
Compute 5.
Nevertheless, the term "serverless" can’t be reduced only to FaaS. Serverless is a
qualifier that can be applied to any software requiring to be consumed as a service
[2]. This is similar to PaaS definition, in which there is no possibility to manage or
control the underlying cloud infrastructure, but gives the possibility to control over
the deployed applications and possibly configuration settings for the application-
hosting environment [3]. Note that PaaS does not hide the existence of servers
and their environments, but only relinquishes some responsibilities. Conversely,
serverless removes user control over hosting and this allows to gain more attractive
billing models, based on pay-per-use, and also better scalability. Indeed, ignoring
the existence of a server and its environments means that a long-lived server
application is not conceived, therefore serverless is supposed to be stateless and
this establishes the conditions for a high degree of parallelism.
Serverless gives a very powerful abstraction which intends to link all responsibilities
to application development only, trying to speeding up the development itself.
According to this perspective applications could significantly or fully incorporate
third-party, cloud-hosted applications and services, to manage server-side logic
and state. Examples of these could concern cloud-accessible databases (e.g., Parse,
Firebase) or authentication services (e.g., Auth0, AWS Cognito). These types of
services are called Backend as a Service (BaaS) and can be intended to be serverless,

1https://aws.amazon.com/lambda/
2https://azure.microsoft.com/en-us/services/functions/
3https://www.ibm.com/cloud/functions
4https://cloud.google.com/functions/
5https://www.alibabacloud.com/products/function-compute

6

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://www.ibm.com/cloud/functions
https://cloud.google.com/functions/
https://www.alibabacloud.com/products/function-compute

2.1 – Serverless computing

since they don’t require server provisioning or managing [4].
Through the years, the serverless ecosystem has growth, matured and continues
to evolve. As mentioned above, serverless is no longer just FaaS, but can take
on more varied forms. AWS Fargate 6 allows to launch containers in a serverless
environment. It allows fine grained auto-scaling of containers without server
provisioning or managing, and offer a pay per use pricing model.
Along with the servers, their limits are also abstracted away. Due to the "as
a service" nature, auto-scaling, high availability and fault tolerance are built-in.
Horizontal scaling is completely automatic, elastic, and managed by the provider,
without any extra configuration by the user.

2.1.1 Benefits
Focus

Moving away from servers and infrastructure means a reduction in responsibilities
for operating cloud infrastructure. It provides the opportunity to dedicate resources
to the problems closest to the business.

Reduced operational cost

Serverless is an outsourcing solution and it allows to exploit the economy of scale
to benefit of affordable prices; companies have to bear only the costs that are really
necessary for their applications, while cloud providers have to manage servers,
databases, services and pay for idle resources (shared among all their customers).

Reduced development cost

BaaS services aim to solve very common problems for users by offering ready-built
functionalities that are easy to integrate, with the added benefit that there are no
provisioning or management costs. Development is faster and time to market is
shortened.

Scaling cost

Horizontal scaling is completely automatic, elastic, and managed by the provider,
and it is requested to pay only for needed resources, since they are allocated when
it is really necessary. Traditional infrastructures requires some fixed costs, even for
idle resources, and this can be highly inconvenient, especially for very heterogeneous
traffic loads over time.

6https://aws.amazon.com/fargate/

7

https://aws.amazon.com/fargate/

State of the art

Easier operations management

On one hand, there are not servers to provision or to manage, therefore there is
almost zero maintenance, which is a great advantage. To the other hand, there it
is requested a greater effort at application level, with monitoring, troubleshooting,
tracing vulnerabilities, patching, and so on.

Transitioning from a server-based application

It is easy to adopt, even in an existing application. In fact, the flexibility and
stateless nature of serverless allow it to be integrated gradually. If possible, the
application can be converted to become completely serverless. If this is not possible,
for example because the application uses critical legacy code, it may be better
not to intervene directly on that code and use legacy components as services. In
general, the transition from a legacy, server-based application to a scalable serverless
architecture may take time. It requires attention and a careful DevOps strategy.

Reduction of energy expenditure

The advancement of innovative fields of ICT, like artificial intelligence, big data
elaborations, streaming video, IoT (Internet of Things), will increasingly demand
more computing power, that means more energy consumption [5].
Power Usage Effectiveness (PUE) is a metric used to determine the energy
efficiency of a data center. It is determined by dividing the amount of power
entering a data center by the power used to run the computer infrastructure within
it [6]:

PUE = Total facility energy

IT Equipment energy

The lower the PUE, the higher the energy efficiency. Moreover, there is no linearity
between CPU utilization and power consumption. This means that an idle CPU
consumes 66% of the peak power [7]. It is evident that there is a waste of energy,
which results in higher carbon dioxide emissions into the environment.
In public cloud all decisions about hardware provisioning are taken by vendors,
that can take globally optimal infrastructural choices, with the big players which
typically pay attention to values of PUE 7 8 9. This hypothesis could be even

7https://aws.amazon.com/it/about-aws/sustainability/
8https://www.google.com/about/datacenters/efficiency/
9https://download.microsoft.com/download/7/3/9/739BC4AD-A855-436E-961D-9C95EB51DAF9/

Microsoft_Cloud_Carbon_Study_2018.pdf

8

https://aws.amazon.com/it/about-aws/sustainability/
https://www.google.com/about/datacenters/efficiency/
https://download.microsoft.com/download/7/3/9/739BC4AD-A855-436E-961D-9C95EB51DAF9/Microsoft_Cloud_Carbon_Study_2018.pdf
https://download.microsoft.com/download/7/3/9/739BC4AD-A855-436E-961D-9C95EB51DAF9/Microsoft_Cloud_Carbon_Study_2018.pdf

2.1 – Serverless computing

more likely in serverless, because virtual resources are allocated only when really
necessary, so the average CPU usage depends on the real needs of customers.

2.1.2 Drawbacks
Serverless is not a silver bullet in all circumstances. It may not be appropriate
for latency-sensitive applications or software with specific service-level agreements
(SLA). It may not be appropriate also for mission-critical applications, if serverless
is executed into a public cloud.

Vendor lock-in

Serverless code is built to run in a specific public cloud, so it is highly dependent on
the provider services. It would be costly to migrate to a different solution, because
it would be necessary to re-design - at least partially - the application.

Vendor control

As serverless is an outsourcing strategy, applications are bound by the dictates of
the vendor. There can be limitations, cost changes, forced component upgrades,
loss of functionality, and more.

Multi-tenancy problems

Applications of different customers of a public cloud share the same machine in
order to benefit the economy of scale benefits. This is a multi-tenancy solution, so
there could be problems with:

• security: one customer being able to see another’s data;

• robustness: an error in one customer’s software causing a failure in a different
customer’s software;

• performance: a high-load customer causing another to slow down;

• compliance: some companies may not be able to store data within shared
infrastructure, due to regulatory requirements

Decentralization

The distributed nature of serverless can introduce its own challenges because of
the need to make remote - rather than in-process - calls and the need to handle
failures and latency across a network.

9

State of the art

Cold starts

When a function is invoked, a container must be allocated, in order to run the
function code. This bootstrap involves a latency that can vary significantly, in a
range from a few milliseconds to several seconds. This kind of startup is called
cold start. After the execution, the container can remain active for some minute,
waiting for further function invocations, so subsequent functions can use that warm
container, where code can be executed immediately.
Cold start can be a problem or not, according to the application nature and
requirements. AWS has tried to mitigate the problem through provisioned
concurrency, described in section 2.2.1.

2.1.3 Future of serverless
Serverless is still a fairly new world. Years of study and experience are needed
before it can be consolidated in IT solutions. It is necessary to build a real culture
of serverless and this can happen thanks to the joint research of universities and
companies. Finding architectural patterns could be useful for this purpose. It is
necessary to understand best ways to organize projects, how to organize logic, how
the architecture should interact with event-thinking, and more[4].

2.2 Serverless in AWS
The AWS cloud provides many different services that can be components of a
serverless application:

• Compute: AWS Lambda;

• APIs: AWS API Gateway;

• Storage: AWS S3;

• Databases: AWS DynamoDB;

• Interprocess messaging: AWS SNS and AWS SQS;

• Orchestration: AWS Step Functions and Amazon EventBridge;

• Analytics: Amazon Kinesis;

In 2018 Amazon introduced Firecracker 10, a VMM for executing serverless
workloads, through services like AWS Lambda and AWS Fargate [8].

10https://firecracker-microvm.github.io/

10

https://firecracker-microvm.github.io/

2.2 – Serverless in AWS

Firecracker is based on KVM and aims to provision secure sandboxes with a minimal
footprint, enabling performance without sacrificing security [9].

2.2.1 AWS Lambda
AWS Lambda is the FaaS solution by Amazon introduced at AWS re:Invent in
2014 and it is available in all regions. It is event-driven, so it can run user defined
functions in response to events, such as an update to an AWS DynamoDB table or
a HTTP call to AWS API Gateway or Lambda API, or it can be invoked directly,
synchronously (and wait for the response), or asynchronously [10] from the cloud.
Each Lambda function contains the code to execute, the configuration that defines
how code is executed and, optionally, event sources that detect events and invoke
the function as they occur.
Users can choose among multiple runtimes, which support languages like Java, Go,
PowerShell, Node.js, C#, Python and Ruby [11].
The code is then packaged with all of the necessary assets, like additional files,
classes, libraries, binaries, or configuration files. The maximum size of a function
code package is 50 MB compressed and 250MB [12].

Concurrency

The key advantage of serverless is that users don’t have to handle provisioning to
meet traffic demand, but it is managed automatically by the cloud provider. To
accomplish this requirement, AWS Lambda uses a parameter called concurrency,
which refers to the number of executions of function code that are happening at
any given time. When a function is invoked, Lambda allocates an instance of it to
process the event. When the function code finishes running, it can handle another
request. If the function is invoked again while a request is still being processed,
another instance is allocated, which increases the function’s concurrency [13].

Reserved concurrency

Concurrency is deduced by a pool of concurrency units that is shared by all
functions in a Region. To ensure that a function can always reach a certain level of
concurrency, it is possible to configure a parameter called reserved concurrency
to a function. Anyway, all functions with no reserved concurrency have a shared
pool of 100 concurrency units.
Reserved concurrency also limits the maximum concurrency for the function, so if
the function’s concurrency exceeds this value, the function goes in throttling and
the request is not served. Therefore, reserved concurrency can give an fine-grained
control over concurrency. This can be helpful if the function calls an external
service which supports a limited number of concurrent requests, in order to be

11

State of the art

considered reliable.
Reserved concurrency can give guarantees, but, on the other hand, it reduces the
available concurrency capacity in the Region for the given account.

Provisioned concurrency

In some application cold start could be a problem, so AWS Lambda offers an option
called provisioned concurrency, which has been introduced at AWS re:Invent
2019 [14]. It allows developers to anticipate, in a specified period, the allocation of
a certain number of instances of a function and keep them provisioned and warm
for incoming requests. In this way performance of all requests are guaranteed to
stay below double-digit milliseconds. If this number is exceeded, the standard
behaviour is applied.
Provisioned concurrency requires to keep some resources running, even if they’re
not used, i.e., because the traffic generated by the function is low. Therefore this
functionality requires a cost which depends on the Region, size in GB of provided
instances and period of allocation in seconds.

Auto scaling

In some application it can be useful to configure auto scaling in order to manage
provisioned concurrency on a schedule or based on utilization. It is so possible
to configure alarms on CloudWatch in conjunction with the growth of traffic to
trigger provisioned concurrency, which increases the number of warmed instances.

Security

Lambda API endpoints only support secure connections, encrypted with Transport
Layer Security (TLS). Environment variables are always encrypted too, in order to
store even secrets. Files uploaded to Lambda, including deployment packages and
layer archives, are also encrypted.
Lambda integrates AWS IAM, so there is a strong layer dedicated to authentication
and authorization, for handling roles, permissions and so on.
It is possible to configure a Lambda function to connect to private subnets in a
virtual private cloud (VPC) in the AWS account [15].
As of March 2019, Lambda is compliant with SOC 1, SOC 2, SOC 3, PCI DSS,
U.S. Health Insurance Portability and Accountability Act (HIPAA), etc [16].

12

2.2 – Serverless in AWS

2.2.2 AWS DynamoDB
AWS DynamoDB 11 is a key-value and document database, that delivers single-
digit millisecond performance at any scale. It’s a fully managed, multiregion,
multimaster, durable database with built-in security, backup and restore, and
in-memory caching for internet-scale applications.

Main concepts

There are no servers to provision, patch, or manage and no software to install,
maintain, or operate and availability and fault tolerance are built in, so it is a real
serverless storage solution.
It has a key-value or wide-column data model. The first one allows to treat tables
like a hash map, in which, each element, called item, is uniquely identifiable by
a key. It is possible to get, set, update, and delete these elements by referring to
its primary key. The second model allows to access tables like if they are B-trees,
which allows to easily retrieve multiple records, scan items in a range, and more.
DynamoDB has been thought for infinite scaling with no performance degradation.
Most operations in DynamoDB have response times in single-digit milliseconds
[17]. Moreover, AWS offers DynamoDB Accelerator (DAX), which is a fully-
managed in-memory cache for DynamoDB tables.
DynamoDB is also Infrastructure as Code oriented, being possible to provision, up-
date, or remove infrastructure resources, through AWS CloudFormation, described
in section 2.5.1.
Two pricing models are available. The first one allows to separately define read
and write throughput. The second one allows to not define throughput, and pay
exclusively on-demand, in order to pay per request rather than provisioning a fixed
amount of capacity. Per-request price is higher than the provisioned mode, but it
can still save money for certain types of workload which don’t take full advantage
of provisioned capacity. Anyhow it is possible to switch between pricing models
over time.

Stream

Streams are an immutable sequence of records that can be processed by multiple,
independent consumers. The combination of immutability plus multiple consumers
has propelled the use of streams as a way to asynchronously share data across
multiple systems.
When enabled, DynamoDB Streams captures a time-ordered sequence of item-level

11https://aws.amazon.com/dynamodb/

13

https://aws.amazon.com/dynamodb/

State of the art

modifications in a DynamoDB table and durably stores the information for up to
24 hours. Applications can access a series of stream records, which contain an item
change, from a DynamoDB stream in near real time [18].
For example, it could be possible to use DynamoDB Stream to capture an update
on a table, in order to trigger a function and take some actions.
DynamoDB Streams supports the following stream record views:

• KEYS_ONLY: only the key attributes of the modified item;

• NEW_IMAGE: the entire item, as it appears after it was modified;

• OLD_IMAGE: the entire item, as it appears before it was modified;

• NEW_AND_OLD_IMAGES: both the new and the old images of the item.

2.2.3 AWS Fargate
AWS Fargate 12 is a serverless compute engine for containers that works with
both Amazon Elastic Container Service (ECS) and Amazon Elastic Kubernetes
Service (EKS).
The concept of container is extended to an isolated environment which can group
more containers and called task in ECS (equivalent to pods in Kubernetes). The
task is then launched in a cluster, which represent a Region-specific logical group
of tasks.
To launch a Fargate task in an ECS cluster, it is sufficient to set a task definition,
which is a blueprint which specifies essentially the container images, and optionally
resource allocation for each container, such as the memory and CPU values.
Prices depend on CPU and memory usage per hour 13. Furthermore, it is possible
to save up 70% costs in fault tolerant applications by using spot instances [19],
which use spare capacity of the cloud.

2.3 Security in AWS
The IT infrastructure that AWS provides to its customers is designed and managed
in alignment with security best practices and a variety of IT security standards
[20]. In addition, the flexibility and control that the AWS platform provides allows
customers to deploy solutions that meet several industry-specific standards. Each
service provides extensive security features to enable you to protect sensitive data
and applications [21].

12https://aws.amazon.com/fargate/
13https://aws.amazon.com/fargate/pricing/

14

https://aws.amazon.com/fargate/

2.3 – Security in AWS

2.3.1 Shared-responsibility model
AWS uses the shared-responsibility model [22], meaning responsibility is shared
between user and AWS. AWS is responsible for the following

• protecting the network through automated monitoring systems and robust
internet access, to prevent Distributed Denial of Service (DDoS) attacks.

• performing background checks on employees who have access to sensitive areas.

• decommissioning storage devices by physically destroying them after end of
life.

• ensuring the physical and environmental security of data centers, including
fire protection and security staff.

User is instead responsible for the following:

• implementing access management that restricts access to AWS resources to a
minimum, using AWS IAM;

• encrypting network traffic to prevent attackers from reading or manipulating
data (for example, using HTTPS).

• configuring a firewall for your virtual network that controls incoming and
outgoing traffic with security groups and ACLs.

• encrypting data at rest. For example, enable data encryption for your database
or other storage systems.

• managing patches for the OS and additional software on virtual machines.

2.3.2 SECurity as a Service
SECaaS (SECurity as a Service) is an outsourcing model for security management
and it is a segment of SaaS, so it is provided over the network and on-demand,
with a pay per use model [23]. Its main features are:

• the cost varies according to demand;

• ease of management and operations;

• maintenance responsibility of the provider;

• consumer can focus on core competencies;

• outsourcing of administrative tasks, such as log management;

15

State of the art

• eliminate or reduce Help Desk calls;

• high scalability;

• faster user provisioning;

• greater security expertise than is typically available within an organization;

• access to specialized security expertise;

• continuous updates;

SECaaS can operate in several categories: identity and access management, network
security, web security, encryption, intrusion management, disaster recovery and
other.

2.3.3 Least Privilege Principle
The Least Privilege Principle states that only the minimum necessary permis-
sions should be assigned to a subject that requests access to a resource and should
be in effect for the shortest duration necessary (remember to relinquish privileges).
Granting permissions to a user beyond the scope of the necessary rights of an action
can allow that user to obtain or change information in unwanted ways. Therefore,
careful delegation of access rights can limit attackers from damaging a system [24].
This is recommended by AWS, but it is the user who must respect it. It is not a
provider responsibility.

2.3.4 AWS IAM
AWS IAM 14 (Identity and Access Management) is the Amazon SECaaS solution
for securely control access to AWS resources. It has no additional price, so it is
typically widely used in the infrastructure.
Its main features are [25]:

• shared access to an AWS account, with granular permissions, to grant different
permissions to different people for different resources;

• secure access to AWS resources for applications that run on Amazon EC2, to
allow them to access other AWS resources;

• Multi-Factor Authentication (MFA), for extra security;

14https://aws.amazon.com/iam/

16

https://aws.amazon.com/iam/

2.3 – Security in AWS

• identity federation, in order to allow users who already have passwords else-
where to get temporary access to your AWS account (e.g., Single Sign On);

• identity information for assurance: If you use AWS CloudTrail, you receive log
records that include information about those who made requests for resources
in your account. That information is based on IAM identities;

• PCI DSS Compliance, useful especially for companies that directly handle
credit cards and online transactions;

• eventually consistent, due to the fact that AWS maintains data in multiple
locations, and they can be updated via asynchronous events, which could be
delayed, or fail, or be delivered multiple times, so it is necessary to cope with
the chance that the copies of retrieved data have become stale [26];

• no additional charge. You are charged only when you access other AWS
services using your IAM users or AWS STS temporary security credentials.
For information about the pricing of other AWS products, see the Amazon
Web Services pricing page.

IAM Identities

Authentication and authorization policies are applied to IAM Identities, which
can represent people or services; there are several types of Identites:

• IAM User: people or application that can access to AWS. It consists of a
name and credentials. Credentials can be [27]:

– a password that the user can type to sign in to interactive sessions such
as the AWS Management Console

– a combination of an access key ID and a secret access key, for API or CLI;
– SSH Keys that can be used to authenticate with CodeCommit;
– SSL/TLS certificates that you can use to authenticate with some AWS
services;

In order to easier give same permissions to a set of users, it is possible to
create an IAM Group;

• IAM Role: it is similar to IAM User, but instead of being uniquely associated
with one person, it is intended to be assumable by anyone who needs it to
assign certain permissions. For example it is possible to assign a role to an
AWS Lambda function in order to give it permission to read from an AWS
Dynamo table;

17

State of the art

2.3.5 AWS VPC
AWS VPC 15 (Virtual Private Cloud) allows to provision a logically isolated
section of the AWS Cloud where you can launch AWS resources in a virtual
network defined by the user.
It allows to create subnets and define security features, such as Security Groups
and network Access Control Lists, to enable inbound and outbound filtering
at the resources. AWS VPC is conform to the AWS shared responsibility model.
AWS is responsible for protecting the global infrastructure that runs all the AWS
services.

Networking

There are different types of networks:

• public subnet: resources inside it are accessible from the Internet. In this
case the subnet’s traffic is routed to an internet gateway and public resources
must have a public IPv4 address or an Elastic IPv4 address;

• private subnet: resources cannot be reached directly from the Internet, since
the traffic is routed through a NAT gateway, so that only outbound traffic is
allowed;

• isolated subnet: traffic is not routed to the Internet (in this VPC). This can
be useful, for example, if RDS or Elasticache instances have to be reachable
in an exclusive space;

Not all the AWS resources must to be inserted in a VPC. For example, DynamoDB
can be used with a serverless approach. It already runs in an isolated space of the
AWS public cloud, so it is not necessary to add it to a VPC. The same is for AWS
Lambda, even if it can be configured by specifying a reference VPC. The Lambda
still runs in the AWS public cloud, but this configuration allows the Lambda to
easily connect to subnet of the VPC, in order to use private resources inside it.

Security Group

A security group acts as a virtual firewall, by setting rules of inbound and outbound
traffic at instance level (not subnet level). It is possible to assign up to five security
groups for each instance, each one containing up 60 inbound rules and 60 outbound
rules. A rule is an "allow" sentence, composed of several fields:

15https://aws.amazon.com/vpc/

18

https://aws.amazon.com/vpc/

2.3 – Security in AWS

• the source (for Inbound rules only) of the traffic, which can be another
security group, an IPv4 or IPv6 CIDR block, a single IPv4 or IPv6 address,
or a prefix list ID;

• the destination (for Outbound rules only) for the traffic, which can be can
be another security group, an IPv4 or IPv6 CIDR block, a single IPv4 or IPv6
address, or a prefix list ID;

• any protocol that has a standard protocol number 16;

• port range through which traffic must be received (for Inbound rules) or sent
(for Outbound rules);

Security Group are stateful: this means that responses to allowed inbound traffic
are allowed to flow outbound regardless of outbound rules, and vice versa. Hence
an Outbound rule for the response is not needed.

2.3.6 AWS Secrets Manager
AWS Secrets Manager 17 aims to securely encrypt, store, and retrieve credentials
for any service. Hardcoding credentials in apps is never a good idea, and it is
absolutely nefarious if the source code is maintained in a public repository, as it
would expose sensitive values to the world. This solution allows to make calls to
Secrets Manager to retrieve credentials whenever needed.
Each secret has a name and can be composed of multiple key-value pairs. Then is
possible to configure secret rotation and attach security policies.

2.3.7 Microservices and serverless
Microservices refer to an architectural style in which the application is made of
independent components characterized by certain key principles [26]:

• Autonomy: services are loosely coupled, so operate independently and in-
teracts through clearly defined interfaces, or through published events. Then
they are independently deployable, so that they can be developed in parallel,
often by multiple team, which can ideally enable rapid, frequent, and small
releases;

• Resilience: as the services are independent of each other, it is possible to
isolate failures and to introduce changes gradually. This favours asynchronous

16http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
17https://aws.amazon.com/secrets-manager/

19

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://aws.amazon.com/secrets-manager/

State of the art

interactions and using provable continuous delivery techniques and robustly
monitoring system activity;

• Transparency: it is important to be able to detect failure, so the system
should be observable. Every service in the application will produce business,
operational, and infrastructure metrics, logs, and request traces;

• Automation: microservices have introduced an additional complexity which
can be reduced, by mean of automation techniques which ensure correctness of
deployments and system operation. This necessity led to the spread of Devops
techniques, especially IaC, and the rise of infrastructure environments that
are fully programmable through APIs, such as AWS or Azure;

• Alignment: many traditional SOAs used to practice horizontal decompo-
sition, which is problematic, because new features may require coordinated
releases to multiple services and may become unacceptably coupled to others
at the same level of technical abstraction. At the opposite, microservices
promotes structuring services, and therefore teams, around business concepts,
encapsulating all relevant technical layers. This leads to higher cohesion and
vertical decomposition.

Today it is not clear how serverless and microservices are really related. They
could share a lot or very little. This thesis will go more in deep in the evaluation
chapter, section 5.1.

2.4 Serverless in DevOps
DevOps is the process of continuously improving software products through rapid
release cycles, global automation of integration and delivery pipelines, and close
collaboration between teams [28].

2.4.1 Moving to a new culture
Before DevOps, there was a "silos" approach, in which development and operations
teams were clearly separated and their workloads barely grazed each other [29].
With "silos", each team has a precise responsibility: the development team imple-
ments new features for the product, QA team checks that requirements and goals
have been fulfilled and the operations team ensure that the features are correctly
deployed. In this way, each team focuses solely on its tasks, communication is weak
and the success of the product becomes out of focus.
Conceptually a project is something that is designed, implemented and completed,
but businesses are typically long-lived and continuously and rapidly change over

20

2.4 – Serverless in DevOps

time. Business problems are long-lived too, so it is necessary to find a mindset which
aims to support the business over the entire life-cycle: products, not projects
[30].
DevOps is not just a set of technical approaches, but it is a new culture which
organizations must embrace. Both developers and operations remained separate
teams but with some operations responsibility crossing over onto development
teams while both operations and development experienced higher than previous
levels of communication between each other [31].
In DevOps, everyone in the product pipeline is focused on the customer:

• Product managers measure engagement and retention ratios.

• Developers measure ergonomics and usability.

• Operators measure uptime and response times.
The customer is where the company’s attention is. The satisfaction of the customer
is the metric everyone aligns their goals against [28].

2.4.2 Serverless breaking changes
With serverless there is no provision and no server management, and this leads to
theorize NoOps (no operations), which is the concept that an IT environment can
become so automated and abstracted from the underlying infrastructure that there
is no need for a dedicated team to manage software in-house [32].
Despite there is no server to manage, some responsibilities still exist. "Ops"
doesn’t mean just server administration, but also monitoring, deployment, security,
networking, support, and often some amount of production debugging and system
scaling [4]. In practice, serverless is not putting an end to DevOps, but it is
redefining it.
The technological stack is moved up. Before serverless, work of operations engineers
was done at host level, while it is now done at application level and tools currently
involve mostly software for monitoring, troubleshooting, tracing vulnerabilities,
patching, etc.
Monitoring in cloud is a complex task, and it is even more so with FaaS because of
the ephemeral nature of containers. Generally, cloud vendors give some monitoring
support, but it is not taken for granted that these are sufficient.
The fact that there are no servers and operating systems to manage can lead to
a false sense of security. Therefore adopting serverless requires awareness and
education. Since IT today is called to solve new problems, new disciplines are
emerging, like Chaos Engineering 18, which consists of experimenting on systems

18https://principlesofchaos.org/

21

https://principlesofchaos.org/

State of the art

to understand weaknesses, and build confidence that a system can withstand the
variety of conditions it will experience.
With serverless, system changes are tightly coupled with cost. A function which
run slightly slower could mean a reasonable jump in cost. This kind of scenarios
require much more accurate analysis, that involve finance, product and project
management, and engineering. Today this multidisciplinary process is still not very
mature, but it is leading to the birth of the figure of FinDev 19.

2.5 Infrastructure as Code
Infrastructure as Code (IaC) is the process of managing and provisioning com-
puter data centers through machine-readable definition files, rather than physical
hardware configuration or interactive configuration tools. It allows the automation
of handling IT infrastructures, enabling organizations to develop, deploy, and scale
cloud applications with greater speed, less risk, and reduced cost [33].

2.5.1 AWS CloudFormation
This service 20 is the IaC solution in AWS. It takes a template file (also called
blueprint) as input and on the basis of this, it build the stack into the AWS cloud.
A stack is a group of resources which is treated as a single unit. It is possible
to create, update, and delete a collection of resources by creating, updating, and
deleting stacks. All the resources in a stack must be defined by a template.
A CloudFormation template is a JSON or YAML formatted text file and it has
full coverage over the capabilities of the AWS cloud. It is possible to specify
some conditions, that control whether certain resources are created or whether
certain resource properties are assigned a value during stack creation or update.
For example, it is possible to take some actions depending on environment (e.g.,
development, testing, production) [34].
It is also possible to add input parameters to pass to the stack, making the template
easier to reuse in different situations [35].
If a running resources needs in a stack need to be modified, it is necessary to
update the stack. Then, on the basis of the oldest template and the modified one,
it is generated a change set, which is a summary of proposed changes. Change
sets allow to see how changes might impact on running resources, especially for
critical resources, before implementing them, in order to avoid unwanted issues.
For example, it the name of an Amazon RDS database instance has to be modified,

19https://blog.gardeviance.org/2016/11/why-fuss-about-serverless.html
20https://aws.amazon.com/cloudformation

22

https://blog.gardeviance.org/2016/11/why-fuss-about-serverless.html
https://aws.amazon.com/cloudformation

2.5 – Infrastructure as Code

AWS CloudFormation will create a new database and delete the old one, so data
in the old database will be lost, unless a backup is prepared.

2.5.2 AWS CDK
AWS Cloud Development Kit 21 is an abstraction of CloudFormation, whose
output is a CloudFormation template. The difference is that CDK gives the
possibility to describe the infrastructure by mean most common programming
languages, rather than text files. Currently supported languages are TypeScript,
JavaScript, Python, Java and C#. This can be an advantage because:

• a language allows to use cycles and conditions, which helps in more intricate
use cases. It could be less prone to errors, because of language features like
type-safety, code completion, etc;

• IDEs and editors benefit from modern features like auto-complete, highlighting,
built-in syntax checking;

• it is possible to organize code according the application needs. Language
constructs and organization allow to favor code reuse;

CDK can potentially be helpful to build a framework with which describing the
infrastructure becomes faster and easier.
CDK inherits some concepts from CloudFormation, like stack. More, it introduces
the concept of app, which is a group of one or more stacks, in order to describe
whole complex applications, not just stacks, but allows a centralized management
of them.
A construct is the basic building blocks of AWS CDK apps. It represents a "cloud
component" and encapsulates everything AWS CloudFormation needs to create
a component [36]. A construct may require some mandatory parameters for a
minimal configuration and set others by default, but it can also be very verbose,
giving the possibility to make explicit details.

2.5.3 Serverless Framework
Serverless Framework 22 is a project which aims to offer tool from easily building
serverless applications. It is able to work with the most spread cloud providers, like
AWS, Microsoft Azure, Google Cloud Platform, Apache OpenWhisk, Cloudflare
Workers, or a Kubernetes-based solution. It is written in JavaScript, but supports

21https://aws.amazon.com/cdk/
22https://www.serverless.com/

23

https://aws.amazon.com/cdk/
https://www.serverless.com/

State of the art

several languages, like NodeJS, Go, Python, Swift, Java, PHP, Ruby.
The template file for IaC is named serverless.yml, by default. It is then processed
by the framework. When working with AWS, the output is a CloudFormation
template. Serverless Framework offers some advantages [37]:

• it provides a configuration DSL which is designed expressly for serverless
applications and assists with additional aspects of the serverless application
lifecycle;

• it enables IaC while removing a lot of the boilerplate required for deploying
serverless applications, including permissions, event subscriptions, logging,
etc.;

• its syntax is provider-agnostic, so it reduces vendor lock-in and enables a
multi-cloud strategy;

2.6 Monitoring
In a traditional web application, monitoring is a relatively simple task. The backend
server will always have roughly the same overhead, synchronous calls will always
execute in the same general sequence, etc. It is possible to have a holistic overview
and so it is possible to quickly identify bottlenecks.
In serverless, monitoring is much more complex, because of its nature. Being
stateless, the application cannot be maintained in terms of discrete multi-event
transactions. Furthermore, serverless applications are distributed, so their func-
tionalities are split across multiple disparate machines, and run on almost entirely
ephemeral machines. This complicates the logging activity, because it could not be
easy to have a ready snapshot of the recent activities, with which investigate when
an issue occurs. A distributed tracing system for an application can be as simple as
adding a transaction wrapper that ensures every request shares a traceable ID, or
implementing a means of aggregating logs from the different resources that govern
the application’s serverless behavior, or even making use of third-party tools to
provide a more coherent view of the application’s execution flow. Then resource
usage is not predictable. Each function call introduces an additional overhead, so
that timing becomes unpredictable, as well costs. Monitoring itself can represent
an higher cost with respect to traditional systems, due to the distributed nature of
the architecture;

2.6.1 Possible issues in serverless
A lot of things can go wrong in a serverless application:

24

2.6 – Monitoring

• the overhead associated to a cold start is generally not a problem, but a high
number of cold starts at the same time can result in a significant impact to
user experience;

• resource usage is not always clear. In AWS Lambda functions, it is possible to
configure amount of memory that should be allocated for running a function.
However, depending on the size of the memory, the computational capacity
also changes, which may result in higher usage and so in higher bills;

• serverless put at its basis the promise of infinite scaling, but many providers,
like AWS, include a concurrency limit in execution. If this limit is exceeded,
then unpredictable behavior may occur;

• in on-demand architecture it may happen that a function simply fails to
respond, due to network errors, temporary issue on the provider, a bug in the
code, and so on;

• costs are very unpredictable, since there could be no linearity with respect
so some parameters, like the size of the user base. A misconfigured Lambda
function can end up using a processor that is much more powerful than your
function actually needs and represent a higher cost than necessary. A pick of
traffic, which can be also be of malicious origin, like a DoS attack, can drive
costs up exponentially;

All these scenarios need to be handled by monitoring activities, in order to trigger
alarms or take countermeasures promptly.

2.6.2 Observability
Observability is a further evolution of monitoring concept. A cloud native applica-
tion should be constructed as an observable system. In particular, it’s normally
not possible to know in advance what is causing the problem and should be able to
investigate the events occurred to understand it. Events occurring to an application
at runtime can be completely described by analyzing three major pillars:

• Metrics Records of execution properties of a single service at a certain time;

• Logs Records of what is happened to the application, using the "words" of
developers;

• Traces Records of requests as they traverses through the many services in your
micro-service application.

25

State of the art

2.6.3 AWS CloudWatch
AWS CloudWatch 23 is a dedicated tool for monitoring AWS resources. Cloud-
Watch is used for logging, aggregating statistics, building metrics, setting alerts,
and more. CloudWatch allows to track serverless functions activities, monitor
resource usage to identify bottlenecks in the application architecture, and trigger
some actions on the basis of what happens: it is used by AWS EventBridge to
build application architectures that react in real time to certain data sources, or
it is used to launching a stage of a pipeline when there is a commit in a certain
repository, and more.

2.6.4 AWS X-Ray
AWS X-Ray 24 helps developers analyze and debug production, distributed
applications, such as those built using a microservices architecture. X-Ray allows
to understand how an application and its underlying services are performing to
identify and troubleshoot the root cause of performance issues and errors. X-Ray
provides an end-to-end view of requests as they travel through the application,
and shows a map of the application’s underlying components. With X-Ray it
is possible to analyze both applications in development and in production, from
simple three-tier applications to complex microservices applications consisting of
thousands of services.

2.7 CI/CD pipeline
Organizations continuously needs to develop and deploy software releases. Teams
can have tens — if not hundreds — of independent services on their own schedule,
without explicit coordination or collaboration between teams. Any bad change to a
service might have a wide-ranging impact on the performance of other services and
the wider application. Deployment should be fast, safe and consistent and these
requirement can be achieved by mean a CI/CD pipeline, where:

• Continuous Integration (CI) means which merge their changes back to
the main branch as often as possible. These changes are validated by creating
a build and running automated tests against it. This technique is meant to
simplify integration among releases;

23https://aws.amazon.com/it/cloudwatch/
24https://aws.amazon.com/xray/

26

https://aws.amazon.com/it/cloudwatch/
https://aws.amazon.com/xray/

2.7 – CI/CD pipeline

• Continuous Development (CD) means which every change that passes
all stages of production pipeline is released to customers. There’s no human
intervention, and only a failed test will prevent a new change to be deployed to
production. This technique is meant to speed up release times and accelerate
the feedback loop with customers.

2.7.1 AWS CodePipeline
AWS CodePipeline 25 is a fully managed continuous delivery which allows to
model, visualize and automate the steps required to release a software.
A pipeline is a workflow construct that describes how software changes go through
a release process and consists of a sequence of at least twostages. A stage is a
group of actions and an action is a group of tasks performed on a revision, that
is a change made to the source location defined for the pipeline. It can include
source code, build output, configuration, or data. A pipeline can have multiple
revisions flowing through it at the same time.
When an action runs, it acts upon a file or set of files. These files are called
artifacts. These artifacts can be worked upon by later actions in the pipeline.
Passing from a stage to another is called transition.
CodePipeline integrates with AWS services such as CodeCommit, S3, CodeBuild,
CodeDeploy, Elastic Beanstalk, CloudFormation, OpsWorks, ECS, and Lambda,
external services, like GitHub, Jenkins, BlazeMeter, XebiaLabs and others 26 or
custom actions defined by the user 27.
It is possible to create notifications for events impacting the pipelines. Each
notification uses AWS SNS and includes a status message and a link to the
resources whose event generated that notification. This is important for monitoring
purpose.

2.7.2 AWS CodeBuild
AWS CodeBuild 28 is a fully managed continuous integration service that compiles
source code, runs tests, and produces software packages that are ready to deploy.
There is no need to provision, manage, and scale build servers and there is a pay
per use model.

25https://aws.amazon.com/codepipeline/
26https://aws.amazon.com/codepipeline/product-integrations/
27https://docs.aws.amazon.com/codepipeline/latest/userguide/

actions-create-custom-action.html
28https://aws.amazon.com/codebuild/

27

https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/product-integrations/
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-create-custom-action.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-create-custom-action.html
https://aws.amazon.com/codebuild/

State of the art

CodeBuild is integrated with AWS CodePipeline and, when combined, a CI/CD
pipeline can be built.
A build project can be configured through the console or the AWS CLI. It is
necessary to specify the source repository location, the runtime environment, the
build commands, the IAM role assumed by the container, and the compute class
required to run the build. Optionally, build commands can be specified in a
buildspec.yml file.

2.8 Service virtualization
It is a method used in software engineering to emulate the behavior of specific
components in heterogeneous component-based applications such as API-driven
applications, cloud-based applications and service-oriented architectures.
It addresses what could be a bottleneck for Agile development, that requires rapid
capabilities for change, along with modern high-quality composite applications.
The software development, testing, and operations teams could not work in synch
and this causes delays in workflows, because each team should wait for others to
have components ready.
Service virtualization allows to create an isolated environment and simulate APIs
or use virtual services instead of production services, so that DevOps teams can
test system components and their integration, even when key components are not
ready.

Advantages

Service virtualization allows to increase productivity, since it can be integrated
easily into the test infrastructure and offers more possibilities to automate tests.
Therefore the delivery cycle and end-to-end testing become more efficient and, as
a consequence, also time to market could accelerate. This method is expected to
improve the testing and product quality, by running realistic, scalable, and secure
tests by driving fewer defects into production. The overall expense could decrease,
since the test infrastructure is simplified and third-party costs are eliminated.

2.9 Hoverfly
Hoverfly 29 is an open source product developed by SpectoLabs and written in
Go. An Hoverfly instance can work according to two schemes:

29https://hoverfly.io/

28

https://hoverfly.io/

2.9 – Hoverfly

1. as proxy server: it receives an incoming request, and forwards it to the
destination service. In the meantime it waits for the response from the
destination. When it arrives, the instance stores the array of request-response
pairs in a JSON objects, called simulations, and forward the response to the
source that made the original request;

2. as webserver: it receives an incoming request, and looks among previously
captured simulations for a pair having an analogous request. If the pair is
found, the instance forwards it to the original source, otherwise it can behave
differently according the working mode of Hoverfly that has been set;

These schemes form the basis for service virtualization. Each time Hoverfly receives
a request, rather than forwarding it on to the real API, it will respond instead.
To make the service virtualization more realistic, it is also possible to simulate
network latency, by applying delays to responses based on URL pattern matching
or HTTP method.

2.9.1 Simulations
The core functionality of Hoverfly is to capture HTTP(S) traffic to create API
simulations which can be used in testing. Hoverfly stores in-memory captured traffic
as a JSON object, called simulations, that follows the Hoverfly Simulation
schema 30. Simulations consists essentially of request-response pairs.

2.9.2 Working modes
Hoverfly can work in different way, accordingly its mode. Modes

• Capture mode;

• Simulate mode;

• Spy mode;

• Synthesize mode;

• Modify mode;

• Diff mode;

Latest three modes are not used for this thesis, so they will not be described.

30https://docs.hoverfly.io/en/latest/pages/reference/simulationschema.html

29

https://docs.hoverfly.io/en/latest/pages/reference/simulationschema.html

State of the art

Capture mode

It is an "as a proxy" mode and the Hoverfly instance is placed in the middle of
a client-server application, saving simulations. When in this mode, it is checked
the binary flag stateful, which determines the instance behaviour when there is an
incoming request-response pair:

• if stateful is true, all pairs are saved, without further checks;

• if stateful is false, for each pair it is checked whether the request is not already
present. It it is not, the pair is saved, otherwise is is checked a further binary
flag, called overwriteDuplicate. If it is true, the existing pair is replaced by
the new one, otherwise nothing happen;

Simulate mode

It is an "as a webserver" mode and the Hoverfly instance represent the destination
server. When a new request arrives, the instance searches for a simulation matching
the request. If it is not found, an error is returned with status code 502.
For choosing the simulations to return, Hoverfly has to use a matching strategy.
Actually there is only one valid matching strategy, called strongest match, which
consists of calculating and assigning a matching score to each simulation, and
then the one with the highest score is selected.

Spy mode

It extends the behaviour of the simulate mode, with the difference that, if a matching
is not found, a request to the real service is made and its response is returned to
the client. When it happens, the simulation is not persisted.

2.10 Conclusions
This chapter has analyzed the current state of the art of serverless to establish the
theoretical basis on which this thesis is founded. The chapter 3 will introduce the
case under examination of this thesis, and will detect main components of a draft
solution.

30

Chapter 3

Case study

The case under consideration is an B2B project, currently at a very early stage, on
behalf of Consoft Sistemi S.p.A.. Further analysis and validations will be necessary
in the future.
This chapter describes the units of the project on which this thesis focuses on.
Section 3.1 gives a general overview about the problem and the solution idea.
Section 3.2 illustrates a solution draft, and the next sections 3.3 and 3.4 describe
main components involved, at a very high level. Section 3.5 divides the projects
in two main parts and section 3.6 examines several scenarios, which could have
business and technical consequences.

3.1 The case under consideration

Almost all companies are in a continuous evolution and development must support
these changes day after day. This is especially true with companies that have
adopted an Agile approach. It is not always easy to predict the direction of the
business and the application development can face with unexpected changes, while
the software is still expected to be resilient to these changes.
To make more robust applications, testing is necessary. Anyway it represent an
unwanted and high cost, with 25% of overall project and team effort allocated to
testing in this area in the region [38]. Tests must be developed and maintained
and the requested effort can be important, because of the person-hours allocated,
missing of analytical skills, and delays due to the frequency of releases. Moreover
they’re useful only if running in an isolated environment, which must be provided.

31

Case study

3.1.1 The idea
The Umarell project aims to automatically generate test lists on the basis of the
examination of the navigation paths followed by mobile and desktop traffic. The
solution is applied to B2B market, so the Umarell customers are companies that
want to adopt this system in their services.
It is based on a waterfall workflow made of four steps:

1. the customer client application sends the HTTP requests toward the customer
backend through a proxy;

2. the proxy parses and saves the request-response pairs;

3. the collected data are used for a big data analysis to detect common funnels;

4. funnels are given in input to an AI algorithm to generate the test lists;

Figure 3.1: Four steps workflow

3.1.2 The focus of this thesis
The work of this thesis focuses on designing and implementing a fully serverless
environment for managing proxies, which corresponds to the step number 2 of the
workflow.
It is necessary to determine how customers can handle their proxies, how the
platform should manage them, how data have to be collected and more.

3.2 Designing solution
Under subscription to the Umarell platform, customers can create one or more
proxies, one for each environment or behaviour they want to test. Each proxy
can be personalized and associated to a global unique domain name. Setting up a
proxy to make HTTP requests should be sufficient for integrating this part of the
Umarell system.

32

3.3 – Proxy

3.2.1 Requirements
• Testing is perceived as an unwanted cost, since it is useful just during the

testing activity itself. Therefore there is an economic driver to consider, which
should result in a pay-per-use model;

• Companies may want to integrate this system in existing projects, so the
system should be easy to adopt;

• Customers may want to group request-response pairs, so that they can study
certain situations;

• Customers may want to test different environments and behaviours, so they
should be able to create different proxies;

• A proxy should be easy to activate or terminate and it should be easy to
consult or manipulate its collected data;

• Scalable, in order to create as many proxies as needed;

3.3 Proxy
Each customer can own one or more proxies, in order to be able to test different
environments and services. The term "proxy" is mainly valid from the customers
point of view. Indeed, a customer has to set this entity as a proxy in the HTTP
communication between client applications and destination. Nevertheless, this
component can be used essentially with two alternative behaviours:

• it can intercept request-response pairs of the communication;

• instead of forwarding requests, it acts as a mock server (with some nuances);

Its behaviour changes according the mode it is set to.

3.3.1 Modes
From the customer point of view, the proxy is a component that work in front of
each HTTP request, but actually it works following different behaviours, depending
on its working mode:

• capture-stateful

• capture-stateless

• simulate

33

Case study

• spy

When in capture-stateful or capture-stateless mode, the proxy parses and save
request-response pair. The difference between these two modes is that, when in
capture-stateful mode, the proxy distinguishes each request-response pair made
over time. Differently, when in capture-stateless mode, the proxy uses the request
as a key in order to check if it is already present among the previous collected
pairs. This means that, even if the monitored service responds in different ways
(e.g.: different HTTP status codes or a different body) to the same request, only
one pair will be kept.
When in simulate mode, instead of forwarding the requests to the real destination,
the proxy uses already stored simulations to act as if it is the real application. In
practice, with this mode, the customer can test a virtualized service and simulate
a certain behaviour. When a new request arrives, the proxy looks for a pair having
the same request. If a match is found, then the pair is returned, otherwise an error
occurs.
Finally, when in spy mode, the proxy behaves similar to simulation mode. The
difference is that, if a match for a simulation having the same request is not found,
then the real backend service is used as destination of a real request.

3.3.2 Key features
As it will be explained later, in the future some companies could want to host
their proxies in an external location, outside the Umarell borders. Alternatively, in
the future Umarell may decide to provide different types of proxies, with certain
characteristics and strengths. These are possibilities that may never be realized, but
taking them into account would allow to not compromise their feasibility. Therefore
it is important to define some key features that a proxy should always respect:

• it should be plug and play;

• it should have minimal responsibilities;

• it should be independent and isolated;

Plug and play

In order to be set in HTTP calls, a proxy has to be a network resource, with a
public IPv4 address and a port. As one of the requirements is the pay-per-use
model, this resource has to be allocated and destroyed as needed, so a proxy must
be plug and play self-contained.

34

3.4 – Simulation

Minimal responsibilities

As in the future it may be possible that a proxy is outside of the Umarell control, a
proxy should have minimal responsibilities, in order to prevent abuses over the
application logic. In that situation, a proxy could be implemented in a different
way, rely on a customized environment and even behave differently, but everything
it could affect would be the data collected, which have to be realistic in the interest
of the customer.

Independent and isolated

Each proxy should be independent and isolated from the others, even if be-
longing to the same customer. Each one is thought for testing a specific scenario,
so the results must be clear and indisputable. Nevertheless, data collected by a
proxy may be transferred outside it, in permanent storage. So the isolation has
not to be intended as if nothing can enter or exit, but only as a characteristic of
non-conditioning from other components. From a more technical point of view this
means also that a proxy should be able to accept certain type of requests only by
allowed sources.

3.4 Simulation
A request-response pair collected by a proxy is called simulation. The behaviour
that allows customers to capture simulations and then use collected data for
simulating the service is called service virtualization, which has been detailed in
section 2.8. Simulations are important because they represent the essential unit of
this methodology.
When the proxy is in simulation mode and a request arrives, it have to look for a
simulation having the same request. Evaluated fields are:

• scheme, i.e. HTTP or HTTPS protocol;

• HTTP method;

• destination;

• path;

• query parameters;

A response is described essentially by two fields:

• HTTP status code response;

35

Case study

• body, which can be in various formats, i.e. text, HTML, XML, JSON;

Then, as the customer must be able to have a fine-grained control over simulations,
a global unique identifier is used for describing a simulation.

3.4.1 Scenarios
The period in which a proxy is running, which means that there is a network
resource allocated, is called testing session. The simulations collected during
this period, ordered as they arrived, form a scenario. This concept is important
because it allows the customer to test certain situations. For example, a customer
may want to reproduce a sequence of requests that has led to certain erroneous
situations.
While a proxy is used for testing specific environments, tenants or services of an
application, a scenario is used for studying data in the given context.
A scenario can be saved automatically at the end of the current testing session,
when the proxy is turned off. Then it can be associated to a name and have a
global unique identifier.

3.5 Two units
The Umarell project can be divided in two distinct units, which are the Umarell
Backend and the proxy farm.

3.5.1 Umarell Backend
It is the core of the Umarell application, because it contains:

• an API from which customers can perform CRUD operations on their proxies,
simulations, and scenarios;

• a storage in which information are persisted permanently, including data about
customers;

• a logic which orchestrates all the involved actors;

In practice, this is the component which customers use for interfacing with the
system, therefore any administrative task must be launched through the API.

36

3.6 – Placement of the proxy farm

3.5.2 Proxy farm
It is called proxy farm an environment in which proxies live, providing them
network connectivity and security.
When a customer uses the API provided by the Umarell Backend to perform an
action which affects proxies, the proxy farm is involved. It provides some endpoints
which the Umarell Backend can use in order to apply changes on proxies.

3.6 Placement of the proxy farm
Customers have several possibilities for placing their proxies. For each one will be
examined pros and cons. Further details, which involve implementation aspects,
can be found in sections 4.4.5 and 4.7.

Configuration with the Umarell Proxy Farm

Customers can use a unique shared proxy farm, provided by Umarell, and called
Umarell Proxy Farm. This solution is currently implemented, as the project is
in a early stage, but it could be discarded when Umarell will be launched to the
market.
Pros:

Figure 3.2: Configuration with Umarell Proxy Farm

• Umarell is a SaaS fully-managed platform. Customers only have to create and
use their proxies. No extra effort is required, neither monitoring;

• everything is controlled by Umarell, so the communication layer between the
Umarell Backend and the proxy farm can be kept simple;

• depending on the implementation and commercial evaluations, launching a
proxy could be faster, as this proxy farm could be active for a longer time;

Cons:

37

Case study

• if the client has special needs, it could be a solution with limitations;

• this solution could require some fixed costs, and this doesn’t fit with a pay-
per-use model;

Configuration with multi-account proxy farms

Each customer have an intermediate isolated space for running proxies. This
solution is the one that will be used for the market launch, even if it needs to be
analysed in major detail. For example, it is not yet clear how many proxy farms a
single customer can own and this depends on commercial evaluations.
Pros:

Figure 3.3: Configuration with multi-account proxy farms

• customers have additional flexibility in customizing their environment. Limi-
tations are not yet clear;

• the solutions completely fits with a pay-per-use model;

• Umarell can provide some templates acting like blueprints of the infrastructure
(Infrastructure as Code);

Cons:

• handling a subscription requires an addition effort, which should be minimal,
although it is not yet well defined;

• customers are required to monitor, even if Umarell may preset monitoring
tools;

38

3.6 – Placement of the proxy farm

Configuration with external proxy farms

Further insights and market researches in the future could reveal the desire of
customers of managing proxies on their own, keeping them outside the Umarell
boundaries, in an external proxy farm, which could be on-premise or a cloud
provider. This solution is not and may never be implemented. Nevertheless, during
the implementation phase, the possibility described above will be taken into account,
in order to take decisions which would not compromise its feasibility.
Pros:

Figure 3.4: Configuration with external proxy farms

• a proxy can be built using any technology, that can behave differently, even
better, than ones provided by Umarell;

• the general behaviour could change; e.g., the proxy could perform some extra
operations when it captures a new request-response pair;

Cons:

• Umarell could have to provide multiple IaC templates for building a proxy
farm in different environments, depending on business requirements. In that
case more varied skills would be required;

• no benefit from outsourcing, because the customer must take responsibilities
at different levels: from application level - including storage of data, users
access, etc. - down to the physical level;

• if something changes in the communication layer between the Umarell Backend
and proxy farm, the customer may have to adapt to these changes, which
requires an effort. The problem could also exist for Umarell, because it may

39

Case study

be necessary to version the APIs to lighten the customer workload and avoid
error scenarios for customers. In any case, customers must be careful to always
use stable and not deprecated versions;

• Umarell should pay more attention to integration tests, since the communica-
tion layer becomes more complex and shared among different parties;

• monitoring is entirely up to customers;

Note that no consideration about costs has been made. This is a very preliminary
study phase, so it is not possible to say if and where costs could be saved, neither
for Umarell, nor for the customers. For example, with a customer’s proxy farm,
Umarell does not have to pay for resources allocated for proxies, but it could result
into a different pricing or commercial proposal. Moreover the effort requested to
development and DevOps teams could be very different and unpredictable. It is
not possible to say anything even about the costs for customers. In their proxy
farms, they have to pay for resources they consume, even if idle. But it could be
convenient if they exploit their idle servers, or a cheaper space to host their proxies.

3.6.1 Flexibility
Proxy farms in multi-account configuration are designed to be created and destroyed
with agility, in order to not consume resources. When a customer wants to use
the Umarell platform, first of all the proxy farm is created. When it is up, then
proxies are launched. Figure 3.5 shows an example in which all the customers have
their account, which is a private space they can manage. In this case customer 1
and customer 2 have their proxy farms active, with some proxy inside. They will
be charged for resources they’re consuming. It can be supposed which customer 1
will pay more, due to the higher number of proxies used. Instead, customer 3 has
not a proxy farm active, so there is no cost.

3.7 Conclusions
This chapter has illustrated the case study and the key component and concepts
of a draft solution. The chapter 4 focuses on the production of the artifact which
implement the described case study. The application will be designed, the technical
stack and some implementation aspects will be analyzed.

40

3.7 – Conclusions

Figure 3.5: Proxy farms flexibility

41

42

Chapter 4

Implementation

This chapter describes the key point of the implemented solution, starting from
minimal technical requirements, in section 4.1. Section 4.2 illustrates the archi-
tecture principles and the main components which participate. Then the REST
API for customer will be exposed in section 4.3. Section 4.4 goes down to a
lower level, examining the technical stack. Section 4.5 shows how the project has
been organized. Sections 4.6 and 4.7 and 4.8 illustrate some application processes.
Section 4.9 explains some detail for security and networking. Sections 4.10 and
4.11 deepen aspects concerning Infrastructure as Code and the construction of a
DevOps pipeline.

4.1 Requirements
• Easy to manage: customers should be able to create, launch and stop proxies

with minimal effort;

• Easy to maintain, with minimal operation tasks;

• Payment per usage model: customers are not charged for resources they don’t
use;

• Proxy farms can be created and destroyed flexibly;

• Security by design and by default;

4.2 Architecture overview
According to requirements, a pay-per-use model is what customers would have.
Moreover, the solution needs to be scalable and with a low maintenance needing.

43

Implementation

A serverless architecture perfectly fits with these requirements, since it has auto-
scaling features built-in and easily adopts a pay-on-demand pricing model, so that
customers only have to face the costs related to the resources they consume. This
also means that if customers are not using their proxies, there must be no resource
allocated that requires cost, therefore some resources may need to be created and
destroyed dynamically. To take full advantage of it, it will be exploited the elasticity,
reliability, and agility of a public cloud provider.

SaaS

If the Umarell Proxy Farm is used, everything customers need is provided by
Umarell. In this case customers have only to use the Umarell platform by mean
of a graphic interface, i.e. a web app which exploits the API provided by the
Umarell Backend behind the scenes. In practice customers can enjoy the benefits
of a fully SaaS solution. Instead, if customers want to use their proxy farms, they
need to build and manage a custom solution which is compliant to a possible
standard defined by Umarell. Therefore, in that case the solution would be a
SaaS just in part. Finally, in the multi-account solution, customers may exploit a
template proposed and provided by Umarell, to use as a blueprint for building the
infrastructure. Customers have a working solution that is ready to build, but they
still have monitoring responsibilities.

Components

Main components of the implementation are:

• Proxy;

• Umarell Backend;

• Proxy farm;

• Communication layer;

• Testbox;

4.2.1 Proxy
A proxy can be intended as a virtual network device made available for a single
customer. It must be referenced in HTTP requests, so it must be reachable over
the internet through a public IPv4 address and a port. This means which a proxy
is an entity that consumes resources and this involves costs. Since customers have
to pay per usage according to requirements, a proxy must be created or destroyed
when the customer requests it.

44

4.2 – Architecture overview

A proxy is described essentially by a name and a working mode, but in the future
there may be other attributes. Furthermore, a proxy collects simulations. All these
data are interesting in the long run, because customers may want to use the same
proxy in different moments. In practice, the proxy is a stateful component, and its
state must not be deleted after use, but persisted in a permanent storage, like a
database.
For each proxy a name, a mode, and a status must be stored. The status can be
used to determine if a proxy is running or not. Also simulations and scenarios data
must be stored.

REST resource

Each proxy is described by several fields:

• name: it is the name of the proxy and it is specified during the creation of
the resource;

• id: it is an alphanumeric token which is built by appending a global unique
integer identifier to the name of proxy, in order to grant uniqueness in the
system;

• mode: it is the working mode of the proxy and can assume one value among
capture-stateful, capture-stateless, simulate and spy. Their meaning have been
described in the previous chapter and it will be described later in this chapter;

• status: it is the current status of the proxy and can assume one value among
creating, running, stopping, stopped, updating. They’re self-descriptive, but
it is interesting to note the presence of temporary statuses, such as creating,
stopping, and updating statuses, which hint that some operations are not
immediate;

4.2.2 Umarell Backend
The Umarell Backend is the core of the whole system, being responsible for
managing data about proxies, simulations, scenarios, customers, and more.

Event-driven

This part of the application is implemented on a serverless architecture which
strongly relies on FaaS paradigm, which is event-driven by definition. An event is
the representation of a situation which occurs under certain conditions and which
is monitored, in order to take some actions. When an event is intercepted, an
information representing it is pushed to a queue. Then, an event listener, which

45

Implementation

continuously looks at this queue and waits for new events, triggers a specific callback
function.
This mechanism can be summarized in three steps:

1. the customer performs an action, which is registered into a store;

2. the update of the store triggers another action, in order to react;

3. when the latter action finishes its job, it gives a feedback about the operation;

This is the behavior behind the proxy management. First, there is an API service,
which exposes the endpoints for implementing a CRUD for proxies. The arrival
of a request for the creation of a new proxy is an event, for which the specific
function for the creation of the proxy is invoked. This function stores proxy data
in a database table. The creation of a new record is itself another event, which
triggers another function that is in charge of creating - indirectly - the virtual
network resource associated with the proxy, that has to be launched in a proxy
farm.
Instead, if a proxy needs to be stopped, there will be another API endpoint which
triggers a function which change the field status for stopping, and this change
invokes another function which destroys the virtual resource in the proxy farm
where it is running.

Client application

Requests for creating or stopping proxies have to be handled by customers through
the Umarell Backend API, but, in order to provide a better user experience, a client
application will be provided in the future. It could consists of a GUI served via
web and from which it would be possible to perform any administrative task, like
creating new proxies, modifying existing ones, starting or stopping them and more.

4.2.3 Proxy farm
A proxy farm is the execution environment where one or more proxies run. It
is responsible to provide all the network facilities in which proxies can live, and
more, including all the needed security measures, like firewall rules, ACLs, and
permission policies.
Proxies must run in isolation, because they must not be able to influence each
other, even if they may run in the same virtual subnet. It is due to security and
privacy reasons, but also to not compromise the application logic.
Role of the proxy farm is creating a safe environment for proxies: it should have a
virtual private cloud with at least one public and one private subnet. In the public
one there are resources that need to be accessible through the Internet, whereas

46

4.2 – Architecture overview

in the private one there are resources that don’t need to be exposed. A proxy
must be directly accessible, because it has to be used in HTTP calls of customer’s
applications, so it is placed into the public subnet. Nevertheless, administrative
actions must be taken through the Umarell Backend, in order to have a fine-grained
control on the overall state of the system.
In conclusion a proxy farm should be able to receive commands (e.g., for starting
and stopping proxies) and react by triggering some actions (e.g., for reporting that
a proxy has been successfully started).

4.2.4 Communication layer
Any administrative action that a customer wants to make, must be taken by
interacting directly or indirectly with the API provided by the Umarell Backend.
If the action involve allocate resources which represent a proxy, it needs to interact
with the proxy farm in which the proxy is hosted.
Therefore it is essential to provide a communication layer, that should have certain
features. Being the system based on serverless, synchronous communication should
be avoided, because it is blocking and resource-consuming, therefore it is costly.
Instead, asynchronous communication should be favoured, therefore both parts
should expose an API to the other, so that each one can reach the other at any
time. Moreover, in the future, the proxy farm could be external to Umarell borders,
so the two main part of the platform should use an agnostic API to communicate.
This communication layer consists of REST APIs (over HTTP), as shown in figure
4.1. It can be seen in more detail in figures 4.3, 4.4, 4.5:

Figure 4.1: Communication layer between the Umarell Backend and a generic
proxy farm

4.2.5 Testbox
Customers don’t need to be aware about the proxy farm, or that their proxies are
running alongside those of others. They only need to know, for each proxy, where it

47

Implementation

is or has to be executed. This information is made essentially of an IP address and
a port, but it can be made of other data, as it will be mentioned in section 4.4.4.
For this reason the concept of testbox is introduced. This information is distributed
between the Umarell Backend and the Proxy Farm. The ID of the testbox must be
unique among all the testboxes, so it must be generated by the Umarell Backend,
which centralizes data. The ID will be used as query parameter in a HTTP requests
which uses the API URL, to reach a certain proxy inside the Proxy Farm. On
the other side, the Proxy Farm uses the generated ID as key in a key-value cache
to maintain data about the exact location of the proxy inside the environment,
which is transparent of the Umarell Backend. This configuration allows maximum
flexibility in implementation of proxy farms and proxies themselves.
A proxy farm is a concept which lives at a lower level. It may contain a network
with multiple running proxies which share resources, functions, and so on. A
testbox is an abstraction of it and represents a toolkit containing all the facilities
necessary to a single proxy in order to run. It gives the impression that each
testbox is an isolated environment, containing virtual replicas of those functions
contained in the proxy farm. To be clearer, the proxy farm is more significant at
the infrastructural level, whereas a testbox is closer to the domain data.

REST resource

Each testbox is described by several fields:

• id: a global unique identifier;

• ip: the public IPv4 address which identify the network resource associated
with the proxy;

• port: the port used along with the IP. Currently it is fixed (the 8500 is used);

• apiurl : isthebaseURLtouseforreachingtheproxyforadministrativepurposes.Inpracticeitisassociatedwiththeproxyfarm;

4.3 Customer REST API
Customers can hendle their proxies and data through a REST interface. This
architectural style has been chosen because it is very spread (it is easier to find
skilled people and it is encouraged by many providers), for its consolidation in web
environments, and because the organization behind Umarell is already experienced.
In the first place an API specification has been defined, in order to write APIs with
the following characteristics:

• be RESTful;

48

4.3 – Customer REST API

• use JSON in request and response body;

• favour automatic serialization and deserialization for marshalling and unmar-
shalling;

• simple, with few concepts easy to follow;

• flexible, with few limitations due to semantic constraints, in order to be able
to withstand the continuous changes of Agile methodologies;

• consistent representation of the data;

• correct use of HTTP status codes and HTTP verbs;

• error handling at application layer;

Defining a specification adds constraints which helps developers to have a reference
for an organized implementation. The following class diagrams illustrates how data
are related at an high view:

Figure 4.2: UML class diagram

49

Implementation

Method Path Body Response Status

POST /proxies object object 202, 400,
405

GET /proxies array of
objects

200, 400,
405

GET /proxies/{id} object 200, 400,
405

PATCH /proxies/{id} object object
200, 202,
400, 404,
405

DELETE /proxies/{id} 204, 400,
404, 405

GET /proxies/{pid}/testbox 200, 404,
405

GET /proxies/{pid}/scenario 200, 404,
405

PUT /proxies/{pid}/scenario object object 202, 400,
404, 405

DELETE /proxies/{pid}/scenario 204, 400,
404, 405

GET /scenarios/{id} object 200, 404,
405

DELETE /scenarios/{id} 204, 400,
404, 405

GET /scenarios/{id}/simulations array of
objects

202, 404,
405

GET /scenarios/{id}/simulations/{id} array of
objects

202, 404,
405

4.4 Technical stack
There is an economic driver among defined business requirements and it leads to
prefer a serverless architecture, as this model allows to decrease operational costs.
Reduction of costs is reflected on the pricing for customers. Moreover, if a customer
is not using a proxy, then no resource is allocated, therefore there are no costs at all.
To take full advantage of serverless cost saving, a public cloud is more convenient.
In 2019 market share was contended as follow [39]:

• AWS, 32.3%;

50

4.4 – Technical stack

• Microsoft Azure, 16.9%;

• Google Cloud, 5.8%;

• Alibaba Cloud, 4.9%;

• Others, 40.1%;

Amazon Web Services (AWS) has been chosen, being a leader in the public
cloud provider market, with annual sales close to $34.9 billion [40]. Amazon has
been the first player to offer a FaaS solution like AWS Lambda, which was used by
70% of serverless users at the end of 2017 [41]. Lambda is constantly evolving, trying
to solve any kind of problem, such as cold start (through provisioned concurrency).
Furthermore, AWS offers solutions that matches with the Umarell needs, such
as advanced serverless solutions - like containers deployment and databases -,
networking, world-wide datacenters in which deploy and run applications, for
scalability and high availability, and more.
Finally, the decision has been also driven by the organization behind Umarell,
already experienced in AWS.

4.4.1 Umarell Backend
As already said, the Umarell Backend is the core of the whole application. Indeed,
each action in the system is taken on the basis of modifications on existing tables.
First of all, the API service is provided by AWS API Gateway, which allows to
define routes, HTTP methods, parameters, and other. When a request arrives
at a certain endpoint, a specific Lambda function is invoked to respond to that
HTTP event. It’s the case of functions for creating, modifying, reading and deleting
proxies. Their implementation is pretty clean, consisting of simple modification of
a table named proxies, but complex actions are still required. For example, when a
proxy is created, a correspondent virtual resource has to be created and launched
in a proxy farm. For this reason the proxies table has DynamoDB Stream enabled,
which allows to invoke a function whenever a change in the table is detected.
Then AWS IAM is used in order to defines roles and policy, which assign specific
permissions to each Lambda function.

4.4.2 Proxy
The proxy’s implementation is based on Hoverfly, an open source product which is
able to be used in the middle of a client-server communication for capturing HTTP
request-response pairs. Each proxy corresponds to an Hoverfly instance and it is
logically located between the caller who makes HTTP requests and the destination,

51

Implementation

which is the service to test.
Hoverfly provides two ports:

• one for administration, 8888 by default;

• one for proxying, 8500 by default;

It will be examined later, in section 4.8.

4.4.3 Proxy farm
The proxy farm plays a key role, because it is responsible of networking and security
of proxies. To provide this safe environment, it uses several services.

AWS Fargate

Hoverfly is not an AWS service, so it needs some auxiliary services to run in the
AWS cloud. It is convenient to use containers, in order to benefit from an isolated
and easy to deploy environment. The more sophisticated way to do it in AWS is
to use one of the following services: Elastic Cloud Service (ECS) or Elastic
Kubernetes Service (EKS). They’re very similar solutions for orchestrating
Docker containers, but the first one is a native Amazon solution, while the second
one is a managed service to run Kubernetes clusters. The choice fell on ECS, since
it is better integrated with other Amazon services and it is a little bit cheaper than
EKS, since the latter has some extra costs.
ECS, as well as it would have been with EKS, it is possible to run containers using
two different approaches. The first one is EC2, that is a virtual machine which
needs to be provisioned and managed. The second one is Fargate, which allows to
run containers without any provisioning or extra operations. In practice, Fargate
is a serverless solution for running containers.
For running Hoverfly in Fargate, it will be used a Docker image, that has already
made available by SpectoLabs on an image registry.

Application

Some Lambda functions are defined in this project in order to receive commands.
One of these is the function RunProxy, which is invoked from the Umarell Backend
for launching a new proxy. Along with the request, some parameters are passed, like
the ID and the working mode of the proxy. Then a new Fargate task is launched on
ECS, by using the task definition specified as environment variable of the function.
This operation requires some time (in the order of seconds), so, when this function
terminates, the task is in state PROVISIONING. It is the configured an AWS
Event Bridge rule, which invokes the function ProxyFeedback when the task has

52

4.4 – Technical stack

both parameters lastStatus and desiredStatus equal to RUNNING. The triggered
function the invokes the function UpdateProxy, placed in the Umarell Backend and
previously described.

Networking

Each proxy must have a public IP address and a port through which it can be
reached over the Internet by customers. The aforementioned public IP address is
the one that customers have to set as proxy in their HTTP requests.
Since they must be reachable through the Internet, proxies are placed in a public
subnet in the proxy farm’s VPC.

Security

Security of containers is handled by using some features available in AWS. First
of all it is used AWS VPC, which allows to have a logically isolated section of
the AWS cloud where AWS resources can live. AWS VPC offers a virtual network
that can be configured to benefit from networking and some security features, like
Security Groups, which are virtual stateful firewalls that are able to set inbound
and outbound rules for controlling traffic.
Hoverfly must be reachable from the Internet on the port 8500, because it has to be
used for proxying in the customer’s requests. The port 8888, instead, it is used only
for administrative purposes of Hoverfly. Using the latter port from the Internet
must be denied, since any administrative operation should happen through the
Umarell platform.

VPC quotas

In order to design a suitable solution, it is necessary to understand the AWS VPC
quotas 1. In particular, for each region, only five VPC per account can be created,
each one containing at maximum two hundreds subnets. Moreover it is possible to
have only five Elastic IP per region. These limits are definitely binding, because
without them each proxy farm could have been built with a dedicated VPC, with
its own Lambda function and API. Therefore each customer could have benefited
from a dedicated subnet, with a major isolation, but with some drawbacks, as
mentioned in section 5.2.1.

1https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html

53

https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html

Implementation

4.4.4 Testbox
In more elaborated scenarios, in the future, more subnets, VPCs, ECS clusters, or
even AWS accounts, could be used. The Umarell Backend must always be able to
reach a proxy, even if it is not fully aware of the infrastructure it is running on. A
testbox is a container of all the necessary data about where the proxy is running.
As already said, this information is distributed. The Umarell Backend contains:

• id: a global unique identifier;

• testbox_api_url: the URL of the testbox in which the proxy is running.
Currently it coincides with the URL of the proxy farm;

• public_ip

The Umarell Proxy Farm contains:

• cluster_arn: the ARN of the ECS cluster;

• task_definition_arn: the ARN of the task definition, which is a blueprint
common to all the tasks. It defines the Hoverfly image and the port mapping;

• task_arn: the ARN which uniquely identify the task in the cluster;

• task_public_ip: the public IPv4 of the task, which is used by customers;

• task_port: the port of the task, which is used by customers for proxying
activity;

• task_private_ip: the private IPv4 of the task, which is used by resources
which have access to the VPC;

• subnet_id: the subnet identifier of the VPC in which the task is running;

In both parts, these data are collected in DynamoDB tables. The difference is that
the Umarell Proxy Farm is a volatile unit, because it can be destroyed along with
the table, at a certain point. Therefore the DynamoDB table can be referenced
as a cache containing information about the running proxies and which strictly
depends on the environment (AWS in the case of Umarell Proxy Farm). In case of
external proxy farms, these data are going to change if AWS is not used.

4.4.5 Placement of proxies
The configurations for placing proxies are illustrated in major detail below. Arrows
represent requests, if they are continuous, and responses, if they are dashed.

54

4.4 – Technical stack

Configuration with the Umarell Proxy Farm

The configuration with the Umarell Proxy Farm is shown in figure 4.3. Units
communicate through their APIs.

Figure 4.3: Configuration with Umarell Proxy Farm

Configuration with multi-account proxy farms

The possibility of assigning a proxy farm to each customer is enabled by the cloud.
This configuration puts in evidence the great advantage that comes along the cloud,
which is the flexibility in allocating and deallocating resources with the minimal
effort.
The cloud allows to use a text file for describing an entire infrastructure, i.e.
Infrastructure as Code, so the proxy farm infrastructure could be easily reproduced
through a parameterized template file. Therefore customers could have their proxy
farms in separated AWS subscriptions. this multi-account configuration is show in
figure 4.4. For simplicity only requests have been shown. Pros and cons of this

Figure 4.4: Configuration with multi-account proxy farms

55

Implementation

solution have already been exposed in section 3.6. Further benefits due to the
technical stack are listed below:

• the proxy farm (the testbox) can be created and destroyed on the basis of the
customer real needs. It is not necessary to keep it alive if no one is using it;

• using the Umarell Proxy Farm should already ensure isolation, anyway using
different subnets, VPCs and accounts gives an higher grade of isolation from
other proxies and customer activities;

• it is possible to calculate the exact costs due to each user, as there is a very
high traceability of expenses, because each proxy farm is associated to a single
customer;

• some components, like ECS, have some quotas which could affect scalability 2,
e.g. each cluster can contain at maximum 2000 container instances. Even if
these quotas should be already difficult to reach, this solution makes reaching
these limits even more difficult. Therefore this solution has a better scalability;

Configuration with external proxy farms

In the latest possible configuration customers can place their proxy farms anywhere
(even in AWS). Anyhow they have to expose an API which adheres to a standard
defined by Umarell. This configuration is show in figure 4.5. For simplicity only
requests have been shown.

Figure 4.5: Configuration with external proxy farms

2https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-quotas.
html

56

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-quotas.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-quotas.html

4.5 – Projects organization

4.5 Projects organization
As already said, Umarell has been divided in two macro areas which are essentially
autonomous, but only need to communicate, so each part can call the functions
of the other. This independence brings a lot of benefits, like explained in section
5.1, and allows to keep the two parts in two different Git repositories, hosted on
AWS CodeCommit. There is a further source location, which is DockerHub, an
external image registry, and it is used to pull the Hoverfly image from the address
spectolabs/hoverfly.
The code has been written in Python and consists mostly in functions for AWS
Lambda. Designed functions involve less code as possible, in order to minimize the
size and speedup the Lambda instance. Common libraries and utilities have been
placed in Lambda layers, so that sharing them is easier.

4.5.1 Umarell Backend project
It is a Serverless Framework project, so there is a configuration file, called server-
less.yml that is the template that describes the serverless architecture.
This part of the application is pure serverless. It makes a large use of FaaS and
event-driven paradigm. Essentially customers have an API, based on AWS API
Gateway 3 and each endpoint is mapped to an AWS Lambda function. This is the
ideal use case for Serverless Framework 4. All the Lambda functions have been
defined in the folder functions. Each file contains only one handler. This helps
to have a unique and clear workflow per file, to subdivide the handler function
in modules and to manage smaller functions, increasing maintainability.These
functions are:

• ReadProxy, CreateProxy, ModifyProxy, and DeleteProxy that repre-
sents the CRUD for a proxy;

• ReadSimulation, CreateSimulation, ModifySimulation, and DeleteS-
imulation that represents the CRUD for a simulation stored in the database;

• ReadScenario and LoadScenario, which allow to read a scenario (from the
database) or load a previously stored scenario on the proxy, that is the remote
Hoverfly instance;

• ProxyWatcher is triggered whenever a change is detected on the table proxies
and, on this basis, certain actions are taken;

3https://aws.amazon.com/api-gateway/
4https://www.serverless.com/

57

https://aws.amazon.com/api-gateway/
https://www.serverless.com/

Implementation

• UpdateProxy is invoked - through the Umarell Backend API - by proxy
farms for giving feedbacks about the Fargate tasks;

The key functions in the template specifies the list of functions that needs to be
created. For example:

1 f u n c t i o n s :
2 # . . .
3 CreateProxy :
4 handler : f u n c t i o n s / api /proxy/ c r e a t e . handler
5 r o l e : CreateProxyRole
6 package :
7 exc lude :
8 − . /∗∗
9 i n c lude :

10 − f u n c t i o n s / api /proxy/ c r e a t e . py
11 − proxy /∗∗
12 − s t o rage /∗∗
13 − u t i l s /∗∗
14 − ap i_bui lder /∗∗
15 i n d i v i d u a l l y : t rue
16 events :
17 − http :
18 path : p rox i e s
19 method : post

The nested key events specifies that the function must be invoked when a POST
request to the path /proxies arrives. In practice this HTTP request is linked to
a Lambda function call. The key handler specifies the path in the project of the
function which has to respond to the request.
The key package establishes files and folders that has to be included into the
package, the deployable unit of this Lambda function. The term function may not
be entirely appropriate, since it can be a set of libraries, classes, assets, and more.
For each function the package has been specified, in order to include only the
essential.

4.5.2 Umarell Proxy Farm project
The entrypoint file is named app.py and it mainly instantiates the stack for
CloudFormation inherent to this part of the platform. The stack is described in a
OOP class which sequentially declares all components of the infrastructure. CDK
allows to do it by facilities based on abstract factory, which brings advantages on
ease of use and development speed.
For a greater separation of responsibilities, proxies - therefore Fargate tasks and

58

4.6 – Asynchronous workflows

Hoverfly instances - are handled only by Lambda functions defined in this project.
These functions receive some parameters from the Umarell Backend (more precisely,
from an event), take some environment variables and then operate on the resources:

• RunProxy receives a proxy ID and a proxy mode, then runs a task with the
corresponding Hoverfly mode;

• StopProxy receives the task ARN of a proxy and then stops the corresponding
task;

• ProxyIsRunningFeedback is triggered by an Event Bridge rule when the
task has been started. Then it notifies the Umarell Backend about the event
using its API;

• ProxyHasStoppedFeedback is triggered by an Event Bridge rule when the
task has been stopped. Then it notifies the Umarell Backend about the event
using its API;

• GetProxySimulation retrieves the private IP of the proxy by the event,
then it uses the Hoverfly API to get in-memory stored simulations;

• LoadProxySimulation retrieves the private IP of the proxy and a set of
simulations by the event, then it uses the Hoverfly API to load simulations in
the instance;

4.6 Asynchronous workflows
To exploit the advantages of serverless and cloud environments, asynchronous
techniques are used. In particular, the Umarell application relies completely on the
even-driven paradigm.

4.6.1 Creating, starting and stopping a proxy
A snippet in serverless.yml configures DynamoDB Stream to trigger the Lambda
function ProxyWatcher whenever a change on the table proxies is detected:

1 f u n c t i o n s :
2 # . . .
3 ProxyWatcher :
4 handler : f u n c t i o n s /proxy_watcher . handler
5 r o l e : ProxyWatcherRole
6 package :
7 exc lude :

59

Implementation

8 − . /∗∗
9 i n c lude :

10 − f u n c t i o n s /proxy_watcher . py
11 − proxy /∗∗
12 − s c e n a r i o /∗∗
13 − t e s tbox /∗∗
14 − s imu la t i on /∗∗
15 − u t i l s /∗∗
16 − s t o rage /∗∗
17 − ap i_bui lder /∗∗
18 i n d i v i d u a l l y : t rue
19 events :
20 − stream :
21 type : dynamodb
22 arn :
23 Fn : : GetAtt :
24 − ProxiesTable
25 − StreamArn

The function receives the event as argument and is able to retrieve the event type,
called eventName, whose value is checked in order to behave differently according
to it:

1 stream_source = event [’ Records ’] [0]
2 event_type = stream_source [’ eventName ’]
3 stream = stream_source [’ dynamodb ’]
4

5 i f event_type == ’INSERT ’ :
6 re turn handle_inser t (stream)
7

8 e l i f event_type == ’MODIFY’ :
9 re turn handle_modify (stream)

When the event type is INSERT, it means that a new proxy is being registered and
ProxyWatcher calls an endpoint of the Umarell Proxy Farm API, which invokes
the lambda RunProxy in the Umarell Proxy Farm. RunProxy launches a Fargate
task into the ECS cluster of the proxy farm. This operation requires some seconds.
When the task is created, it passes through several phases, in which its status
is initially equal to PROVISIONING, and then becomes PENDING, and finally
RUNNING. An AWS EventBridge rule has been defined in the Umarell Proxy
Farm, which triggers the lambda ProxyIsRunningFeedback whenever the attributes
lastStatus and desideredStatus of the event are both equal to RUNNING. Therefore,
this function calls an endpoint of the Umarell Backend API, which invokes the
lambda UpdateProxy, passing some parameters about the launched task, more
precisely:

60

4.6 – Asynchronous workflows

• the base URL of the testbox API;

• the public IPv4 and port of the proxy;

• the proxy ID, which is necessary because all the steps are asynchronous and
stateless, so the response is decoupled from the request;

• the status of the task, which is a summary of attributes lastStatus and
desiredStatus of the ECS event.

The lambda UpdateProxy use the received proxy ID to find the proxy that has been
referred in the table proxies and then updates its testbox configuration with the
IPv4, port and API URL, and set the field status equal to running. The workflow
is illustrated in figure 4.6.
The sequence diagram of the creation process is shown in figure 4.7. It has been

Figure 4.6: Workflow for creating a proxy

simplified to bring out the most important passages. For example, logging and
tracing activities have been omitted (especially for Lambda and API Gateway
services). Then, the diagram considers a multi-account scenario, so AWS services
have been grouped by account.
When the event type is MODIFY and the status of the proxy has changed, the
new value of this property has to be checked, to understand what kind of change it
is: a proxy being stopped, an existing proxy being started, a change of mode, a
modification of the proxy fields, etc. For this reason, it is necessary to have both the
new and the old values stored in the table. In order to do it the DynamoDB Stream
has been configured with the value NEW_AND_OLD_IMAGES in serverless.yml.

61

Implementation

Figure 4.7: Proxy creation sequence diagram in a multi-account scenario

1 ProxiesTable :
2 Type : AWS: : DynamoDB : : Table
3 Prope r t i e s :
4 TableName : p rox i e s
5 . . .
6 St r eamSpec i f i c a t i on :
7 StreamViewType : NEW_AND_OLD_IMAGES

Figure 4.8 shows the update of the proxy mode, which requires an update of the
Hoverfly instance.
If the status has become running, it is changed to creating before being persisted,
and it’s the case of an existing proxy which has to started. The workflow behaves
like for creation, so the task is launched by invoking the Lambda function RunProxy
and when it becomes RUNNING, the Lambda function ProxyIsRunningFeedback is
triggered, which performs the same operations as before.
Instead, if the status has become stopped, it is changed to stopping before being
persisted, it means that there is a running Fargate task that has to be stopped.
The behaviour is very similar to the previous one, like figure 4.9 illustrates.

62

4.6 – Asynchronous workflows

Figure 4.8: Updating proxy mode sequence diagram in a multi-account scenario

4.6.2 Handling scenarios

A scenario is a set of simulations initially stored in-memory inside a Hoverfly
instance. It is necessary to download simulations from the instance and save them
in the database, in order to make the scenario available to the user.
The main idea is that a scenario makes sense at the end of the current testing session,
when the behavior of the customer service can be determined. Therefore, when
the customer request a proxy for stopping, simulations are downloaded from the
instance through the Hoverfly administrative API, on the port 8888. Simulations
are then stored with a scenario ID, and finally the Fargate task is requested to
stop.
Afterwards, in a new testing session, a customer may want to choose one of the
stored scenarios and upload it in an empty proxy, for simulating to simulate
the service or for capturing new request-response pairs, in order to append new
simulations to the selected scenario.

63

Implementation

Figure 4.9: Proxy stopping sequence diagram in a multi-account scenario

Security measures

Hoverfly containers runs in a public subnet, so Hoverfly API could be potentially
used by customers. For example, for retrieving simulations could be sufficient to
query the endpoint /api/v2/simulation on port 8888. However, if in the future
the organization behind Umarell decides to replace Hoverfly with another tool and
the customer attempts to query the same endpoint, barring pure coincidence, an
error will be returned. For this reason the presence and use of Hoverfly should
be transparent. In order to avoid customer to use the API, it has been defined a
security group which denies access on the port 8888 from the Internet, so that only
resources inside AWS can use that API.

4.7 Adapt to pay-per-use model
One of the defined requirements is to eliminate unnecessary costs and enable a
pay-per-use model. The Umarell Backend uses serverless services, like Lambda
and DynamoDB, which don’t require fixed costs. Instead, the proxy farm uses
components like Fargate and AWS VPC, which may require fixed costs. Therefore

64

4.8 – Study of Hoverfly

it is necessary to adapt the application, in order to benefit from the mentioned
pricing model. It means that a resource which incurs a cost even if it is idle, should
be destroyed, if not used.
The Hoverfly instance representing a proxy runs in Fargate, which calculates the
bill on the basis of CPU and memory consumption, from the time in which the
image is downloaded up the task termination 5, therefore, it should exist only in
the meanwhile a customer want to use it.
The life-cycle of a proxy farm can also be evaluated. Ideally, if it has not running
proxies inside, i.e. it is unused, it can be destroyed. However, it must be taken into
account that the creation of a CloudFormation Stack is not immediate and can
require some minute. In the case of the Umarell Proxy Farm it could be considered
which it is shared among many customers, so it is plausible that there is a constant
use of it. For these reason it could be kept always active. If further business
analysis will put in evidence that this proxy farm is not used for a long period (e.g.,
outside office hours, if the service is active in countries with the same time zone, or
during public holidays), then the proxy farm could be created and destroyed with
greater dynamism.
Proxy farms managed by customers are supposed to be destroyed after use, so
building time would result in a less pleasant user experience. However, some
compromises might be found. For each customer, customized times of the day in
which to activate the proxy farm could be scheduled.

4.8 Study of Hoverfly
Hoverfly behaves like a proxy should do, therefore it is very convenient for this use
case.

4.8.1 Working modes
Hoverfly can work with several attributes (like mode and stateful), already discussed
in section 2.9.2, and proxy implementation can leverage what this tool already
offers. In practice there is mapping:

Proxy Hoverfly
capture-stateful mode: capture, stateful: true
capture-stateless mode: capture, stateful: false
simulation mode: simulate
spy mode: spy

8500

5https://aws.amazon.com/fargate/pricing/

65

https://aws.amazon.com/fargate/pricing/

Implementation

Actually capture-stateful and capture-stateless summarize what Hoverfly does
through multiple attributes. This has been a choice which finds benefits at REST
level. The attribute stateful in Hoverfly makes sense only when it works in capture
mode. When it is switched to simulate, that attribute disappears. This is a
problem in REST, where the resource should be represented always in the same
way, therefore it has been preferred to use a single value. The decision has been
applied since the storage level.

4.8.2 How to run it
SpectoLabs offers different ways for using Hoverfly:

• by using Hoverfly Cloud;

• by using the CLI application;

• by building a container starting from a Dockerfile;

• by building a container starting from a Docker image;

Hoverfly Cloud

Hoverfly Cloud 6 is a test environment offered "as a Service" for API simulation. It
does not fit with the Umarell use case, because of several reasons:

• Hoverfly is used to shape the behaviour of a proxy, but with the cloud solution
there is no full control over the Hoverfly instance and this could be a limitation
in the future;

• tariff plans do not adapt to the serverless logic, as they don’t offer a pay per
use pricing model, but only fixed monthly rates;

• Umarell could require as many Hoverfly instances as needed, but, in order to
achieve this possibility it is necessary an "Enterprise" pricing plan that leads
to high fixed costs which may be unsustainable in certain scenarios;

CLI application

The second alternative is using the CLI application, but it does not fit to the
Umarell use case, since it is necessary a Docker container that has to be launched in
the ECS cluster (as a Fargate task). Building a new image and using the executable
inside it requires an effort that does not take any advantage.

6https://cloud.hoverfly.io/

66

https://cloud.hoverfly.io/

4.8 – Study of Hoverfly

Building a Dockerfile

Using the official Dockerfile available on GitHub 7 for building a container starting
from the Hoverfly project brings further responsibilities for maintaining the project.

Using a Docker image

The last possibility is using an image available on DockerHub 8. It is ready to use
and when a container based on this image is launched, it is possible to set one or
more Docker commands. The commands available are the same as those accepted
by Hoverfly CLI application 9. This is the solution that best suits the Umarell
scenario.

4.8.3 Commands coverage problem

As already said before, the proxy modes are not identical to Hoverfly ones, but a
mapping is required. Although the Hoverfly container allows to use commands to
specify the working mode, there is no full coverage. In particular, it is not possible
to specify whether the capture mode has to be launched with the stateful flag
set to true or not. Instead, there are no problems in specifying simulation (the
corresponding command is named webserver on Hoverfly CLI) and spy modes.
Hoverfly exposes an administrative API which is available on the port 8888 by
default. It allows to change the Hoverfly mode and to set the stateful flag, so it
can be used for setting the wanted configuration. When asked to launch a proxy,
its status is set to creating. At this point an event is triggered and a new Hoverfly
instance is launched within a new Fargate task. Whether the proxy has been
requested to have status capture-stateful or capture-steless, the Hoverfly instance is
launched to have capture mode. When the Fargate task status becomes RUNNING,
a call to the Hoverfly instance API is made, in order to update the stateful flag.
After that, the proxy is updated with status running. From that moment the
proxy is effectively up from the point of view of the customer. This means which a
proxy is essentially an abstraction that uses an Hoverfly instance, but it is not the
instance.

7https://github.com/SpectoLabs/hoverfly/blob/master/Dockerfile
8https://hub.docker.com/r/spectolabs/hoverfly/
9https://docs.hoverfly.io/en/latest/pages/reference/hoverfly/

hoverflycommands.html

67

https://github.com/SpectoLabs/hoverfly/blob/master/Dockerfile
https://hub.docker.com/r/spectolabs/hoverfly/
https://docs.hoverfly.io/en/latest/pages/reference/hoverfly/hoverflycommands.html
https://docs.hoverfly.io/en/latest/pages/reference/hoverfly/hoverflycommands.html

Implementation

4.9 Networking and security management
The proxy is a network resource which must be accessible through the Internet,
therefore it is placed in a public subnet. In AWS, it means which the route table
contains an entry as follows:

Destination Target
0.0.0.0/0 igw-12345678901234567

The destination for the route is 0.0.0.0/0, which represents all IPv4 addresses. The
target is the internet gateway that’s attached to the VPC.
The private subnet is currently used for hosting the network interfaces of Lambda
functions which need to connect to resources. Being within the same network, the
proxies can be accessed by mean of their private IPv4. This happens, for example,
when the simulations in the Hoverfly instance must be retrieved. To be more
precise, Lambda is a serverless service which runs in Amazon’s cloud space and
does not require networking. Therefore, asserting that a Lambda function is placed
into a subnet is incorrect. Instead, only its network interface is. In AWS, the route
table of a private subnet is configured as follows:

Destination Target
0.0.0.0/0 nat-12345678901234567

This time, the target is a NAT (Network Address Translations), which prevents
resources from being directly reachable.
Subnets are managed with CDK, through the package aws_ec2. It is straightfor-
ward, consisting of using an abstract factory which requires few arguments, like the
name of the subnet, a CIDR number and a constant of the same package, which
specifies whether the network is public or private.

Securing administrative port

As already mentioned, each proxy has two ports. The 8500 is used directly by
customers, for the proxy functionality, whereas the 8888 is used for administrative
purposes and its use has to be filtered by the application, therefore this port must
prevent access from the Internet. At this purpose two security groups have been
created. The first one is pretty simple. It has been named ProxyAdministratorSe-
curityGroup and it’s assigned to Lambda functions that need to access the proxy
through the port 8888. The second one is named HoverflySecurityGroup and the
following ingress rules:

Protocol Port Source
TCP 8500 0.0.0.0/0
TCP 8888 sg-12345678901234567 (ProxyAdministratorSecurityGroup)

68

4.10 – Infrastructure as Code

While on port 8500 is allowed any IPv4, for port 8888 only resources which have
the specified security group are allowed. Therefore this is a firewall rule which
consents only properly selected internal resources.

Figure 4.10: Securing administrative port schema

4.10 Infrastructure as Code
The proposed solution completely relies on the Infrastructure as Code (IaC)
approach. It consists of managing and provisioning computer data centers through
machine-readable definition files, rather than physical hardware configuration or
interactive configuration tools.
AWS CloudFormation 10 is the IaC service that Amazon uses to build resources
in its cloud. The alternative ways to build resources in AWS would be using the
AWS console 11 or the CLI application 12, which are valid approaches, but they are
not tools created with the purpose of being automatable, deployable or versionable.
CloudFormation offers is a complete tool for creating resources and shaping the

10https://aws.amazon.com/cloudformation/
11https://aws.amazon.com/console/
12https://aws.amazon.com/cli/

69

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/console/
https://aws.amazon.com/cli/

Implementation

infrastructure, but it has a notable drawback. Writing a complete and optimal tem-
plate can take some time, because the simplest infrastructure may take hundreds of
lines, so it is required experience and a deep knowledge of CloudFormation concepts
and syntax. For this reason some workaround to avoid writing CloudFormation
templates directly have been considered.
As already said, the Umarell Backend and the Umarell Proxy Farm projects are
based respectively on Serverless Framework and CDK and these are IaC tools.

4.10.1 Umarell Backend
Serverless Framework is able to work with several cloud providers for building
serverless event-driven applications and it is integration-ready: it is sufficient specify
the desired provider to get it working.
To set the wanted environment it is sufficient to specify few parameters in server-
less.yml:

1 prov ide r :
2 name : aws
3 r eg i on : eu−west−1
4 runtime : python3 . 8
5 memorySize : 128
6 p r o f i l e : umare l l

AWS has been set as provider, so Serverless Framework will output a CloudFor-
mation template, that will be deployed on region eu-west-1 using the credentials
specified into the profile named umarell. For Lambda functions are reserved 128MB
with a runtime based on Python3.8.
Under the key functions are defined the FaaS functions, implemented with Lambda
in this case. Under the key resources, instead, any kind of resource can be described,
by using the CloudFormation format.
The whole infrastructure is described through YAML, which makes management
simple on the one hand, and hides complexity on the other. Indeed, behind the
scenes it creates an API, based on AWS API Gateway, and maps it to the specified
functions.

4.10.2 Proxy farm
This part of the application does not contain the classic servereless services, like in
the previous case, therefore Serverless Framework is not a good choice. CDK has
been chosen in this case, because it allows to describe the infrastructure by using
the most common programming languages, exploiting their power and flexibility.

70

4.11 – DevOps Pipeline

CDK evaluation

This tool is not very spread yet, so it has been evaluated with particular attention,
but resulting in a positive verdict. Key points are as follows:

• CDK is an abstraction of CloudFormation. The latter is a service, while the
first one is a framework that generates a template. Being the same thing,
there is no change regarding the price;

• If problems linked to CDK arise, it is possible to migrating to "plain" CloudFor-
mation in several ways: using CDK as a wrapper to inject "plain" templates,
using automatic tools, which may be not perfect, or rewriting the template
from scratch;

• It is easy to use and relies on Abstract Factory style for resource creation. It is
intuitive and well documented, although there is a lack of practical examples;

• it allows to exploit the great expressiveness of programming languages, like
cycles and conditions. It is possible to organize code and build libraries, giving
the ability to create custom, modular and reusable constructs;

• It is potentially less prone to errors, thanks to features of languages and
modern IDE: type-safety, code completion, etc.

4.11 DevOps Pipeline
Git 13 is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency.
Moreover it is well documented, has a large community and it is very known among
developers.
AWS offers all the needed services for building a CI/CD pipeline, like AWS
CodeBuild 14 and AWS CodePipeline.

4.11.1 Stages
The Umarell project is in a very early stage, so CI/CD pipelines are quite simple
and they will be better evaluated in the future. Essentially the Umarell Backend
and the Umarell Proxy Farm can be seen as two microservices, like noted in section
5.1. They must be independent each other, which means also that when one of

13https://git-scm.com/
14https://aws.amazon.com/codebuild/

71

https://git-scm.com/
https://aws.amazon.com/codebuild/

Implementation

them is updated, the other must not be rebuild. For this reason, two pipeline have
been implemented, one for each project. Nevertheless they are very similar, being
formed by analogues stages.
Both the pipelines have been created through the AWS console and consist mainly
of three steps:

• preparing the project;

• building and testing;

• deploying the application;

Figure 4.11: Main steps of the pipeline

Nevertheless, two stages currently exist. Building, testing, and deploy is made by
mean of a unique AWS service, which will be described below.

First stage: preparing the project

The first stage is very simple, as the pipeline has only to download the project
from the source location, that consists of cloning the project from the repository
on CodeCommit in both projects. Integration of this service in the pipeline is very
easy, since it is sufficient to select an item in a drop down menu in the console. If
the operation is successful, then the pipeline passes to the next stage.

Second stage: building and testing

This stage aims to execute unit tests, build and deploy the project in a test
environment, and then to execute cross-service tests. It has been build using AWS
CodeBuild, so in both projects a buildspec.yml file has been defined, which defines
four steps:

• install specifies the runtime environment, which is based on Python 3 and
installs the specific IaC tool: Serverless Framework for the Umarell Backend
project and CDK for the Umarell Proxy Farm. In both cases npm has been
used;

• pre_build specifies Python dependencies, which currently consists only of
pytest library, for running unit tests;

72

4.11 – DevOps Pipeline

• build configures an AWS profile (access key, secret key, region) to be used
with the selected IaC tool (Serverless Framework or CDK) and executes tests
by mean of pytest;

• post_build launches the commands for deploying the application, which is sls
deploy for the Umarell Backend project and cdk deploy for the Umarell Proxy
Farm project;

If at the end of the stage there are not errors, the pipeline passes to the next stage.
The pipeline implementation for one single project is summarized in figure 4.12.

Figure 4.12: Implementation schema

4.11.2 Security
Managing secrets

It is not advisable to hardcode secrets, like security keys and tokens, directly in
the code, for several reasons:

• if a secret change, it should be manually replaced over all the occurrences,
also in a different code base;

• the secret would be seen by all the employees that can access that code; this is
a problem, because different persons could require different permissions (and
have different responsibilities);

• if the code is in a public repository, secrets would be exposed to the world,
with harmful consequences;

In Umarell, secrets are handled by mean AWS Secrets Manager. It allows to
create a virtual resource called secret which contains essentially a name and an
ARN and handles some keys, which are encrypted.
In the CodeBuild Action, before, some AWS credentials have been handled, in

73

Implementation

ordupadteer to deploy the stack in CloudFormation. AWS Secrets Manager has
been used, so in the AWS console it has been created a secret named dev/Umarel-
l/AwsAccount, which handles two key-value items, where the keys have been named
KeyID and AccessKey, and it has been specified that Amazon should encrypt them
with a DefaultEncryptionKey.
In this way, only employees with specific permissions can see and handle these
secrets. In buildspec.yml, instead, it is sufficient to declare some environment
parameters, like:

1 env :
2 s e c r e t s −manager :
3 AWS_KEY_ID: dev/ Umarell /AwsAccount : key_id
4 AWS_ACCESS_KEY: dev/Umarell /AwsAccount : access_key

and then reference them with the symbol $:

1 post_bui ld :
2 commands :
3 − s e r v e r l e s s c o n f i g c r e d e n t i a l s −−prov ide r aws −−key

$AWS_KEY_ID −−s e c r e t $AWS_ACCESS_KEY −−p r o f i l e umare l l

As already said, a secret is a resource, so CodeBuild needs specific permissions
to retrieve it, therefore, the role assigned to CodeBuild must have attached a
policy with refers to the service Secrets Manager, with Read access at the resource
arn:aws:secretsmanager:eu-west-1:138538731418:secret:dev/Umarell/AwsAccount-*
(the secret) and without request conditions.

4.11.3 CI/CD pipeline
Currently, it is requested that each pipeline relies on CD practice, so the pipeline is
executed every time a change in the source location is detected. This means that,
if a developer pushes some code on the repository, then the pipeline is triggered.
The sequence diagram in figure 4.13 illustrates the interactions among the AWS
services when a developer pushes some code on a repository hosted by CodeCommit.

4.11.4 Monitoring and observability
As the project is in an early stage, the pipeline is quite simple, but it is sufficient
to show the needs of a serverless application.
Distributed infrastructure components operate through multiple abstraction layers
of software and virtualization, which make makes controllability impractical and

74

4.11 – DevOps Pipeline

Figure 4.13: Starting a CI/CD pipeline sequence diagram

challenging. Instead, common practice is to observe and monitor infrastructure
performance logs and metrics to understand the performance of individual hardware
components and systems.
At the moment, two main AWS services have been used for these tasks: Cloud-
Watch and X-Ray. The first one is enabled by default on Lambda. Indeed, it is
sufficient writing on standard output for logging application messages. These are
then collected by the CloudWatch services and grouped in the dashboard.
Then, X-Ray has been introduced, in order to trace functions calls, check per-
formances, debug and identify and troubleshoot performance issues and errors.
Enabling it for Lambda and API Gateway services in the Umarell Backend is
straightforward, since it is sufficient a minimal configuration in serverless.yml:

1 prov ide r :
2 iamRoleStatements :
3 − E f f e c t : Allow
4 Action :
5 − xray : PutTraceSegments
6 − xray : PutTelemetryRecords
7 Resource : "∗ "
8 t r a c i n g :
9 lambda : t rue

10 apiGateway : t rue

75

Implementation

In CDK X-Ray can be enabled in Lambda function by passing the construct prop
to Function construct, like below:

1 aws_lambda . Function (s e l f , ’ LambdaId ’ ,
2 function_name=’LambdaName ’ ,
3 # other cons t ruc t parameters
4 t r a c i n g=aws_lambda . Tracing .ACTIVE)

4.12 Conclusions
The next chapter focuses on the evaluation of the work done during the implemen-
tation phase.

76

Chapter 5

Evaluation

This chapter is meant to help perceive the quality of the implementation and
highlight the contribution of serverless, as well as its level of maturity. Section 5.1
compares the implementation to a microservices application, discussing common
principle that have been respected. Section 5.2 goes into detail, by discussing aspects
concerning consistency, one of the most important talking points in cloud native
applications. Section 5.3 is about DevOps practices that can be still implemented.
Section 5.4 discusses costs required by the application.

5.1 A microservices application
In this thesis, serverless has been defined as an elaboration environment which
does not require provisioning or managing servers, whereas microservices have been
referred to an architectural style in which the application is made of independent
components, characterized by certain key principles, already described in section
2.3.7. According to this, microservice and serverless concepts live at different levels,
and one does not exclude the other. Indeed, a microservice application could be
made of Docker containers launched in a serverless environment, as it happens with
AWS Fargate.
Things seem to be different comparing microservices, which are usually intended as
continuously running containers, to FaaS, that executes some code in an ephemeral
container. Nevertheless, these two approaches may come close.
The Umarell Backend and the Umarell Proxy Farm have been organized in two dis-
tinct Git repositories hosted on AWS CodeCommit. This gives a greater separation
of responsibilities and allows them to be handled, packaged, built and deployed
separately. The communication layer between the two parts of the project is made
of calls to HTTP API, which is platform agnostic. These characteristics allow to
deal with two independent parts, loosely coupled and independently deployable.

77

Evaluation

This enables the autonomy principle of microservices.
The two parts of the application have separated responsibilities and points of failure.
The Hoverfly instances are handled entirely by the Umarell Proxy Farm, whereas all
the tables interact with the Umarell Backend (it is a good practice which a storage
is accessible by only one microservice). So resilience principle is respected.
Observability is generally considered a difficult task in cloud environments, due
to the distributed environment and the complexity of the additional abstraction
layers. In FaaS it may be even more complicated, because of the ephemeral nature
of containers. Nevertheless, improving traceability, debugging, or monitoring, is
one of the main goals of cloud providers. In Umarell, DevOps practices are still
unripe due to the early state of the project and monitoring mostly consists of
logging at Lambda level, but there is no technical impediment in order to respect
the transparency principle.
As already said, two pipelines have been implemented, which rely on IaC approach,
so the automation principle is already enabled.
Finally, FaaS have a fine granularity over the decomposition, which can be led near
to business problems. Like for classic microservices, scoping is a key issue which has
to be addressed before any implementation, and it can be made around business
capabilities. In conclusion, also the alignment principle can be respected.
This implementation wants to make clear that serverless and microservices can over-
lap and share the same problems, the same difficulties, but also the same strengths,
and the same theory. It is not a fixed rule, because a different implementation
might have failed to adhere to one or more key principles of microservices, but
this twinning should be taken into account in order to build maintainable fully
serverless applications.

5.2 Handling consistency

Umarell is a distributed application since it is executed in a cloud environment
which in the future could be delivered through several data centers around the world,
therefore it has to handle with characteristic problems of this type of architecture.
In the first place, let’s evaluate the application. The Umarell Backend has been
built by using serverless services, like AWS Lambda and AWS DynamoDB. Along
with DynamoDB Stream they represent the implementation of an event-driven
application, in which each action is taken on the basis of changes to the data stored
in the tables. Other events are triggered as defined by AWS EventBridge rules.
When a AWS Fargate task enters in running state or has to stop, then a Lambda
function is invoked. These mechanisms are event-driven too.
Asynchronous events aid in decoupling components from each other and increase

78

5.2 – Handling consistency

overall system availability, but they also bring to scenarios in which to grant consis-
tency is difficult. It is especially true in distributed environments. At the opposite
synchronous blocking communications should be avoided, since they decrease the
availability, occupy resources and increase costs, especially in serverless FaaS, where
a pay per use model is used.
Some processes require transactions, which can be defined as a sequence of in-
formation exchange and related work that is treated as a unit for the purposes
of satisfying a request and for ensuring consistency. One possibility is using dis-
tributed transactions, which use a two phase commit protocol, and can use a lock
in order to be able to access resources in mutual exclusion. Nevertheless distributed
transactions are problematic, as they bring to synchronous communications, lower
the availability of resources and increases the risk of contention and deadlock. Like
in microservices, transactions and general workflows are based on choreographed
interactions. Each component performs some work and emits one or more events.
So other components are triggered. The process is asynchronous, increases the
availability of resources and results with a last event that notify the success to other
components, otherwise it’s invoked a rollback procedure in all involved services.
Umarell behaves like this in several situations. For example, for the proxy creation,
a new item into the database is inserted with the field status equals to creating,
which represents an intermediate state. A sequence of events and actions follows
and, at the end, if the Fargate task is successfully created, the proxy status is
changed to running, which represent the final state. If an error occurs in the
middle of the process, the creation is invalidated. Another case is when a proxy
has to be launched in capture-stateless or in capture-stateful mode. Before setting
the proxy in status running, making it usable by the customer, a further HTTP
call is made, in order to set the Hoverfly instance and avoids problems due to its
limitations, as described in section 4.8.3. Even in this case, the process passes
through different intermediate states and a chain of interactions, before it can be
considered completed by the system.

5.2.1 Proxy farms managed by customers
If only the scenario with a single shared proxy farm had been allowed, the commu-
nication layer could have consisted of invoking Lambda functions by mean of an
SDK, like boto3 in Python, and IAM identities and permissions would be used.
The will to put heterogeneous systems in communication has made mandatory to
use a platform agnostic protocol, like HTTP, but it requires a major effort. Indeed,
it is necessary to ensure that this API layer works correctly. Therefore Umarell
should spend more resources (person-hour) on some kind of testing, like contract
testing or end-to-end testing.
Another issue is that, if Umarell Backend changes something in its API, customers

79

Evaluation

have to update their proxy farms. Realistically, this would be a gradual process,
therefore API versioning would be necessary, which is another effort required to
both parties.

5.3 DevOps pipeline
Keeping the two main parts in separated repositories means having two independent
source locations, which are used in two different pipelines. Thanks to Continuous
Development, when a change is detected inside one of the two repositories, the
related pipeline is launched, while the other one is not affected.
As already said, DevOps practices adopted are not very sophisticated yet, so
pipelines are very simple.

5.3.1 Monitoring and observability
As the project is in an early stage, the pipeline is quite simple, but it is sufficient
to show the needs of a serverless application.

Alarms

In the future there will be a dedicated team to implement DevOps practices. For
example, CloudWatch alarms will be inserted, in order to notify the arrival of
unexpected events, e.g. functions returning a 5xx status code, or for ensuring
stored data corresponding to what is in the proxy farm, e.g. if the status of a proxy
is running there must be a task in execution.

External services

Then strategies for having an end-to-end overview will be necessary. CloudWatch
logging and insights could be better combined with trace data from AWS X-Ray.
Then external services could be used for having a different manipulation of collected
data, and hopefully better information.

Responsibility

Responsibility for monitoring proxy farms depends on the placement of proxies. If
the Umarell Proxy Farm is used, then monitoring is up to Umarell. In the case of
the multi-account solution, Umarell could provide templates with preset features
for facilitating the task. In the case of external proxy farms, directly handled by
customers, monitoring is a responsibility of them.

80

5.4 – Costs

5.3.2 Testing
Currently, testing consists of running unit tests at microservice level, when a new
change is released. It is undoubtedly useful, but it is not sufficient to test the
overall application behaviour, because interactions between the two parts of the
application are not evaluated. To do this, a further pipeline could be implemented.
This could be made of two concurrent jobs, which build the existing pipeline, but
resulting in two testing environments. Therefore integration testing, system testing,
and acceptance testing, can be executed. However this kind of testing is very
difficult, especially in distributed applications like in this case, because it requires
creating complex environments, creating lengthy integration suites and managing
test data. An alternative method to consider - but which is not necessarily sufficient
- is contract testing. Unlike end-to-end testing, it is easy to setup and scale. It
consists of testing an integration point by checking each application in isolation to
ensure the messages it sends or receives conform to a shared understanding that is
documented in a "contract". In the case of Umarell, it should be implemented to
test the communication layer between the two main parts.

5.3.3 Consequences of serverless
Developed pipelines are very close to application layer. It does not have to provision
or manage servers or virtual machines. Then it can leverage Infrastructure as Code
approach in order to build portions of the infrastructure that can be huge. This
is a great advantage, because it moves the focus of operations at higher levels,
toward business problems, which favours having a product view, not a project
view, in which success is determined by business metrics. The responsibility of the
operations side of a DevOps team will be the health of the services and systems.
While software developers remain focused on the individual components, operations
engineer focuses on the system as a whole.
On the more technical side, in developed pipelines observability is a complex and
coveted goal to achieve. As said before, logging is particularly difficult in serverless,
because FaaS functions run in ephemeral containers, which are destroyed at the
end of the code execution and, therefore, logs need to be collected by an external
aggregator and furthermore network delays can make information dirty.

5.4 Costs
As already said, Umarell is an embryonic project, so any hypothesis on final costs
would be a gamble. However some assumptions could be made about cost sharing
in the two scenarios described in this thesis.
Knowing costs is essential, because it allows to shape tariffs for customers (e.g.,

81

Evaluation

based on usage), detect commercial strategies, manage money accurately, and so
on.

5.4.1 Umarell Backend
The Umarell Backend is easier to analyze, because it uses simple services, with
clear pricing models, at least apparently.

AWS Lambda pricing

AWS Lambda has fixed costs, which depends on the number of invocations and
duration, defined as the time required by the code to be execute. Nevertheless
there are multiple factors that come into play. First of all, the price depends on the
amount of memory allocated to a function. An increase in memory size triggers an
equivalent increase in CPU. More power means more speed, so a function which
requires more memory could be cheaper than a function requiring less memory,
because it is sufficiently faster. In that case a function could be faster and cheaper
than it would be with a different configuration. This behaviour could change
drastically with a minimal change.
The execution speed depends also by the runtime. A language may be faster than
another in performing some types of operations, but slower in others. Furthermore,
a runtime could be much faster than another in code execution, but it could be
slower in providing the environment, i.e. building the container. The allocation
time is especially important when a cold start occurs, then it must be taken into
account the cold start frequency and it should be convenient to properly configure
a provisioned concurrency for some Lambda function. Cold starts can greatly affect
costs if a functions calls invokes a second function, waiting for a response, and
there is not an available warm container. The first function could wait several
seconds before it can finish running. More generally, this is the risk associated
with functions that make outgoing calls, chains of function calls, and sequences of
synchronous calls to other functions. In these cases, in addition to raising costs, a
timeout can occur, which causes the requested task to fail and unnecessary costs.
When it happens, asynchronous mechanisms could bring some benefit.
Another cost can be associated with the development speed. Some languages may
allow faster debugging, or faster loading of new changes, especially for interpreted
languages, because of the absence of compiling phase.
At the end, it must be considered that event-driven applications may be unpre-
dictable. An action may trigger several events, and each of these may trigger other
events. Therefore a tree of events may be generated with a single happening. More-
over it could be not said what events are generated when some code is executed,
because they depend on the inputs and the state of the system, which can be

82

5.4 – Costs

different at any execution. A simple case of this type concerns the modification of
the proxy. If the change involves the status, then a Fargate task must be launched
or stopped, therefore an EventBridge rule triggers a Lambda, which makes further
calls. Instead, if the change involves the mode, then there is a chain of Lambda
and an HTTP request to the Hoverfly container is made. Finally, if the change
doesn’t affect neither the status nor mode, no furthers events are generated, apart
from the invocation of ProxyWatcher, which is there in any case.
For the reasons described above, costs are not easily predictable.

DynamoDB pricing

DynamoDB offers two pricing models 1. Pricing for on-demand capacity mode does
not require the customer for the data reads and writes on tables. It is a solution
without provisioning. It is a convenient solution if the workload is unknown, if the
traffic is unpredictable , or if paying on demand is preferred for other reasons.
Pricing for provisioned capacity mode requires to specify the expected number of
reads and writes per second. It is possible to set auto scaling to automatically
adjust tables’ capacity based on the specified utilization rate to ensure application
performance while reducing costs. It is a convenient solution if traffic workload is
predictable, if traffic is consistent or ramps gradually, or if it is wanted to better
control costs. This mode is cheaper, but requires information which is not always
easy to forecast.
Umarell is used by business customers, which have presumably office hours. If
they’re all in Europe, it would be easy to predict a useful time range, therefore
it could be convenient a provisioned capacity mode with autoscaling, in order to
reduce costs.

5.4.2 Umarell Proxy Farm
It must be considered which creating the Umarell Proxy Farm takes some minute,
and long waits could negatively affect the customer experience. Moreover this proxy
farm hosts proxies for multiple customers, so it could presumably be occupied more
or less continuously over time. In light of this, it could be convenient to keep this
proxy farm alive, so that the startup time of proxies is short and the experience
remains pleasant for all customers. Although the platform can be still considered
fully serverless, as there is not provisioning or managing of servers and customers
have to pay only for what they use, it must be considered that in this situation
there may be fixed costs that the organization behind Umarell has to bear. In
particular, the VPC has a NAT Gateway, which incurs costs on an hourly basis.

1https://aws.amazon.com/dynamodb/pricing/

83

https://aws.amazon.com/dynamodb/pricing/

Evaluation

This means that there are costs even if no customer is using the Umarell platform.
Anyway the rate is very low, around 0.05 USD per hour, which is a cost that can
be easily drowned in other expenses, even outside of IT. In summary, the Umarell
Proxy Farm can be left up over time, or at most it can be dismissed during the
night, assuming that the customers are mostly active during the day.
If only the Umarell Proxy Farm is used, then all the components consume resources
in the Umarell cloud, so each one contributes to the final cost. Instead, in the
scenario in which customers can create, manage, and destroy on their own, outside
of the Umarell boundaries, then what happens in these proxy farms should incur
no cost.

Cost estimation

Calculating cloud costs is never easy, but some providers offer cost estimation tools.
AWS Pricing Calculator 2 allows to select and configure services used by an
application in order to have an estimate on the monthly bill.
What follows is a purely demonstrative example that gives an idea of the costs that
Umarell might have to face.

AWS API Gateway

The configuration used for the estimation is:

• 1 million requests per month;

• 1.6 GB for cache memory size;

The calculation was done as follows:
1 requests x 1,000,000 unit multiplier = 1,000,000 total REST API requests
Tiered price for: 1000000 requests
1000000 requests x 0.0000035000 USD = 3.50 USD
Total tier cost = 3.50 USD (REST API requests)
Tiered price total for REST API requests: 3.50 USD
0.20 USD per hour x 730 hours in a month = 146.00 USD for cache memory
Dedicated cache memory total price: 146.00 USD
3.50 USD + 146.00 USD = 149.50 USD
REST API cost (monthly): 149.50 USD

AWS Lambda

The configuration used for the estimation is:

2https://calculator.aws

84

https://calculator.aws

5.5 – Conclusions

• 10 million requests per month;

• 300 ms average duration;

• 138 MB of reserved memory;

The calculation was done as follows:
Amount of memory allocated: 128 MB x 0.0009765625 GB in a MB = 0.125 GB
RoundUp (300) = 300 Duration rounded to nearest 100ms
10,000,000 requests x 300 ms x 0.001 ms to sec conversion factor = 3,000,000.00
total compute (seconds)
0.125 GB x 3,000,000.00 seconds = 375,000.00 total compute (GB-s)
375,000.00 GB-s x 0.0000166667 USD = 6.25 USD (monthly compute charges)
10,000,000 requests x 0.0000002 USD = 2.00 USD (monthly request charges)
6.25 USD + 2.00 USD = 8.25 USD

5.5 Conclusions
The aim of this work is to be an academic contribution to broaden knowledge,
therefore this thesis tried to be objective. The next chapter draws conclusions
about it.

85

86

Chapter 6

Conclusions

Serverless promises very interesting benefits, such as easy scalability, high avail-
ability, fault-tolerance, pay-per-use model, changing of operations management
effort, and more. However it is not perfect, and needs to acquire more maturity. In
particular, serverless supply a very high level of abstraction, but under the hood
there are containers, virtual machines, servers, clusters, physical appliances, which
still need to be handled. The ability of the cloud provider in doing this is the key
for bringing serverless to the next level.

Maturity of serverless

To configure a function which must be executed in AWS Lambda, which is at the
forefront of the market, it is required to set a memory amount for the function,
which affects also the CPU computing power. These are are characteristic linked to
hardware, therefore don’t fit with the idea of abstraction which serverless promises.
Despite the fact which serverless promises unlimited scaling, Lambda allocates a
certain budget, called "concurrency", which is to the number of function executions
that are happening at any given time. It can be limited, re-arranged, reserved,
provisioned, changed dynamically (auto-scaling), but it is still a limit with respect
to the idea of infinite invocations.
FaaS states that a function can run somewhere in the cloud with the minimal effort.
Anyway it is required to instantiate a container and this operation can take some
time (cold-start). It is a flaw which cloud providers have to minimize.
One of the greatest advantages of serverless is that it does not require payment
for idle resources. Nevertheless, to handle the problem of cold-starts, Amazon has
devised provisioned concurrency. Its cost is affordable, but it requires fixed fees
for maintaining some resources even if they’re not used. Therefore it is a trade-off
solution between costs and performances.

87

Conclusions

Cold-start is one of the most critical technical problems, because decreasing the
warm-up times is challenging. Beyond solutions like provisioned concurrency,
solutions outside the box are still needed, which could be based on re-utilization of
multiple generic stateless layers, which is a further abstraction of the model.
Distributed infrastructure components have to operate through multiple abstraction
layers, and this makes controllability impractical and challenging. At the same
time, this complexity makes observability fundamental and takes a lot of effort.

Monitorability

Since serverless applications are event-driven, it is highly recommended defining
metrics, generating insights, analyzing real-time traffic, and adopting automation
techniques, in order to set thresholds and alerting and react to unpredictable events.
If well designed, an application can lead to cost savings if compared to traditional
architecture, but the final billing depends on a multiplicity of factors, like traffic
homogeneity, resource usage, ability of the provider in managing resources, opti-
mizations, monitoring capabilities, and so on. Moreover a serverless application
requires a certain sophistication in some activities, like monitoring and maintenance,
which come with an effort, even economical.

Costs predicting

Costs in serverless are difficult to predict, since they depend on the commitment
requested to the cloud, that is the duration of execution, the memory allocated,
the computing power used, and so on. Each event can trigger several actions,
therefore a tree of events is generated when something happens. Furthermore,
different events can be generated in different executions, as they depend on inputs
and application state. The combination of all these factors makes costs prediction
challenging. This is the reason why new figures, like FinDev, need to be better
defined, and even more efficient cost monitoring tools need to be implemented.

Public and hybrid cloud

Companies like Amazon, Microsoft, Google, Alibaba, IBM, etc., are making huge
investments on serverless. Competitiveness can be the root for a myriad of new
solutions that lead to the improvement of the existing ones. On one hand providers
offer good products, useful in solving business problems of companies, and increase
the maturity of those cloud models. On the other hand they create vendor lock-in,
which is a well known problem with public cloud providers, because each provider
has its own version of serverless architecture. Nevertheless, the concepts behind
paradigms like FaaS are common, therefore platform agnostic frameworks can
mitigate the problem. More in general, tools which doesn’t depend on a single

88

Conclusions

cloud provider can enforce industrialized practices, and enrich the whole serverless
culture.
Cloud is an opportunity to enable multiple environments optimized for specific
purposes, distribute content geographically near to users, use software which best
fits in a given use case, use certain architectural styles, and so on. This means
which many applications may not be dependent on a single cloud provider, but
may want exploit the strengths of a hybrid architecture.
The problems mentioned above can be even more complicated in this context. Plat-
form agnostic tools are needed to monitor and aggregate logs, metrics, and insights
coming from different providers, in order to build a centralized and meaningful
analysis interface for observing costs, performances, scaling, and more. Then, tools
for deploy are required in order to put a strategy in practice.

Thinking in serverless

Industrialization of practices is one of the most precious driver for the growth
of serverless, because it could mitigate the lack of patterns and consolidated ap-
proaches.
FaaS tends to make serverless seem like a set of discrete functions, therefore it’s
required to enforce a mindset oriented to macro functionalities, and identify appli-
cation apparatuses, rather than focusing only on individual functions. For doing
this, event-thinking is fundamental. Moreover, asynchronicity can be difficult to
handle, and integrating multiple and different services and making them interacting
can be challenging. When architecting a serverless application, it could be useful
to refer to more familiar models and practices.
First of all it can be useful to design workflows and components interactions through
UML diagrams, in order to have a clean and clear view of the application and
the components involved. Regarding to the implementation, the microservices
theory can be helpful. Serverless functions can be seen as part of wider bounded
components which communicate by mean of protocols with external representation
and can be deployed independently from each other. Moreover each storage can be
accessed by only one of these units and each workflow can be based on eventual
consistency approaches.
Compared to a classic microservices container-based application, a serverless appli-
cation contains further smaller isolated stateless independently deployable units,
which are functions, which are closer to the nanoservices philosophy.

89

90

Bibliography

[1] Castro P., Ishakian V., Muthusamy V., and Slominski A. The Rise of Serverless
Computing. url: https://cacm.acm.org/magazines/2019/12/241054-
the-rise-of-serverless-computing/fulltext (cit. on p. 6).

[2] Sbarski P., Cui Y., and Nair A. Serverless Architecture on AWS, Second
Edition. Manning Publications Co, 2020. isbn: 9781617295423 (cit. on p. 6).

[3] Mell P. and Grance T. Platform as a Service (PaaS) definition. url: https://
nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
145.pdf (cit. on p. 6).

[4] Mike Roberts. Serverless Architectures. url: https://martinfowler.com/
articles/serverless.html (cit. on pp. 7, 10, 21).

[5] Radoslav Danilak. Why Energy Is A Big And Rapidly Growing Problem For
Data Centers. url: https://www.forbes.com/sites/forbestechcouncil/
2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-
for-data-centers/#56c6ca985a30 (cit. on p. 8).

[6] Margaret Rouse. Power Usage Effectiveness (PUE). url: https://search
datacenter.techtarget.com/definition/power-usage-effectiveness-
PUE (cit. on p. 8).

[7] Hermann De Meer Robert Basmadjian Florian Niedermeier. Modelling and
Analysing the Power Consumption of Idle Servers. url: https://www.fim.
uni- passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/
meer/publications/pdf/Basmadjian2012c.pdf (cit. on p. 8).

[8] Introducing Firecracker. url: https : / / aws . amazon . com / about - aws /
whats-new/2018/11/firecracker-lightweight-virtualization-for-
serverless-computing/ (cit. on p. 10).

[9] Firecracker: lightweight virtualization for serverless applications. url: https:
//blog.acolyer.org/2020/03/02/firecracker/ (cit. on p. 11).

[10] Invoke AWS Lambda. url: https : / / docs . aws . amazon . com / lambda /
latest/dg/API_Invoke.html (cit. on p. 11).

91

https://cacm.acm.org/magazines/2019/12/241054-the-rise-of-serverless-computing/fulltext
https://cacm.acm.org/magazines/2019/12/241054-the-rise-of-serverless-computing/fulltext
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#56c6ca985a30
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#56c6ca985a30
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#56c6ca985a30
https://searchdatacenter.techtarget.com/definition/power-usage-effectiveness-PUE
https://searchdatacenter.techtarget.com/definition/power-usage-effectiveness-PUE
https://searchdatacenter.techtarget.com/definition/power-usage-effectiveness-PUE
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/meer/publications/pdf/Basmadjian2012c.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/meer/publications/pdf/Basmadjian2012c.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/meer/publications/pdf/Basmadjian2012c.pdf
https://aws.amazon.com/about-aws/whats-new/2018/11/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/about-aws/whats-new/2018/11/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/about-aws/whats-new/2018/11/firecracker-lightweight-virtualization-for-serverless-computing/
https://blog.acolyer.org/2020/03/02/firecracker/
https://blog.acolyer.org/2020/03/02/firecracker/
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

BIBLIOGRAPHY

[11] AWS Lambda runtimes. url: https://docs.aws.amazon.com/lambda/
latest/dg/lambda-runtimes.html (cit. on p. 11).

[12] AWS Lambda quotas. url: https : / / docs . aws . amazon . com / lambda /
latest/dg/gettingstarted-limits.html (cit. on p. 11).

[13] Managing concurrency for a Lambda function. url: https://docs.aws.
amazon.com/lambda/latest/dg/configuration-concurrency.html (cit.
on p. 11).

[14] Provisioned Concurrency for Lambda Functions. url: https://aws.ama
zon.com/it/blogs/aws/new-provisioned-concurrency-for-lambda-
functions/ (cit. on p. 12).

[15] Serverless Architectures with AWS Lambda. 2019. url: https://docs.aws.
amazon.com/lambda/latest/dg/configuration- vpc.html (visited on
08/24/2020) (cit. on p. 12).

[16] Security Overview of AWS Lambda. url: https://d1.awsstatic.com/
whitepapers/Overview-AWS-Lambda-Security.pdf (cit. on p. 12).

[17] DeBrie A. The DynamoDB Book. 2020 (cit. on p. 13).
[18] Balasubramanian G. DynamoDB Streams Use Cases and Design Patterns.

2017. url: https://aws.amazon.com/blogs/database/dynamodb-stre
ams-use-cases-and-design-patterns/ (visited on 08/31/2020) (cit. on
p. 14).

[19] AWS launches Fargate Spot. url: https://aws.amazon.com/about-aws/
whats-new/2019/12/aws-launches-fargate-spot-save-up-to-70-for-
fault-tolerant-applications/ (visited on 08/24/2020) (cit. on p. 14).

[20] AWS security compliance. url: https://aws.amazon.com/compliance/
services-in-scope/?nc1=h_ls (cit. on p. 14).

[21] AWS: Overview of Security Processes. url: https://d1.awsstatic.com/
whitepapers/aws-security-whitepaper.pdf (cit. on p. 14).

[22] Shared Responsibility Model. url: https://aws.amazon.com/compliance/
shared-responsibility-model/ (cit. on p. 15).

[23] Margaret Rouse. Definition of Security as a Service. url: https://search
security.techtarget.com/definition/Security-as-a-Service (cit. on
p. 15).

[24] Gegick M. and Barnum S. Least Privilege Principle definition. url: https:
//us- cert.cisa.gov/bsi/articles/knowledge/principles/least-
privilege (cit. on p. 16).

[25] IAM Features. url: https://docs.aws.amazon.com/IAM/latest/UserGui
de/introduction.html (cit. on p. 16).

92

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://aws.amazon.com/it/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/it/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/it/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://aws.amazon.com/blogs/database/dynamodb-streams-use-cases-and-design-patterns/
https://aws.amazon.com/blogs/database/dynamodb-streams-use-cases-and-design-patterns/
https://aws.amazon.com/about-aws/whats-new/2019/12/aws-launches-fargate-spot-save-up-to-70-for-fault-tolerant-applications/
https://aws.amazon.com/about-aws/whats-new/2019/12/aws-launches-fargate-spot-save-up-to-70-for-fault-tolerant-applications/
https://aws.amazon.com/about-aws/whats-new/2019/12/aws-launches-fargate-spot-save-up-to-70-for-fault-tolerant-applications/
https://aws.amazon.com/compliance/services-in-scope/?nc1=h_ls
https://aws.amazon.com/compliance/services-in-scope/?nc1=h_ls
https://d1.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d1.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://searchsecurity.techtarget.com/definition/Security-as-a-Service
https://searchsecurity.techtarget.com/definition/Security-as-a-Service
https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

BIBLIOGRAPHY

[26] Bruce M. and Pereira P. Microservices In Action. Manning Publications Co,
2019. isbn: 9781617294457 (cit. on pp. 17, 19).

[27] IAM Credentials. url: https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_users.html (cit. on p. 17).

[28] Vehent J. Securing DevOps. Manning Publications Co, 2018. isbn: 9781617294136
(cit. on pp. 20, 21).

[29] Vester J. DevOps vs. Siloed Cultures. url: https://dzone.com/articles/
devops-vs-siloed-cultures (visited on 08/24/2020) (cit. on p. 20).

[30] Narayan S. Products Over Projects. 2018. url: https://martinfowler.com/
articles/products-over-projects.html (visited on 08/24/2020) (cit. on
p. 21).

[31] McLaughlin T. Serverless DevOps. 2019 (cit. on p. 21).
[32] Bride L. Serverless Computing: Moving from DevOps to NoOps. url: https:

//devops.com/serverless-computing-moving-from-devops-to-noops/
(cit. on p. 21).

[33] Infrastructure as Code (IaC). url: https://www.ibm.com/cloud/learn/
infrastructure-as-code (cit. on p. 22).

[34] AWS CloudFormation template anatomy. url: https://docs.aws.amazon.
com/AWSCloudFormation/latest/UserGuide/template- anatomy.html
(cit. on p. 22).

[35] AWS CloudFormation concepts. url: https://aws.amazon.com/cloudform
ation/resources/ (cit. on p. 22).

[36] CDK constructs. url: https://docs.aws.amazon.com/cdk/latest/guide/
constructs.html (cit. on p. 23).

[37] Serverless Framewokr compared. url: https : / / www . serverless . com /
learn/comparisons/ (cit. on p. 24).

[38] World Quality Report 2019-20: Top software testing trends for CIOs. url:
https://www.capgemini.com/research/world-quality-report-2019/
(cit. on p. 31).

[39] Canalys. Cloud market share Q4 2019 and full-year 2019. 2020. url: https:
//www.canalys.com/static/press_release/2020/Canalys---Cloud-
market-share-Q4-2019-and-full-year-2019.pdf (visited on 08/24/2020)
(cit. on p. 50).

[40] Dignan L. Top cloud providers in 2020. url: https://www.zdnet.com/
article/the-top-cloud-providers-of-2020-aws-microsoft-azure-
google-cloud-hybrid-saas/ (cit. on p. 51).

93

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://dzone.com/articles/devops-vs-siloed-cultures
https://dzone.com/articles/devops-vs-siloed-cultures
https://martinfowler.com/articles/products-over-projects.html
https://martinfowler.com/articles/products-over-projects.html
https://devops.com/serverless-computing-moving-from-devops-to-noops/
https://devops.com/serverless-computing-moving-from-devops-to-noops/
https://www.ibm.com/cloud/learn/infrastructure-as-code
https://www.ibm.com/cloud/learn/infrastructure-as-code
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://aws.amazon.com/cloudformation/resources/
https://aws.amazon.com/cloudformation/resources/
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://www.serverless.com/learn/comparisons/
https://www.serverless.com/learn/comparisons/
https://www.capgemini.com/research/world-quality-report-2019/
https://www.canalys.com/static/press_release/2020/Canalys---Cloud-market-share-Q4-2019-and-full-year-2019.pdf
https://www.canalys.com/static/press_release/2020/Canalys---Cloud-market-share-Q4-2019-and-full-year-2019.pdf
https://www.canalys.com/static/press_release/2020/Canalys---Cloud-market-share-Q4-2019-and-full-year-2019.pdf
https://www.zdnet.com/article/the-top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas/
https://www.zdnet.com/article/the-top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas/
https://www.zdnet.com/article/the-top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas/

BIBLIOGRAPHY

[41] Hecht L. AWS Lambda Still Towers Over the Competition, but for How Much
Longer? url: https://thenewstack.io/aws- lambda- still- towers-
competition-much-longer/ (cit. on p. 51).

94

https://thenewstack.io/aws-lambda-still-towers-competition-much-longer/
https://thenewstack.io/aws-lambda-still-towers-competition-much-longer/

Vorrei dedicare questo spazio dell’elaborato a tutti coloro che mi

hanno donato qualcosa durante questo percorso.

Ad Antonio Pessolano per i suoi consigli illuminanti, i libri e i caffè.

Alla mia famiglia, che mi ha permesso di diventare chi sono oggi.

A Naomi, la mia roccia, compagna di vita e migliore amica.

Grazie!

	Acronyms
	Introduction
	Motivations
	Problem statements
	Methodology
	Structure of the thesis

	State of the art
	Serverless computing
	Benefits
	Drawbacks
	Future of serverless

	Serverless in AWS
	AWS Lambda
	AWS DynamoDB
	AWS Fargate

	Security in AWS
	Shared-responsibility model
	SECurity as a Service
	Least Privilege Principle
	AWS IAM
	AWS VPC
	AWS Secrets Manager
	Microservices and serverless

	Serverless in DevOps
	Moving to a new culture
	Serverless breaking changes

	Infrastructure as Code
	AWS CloudFormation
	AWS CDK
	Serverless Framework

	Monitoring
	Possible issues in serverless
	Observability
	AWS CloudWatch
	AWS X-Ray

	CI/CD pipeline
	AWS CodePipeline
	AWS CodeBuild

	Service virtualization
	Hoverfly
	Simulations
	Working modes

	Conclusions

	Case study
	The case under consideration
	The idea
	The focus of this thesis

	Designing solution
	Requirements

	Proxy
	Modes
	Key features

	Simulation
	Scenarios

	Two units
	Umarell Backend
	Proxy farm

	Placement of the proxy farm
	Flexibility

	Conclusions

	Implementation
	Requirements
	Architecture overview
	Proxy
	Umarell Backend
	Proxy farm
	Communication layer
	Testbox

	Customer REST API
	Technical stack
	Umarell Backend
	Proxy
	Proxy farm
	Testbox
	Placement of proxies

	Projects organization
	Umarell Backend project
	Umarell Proxy Farm project

	Asynchronous workflows
	Creating, starting and stopping a proxy
	Handling scenarios

	Adapt to pay-per-use model
	Study of Hoverfly
	Working modes
	How to run it
	Commands coverage problem

	Networking and security management
	Infrastructure as Code
	Umarell Backend
	Proxy farm

	DevOps Pipeline
	Stages
	Security
	CI/CD pipeline
	Monitoring and observability

	Conclusions

	Evaluation
	A microservices application
	Handling consistency
	Proxy farms managed by customers

	DevOps pipeline
	Monitoring and observability
	Testing
	Consequences of serverless

	Costs
	Umarell Backend
	Umarell Proxy Farm

	Conclusions

	Conclusions
	Bibliography

