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Abstract

This thesis is aimed at developing an algorithm able to recognize people in-
stances in grayscale pictures. This is a One-Class Classification problem where
objects of a particular class are identified compared to all other possible ones.
The class person is called positive class or target class, while other items are
referred to be in the negative class, also called alien class.
The biggest challenge is represented by the variety of objects opposed to the
target class, which does neither allow to model the external class in a univocal
way, nor to have all possible cases inside the training set.
This problem cannot be solved using traditional techniques of binary and multi-
class classifications, precisely because there are no pre-defined classes, so no
labeled data different from target class objects are available. Examples of the
class of interest are categorized just using instances of the same class.

The algorithm is built using the Deep One-class Classification (DOC), an in-
novative Deep Learning-based method targeting OCC problems in computer
vision field, like novelty detection, anomaly detection and mobile active au-
thentication.
This approach relies on the concept of transfer learning, since an external multi-
class dataset from an unrelated task, called reference dataset, is employed to
learn deep features characterizing the person class, in addition to the one-class
target dataset.
A pre-trained Convolutional Neural Network is used in combination with two
loss functions, compactness loss and descriptiveness loss, that make the vari-
ance of features extracted from the target dataset smaller and minimize the
cross-entropy loss of the reference dataset.
The proposed approach is able to achieve good results in the Area Under Curve
(AUC) of the Receiver Operating Characteristic curve.

The classification of people in photo or in video frames makes its way in different
areas, like virtual reality, autonomous driving and video surveillance. The use
of this algorithm in the latter allows to have big advantages over the user’s
privacy, since it works on the device at the tip of the net.
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“Dicono che prima di entrare in mare
il fiume tremi di paura.

A guardare indietro
tutto il cammino che ha percorso,

i vertici, le montagne,
il lungo e tortuoso cammino

che ha aperto attraverso giungle e villaggi.

E vede di fronte a sé un oceano così grande
che a entrare in lui può solo

sparire per sempre.

Ma non c’è altro modo. [...]

Solo entrando nell’oceano
la paura diminuirà,

perché solo allora il fiume saprà
che non si tratta di scomparire nell’oceano

ma di diventare oceano.”

Khalil Gibran
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Chapter 1

Introduction

1.1 Objective of the thesis
This thesis is aimed at developing a Deep Learning algorithm able to recognize
people instances in pictures.
This is a One-Class Classification problem where objects of a particular class
are identified compared to all other possible ones. The person class is called
positive class or target class, while other items are referred to be in the negative
class, also called alien class.
The biggest challenge is represented by the variety of objects opposed to the
target class, which does neither allow to model the external class in a univocal
way, nor to have all possible cases inside the training set.
This problem cannot be solved using traditional techniques of binary and multi-
class classifications, precisely because there are no pre-defined classes, so no
labeled data different from target class objects are available.
Examples of the class of interest are categorized just using instances of the same
class.

The algorithm is built using the Deep One-class Classification (DOC), an in-
novative Deep Learning-based method targeting OCC problems in computer
vision field, like novelty detection, anomaly detection and mobile active authen-
tication.
This approach relies on the concept of transfer learning, since an external multi-
class dataset from an unrelated task, called reference dataset, is employed to
correctly learn deep features characterizing the person class, in addition to the
one-class target dataset.
A pre-trained Convolutional Neural Network, the high-performance MobileNetV2,
is used in combination with two loss functions, compactness loss and descriptive-
ness loss, that make the variance of features extracted from the target dataset
smaller and minimize the cross-entropy loss of the reference dataset.
In this way, we achieve specialized features for Deep One-class Classification:
they have the two fundamental properties of compactness, which means that
objects of the same category have similar features located close to each other,
and descriptiveness, that is elements of different categories have different fea-
tures placed apart from the rest.

The training part is carried out using grayscale images, obtained from RGB pic-
tures of Open Images Dataset V4 and ILSVRC 2012 dataset, properly selected
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and pre-processed.
This choice is motivated by a future extension of the Deep One-class Classifi-
cation in InfraRed images, in order to recognize individuals in frames coming
from surveillance videos, even at night.
The testing part is realized by a template matching framework, where, firstly,
some baseline features of person intances are stored and, then, a score is gener-
ated considering the Euclidean distance between new and stored features.
There are three testing datasets, BN1, BN2 and IR, the latter containing In-
fraRed pictures, and all models are evaluated using metrics: precision, recall,
F1 score, accuracy and the Area Under Curve (AUC) of the ROC curve.
Also some graphical tools are employed to make comparisons among resulting
methods, like Receiver Operating Characteristic (ROC) curves, Detection Error
Tradeoff (DET) curves and the t-distributed Stochastic Neighbor Embedding (t-
SNE) visualization of features.
The proposed approach is able to achieve very good results in all measurements,
also compared to binary classification algorithms, which require instead a par-
ticular configuration of the training dataset.

1.2 Organization of the thesis
This work of thesis covers six chapters, whose content is presented below.

In Chapter 1 - Introduction, the main objective of the thesis is shown, with a
brief overview of its general structure.

Chapter 2 - Machine Learning offers a basic understanding of the interesting
world of Machine Learning and, later, explores Deep Learning tecniques used in
the development of the Deep One-class Classification algorithm, like Artificial
Neural Networks and Convolutional Neural Networks.

In Chapter 3 - OCC State of Art, firstly, an investigation into general concepts
of classification is made, highlighting differences with other tasks like regression.
Later, the classification of a single class is defined and explored in contrast to
binary and multi-class classifications. Finally, various applications of One-Class
Classification are presented, followed by a roundup of popular approaches used
to realize them.

Chapter 4 - Deep One-class Classification presents the method used for the de-
velopment of the people recognition algorithm, called Deep One-class Classifi-
cation. First of all, some key concepts of the method are explained, in particular
what feature learning means and what is, instead, the transfer learning. Then,
common frameworks used in Deep Learning, including the used framework in
DOC, are shown. Finally, the DOC optimization problem, the two misurable
loss functions and the training architecture are presented.
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In Chapter 5 - Deep One-class Classification of people, the current implemen-
tation of the algorithm based on Deep One-class Classification is explained.
First of all, the work platform necessary to develop the model during all phases
is described. Then, the strategy used to create an effective training dataset
is presented, with the related steps of image processing. Later, cores of DOC
are analysed: the employed network MobileNetV2, training and testing frame-
works, detailed computations for loss functions. Finally, an overview on testing
datasets and on performance measures used to evaluate all models are shown.

In Chapter 6 - Results and conclusions, all obtained results are shown through
tables and plots, finally including conclusions and suggestions on future work.
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Chapter 2

Machine Learning

In this work of thesis a One Class Classification algorithm is developed to
recognize a person or multiple people in any picture, including photos and
video frames. A Convolutional Neural Network, the powerful MobileNetV2, is
used to extract features from images for the purpose.
Convolutional Neural Networks, or simply CNNs, are the most popular Deep
Learning algorithms in the Computer Vision field, belonging to a more general
context of Machine Learning.
This chapter offers a basic understanding of the interesting world of Machine
Learning and, later, explores Deep Learning tecniques used in the development
of the Deep One-class Classification algorithm, from Artificial Neural Networks
to the amazing Convolutional Neural Networks.

2.1 Why Machine Learning
The first definition of Machine Learning is by Arthur Samuel [1] and dates back
to 1959:

“Machine Learning is the field of study that gives computers the
ability to learn without being explicitly programmed”.

A question naturally arises, how is it possible that a machine learns without
guidelines defined by humans (“being explicitly programmed”)?
The answer exists and is to rely on data.
Actually, machine learning models are not built using pre-determined and sta-
tionary rules, but they evolve following available data structures. This is why
Machine Learning approach differs from traditional ones.
Consider the following problem

y = f(x),
where x is the input, f is the function that represents the model and y is the
output.
The traditional approach suggests us to write specific rules, through which we
can identify a fixed function f. This function is fed with x and must generate
an output close to y, for every couple of x and y. When the output is evaluated
and it is far from the desired one, rules are re-written and the model is tested
again.
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The Machine Learning approach, instead, uses an iterative process of learning,
relying on data. Model f is not locked and parameters are not strictly defined,
continuosly changing to produce a predicted output that matches the desired
one y.
In figure 2.1, the two approaches are sumarized.

(a) Traditional ap-
proach

(b) ML approach

Figure 2.1: Different approaches in solving a problem. Source:
A. Géron [1]

It is necessary to cite an upcoming description of Machine Learning, provided
by Tom Mitchell in 1997 [2]:

“A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance
on T, as measured by P, improves with experience E”.

The unique allowed strategy in this context is, therefore, to learn from experi-
ence E in order to improve performances related to a task T.

Machine Learning strategies are widely used nowadays and provide new services
that were not feasible, even thinkable, before.
ML algorithms allow also to handle the enormous amount of data we are inex-
orably faced with today.
There are a lot of application fields of Machine Learning, from automotive to
medicine, passing by health care, finance and space. Some practical examples
can be medical image segmentation and classification to automate diagnosis
process, self driving devices like Park Assist and Lane Keep Assist, speech
recognition, person detection in video surveillance and so on.
Machine Learning permeates our lives and it is visibly changing the present.
Machine Learning is definitely the future.

2.2 Some pieces of history
Some of the most significant steps that have brought Machine Learning where is
today are here presented. In the figure below (fig. 2.2) a summarising timeline
is shown:
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Figure 2.2: Machine Learning Timeline. Source: F. Vázquez
[3]

Everything about Machine Learning starts in 1943, when a paper on human
brain is published. In “A Logical Calculus of Ideas Immanent in Nervous Ac-
tivity”, Warren McCulloch and Walter Pitts show how biological neurons might
work. Later, they model a neural network with electrical circuits, which is the
first artificial neuron emulating neuron activity in our brain.
The Threshold Logic Unit (TLU) is a later generalization of the McCulloch-
Pitts model.

2.2.1 From 1950s to 1970s
About ten years later, in 1952, Arthur Samuel builds a computer program that
learns from its mistakes and gets better while playing checkers.
In 1958, Frank Rosenblatt introduces the first pillar of current Neural Networks:
the perceptron. It is a one-layer neural network which is able to recognize simple
patterns and shapes associated to an image.
The following year, in 1959, in the wake of perceptron, Bernard Widrow and
Marcian Hoff propose ADALINE - ADAptive LINear Element - at Stanford
University. It is still a single layer neural network, where weights are tuned
according to the weighted sum of the inputs.
Its evolution is called MADALINE - Many ADALINE - a three-layer fully con-
nected artificial neural network that successfully manages to take off echoes over
phone lines as adaptive filter. For the first time, a concrete problem of every
day life is solved by an ANN.

In the next decade, we see a crucial decline in the interest of Machine Learning
field and there are no steps forward in ML research.
The enthusiasm is curbed by the pubblication of the book Perceptrons written
by Marvin Minsky and Seymour Papert, where some limitations of the Rosen-
blatt net are presented: it is capable of learning only linearly separable patterns,
not even an XOR function.
Furthermore, the diffusion of Von Neumann architecture, easier to understand
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than neural networks, and technological restrictions that slowed down the ad-
vance of multi-layer networks, bring to the standstill.

2.2.2 From 1980s to 2000s
Only in the 80s, research in neural network field takes hold again: the movement
called connectionism makes his way, ending the “long winter”.
In 1982, John Hopfield presents a network with bidirectional lines and in 1986
Geoffrey Hinton, in cooperation with David Rumelhart and Ronald J. Williams,
discloses the revolutionary backpropagation algorithm.
Finally, multi-layer neural networks can be easly trained.
In 1997, the IBM computer Deep Blue beats the world chess grandmaster and in
the next year, Yann LeCun at AT&T Bell Laboratories proposes a new type of
neural networks, the actual Convolutional Neural Networks, that reaches good
accuracy in digit recognition.
In 2006, the publication of the paper “A Fast Learning Algorithm for Deep
Belief Nets” by Hinton, Simon Osindero and Yee-Whye Teh marks a resonable
turning point and lays the foundation of a new field of Machine Learning, the
Deep Learning. Training deeper and more complex multiple-layer networks is
no longer infeasible.
Another important contibution in Deep Learning methods is the article “Greedy
Layer-Wise Training of Deep Networks” by Yoshua Bengio et al. dated in 2007.
Geoffrey Hinton, Yoshua Bengio and Yann LeCun are actually referred to be
the “Godfathers of Deep Learning”.

2.2.3 21st century
From then on, the power of Machine Learning was undeniable and gradually
ML architectures overtook traditional methods in any field.
The very first important projects are, for example, GoogleBrain (2012) by
Google, a deep neural network that is able to detect patterns in images and
videos, AlexNet (2012) that introduces the use of GPUs and CNNs, and Deep-
Face (2014) by Facebook for person recognition.
All of that would not have been possible without:

• the increasing quantity of data available for training phase, that nowadays
has reached million of examples in any application;

• the unthinkable growth of computational power, necessary to train deep
Neural Networks;

• the improvement of training algorithms.

2.3 Artificial Neural Networks
Our brain allows us to constantly and efficiently learn. We are able to under-
stand effects of our behavior and accordingly act, thanks to experience.
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This is why researchers wanted to identify mechanisms behind human brains
and, later, they tried to artificially reproduce them using simple mathematical
models.
Artificial Neural Networks are designed just to emulate biological architecture of
our brain. They belong to the category of supervised learning algotithms, where
labeled data are present during the training: the desired output is available, in
addition to his input, to properly guide the evolution of model parameters.

The basic unit of a neural network is the neuron. Inside an Artificial Neural
Network there are a lot of neurons connecteted together: each of them takes as
input some quantities and produces a single output that can be sent to other
units.
Neurons are also organized in layers, creating a defined structure with the input
layer, the first layer that acquires external data, the output layer, the last one
of the network, and a variable number of hidden layers between them.
This kind of structure allows neurons from one layer, to have connections with
only immediately previous and immediately next layers.
When all neurons of a layer have connections with all units of the following
layer, the resulting Neural Network is said to be fully-connected.

Depending on the number of hidden layers, we can distinguish two types of nets
(in figure 2.3): shallow Neural Networks, that have only one intermediate layer,
and deep Neural Networks, that have a lot of hidden layers and are able to learn
ever more complex functions.

Figure 2.3: A shallow Neural Network and a deep Neural Net-
work with 4 hidden layers. Source: M. Terry-Jack [4]

In order to understand the working mechanism of Artificial Neural Networks,
the biological neuron stucture and the first artificial neuron models are pre-
sented.

2.3.1 Neuron models
A brain neuron is the main component of nervous tissue. His structure is shown
is figure 2.4: it incudes the soma, that is the cell body, some dendrites, that are
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filaments with tree shape, and the axon, a major extension. In the final part of
the axon there are some synapses, little protuberances that make the axon in
contact with other neurons, allowing the propagation of the electric impulse.

Figure 2.4: Neuron structure

Neurons receive electrochemical inputs at the dendrites and they send signals
through the axon. These processes are both electrical and chemical.
It is foundamental to underline that a neuron is activated only if the sum of
the electrical inputs is powerful enough to fire it. If the received signal does not
surpass a certain threshold, the neuron does not transmit the output along the
axon and the other neurons don’t receive the above.

Making a weighted sum of inputs and subsequently determining a binary out-
come if that sum overcomes a threshold or not, is an easy task executed by a
single neuron. Our brain is made up of billions of neural cells which, performing
this activity millions of times, carry out very complicated tasks.
This is the starting point to understand and shape an artificial neuron model.

McCulloch-Pitts neuron

It is presented in 1943 by Warren McCulloch and Walter Pitts and it is consid-
ered the first mathematical model of a neuron (fig. 2.5).
The structure has several binary inputs (one or more) and only one binary
output. This kind of neuron is active when more than a fixed number of in-
puts are on. It follows that any logical preposition can be built with this model.

In the picture 2.5, xi are the binary inputs, g is the sum of them, f is the
decision function that acts in accordance with the number of active inputs (i.e.
the threshold value) and y is the binary output.
For example, considering that a neuron fires when two inputs turn on, so the
threshold is 2, simple boolean operations can be obtained, as shown in figure
2.6.
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Figure 2.5: McCulloch-Pitts neuron. Source: A. L. Chandra
[5]

Figure 2.6: Simple boolean operations. Source: A. Géron [1]

Threshold Logic Unit

The Threshold Logic Unit (TLU), in figure 2.7, is a generalization of McCulloch-
Pitts model. The key points of TLUs are the following:

• inputs are no longer binary on/off values but numbers;

• all inputs are modified by weights, that are all equal and determine the
importance of each of them;

• inputs can be excitatory or inhibitory;

• a certain threshold θ and one binary output are still present;

• if there are no inhibitory signals, all weighted inputs are summed together
and an activation function is applied: the output is 1 if the sum is greater
than the threshold, otherwise it is 0.

The TLU behaviour is sumarized by this equation:

y =

 1 :
nq
j=1

wjxj ≥ θ ∧ no_inhibition

0 : otherwise

Similarities between the biological neuron and TLU model are evident: synapses
are represented by links among neurons and the electrical signal that flows
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Figure 2.7: Threshold Logic Unit model

through axons is now a number. There are weights that determine the con-
ductivity of the synapses and an activation function that plays the role of the
threshold, beyond which the neuron fires.
What drives researchers to go further is the fact that this network does not
learn. All weights and connections must be set manually, so there are no real
benefits compared to standard methods.

Perceptron

The perceptron (fig. 2.8) is introduced by Frank Rosenblatt in 1958 and it is
based on TLU with an extra input term fixed to 1.

Figure 2.8: The perceptron. Source: Deep AI [6]

The key points of perceptrons are the following:

• the inhibitory synapses are gone;

• weight and threshold values can be different from each other;

• weights can have positive and negative values;

• finally a learning algorithm is present to automatically tune weights and
biases.
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The equation describing the perceptron behaviour is very close to the TLU one:

output =


0 :

nq
j=1

wjxj ≤ threshold

1 :
nq
j=1

wjxj > threshold

In order to semplify the notation, we can make some modifications.
Considering w as the row vector of weights and x as the column vector of inputs,
the summation can be replaced by a dot product: w · x ≡ q

j wjxj.
Also, the threshold parameter is changed in perceptron’s bias: b ≡ -threshold.
The bias is something that indicates how difficult is to change the output from
0 to 1. Actually, when b is a very large positive number, it’s very simple to
have perceptron’s output equal to 1; on the contrary, having a very negative b,
makes it harder.
The equation is now:

ŷ =
I

0 : w · x + b ≤ 0
1 : w · x + b > 0

The absolute innovation in Rosenblatt’s perceptron, by returning to the last
key point, is the introduction of a learning algorithm.
A network composed by perceptron units affords not only to compute any logical
function, since it implements NAND gates that are universal for computation,
but also to learn how to solve problems by its own!
It is no more necessary to set weights and biases by hands, they are tuned in
an automatic way thanks to some learning rules.

The learning procedure takes inspiration from what Donald Hebb proposed in
1949 in his book “The Organization of Behavior”. The Hebb’s rule is synthetized
by Siegrid Löwel as “Cells that fire together, wire together”.
This means that when two neurons are activated together and several times,
the connection between them is reinforced: this process is the foundation of
learning.
It follows that neuron weights are updated looking at the error that the network
does in making a prediction. Fixing a certain training instance, the error δj is
the difference between yj, the target output of the jth output neuron, and ŷj,
the actual output of the jth output neuron.
The correction of the weight between the ith input neuron and the jth output
neuron ∆wi,j is affected by δj, that tells how far the actual output is from the
desired output, by a quantity η called learning rate and by xi, that is the ith
input value of the current training instance.
Equations can be summarised as:

δj = yj − ŷj

∆wi,j = η · δj · xi

w
(next_step)
i,j = wi,j + ∆wi,j
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It is simple to see that connections which minimize δj are reiforced: if ŷj is very
far from yj, the error is a large number and weights wi,j at the next step will
be massively adjusted. Otherwise, if the difference is small, ∆wi,j will be small
too and weights are modified accordingly.

Sigmoid neurons

In a neural network, learning means that each unit changes its weight and bias
in order to produce a wished final output.
If we want to reach good results, this procedure must be done gradually: weight
values change bit by bit and the network behaviour gets little closer to the
desired one, as shown in figure 2.9.

Figure 2.9: The learning procedure. Source: M. Nielsen [7]

These slow adjustments are not possible in a network of perceptrons!
The activation function of this kind of units is a step function (figure 2.10) and
produces either 0 or 1, according to a certain threshold. Therefore the output is
completely flipped, even with small changes in weights/biases. Sharp variations
in network output causes blindness in learning steps.

Figure 2.10: The Step function. Source: A. Tartaglia [8]

A new type of activation is needed in order to correctly learn: the sigmoid
function, also called logistic function, represented in picture 2.11.
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σ(z) = 1
1 + e−z

Figure 2.11: The Sigmoid function. Source: A. Tartaglia [8]

Neurons with the sigmoid activation are referred to be sigmoid neurons.
They have continuous outputs with any values between 0 and 1:

z = wx + b −→ σ(z) = σ(wx + b) = 1
1 + e−(

q
i
wixi+b)

The sigmoid function is a soft version of the step activation and, most of all, it
is differentiable in every point, essential requirement to compute the gradients
and later tune the weights and biases.
A sigmoid neuron is used quite often as output unit of a Neural Network for
binary classification problems.

Other activation functions

We have seen some activation functions like the step function in the perceptron
and the sigmoid function in the sigmoid neuron.
Other activations are commonly used in Neural Networks and are presented
hereafter.

Linear The linear activation is the simplest one: it creates an output identical
to the input and it is represented by a straight line with slope equal to 1 (fig.
2.12).
It is like there is no activation at all, so:

linear(z) = a = z =
NØ
i=1

wixi + b

Normally, linear activation functions are flanked by non-linear ones.
If we use only linear activation functions in the network, we will be able to
compute solely linear functions, no matter how many layers are present or the
whole structure complexity. A model with linear hidden layers implements just
a standard logistic regression, like there were no hidden layers.
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Figure 2.12: The linear function. Source: S. Sharma [9]

Elaborate mappings are learned by the model thanks to non-linearities and,
therefore, the combination of various activation functions is aimed to introduce
them in the Artificial Neural Network.

Tanh The tanh function is shown in figure 2.13 and its equation is:

tanh(z) = ez − e−z

ez + e−z

It is very similar to the sigmoid function, but has a different output range: it
is between -1 and 1 instead of 0 and 1.
The tanh function is widely used because it works better compared to sigmoid
one: the mean of activations is close to 0, which signifies that data are zero-
centered and makes the learning for next layers simpler.
Neurons with this activation function have this kind of output:

z = wx + b

a = ŷ = tanh(z)

The downside of both sigmoid and tanh functions is that small gradient is
produced when z is very large or very tiny, corresponding to points with a flat
slope. This slows down the gradient descent and also leads to the vanishing
gradient problem.

Figure 2.13: The tanh function. Source: A. Tartaglia [8]
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ReLU ReLU stands for Rectified Linear Unit (fig. 2.14). Its equation is:

ReLU(z) = max(0, z)

When z > 0, the output is exactly z and the derivative is 1; when z < 0 the
output is 0, as the unit is inactive, and the derivative is 0.
It is the default choice for the activation function in hidden units, because it
produces better performance in training deep networks with respect to sigmoid
and tanh activations. In practice, most of hidden units have z > 0, so the slope
of ReLU is pretty different from 0, pushing the neural network to learn faster.

Figure 2.14: The ReLU function. Source: A. Tartaglia [8]

Leaky ReLU The leaky ReLU activation is an alternative version of ReLU.
It is called "leaky" because it has a slight slope when z is less than or equal
to 0. It is originated in order to overcome the non-differentiability problem of
ReLUs, still giving a small quantity when z < 0.
The Leaky ReLU function is represented in figure 2.15 and its equation is:

leakyReLU(z) = max(αz, z)

The parameter α is a small number, usually equal to 0.01.
This activation function works better than others, but is not utilized as much
in practice.

Softmax The softmax activation function is generally used in the final layer
of a multi-class classifier and can be seen as a generalization of the logistic
regression.
This activation normalizes the output vector of a network in the way that all
components belong to the intervall (0,1) and they sum up to 1. The obtained
real numbers can be associated to the discrete probability distribution among
classes, whose number matches the number of units in the output layer.
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Figure 2.15: The leaky ReLU function. Source:S. Sonawane
[10]

If we consider the last layer L that has N neurons, the softmax function returns:

softmax(zL) = aL = ez
L

Nq
i=1

ti

,

where ti are the elements of vector t, that is:

t = ez
L

.

Hence, each component of the activation aL is:

aLi = ti
Nq
i=1

ti

and represents the probability of an instance of belonging to a particular class
since:

NØ
i=1

aLi = 1.

Once explained the unit model and the different activations, it’s time to com-
bine all neurons to build a complete Artificial Neural Network (simply called
Neural Network).

2.3.2 The architecture of Neural Networks
In the introduction part of section 2.3, some shallow and deep Neural Networks
are shown.
They are both feedforward Neural Networks, because no loops are present in
the model. Inside these nets the information moves only in one direction, from
input layer, passing through hidden units, and never goes back. No cycles are
allowed as well as there is no memory of signals: the output depends only on
the actual input.
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On the opposite side, there are recurrent Neural Networks. Here loops are ad-
mitted and output values of an higher level layer can be used as input of an
erlier layer. Therefore, a temporal dynamic behaviour is established.
In this work of thesis only feedforward Neural Networks will be treated, by re-
ferring to them as Neural Networks.

First of all, a clarification on Neural Network parameters is presented.
We have already seen that each neuron performs two actions with its inputs:
it makes a weighted sum, adding a bias terms, and applies to the latter an
activation function σ:

z = w · x + b

y = a = σ(z)

Recall that only the first equation contains vectorial quantities, that are x, the
column vector of inputs, and w, the row vector of weights.
Other terms are, instead, real numbers: b is the bias term, z is the intermedi-
ate output to which function σ is applied and a or y is the output of the neuron.

A Neural Network is composed by several neurons, organized in layers.
From now on, all single parameters will have an apex, to denote the layer the
parameter belongs to, and a subscript, to identify which neuron the parameter
is referred to.
Additionally, L is commonly used to specify the total number of layers and nl

is the number of units in layer l.
The equations that describe the behaviour of any layer l in an Artificial Neural
Network are:

zl = W lal−1 + bl

al = σ(zl).

In particular parameters of a generic layer l are:

• al−1 ∈ (nl−1, 1): vector of activations of previous layer, that is the input
vector of the lth layer;

• W l ∈ (nl, nl−1): matrix of weights of current layer l that links al and al−1;

• bl ∈ (nl−1, 1): vector of biases of current layer l;

• al ∈ (nl−1, 1): vector of activations of current layer l.

In figure 2.16 a Neural Network with some highlighted parameters is shown: it
has three neurons in the input layer (n0=3), five neurons in the 1st and 2nd
hidden layers (n1=n2=5), three neurons in the 3rd one (n3=3) and the last layer
has one output neuron (n4=1). Notice that activations of layer 0 corresponds
to the input vector x, a0 ≡ x.
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Figure 2.16: Parameters of a Neural Network

As an example, equations of the first two hidden layers and of the output layer
are shown:

z1 = W 1a0 + b1

a1 = σ(z1)

z2 = W 2a1 + b2

a2 = σ(z2)

and

z4 = W 4a3 + b4

a4 = σ(z4).
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The size of each parameter is:

a0 ∈ (3, 1)
z1, b1, a1 ∈ (5, 1)

W 1 ∈ (5, 3)

z2, b2, a2 ∈ (5, 1)
W 2 ∈ (5, 5)

a3 ∈ (3, 1)
z4, b4, a4 ∈ (1, 1)

W 4 ∈ (1, 3).

2.3.3 Learning in Artificial Neural Networks
So far, all models and parameters characterizing an Artificial Neural Network
have been exposed.
lt’s time now to describe the main ingredients that bring Neural Networks to
correctly tune these parameters and, actually, to learn.

Cost function

The first essential component to train weights and biases is the cost function,
also called loss function.
The cost function is a quantity that is periodically evaluated during trainings
because it quantifies how well the learning is going.
It is computed using the actual predictions, coming as outputs from the network,
and the training examples, m input-output pairs that belong to the training set:

{(x1, y1), (x2, y2), ..., (xm, ym)}.

Using the subscript i to consider the ith example in the training set, generic
quantities are:

• xi: actual input of the network;

• yi: desired and known output related to xi;

• ŷi: actual predicted output when xi is fed, i.e. ŷi=σ(wxi+b).

During the training, the generic input xi passes through the entire Neural Net-
work and produces the output ŷi.
At the end of this forward propagation step, the cost function C(w,b) is com-
puted as the error between the target output yi and the predicted one ŷi.
This quantity depends on the collection of all weights in the network and on all
the biases and it must be minimized, because we want ŷi ≈ ŷi.
The procedure ends when parameters w and b that minimize the overall cost
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function are found.
Learning, in summary, is to adjust all weights and biases until the network pro-
duces the desired outputs.

A classical cost function is the quadratic cost function, known also as Mean
Square Error and L2 loss:

C(w, b) = MSE(w, b) = 1
2m

mØ
i=1

(ŷi − yi)2.

It is the average of squared differences between predictions and actual outputs.
It is always positive because each term of the sum is positive. Consequently,
minimizing C(w,b) is equal to have C(w,b) ≈ 0, where each squared difference
tends to 0, since ŷi ≈ ŷi for all m training inputs.
The goal of this training is to find parameters w and b for which C(w,b) ≈ 0.

Other cost functions

In addition to the Mean Square Error, there are lots of commonly used loss
functions. No absolute rules exist to determine the loss function cut out for us.
Some of crucial factors can be: the type of problem to solve, a regression or
a classification probem, the configuration of the output layer that leads to a
binary or to a multi-class classification problem, the accuracy to reach, and so
on.

Mean Absolute Error The Mean Absolute Error is the average of the sum
of absolute differences between predictions and actual outputs:

MAE(ŷ, y) = 1
m

mØ
i=1

|ŷi − yi|.

It is also called L1 loss since the magnitude, instead of square, is computed.
The MAE cost is more robust against outliers than MSE one, but its gradient
is not easy to calculate.

Cross Entropy The cross entropy loss is used in classification problems, in
which outputs are probability distributions between 0 and 1.
The loss is defined as

CE(ŷ, y) = −
CØ
i=1

yilog(ŷi), (2.1)

where yi is the ground truth vector, ŷi is the estimated output coming from the
network and C is the number of different classes in our problem.
When the number of classes in equation 2.1 is equal to 2, we are faced with a
binary classification problem and the loss is:

CE(ŷ, y) = −
C=2Ø
i=1

yilog(ŷi) = −y1log(ŷ1) − y2log(ŷ2).
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It can be re-written simply as

CE(ŷ, y) = −ylog(ŷ) − (1 − y)log(1 − ŷ),

because the output neuron has a sigmoid activation, that gives only two prob-
abilities with a sum equal to 1: y1 = 1 − y2 and ŷ1 = 1 − ŷ2.
In this way,

• if y = 1: the loss becomes −log(ŷ) and its minimization implies a large
value of ŷ, so ŷ close to 1;

• if y = 0: the loss is −log(1− ŷ) and its minimization implies a small value
of ŷ, so ŷ close to 0.

Optimization algorithm: Gradient Descent

The process of minimization can be easly visualized when parameters are less
than two.

In the image below (fig. 2.17), for example, the cost function C has only one
dimension, referred as v1. The minimum of C(v1) is the red dot and corresponds
to v∗

1.

Figure 2.17: Minimization of a cost function with one param-
eter

In picture 2.18, instead, C depends on two parameters, v1 and v2. It can be
depicted as a surface plotted in the plane generated by (v1, v2) and its minimum
is again highlighted in red.

Generally, minimizing a cost function C(w,b) in Artificial Neural Networks is
not a simple procedure because the number of dimensions is higher than two.
There are plenty of parameters which are all weights and all biases introduced
by neurons.
Since calculus in minimizing this type of cost functions is not effective, another
approach is taken: updating parameters to reach the minimum using an opti-
mization algorithm.
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Figure 2.18: Minimization of a cost function with two param-
eters. Source: M. Nielsen [7]

We will firstly analyze the easiest algorithm, called gradient descent.
This optimizer goes "downhill" on a cost function C thanks to the gradient
computation.
At first, the mechanism is described qualitatively using the one-dimensional
case in picture 2.19. The presented cost function C(w) has one parameter for
the sake of simplicity.

Figure 2.19: Gradient descent in unidimensional case. Source:
S. Bhattarai [11]

We start from a random point in the left part of the curve. The derivative of
the cost function with respect to the parameter w is computed as

dC(w)
dw

and represents the slope of the function in that point, which is negative. In order
to move towards the minimum direction, we have to go to the right, making a
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positive update with a bigger w. The operation done by gradient descent is:

w := w − η
dC(w)

dw
.

The parameter η is the learning rate and controls how big is the step we make
at each iteration. It is always a positive real number.
This update makes sense even when the random point belongs to the right part
of the curve. The derivative is now positive and, according to the formula, the
parameter at next iteration becomes smaller. We move therefore to the correct
left part, following the minimum direction.

A more rigorous discussion is presented below, generalizing the gradient descent
mechanism to several parameters.
A cost function C(v) that depends onm variables v=(v1,v2,..., vm) is considered.
If each parameter vi has a variation of ∆vi, also the the cost function C has a
change, quantified as:

∆C ≈ ∂C

∂v1
∆v1 + ∂C

∂v2
∆v2 + · · · + ∂C

∂vm
∆vm. (2.2)

The previous equation is made compact, defining the array of all variations ∆v
and the gradient of the cost function ∇C as the vector of the partial derivatives,
as follows:

∆v ≡ (∆v1, ∆v2, ..., ∆vm)T

∇C ≡ ( ∂C

∂v1
,

∂C

∂v2
, ...,

∂C

∂vm
)T .

The equation 2.2, therefore, becomes:

∆C ≈ ∇C · ∆v.

Remember that the aim of the gradient descent is to minimize the cost function
acting on the parameters: it is finally time to choose ∆v, the variation of
parameters, in the way that it makes ∆C, the variation of the cost function,
negative.
Supposing to have

∆v = −η∇C,

the preceding equation is re-written in this way:

∆C ≈ −η∇C · ∇C = −η||∇C||2.

If we change v like above, C will always decrease and never increase: ∆C is
forced to be negative because the quantity ||∇C||2 is always greater or equal to
0. The goal is reached.
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The update rule coincides with the one submitted in the semplified case and
can be sumarized for all weights and biases as:

wi := wi − η
∂C

∂wi

bi := bi − η
∂C

∂bi
.

Updating parameters in this way, in the opposite direction of the gradient, de-
crease C up to the global minimum.

Particular attention must be paid to the choice of learning rate: a small value
of η can require too much time for training, while a large value of η makes
computations fast, but can lead to an unstable behaviour with ∆C > 0.

Other optimization algorithms

Using an optimization algorithm enables to easily train our Artificial Neural
Networks. Large dataset with several training examples can make this proce-
dure slow, so selecting a good optimizer is foundamental to speed up the entire
training.
Variants of the gradient descent and other optimizers are here presented.

Batch gradient descent The tecnique called vectorization lets us to manage
multiple elements from the training set. Each of them is a (x,y) pair forming X,
that is the collection of input vectors of the network and Y, that is the collection
of the related known target outputs. Consequently, our set is:

X ∈ (nx, m) = [x1, x2, x3, x4, ..., xm]
Y ∈ (1, m) = [y1, y2, y3, y4, ..., ym].

If the gradient descent is applied to the whole training set, we call it batch
gradient descent. In this scenario, one step of gradient descent is taken only
after all m examples are processed. The entire procedure is very slow for large
dataset, even when using the vectorization, and it is not feasible if the data
don’t fit in memory.
The batch GD proceeds to the minimum with big steps without oscillations,
like shown in figure 2.21(A).

Mini-batch gradient descent In order to overcome issues related to batch
gradient descent, the dataset is splitted into smaller training sets, known as
mini-batches with a size, obviously, lower than the one of the entire dataset
(usually from 64 to 512).
For example, considering the size of each mini-batch equal to 64, the set is
splitted as shown in figure 2.20.
In this scenario we can use the mini-batch gradient descent, where one mini-
batch at time is processed.
Since a mini-batch contains a defined number of training examples, they are all
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Figure 2.20: Training set splitted in mini-batches. Source:
Andrew Ng [12]

fed in parallel in the network and the progress in updating parameters is done
after each mini-batch is processed.
In figure 2.21(B), we see progressive updates with some oscillations typical
of mini-batch gradient descent: the cost function might not decrease at every
iteration because a particular mini-batch could have an higher cost with respect
to the previous one.
Anyway, it is necessary to define the quantity called epoch, that indicates a
single pass through the training set. Our training will last many epochs till the
convergence of the algorithm.
The mini-batch gradient descent is the most used method for training deep
Neural Networks.

Stochastic gradient descent If the mini-batch size is 1, we are facing the
stocastic gradient descent. Here, parameter update is performed after each
training example is processed, so the speed up of vectorization is lost.
Frequent updates with high variance lead to high oscillations, like shown in
figure 2.21(C), and sometimes the global minimun is never reached because
SGD can fall in local minima.

Momentum This method works faster than standard gradient descent ba-
cause it keeps track of the direction of gradients. The momentum allows a faster
learning along the direction of the minimum and damps oscillations along the
other one, that usually slow the process.
The quantity that stores past updates is the exponentially weighted average of
the gradient at previous steps, represented in the equations by Vdw and Vdb.
At each iteration, dw = ∂C

∂w
and db = ∂C

∂b
are computed on current mini-batch
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(a) Batch gradient
descent

(b) Mini-batch
gradient descent

(c) Stochastic gra-
dient descent

Figure 2.21: Variants of gradient descent. Source: Andrew Ng
[12]

and, then, the updates are performed:

Vdw = βVdw + (1 − β)dw

Vdb = βVdb + (1 − β)db

w := w − ηVdw

b := b − ηVdb.

The momentum is characterized by the parameter β, that controls the exponen-
tially weighted average. For example, the last 10 gradients will be considered
in the average if β = 0.9.
The term η is, instead, the well know learning rate.

RMSprop Also the Root Mean Square prop method speeds up the gradient
descent.
Here, the exponentially weighted average of the squares of derivatives is stored
in Sdw and Sdb and updates contain these terms to adapt the learning rate. At
each iteration, dw = ∂C

∂w
and db = ∂C

∂b
are computed on current mini-batch



2.3. Artificial Neural Networks 29

and, then, the updates are performed:

Sdw = β2Sdw + (1 − β2)dw2

Sdb = β2Sdb + (1 − β2)db2

w := w − η
dw√

Sdw + Ô

b := b − η
db√

Sdb + Ô
.

In this way, η can be a large number without diverging, while Ô is introduced
to ensure numerical stability.

Adam The Adam optimizer is the most effective in training Neural Networks
with very different architectures. It puts together benefits from RMSprop and
momentum.
It computes the exponentially weighted average of past gradients through Vdw
and Vdb and the exponentially weighted average of the squares of past gradients
through Sdw and Sdb. A correction is made on all parameters and, finally, the
update is done as follows:

Vdw = β1Vdw + (1 − β1)dw, Vdb = βVdb + (1 − β)db

Sdw = β2Sdw + (1 − β2)dw2, Sdb = β2Sdb + (1 − β2)db2

V corrected
dw = Vdw/(1 − β1), V corrected

db = Vdb/(1 − β1)
Scorrected
dw = Sdw/(1 − β2), Scorrected

db = Sdb/(1 − β1)

w := w − η
V corrected
dwñ

Scorrected
dw + Ô

, b := b − η
V corrected
dbñ

Scorrected
db + Ô

.

Backpropagation

We have seen that the gradient descent is able to minimize a cost function C,
updating parameters with gradient computation.
The gradient contains partial derivatives of the cost function with respect to
each of all parameters: ∂C

∂wjk
and ∂C

∂bj
.

In Artificial Neural Networks the number of variables is very huge, because a
single neuron introduces a weight wjk and a bias bj and there are many layers
with a lot of units.
Consequently, the computation of every single derivative is unfeasible.
The backpropagation algorithm allows to calculate the gradient one layer at time
in an efficent way, reusing quantities already computed and iterating backward
from the last layer through the chain rule.
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The four fondamental equations of the backpropagation algorithm are the fol-
lowing:

1. δL = ∇aC ¤ σÍ(zL)
2. δl = ((wl+1)T δl+1) ¤ σÍ(zl)

3.
∂C

∂blj
= δlj

4.
∂C

∂wl
jk

= al−1
k δlj

First of all, the term δl is the error vector associated with the lth layer, com-
posed by all errors δlj of the jth neurons in that layer.
Starting from the output error δL, subsequent quantities δl are derived and,
then, partial derivatives are computed using the third and fourth equations.

In particular,

• the 1st equation computes the output error δL and is presented in a matrix-
based form. The symbol ¤ indicates the Hadamard product, that is the
elementwise product of two vectors.
Each element of δL is

δLj = ∂C

∂aLj
σÍ(zLj ),

where ∂C

∂aLj
indicates how fast the cost function changes with respect to

the jth output activation aLj and σÍ(zLj ) measures how fast the activation
function σ changes with respect to zLj .

Therefore, ∇aC is a vector that incorporates all ∂C

∂aLj
.

Elements of the above equation can be easily computed and some of them
depend on the form of the chosen cost function.

• The 2nd equation permits the computation of the error δl for any layer l
in the network. Each one is obtained through the known quantity δl+1 at
next layer l + 1, carrying the error backward across all layers.

• The 3rd equation, instead, describes how the cost changes with respect to
any bias. The derivative is computed thanks to δlj given by the previous
equation.

• In the last equation, the 4th equation, the rate of the change of C with
respect to any weight is shown. The effect is that, when the activation of
the neuron input is small, the gradient is small too and the weight has no
big changes during the gradient descent.
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Backpropagation: a practical sample

An implementation of the backpropagation algorithm is now presented through
a practical sample.

Figure 2.22: A two-layer Neural Network

The above Artificial Neural Network has only two layers (L=2) for simplicity,
whose quantities are marked by an apex.
The steps are:

• Input: the input x is fed in the network.

• Feedforward: for each layer, zl and al are computed:

z1 = W 1x + b1 (2.3)
a1 = σ(z1) (2.4)

(2.5)
z2 = W 2a1 + b2 (2.6)
a2 = σ(z2). (2.7)

At the end, the cost function C(a2,y) is calculated.

• Outputerror: δL is computed:

δ2 = ∂C

∂z2 = ∂C

∂a2
∂a2

∂z2 = ∂C

∂a2 σÍ(z2)

• Backpropagation: for each layer δl is computed:

δ1 = ∂C

∂z1 = ∂C

∂a1
∂a1

∂z1 = ∂C

∂a1 σÍ(z1).

The quantity ∂C

∂a1 can be re-written as:

∂C

∂a1 = ∂C

∂z2
∂z2

∂a1 = δ2W 2

and so,

δ1 = W 2δ2σÍ(z1).
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Here, the already computed error δ2 is reused at earlier layer in the com-
putation of error δ1.

• Output: gradients are given by

∂C

∂W 2 = ∂C

∂z2
∂z2

∂W 2 = δ2a1

∂C

∂b2 = ∂C

∂z2
∂z2

∂b2 = δ2

because, from equation 2.6, we have that ∂z2

∂W 2 = a1 and ∂z2

∂b2 = 1.

2.4 Convolutional Neural Networks
Convolutional Neural Networks are a type of deep Neural Networks aimed at
dealing with images.
It is not easy to manipulate images with Artificial Neural Networks: there are
too many parameters to handle.
In order to explain why, the representation of a digital image is introduced:
it is a matrix of pixels, where each pixel contains information about the color
intensity in that point.
In grayscale images the pixel is characterized by only one value, while in color
(or RGB) images the pixel has three values corresponding to red, green and
blue channels.
If an RGB image with 1000 × 1000 pixels is directly fed into a Neural Network,
the input vector X has a dimension equal to 1000 × 1000 × 3 = 3millions.
Considering also a rich hidden layer with 1000 units, weights are in the matrix
W 1 ∈ (1000, 3m), so 3billions of parameters are present just to start.
Here, Convolutional Neural Networks come to the aid and help us to face this
parameter turmoil.
Another big difference between ANNs and CNNs is how images are acquired.
Networks with only fully connected layers take pixels, each one above the other,
flattening the picture and without giving a real meaning to it.
On the contrary, the strength of Convolutional Neural Networks is to take into
consideration the spatial structure of the images. That’s why CNNs are so high-
performing in image classification and recognition.
In the following sections, the fundamental concepts of Convolutional Neural
Networks are investigated.

2.4.1 Convolutional layers
Convolutional Neural Networks are still inspired to biological processes, in par-
ticular to mechanisms of cells in the visual cortex. These neurons fire when
specific geometric shapes, like horizontal lines or stripes with particular angles,
are placed in the visual field.
Layers in CNNs behaves on the same page: early ones detect simple lines like
edges, some later ones detect parts of objects and even later layers detect parts
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of complete objects. An example is shown in figure 2.23: starting from edges,
parts of faces (eye, nose, ear, ...) and cars (tyre, window, taillight, ...) are
detected, till entire objects in last layer.

Figure 2.23: Features extracted through CNN layers. Source:
M. Stewart [13]

It raises a question: how the simplest operation of detecting edges in images is
performed? The answer is using an operation called convolution that is applied
in convolutional layers of the network.

2D convolutions

At the beginning, we perform (for semplicity) convolutions on grayscale images,
known as 2D convolutions.
Since in CNNs the spatial structure of images is kept, the inputs is now a matrix
of pixels, that can be figured as a square of neurons.
Unlike the Artificial Neural Networks where every input pixel is connected with
every hidden neuron, in CNNs each neuron of the hidden layer is connected to
only a portion of the area of input neurons, named local receptive field. It can
be seen as a square window that slides through the input image.
In the picture 2.24 the first two steps of the procedure are shown: the 5×5 win-

(a) First step (b) Second step

Figure 2.24: First two steps in CNNs using 5×5 receptive field.
Source: M. Nielsen [7]



34 Chapter 2. Machine Learning

dow starts in the top-left corner and moves across the space of 28×28 pixels,
varying the hidden neuron connected to the square portion. The resulting layer
has 24×24 neurons because the receptive field is moved by one pixel at time.
This parameter is known as stride and determines the length of the taken step,
so can differ from 1.
Every single hidden unit takes information from its receptive field, learning
a weight for each connection and a unique bias. In particular, the operation
executed by each neuron is a weighted sum of the inputs, computed by the
convolutional operator, followed by a bias addition and the application of an
activation function.
The number of learned weights corrisponds exactly to the number of pixels in
the receptive field. Also, the weights and the bias are the same for all the hidden
neurons of a layer, peculiarity inside all hidden layers of CNNs known as shared
weights and biases.
These quantities are not fixed and are learned as parameters in order to detect
a specific feature, like edges, in different positions of the input image.
The map that connects the input layer to the hidden layer is actually called
feature map, but also terms like kernel and filter are used to refer to it.
A convolutional layer can be composed by multiple different feature maps that
detect various features in the image.
The output of a convolutional layer is formed by several matrices where these
features are highlighted, which are still images.

In the following sample, we dwell on convolutional operation in vertical edge
detection.
As shown in figure 2.25, the input is a m×m=6×6 grayscale image, the feature
map is the f×f=3×3 matrix, while the resulting image is a matrix of m-f+1×m-
f+1= 4×4 pixels. The images corresponding to these matrices of pixel intensities
are displayed down.

Figure 2.25: Convolutions in vertical edge detection. Source:
Andrew Ng [12]
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The feature map is firsty applied on the top-left corner in the green position.
The convolutional operation consists in multipling each number of the filter
with the corresponding one in the input matrix and summing all products, this
is the weighted sum of inputs performed by first hidden neuron. The resulting
number is put in the output matrix in first green square:

10 × 1 + 10 × 0 + 10 × −1+
10 × 1 + 10 × 0 + 10 × −1+
10 × 1 + 10 × 0 + 10 × −1 = 0.

The filter is then shifted to the right in yellow position, where another convo-
lution is performed:

10 × 1 + 10 × 0 + 0 × −1+
10 × 1 + 10 × 0 + 0 × −1+
10 × 1 + 10 × 0 + 0 × −1 = 30.

The result is the yellow value of the second hidden neuron.
The window is iteratively moved with a stride length of 1, up to fill the output
matrix, passing through blue and red positions.
The presented feature map detects vertical edges, because it creates in the out-
put image a lighter region in correspondence of the vertical transition from
white pixels (marked by 10) to the darker ones (marked by 0).

Outputs coming from a convolutionl layer that has two filters that detect both
vertical and horizontal edges are like those in figure 2.26.

Figure 2.26: Vertical and horizontal edge detection. Source:
datahacker.rs [14]

In CNNs, parameters of each feature map are not fixed, so rather than detecting
necessarily vertical or horizontal edges, the network can learn to detect edges
at whatever orientation, adapting the filter to image features.
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3D convolutions

When features are detected in RGB images, 3D convolutions or convolutions
over volume are performed.
The input image is now described by a matrix on each of the three different
channels: red, green and blue. The number of channels is identified by the last
dimension of the image, after its height and width.
The feature map must have channels whose number matches the one of the
input matrix, so here it concides with three. The filter can be seen just like a
(yellow) little cube that slides along the entire input image.

Figure 2.27: Convolution over volume. Source: datahacker.rs
[14]

The 3D convolution consists of multiplying all numbers belonging to the three
faces of the cube by the corresponding numbers from the red, green and blu
channels, adding these products and then applying an activation function.
The resulting number is inserted in the appropriate square of the output image.
In the picture 2.27, the 6×6×3 image is convolved with a 3×3×3 filter.
Pay attention to the output dimensions: a 2D matrix of 4×4 pixels comes out
(m-f+1=6-3+1=4).

Zero padding

The tecnique called zero padding modifies the basic convolutional operation.
The original image (the green one in picture 2.28) is padded with an additional
border of zeros around the margins, before performing convolutions.
The purpose of padding is twofold: the image is no more shrinked every time
edges are detected, preserving the original input size, and pixels near the mar-
gins are considered more than before, enhancing the information they bring.

2.4.2 Pooling layers
The pooling layers are usually present after convolutional layers. They are
added to reduce the size of the representation, to speed up computations and,
mostly, to make the detected features more robust.
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Figure 2.28: Padding an image. Source: datahacker.rs [14]

There are two types of pooling: max pooling and average pooling. In both, there
are no parameters to learn becuse the computation is fixed.

Max pooling This tecnique cuts the image in regions and takes the maximum
number inside each one. A large number inside a region means that a particular
feature is detected, so in this way we reach some flexibility in finding features,
accounting for any distortions. In the image 2.29 below, a 4×4 input image is
shrinked into a 2×2 image using a 2×2 filter and stride equal to 2.

Figure 2.29: Max pooling. Source: datahacker.rs [14]

Average pooling This tecnique, instead, makes the average of numbers inside
each region. It is used only when we want to collapse the representation. In the
image 2.30, the output is still a 2×2 image, but the average pooling is used.

Figure 2.30: Average pooling. Source: datahacker.rs [14]
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2.4.3 Fully connected layers
Usually, the output coming from the last feature map is flattened into a vector
and connected to some fully connected layers.
It is like adding an Artificial Neural Network in the final part of the network,
whose role is to interpret the extracted features.

2.4.4 Example of a CNN architecture
In the figure 2.31, the architecture of LeNet-5 is shown.
This is one of the erliest Convolutional Neural Netwoks, proposed in 1998 by
Yann LeCun et al. at Bell Labs. The goal of LeNet-5 is to recognize handwritten
digits, after a training with grayscale images.

Figure 2.31: Architecture of LeNet-5.Source: datahacker.rs
[14]

The network takes as input a 32×32×1 image, that is firstly processed by a
convolutional layer with 6 5×5 filters, using a stride length of 1.
The resulting 28×28×6 volume is later shrinked by an average pooling layer
with hyperparameters f=2 and s=2, outputting a 14×14×6 cube.
Then, an identical block of convolutional-pooling layers is present, producing a
5×5×16 volume.
Notice that the number of channels increases as we are closer to last convolu-
tional layers, while the height and the width become smaller.
The volume is finally flattened into a vector of 400 units, that are linked to two
fully-connected layers with 120 and 84 neurons, respectively.
The network ends with a softmax layer that classifies the handwritten digit
among the ten possible classes.
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Chapter 3

OCC State of Art

The objective of this work of thesis is the development of a One-Class Classifi-
cation (OCC) algorithm where the person class is the target class.
In this chapter, firstly, an investigation into general concepts of classification is
made, highlighting differences with other tasks like regression.
Later, the classification of a single class is defined and explored in contrast to
binary and multi-class classifications.
Finally, various applications of One-Class Classification are presented, followed
by a roundup of popular approaches used to realize them.

3.1 Classification inside Machine Learning
The classification is a task belonging to supervised learning algorithms, where
both inputs and desired outputs are available during the training.
The goal of a classification algorithm is to identify the category of which new
data are part, by relying on observations available in the training set.
Considering the generic problem

y = f(x),

we can identify x as the input, f as the model and y as the output.
The output of this kind of problems is a discrete value, known as label, category
or class.
Therefore, the mapping function f links input data to categorical or boolean
values and is referred as the classifier.
In the event that no labels are provided in the problem formulation, we are
faced with a different case named clustering, that is the corresponding unsuper-
vised algorithm of classification. Here data are grouped into categories without
knowing a priori the classes.

3.1.1 Classification and regression
Classification differs also from regression, another important prediction prob-
lem. In the latter y is a continuous real value and represents a numerical
quantity that cannot be interpreted as a category.
A practical example to clarify the two tasks is shown in figure 3.1.
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Figure 3.1: Classification and Regression. Source: aldro61 [15]

Classification (on the left) categorizes patients into two classes, healthy or dis-
eased, on the basis of genomic measurements of gene 1 and gene 2. The black
line separating red and blue dots is the decision boundary, which we look for.
Regression, instead, predicts for how many years a patience survives, having
a specific genomic measurement of gene 1. Here, the black line among blue
points, representing patients, is the best fit line: it is found to precisely predict
the quantity of years.

Other examples of common classification problems are:

• the spam filter that automatically classifies new emails;

• image classification in manufacturing lines to identify products;

• image classification in medical field to detect cancer cells;

• text classification in order to categorize new articles.

3.1.2 Image classification in Computer Vision
In this work of thesis, a One-class Classification algorithm is developed to iden-
tify instances of people. Our purpose is to understand whether people are
present in the images or not.
This task is defined in computer vision field as Image Classification.
Attention shall be paid to not confuse image classification with other computer
vision concepts, which seem similar but that are heavily different in practice:
Image Localization, Object Detection and Image Segmentation.
Hereafter, more detailed descriptions are presented to make these methods un-
ambiguos.
In Image Classification the content of an image is identified; this tecnique tells
which things are present inside it. Questions like “What is in the picture?” or
“Is this a cat or is it a dog?” are answered.
In Image Localization, as suggested by the term, the localization of an object is
provided in addition to the type of the object.
Object Detection is, instead, the generalization of image localization, used when
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several objects are present in the image. It detects the objects drawing around
them rectangles or squares, called bounding boxes. It provides the information
of ’where are they’ in addition to ’what are they’.
Finally, Image Segmentation cuts the pictures into segments and groups to-
gether pixels with similar features. The result of this method is that each
object is characterized by a pixel-wise mask, identifying all shapes of different
objects.
The four methods can be better understood looking at figure 3.2.

Figure 3.2: Classification, Localization, Object Detection, Seg-
mentation. Source: natasa [16]

3.2 One-Class Classification
It’s time now to approach the centerpiece of our investigation: One-Class Clas-
sification, also called Single-Class Classification.

3.2.1 The goal of OCC
The term is used for the first time in 1975 by T.C. Minter in the design of a
Bayes classifier, that is actually the first semi-supervised One-class classifier.
In his article “Single-Class Classification”, data are categorized into two classes,
the class of interest and the other class, but labeled samples only from the first
class are demanded during the training.
Minter states:

“[...] a Bayes classifier will be presented which classifies samples into
the “class of interest” or the “other” classes but requires only labeled
training samples for the “class of interest” to design the classifier.
Thus, this classifier minimizes the need for ground truth. For these
reasons, the classifier will be referred to as a single-class classifier”.
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In 1993, Moya and Hush give a later and concise definition of a One-Class
classifier in the research paper titled “Network constraints and multi-objective
optimization for one-class classification” :

“We call a classifier that can recognize new examples of target pat-
terns and distinguish those from non-target patterns a one-class clas-
sifier”.

In recent years (2004), Piotr Juszczak in the work “Combining one-class clas-
sifiers to classify missing data” asserts:

“In the problem of one-class classification the goal is to accurately
describe one class of objects, called the target class, as opposed to a
wide range of other objects which are not of interest, called outliers".

After clarifications up there, the goal of the One-Class Classification is evident:
in this problem, objects of a particular class are identified compared to all
possible other objects.
The particular class is called positive class or target class, while other items are
referred to be in the negative class, alien class, or depending on the application,
in the outilier, intruder or novel class.
The peculiarity of OCC arises strong during the training: only instances of the
same positive class are available, so just one of the classes is well characterized.
The outlier class has very few objects, no objects at all, or simply the negative
concept cannot be represented by samples we dispose.
The difficulty of the One-Class Classification is, therefore, inside the lack of
information coming from the alien class.
This kind of problem is harder than standard methods beacuse the classification
boundary, being defined on the basis of just one class, is difficult to place and,
also, because of the definition of the features that characterize positive instances
and that guarantee the right distance from negative ones.

3.2.2 One-class versus binary classification
One-Class Classification differs from binary (or multi-class) classification, pre-
cisely because in the latter the training set has labeled data from all the pre-
defined classes. This exhaustive dataset is missing in the OCC: no instances of
a second class (or multi-classes) are available during the training, so objects of
the class of interest are categorized using solely instances of the same class.
Moreover, since classical classification problems create discriminatory functions
basing on instances from all classes, they are naturally said to be discrimina-
tory. This property requires an equally balanced dataset, in order to build an
effective decision boundary.
When examples of a class are much more abundant than others, discriminatory
methods may not perform very well and can not be employed. Consequently,
One-Class classifiers emerge.
Real situations in which data from only one class are available, bacause alien
objects are absent or in a limited quantity, are very common and will be treated
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in next section.
In summary, if the dataset is structured with a sbalanced number of examples
from all classes, a binary (or multi-class) classification is recommended.
On the contrary, in unbalanced cases when an abundance of examples of a
particular class is seen, One-Class Classification is the solution.

3.2.3 Applications of One-Class Classification
It is now natural to ask in what kind of situations unbalanced datasets are
indispensable. Some examples are presented below:

• in typist recognition a huge number of instances from the alien classes
are present. In this scenario we can’t have all possible cases inside the
training set;

• in machine faults detection, for example, during the monitoring of heli-
copter gearboxes, in the operational status check of a nuclear plant or
during the detection of oil spills. Here, the negative class includes all
possible abnormal behaviours, but primarily they are very rare and, then,
they may cause risks to people and also result in high costs.
Waiting for the occurrence of faults is not a good strategy. Building a
One-Class classifier according to normal observations of the machine is,
instead, a solution;

• the automatic diagnosis of a disease: positive data are represented by
"common" diseases, easy to group together, while negative class is formed
by "rare" ones. The outlier category is difficult to fill because tests on
rare deseases are very expensive and patients are uncommon, making the
negative class poor of instances;

• in homepage classification or in the inclusion of journal articles for sys-
tematic reviews is very easy to collect positive instances, while it is diffi-
cult to group together all negative examples. The negative class may not
be uniformly represented and, also, the categorization may be altered by
subjective choices;

• in mobile active authentication, we dispose images only from the current
user, since objects of the negative class, the other users, are hard to collect
due to privacy issues.

In these scenarios, data from only one class are available, given that instances
of the negative class are very hard/impossible to have, otherwise the negative
concept is not fully represented by our samples.

All these situations can be grouped in three main computer vision applications:
novelty detection, anomaly detection and mobile active autentification.
In novelty detection, the objective is to find novelties with respect to observed
examples. It is therefore normal that data from novel class are not known, it
would be counterintuitive.
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The goal of anomaly detection is to identify abnormal data. Since training is
done using normal operating examples, our classifier has to learn the concept
of normality.
In mobile active autentification, the identity of a user is constantly verified.
Only his examples are available to discriminate negative instances.

3.3 Popular approaches in OCC
There are several approaches in literature for solving One-Class Classification
problems. Main tecniques are presented in this section.

3.3.1 One-Class Support Vector Machines
In the article “Support Vector Method For Novelty Detection” [17], Schölkopf
et al. propose a method that extends the concept of Support Vector Machines
to problems where unlabeled data are present, in short, OCC problems.
In order to clarify the arising One-Class Support Vector Machines, basics of
Support Vector Machines are first shown.

Support Vector Machines (SVMs) are supervised learning algorithms used mostly
for classification. The typical SVM that presents two classes is analyzed.
Given a training set of n labeled examples, the model separates points of dif-
ferent classes finding a boundary that maximizes the gap between them. New
observations will be assigned to a certain category or to the other one, basing
on the side of the gap they are within.
When data are not linearly separable, a straight boundary is not able to divide
them and the so-called “kernel trick” is used: data are projected into higher
dimensional space, called feature space, through a non-linear function φ.
In figure 3.3, blue points cannot be separated from red ones through a straight
line (2D) and they are, therefore, moved to a feature space where a hyperplane
is used for the purose (3D). When we come back to 2D space, the straight line
becomes curve.

Figure 3.3: Mapping to higher dimension in SVM. Source: D.
Wilimitis [18]
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The goal of SVMs is to find the hyperplane that maximizes the distance between
the closest points of the two classes. The problem can be reformulated in terms
of minimization in this way:

min
w,b,ξi

||w||2

2 + C
nØ
i=1

ξi (3.1)

s.t. yi(wTφ(xi) + b) ≥ 1 − ξi ∀i = 1, ..., n (3.2)
ξi ≥ 0 ∀i = 1, ..., n. (3.3)

In particular, parameters w and b belong to the equation of the hyperplane
wTx + b = 0, xi are generical points of the dataset to whom yi outputs are
associated, ξi are slack variables to have a soft margin and C is a constant
value that balances margin maximization and the number of points inside the
margin.
Solving the above quadratic programming problem with Lagrange multipliers
leads to:

f(x) = sgn(
nØ
i=1

αiyiK(x, xi) + b),

where f(x) is the decision function of a generic point x, αi are the Lagrange
multipliers and the term K(x, xi) = φ(x)Tφ(xi) is the kernel function.
The kernel function maps points in higher dimensional spaces and can be linear,
polynomial or also the popular gaussian radial base function:

K(x, xi) = exp(−||x − xÍ||2

2σ2 ),

with σ, real number that is the kernel parameter, and ||x − xÍ||2, the dissimi-
larity measure.
The two-class Support Vector Machine can be now applied to data only belong-
ing to one class, resulting in One-Class Support Vector Machine.

The method proposed by Schölkopf et al. consists in the separation of all
observations from the origin in the higher dimensional space, realized thanks
to the hyperplane. The feature space will be therefore divided into areas, each
characterized by probability densities of points.
While in binary SVMs the value -1 is associated to one side and the value 1 to
the other one, in OCSVMs the region where data points lie is marked with +1,
while all other parts return -1.
The goal of SVMs in OC problems is to maximize the distance between the
hyperplane and the origin.
The resulting minimization problem is close to (3.1) formulation:
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min
w,b,ρ

||w||2

2 + 1
νn

nØ
i=1

ξi − ρ

s.t. (w · φ(xi)) ≥ ρ − ξi ∀i = 1, ..., n

ξi ≥ 0 ∀i = 1, ..., n.

The parameter ν ∈ (0, 1] is very important because determines both an upper
bound for out-of-class points with respect to all data points and a lower bound
on the number of observations from the training set.
The quantity ρ, instead, is the distance between the origin and the hyperplane.
The decision function is now:

f(x) = sgn(
nØ
i=1

αiK(x, xi) − ρ).

In summary, since data from the negative class are missing, the origin is treated
as the outlier part of the feature space: the hyperplane maximizing the distance
of the target class from the origin is found.

3.3.2 Support Vector Data Description
Another famous approach is described in the article “Support Vector Data De-
scription” [19]. Inspired by OCSVMs, Tax et al. suggest to find a spherical
boundary to divide data points in the higher dimensional space, rather than
using the hyperplane. This kind of boundary is called hypersphere and is char-
acterized by a center c and a radius R > 0.
The goal of SVDD is to minimize the volume of the hypersphere that contains
the target class data, embedding the fewest outliers.
The above formulation can be rewritten as the following minimization problem:

min
R,c,ξ

R2 + 1
νn

nØ
i=1

ξi

s.t. ||φ(xi) − c||2 ≤ R2 − ξi ∀i = 1, ..., n

ξi ≥ 0 ∀i = 1, ..., n.

The parameter ν ∈ (0, 1] determines the trade-off between the volume of the
hypersphere and slack variables ξi, that allow to have a soft margin.
A new observation is said to be in-class when ||φ(x)−c||2 ≤ R2; on the contrary,
if a new point falls outside the hypersphere it is considered an outlier.

In figure 3.4 the two approaches, One-Class Support Vector Machine (left) and
Support Vector Data Description (right) are illustrated. Despite charts are in
2D, they show the feature spaces. All empty dots are outliers, divided from
target class points by the hyperplane and by the hypersphere.
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Figure 3.4: One-Class Support Vector Machines and Support
Vector Data Description. Source: Vasighizaker et al. [20]

3.3.3 One-Class Classification with Gaussian Processes
In the article “One-Class Classification with Gaussian Processes” [21], Gaus-
sian Process (GP) priors are employed in One-Class Classification problems.
First of all, a clarification on GP classification is provided, starting from the
simpler regression case.

Given a training set of n labeled examples, the mapping betweenX= [x1, x1, ..., xn]
and y = [y1, y2, ..., yn] is searched. The latent function f and the additive noise
Ô can link them: y = f(X) + Ô.
In the Bayesian approach, the mapping function f has not a predefined struc-
ture tied to certain parameters: it is described by a probability distribution
p(f|X) that is updated when new observations are available.
Considering a new data point x∗, the probability of its output y∗ is based
on previous data X and y, updating function values f∗ = f(x∗) and f =
[f(x1), ..., f(xn)]T :

p(y∗|X,y, x∗) =
Ú

p(f∗|X,y, x∗)p(y∗|f∗)df∗ (3.4)

p(f∗|X,y, x∗) =
Ú

p(f∗|X, f, x∗)p(f|X,y)df. (3.5)

In Gaussian Process regression, there is a strong hypothesis: all functions f are
jointly normally distributed. It follows that each distribution can be described
by mean m(·) and covariance κ(·, ·) functions:

f|X ∼ N (m(X), κ(X,X)).

If we use a zero-mean Gaussian Process, the formulation of the probability
distibution (3.5) is still a Gaussian having:

µ∗ = kT∗ (K + σ2
nI)−1y

σ∗ = k∗∗ − kT∗ (K + σ2
nI)−1k∗,

where K= κ(X,X), k∗ = κ(X, x∗), k∗∗ = κ(x∗, x∗).
Additionally, when Ô is assumed to be an independent and identically distributed
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Gaussian noise, integrals can be solved in closed form and the probability of
output y∗ in (3.4) is normally distributed too, characterized by mean µ∗ and
variance equal to σ2

∗ + σ2
n.

In GP regression, y are real numbers. Let’s move to GP classification where y
consist in discrete numbers, rapresenting the binary labels.
Equations (3.4) and (3.5) with Bayesian approach can be used, but the hypotesis
on Gaussian noise is no more valid beacuse y ∈ {−1, 1}.
We can employ a different likelihood like the cumulative Gaussian distribution

p(y|f) = 1√
2π

Ú yf

−∞
exp(−1

2x2)dx, (3.6)

but we lose the advange of p(f∗|X,y, x∗) to be normally distributed.
A solution for the equation (3.4) is to consider the posterior probability p(f|X,y)
as a normal distribution p̂(f|X,y), through Laplace approximation or Expecta-
tion Propagation.
Finally, considering Gaussian approximations in (3.5) and the already defined
p(y|f) in (3.6), the probability p(y∗|X,y, x∗) can be seen as a cumulative Gaus-
sian distibution.

It’s time now to extend the concept of Gaussian Process Priors to One-Class
Classification.
The equation in (3.5) describes a conditional probability density, which means
that GP classification works in a discriminatory way and so, it is not easy to
adapt to OCC problems where density of input data is missing.
However, scores to identify target class elements can be found if we choose cor-
rectly the Gaussian process prior: if we select a mean of the prior equal to
zero, i.e. a value lower than the positive class labels (y = 1), probable latent
functions will have values that become smaller moving away from available data
points. Several appealing latent functions for One-Class Classification can be
picked, also having a soft covariance function. This implies that the probability
p(y∗ = 1|X,y, x∗) can be used in OCC, even if it is discriminative, and also
mean and variance can be further membership indicators.
The following table 3.1 resumes quantities extracted from the predictive distri-
bution that can be used as membership scores in One-Class Classification.

Mean (M) Negative Variance (V) Probability (P) Euristic (H)
µ∗ = Ô(y∗|X, y, x∗) −σ2

∗ = −ν(y∗|X, y, x∗) p(y∗ = 1|X, y, x∗) µ∗ · σ−1
∗

Table 3.1: Measures for OCC membership scores. Source:
Kemmler et al. [21]

In particular, while the mean M can be used without modifications because it
decreases for the outliers, the variance V is taken negative since it increases.
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3.3.4 Single-Class Minimax Probability Machines
Another approach for One-Class Classification is shown in the article “Robust
novelty detection with single-class MPM” [22].
Lanckriet et al. use the Minimax Probability Machine to find appropriate
boundaries around the training set in the task of novelty detection.
The goal is to discover a minimal region Q in the input space that holds the
fraction α of the probability mass of the dataset:

Pr{y ∈ Q} = α.

In novelty detection α ∈ (0, 1] is usually set closer to 1.
This formulation is know as quantile estimation, in which MPMs are suitable
since they are characterized by the following theorem:

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ α ⇐⇒ b − aT ȳ ≥ κ(α)
ñ

aTΣya,

in which a and b are constants (a different from 0, aT ȳ ≤ b) and κ(α) =
ñ

α
1−α .

The infimum over various distributions of y is computed, with the only con-
straints of mean equal to ȳ and covariance matrix equal to Σy.
The research of the optimal region Q(γ, b) in One-Class case, if the choice of α
is feasible, is handled through a second-order cone programming problem:

min
γ

ñ
γT (LTL + ρK)γ

s.t. γTk − 1 ≥ (κ(α) + ν)
ñ

γT (LTL + ρK)γ,

in which κ(α) =
ñ

α
1−α , b is equal to 1, K is the Gram matrix.

Also, elements of vector k are [k]i = 1
N

Nq
j=1

K(xj, xi), where xi are the N obser-

vations, and L = K−1Nk
T

√
N

.

Alternatively, the following result:

γ∗ = (LTL + ρK)−1k

ζ2 − (κ(α) + ν)ζ
with ζ =

ñ
kT (LTL + ρK)−1k

is used to find the optimal half-space, given α ≤ (ζ−ν)2

1+(ζ−ν)2 or κ(α) ≤ ζ.

If there are no feasible values for α, no solution for the problem can be found.
The complexity of both formulations is comparable to the one of OCSVM, since
it reaches O(N3) in worst-cases.
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3.4 One Class-Classification with CNNs
In last years, methods basing on deep Convolutional Neural Networks have been
proposed for OCC problems, since they achieve excellent performances in very
complex applications.
Computer Vision is also a breeding ground with huge amount of labeled exam-
ples from different areas.
In One-Class Classification problems, CNNs try to extract features that char-
acterize the particular class, while the lack of information coming from the
negative class is filled in different ways.
A brief description of two popular methods are here presented.

3.4.1 Deep Support Vector Data Description
Ruff at al. propose to use Deep Learning tecniques in the task of anomaly
detection in the article “Deep One-Class Classification” [23]. They put together
the method of Support Vector Data Description and the framework of Neural
Networks, giving rise to Deep Support Vector Data Description (figu. 3.5).

Figure 3.5: Deep Support Vector Data Description. Source:
Ruff et al. [23]

In Deep SVDD, a neural network is trained whereas it tries to minimize the
volume of the hypersphere with inside the target data points. Hence, the goal
is to learn the transformation φ(·; W ) that maps points from the input space X
to the feature space F , maximizing examples inside the spherical boundaries.
Outliers will lie outside the volume, far from its center c.

Considering a training dataset of n examples Dn = {x1, ..., xn} and a Neural
Network with L hidden layers and weights W = {W 1, ..., WL}, the objective of
Deep SVDD for OCC is:

min
W

1
n

nØ
i=1

||φ(xi; W ) − c||2 + λ

2

LØ
l=1

||W l||2F .

The first quantity represents the quadratic loss involving distances in the feature
space of points from c, while the second one is a regularizing term, tied to the
hyperparameter λ.
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3.4.2 One-Class Convolutional Neural Network
In the article “One-Class Convolutional Neural Network” [24], Oza et al. pro-
pose the following architecture for OCC problems (figure 3.6).

Figure 3.6: One-Class Convolutional Neural Network. Source:
Oza et al. [24]

The first block of the model is a feature extractor realized through a pre-trained
CNN. It is fed by target class images and it extrapolates the distinctive features.
The negative objects come from a fictitious class generated by a zero centered
Gaussian noise with mean µ̄ and standard deviation σ.
The extracted features from both classes are appended and, then, sent to a last
block of fully connected layers, that classify the instances as 0 or 1 thanks to
some confidence scores.

3.4.3 Other approaches
Other approaches in solving OCC problems are the so-called generative ap-
proaches, that employ generative models like auto-encoders and Generative Ad-
versarial Networks (GANs).

Examples of these solutions can be found in the following articles:

• “Finding anomalies with generative adversarial networks for a patrolbot”
by Lawson et al. [25];

• “Abnormal event detection in videos using generative adversarial nets” by
Ravanbakhsh et al. [26];

• “Fully convolutional neural network for fast anomaly detection in crowded
scenes” by Sabokrou et al. [27].
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Chapter 4

Deep One-class Classification

In this chapter, the method used for the development of the people recognition
algorithm, called Deep One-class Classification, is studied.
This solution for One-Class Classification is proposed by Perera and Patel in the
article “Learning Deep Features for One-Class Classification” [28], published in
November 2019.
The structure of the chapter is the following: first of all, some key concepts of
the method are explained, in particular what feature learning means and what
is, instead, the transfer learning. Then, common frameworks used in Deep
Learning, including the used framework in DOC, are shown.
Finally, the DOC optimization problem, the two misurable loss functions and
the training architecture are presented.

4.1 Fundamental concepts in DOC
In this section, let us to be clear some important points, on which Deep One-
class Classification is based.

4.1.1 One-Class feature learning
The key element in the discussion is learning deep features that characterize
instances of people.
It is not feasible to acquire all possible counter-examples different from objects
of the target class, that is the reason why a multi-class classification model or
a binary model cannot be used.
The algorithm has therefore to understand what kind of properties to isolate in
order to distinguish a person from anything else.
The class composed by person examples is highly wide: people can be in the
foreground or far from the camera, they are of different ages (kids, adults, el-
ders) and different gender (male, female), they may have various physical traits,
skin colors, clothes, and also disparate poses: pictures of individuals are taken
from the back, from di front, on the side.
Features are different and heterogeneous, this is very challenging.

The suggested method employs a Convolutional Neural Network to extract these
high-level features: during the training, person images pass through several
convolutional and pooling layers and the network learns filter parameters, as
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described in section 2.4.
The computation of the customized loss function called compactness loss helps
in this process, evaluating the compactness of person class in the feature space.

4.1.2 Transfer learning
Another key element in the treatment is the concept of transfer learning.
This tecnique allows to adapt a labeled dataset from an independent task to
the One-Class Classification.
In our problem all classes different from the person class are referred to be alien
classes and objects that belong to them, alien objects. Since we cannot create
an exhaustive negative class with all examples opposed to people, an external
multi-class dataset is employed during the training, besides the one-class dataset
with people images. The descriptiveness loss evaluates the descriptiveness of
the features extracted from external images.
The multi-class dataset is called also reference dataset and it is an arbitrary
collection of images available online, like ImageNet, ILVRC12, Places35 datasets
or a subset of them.
In our implementation, the reference dataset is a subset of 10000 images from
ILVRC12 dataset.

4.2 Deep Learning-based frameworks
Usually, in Deep Learning-based frameworks for classification there are two
blocks: a network for feature extraction, referred as g, and a classification part,
called hc, after which loss functions to be minimized are computed using the
output coming from hc.
Depending on the number of classes and on the number of objects per category,
different scenarios may occur. Some of them are described below to justify the
strategy used in Deep One-class Classification:

• scenario 1 several classes and large number of training examples: in this
situation there are enough data to train all parts of the model in a end-to-
end fashion. Both g and hc learn from scratch, because all parameters are
randomly inizialized and they are adjusted during the training to reach a
final goal;

• scenario 2 several classes and medium number of training examples: in
this case the feature extraction network is cut into two parts, the shared
feature network gs and the learned feature network gl. The first block gs,
colored in blue, is said to be frozen, since all the weights and biases asso-
ciated to its layers are not updated during the training. Parameters are
imported from a pre-trained model, taking the low-level features learned
in a different problem with an external dataset. Subsequent blocks gl and
hc (in red) are instead trained end-to-end, keeping information from new
available data;
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• scenario 3 several classes and small number of training examples: here,
the entire feature extraction block g is frozen, because there are no enough
examples for learning consistent features. It can be a pre-trained model,
coming for example from scenario 1. The classifier takes the extracted
high-level features and has the role of learning how correctly discriminate
objects from different classes;

• scenario 4 one class training examples: in this situation the first part
is completely frozen too and parameters are taken from a pre-trained
model from scenario 1 or scenario 2. The classification block is a one-
class classifier that learns through a one-class dataset how dealing with
extracted features from g.

In figure 4.1, the four possible situations are shown: white parts are input
images fed in the network, red blocks are parts that learn during the training,
blue blocks are frozen and the final green block is where the classification loss
is evaluated.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4.1: Different scenarios in DL-based frameworks.
Source: Perera and Patel [28]

4.2.1 DOC framework
In the Deep One-class Classification, scenario 4 is considered since only in-
stances from a single class are available.
If the latter framework is used without any modifications, it can happen that
deep features coming from g are not valid also in our One-Class Classification
problem. This is because the frozen model is previously trained using a dataset
that differs from the current one and, consequently, features are taken to fulfil
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the previous task.
After making some appropriate changes, a new framework is proposed for DOC
(in figure 4.2).

Figure 4.2: New framework for DOC. Source: Perera and Patel
[28]

The big advantage of using this model is that now the extracted features are
consistent with our task, that is One-Class novelty detection applied to the
person class.
There is still a frozen part in blue, the shared feature network gs, which produces
the low-level features, that are mantained because general. Red blocks gl and
hc have to learn during the training the specialized features, thanks to the
compactness loss, computed using one-class examples to force the person class
to be compact in feature space, and the descriptiveness loss, computed using
the multi-class dataset to maximize the inter-class distance among classes in
feature space.
In this way, we monitor the quality of the deep features coming from g, now
suitable for describing the person class compared to anything else.

4.3 DOC optimization problem
It is necessary to understand how specialized features for Deep One-class Clas-
sification are produced by the feature extraction block, defining a consistent
optimization problem to solve.
We cannot follow the solution found for traditional classification problems: dis-
criminatory functions can’t be realized because only samples from the target
class are available and there are no multiple classes.
We focus, instead, on two main properties that features in OCC problems shall
have and, later, we try to find some mathematical functions that incorporate
them.

The first one is the compactness. Different instances of the same category should
have similar features, that identify the class itself. The representation of fea-
tures extracted by objects of a class is a compact cloud in feature space: all
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points, each of them corresponding to one instance, are localized in a dense way.

The second property is the descriptiveness. Objects of different categories
should have different features. The representation of features coming from in-
stances of different classes is placed away from others.
Also in multi-class classification, both compactness and descriptiveness are fun-
damental qualities for extracted features, described by a low intra-class distance
and a large inter-class distance, respectively.
Picture 4.3 gives the idea of the intra-class and the inter-class distances in a
three-class classification problem.

Figure 4.3: Intra-class and inter-class distances. Source: J.
Brownlee [29]

Therefore, a feature is considered effective for Deep One-class Classification if
it benefits from compactness and descriptiveness at the same time.
Our purpose becomes to look for a feature extractor g able to make these
quantities bigger. Considering the one-class training dataset as t, the following
optimization problem can be written:

ĝ = max
g

D(g(t)) + λC(g(t)).

The first term refers to the descriptiveness D of features extracted by g, having
t as input of the network, the second part of the equation is the compactness C
of the same features, while λ is a constant that allows to correctly weight the
two quantities.

4.4 Misurable loss functions
Realized what are requirements of specified features for person classification
task, it’s time to define some mathematical functions to measure levels of com-
pactness and descriptiveness.
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A distibution is said to be compact if it is not widespread. The distribution
spread is usually assessed by means of variance. If we want compactness in
features, the way forward is clear: we have to minimize the variance of their
distribution.
Due to memory limitations and acceptable time needed for simulations, it is
not possible to consider simultaneously all target examples we have at our dis-
posal: at each step only groups of people images are fed into the network,
called batches of images. Since features related to a single batch are available,
the variance of batch features plays the role of the variance of the entire feature
distribution. In this way, the variance of features of each batch, referred to be
the compactness loss lc, will be minimized. This loss lc is computed exclusively
considering objects from the target dataset, that are pictures with people inside.

The requirement of descriptiveness is properly evaluated only if there are other
elements belonging to different classes with respect to the target class. The
one-class dataset is not enough to define a targeted function. As a consequence,
an external dataset with several classes is introduced in Deep One-class Classi-
fication as the reference dataset. Objects inside it are completely unlinked with
elements of target class.
In order to produce descriptive features, our model shall behave in a good way
even in an unrelated classification problem, formulated by the reference dataset.
We keep therefore the cross-entropy loss to state the descriptiveness of features.
This quantity is referred to be the descriptiveness loss ld, that is minimized in
order to have high accuracy in classification. This loss ld is evaluated consider-
ing instances only coming from the reference dataset.

It is possible to present a new optimization problem, that considers the above
defined loss functions:

ĝ = min
g

ld(r) + λlc(t).

We emphasize that the two loss functions are computed detached from one
another: the descriptiveness loss is based on the external reference dataset r,
while the compactness loss relies on the target one-class dataset t, like shown
in figure 4.4.
The weighted sum of ld and lc defines the composite loss l, controlled by the
parameter λ.
Minimizing l, features are descriptive and, also, the target class presents a small
value of intra-class variance.

4.5 Proposed training architecture
The architecture suggested by Perera and Patel is composed of two identical
Convolutional Neural Networks, called reference network R and secondary net-
work S, that share their weights and work concurrently.
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Figure 4.4: Descriptiveness and compactness losses

The first network is fed by batches of alien objects from the reference dataset r
and produces the descriptiveness loss, while the second one by batches of person
images from the target dataset, providing the compactness loss.
The composite loss is then minimized and all weights are updating through the
backpropagation process.
Since the two networks have the same structure and are characterized by pa-
rameter sharing, all weights and biases are forced to be equal during the whole
training. The proposed training framework is presented in figure 4.5.
In the article, the AlexNet network is used with pre-trained weights. The model
has all parts frozen up to the last four layers, that produce specialized high-level
features and have to adapt to the new task.

Figure 4.5: Proposed training framework. Source: Perera and
Patel [28]
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Chapter 5

Deep One-class Classification of
people

In this chapter, the current implementation of the algorithm based on Deep
One-class Classification is explained.
First of all, we introduce the work platform necessary to develop the model
during all phases. Then, the strategy used to create an effective training dataset
is presented, with the related steps of image processing.
Later, cores of DOC are analysed: the employed network MobileNetV2, training
and testing frameworks, detailed computations for loss functions.
Finally, an overview on testing datasets and on performance measures used to
evaluate all models are shown.

5.1 Work platform
The development of Deep Learning algorithms requires machines with high
computational power in order to correcltly handle trainings of complex deep
models and large datasets, composed by thousands of images. Using simply
a CPU available in common laptop is not enough in this situations, a huge
amount of time is needed.
The introduction of GPUs, Graphics Processing Units, makes the work easier:
they are devices specialized in computer graphics and image processing, able to
manipulate in parallel big blocks of data.
The need to have an available GPU has led to employ Google Colab [30] and
Jupyter Notebooks [31].

5.1.1 Google Colab
Google Colab offers the possibility to execute python code over the browser,
requiring only a Google account and without making any extra setup on your
machine. It exploits Jupyter Notebooks, that will be clear later, that are saved
in Google Drive, with which it easily interfaces.
Google Colab gives free acces to GPUs, that can be Nvidia K80s, T4s, P4s and
P100s, depending on the availability. Therefore, there are usage limits that vary
over time in order to guarantee resources for free to all.
Since the maximum lifetime of a notebook is 12 hours and, also, long-running
computations were stopped after idle periods, the platform is changed.
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5.1.2 Jupyter Notebook
Jupyter Notebook is an interactive web application that gives us the possibility
to manipulate documents with code, images, text comments and equations.
It is organized in cells that can be executed in chunks; all documents are visu-
alized through a browser page and can be easily shared.
Jupyter Notebooks are run on a computer with Ubuntu 18.04.5 operating sys-
tem, that is supplied by two GPUs. The GPU used in the developmet of the
algorithm is the NVIDIA GeForce RTX 2080 with 8GB of memory.

5.1.3 Python libraries
The programming language used to write the code is Python.
There are many other options like R, very popular in manipulating data for
statistic problems, Java, a good choice for debugging ease and simplicity with
large projects, and MATLAB, that offers a framework named Deep Learning
Toolbox.
Python is selected because is simple, versatile and presents dedicated frame-
works and libraries for Machine Learning.
Libraries used in the thesis project are the following:

• NumPy: useful for fundamental computations, including array and matrix
manipulations. It contains all popular mathematical function implemen-
tations. Tensors are handled by TensorFlow thanks to this library;

• Scikit-learn: the most used library in Machine Learning scenario, it in-
cludes supervised and unsupervised ML algorithms. It effectively helps in
extracting and analysing data. It exploits NumPy and SciPy libraries;

• Matplotlib: not closely related to Machine Learning fied, is useful in visu-
alizing data through graphs and plots;

• OpenCV: library fundamental for computer vision applications, it con-
tains image processing algorithms that allow to read and write pictures,
modifying their colors and dimensions in the needed way.

• TensorFlow: most used library for Deep Learning, it is developed by the
Google Brain team. It allows to perform complex operations with tensors
to train and test deep models in an efficient way.

• Keras: is a high-level API used to build deep Neural Networks. In this
project, it runs on top of TensorFlow, that makes low-level computations
and is referred to be Keras backend. Other backends are CNTK and
Theano.

5.2 Training datasets
In this section we explore the two training datasets that characterize Deep One-
class Classification: the target dataset and the reference dataset.
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Choosing a right and effective dataset is essential to achieve good results.
Everything the network learns is determined by the samples given during the
training: the selection of images that make up both datasets directs the evolu-
tion of model parameters.

5.2.1 Target dataset
The target dataset is composed of instances of the class we want to recognize
among all other classes, i.e. of the person class. We want a dataset as hetero-
geneous as possible, that includes most of features that can be later isolated by
the CNN as person features.
We look for these images in the Open Images Dataset V4 [32].

Figure 5.1: Bottom part of the dendogram of OID classes
where Person class is present. Source: [32]

Open Images is a collection of about 9 millions of images with image-level labels
and object bounding boxes. It is the largest existing dataset with object location
annotations, since it includes 14.6M bounding boxes from 600 categories on
1.74M images.
The composition of the dataset for image classification we care about, without
bounding boxes, is shown in the table 5.1.
The dataset is divided into train, validation and test sets, that span over 19,995
classes. The Person class is highlighted in figure 5.1, where bottom part of the
dendogram of classes is present.

Train Validation Test NClasses
Images 9,011,219 41,620 125,436 -

Machine-generated labels 78,977,695 512,093 1,545,835 7,870
Human-verified labels 27,894,289 551,390 1,667,399 19,794

Table 5.1: Dataset for image classification in OIDV4. Source:
V. Mazzia and A. Tartaglia [33]

With the support of the OIDv4 ToolKit [33], images of the person class are
downloaded: we collected 1761 examples from the train set and 9967 examples
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from the validation set, both with human-verified labels.

Then, all images are meticulously selected. Troubles lie in reaching different
types of people, from kids to elders (fig. 5.2), with different gender, skin colors
and most disparate physical traits (fig. 5.3). We include also people captured
from the front, from the back and from the side (fig. 5.4).
In order to pretty generalize the person properties, we seek for individuals far
from the camera, as well as in the foreground.
A particular issue is to understand to what extent parts of human body can be
considered still people from the point of view of the algorithm. Are legs, faces,
hands, upper bodies instances of people yet? The answer is fairly subjective
and depends on our main goal. Examples of images figuring parts of bodies
included in the target dataset are shown in picture 5.5.
We decide to use a common criteria in the sorting, in particular, pictures that
are removed have:

• people very far from the camera, so described by a too little portion of
pixels;

• people not recognizable for various reasons, for example, they are covered
by other objects;

• people or parts of bodies situated on the edge of the frame, beacuse they
will not appear after the pre-processing part.

(a) (b) (c)

Figure 5.2: People of different ages included in the target
dataset. Source: [32]

5.2.2 Reference dataset
In Deep One-class Classification aimed at recognizing person instances, it is not
possible to collect all alien objects opposed to person class objects. Despite this,
we can use an external dataset called reference dataset to extract features with
the property of descriptiveness.
This dataset can be an arbitrary set containing completely unrelated images
from multiple classes or, alternatively, a subset of it.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: People with different gender, skin colors and phys-
ical traits included in the target dataset. Source: [32]

(a) (b) (c)

Figure 5.4: People with different poses included in the target
dataset. Source: [32]

(a) (b) (c)

Figure 5.5: Parts of human body included in the target dataset.
Source: [32]

In this work, a subset of the training set of ILSVR2012 is used.
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ILSVRC 2012 is an acronym for Imagenet Large Scale Visual Recognition Chal-
lenge 2012, a competition of image classification which relies on a subset of the
enormous ImageNet dataset [34]. The latter contains more than 10 millions of
hand-labeled images organized in more than 10 mile categories.
ILSVRC 2012 is organized according to the WordNet hierarchy that is based on
synsets: multiple words or phrases that describe a meaningful concept. Unlike
ImageNet, it contains images from just 1000 classes.
The composition of the dataset is presented in the following table 5.2.

Train Validation Test
Images 1,281,167 50,000 100,000
Size ∼ 156 GB ∼ 7GB ∼ 13GB

Table 5.2: Composition of ILSVRC 2012

The choice of using a subset of the ILSVRC 2012 training set is dictated by
memory usage limits and also by the amount of time required in the selection
phase.
Big problems arise in the elimination of all the images that contain instances of
the target class: we don’t want to create interferences between datasets, there-
fore there must be no people in the pictures of the reference one. The presence
of humans is usually very common, that’s why each single image is examined
and removed if people are present inside.
The reference dataset is composed of randomly chosen 20 classes, each contain-
ing 500 images, for a total of 10 thousand of images. In table 5.3, details about
classes of the reference dataset are summarized, while in figure 5.6 some images
belonging to them are shown.

5.2.3 Image pre-processing
Both defined datasets are composed by color images, that are also called RGB
images because their pixels are represented by three values, one for each of
red, green and blue channels, like explained in section 2.4. However, the model
training is carried out using grayscale images.
It is a very special choice, so it’s time to explain the reasons for this.

One future goal of this discussion, slightly further away, is to extend the Deep
One-class Classification in InfraRed images, in order to recognize people in
frames coming from surveillance videos, even at night.
These videos are taken with special cameras that, instead of visible light, are
sensitive to radiations with wavelenghts from 700nm to 1mm. In particular
wavelengths in the 700nm - 1µm range characterize the Near-Infrared (NIR)
spectrum.
Problems in training networks directly with InfraRed examples arise because
there are no large datasets made of enough images like ImageNet dataset or
Open Images Dataset. That’s why a training with grayscale pictures is pro-
posed and, then, a generalization to IR datasets through a further transfer
learning is suggested.
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Class Synset Readable name
1 n01443537 goldfish, Carassius auratus
2 n01484850 great white shark, man-eating shark, Carcharodon carcharias
3 n01532829 house finch, linnet, Carpodacus mexicanus
4 n01882714 koala, kangaroo bear, native bear, Phascolarctos cinereus
5 n02128925 jaguar, panther, Panthera onca, Felis onca
6 n02165456 ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
7 n02279972 monarch butterfly, milkweed butterfly, Danaus plexippus
8 n02494079 squirrel monkey, Saimiri sciureus
9 n02504458 African elephant, Loxodonta africana
10 n02676566 acoustic guitar
11 n02708093 analog clock
12 n02769748 backpack, knapsack, packsack, rucksack, haversack
13 n02823750 beer glass
14 n02948072 candle, taper, wax light
15 n03788195 mosque
16 n03895866 passenger car, coach, carriage
17 n03950228 pitcher, ewer
18 n03991062 pot, flowerpot
19 n04099969 rocking chair, rocker
20 n04264628 space bar

Table 5.3: Classes of the reference dataset

Later, some test datasets will be presented, including also an InfraRed one that
is tested using resulting models.

Valid graysacale reference and target datasets are created by the corresponding
RGB datasets, selected as shown before, maintaining the same vastness and
heterogeneity.
Moreover, pictures have a wide range of sizes, so they must be transformed to
have all equal elements in the collection. The library OpenCV is used to process
all images.
The following steps are carried out:

• each image is centrally cropped along its smaller size. In this way we
can resize it without altering the image aspect ratio and the properties
of objects within. Examples of wrong resizing that produces distorted
examples are shown in figure 5.7;

• each picture is resized to square format of 224×224 with a bilinear in-
terpolation. Usually, it is the default input shape in networks and it is
kept also in this work because handle many (224, 224, 3) images is not
so expensive in terms of memory usage: our dataset composed by 16,000
resized images occupies about 371 MB, against the previous 2.7 GB;

• each image is made a grayscale image with size of (224, 224, 1), having a
single channel;

• each grayscale image is brought back on three channels, through the merge
command. The single channel is repeated three times, providing images
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(a)

(b)

(c)

(d)

Figure 5.6: Images incuded in the reference dataset with
synsets: (A) n01443537 (B) n01882714 (C) n03788195 (D)

n03950228. Source: [34]

of size (224, 224, 3) again. This operation is done since the structure of
most of networks presents a three channel configuration.
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(a)

(b)

(c)

Figure 5.7: Per line, on the left: original image, in the middle:
distorted image, on the right: correctly pre-processed image

5.3 Deep One-class Classification cores
In this section, the cores of the method are presented: the employed network
and the computed losses in our Deep One-class Classification.
We used a different kind of model than the suggested nets in the article, AlexNet
and VGG16, that is MobileNetV2.

5.3.1 DOC backbone: MobileNetV2
MobileNetV2 by Google belongs to MobileNets family, efficient and optimized
architectures for mobile devices and, in general, all those which have poor re-
sources.
It is our choice because it is fast and provides high accuracy, requiring few pa-
rameters and low computational power, also compared to previous versions.
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This model is a refinement of MobileNetV1, that contains repetitions of depth-
wise separable convolutions instead of the expensive and slower normal convo-
lutions. The main building block in MobileNetV1 is the following (fig. 5.8):

Figure 5.8: Building block of MobileNetV1. Source: M. Holle-
mans [35]

This is the depthwise separable convolution block: the input passes through
a 3×3 depthwise convolutional layer, that makes a lightweight filtering, and,
then, through a 1×1 pointwise convolutional one, that creates new features.
This operations are followed by a batch normalization and by an activation
function that is ReLU6 : min(max(x, 0), 6).

In MobileNetV2 there are two changes: linear bottlenecks and residual connec-
tions, that facilitate the flow of gradients in parameter updating.
The main building block in MobileNetV2 is shown in figure 5.9: it is a bottleneck
depthseparable convolution block with residuals.

Figure 5.9: Building block of MobileNetV2. Source: M. Holle-
mans [35]
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Here, three operations are performend:

• a 1×1 convolution thanks to the expansion layer, that increases the num-
ber of channels before data goes into next layer, basing on the hyperpa-
rameter expansion factor whose default value is 6;

• a 3×3 depthwise convolution;

• a final 1×1 convolution by the projection layer, that reduces the number
of channels unlike before, where it is kept the same or doubled. This last
layer is actually called bottleneck layer since it decreases the quantity of
data flowing through the network and behaves like a bottleneck.

Also, blocks have a batch normalization layer and the activation function ReLU6,
that is missing in the projection layer because it provides low-dimensional out-
put that can be altered using a non-linearity.

The entire architecture of MobileNetV2 is made of 17 identical building blocks
(only the first one has a traditional 3×3 convolution with 32 channels rather
than the expansion layer) and, then, there are in sequence: a 1×1 convolutional
block, a global average pooling layer and, finally, a classification layer.
This model works so well because tensors remain relatively small flowing through
the net, reducing the number of computations, but, at the same time, are ex-
panded when filtered to extract right features.
Both expansion and projection layers act with learnable parameters, so they
learn how to best decompress and compress data step by step, during the whole
training.
In figure 5.10, the block of MobileNetV2 provided by Keras API is shown,
consistent with the one in picture 5.9.

Figure 5.10: Building block of MobileNetV2 in Keras API

The architecture MobileNetV2 is imported for our purpose, loading weights
pre-trained on ImageNet and without including the default top part with 1000
neurons.
The input shape of images we provide is set to (224, 224, 3), in accordance with
224×224 size and 3 channels in the pre-processing part.
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The hyperparameter alpha∈ (0, 1], known as the width multiplier that deter-
mines the number of filters at each layer, is set to its default value 1.
A global average pooling layer is inserted after the the last convolutional block,
passing from a 4D output tensor of shape (batch_size, 7, 7, 1280) to a flattened
2D output tensor of shape (batch_size, 1280). These 1280 numbers are the
features extracted from the input images, from which we minimize the com-
pactness loss and on which we base the classification of objects.
Finally, a fully connected layer with a softmax activation function and with
a number of units equal to the total classes of the reference dataset (20) is
attached, in order to compute the descriptiveness loss.

5.3.2 Training architecture
In our solution a unique MobileNetV2 is instantiated, in contrast to what is sug-
gested in the article (explained in section 4.5). Having two identical networks,
that run in parallel and share weights, requires the double amout of memory:
the learning process is very hard to handle.
New ways to train this unique network are proposed below.

The network is fed with a big input batch, that is composed of two smaller
batches of the same size, called mini-batches: they are the target sub-batch and
the reference sub-batch.
As the names suggest, the first one is composed by simply images of people
from the target dataset, while the second one by images coming only from the
reference dataset.
We use a function with multiple Keras ImageDataGenerator objects to handle
this kind of training, shown in listing 5.1.

Listing 5.1: Code for the generation of mixed input batches
input_imgen = ImageDataGenerator ( p r e p r o c e s s i n g _ f u n c t i o n = p r e p r o c e s s _ i n p u t )

def g e n e r a t e _ g e n e r a t o r _ m u l t i p l e ( g e n e r a t o r , dir1 , dir2 , sub_batch_size ,
img_height , img_width , n _ c l a s s e s ) :

genX1 = g e n e r a t o r . f low_from_directory ( dir1 ,
t a r g e t _ s i z e = ( img_height , img_width ) ,
class_mode = ’ c a t e g o r i c a l ’ ,
batch_size = sub_batch_size ,
s h u f f l e=True )

genX2 = g e n e r a t o r . f low_from_directory ( dir2 ,
t a r g e t _ s i z e = ( img_height , img_width ) ,
class_mode = ’ c a t e g o r i c a l ’ ,
batch_size = sub_batch_size ,
s h u f f l e=True )

while True :
X1i = genX1 . next ( )
X2i = genX2 . next ( )
y i e l d np . c o n c a t e n a t e ( [ X1i [ 0 ] , X2i [ 0 ] ] ) ,

np . c o n c a t e n a t e ( [ t o _ c a t e g o r i c a l ( np . argmax ( X1i [ 1 ] , a x i s =1) ,
num_classes=n _ c l a s s e s _ r e f ) , X2i [ 1 ] ] )

i n p u t g e n e r a t o r = g e n e r a t e _ g e n e r a t o r _ m u l t i p l e ( g e n e r a t o r = input_imgen ,
d i r 1 = path_target ,
d i r 2 = path_reference ,
sub_batch_size = sub_batch_size ,
img_height = 224 ,
img_width = 224 ,
n _ c l a s s e s = n _ c l a s s e s _ r e f )

In this way all images are provided to the network "on the fly", without storing
all matrices in memory and causing related memory issues.
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From the target sub-batch, having within just pictures of individuals, we are
interested in features that characterize the target class. The meaningful output
coming from this mini-batch is the one produced by the average pooling layer :
1280 values for each image of the batch, that are the person features we want
to impose as close as possible in the compactness loss computation.
From the reference sub-batch, instead, we are interested in the classification
output provided by the fully connected layer : 20 values that rapresent the
categorical label of one among the 20 classes from the reference dataset. The
cross-entropy loss is evaluated to impose descriptiveness in features.
Therefore, the network has two parallel outputs from which the two losses are
computed:

• the global average pooling layer output, representing the extracted fea-
tures from MobileNetV2;

• the fully connected layer output, representing the classification predic-
tions.

5.3.3 Training settings
Before discussing about loss computations, an overview of training settings is
present.

• In the training phase some layers of the network are frozen, to preserve
imported parameters pre-trained on ImageNet. This means we take low-
level features learned in a different classification task, by leveraging them
in our problem.
In the article, Perera and Patel decide to leave unfrozen the last four
layers of the AlexNet architecture, that are Conv5, FC6, FC7 and FC8.
However, this model is very simple since it contains a total of 8 layers.
In our MobileNetV2 network we think differently, in terms of blocks. We
choose initially to freeze all blocks until block 13, having 40 unfrozen layers
over the whole 157 layers.
Further analysis are done in the next chapter, understanding how the
number of trainable layers affects the model performance;

• Wa start using a batch size of 256 samples, resulting in a sub-batch size
equal to 128.
In the next chapter, additional tests are performed by varying the batch
size;

• The value of lambda λ is a crucial point in the discussion, because it
controls the mutual importance between the two terms in the composite
loss defined below, where r is the reference dataset and t is the target one:

l(r, t) = ld(r) + λlc(t).

It is initially set equal to 0.1, as suggested by Perera and Patel, giving more
prominence to the descriptiveness loss. Actually, the orders of magnitude
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of ld and lc in the article differ from ours, so λ is changed to produce a
more accurate minimization.
In the next chapter, the best value for lambda is found, basing on the
trend of metrics ROC AUC, F1 score, precision and recall;

• Epochs are delineated from the size of the target dataset.
The number of epochs in the simulation is is set to 400, taking care to
save intermediate models every 50 epochs to properly study the evolution
of tested metrics;

• The optimizer is the gradient descent algorithm, employed with a very
low learning rate lr = 0.00005 and a weight decay of 0.00005.

5.3.4 Compactness loss computation
The compactness loss is described by the custom function in listing 5.2.

Listing 5.2: Code for compactness loss computation
def compactness_loss ( y_true , y_pred ) :

y_pred_target = y_pred [ 0 : sub_batch_size ]

l_c = t f . keras . backend .mean( t f . keras . backend . var ( y_pred_target ,
ax i s = 0 , keepdims=False ) )

return l_c ∗ beta

Therefore, there are two input quantities:

• y_true: the true labels of the batch, of size (batch_size, n_classes_ref).
This quantity is not used in the lc computation because it has no role in
imposing similarity among person features;

• y_pred: predictions of the intermediate features for each element in the
batch, of size (batch_size, n_features).
It is produced by the average pooling layer, so the number of features
is 1280. We choose this layer because it has weights pre-trained on Ima-
geNet, that speed up the learning process compared to those with random
inizialization.

In order to consider only features of person images, the first half part of the
batch is isolated.
Then, the following operations are performed: the variance of the feature dis-
tribution along the batch for each feature and the mean of all variances.
This number is multiplied by a correction factor beta β that is:

β = sub_batch_size2/(sub_batch_size − 1)2.

Minimizing the mean of the variance of all the features implies having similar
characteristics for all images representing people.
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5.3.5 Descriptiveness loss computation
The descriptiveness loss is described by the custom function in listing 5.3.

Listing 5.3: Code for descriptiveness loss computation
cce = t f . keras . l o s s e s . Categor i ca lCros sent ropy ( f rom_log i t s=Fal se )

def d e s c r i p t i v e n e s s_ l o s s ( y\_true , y\_pred ) :

y_true_reference = y_true [ sub_batch_size : batch_size ]
y_pred_reference = y_pred [ sub_batch_size : batch_size ]

l_d = cce ( y_true_reference , y_pred_reference )

return l_d

Also here, there are two input quantities:

• y_true: the true labels of the batch, of size (batch_size, n_classes_ref).
This quantity is provided by the inputgenerator in 5.1;

• y_pred: predictions coming from the last fully connected layer, of size
(batch_size, n_classes_ref). The second dimension n_classes_ref is 20,
corresponding to the categorical label of classes from the reference dataset.
The label of the person class is not included because this is not a multi-
class classification problem: we focus on person features, not on discrim-
inating label mismatches, since there could be alien objects belonging to
unknow categories.

The descriptiveness loss is computed with respect to only elements of the ref-
erence dataset. Therefore, the second half part of the batch is considered both
in y_true and in y_pred.
The first part of them contains meaningless numbers, because we don’t care
about person image labels.
Then, the categorical cross-entropy loss is evaluated between the predicted la-
bels and the desired ones and it is minimized to realize a good classification.
In this way, features are characterized by the property of descriptiveness, in
addition to compactness.

5.3.6 Testing framework
The testing part is performed though an appropriate framework shown in figure
5.11.
The block called g(·) is a piece of the trained MobileNetV2 that produces the
1280 numbers corresponding to the features, from the first block to the global
average pooling layer. In the code it is called model_features.
Two steps are carried out to determine if a picture contains people: template
generation (upper part) and matching, realized by the classifier.

In template generation phase, some samples v={v1, v2, ...vn} are selected from
the target dataset and are sent into the network g: the resulting quantity g(v)



76 Chapter 5. Deep One-class Classification of people

Figure 5.11: Testing framework. Source: Perera and Patel
[28]

stores the so-called templates, the features extracted by each image vi with peo-
ple inside, belonging to a target sub-set.
In matching phase, we firstly extract thanks to g the features related to the
test image y. Then, features g(y) are evaluated through a matching function f,
which compares them to templates g(v) and produces a score.
In listing 5.4, the matching procedure that generates scores from a testing
dataset of n_test images is shown.
In the implementation, the matching function is the Euclidean distance.

Listing 5.4: Code for matching phase
def s co re s_genera t i on ( f ea tu r e s_te s t , templates ) :

for f in f e a tu r e s_t e s t :

d = [ np . l i n a l g . norm( f−t ) for t in templates ]
d i s tance s_vecto r . append (d)

s c o r e s = np . amin ( d i s tances_vector , ax i s=1)
s c o r e s = np . array ( s c o r e s )

return s c o r e s

The provided inputs are:

• features_test: features extracted from test images, of size (n_test, n_features);

• templates: stored templates corresponding to baseline characteristics of
the person class, of size (n_templates, n_features).

Features coming from each test image are compared to all templates: the quan-
tity d contains the euclidean distances between them, sizing (n_templates,).
Each vector d is computed for all images in the test dataset and is saved in the
distances_vector, of size (n_test, n_templates).
The scores, stored in the vector scores of size (n_test,), are selected taking the
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minimum value among all computed distances in distances_vector, for all im-
ages.

Finally, scores are transformed in considerable output for One-Class Classifica-
tion thanks to a threshold δ:

output[i] =
I

0 : scores[i] ≤ δ
1 : scores[i] > δ

considering the label 0 as an object belonging to the target class person and
the label 1 to the alien class others.

The appropriate value for δ depends on the application.
The chosen δ in our Deep One-class Classification is the one that maximizes
the quantity (TNR-FNR), producing an high value of TNR, the True Negative
Rate, and a low value of FNR, the False Negative Rate.
The first one indicates the ratio of negative instances correctly classified as neg-
ative, while the second one is the ratio of positive instance incorrectly classified.
Therefore, maximizing the term (TNR-FNR) allows to reach an high value of
intances classified as people that are actually people and a low value of alien
objects wrongly classified as people.
Considering also that TNR=1-FPR and FNR=1-TPR, finding the maximum
value for (TNR-FNR) means maximizing (TPR-FPR) (True Positive Rate -
False Positive Rate), that corresponds to the closest point to the top left corner
of the ROC curve.
More details about these and other metrics are presented in next sections.

The number of templates is set to 40, as suggested in the article.
Further analysis are done to understand the impact of the number of them.

5.4 Testing datasets
In order to evaluate the performance of models in Deep One-class Classification,
three different testing datasets are employed.

5.4.1 Dataset 1: BN1
The first testing dataset is composed of 2000 grayscale images: 1000 with people
and 1000 without individuals, but including alien objects from the 20 classes of
the reference dataset.
All the pictures are fresh examples from the point of view of the algorithm.
The composition of BN1 is presented in table 5.4.

5.4.2 Dataset 2: BN2
The second testing dataset is composed of 2000 grayscale images: 1000 with
people and 1000 including alien objects from different classes of the reference
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N. of images Synset Readable name
50 n01443537 goldfish, Carassius auratus
50 n01484850 great white shark, man-eating shark, Carcharodon carcharias
50 n01532829 house finch, linnet, Carpodacus mexicanus
50 n01882714 koala, kangaroo bear, native bear, Phascolarctos cinereus
50 n02128925 jaguar, panther, Panthera onca, Felis onca
50 n02165456 ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
50 n02279972 monarch butterfly, milkweed butterfly, Danaus plexippus
50 n02494079 squirrel monkey, Saimiri sciureus
50 n02504458 African elephant, Loxodonta africana
50 n02676566 acoustic guitar
50 n02708093 analog clock
50 n02769748 backpack, knapsack, packsack, rucksack, haversack
50 n02823750 beer glass
50 n02948072 candle, taper, wax light
50 n03788195 mosque
50 n03895866 passenger car, coach, carriage
50 n03950228 pitcher, ewer
50 n03991062 pot, flowerpot
50 n04099969 rocking chair, rocker
50 n04264628 space bar

Table 5.4: Composition of testing dataset BN1

dataset. In BN2, images of the negative category belong to 25 external classes,
like shown in table 5.5.

5.4.3 Dataset 3: IR
The third testing dataset is smaller than previous ones because it contains the
few InfraRed images found on web for our purpose: 55 images with people and
55 images with alien objects different from individuals.
Unlike the others, the number of templates here are 20, separately selected
because there is no a target dataset with InfraRed images.
Examples of images belonging to IR dataset are shown in figure 6.10.
Sources of IR testing dataset are: [36], where [37] [38] are available, [39] , [40],
[41], [42], [43] and [44].

5.5 Performance measures
All obtained models for person recognition are compared through some metrics
and graphical tools.
Note that Deep One-class Classification provides a binary outcome: the value 0
represents target or normal images including people, while the value 1 means
that only alien objects different from person intances are present in the picture.
Therefore, performances are evaluated using the same metrics of binary classi-
fication.
In this section we explain what are these measures, where they come from and
why they are so effective in evaluating model performances.
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Class N. of images Synset Readable name
1 40 n01616318 vulture
2 40 n03637318 lampshade, lamp shade
3 40 n03857828 oscilloscope, scope, cathode-ray oscilloscope, CRO
4 40 n03982430 pool table, billiard table, snooker table
5 40 n04019541 puck, hockey puck
6 40 n04040759 radiator
7 40 n04041544 radio, wireless
8 40 n04070727 refrigerator, icebox
9 40 n04074963 remote control, remote
10 40 n04209239 shower curtain
11 40 n04228054 ski
12 40 n04265275 space heater
13 40 n04317175 stethoscope
14 40 n04355338 sundial
15 40 n04380533 table lamp
16 40 n04428191 thresher, thrasher, threshing machine
17 40 n04493381 tub, vat
18 40 n04501370 turnstile
19 40 n04507155 umbrella
20 40 n04525305 vending machine
21 40 n04579145 whiskey jug
22 40 n07584110 consomme
23 40 n07716906 spaghetti squash
24 40 n07754684 jackfruit, jak, jack
25 40 n12768682 buckeye, horse chestnut, conker

Table 5.5: Composition of testing dataset BN2

All the metrics below refer to these kinds of predictions:

• True Positive (TP) = instances of the positive class correctly classified;

• False Positive (FP) = instances of the positive class wrongly classified;

• True Negative (TN) = instances of the negative class correctly classified;

• False Negative (FN) = instances of the negative class wrongly classified;

A perfectly performed classification would produce zero false positive and false
negative predictions (FP=FN=0).

5.5.1 Precision
The precision of a classifier is the metric that evaluates the accuracy of positive
predictions, defined as:

precision = TP

TP + FP

It quantifies, across all classified positive examples, how many are actually pos-
itive.
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(a)

(b)

Figure 5.12: Images incuded in the IR dataset: (A) person
class (B) alien class

5.5.2 Recall
The recall of a classifier is also called sensitivity or true positive rate (TPR).
It measures how many positive instances are correctly identified:

recall = TP

TP + FN

5.5.3 F1 score
In order to incorporate precision and recall into a unique metric, the F1 score
is defined as follows:

F1 = 2
1

precision
+ 1

recall

= 2 × precision × recall

precision + recall

It is the harmonic mean of the two metrics, signifying that an high F1 score is
produced only when both precision and recall are similar and high.

Rember that precision and recall cannot reach both their best values: increasing
one of them decreases the other one, like explained in figure 5.13.
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Figure 5.13: Precision/Recall trade-off in a "5-detector" (5 is
the positive class and non-5 is the negative class). Source: A.

Géron [1]

5.5.4 Accuracy
The accuracy measures how many examples, among positive and negative ones,
are correctly classified. It is defined as:

accuracy = TP + TN

TP + FP + TN + FN

5.5.5 ROC curve
The Receiver Operating Characteristic curve plots the True Positive Rate (TPR),
that is the recall, versus the False Positive Rate (FPR) for all possible thresholds
(figure 5.14).

Figure 5.14: ROC curve. Source: A. Géron [1]

The FPR quantifies how many negative instances are incorrectly classified and
is defined as follows:

FPR = FP

FP + TN
= 1 − TNR

The quantity TNR, also known as specificity, is the True Negative Rate and
identifies the ratio of negative instances correctly classified as negative.
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In other words, in the ROC we see the evolution of sensitivity against (1-
specificity).

A merely random classifier presents a straight diagonal ROC curve, as the
dotted line in figure 5.14, while a good classifier has a ROC curve near the top
left corner.

5.5.6 AUC
The Area Under the Curve (AUC) of the ROC curve is another metric to eval-
uate a classifier. A ROC AUC equal to 1 means that a perfect classification is
performed, an AUC value of 0.5, instead, refers to a random classifier.

5.5.7 DET curve
The Detection Error Tradeoff curve plots the False Positive Rate (FPR) against
the False Negative Rate (FNR) for all possible threshold values (figure 5.15).
It is an alternative way to visually evaluate performances of different classifiers
over the ROC curve.
DET curves are more distinguishable in the plot area, differently from ROC
curves that tends to be all overlapped in the top left corner.

Figure 5.15: DET curve. Source: J. Karnowski [45]

5.5.8 t-SNE
The t-distributed Stochastic Neighbor Embedding (t-SNE) is a probabilistic di-
mensionality reduction technique for visualizing high-dimensional data in a low-
dimensional space. It is the t-distributed variant by Laurens van der Maaten
of the Stochastic Neighbor Embedding proposed by Sam Roweis and Geoffrey
Hinton.
We use this tecnique to visualize features learned by Deep One-class Classifi-
cation algorithm compared to those produced by the binary classification algo-
rithm. Through t-SNE, each feature represented by 1280 values is modeled by
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a two-dimensional point.
The main steps of the algorithm are:

• a probability distribution over couple of high-dimensional points is con-
structed by t-SNE, assigning a higher probability to similar ones and lower
probability to unlike ones;

• after defining a similar probability distribution among objects in the low-
dimensional space, t-SNE makes lower the Kullback–Leibler divergence
between the two distributions basing on point locations.

In this way, objects that are similar in high-dimensional space are modeled by
close points in the two-dimesional space, while objects that are dissimilar by
distant points.

Figure 5.16 shows clustered digits of MNIST dataset (each described by a 785-
dimensional vector) in a 2D space, after dimensionality reduction by t-SNE.

Figure 5.16: Visualization of MNIST dataset through t-SNE.
Source: L.Derksen [46]
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Chapter 6

Results and conclusions

In this chapter, all obtained results are shown through tables and plots, finally
including conclusions and suggestions on future work.

6.1 Results
Detailed analysis are performed to understand the impact of changing some
parameters and, later, find the best model for Deep One-class Classification of
people.
In particular, we operate:

• modifying λ;

• changing the number of trainable layers;

• varying the input batch size;

• modifying the number of templates;

• decreasing the number of target examples available during the training.

Measures and graphical tools used in evaluating model performances are previ-
ously explained in section 5.5. Metrics are precision, recall, F1 score, accuracy
and ROC AUC, while graphical tools are ROC curves, DET curves and t-SNE
visualization of features.

But first, we must pay attention to the meaning that precision and recall have in
our discussion, because these kinds of metrics are closely related to the chosen
positive class.
In Deep One-class Classification, however, we represent the person class using
the value 0 (negative class) and the alien class using the value 1 (positive class).
If we want to refer all metrics to the target class, we need to reverse label values
produced by DOC models.
In this way, consistent results are generated through an unbiased comparison
among all models, including binary classification ones.
We can say now that precision quantifies, across all examples classified as per-
son, how many are actually person and recall measures how many instances of
people are correctly identified.
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6.1.1 Impact of λ

Here, the impact of the main parameter λ is studied.
It is so relevant because it controls the mutual importance between the two
losses that realize the composite loss. We need, therefore, to understand which
classification results come from if we tip one way or the other.

Table 6.1 shows values of ROC AUC, precision, recall, F1 score and accuracy
referred to testing dataset BN1 (described in section 5.4), using a wide range
of lambda. Values are kept after a training of 400 epochs.
We selected 400 as the final epoch, because is when the composite loss con-
verges without being more minimized. To ensure the correctness of this value,
all metrics are monitored every 50 epochs, keeping track of their variations.
Other settings in all the performed training phases are: the target dataset is
composed of 6000 images, the trainable layers in MobileNetV2 model are 40
and the input batch size is equal to 256.

λ AUC Precision Recall F1 score Accuracy
0.1 0.949 0.922 0.845 0.882 0.887
0.5 0.965 0.959 0.859 0.906 0.911
1 0.979 0.949 0.918 0.933 0.935
5 0.992 0.959 0.965 0.962 0.962
10 0.992 0.97 0.958 0.964 0.964
50 0.995 0.963 0.983 0.973 0.974
100 0.994 0.968 0.963 0.965 0.966
400 0.976 0.927 0.929 0.928 0.928

Table 6.1: Performance metrics of BN1 by changing λ

Models with λ=50 and λ=100 presents the best metric values.

In figure 6.1, ROC curves of all models are compared too.
Notice that best models have ROC curves very close to the top left corner of
the plot that overlap (light blue with λ=5, red with λ=10, green with λ=50,
black with λ=100).
A better visualization of model performances is provided by plotting DET curves
(fig. 6.2), where each line is more distinguishable from others.
The curve with λ=50 is placed lower, so it has best values of FPR and FNR.

The trends of composite loss, compactness loss and descriptiveness loss are
finally analysed to derive a general rule in choosing λ.
We consider losses in three key scenarios: when λ= 0.1, λ= 400 and λ= 50 (in
figure 6.3).
Values of losses are stored every 10 batch iterations, in order to understand
what happens during each epoch: since epochs are 400 and batches are 46
(6000 divided by mini-batch size of 128, rounded down to the lower integer),
2000 values are visualized, 5 for each epoch.
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Figure 6.1: ROC curves with different λ

Figure 6.2: DET curves with different λ

We can therefore come to some conclusions about what binds λ and the range
of losses:

(A) λ= 0.1 lc ∈ [0.33, 0.24] ld ∈ [3.5, 0.25]
In this scenario, multiplying lc by λ equal to 0.1 produces a composite loss
completely dominated by the descriptiveness. It follows that ld is correctly
minimized, while lc is not enough reduced.
The resulting model is able to categorize in a good way objects, but the variance
of extracted features is not very low.

(B) λ= 400 lc ∈ [0.3, 0.0008] ld ∈ [3.5, 1.5]
In this scenario, multiplying lc by λ equal to 400 produces a composite loss
completely dominated by the compactness. It follows that lc is correctly mini-
mized, while ld cannot reach low values.
The resulting model is able to isolate features of people, but classification is not
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(a)

(b)

(c)

Figure 6.3: Composite loss, descriptiveness loss and compact-
ness loss when: (A) λ=0.1 (B) λ=400 (C) λ=50

correctly performed, producing bad metrics.

(C) λ= 50 lc ∈ [0.3, 0.004] ld ∈ [3.3, 0.5]
In this scenario, multiplying lc by λ equal to 50 produces a composite loss bal-
anced between compactness and descriptiveness. It follows that both losses are
correctly minimized.
The resulting model is able to isolate features of people and, at the same time,
to categorize in a good way all objects. This is why all performance measures
reach high values here.

Additionally, in figure 6.4 is possible to see that the variance of features from
people images decreases in all λ cases keeping up with the training, but at dif-
ferent levels.
Cases with λ=50, λ=100, λ=400 (zoomed in fig. 6.4 (B)) have values of variance
very very small, but they lose the capability of producing descriptive features.

The best DOC model should produce similar target features through compact-
ness loss minimization and, at the same time, should correctly categorize ele-
ments of other classes through descriptiveness loss minimization.
Considering the batch size of 256, we chose the model with λ=50 as the best
one, since it has the highest level of AUC, recall, F1 score and accuracy, it is
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(a) (b)

Figure 6.4: Decreasing of feature variance in all λ cases

placed lower in DET curve plot and presents a correct loss minimization.
This best model will be later compared to the related binary model.

6.1.2 Impact of the number of trainable layers in DOC
Here, the impact of number of layers that are learning during the training is
studied. Metric values of dataset BN1 are reported in table 6.2, after a training
of 400 epochs using parameters: λ= 50, batch size= 256, elements of target
dataset= 6000.

Frozen till Train. layers AUC Precision Recall F1 score Accuracy
block_16 last 13 0.993 0.973 0.967 0.97 0.97
block_15 last 22 0.995 0.979 0.968 0.973 0.974
block_14 last 31 0.994 0.968 0.964 0.966 0.964
block_13 last 40 0.995 0.963 0.983 0.973 0.974
block_12 last 49 0.995 0.964 0.979 0.972 0.972
block_11 last 58 0.995 0.974 0.97 0.972 0.972

Table 6.2: Performance metrics of BN1 by changing the num-
ber of trainable layers

Notice that from a certain number of trainable layers (22) onwards, except for
case with 31 trainable layers, ROC AUC is stable at 0.995, while F1 score and
accuracy present very similar values.
The scenario where there are frozen layers till block 13 is preferred (setting the
parameter trainable = True for last 40 layers) because has an higher recall,
0.983, on equal terms.

6.1.3 Impact of the input batch size
We start using an input batch of 256 images, composed of target and reference
dataset examples as described in section 5.3.2, because 256 is the largest allowed
batch size, without creating memory overflow errors.
In order to evaluate the impact of the batch size in Deep One-class Classification,
the number of elements that are fed into the network in parallel is varied,
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decreasing it until 32 passing by power of 2 sizes.
In table 6.3, metric values referred to dataset BN1 at epoch 400 are shown.
Other parameters in the performed trainings are: number of target elements =
6000 and number of trainable layers = 40.
The value λ changes from 50 to 10 when decreasing the batch size, because the
order of magnitude of losses varies. The parameter λ is therefore adapted to
produce a balanced composite loss between compactness loss and descriptiveness
loss.

Batch size λ AUC Precision Recall F1 score Accuracy
256=128+128 50 0.995 0.963 0.983 0.973 0.974
128=64+64 10 0.995 0.977 0.97 0.973 0.974
64=32+32 10 0.997 0.985 0.976 0.98 0.981
32=16+16 10 0.997 0.989 0.976 0.982 0.983

Table 6.3: Performance metrics of BN1 by changing the input
batch size

It is clear that as the batch size becomes smaller, all metrics get better.
For this reason, the best model is the one that is trained using a batch size
equal to 32 (16+16), reaching 0.997 of ROC AUC and 0.983 of accuracy.

6.1.4 Impact of the number of the templates
In this section, there is an investigation about how the number of selected tem-
plates influences our classification.
Remember that templates are the 1280 numbers extracted by each image be-
longing to a sub-set of the target dataset. These numbers are the features
associated to pictures with people, later compared to features extracted from a
new image through the Eucliden distance, in the testing part of matching.
Features of images containing individuals should be very similar to templates,
in terms of distance, and therefore the related score should be low. On the
contrary, features extracted by pictures with other objects should be far from
them, producing an high score.
Using a smaller number of templates, means comparing the extracted charac-
teristics with fewer baseline person features.
Perea and Patel in the main article [28] state that reducing templates has no
effect on the quality of the classification, if the algorithm is able to extract right
features of the class under consideration.
It’s time to verify the statement through table 6.4, where all metrics from
dataset BN1 are shown. Values are referred to epoch 400, after a training with
λ= 10, batch size= 32, number of target elements = 6000, number of trainable
layers= 40.

Performances remain totally unaffected by reducing the number of templates,
even in the extreme situation where only one of them is available.
It follows that our Deep One-class Classification for people recognition succeeds
in efficiently isolating the target class, extracting representative features of a
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N. of templates AUC F1 score Accuracy
40 0.997 0.982 0.983
30 0.997 0.983 0.983
20 0.997 0.983 0.983
10 0.9975 0.983 0.983
5 0.9975 0.983 0.983
1 0.9974 0.982 0.983

Table 6.4: Performance metrics of BN1 by changing the num-
ber of templates

person.
Another proof is the visualization of features provided by the dimensionality
reduction technique t-SNE.

Figure 6.5: t-SNE visualization of extracted features and 40
templates

In figures 6.5, 6.6, 6.7, the three cases with 40, 10 and 5 templates available
during testing are shown. Inside them, there are:

• red points with labels 0, the features associated to images containg people;

• green points labeled with 1, the features extracted from pictures with no
people;

• blue points with a fake label 2, the templates from which the classification
score is generated, through the computation of the Euclidean distance
among them and features.

In all scenarios, the templates are always in the middle of the target region
(red), even when their number is decreased. That’s why the reduction has no



92 Chapter 6. Results and conclusions

Figure 6.6: t-SNE visualization of extracted features and 10
templates

Figure 6.7: t-SNE visualization of extracted features and 5
templates

influence on correct classification.
Also, notice that person features are compactly placed together in the red cloud,
while features of objects from alien classes are organized into smaller green dif-
ferent regions far from people: our algorithm has reached the capability to
produce features with both compactness and descriptiveness properties.
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6.1.5 Impact of the number of target examples
In this section, the Deep One-class Classification is evaluated in contrast to
binary classification, when the number of people samples available during the
training is reduced.
We are aware of the fact that, using the early 6000 elements of the target
dataset in the training phase, performances reached by two methods referred to
test dataset BN1 are about the same, like shown in table 6.5.

Method AUC Precision Recall F1 score Accuracy
DOC 0.997 0.989 0.976 0.982 0.983
Binary 0.997 0.974 0.986 0.98 0.98

Table 6.5: Performance metrics of BN1 in DOC and in binary
classification

Why to prefer DOC to binary strategy if the latter is simpler (no custom com-
pactness and descriptiveness losses, no particular training organization with
sub-batches from reference and target elements) and the two solutions produce
very similar results? This investigation is carried out precisely to find reasons
for choosing our DOC solution.

Results displayed in table 6.5 are absolutely understandble because the dataset
employed for training is balanced, since composed of 6000 person images and
10000 outlier images.
The binary classification algorithm is trained in discriminating two classes: per-
son class, containing the same examples of the target dataset, and alien class,
which is filled with images from all categories of the reference dataset.
From its point of view, there are 1.67 alien objects for each target instance in
the dataset, so the algorithm has the possibility to fully understand how distin-
guish what is representing people and what is not representing people, through
a wide well-balanced amount of examples.
It is therefore normal that the binary classifier has the same performance results
compared to our Deep One-class classifier.

What if we increase the level of imbalance of the training dataset, as suggested
in "One-Class versus Binary Classification: Which and When?" [47]?
In the article, performances of the two classifiers (OCC and binary) are moni-
tored when the size of the outlier class decreases.
In our application, we cannot modify the number of elements of the negative
class because it depends on the external dataset, that should be left unchanged
also in a DOC problem with another target class.
We decide therefore to gradually reduce the number of target images of people
available during the training.
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In the following plots, key metrics ROC AUC, precision, recall, F1 score, ac-
curacy are shown varying the number of samples in the target dataset, aimed
at comparing the two algorithms of Deep One-class Classification and binary
classification.
Performances of both models are evaluated on three available dataset BN1 (fig.
6.8), BN2 (fig. 6.9) and IR (fig. 6.10), reporting values after a training of 400
epochs.

(a) ROC AUC (b) Precision

(c) Recall (d) F1 score

(e) Accuracy

Figure 6.8: Metrics of testing dataset BN1 in DOC and binary
classification by changing the number of target samples

The logarithmic x-axis of all plots represents the ratio between the number of
elements in the reference dataset, fixed to 10000, and the number of examples in
the target dataset, that is changing. This choice is taken to properly show the
downward trend of performances when decreasing the number of target images.
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(a) ROC AUC (b) Precision

(c) Recall (d) F1 score

(e) Accuracy

Figure 6.9: Metrics of testing dataset BN2 in DOC and binary
classification by changing the number of target samples

In table 6.6, the number of target elements and the corresponding ratio are
clarified.

N. of target elements 6000 4000 2000 1000 800 600 400
Ratio ref/targ 1.67 2.5 5 10 12.5 16.67 25

Table 6.6: Number of target elements and the corresponding
ratio

Remember, also, that in the binary trainings there are the class person with
the same images of the target dataset and the alien class with images from all
categories of the reference dataset, and that the input batch size is 32.
The DOC trainings, instead, are characterized by a value of λ consistent with
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(a) ROC AUC (b) Precision

(c) Recall (d) F1 score

(e) Accuracy

Figure 6.10: Metrics of testing dataset IR in DOC and binary
classification by changing the number of target samples

orders of magnitude of losses, equal to 10, a number of trainable layers equal
to 40 and an input batch size of 32 (16 target images + 16 reference images).

All pictures display two lines: the blue curve refers to Deep One-class Classifi-
cation, while the red curve relates to binary classification.
Blue and red curves from testing datasets BN1 and BN2 are very similar, pre-
senting on average a downward trend, since they are composed of the same type
of images used in the training, from Open Images Dataset V4 and ILSVRC 2012
dataset.
Behaviour of metrics coming from testing dataset IR, instead, is slightly differ-
ent: blue curves, in particular, don’t decrease when ratio becomes bigger.
This is because InfraRed images are not strictly related to grayscale images
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included in the training set, so decreasing people instances inside it reduces the
overfitting of the algorithm. Fewer images allow to generalize the concept of
person class, that is better adapted to InfraRed images.

Anyway, for all datasets, metrics of the binary classifier (red) degrade, when re-
ducing the number of person images in the training set from 800 on: the binary
algorithm is no more able to distinguish people from outliers in the presence of
an overabundance of data of the other classes.
Conversely, the Deep One-class classifier still manages to discriminate person
instances compared to anything else, by isolating right distinctive features using
the previously defined compactness and descriptiveness losses. Performances re-
main stable with an almost flat curve, even when that number is reduced by 30
times to 200 person images.
The strength of our method is, therefore, the ability to correctly work when
the level of imbalance of the training classes increases, with a few hundred of
target samples available. Our method is successful also using testing images
not directly related to the ones in the training.
In this situations, every binary classifier falls, becoming merely random.

Finally, ROC curves of DOC and binary classification models referred to BN1
are proposed in figure 6.11, with a different number of person samples in the
training.
At the beginning, both ROC curves lie very close to the top left corner of the
plot. From the third case on (2000 samples) binary red curve moves away from
blue one, confirming to have worse performances.

6.2 Conclusions
We have realized, through the method called Deep One-class Classification, an
effective Deep Learning algorithm for One-Class Classification problems, able
to recognize people instances in pictures.
Despite the chosen target class is complicated to model and to be distinguished
from anything else, results are promising, showing high values of ROC AUC,
F1 score and accuracy.
Our DOC is a very competitive and powerful solution compared to binary al-
gorithms because it successfully works even when unbalanced training dataset
are available.

6.2.1 Future work
Suggested next steps to be taken are:

• using another size of images, different from (224,224), to make details of
people more visible. Using this size makes the process light and faster,
but reduces also the image resolution;
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(a) 4000 samples (b) 2000 samples

(c) 1000 samples (d) 800 samples

(e) 600 samples (f) 400 samples

Figure 6.11: ROC curves of DOC and binary classification
models by changing the number of target samples

• minimizing variance of features, extracting values from another layer. In
the discussion we considered the output of the last convolutional block,
but it is interesting to see how performances vary using different features;

• employing another reference dataset. We used a subset of ILSVRC 2012,
but different external datasets can produce maybe better results;

• modifying the type of network, employing an architecture different from
MobileNetV2;

• trying a further transfer learning with the existing InfraRed dataset to
tune in a better way parameters;

• acquiring a wider InfraRed dataset to perform the entire training on it.
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