
Politecnico di Torino

Engineering Faculty
Computer Engineering - Data Science

Master’s Degree Thesis

Extraction of spatio-temporal sequences

Supervisor
prof. Paolo Garza

Candidate
Andrea Cossio

Academic Year 2019-2020

Contents

List of �gures VI

List of tables VIII

1 Introduction 3

2 Background and related work 5

2.1 Association pattern mining . 5

2.1.1 Overview . 5

2.1.2 Frequent pattern mining . 6

2.1.3 Association rule mining . 7

2.2 Apriori . 8

2.2.1 Overview . 8

2.2.2 The algorithm . 8

2.2.3 Conclusions . 9

2.3 FP-Growth . 9

2.3.1 Overview . 9

2.3.2 FP-tree construction . 10

2.3.3 Pattern fragment growth . 11

2.3.4 Conclusions . 11

I

2.4 Contextual data representations . 12

2.4.1 Overview . 12

2.4.2 Temporal data . 12

2.4.3 Spatial and spatio-temporal data . 12

2.5 Sequential pattern mining . 13

2.5.1 Overview . 13

2.5.2 Algorithms . 14

2.5.3 Spatio-temporal sequences . 14

3 The proposed model 15

3.1 Overview of the algorithm . 15

3.1.1 General idea . 15

3.1.2 Steps of the algorithm . 15

3.2 Extraction of events of interest . 16

3.2.1 Overview . 16

3.2.2 Events of interest . 16

3.2.3 Reduction of granularity . 17

3.2.4 Example . 18

3.2.5 Summary . 20

3.3 Sequences generation . 20

3.3.1 Overview . 20

3.3.2 Joining sequences . 21

3.3.3 Sliding window . 21

3.3.4 Example . 22

3.3.5 Summary . 23

3.4 Spatio-temporal sequences . 24

3.4.1 Overview . 24

II

3.4.2 Conversion of sequences to transactions 24

3.4.3 Spatio-temporal pattern mining . 24

3.4.4 Example . 25

4 Dataset analysis 27

4.1 Dataset description . 27

4.1.1 Bike sharing overview . 27

4.1.2 Features . 28

4.1.3 Dataset preparation . 29

4.2 Exploratory analysis . 29

4.2.1 Overview . 29

4.2.2 Station . 29

4.2.3 Timestamps . 32

4.2.4 Slots . 35

4.3 Preprocessing . 37

4.3.1 Overview . 37

4.3.2 Removing outliers . 38

4.3.3 Results . 39

5 Experimental results 41

5.1 Chapter overview . 41

5.2 Events of interest . 42

5.2.1 Overview . 42

5.2.2 Extraction of critical events . 43

5.2.3 Results . 43

5.3 Reduction of granularity . 45

5.3.1 Overview . 45

III

5.3.2 Alignment of critical events . 46

5.3.3 Results . 47

5.4 Sequences generation . 49

5.4.1 Overview . 49

5.4.2 Sliding window and transactions . 49

5.4.3 Results . 50

5.5 Spatio-temporal sequences . 51

5.5.1 Overview . 51

5.5.2 FP-Growth . 52

5.5.3 Results . 52

6 Conclusions 55

Bibliography 57

IV

List of Figures

2.1 FP-tree. 11

4.1 Data collected by station 1 during the �rst three days of June. 28

4.2 Barcelona’s map reporting the geographical locations of the station. 30

4.3 Number of events per station. 30

4.4 Activity of stations 24 and 148. 31

4.5 Mean (left) and variance (right) of total_slots per station. 31

4.6 Mean (left) and variance (right) of used_ratio per station. 32

4.7 Number of active stations over time. 32

4.8 Temporal inactivity of the system for more than 10 minutes. 33

4.9 Sum of used_slots over time. 34

4.10 Sum of free_slots over time. 34

4.11 Sum of total_slots over time. 35

4.12 Sum of used_slots divided by the sum of total_slots. 35

4.13 Distribution of used_slots. 36

4.14 Distribution of free_slots. 36

4.15 Distribution of total_slots. 37

4.16 Distribution of used ratio. 37

4.17 Total number of slots in the system before and after cleaning. 38

4.18 Total number of slots of station 1 before and after cleaning. 39

V

4.19 Total number of slots of station 219 before and after cleaning. 40

5.1 Di�erence between "all" and "�rst" critical events. 42

5.2 Number of critical events comparison. 43

5.3 Average duration of a critical situations for each station. 44

5.4 Percentage of "empty" critical events comparison. 44

5.5 Number of simultaneously critical stations with "all" critical events. 45

5.6 Number of simultaneously critical stations with "�rst" critical events. 45

5.7 Number of distinct intervals for each interval size. 47

5.8 Average number of duplicates that each event has in an interval. 48

5.9 Average number of stations for each interval that registered both critical events. 48

5.10 Number of events per transactions. 50

5.11 Average support of the 100 most frequent itemsets. 52

5.12 Average fraction between the number of unique stations and the number of events

of the 100 most frequent itemsets. 53

5.13 Average con�dence of the 100 rules with the highest con�dence. 53

VI

List of Tables

2.1 Set of transactions. 10

2.2 Header table. 10

3.1 Numerical time series and its events of interest. 18

3.2 Discrete sequence obtained from the numerical time series. 19

3.3 Categorical time series and its events of interest. 19

3.4 Discrete sequence obtained from the categorical time series. 20

3.5 Example of outliers after reducing the temporal granularity of the discrete sequence. 20

3.6 Spatio-temporal dataset containing 2 discrete sequences. 22

3.7 Discrete sequence obtained after joining space. 22

3.8 Discrete sequences obtained after applying a sliding window of length 3. 23

3.9 List of sequences. 25

3.10 List of transactions obtained after converting the sequences. 26

4.1 First records of the dataset. 28

4.2 First records of the dataset with the two additional columns. 29

4.3 Stations with the least number of events. 30

5.1 Sample of records and the corresponding critical events. 43

5.2 Sample of aligned critical events. 46

5.3 Stations 1 and 50 aligned events and merged. 47

VII

5.4 Sliding window on a sample of critical events recorded by station 1 and 50. . . . 49

5.5 Conversion of the sequences to transactions. 50

5.6 FP-Growth minimum supports for each dataset. 51

VIII

Abstract

Considering the �eld of association pattern mining, FP-Growth is without any doubt one of the

most famous algorithms for extracting frequent itemsets. Thanks to Spark’s e�cient parallel im-

plementation, this algorithm is also the perfect candidate when working with big transactional

databases. This work introduces a novel procedure to convert and aggregate multiple multivari-

ate time series into multiple discrete sequences of data, in such a way that it is then possible to

extract spatio-temporal sequences using FP-Growth.

Chapter 1

Introduction

Association pattern mining is one of the most important branches of data mining: it focuses on

the extraction of rules that describe speci�c patterns within the data. The main goal of this data

mining process is the discovery of insights, in terms of rules and patterns, that can be leveraged

to generate a wide variety of bene�ts. Firstly adopted for market-basket data analysis to improve

target marketing and shelf placement of items, it is today used for a broad range of applications

such as clustering, classi�cation, outlier analysis, text mining, recommendations, and a great

variety of other problems.

The aim of this work is to extract spatio-temporal sequences of events using association pattern

mining algorithms. Starting from a dataset made of multiple time series simultaneously collected

at di�erent locations, the newly proposed procedure starts with the extraction of events of interest

from the time series and proceeds with the conversion to discrete sequences of data. Thanks to

the particular structure given to these sequences, that contain information about both time and

space of the extracted events, the application of a sequential pattern mining algorithm allows

the discovery of spatio-temporal sequences of events. Since the Spark framework contains a very

e�cient parallel implementation of FP-Growth, called PFP [8], the proposed model needs to

perform an additional step of conversion from discrete sequences to transactions, so that it is

then possible to extract the spatio-temporal sequences more e�ciently with this algorithm.

The thesis is organized in the following way. Chapter 2 (Background and related work) pro-

vides a general overview of association pattern mining and contains a brief introduction to the

topics of spatio-temporal data and sequential pattern mining. Chapter 3 (The proposed model)

describes the new procedure for extracting the spatio-temporal sequences. Taking into consider-

3

1 – Introduction

ation Barcelona’s bike sharing dataset, Chapter 4 (Dataset analysis) and Chapter 5 (Experimental

results) contain respectively the exploratory analysis of the dataset and the experimental results

obtained by applying the proposed model to it. Finally, Chapter 6 (Conclusions) draws some gen-

eral conclusions and provides also some suggestions that could be useful to improve the model

in future developments.

4

Chapter 2

Background and related work

In this chapter, after a quick revision of association pattern mining’s core concepts, two of the

most common state-of-the-art frequent pattern mining algorithms will be presented: Apriori and

FP-Growth. In the last two sections, the topics of spatio-temporal data and sequential pattern

mining will be brie�y reviewed.

2.1 Association pattern mining

2.1.1 Overview

Association pattern mining [1] is a classical example of an unsupervised data mining task that aims

at discovering interesting relationships between groups of items inside transactional databases.

These relationships, also called associations, are rules in the form of an implication between two

groups of items. This problem was �rstly introduced in the context of supermarket data analysis

to �nd patterns regarding items bought by customers. For example {Bread,Butter} ⇒ {Milk}
is a rule that can be interpreted in the following way: “Whenever a customer buys bread and butter

together, he is also likely to get milk in the same purchase”. As proposed in the original paper, the

problem of mining association rules can be decomposed into two sub-problems:

• Extraction of frequent itemsets from a transactional database.

• Extraction of association rules from the extracted frequent itemsets.

These two steps of the process will be described more in detail in the following sections.

5

2 – Background and related work

2.1.2 Frequent pattern mining

The de�nition of frequent pattern mining relies on some preliminary notions that will be pre-

sented now.

Let T be a database of n transactions denoted by T1, T2, ..., Tn, where each transaction Ti is a

set of items taken from the universe of items U . Let also I be a k-itemset, where k is the exact

number of items that it contains taken from the same universe U . The fraction of transactions

in which I appears as a subset is called support.

De�nition 2.1 (Support) The support of an itemset I is de�ned as the fraction of transactions Ti

in the database T that contain I as a subset.

sup(I) =
#{∀ Ti ∈ T | I ⊆ Ti}

#T
(2.1)

Intuitively, the more often two items appear together in the transactions, the higher the corre-

lation that they have, and therefore the more relevant that they are for extracting association

rules. Consequently, the most important itemsets are the ones with the highest support: more

precisely, an itemset is said to be frequent when its support is higher than a prede�ned minimum

threshold value called minsup. The problem of frequent itemsets mining can be formalized with

the following de�nition.

De�nition 2.2 (Frequent itemsets mining) Given a database of transactions T , �nd all the

itemsets I ⊆ Ti that have a support greater than a prede�ned minimum support minsup.

Due to the fact that transactional databases usually contain a lot of distinct items, it is challenging

to develop scalable methods for mining frequent itemsets in big data contexts. More precisely,

it is very computationally expensive to count the support of all the combination of items, that

given a universe U are 2|U | − 1. Nevertheless, there are two interesting properties of frequent

itemsets that allow to partially solve this problem. Indeed, since they impose a strong constraint

on the structure of frequent patterns, these two properties are often exploited to prune the search

space of the itemsets.

The �rst property, called support monotonicity property, is the direct consequence of the fact that

if a subset I is contained in a transaction Ti, also any subset J of the itemset I must be contained

in the same transaction Ti. Therefore, the support of the itemset J will always be greater or

equal than the one of I .

6

2.1 – Association pattern mining

Property 2.1 (Support monotonicity property) The support of every subset J of an itemset I

is always greater than or equal to the support of I .

sup(J) ≥ sup(I) ∀J ⊆ I (2.2)

The second property, called downward closure property, is a straightforward consequence of the

support monotonicity one.

Property 2.2 (Downward closure property) Every subset J of a frequent itemset I is also fre-

quent.

2.1.3 Association rule mining

As previously mentioned, the second step of association pattern mining involves the extraction

of association rules starting from the frequent itemsets.

Let r be a rule de�ned as an implication in the form X ⇒ Y , where X and Y are two sets of

items1, and respectively the antecedent and the consequent of the rule. This rule can be interpreted

as the conditional probability that a transaction Ti contains Y given that it also contains X ; this

probability is called con�dence of the rule.

De�nition 2.3 (Con�dence) The con�dence of a rule X ⇒ Y is de�ned as the fraction between

the support of the itemset X ∪ Y and the support of X .

conf(X ⇒ Y) =
sup (X ∪ Y)

sup (X)
(2.3)

Obviously, the rules with the highest con�dences are the most interesting ones. Therefore, as

done with the itemsets, it is possible to de�ne a minimum threshold value to �lter out all the

irrelevant rules; in this case, this value is called minconf .

De�nition 2.4 (Association rule) A rule r in the form X ⇒ Y is said to be an association rule

with minimum support minsup and minimum con�dence minconf , when it satis�es the following

conditions:

1In reality, in the original paper the consequent of the rule (Y) is intended as a single item. Nevertheless, now the

concept has been extended to any set of items.

7

2 – Background and related work

• The support of X ∪ Y is at least minsup.

• The con�dence of the rule is at least minconf .

From this de�nition, it is possible to notice how the union of X and Y is required to be a frequent

itemset: this guarantees that there is a su�cient number of transactions that are relevant to the

rule. It is for this reason that association rules are extracted starting from frequent itemsets.

Di�erently from the problem of mining frequent itemsets, the extraction of association rules

is much simpler and more straightforward. Assumed I to be a frequent itemset, a simple way

of generating the rules would be to partition it into all the possible combination of sets X and

Y = I −X so that I = X ∪ Y and then determine all the rules in the form X ⇒ Y that have a

con�dence greater than minconf .

2.2 Apriori

2.2.1 Overview

Apriori [2] is one of the oldest candidate generation-based algorithms for mining frequent item-

sets. In addition to the adoption of a breadth-�rst search and a hash tree structure to count

itemsets e�ciently, Agrawal and Srikant leveraged Property 2.2 (Downward closure property) to

prune the search space of the candidate itemsets. Since they were the �rst ones to discover such

characteristic of frequent itemsets, this property is also known as the Apriori principle.

2.2.2 The algorithm

The Apriori algorithm is based on a bottom-up approach. Starting with the generation of the

frequent 1-itemsets by counting the support of the individual items belonging to the universe U

and identifying those that are frequent, it proceeds with a repetitive procedure that consists of

three steps:

• Candidate generation. During this �rst step, the frequent (k − 1)-itemsets identi�ed dur-

ing the previous pass are combined together to generate candidate itemsets of length k.

Since a k-itemset can be generated by multiple combinations of (k− 1)-itemsets, to avoid

redundancy in candidate generation, it is often useful to impose an ordering for the items.

In this way, there is only one way to generate the k-itemsets. Also, thanks to the Apriori

8

2.3 – FP-Growth

principle, using this approach ensures that no frequent itemset will be missed.

• Pruning. In this second step, to further reduce the number of candidates, the downward

closure property is used again; indeed, a candidate k-itemset cannot be frequent when it

contains as subset a (k − 1)-itemset that does not belong to the set of frequent (k − 1)-

itemsets. Therefore, such candidates can be safely discarded.

• Support counting. Finally, the database is scanned to count the support of the remaining

candidates so that all those that are not frequent can be removed.

This process continues until no new frequent itemsets are found.

2.2.3 Conclusions

Even if this new method of pruning candidates has represented a big step-up in terms of e�ciency

with respect to previous algorithms, the number of candidates in big transactional databases can

potentially be so huge that the candidate generation step would still be very costly. Also, as most

of the other algorithms, to count the support of the itemsets Apriori needs to scan the database

multiple times which is a very computationally expensive operation.

2.3 FP-Growth

2.3.1 Overview

FP-Growth [5] is a divide-and-conquer algorithm for mining frequent itemsets that, di�erently

from most of the Apriori-like algorithms, does not require the generation of candidates. The

main novelty of this algorithm was the introduction of an extended pre�x-tree, called FP-tree,

that allowed to store crucial information about frequent patterns in a very compact way. More

precisely, this structure can be used to e�ciently count the support of frequent itemsets.

This algorithm can be seen as a two-steps process that starts with the construction of a FP-

tree from a set of transactions and that proceeds with the extraction of all the frequent itemsets

by pattern growth. To better understand these two steps, the algorithm will be presented now

alongside with an example: the transactions are reported in Table 2.1.

9

2 – Background and related work

Transaction ID Items Sorted frequent items
1 A, B, C, D, E, F, G, H C, D, B, E, A

2 B, C, D, E, I, L, M C, D, B, I, E

3 C, I, M, N, O C, I

4 A, D, I, P, Q D, I, A

5 A, B, C, D, E, L, R, S C, D, B, E, A

Table 2.1: Set of transactions.

2.3.2 FP-tree construction

The �rst phase of FP-Growth, that consists in the construction of the FP-tree, can be further

divided into the following two steps:

• Header table de�nition. During this step, that requires scanning the database for the �rst

time, the header table is generated. This table is a list that contains in descending order

all the supports of all the individual items that are found in the transactions. For example,

imposing minsup = 3, starting from the transactions of Table 2.1, the resulting header

table is reported in Table 2.2.

Item Support
C 4

D 4

B 3

I 3

E 3

A 3

Table 2.2: Header table.

• FP-tree construction. After having generated the header table, the database is scanned for

the second and last time. Each encountered transaction is �ltered retaining only its fre-

quent items (last column of Table 2.1) and sorted according to the previously built header

table. These itemsets are then inserted inside a FP-tree. The insertion must follow any al-

ready existing pre�x path and new branches must be created only when needed. In the �rst

case, the frequency count of each item must be incremented by one, while in the second

10

2.3 – FP-Growth

case, the frequency of each item must be set to 1. Figure 2.1 shows the resulting FP-tree.

Figure 2.1: FP-tree.

2.3.3 Pattern fragment growth

The second phase, that involves recursively visiting the FP-tree to extract the frequent itemsets,

can be divided into two steps:

• Conditional pattern base. Starting from frequent pre�x patterns of length 1, the conditional

pattern bases are generated. Given a pre�x pattern, its conditional pattern base is the set of

frequent paths in the FP-tree that share that pattern. In this "sub-database", the frequencies

are adjusted to match the support of the pre�x pattern.

• Conditional pattern tree. Then, for each conditional pattern base, another FP-tree is created

and the process is repeated recursively. The frequent itemsets are obtained by concatenat-

ing the pre�x paths with the frequent itemsets that are extracted from their conditional

FP-trees.

2.3.4 Conclusions

Thanks to FP-trees, FP-Growth needs to scan the database only twice. For this reason, this al-

gorithm achieves better performances than any of the previous algorithms. Also, thanks to the

particular structure of the trees, it has been possible to de�ne a parallel implementation, called

PFP [8], that scales very well with big databases.

11

2 – Background and related work

2.4 Contextual data representations

2.4.1 Overview

Contextual data representations are a particular kind of data that is characterized by two types

of attributes. The �rst ones, called contextual attributes, provide the reference points in which

the behavioural attributes are measured. The second ones, called behavioural attributes, contain

the values that have been measured at each of the contextual reference points.

2.4.2 Temporal data

Temporal data is the most common contextual data representation in data mining applications

and is often generated by continuous measurements over time. This type of data is character-

ized by a single contextual attribute that is the temporal reference of the measurements, called

timestamp, and by one or multiple behavioural attributes that describe the recorded values at

each timestamp. When the behavioural attributes are numerical, temporal datasets are called

time series.

De�nition 2.5 (Multivariate Time Series Data) A time series of length n and dimensionality

d contains d numeric behavioural attributes collected during each of the n di�erent timestamps

t1, t2, ..., tn.

Instead, when the behavioural attributes are categorical, temporal datasets are called discrete

sequences.

De�nition 2.6 (Multivariate Discrete Sequence Data) A discrete sequence of length n and di-

mensionality d contains d categorical behavioural attributes collected during each of the n di�erent

timestamps t1, t2, ..., tn.

2.4.3 Spatial and spatio-temporal data

Spatial data is a contextual data representation where many behavioural attributes are recorded

at di�erent locations at the same time. The contextual attribute is often made of two spatial

coordinates.

12

2.5 – Sequential pattern mining

De�nition 2.7 (Multivariate Spatial Data) A spatial dataset of length n and dimensionality d

contains d behavioural attributes collected at each of the n distinct spatial locations.

Spatio-temporal data is a special form of spatial data where the behavioural attribute are recorded

over time; therefore, this type of data is characterized by both spatial and temporal contextual

attributes.

De�nition 2.8 (Multivariate Spatio-Temporal Data) A spatio-temporal dataset is made of N

multivariate time series of length n and dimensionality d collected simultaneously at each of the N

distinct spatial locations.

2.5 Sequential pattern mining

2.5.1 Overview

Sequential pattern mining [3] is a special form of frequent pattern mining where the input dataset

is a list of discrete sequences each containing multiple transactions of items in a speci�c temporal

order. Similarly to frequent pattern mining, the goal of this data mining task is to �nd all the

frequent patterns that satisfy a given minsup. However, in this case the frequent patterns are

not simply subsets of the input itemsets but must have a precise form, called sub-sequence.

De�nition 2.9 (Sub-sequence) Let S = {S1, ..., Sn} and R = {R1, ..., Rn} be two sequences

where each of their elements Si and Ri are sets of items. R is said to be a sub-sequence of S if

k elements Si1 , ..., Sik can be found in S such that i1 < i2 < ... < ik and Rr ⊆ Sir for each

r ∈ {1...k}.

One of the most common applications of sequential pattern mining is the discovery of frequent

sequences of items bought by customers in di�erent purchases. For example, in the context of

bookstores, one of these sequential patterns could be: “Whenever a customer buys "The Pillars of

the Earth", there is a 80% chance that within the next month he will also buy "World Without End"”.

This pattern means that most of the customers that buy the �rst book will also buy the second

one in following purchases.

13

2 – Background and related work

2.5.2 Algorithms

Most of the algorithms for mining sequential patterns are generalized versions of the already

existing ones for frequent itemsets:

• Generalized Sequential Pattern Mining [4]. This algorithm was the �rst to be proposed

for mining sequential patterns and it is considered the extension of the Apriori algorithm

because it exploits the downward closure property to generate candidates.

• Pre�xSpan [7]. This algorithm was proposed to improve the performance of GSP by exploit-

ing the same principles of FP-Growth; indeed, it is based on the same divide-and-conquer

approach that exploits pattern growth structures to recursively mine the frequent patterns.

• SPADE [6]. This algorithm is an extension of vertical format-based frequent itemsets min-

ing methods that adopts a divide-and-conquer approach to e�ciently solve the problem

with only three database scans.

A performance comparison of these three models shows that Pre�xSpan and SPADE are both

faster than GSP. However, with a large number of frequent sub-sequences, all three of these

algorithms run very slow. For this reason and due to the fact that a parallel implementation

of these algorithms does not exist inside the Spark framework, I have decided to introduce a

new procedure that uses the parallel implementation of FP-Growth instead, called PFP [8]. This

procedure will be described more in detail in the next chapter.

2.5.3 Spatio-temporal sequences

As mentioned above, the most common goal of sequential pattern mining is the discovery of

sequential temporal patterns. Nevertheless, this data mining task can be applied to datasets that

can contain any type of sequences. For example, the dataset that will be used to test the model

proposed for extracting sequential patterns contains spatio-temporal data: the patterns that will

be extracted will not only have a temporal meaning but also a spatial one. For example, referring

to the context of the bookstores, the patterns will not only contain sequences of books bought by

customers at di�erent periods of time, but also in speci�c libraries. A more detailed description

of this concept will be given in the last section of the next chapter and also in the last chapter

when the model will be tested.

14

Chapter 3

The proposed model

In this chapter, the method proposed for extracting spatio-temporal sequences will be presented.

After a general description of how the model has been devised, all the several steps that make

the overall algorithm will be described in detail.

3.1 Overview of the algorithm

3.1.1 General idea

The main idea that brought to the de�nition of this new method for extracting spatio-temporal

sequences is: “If a spatio-temporal dataset can be converted to a series of transactions with a spe-

ci�c structure, then the rules that are extracted from such transactions can be interpreted as spatio-

temporal sequences of events”. Therefore, apart from the particular kind of interpretation that

is given to the rules, the main novelty introduced by this model is the method for converting

spatio-temporal datasets into a list of sequences in a way that is then possible to extract the

rules.

3.1.2 Steps of the algorithm

From a high-level point of view, the algorithm can be divided into three main phases:

• Extraction of events of interest. In this �rst phase, the input dataset is �ltered and its time

series are converted to discrete sequences of data.

15

3 – The proposed model

• Sequence transformation. Throughout this phase, the discrete sequences are converted into

a new list of sequences that have a speci�c structure that enables the extraction of the rules.

• Extraction of spatio-temporal sequences. In this last phase, the previously generated list

of sequences is mined with a frequent pattern mining algorithm that extracts the spatio-

temporal rules.

Given the practical nature of the procedure, each of these steps will be presented together with

an example in the next sections.

3.2 Extraction of events of interest

3.2.1 Overview

Even if there are algorithms that are speci�cally designed to work directly with time series, it is

often convenient to convert them to discrete sequences because of the richer class of algorithms

that has been developed for this second kind of data. For this reason, during this �rst phase

of the process, the spatio-temporal dataset taken as input from the model is converted into an-

other spatio-temporal dataset where the time series have been �ltered and converted to discrete

sequences of data. This operation can be divided into two steps:

• De�nition of events of interest. In this step, the time series of the dataset are �ltered and

converted to discrete sequences of data containing only values that are relevant for the

analysis.

• Reduction of granularity. In this step, the discrete sequences of data are simpli�ed by re-

ducing the temporal granularity.

3.2.2 Events of interest

This step consists in the identi�cation of which events of interest are relevant for the analysis that

is being conducted; more precisely, it consists in the identi�cation of those events between which

we would like to extract spatio-temporal sequences. Depending on the type of data and on the

goal of the analysis, there could potentially be several ways to de�ne such events. Nevertheless,

a generic de�nition can be formalized in the following way.

16

3.2 – Extraction of events of interest

De�nition 3.1 (Event of interest) An event of interest is a speci�c value1 that corresponds to the

occurrence of a particular event in the context of the application and that is relevant for the analysis.

After having identi�ed the most appropriate de�nition for the analysis that is being carried out,

the extraction of the events of interest is obtained by �ltering each time series so that they contain

only these events. When the time series contain numerical data an additional step is required: the

numerical values must be mapped to categorical ones. Section 3.2.4 contains a practical example

that helps to better understand these operations.

3.2.3 Reduction of granularity

In order to create a more robust representation of the sequences, it is often convenient to per-

form a reduction of granularity of the temporal attribute. This operation consists in the temporal

alignment of the events to equally spaced timestamps. To obtain this series of timestamps, two

values must be de�ned:

• Initial timestamp. This is the starting point in time of the series.

• Granularity of interest. This is the �xed distance between the timestamps expressed as a

number of minutes.

On one hand, choosing the �rst value is very simple: even if it is possible to use any timestamp,

it is often recommended to use the �rst one in temporal order that is available in the dataset.

On the other hand, choosing the right interval length is very di�cult because the appropriate

value depends on the context and on the type of patterns that we are looking for: a �rst possible

intuition is that for short term patterns the granularity should be smaller, while for long term

patterns it should be larger. However, there are also other factors that need to be considered

when choosing the interval length: since these factors depend on future concepts, they will be

explained more in detail in Section 3.3.5.

Before describing how the operation of reduction of granularity is carried out, it is necessary to

de�ne what an interval is.

1When the time series are characterized by multiple behavioural attributes the events of interests must be de�ned

in a way that the extracted values are still one-dimensional.

17

3 – The proposed model

De�nition 3.2 (Interval) Given an initial timestamp t0 and a granularity g, the following series

of timestamps is obtained: tn = t0+n∗g. An interval is any period of time between two consecutive

timestamps tn and tn+1 and is uniquely identi�ed by the number n.

Following this de�nition, the reduction of granularity is obtained by aligning all the events to the

timestamp tn, where n is the identi�er of the interval they belong to, and by merging together

those that belong to the same interval.

Depending on how the events of interest have been de�ned and on the chosen granularity of

time, there could be intervals that do not contain any event of interest, for example when they

occur very rarely or when the chosen interval length is too small, or there could be intervals

that contain many of them, for example when they occur very often or when the chosen interval

length is too big. In the �rst case, which is also the most common one, no further operation is

needed. In the second case, it is important to choose how the events should be merged together,

especially when the values are di�erent because there could be some outliers. The following

section contains a practical example that helps to better understand this operation.

3.2.4 Example

To better understand this �rst phase of the algorithm, two examples are now presented. The �rst

example takes as input the numerical time series that is reported in Table 3.1.

Timestamp Measure Event
0 2020-01-01 12:00:00 0 MIN

1 2020-01-01 12:01:00 0 MIN

2 2020-01-01 12:02:00 1 /

3 2020-01-01 12:03:00 2 /

4 2020-01-01 12:04:00 3 MAX

5 2020-01-01 12:05:00 2 /

Table 3.1: Numerical time series and its events of interest.

Imagine that in the context of this time series the measurements can take on values in a range

between 0 and 3. A possible de�nition of events of interest could be: “All those values that are 0 or

3”. According to this de�nition, only the �rst two records and the fourth one should be retained.

Also, since the measurements are numerical, the values need to be converted to categorical val-

18

3.2 – Extraction of events of interest

ues; a possible solution consists in mapping 0 to the string "MIN" and 3 to "MAX". Let’s now

consider an interval length of two minutes: the discrete sequence that is obtained aligning the

events is reported in Table 3.2.

Timestamp Interval ID Events
0 2020-01-01 12:00:00 0 {MIN, MIN}

1 2020-01-01 12:02:00 1 { }

2 2020-01-01 12:04:00 2 {MAX}

Table 3.2: Discrete sequence obtained from the numerical time series.

Notice how the �rst interval contains two events that are equivalent: it means that the environ-

ment stayed in the same state for more than one minute. Also, notice how during the second

interval no event has been detected: it means that the sequence will have a missing interval ID.

Both of these situations are not a problem because they do not a�ect how the model will perform.

Let’s now consider a second example that takes as input the categorical time series that is re-

ported in Table 3.3.

Timestamp Status Event
0 2020-01-01 12:00:00 FULL FULL

1 2020-01-01 12:01:00 NORMAL /

2 2020-01-01 12:02:00 FULL FULL

3 2020-01-01 12:03:00 FULL FULL

4 2020-01-01 12:04:00 NORMAL /

5 2020-01-01 12:05:00 EMPTY EMPTY

Table 3.3: Categorical time series and its events of interest.

Imagine that in the context of this time series the values represent the fullness of a system. A

possible way of de�ning the events of interest could be: “All those values that are critical for the

system and therefore all those situations in which the system is full or empty”. In this case, since

the values are already categorical, the time series only needs to be �ltered and aligned. Given an

interval length of two minutes, the resulting sequence is reported in Table 3.4.

19

3 – The proposed model

Timestamp Interval ID Events
0 2020-01-01 12:00:00 0 {FULL}

1 2020-01-01 12:02:00 1 {FULL, FULL}

2 2020-01-01 12:04:00 2 {EMPTY}

Table 3.4: Discrete sequence obtained from the categorical time series.

If the chosen interval length had been of three minutes, the second interval would have contained

two di�erent events. As previously mentioned, this is a problem that must be addressed and that

can be associated to the presence of outliers or to the choice of interval length too big.

Timestamp Interval ID Events
0 2020-01-01 12:00:00 0 {FULL, FULL}

1 2020-01-01 12:03:00 1 {FULL, EMPTY}

Table 3.5: Example of outliers after reducing the temporal granularity of the discrete sequence.

3.2.5 Summary

After this �rst phase of the process, the time series of the input spatio-temporal dataset D of size

N have been �ltered to contain only the events relevant for the analysis that is being conducted

and have been converted to discrete sequences of data with a �ner granularity of time. Therefore,

the resulting dataset is still spatio-temporal but containing shorter discrete sequences of data.

3.3 Sequences generation

3.3.1 Overview

During this second phase of the process, the discrete sequences obtained from the extraction of

the events of interest are transformed into a new list of sequences that have a speci�c structure

that allows the extraction of spatio-temporal sequences. This phase can be divided into two steps:

• Joining sequences. In this step, the discrete sequences are merged together into a new single

sequence.

20

3.3 – Sequences generation

• Sliding window. In this step, the newly generated sequence is transformed into a new list

of sequences.

3.3.2 Joining sequences

This �rst step serves mainly as preparation and simpli�cation of the following one. During this

step, the N sequences2 that have been generated in the previous phase are merged together.

The new sequence will contain sets of events that occurred during the same interval of time and

that have been collected in di�erent places. This operation can be formalized with the following

de�nition.

De�nition 3.3 (Merge operation) Given two discrete sequences S1 = an and S2 = bn, the third

sequence that is obtained by merging them together is S3 = cn = {an, bn}n.

To preserve the spatial reference of the events, they must be tagged with the ID of the loca-

tion where they were registered. Section 3.3.4 contains a practical example that helps to better

understand how this operation can be performed.

3.3.3 Sliding window

The second step of this phase is the most important one of the whole algorithm because it has

the task of generating the sequences with the particular structure that enables the extraction of

spatio-temporal sequences. This particular structure is obtained by applying a sliding window of

length w to the sequence that has been generated in the previous step. This operation can be

formalized with the following de�nition.

De�nition 3.4 (Sliding window operation) A sliding window of length w is a multi-step op-

eration that transforms an input sequence of length n into a list of n sequences. During each step

i, w consecutive elements of the original sequence starting from position i are collected into a new

sequence.

Following this de�nition, the new list of sequences is obtained by scanning the sequence of

length n obtained in the previous step with a sliding window of length w and by collecting every

2Remember that these sequences correspond to the events of interest that have been collected at N di�erent

geographical locations.

21

3 – The proposed model

single group of w consecutive intervals into a sequence each. After this operation, the dataset

will contain n sequences at most, each consisting of w sets of events that have been collected in

di�erent locations during w consecutive intervals of time at a distance of g minutes each. In this

way, the sequences will be characterized by a new contextual attribute that is an index that goes

from 0 to w indicating the relative delta of time between the intervals. The following section

contains a practical example of this operation.

3.3.4 Example

To better understand and visualise this second phase of the process, an example is now presented.

Imagine that the input dataset is the one reported in Table 3.6: it contains two sequences of

events that have been collected in two di�erent locations. The �rst sequence contains two events

of interest registered during the intervals 0 and 1, while the second one contains two events

registered during intervals 1 and 3.

Interval ID Location Status
0 0 1 FULL

1 1 1 FULL

2 1 2 FULL

3 3 2 FULL

Table 3.6: Spatio-temporal dataset containing 2 discrete sequences.

The sequence that is obtained by merging together these two sequences is reported in Table 3.7.

As you can see, the events have been tagged with their location ID. Also, the second interval of

time does not contain any event: this means that during this period of time no event of interest

was captured at any location.

Interval ID Events
0 0 {1:FULL}

1 1 {1:FULL, 2:FULL}

2 2 { }

3 3 {2:FULL}

Table 3.7: Discrete sequence obtained after joining space.

22

3.3 – Sequences generation

Let’s now consider a sliding window of length w = 3: the list of sequences that are obtained by

performing the sliding window operation is reported in Table 3.8. As you can see, each sequence

contains one of the many possible combinations of consecutive intervals of events; the last w−1

sequences contain less elements because they are at the end of the range of intervals.

Sequence ID Index 0 Index 1 Index 2
0 0 {1:FULL} {1:FULL, 2:FULL} { }

1 1 {1:FULL, 2:FULL} { } {2:FULL}

2 2 { } {2:FULL} /

3 3 {2:FULL} / /

Table 3.8: Discrete sequences obtained after applying a sliding window of length 3.

3.3.5 Summary

After this second phase of the process, the discrete sequences of the spatio-temporal dataset

have been merged together and converted to a new list of sequences using the sliding window

operation. These new sequences contain sets of events that occurred at a �xed distance of time

each, more precisely at a distance that corresponds to the new granularity of time chosen in the

previous phase. Therefore, it is now possible to explain which are the other factors that need to

be considered when choosing the interval length (g):

• Interval length too small. When the interval length is too small, there is the risk of not

having enough events that frequently occur at the same distance in a su�cient number of

input sequences: the number of generated sequences could be so big that the support of

the itemsets and the con�dence of the rules may be too low.

• Interval length too big. When the interval length is too big, there is the risk of having

sequences that contain almost all the same critical events. Even if this results in a lot

of frequent sub-sequences with high support, the concept of �xed distance between the

events becomes too loose: since the events belonging to the same interval are merged

together, we don’t know anymore if they happened at the beginning or at the end of the

interval. Therefore, two events belonging to two consecutive intervals may have occurred

at a real relative temporal distance that can be much smaller or much bigger than the

granularity value g.

23

3 – The proposed model

3.4 Spatio-temporal sequences

3.4.1 Overview

Even if there are algorithms that are speci�cally designed for extracting sequential patterns,

when working with large quantities of transactions these algorithms are not very e�cient. There-

fore, since the Spark framework contains a parallel implementation of FP-Growth [8], I have

decided to use this algorithms instead. During this last phase of the process, the sequences that

have been previously obtained with the sliding window operation are converted to transactions

and then mined to extract frequent spatio-temporal itemsets and rules. This phase can be divided

into two steps:

• Conversion of sequences to transactions. In this step, the list of sequences is converted to a

list of transactions.

• Spatio-temporal pattern mining. In this step, the list of transactions is mined to extract

spatio-temporal sequences.

3.4.2 Conversion of sequences to transactions

Since I’m planning to use FP-Growth to extract the frequent sub-sequences and rules, it is neces-

sary to transform the sequences to transactions. The key di�erence between the two structures

is that sequences contain temporal ordered sets of elements while transactions do not. There-

fore, to prevent the loss of the temporal reference, before taking out the events from their sets of

items, they must be tagged with the relative index i of the interval they belong to. In this way,

even if the transactions will contain the events in disorder, it will still be possible to trace back

the relative index of the interval the events belonged to. This operation will become more clear

with the practical example that is presented in Section 3.4.4.

3.4.3 Spatio-temporal pattern mining

The last step of the process consists in the extraction of frequent sub-sequences and rules using

FP-Growth; this is achieved by passing to the algorithm the transactions and the two parameters

that are required by all the frequent pattern mining algorithms: the minimum support minsup

of the sub-sequences and the minimum con�dence minconf of the rules.

24

3.4 – Spatio-temporal sequences

As previously mentioned, the only problem of using FP-Growth instead of sequential pattern

mining algorithms is that there is the possibility of generating redundant frequent sub-sequences

and rules: whenever an itemset or a rule does not contain any item with a relative index 0,

it means that there exists a shifted version of the same sub-sequences or rule with the same

support or con�dence. Also, some rules may contain events in the consequent that happened

before the ones in the antecedent. All of this sub-sequences and rules must be discarded.

After this operation, the list of rules with a support greater thanminsup and a con�dence greater

than minconf is obtained. As we saw in Chapter 2 (Background and related work), the extracted

rules can be interpreted as spatio-temporal sequences of events: whenever the events in the an-

tecedent part of a rule take place, there is the possibility that the event in the consequent part of

the rule will take place in following periods of time. The spatial and temporal references of the

events are given by the ID of the location and by the relative index of the interval.

The last part of the following section contains an example of a spatio-temporal sequences and the

interpretation that can be given to it.

3.4.4 Example

To better understand how sequences are converted to transactions, an example is now presented.

Imagine that the input sequences are the ones reported in Table 3.9.

Sequence ID Index 0 Index 1 Index 2
0 0 {1:FULL, 3:EMPTY} {1:FULL, 2:FULL} {4:FULL}

1 1 {1:FULL, 2:FULL} {4:FULL} {2:FULL, 3:EMPTY}

2 2 {4:FULL} {2:FULL, 3:EMPTY} /

3 3 {2:FULL, 3:EMPTY} / /

Table 3.9: List of sequences.

The conversion can be achieved by extracting all the events from their sets of items and by

tagging them with the relative index. The transactions that are obtained with this operation are

reported in Table 3.10.

25

3 – The proposed model

Transaction ID Events
0 0 {0:1:FULL, 0:3:EMPTY, 1:1:FULL, 1:2:FULL, 2:4:FULL}

1 1 {0:1:FULL, 0:2:FULL, 1:4:FULL, 2:2:FULL, 2:3:EMPTY}

2 2 {0:4:FULL, 1:2:FULL, 1:3:EMPTY}

3 3 {0:2:FULL, 0:3:EMPTY}

Table 3.10: List of transactions obtained after converting the sequences.

Finally let’s see an example of a spatio-temporal sequence. Imagine that after the application of FP-

Growth the following rule is obtained: {0 : 1 : FULL, 1 : 2 : EMPTY } ⇒ {2 : 3 : FULL}.
This rule can be interpreted in the following way: whenever the event "FULL" is recorded in

location number 1 and during the next interval of time the event "EMPTY" is recorded in location

number 2, there is the possibility that in the third interval of time the event "FULL" will be

recorded in location number 3. The probability that this happens is given by the con�dence of

the rule.

26

Chapter 4

Dataset analysis

In this chapter, after a general introduction to bike sharing systems, the dataset that will be used

to test the proposed model will be analysed in detail.

4.1 Dataset description

4.1.1 Bike sharing overview

In recent years, bike sharing systems have been one of the infrastructures that have grown the

most in large cities. Since when these systems have established as permanent component in

urban passenger transport, they have increasingly in�uenced the way we commute inside all

the major metropolitan cities. Thanks to the large quantities of data that are collected by these

systems, the context of bike sharing lends itself very well to the activity of data analysis.

In this work, a bike sharing system is intended as a network of multiple stations located in di�er-

ent geographical locations and containing thousands of bikes. The users of the service can rent

such bikes at any station and then, after a short travel, they have to return them at any other

station. Usually, each bike sharing station contains a sensor that collects information regarding

its status over time; therefore, the datasets generated by bike sharing systems are the perfect can-

didates for testing the model proposed in Chapter 3 (The proposed model): indeed, according to

De�nition 2.8 (Multivariate Spatio-Temporal Data), the data that is collected over time at di�erent

spatial locations is de�ned as spatio-temporal.

27

4 – Dataset analysis

4.1.2 Features

To test the model proposed by this work, I have decided to use a dataset that contains historical

information about Barcelona’s bike sharing system between May and September 2008. The �rst

rows of the dataset are reported in Table 4.1. As you can see, each record is characterized by two

contextual attributes, station and timestamp, and by two behavioural attributes, used_slots and

free_slots.

station timestamp used_slots free_slots
0 1 2008-05-15 12:01:00 0 18

1 1 2008-05-15 12:02:00 0 18

2 1 2008-05-15 12:04:00 0 18

3 3 2008-05-15 12:06:00 0 18

Table 4.1: First records of the dataset.

The two behavioural attributes describe the number of bikes and the number of available slots

that each station has during each timestamp. As you can see from Figure 4.1, that shows the data

that has been collected by station number 1 during the �rst days of June, the two values �uctuate

a lot over time. In Chapter 5 (Experimental results) we will see how the information provided by

these two variables can be exploited to extract spatio-temporal sequences.

Figure 4.1: Data collected by station 1 during the �rst three days of June.

28

4.2 – Exploratory analysis

4.1.3 Dataset preparation

Before proceeding with the exploratory analysis, I have introduced two new columns in the

dataset that provide useful information about the stations. As you can see in Table 4.2, the �rst

columns that has been created is total_slots: this value represents the capacity of the station

and is obtained by adding together the number of used and free slots. The second columns is

used_ratio: this value represents the fullness of the station and is obtained dividing the number

of used slots by the number of total slots.

station timestamp used_slots free_slots total_slots used_ratio
0 1 2008-05-15 12:01:00 0 18 18 0

1 1 2008-05-15 12:02:00 0 18 18 0

2 1 2008-05-15 12:04:00 0 18 18 0

3 1 2008-05-15 12:06:00 0 18 18 0

Table 4.2: First records of the dataset with the two additional columns.

4.2 Exploratory analysis

4.2.1 Overview

In this section, the dataset will be analysed feature by feature with the goal of getting a better

idea of the data and also to �nd any possible problem that may negatively a�ect the performance

of the model. Before starting with the analysis, it must be pointed out that the dataset does not

contain any duplicated records. Also, even if we will see that there are some records that reports

a total number of slots equals to 0, fact that could be associated to a missing value, the dataset

does not contain any missing value in the traditional way.

4.2.2 Station

The �rst feature that I’m going to analyse is station, which is the spatial contextual attribute of

the dataset. Indeed, even if the variable is characterized by numerical values that correspond to

the ID of the stations, each one of them is also characterized by two geographical coordinates,

latitude and longitude. Figure 4.2 shows the position of the stations.

29

4 – Dataset analysis

Figure 4.2: Barcelona’s map reporting the geographical locations of the station.

One of the �rst things that can be checked is the number of recorded events for each station: this

is obtained by grouping the dataset by station and then counting the number of records. As you

can see from Figure 4.3, the bike sharing network of Barcelona is made of 284 stations, numbered

from 1 to 284, and almost all of them have registered the same number of events.

Figure 4.3: Number of events per station.

station events
0 284 165

1 148 53892

2 24 65613

3 263 85902

4 259 85903

Table 4.3: Stations with the least number of events.

30

4.2 – Exploratory analysis

However, there are some stations with less events than average. Table 4.3 contains the list of the

stations with the least number of events: as you can see, stations 24 and 148 have around 40%

less events then the maximum, and station 284 has only registered 165 events. Even if stations

24 and 148 recorded during only 60% of the time, Figure 4.4 shows that their periods of activity

are rather continuous and without too much noise. Therefore, their available data can be used

for the rest of the analysis. Instead, since station 284 has registered very few events, it will be

removed from the dataset.

Figure 4.4: Activity of stations 24 and 148.

To analyse the interaction between the variable station and the behavioural attributes, it is nec-

essary to group the dataset by station and then perform an aggregation function on the grouped

data. Starting with total_slots, Figure 4.5 shows that the average capacity of the stations is be-

tween 20 and 25 slots and that, on average, station 221 has very low capacity. Also, there are

some stations that are characterized by a very high variability of capacity. This information is

an evident signal that there might be some outliers in the dataset.

Figure 4.5: Mean (left) and variance (right) of total_slots per station.

31

4 – Dataset analysis

Next, moving on to the variable used_ratio, Figure 4.6 shows that the stations tend to be almost

empty most of the time. Also, it is possible to notice that station 221 is always empty. Therefore,

interpreting the data of station 221 as an outlier, this station will be removed from the dataset.

Figure 4.6: Mean (left) and variance (right) of used_ratio per station.

4.2.3 Timestamps

The second feature that I’m going to analyse is timestamp, which is the temporal contextual

attribute of the dataset. One of the �rst things that can be checked is the number of active

stations over time: this is obtained by grouping the dataset by timestamp and then counting the

number of distinct station IDs.

Figure 4.7: Number of active stations over time.

As visible from Figure 4.7, apart from an initial short period of time, almost all the stations have

been active during all the available timestamps. Also, it is possible to notice that the events have

been registered between 2008-05-15 12:01:00 and 2008-09-30 23:58:00. Therefore, since the dataset

32

4.2 – Exploratory analysis

contains four months and a half worth of data, if the sampling rates of the stations had been of

one minute, there would have been around 196 thousands distinct timestamps; however, there

are only 96 thousands distinct timestamps, which means that the average sampling rate of the

stations has been of about two minutes.

It must be pointed out that not all the possible timestamps are represented in the dataset: there

are indeed some temporal holes during which the stations didn’t record anything. As visible in

Figure 4.8, during the �rst month of data, there are a lot of intervals during which the system

didn’t record anything for more than 10 consecutive minutes.

Figure 4.8: Temporal inactivity of the system for more than 10 minutes.

Similarly to what has been done with the stations, it is possible to analyse the interaction between

this variable and the behavioural attributes by grouping the dataset by timestamp and then per-

forming an aggregation function on the grouped data. In this case, since the aggregation would

happen between di�erent stations at a �xed timestamp, it doesn’t make much sense to take the

mean or the variance. Instead, it is possible to analyse the sum of the di�erent variables.

Starting with used_slots, Figure 4.9 shows that on average there are between 2 thousands and 3

thousands bikes parked at the stations at each timestamp. Since this number represents a good

indication of how many bikes there are in the system, it is possible to associate the positive trend

that occurred during the month of August to the introduction of new bikes into the system. It

is also evident how the sum of used_slots is very noisy: there are a lot of low peaks that almost

reach 0. Since the stations are almost always active all together, it is not possible to associate

these low peaks to a reduction of active stations: therefore, they must be outliers. In section 4.3.2

we will see how to remove the outliers that are causing these peaks.

33

4 – Dataset analysis

Figure 4.9: Sum of used_slots over time.

Moving on to the variable free_slots, it is possible to analyse the evolution of the total number of

available slots over time. Figure 4.10 highlights again how there is a lot of noise related to the

slots; also, notice how there is a small negative trend in August: this should be interpreted as the

direct consequence of the introduction of new bikes in the system.

Figure 4.10: Sum of free_slots over time.

Analysing the variable total_slots, it is possible to understand how the total capacity of the system

evolves over time. Looking at the results reported in Figure 4.11, we have the con�rmation that

there are a lot of outliers in the dataset: if the �uctuations of used and free slots are expected,

the total number of slots of the stations should remain much more stable over time; however, the

low peaks are present also here.

34

4.2 – Exploratory analysis

Figure 4.11: Sum of total_slots over time.

The variable used_ratio represents the fullness of each station at each timestamp: therefore, it

doesn’t make sense neither to take the sum across di�erent stations, because it wouldn’t be a

fraction anymore, and neither the mean, because it would represent the average fullness of the

stations, and not of the system. To obtain the average fullness of the system over time, we need

to divide the sum of all the used slots by the sum of all the total slots. The result of this analysis

is reported in Figure 4.12.

Figure 4.12: Sum of used_slots divided by the sum of total_slots.

All the previous �gures show how during the month of July there is not much variability.

4.2.4 Slots

The last variables that I’m going to analyse are the ones regarding the slots of the stations. Since I

have already analysed the interaction between these variables and the two contextual attributes,

in this section I’m going to focus on their distribution. Starting with the variable used_slots,

35

4 – Dataset analysis

Figure 4.13 shows that the distribution is totally skewed towards 0: this means that the stations

tend to be empty most of the time.

Figure 4.13: Distribution of used_slots.

Next, moving to the variable free_slots, from Figure 4.14 it is possible to notice that the distribu-

tion is much more uniform than the one of used_slots. Nonetheless, the most represented value

is again 0, which means that the stations are full very often.

Figure 4.14: Distribution of free_slots.

Next, the distribution of total_slots, which is reported in Figure 4.15, con�rms that the capacity

of the stations is between 20 and 25 slots for most of the time. Notice how there are some records

with 0 total slots that can be interpreted as failures or o�ine periods of the stations: therefore,

these records will be removed from the dataset.

36

4.3 – Preprocessing

Figure 4.15: Distribution of total_slots.

Finally, the distribution of used_ratio is reported in Figure 4.16.

Figure 4.16: Distribution of used ratio.

4.3 Preprocessing

4.3.1 Overview

Before proceeding with testing the model proposed in Chapter 3 (The proposed model), all of the

problems discovered in the previous sections must be addressed and resolved:

• Stations. Station 284 has very few events and station 221 is always empty.

• System o�ine. During the month of July the system appears to be o�ine.

• Outliers. There are outliers that generate noise in the data regarding the number of slots.

37

4 – Dataset analysis

On one hand, solving the �rst two problems is very simple: indeed, it is su�cient to remove

all those records that are related to stations 221 and 284 or that occurred during the month of

July. On the other hand, detecting and removing the outliers of the time series is a little bit more

complicated. In the next section, a method to remove the noise will be proposed and in Chapter

5 (Experimental results) we will see how this will a�ect the performance of the model.

4.3.2 Removing outliers

As we saw during the exploratory analysis, all of the time series of the dataset are characterized

by a lot of noise. Even if the �uctuations in the number of used and free slots go beyond normal

expectations, I have preferred to concentrate on the number of total slots because this time series

should have remained much more stationary over time than the other two. The low peaks that

characterize this time series can be classi�ed into two categories: the �rst one includes all those

records where the number of total slots is 0, while the second one corresponds to all the other

values that deviate a lot from the mean without reaching 0. Removing the �rst kind of outliers

is very simple because there is a precise rule for detecting them: it is indeed su�cient to remove

all those records that have a total number of slots equals to 0. Figure 4.17 shows how there are

already less low peaks in the data after removing this �rst kind of outliers.

Figure 4.17: Total number of slots in the system before and after cleaning.

To remove the second category of outliers, I have used a method that consists in the identi�cation

of point outliers, which are data points that deviate signi�cantly from their expected value. This

operation can be divided into three steps:

• Determine the forecasted values. For each data point I have decided to de�ne its expected

value as the mean of the previous and subsequent 50 points.

38

4.3 – Preprocessing

• Compute and normalize the deviations. The deviation of each data point can be obtained

by subtracting its value from the expected one. The normalized deviation of each data

point can be obtained by subtracting the mean of the deviations from its deviation and

then dividing by the square root of the variance of the deviations.

• Remove outliers. The resulting normalized deviations are equal to the Z-value of a normal

distribution and provide a continuous alarm level of outlier scores. Therefore, the outliers

can be detected and removed by using a threshold value on these scores. Often, because

of the Z-value interpretation, a good value for the threshold is 3.

In the following section we will see how the removal of this second type of outliers de�nitely

improves the stability of the time series.

4.3.3 Results

To better understand how the cleaning has a�ected the time series, I have analysed the number

of total slots of two di�erent stations before and after the removal of the outliers during the �rst

week of August. Starting with station number 1, from Figure 4.18 it is possible to notice how

removing the �rst kind of outliers is almost already enough to remove all the low peaks. The

remaining ones have been removed with the second operation, the one that removes the point

outliers.

Figure 4.18: Total number of slots of station 1 before and after cleaning.

Moving to the time series of station 219, from Figure 4.19 it is possible to notice that in this case

removing the records with total slots equal to 0 is not enough to remove all the low peaks. Indeed,

almost all of them do not reach 0: nonetheless, the second operation successfully removes the

39

4 – Dataset analysis

remaining low peaks.

Figure 4.19: Total number of slots of station 219 before and after cleaning.

40

Chapter 5

Experimental results

In this chapter, the model proposed for extracting the spatio-temporal sequences will be tested

on the dataset that has been analysed in Chapter 4 (Dataset analysis). To better understand how

various factors a�ect the performance of the model, I have conducted multiple analysis in parallel

with di�erent parameters and compared the results.

5.1 Chapter overview

After having analysed the spatio-temporal dataset containing information about Barcelona’s bike

sharing system, it is now time to test the proposed model. As we saw in Chapter 3 (The proposed

model), the overall procedure can be divided into three main steps: conversion of the time series to

discrete sequences, transformation of the sequences to transactions, and extraction of the spatio-

temporal rules. During each of these phases, there are crucial decisions that must be made and

that in�uence the way spatio-temporal sequences are extracted. Therefore, this chapter has been

divided into four major sections, each containing the description of how each of these factors

has been addressed and the results that have been obtained.

As we saw in Chapter 4 (Dataset analysis), the original dataset contained some outliers that could

have a�ected the performance of the model: to verify this hypothesis, the model will be applied

to both the original1 and cleaned versions of the dataset and the results will be compared.

1The problems regarding stations 221 and 284 and the month of July have been removed also from the original

dataset. The di�erence with the cleaned version is only about the removal of the point outliers.

41

5 – Experimental results

5.2 Events of interest

5.2.1 Overview

As we saw in Chapter 3 (The proposed model), the �rst phase of the process consists in the def-

inition of the events of interest. Since these are the events between which the patterns will be

extracted, it is important decide the goal of the analysis �rst. In this work, I would like to �nd

out if there are any patterns regarding the critical events of the various bike stations. A station

can be characterized by two types of critical event: "empty", when it does not contain any bike,

or "full", when all of its slots are occupied by a bike. To better understand how the events of

interest in�uence the model, two de�nitions have been analysed:

• "All" critical events. This de�nition includes all the critical events of the stations.

• "First" critical events. This de�nition includes only the critical events that are located at the

beginning of a series of critical events.

The �rst possible intuition is that the patterns extracted from the �rst kind of critical events will

be less signi�cant than the ones extracted from the second kind: intuitively, the more a station

remains in a critical status the less its critical events will impact on the critical situations of other

stations. The di�erence between the two de�nitions is highlighted in Figure 5.1.

Figure 5.1: Di�erence between "all" and "�rst" critical events.

42

5.2 – Events of interest

5.2.2 Extraction of critical events

As we saw in Chapter 4 (Dataset analysis), the variable used_slots indicates how many bikes

are at the station and free_slots how many available slots the station has. Therefore, to extract

the critical events, the records that must be �ltered out are those where the number of used or

free slots is 0. Since the values are numerical, they must also be converted to categorical: the

"empty" events have been mapped to the string "E", while the "full" ones to the string "F". Table

5.1 contains a sample of records and the extracted critical events with both de�nitions.

station timestamp used_slots free_slots "all" critical "�rst" critical
0 1 2008-06-01 11:40:00 1 18 / /

1 1 2008-06-01 11:42:00 0 19 E E

2 1 2008-06-01 11:44:00 0 19 E /

3 1 2008-06-01 11:46:00 0 19 E /

4 1 2008-06-01 11:48:00 1 18 / /

Table 5.1: Sample of records and the corresponding critical events.

5.2.3 Results

The �rst thing that can be noticed analysing the resulting datasets is that the number of extracted

records depends on how the events of interest have been de�ned: as visible from Figure 5.2, the

number of "all" the critical events is around 20% of all the original records (around 19 millions)

and around 2% with the "�rst" critical events.

Figure 5.2: Number of critical events comparison.

43

5 – Experimental results

The di�erence in size between the two datasets gives an important information about the sta-

tions: on average, they remain in a critical situation for around 10 consecutive timestamps, which,

given the sampling rate of two minutes, is equivalent to 20 minutes. Figure 5.3 reports the average

duration of a critical situation of each station.

Figure 5.3: Average duration of a critical situations for each station.

Both of the two previous �gures also highlight how cleaning the point outliers brings to an

expected reduction in the number of extracted events: indeed, most of the point outliers corre-

sponded to peaks in the data that could have resulted in critical events.

The second thing that can be noticed analysing the dataset is the distribution of the type of critical

events: Figure 5.4 shows that the percentage of "empty" critical events is around 80% with both

de�nitions. Even if cleaning the point outliers did not a�ect much this distribution, it is possible

to notice that the percentage is a little bit lower with the cleaned datasets: this means that the

point outliers where mostly related to "empty" critical events rather than "full" ones.

Figure 5.4: Percentage of "empty" critical events comparison.

44

5.3 – Reduction of granularity

The last thing that can be noticed regards the number of stations that reported critical events at

the same time: Figure 5.5 shows that with "all" critical events the average number of simultane-

ously critical stations is between 50 and 100, while Figure 5.5 shows that the average number of

simultaneously critical stations with the "�rst" critical events is below 50. Both �gures highlight

how cleaning the point outliers has heavily reduced these numbers.

Figure 5.5: Number of simultaneously critical stations with "all" critical events.

Figure 5.6: Number of simultaneously critical stations with "�rst" critical events.

5.3 Reduction of granularity

5.3.1 Overview

After the extraction of the events of interest, the second step consists in the reduction of the

temporal granularity of the discrete sequences. To do so, two values must be de�ned: an initial

45

5 – Experimental results

timestamp and an interval length. As we saw in Chapter 3 (The proposed model), the granu-

larity parameter g has a great impact on the extracted frequent patterns: with small interval

sizes the extracted rules will describe short term patterns, while with larger interval sizes they

will describe long term patterns. To analyse how this parameter in�uences the performance

of model, I have decided to test a wide variety of values that could be appropriate for discov-

ering patterns between the critical events. In this analysis, the interval lengths of choice had

been [4, 8, 12, 16, 20, 24, 32, 44, 60] and the initial timestamp that has been used is the �rst one

available in the dataset, which is 2008-05-15 12:00:00.

For convenience, the operation of merging together the events registered by di�erent stations

will be carried out together with the operation of reducing the granularity.

5.3.2 Alignment of critical events

After having decided the initial timestamp and the granularity of interest, each timestamp in the

dataset must be mapped to the integer that represents the ID of the interval it belongs to. For

example, Table 5.2 contains the aligned critical events of both stations 1 and 50 in the period

of time that goes from 2008-06-01 11:40:00 to 2008-06-01 11:48:00 using an interval length of 4

minutes. After having aligned all the timestamps of the dataset to the ID of the interval they

Station Interval ID "all" critical "�rst" critical
0 1 6115 / /

1 1 6115 E E

2 1 6116 E /

3 1 6116 E /

4 1 6117 / /

5 1 6117 / /

6 50 6115 F /

7 50 6115 / /

8 50 6116 / /

9 50 6116 / /

10 50 6117 F F

11 50 6117 F /

Table 5.2: Sample of aligned critical events.

46

5.3 – Reduction of granularity

belong to, the critical events belonging to the same interval must be merged together. In Chapter

3 (The proposed model) we saw that the operation of merging together the events with the same

interval ID can be split up into two steps: before the events of the same station are merged

together and then the ones belonging to di�erent stations. However, for convenience, these two

operations can be carried out together without any problem. Of course, the problem of di�erent

events belonging to the same station in the same interval must still be addressed: in this work,

I have decided to remove them. The result of merging the events of Table 5.2 is reported in

Table 5.3. As you can see, after this operation a single sequence is obtained: each of its elements

corresponds to the set of events that occurred during the same interval of time.

Interval ID "all" critical "�rst" critical
0 6115 {1:E, 50:F} {1:E}

1 6116 {1:E} /

2 6117 {50:F} {50:F}

Table 5.3: Stations 1 and 50 aligned events and merged.

5.3.3 Results

The �rst thing that can be noticed analysing the resulting datasets is that the number of generated

intervals is inversely proportional to the interval length. Figure 5.7 shows also that when the

interval length is smaller there is greater chance of having missing intervals, especially with the

"�rst" critical events.

Figure 5.7: Number of distinct intervals for each interval size.

The second thing that can be noticed is that the higher the interval length, the higher the number

47

5 – Experimental results

of repeated events of the same station in the same interval. Figure 5.8 shows the average number

of duplicates that each event has in an interval: of course, given the nature of the de�nitions of

events of interest, the "�rst" critical events almost never have duplicates.

Figure 5.8: Average number of duplicates that each event has in an interval.

The last thing that can be noticed, which is also the most important one, is the average number

of stations that registered di�erent critical events in each interval. As you can see in Figure 5.9,

the number increases when the interval length is bigger. Also, notice how the cleaning of point

outliers de�nitely helped to reduce this number.

Figure 5.9: Average number of stations for each interval that registered both critical events.

48

5.4 – Sequences generation

5.4 Sequences generation

5.4.1 Overview

The last step before extracting the spatio-temporal sequences consists in the generation of the

transactions. More precisely, the previously obtained sequence containing the events of interest

must be transformed with a sliding window into a list of sequences that will be then converted to

transactions. Since we are working with a lot of data, we cannot a�ord to test big window lengths

because the problem of mining the spatio-temporal sequences would become too computationally

expensive. Also, we don’t want the window length to be too small because the extracted rules

would be too simple. Moreover, since the length of the window simply controls the maximum

temporal distance between the events in the rules that will be extracted, it is not necessary to

analyse multiple values because we already know how it would a�ect the rules. Therefore, I have

decided to test only a window length of 3.

5.4.2 Sliding window and transactions

As we saw in Chapter 3 (The proposed model), the sliding window operation consists in scanning

the database to extract all the sets of events belonging to all the possible combinations of w con-

secutive intervals. Table 5.4 contains the sequences that are obtained after applying the sliding

window operation of length 3 to the sequence of critical events belonging to stations 1 and 50 in

the period of time that goes from 2008-06-01 11:40:00 to 2008-06-01 12:00:00. If before there was

only a sequence containing the critical of all the stations for each interval, now there are multiple

sequences, one for each interval, that contain the sets of events that occurred in 3 consecutive

intervals of time.

Interval ID "all" critical "�rst" critical Sequence "all" Sequence "�rst"
0 6115 {1:E, 50:F} {1:E} {1:E, 50:F}, {1:E}, {50:F} {1:E}, {}, {50:F}

1 6116 {1:E} / {1:E}, {50:F}, {50:F} {}, {50:F}, {}

3 6117 {50:F} {50:F} {50:F}, {50:F}, {1:E} {50:F}, {}, {1:E}

4 6118 {50:F} / {50:F}, {1:E}, {} {}, {1:E}, {}

5 6119 {1:E} {1:E} {1:E}, {}, {} {1:E}, {}, , {}

6 6120 / / {}, {}, {} {}, {}, {}

Table 5.4: Sliding window on a sample of critical events recorded by station 1 and 50.

49

5 – Experimental results

Since I’m planning to extract the frequent spatio-temporal sequences with FP-Growth, it is also

necessary to convert the sequences to transactions. Table 5.5 shows how the previously gener-

ated sequences are converted to transactions.

Transaction ID Events "all" Events "�rst"
0 6115 {0:1:E, 0:50:F, 1:1:E, 2:50:F} {0:1:E, 2:50:F}

1 6116 {0:1:E, 1:50:F, 2:50:F} {1:50:F}

3 6117 {0:50:F, 1:50:F, 2:1:E} {0:50:F, 2:1:E}

4 6118 {0:50:F, 1:1:E} {1:1:E}

5 6119 {0:1:E} {0:1:E}

6 6120 {} {}

Table 5.5: Conversion of the sequences to transactions.

5.4.3 Results

Of course, the number of generated transactions corresponds to the number of intervals that the

dataset contains. What can be noticed from the resulting datasets is that the density of each

transaction increases when the interval length increases. Moreover, Figure 5.10 shows that with

smaller interval lengths the transactions containing the "�rst" critical events are much less dense

than the ones with "all" critical events, while with bigger interval lengths the transactions tend

to be equally dense in all four datasets.

Figure 5.10: Number of events per transactions.

50

5.5 – Spatio-temporal sequences

5.5 Spatio-temporal sequences

5.5.1 Overview

The last phase of the process consists in the extraction of frequent itemsets and rules from the

list of transactions. As we saw in Chapter 2 (Background and related work), the extracted rules

can be interpreted as spatio-temporal sequences of events. During this phase, two parameters

must be de�ned: the minimum support and the minimum con�dence. Since the datasets of

transactions are all characterized by di�erent densities and sizes, it is necessary to use di�erent

minimum supports for each one of them, otherwise a common low value would make some of

the extractions too computationally expensive. The values that have been used are summarized

in Table 5.6: I have pushed each one of them to the minimum possible value before the algorithm

started to take too much time to complete. Instead, a single value has been used as minimum

con�dence, which is 0.5.

Interval Length Minimum Support - "All" Minimum Support - "First"
0 4 0.36 0.08

1 8 0.32 0.10

2 12 0.34 0.10

3 16 0.34 0.12

4 20 0.36 0.14

5 24 0.36 0.16

6 32 0.40 0.20

7 44 0.44 0.24

8 60 0.48 0.34

Table 5.6: FP-Growth minimum supports for each dataset.

As you can see from the table, the minimum support is bigger when the interval length increases:

this is because the number of transactions is smaller and therefore the itemsets tend to be more

frequent. Also, the minimum supports for the "�rst" critical events are smaller because the trans-

actions tend to be less dense than the ones with "all" critical events.

51

5 – Experimental results

5.5.2 FP-Growth

As we saw in Chapter 3 (The proposed model), after having extracted the frequent itemsets, it is

necessary to �lter out the ones that do not contain any event with a relative index of 0. Also, all

the rules that have events in the antecedent part with a relative index greater than the one in the

consequent part must be �ltered out.

To improve the quality of the extracted rules, I have decided to remove also those rules where

the critical events are related to stations that are too far from each other. More precisely, I have

imposed a minimum distance of 1 Km between the stations.

5.5.3 Results

Figure 5.11 shows that the average support of the 100 most frequent itemsets tends to be higher

when increasing the interval length. However, as we saw in Chapter 3 (The proposed model),

when the interval length is too big, there is the risk of losing the concept of relative temporal

distance between the events. Therefore, it is essential to �nd a good trade-o� between the high

support of the itemsets and the concept of temporal distance between the events.

Figure 5.11: Average support of the 100 most frequent itemsets.

Moreover, Figure 5.11 shows also that the itemsets with "all" critical events tend to be more

frequent than the ones with the "�rst" critical events, especially with smaller interval lengths.

However, as we had already guessed, the itemsets with "all" critical events tend to be less sig-

ni�cant: as visible from Figure 5.12, the average fraction between the number of unique stations

and the number of events of the itemsets is much lower with the ones containing "all" the critical

events than the ones containing the "�rst" critical events.

52

5.5 – Spatio-temporal sequences

Figure 5.12: Average fraction between the number of unique stations and the number of events of

the 100 most frequent itemsets.

Moving to the analysis of the rules, Figure 5.13 shows that when the interval length is too small,

some datasets do not contain any rule with a con�dence higher than 0.5. Also, it is evident how

the de�nition that includes "all" the critical events has generated rules with higher con�dences

on average. However, the considerations made for the itemsets also apply to the rules.

Figure 5.13: Average con�dence of the 100 rules with the highest con�dence.

An example of rule obtained with the "�rst" critical events and using an interval length of 20

minutes is: {0 : 72 : E, 1 : 217 : E} ⇒ {2 : 219 : E}. The con�dence of the rule is 0.68 and the

support of the corresponding frequent itemset is 0.15. Therefore, the rule can be interpreted in

the following way: “Whenever station 72 becomes empty and after around 20 minutes also station

217 becomes empty, there is a 67% chance the after other 20 minutes station 219 will also become

empty.”. The support of the itemset tells how frequently this situation happens.

53

Chapter 6

Conclusions

The goal of this work was to introduce a new method for extracting sequences of events from

spatio-temporal datasets. Considering the results that have been achieved with the bike sharing

dataset it is possible to say the new procedure works very well. Also, I believe that this new

method can be used in a broad range of applications where the collected datasets are spatio-

temporal.

Even if the objective was not to outperform the e�ciency of any of the existing methods, I think

that this new procedure scales pretty well with large quantities of data thanks to the usage of

Spark’s parallel implementation of FP-Growth. Nonetheless, there are for sure some optimiza-

tions that could be made to improve the e�ciency of the algorithm and that could be addressed

in future developments:

• "Online" �ltering. This improvement consists in anticipating the �ltering made to the item-

sets and rules inside the frequent pattern mining algorithm: in this way it may be possible

to prune the search space and therefore improve the e�ciency of the algorithm.

• Divide-and-conquer approach. In applications where the sequences of events often occur

in locations that are near one to each other, it could be possible to perform the analysis

by groups of stations. This improvement consists in partitioning the spatial locations into

smaller groups and then analyse them in parallel.

55

Bibliography

[1] Agrawal R., Imielinski T., Swami A. (1993). Mining association rules between sets of items

in large databases. In: Proceedings of the 1993 ACM-SIGMOD international conference on

management of data (SIGMOD’93), Washington, DC, pp 207-216

[2] Agrawal R., Srikant R. (1994). Fast algorithms for mining association rules. In: Proceedings of

the 1994 international conference on very large data bases (VLDB’94), Santiago, Chile, pp

487-499

[3] Agrawal R., Srikant R. (1995). Mining Sequential Patterns. In: Proceedings of the 1995 inter-

national conference on data engineering (ICDE’95), Taipei, Taiwan, pp 3-14

[4] Srikant R, Agrawal R. (1996). Mining sequential patterns: generalizations and performance

improvements. In: Proceedings of the 1996 international conference on extending database

technology (EDBT’96), Avignon, France, pp 3-17

[5] Han J., Pei J., Yin Y. (2000). Mining frequent patterns without candidate generation. In: Pro-

ceedings of the 2000 ACM-SIGMOD international conference on management of data (SIG-

MOD’00), Dallas, TX, pp 1-12

[6] Zaki M. (2001). SPADE: an e�cient algorithm for mining frequent sequences. In: Machine

Learning, vol 42 pp 31-60

[7] Pei J., Han J., Mortazavi-Asl B., Wang J., Pinto H., Chen Q., Dayal U., Hsu M-C. (2004). Min-

ing sequential patterns by pattern-growth: the Pre�xSpan approach. In: IEEE transactions on

knowledge and data engineering, vol 16 pp 1424-1440

[8] Li H., Wang Y., Zhang D., Zhang M., Chang E. (2008). PFP: Parallel FP-Growth for Query

Recommendation. In: Proceedings of the 2008 ACM conference on recommender systems

(RecSys’08), Lausanne, Switzerland, pp 107-114

57

