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Abstract

Context : Correctly classifying new software bugs is a time consuming, expensive,
and error-prone process as it tends to be mostly manual. One of the main causes
of this phenomenon is bound to the fact that this process is human based, and, as
consequence, this usually leads to frequent mis-classifications. Developing software
able to automatically identify bugs with high level of accuracy would result in sig-
nificant resource and time optimization.

Goal : The aim of this thesis is building a tool that will automatically classify the
bug and assign it to the correct class. The tool developed is designed to be able to
assign a bug to the right developers by analysing a file related to the bug, called
bug report. In more details, the model assigns the bug to the most probable class
and consequently to developers specialised for that class.

Method : The tool works on Mozilla bugs taken from the BugZilla database and it
focuses on classifying new bugs. Every bug is characterised by a bug report, which
contains all the information on the bug from the time it was issued to the time it
was solved. The model is based on the BugBug algorithm, with some modifications
to best fit the purpose of the project. The tool creates either a OneVsRest or a
Binary classifier using a dataset of labeled bugs.

Results: The project was tested on two different scenarios: one single class, con-
sidered as the positive class, against all the others, labeled as negative class, and a
multiple classes situation. The former case reached an accuracy higher than 60%
for almost all labels, while the latter reached an accuracy lower than 75%, roughly
73%.

Conclusions: The tool proved to be successful to fulfil the goal, but the accuracy
was not optimal in all the cases. The accuracy obtained using a SVM model indeed
never exceeded 74%, making it a not perfect fit for concrete application. On the
other hand, the binary classifier showed an acceptable accuracy for some classes,
even if it requires more time to classify a bug. Moreover, both the classifiers can be
easily extended to any generic bug coming from other sources, to enlarge its field
of applicability.
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Chapter 1

Project background and related
works

1.1 Bug classification’s introduction

The bug classification activity is of paramount importance to produce bug-free soft-
ware. Software are human production, hence they will never be free of bugs, and
this is the reason why the bug classification process exists. The exponential growth
in size of programs and applications made bug removal an expensive and long task.

The modern development in machine learning and artificial intelligence could pro-
vide an extremely useful tool to reduce the bug classification time process and costs.
The development of an automatic bug classifier would speed up the classification
and consequently the bug removal work.

A bug classification is characterised by a sequence of steps. Once a bug is reported,
developers are requested to analyse the bug report and label the bug, this process
is also called bug triaging. After the bug has been classified it is assigned to the
most qualified developers for that specific type. Each classification generally in-
volves more than one person classifying the bug separately and then discuss the
classification, this activity could take days.

As bug classification is mainly focused in assigning the bug removal work to the
right developer or team, reaching an high accuracy in the classification becomes
the most important and time-consuming step (Akila et al., 2015), especially since
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a wrongly classified bug might cause problem during the removal process.

Classifying bugs automatically, using a machine learning algorithm, would be ef-
fective both in the exploitation of resources and time but it also would reduce, and
eventually remove, the human-related error component, i.e., humans make mistakes
and a bug wrongly classified would be assigned to the wrong developers and would
result in more time to remove it. Moreover, the maintenance of such code would
be trivial in most of the cases.

In this thesis is argued that removing errors made by developers in the process of
understanding the bug type can be beneficial in the process. The tool described will
properly identify the developer who should be assigned to the debugging, speeding-
up the bug analysis and resolution process. Removing this kind of errors highly
affects the quality of the classifier and therefore it is of mandatory importance to
reach an high accuracy of the model, since otherwise additional work will be needed
to reassign the bug to the correct developers, enlarging the time to remove the bug.

1.1.1 Example of bug classification

In Figures 1.1, 1.2, 1.3 and 1.4 all the different information one can find in a
bug report are presented. All the pictures are from bugs taken from the BugZilla
database, which is the database employed in this thesis. From this example the
main steps of a bug classification can be analysed.

The bug report has three main sections:

• title of the bug, is the name with which the bug is filed and it can be meaning-
ful for the classification since in many cases synthesizes perfectly the problem
at hand (Figure 1.1)

Figure 1.1: ex of bug report title

• a small part contains the main characteristics of the bug: category, product,
component, type, priority and severity, tracking point, the people to which it
is assigned, references, details and useful flags (Figure 1.2)
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Figure 1.2: ex of bug report information

• another portion is filled with the list of links to the attachments, that in most
of the cases are pictures or videos of the error presented in the report, they
can also be links to important sections of code regarding the bug (Figure 1.3)

Figure 1.3: ex of bug report attachments

• the last part is devoted to comments. Here is where the developers assigned
to the bug can exchange ideas and insights on the bug under consideration.
Each comment can be a consideration or insight on the bug, a piece of code
or output of the program, a link to a portion of code or an attachment like a
picture or video (Figure 1.4)

(a) comments (b) comments

Figure 1.4: ex of bug report comments

During the bug removal process the bug report may change especially in the com-
ment section since comments are always added but also the information section
may change as well, particularly its priority and severity, but also the developers

8
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assigned to it may change, i.e., the bug was wrongly classified.

In case the bug is wrongly classified the wrong developers will receive it and they
will signal the mistake. This process lead to a new classification and a new assig-
nation of the bug, losing time and resources. This makes avoiding such errors of
mandatory importance.

Figure 1.5: ex of bug report

9
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1.2 Steps of bug classification

Classifying a bug is a long and challenging procedure. Here are all the steps in-
volved:

- two or more parties are created

- each of the party analyses the same bug report, ex. in Figure 1.5

- the parties classify separately the bug

- a discussion is made between the parties to decide the final classification of
the bug

1.2.1 Costs of labelling a bug

In the bug triaging process, cost depends on the time needed to classify the bug
correctly and the amount of developers required to achieve a correct classification.
It goes without saying that more complex a bug is to describe and more time it
will require to be classified. At the same time involving more people for the task
will certainly reduce time but it will increase the cost of personnel. In conclusion
automatic bug classification will have a fundamental role in cost reduction.

To have an idea about the costs we are talking about, just think that the removal
of a bug during the production phase can cost up to $ 10,000.00 1. In more details
part of that amount is due to the bug triaging phase, when the bug is labeled and
sent to the correct developers. Our tool aims at removing this cost and the time
involved in this task.

Moreover the cost increases if possible mistakes are considered in the classification
process. Indeed if a bug is assigned to the wrong class then wrong developers will
be asked to solve it, resulting in a waste of time and resources.

1.3 Introduction to the taxonomy

For what it concerns the set of labels considered in this thesis, the work of Catolino,
Palomba, Zaidman, and Ferrucci was explored. They defined a unified view for the

1Celerity: The true cost of a Software Bug
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classes of bugs in the Bugzilla database.

The labels are divided in two sets: general and specific. The general classes are:
API, Database-related, Development, GUI-related, Network Usage, Performance,
Program Anomaly and Security.

Moreover, the specific labels are sub-categories of the general ones and they are
presented in Table 1.1 with their associated general label. A deeper analysis of
these classes is provided in Section 2.2.

Category Sub-categories
Add-on or Plug-in Incompatibility

API Incompatibility
Permission/Deprecation
Web Incompatibility

Database-related
Development Compile

Test code
GUI-related

Network Usage
Performance

Crash
Program Anomaly Hang

Incorrect Rendering
Wrong Functionality

Security

Table 1.1: Taxonomy Table

1.4 Goals

The aim of this thesis work is to provide an automated solution to bug classification
problem, reducing time and costs of the job.

In particular, an example of use case can be described by any bug report that has to
be classified and consequently resolved: [bug 1627108]2 the report involves a wrong

2Bug Report 1627108
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selection of a thread in a browser toolbox; in this example the classification was
drawn from the first comment, explaining what the program should have done and
what it actually did, i.e., Wrong functionality issue (Section 2.2). In many other
cases the classification is not clear at first sight but requires a deep analysis and
discussion.

The tool provided would use all the information inside the report, primarily title
and the comments, in order to provide the correct classification of the bug, reducing
time and costs of the job.

1.5 Previous works and existing tools

The work proposed here revolves around triaging bugs according to their type with
the goal of supporting and eventually speed-up this activity.

This section will provide an overview of the previous studies and existing tools in
the field of automated bug classification. A comprehensive overview of the research
conducted in the context of bug triaging is presented by Zhang et al. (2016).

• a machine learning model to discriminate between bugs and new features
requests was defined by Antoniol et al. (2008). The model was able to dis-
criminate the two with a precision of 77% and a recall of 82%.

• to classify the impact of bugs, Hernández-González et al. (2018) proposed
an approach that with the empirical study conducted on two systems, Com-
pendium and Mozilla, showed good results. The approach was designed ac-
cording to the ODC taxonomy (Chillarege et al. (2018)).

• AutoODC, again based on the ODC, for automatic ODC classification, devel-
oped by Huang et al. (2015). This tool cast the problem in a supervised text
classification. This approach was augmented by the integration of experts’
ODC experience and domain knowledge. They built two models trained with
two different classifiers such as Naive Bayes and Support Vector Machine on
a larger defect list extracted from FileZilla.

• in 2012 Thung, Lo, and Jiang developed a classification based approach
that could automatically classify defects into three super-categories, that are

12
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comprised of ODC categories: control and data flow, structural, and non-
functional.

• the previous tool was extended in 2015 (Thung, Le, and Lo), where the defect
categorisation was enlarged. In more details, they combined active learning
and semi-supervised learning algorithms to automatically categorize defects.
They evaluated their approach on 500 defects collected from JIRA repositories
of three software systems.

• analyzing the natural-language description of bug reports, evaluating their
solution on 4 datasets, e.g., Linux, MySQL (for a total of 809 bug reports),
Xia et al. (2014) was able to categorize defects into fault trigger categories
using a text mining technique.

• using LDA Nagwani, Verma, and Mehta in 2013 proposed a method for gen-
erating taxonomic terms in order to label software bugs.

• in 2016 Zhou, Tong, Gu, and Gall combined structured data (e.g., priority
and severity) with text mining on the defect descriptions to identify corrective
bugs.

• in order the have bugs assigned to the right developers, text-categorization
based machine learning techniques have been applied for bug triaging activi-
ties (Murphy and Cubranic (2004), Javed et al. (2012)).

Our work is mainly based on the concepts developed by Murphy and Cubranic and
Javed et al.: use text-categorization and text mining machine learning techniques in
order to correctly label a bug. Our tool does not take in consideration new features
as bug report, those bug reports were removed from the dataset (see Section 2.3).
In addition our taxonomy was developed by Catolino et al. and will be presented
in full details in the next chapter.

1.5.1 BugBug

The BugBug3 algorithm was the starting point of this thesis. This program was
developed by Marco Castelluccio4 and other Mozilla developers in order to get bugs

3Teaching Machines to triage Firefox bugs
4Marco Castelluccio
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in front of the right Firefox engineers. As already mentioned, by presenting new
bugs quickly to triage owners eventually the turnaround time to fix new issues de-
creases.

This tool was the follow up work of a previous project that used a technique to
differentiate between bug reports and feature requests.

Figure 1.6: BugBug high-level training and operations

The training set for this project was large: two decades worth of bugs which have
been review by "Mozillians" and assigned to products and components.

A "roll back" of the bug report to the time it was originally filed was performed,
this was done in order to train the model using the same amount of information it
would have during real operation. In this way any change to the bug after triage
has been removed, these information are indeed inaccessible during real operation.

The taxonomy has also been modified since in the past 2 years, out of 396 compo-
nents, only 225 had more than 49 bugs. In deeper analysis, all the components that
had a number of bugs that was at least 1% of the number of bugs of the largest
component were selected. This implies that only that subset is meaningful and can
be analysed.

The features under analysis were the title, the first comment, and the keyword-
s/flags that characterise the bug, meanwhile the training was performed using an

14
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XGBoost5 model.

Figure 1.7: BugBug high-level model

In order to avoid wrong labelling, the assignment of the bug is performed only
when the model has a confidence higher than a certain threshold. Using a 60%
confidence threshold, the model ended up having a very low false positive ratio (it
had a precision greater than 80%, using a validation set of bugs that were triaged
between December 2018 and March 2019).

Tests showed that training a model on a 6-core machine with 32 GB of RAM and
using a dataset of around 100,000 bugs (more than two years of data) takes roughly
40 minutes. Once the model has been produced, it label a new bug in matter of
milliseconds, it never pauses, meaning that its always ready to act. The tool’s
classification is much faster than manual assignment, that takes around a week on
average.

This thesis tool uses, as already said, BugBug’s algorithm has starting point. Some
changes were performed, especially in the feature selection component and in the
taxonomy considered for the classification. On the other hand the library of the
classifier, XGBoost (described in Section 3.1.2), was left unchanged at the begin-
ning.

Here only a small part of the BugBug project is presented, it indeed contains 18
different classifier: assignee, backout, bugtype, component, defect vs enhancement
vs task, defect, devdocneeded, duplicate, qaneeded, regression vs non-regression,
regressionrange, regressor, spam, stepstoreproduce, testfailure, testselect, tracking

5XGBoost Documentation
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and uplift. Each of them has a specific classification purpose and they will be bet-
ter explained in Chapter 3. Now a simple introduction of the employed BugType
classifier will be presented.

The BugType algorithm derives from the BugModel6 which itself inherits from the
Model7. The Model defines the main characteristics of the basic classifier used in
BugBug. Meanwhile, the BugModel adds a database and a function to generate
items from such database.

The BugType model inherits everything from the two aforementioned models and
adds components more consistent with its purposes, i.e., label bugs according to
their type. Moreover, the model extracts 16 features out of all the available ones,
performs some transformations on them and it applies a OneVsRest classifier.

6BugModel GitHub
7Model GitHub
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The remainder of this thesis is structured as follows:

• Chapter 2 will cover the definition of the characteristics of the tool, along
with the explanation of the process to build the dataset;

• Chapter 3 describes the approaches followed in our work, OneVsRest and
Binary classifier;

• Chapter 4 covers the results obtained by all the experiments done;

• Chapter 5 presents our conclusions and suggestions for possible future works.
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Chapter 2

Architecture and Design

The tool presented has been developed to support developers in the long and ex-
pensive task of labelling a bug in order to assign it to the correct team or person.
The tool is written in Python and can work in two different configurations:

• one that performs a binary classification (in Section 3.3) against a specific
class (see Taxonomy in Section 2.2)

• the other uses a multi-class multi-label OneVsRest classifier (in Section 3.2
and Section 3.4)

Both the configurations have two modes: one assigning the bug to a general class
and the other to a sub-category (explained in Section 2.2), when possible. The
configuration and mode are chosen using the arguments passed to the algorithm
from the command line.

In particular, the architecture is specified by three main components:

1. A Feature Extractor, which is one of the main components in a machine
learning algorithm. Since the input data may have too many attributes, some
of them are removed in order to avoid the curse of dimensionality. It takes as
input all the available features and returns a subset of them. In this project
the selected features were 16.

2. AColumn Transformer, that comes from the scikit-learn "sklearn" library1

1scikit-learn
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and allows to apply transformers to column array or to pandas2 DataFrames.
A transformer is a function that takes as input all the values of an attribute
and applies a function to those values in order to return a new list of values. A
Column Transformer allows different columns or column subsets of the input
to be transformed separately and the features generated by each transformer
will be concatenated to form a single feature space.

This and the first components are organised in a pipeline. A pipeline is
composed of a list of transformers, two in our case, and eventually terminated
by an estimator, absent in our case.

3. And a Classifier. This is the last and arguably most important component,
is the one responsible for the classification of the bug. It receives as input the
output of the pipeline and outputs a model. In this thesis tool it is possible
to select between a OneVsRest and a Binary classifier.

Figure 2.1: High level view of the basic model

2.1 Analysis of a bug

The first step towards this thesis goal was to understand which were the important
information that allow a human to specifically label a bug. In order to do this
almost 250 bugs were analysed, discussion were covered on them and a common
ground was defined for the classification. This work followed again the footsteps

2pandas
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of Fabio and Gemma (2019) and everything was done following the procedure ex-
plained in Section 2.3.

The starting point was the example of a classification of a single bug (explained in
Section 2.3.1). In more details learning where to find the right information was of
paramount importance both at the beginning and during the entire process. More-
over, the understanding of the main components and information of a bug report
was of major value. In order to give weekly feed-backs to the rest of the team, the
bug were analysed in batches (described in Section 2.3.2) of 50 or 100 bugs and a
small review on them was provided at the end of each batch analysis.

Second point of the analysis was the discussion of the classifications. The two
human classifier performed the labelling separately, in such a way there was no
conditioning in the classification. The two teammates, after the private classifica-
tion, had to discuss every bug label with each other and provide a final classification
for each bug in the batch. Furthermore, at the end of this step, they were also re-
sponsible of producing the weekly report for the rest of the team on the work done
that week.

In conclusion, the last step was the Monday discussion with the team. An overview
of the analysed batch was proposed to the team and a discussion on the most ar-
gued bugs was conducted in order to solve the classification. After the building of
the dataset, the coding and testing of the algorithm began.

2.1.1 Proposed metrics

In order to measure the goodness of our classification the Cohen’s Kappa coeffi-
cient (in Section 2.1.2) was employed, which measures the degree of accuracy and
reliability in a statistical classification. On the other side, precision and accuracy
values were exploited to measure the performance of the model generated, as they
are usually the main values considered to evaluate a model. In some cases also the
ROC&AUC curve was studied to better understand the results obtained.

2.1.2 The Cohen’s Kappa

To calculate the level of agreement between the two human classifier, also called
judges, the Cohen’s kappa coefficient was used. The Cohen’s kappa is a statistical

21
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coefficient that represents the degree of accuracy and reliability in a statistical
classification. It measures the agreement between two raters (judges), who each
classify items into mutually exclusive categories3. This statistic was introduced by
Jacob Cohen in the journal Educational and Psychological Measurement in 1960.
In formula:

k =
p0 − pe
1− pe

where p0 is the relative observed agreement among raters, and pe is the hypothetical
probability of chance agreement.

To interpret Cohen’s kappa results these guidelines were followed (Landis and Koch
(1977)):

• 0.01 - 0.20 slight agreement

• 0.21 - 0.40 fair agreement

• 0.41 - 0.60 moderate agreement

• 0.61 - 0.80 substantial agreement

• 0.81 - 1.00 almost perfect or perfect agreement

kappa is always less than or equal to 1. A value of 1 implies perfect agreement
and values less than 1 imply less than perfect agreement. It is possible that kappa
is negative, this means that the two observers agreed less than would be expected
just by chance.

In our analysis was clear how more and more the two judges discussed the classifica-
tion and higher the coefficient got. In more details, after the first batch discussion,
the coefficient was 0.1 showing only a slight agreement, while after the second iter-
ation the value was 0.23, i.e., fair agreement. In the third iteration the value raised
up to 0.33 meaning the agreement was almost moderate, but in the last iteration it
dropped to 0.29. The value of k was probably this low because the judges had never
worked together and never had to deal with labeling bugs from BugZilla, making
them new to the problem.

3I Do Statistics
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Table 2.1 contains all the k results obtained in the different iterations on the dif-
ferent batches analysed.

Iteration Total N. Bugs A4 B5 C6 D7 K % of Agreement
1 50 26 12 15 14 0.09 56.72%
2 96 56 26 24 23 0.23 63.57%
3 143 82 44 31 29 0.33 67.74%
4 243 130 62 52 45 0.29 66.44%

Table 2.1: Cohen’s Kappa results
4Both judges agree to include
5Both judges agree to exclude

6Only first judge wants to include
7Only second judge wants to include

Another measure considered was the percentage of agreement, i.e., the value of p0
in the Coehn’s kappa equation. This value was always above 60% after the first
iteration.

2.2 Taxonomy

In this thesis, as mentioned earlier, the main focus was to obtain the best possible
accuracy when labeling a bug, achieving a reduction in costs and time in the bug
triaging process.

The starting point of the analysis was the work of Fabio and Gemma (2019), who
defined the bug’s taxonomy in full details in their paper.

2.2.1 Categories and Sub-Categories

In this section the taxonomy employed in this thesis will be presented in full details:

• API: this category regards bugs concerned with building configuration files.
Most of them are related to problems caused by (i) external libraries that
should be updated or fixed and (ii) wrong directory or file paths in XML or
manifest artifacts.

Subcategories:
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– Add-on or Plug-in Incompatibility: the program does not work
correctly for a major add-on/plug-in or many add-ons/plug-ins due to
incompatible APIs or libraries, or a functionality, which was removed on
purpose, but is still used in the wild.

– Incompatibility: refers to generic errors that do not belong to any of
the other categories.

– Permission/Deprecation: bugs in this category are related to two
main causes: on the one hand, they are due to the presence, modifica-
tion, or removal of deprecated method calls or APIs; on the other hand,
problems related to unused API permissions are included.

– Web Incompatibility: here the program does not work correctly for a
major website or many websites due to incompatible APIs or libraries,
or a functionality, which was removed on purpose, but is still used in the
wild.

• Database-related: collects bugs that report problems with the connection
between the main application and a database. For example, this type of bug
report describes issues related to failed queries or connection.

• Development: are issues related to errors made during the development,
it can be due to the addition of a new feature or a change in the code that
causes the breakage of a test case or a failure in the built.

Subcategories:

– Compile: compiling errors.

– Test Code: is concerned with bugs appearing in test code. They are
usually related to problems due to (i) running, fixing, or updating test
cases, (ii) intermittent tests, and (iii) the inability of a test to find de-
localized bugs.

• GUI-related: refers to the possible bugs occurring within the Graphical
User Interface (GUI) of a software project. It includes issues referring to
(i) stylistic errors, i.e., screen layouts, elements colors and padding, text box
appearance, and buttons, as well as (ii) unexpected failures appearing to the
users in form of unusual error messages.
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• Network Usage: this category is related to bugs having connection or server
issues, due to network problems, unexpected server shutdowns, or communi-
cation protocols that are not properly used within the source code.

• Performance: collects bugs that report performance issues, including mem-
ory overuse, energy leaks, and methods causing endless loops. It can also
refer to correct functionalities that have a slow response or are delayed.

• Program Anomaly: this are bugs introduced by developers when enhancing
existing source code, and that are concerned with specific circumstances such
as exceptions, problems with return values, and unexpected crashes due to
issues in the logic (rather than, e.g., the GUI) of the program. It is important
to note that bugs due to wrong SQL statements do not belong to this category
but are classified as database-related issues because they conceptually relate
to issues in the communications between the application and an external
database, rather than characterizing issues arising within the application. It
is also worth noting that in these bug reports developers tend to include entire
portions of source code, so that the discussion around a possible fix can be
accelerated.

Subcategories:

– Crash: program unexpectedly stops running.

– Hang: program keeps running but without response.

– Incorrect Rendering: components or video cannot be correctly ren-
dered.

– Wrong Functionality: incorrect functionalities besides rendering is-
sues.

• Security: vulnerability and other security-related problems are included in
this category. These types of bugs usually refer to reload certain parameters
and removal of unused permissions that might decrease the overall reliability
of the system. They signal that there is one or more vulnerabilities in the
code.

• Other: other reasons, e.g., data corruption and license incompatibility.
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2.3 Building the Dataset

After learning the taxonomy, the second phase of the work was the building of
the dataset. The dataset was built starting from resolved8 bugs, taken from the
BugZilla database. BugZilla contains all the bugs ever filed, solved and unresolved,
related to Mozilla products.

2.3.1 One Single Bug

The entire job of building the dataset is based on the classification of the single
bug. As mentioned in the previous chapter and as the Figure 1.5 depicts, a bug
report has multiple information that can be used to label the bug.

Starting from the title, the keywords and the flags a preliminary classification can
be performed. Moreover, some classes (from Section 2.2), like Security and Perfor-
mance and Program Anomaly (Crash and Hang) are immediately classified thanks
to the corresponding flags and keywords in their reports.

Furthermore, the comments section provides the entire discussion between the de-
velopers assigned to the bug. Thanks to their insights, in many cases, the nature of
the bug can be discovered. For instance, in many cases one of the firsts comments
is a description of the bug behaviour, a piece of code or the log of the error.

As last resource, at the end of the comments section, the last comment is the one
that closes the report and it contains the links to the code that removed the bug.
Sometimes the code can be the key to label the bug to the correct class, because it
shows the piece of code that was changed to remove it.

In some cases labeling a bug is impossible for different reasons. There can be lack
of information, both in the flags and in the comments sections, to assign a bug to
a specific class, even the title in some situations can be misleading. In some other
cases the bug report is used to signal the lack of a feature or a small change to be
done that did not causes any problem in the program, these are not bugs and were
not classified and not considered in the analysis.

8A resolved bug is a bug that has been already labeled, assigned to the correct developers and
removed
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2.3.2 Batch Classification

The batch classification phase was done in four separate moments, each one was
focused on a different batch of bugs to be classified. Moreover, all the four moments
had two tasks and were performed by two person:

1. each person separately worked on and labeled the bug

2. the two persons discussed together the best label (or labels) for the considered
bug

3. step 1 and 2 were repeated for each bug in the batch

The batches had respectively 50, 50, 50 and 100 bugs, for a total of 250 bugs.

As showed before, for the analysis, two sets of labels were used to classify all the
bugs, a generic and a specific one. All the bugs were first labeled using the generic
classes and then the specific ones were tried to be applied. In all the cases in which
it was not possible to assign a sub-category the generic label was used instead. This
indeed means that the specific labels are an extension of the generic ones.

Furthermore, more than one class can describe a bug in some cases and in those
occurrences the bug was assigned to all the classes, with a maximum of three,
making the problem a multi-label classification problem.

2.3.3 The Dataset

After classifying all the batches, removing the duplicate bugs and the one that were
not bugs 9, the dataset contained 188 bugs. Since 188 are not enough input records
for a good analysis, the bugs classified by Fabio and Gemma were added to the
dataset, reaching a total of 526 bugs.

Table 2.2 contains the dataset composition regarding the general labels, while Table
2.3 shows the composition with the specific label applied. As its clear by the
numbers some of the bugs were only classified with a general label, as already said
before, this is due to the lack of information to select a specific sub-category label
for the given bug.

9Some bug report are opened like they are bug but at the end they are new feature request or
some other changes, not actual errors in the code
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Label Number of Bugs
API 82

Development 77
GUI-related 109

Network Usage 22
Performance 15

Program Anomaly 240
Security 13

Table 2.2: Bugs classification with general labels

Label Number of Bugs
Add-on or plug-in incompatibility 38

API 13
Compile 19
Crash 64

GUI-related 109
Hang 6

Incompatibility 25
Incorrect Rendering 12

Network Usage 22
Performance 15

Permission/Deprecation 4
Program Anomaly 80

Test Code 58
Security 13

Web Incompatibility 2
Wrong Functionality 78

Table 2.3: Bugs classification with specific labels

Moreover, the entire dataset will be used for training and validation of the model.
In more details it will be divided in two sets: a training set of 473 records and a
test set of 53, which means the former is 90% of the dataset while the latter is the
remaining 10%. Of course the generation of the two sets is performed randomly10.

10A random state was fixed in order to have the same items in the training and test sets on
different runs of the algorithm
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Furthermore, the classes population is highly unbalanced, going from 240 bugs for
Program Anomaly down to 13 for Security, considering the general labels. This
is indeed also clear if we focus on the sub-categories. This kind of behaviour can
lead to a wrong analyses and can result in a wrong model, i.e., a model with a low
accuracy on the test set.
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Chapter 3

Experiment Design

3.1 The Model

The machine learning models chosen in this project will be presented here, together
with the related advantages, disadvantages and the main part regards the two con-
figurations used. The aim was to train a model on labeled bugs, which are bug
already resolved, classified by two humans (as described in Section 2.3), and then
to use that model to classify untriaged1 bugs.

The presented work started, as previously mentioned, with the Bugbug (code avail-
able at the BugBug GitHub repository2) project analysis. Firstly the main focus
was on the comprehension of the structure used and secondly on the enhancement
of such structure to achieve the goal of this thesis. As starting point the bugtype
model was considered (again its code is available on GitHub3).

3.1.1 BugBug

BugBug was developed to help different activities and tasks, like bug and quality
management, and other software engineering tasks using different machine learning
techniques. All BugBug knowledge comes from BugZilla4, because the data present

1Bugs that have to be labeled
2Bugbug
3Bugtype
4BugZilla
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in that database is used to track everything related to any filed bug, from the
feature request of hardware or software malfunction, passing through different bug
categories.

Being a huge project, Bugbug contains many different components. It counts as
many as 18 different classifiers, each with its own purposes. The classifiers are:

• Assignee: it suggests the appropriate assignee for a bug

• Backout: detects patches that might be more likely to be backed-out (be-
cause of build or test failures). It could be used for test prioritization/schedul-
ing purposes

• Bugtype: classifies bugs according to their type

• Component: it assigns product/component to untriaged bugs

• Defect vs Enhancement vs Task: it extends the defect classifier in order
to detect differences also between feature requests and development tasks

• Defect: this classifier distinguishes between bugs that are actually bugs and
bugs that aren’t5

• Devdocneeded: the aim of this classifier is to detect bugs which should be
documented for developers

• Duplicate: it finds duplicate bugs

• QAneeded: the aim of this classifier is to detect bugs that would need QA
verification

• Regression vs non-Regression: this classifier detect bugs that are regres-
sions, because the regression keyword in BugZilla is not used consistently

• Regressionrange: the aim of this classifier is to reveal regression bugs that
have a regression range vs those that do not

5Bugs on BugZilla aren’t always bugs. Sometimes they are feature requests, refactoring, and
so on
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• Regressor: detects patches which are more likely to cause regressions. It
could be used to make riskier patches undergo more scrutiny

• Spam: finds bugs which are spam

• Stepstoreproduce: reveals bugs that have steps to reproduce vs those that
do not.

• Testfailure: the aim of this classifier is to detect patches that might be more
likely to cause test failures.

• Testselect: selects relevant tests to run for a given patch.

• Tracking: detects bugs to track.

• Uplift: the aim of this classifier is to detect bugs for which uplift should be
approved and bugs for which uplift should not be approved.

Bug Type

As mentioned before, the work presented here uses the bugtype model as starting
point.

This model derives from the BugModel (code on GitHub6) which itself inherits from
theModel (code on GitHub7). TheModel contains all the main characteristics of the
machine learning model required for our work. It contains indeed a text vectorizer,
important because the dataset’s records have mostly textual features, and it also
contains variables and functions to handle the database, from the download to the
reading of the bug reports. Furthermore, it contains functions to spot and extract
the most important features for the model. The BugModel limits itself to add a
database and a function to generate items from the database.

The BugType model takes everything from the two aforementioned models and
adds components more consistent with its purpose, i.e., label bug according to
their type. A dictionary was used for the labels, each key is a specific class and
maps to the generic one. Only four classes are present here: Crash, Memory,

6BugModel
7Model
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Performance and Security, and each of them has sub-categories, presented in Table
3.1. Furthermore, the model extracts 16 features out of all the available ones,
performs some transformations on them and it applies a OneVsRest created from
the XGBoost classifier to produce the model. The produced model always outputs
the general labels, never the specific ones.

Label Sub-categories
Crash crash

crashreportid
Memory memory-footprint

memory-leak
Performance perf
Security sec-critical

sec-high
sec-moderate

sec-low
sec-other
sec-audit
sec-vector
sec-want

Table 3.1: BugType labels

Bug Type Classification

Starting from the BugType some modification were made in order to obtain the
model of this thesis.

Firstly the dictionary used in BugType was substituted by two lists of labels, one
containing the general classes names and the other the sub-categories names, even-
tually they are concatenated when the algorithm is run with selected the configu-
ration that considers the specific labels. Moreover, the same set of attributes are
selected here as in the BugType model and the same transformations are applied.

On the other hand, two other big differences were added. Initially, the possibility to
select the classifier between a OneVsRest and a Binary classifier was implemented,
and afterwards the choice of using a balancing technique for the dataset was added
in order to try to remove the unbalanceness of the dataset.
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In addition to these modifications also variations in the function to get the labels
were made, but were minor changes due to the different format of the records in
the input dataset.

Another important issue to remember is that two sets of labels were employed in
the classification of the bugs, a generic and a specific one, as already discussed in
Chapter 2. Moreover, one can argue that the problem is a multi-label classification
one, since a bug can be assigned to more than one class. This was a major difference
from the BugType code, which only outputs one label per bug.

3.1.2 XGBoost

XGBoost is an optimised distributed gradient boosting library built to be highly
efficient, flexible and portable. This library defines machine learning algorithm us-
ing the Gradient Boosting framework.

Gradient Boosting is a machine learning technique for regression and classification
problem. In order to create a strong classifier, it creates a model employing an en-
semble of weak prediction model, decision tress in most of the cases. The purpose
of an ensemble model is to use learners that make different kinds of errors, they
indeed do not have to be highly accurate. The strength of the ensemble model is
given by the combination of the weak learners outputs.

The different models in the ensemble are defined using the same dataset but each
record has a weight. At each iteration a new model is trained and the training ex-
amples are re-weighted to focus the system on the samples that the most recently
learned classifier got wrong. At the end, the classification is based on weighted vot-
ing of the weak classifiers, where the weight of a classifier is inversely proportional
to its error rate. In conclusion, XGBoost provides parallel tree boosting.

3.2 OneVsRest Model

As mentioned earlier the model is based on the bug type classifier with the changes
described before. As explained in the previous chapter, the taxonomy in Section
2.2 was used to label the records in the dataset (described in Section 2.3).
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OneVsRest8 was chosen as one possible classifier for the model. It performs a
multiple class classification, as described before. The classifier works with 8 classes
in the generic configuration while it handles 19 classes for the specific configuration,
i.e., 11 labels are for the sub-categories. Since each bug can have more than one
label the model will also have multi-label outputs, with the only constraint of
maximum three labels.

Three steps define the classifier behaviour. First, one classifier is fitted over a single
class, then in the second step all the classifiers are taken individually and the class
is fitted against all the other classes. As last step more than one label for each bug
is produced by each classifier. This classification is made using a two dimensional
matrix that is filled using the following formula: given a generic cell of the matrix,
[i, j], where i is the sample and j is the label the value of the cell is defined as:if i has j, 1

otherwise, 0

One of the main advantages of this classifier is its interpretability. Since each class is
represented by one and one classifier only, it is possible to gain knowledge about the
class by inspecting its corresponding classifier. This advantage has been exploited
during tests to better understand the model produced by the algorithm.

As mentioned above, the OneVsRest algorithm fits one classifier per class as first
step. The aforementioned classifier has to be chosen at the creation of the object
in the code, passing it as argument in the constructor. In this case the estimator
selected was the implementation of the scikit-learn API for XGBoost classification9.

3.3 Binary Model

As a conclusion of the testing (see Section 4.1) of the OneVsRest classifier was clear
that the accuracy was far from optimal, a value of 30% accuracy cannot be em-
ployed in real operations. For this reason the choice of a new classifier was added
to the algorithm implementation. In more details, a mode variable was included

8OneVsRest Classifier
9XGBoost xgbclassifier documentation
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to select between the OneVsRest classifier depicted in the previous section and a
Binary classifier, which analyses a single class at a time.

In machine learning a binary classifier is an estimator that assigns a record to one
of two possible classes by studying the attributes of the record. In this project, the
two classes are dynamically created based on the choices of the programmer, the
positive class is passed as an additional argument and all the samples belonging to
that class in the dataset will be labeled as 1, while all the other samples as 0.

In this thesis implementation the design of this second model was created trying to
keep it as much as possible homogeneous with the already presented model. Fol-
lowing such idea, this mode only needs an additional argument passed as parameter
from the command line: the name of the class under consideration, in addition to
the argument that specify the choice of the use of the binary classifier. The algo-
rithm takes care of the rest by assigning label 1 to the specified class and label 0 to
all the other classes. In conclusion, it outputs a model able to classify a new bug
as belonging to the specified class or not.

Also here the XGBoost (explained in Section 3.1.2) library was used. The avail-
able software here is employed again as the base for the model, producing the class
assignment after the prediction of the label of the bug under analysis. In this classi-
fier the same estimator used in the OneVsRest case was used to produce the binary
classification.

3.4 Modifications

After testing the models with this configurations, the results (presented in Chapter
4) obtained were not the expected ones, especially for the OneVsRest case. This
indeed required some changes to try to obtain a better accuracy. For this operation
different approaches and changes were considered separately or combined.

As first thought, the main modification was in the dataset by removing all the bugs
that were not from BugZilla10 in order to have homogeneity in the dataset. 284
bugs were removed from the set, leaving the dataset with 243 bugs.

10Some of the bugs classified by Fabio and Gemma were from Eclipse
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One other concern was on the XGBoost library, possibly a wrong choice for the
project. For this reason the classifier was changed using only the scikit-learn choice,
without the XGBoost implementation. The result of this operation was awful with
the initial dataset, showing the need of the library in this project’s tool, but after
the modifications on the dataset the XGBoost library was removed due to the
higher results of different algorithms.

Another different approach on the classifier was the employment of different types
of learners passed to the OneVsRest constructor instead of the XGBoost learner.
Different classifier were used, going from KNN to Linear SVM, passing through
Naïve Bayes. The greatest accuracy was reached by SVM, presented with all the
other output results in the next Chapter.

Furthermore, since one hypothesis of the bad results obtained was that the dataset
was unbalanced and not big enough, more bugs were classified. The bugs added
belonged to the classes crash, performance and security because they are easily
classified thanks to the flag in the bug reports. Roughly 100 bugs were added for
each category and at the end of this step the dataset contained 546 bugs. Again,
all the new outcomes are presented in the next Chapter.

3.4.1 Minimum matching threshold

In machine learning, there is a model called Logistic Regression11 that is used to
compute the probability that a certain instance can be classified as 0 or 1. Here this
estimator has been applied to predict the appearance of an instance to a specific
class.

The logistic regression is used to get the probability inherent to a certain predic-
tion. This value can be read as a simple probability that the event occurs, which
in this thesis means that the bug under analysis belongs to a class, while in other
cases the value is converted to a binary one. For example, a model that returns a
prediction of 0.001, for a bug to be labeled as class A, is predicting that it is very
unlikely that the bug can be categorised to class A, on the other hand a value of
0.999 means that there is a high chance that the bug stands in class A.

11Logistic Regression
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Arguably the main threat is distinguishing middle cases. A classification threshold
has to be picked to have a mapping between a regression value and a binary iden-
tifier. Moreover, this value indicates the point above which is possible to identify
a record as belonging to a specific class with a certain margin of confidence. This
threshold is indeed necessary and problem dependent, showing why its value is not
set statically at 0.5.

The main focus was to find the minimum threshold value that maximises the con-
fidence over the classification model.
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Chapter 4

Results

The tool presented in this thesis has been developed to label bugs in a fast and,
eventually, error free way, allowing the developers to only focus on the second part
of the job, which is the bug removal task. However the accuracy reached in our
experiments showed possible errors in our first assumptions or in the initial models,
especially in the OneVsRest one, and this led to modifications that brought more
consistent outcomes.

4.1 Tests

In our work, all the experiments with the classifiers were performed using the same
configuration of the algorithm. In more details, many models were produced in each
main experiment changing only the classifier part, leaving all the other components
the same. Different configurations were employed in order to find the one with the
highest accuracy.

Initially, different changes were applied in the code, in the feature selector or in
the transformations used. In particular one possible change was to separate the
first comment from the rest of the comments, as two separate features, giving
more importance to the first comment, and, on other tests, they were left together.
Moreover, since the classes distribution was unbalanced, a balancing technique was
added as an additional transformation in some experiments.
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As mentioned earlier, all these experiments were led using the same datasets1 that
was split in train and test set, with a ratio 90% and 10%. As it is showed in Section
4.1.3 other changes were made after the first experiments to try to solve the possible
errors present in the algorithm components.

4.1.1 OneVsRest Classifier results

Here all the initial results obtained using the OneVsRest classifier (described in
Section 3.2) are presented.

The accuracy of this classifier was very low at the beginning and indeed it was
always below 30% in the first experiments. Furthermore, considering the first com-
ment as separated from the other didn’t provide much difference than considering
all the comments together. In both cases the accuracy was around 28%.

In order to tune some parameters, like min_diff, and check if it was useful to have
the first comment separate from the other, the algorithm was tested with the values
in Table 4.1. The Table shows that separating the first comment does not change
much the accuracy, which is influenced only by the value of min_diff in this situ-
ation. For this reason the comments were always considered all together and the
value of min_diff was set to 0.001 in all the other tests.

First Comment merged
with Comments min_diff Accuracy

Yes 0.01 27%
Yes 0.001 28%
Yes 0.0001 28%
No 0.01 27%
No 0.001 26%
No 0.0001 26%

Table 4.1: Results obtained when tuning min_diff and the handling of the Com-
ments

Moreover, using a balancing technique did not help either. More specifically the
model reached an accuracy of 30.43%. This increase in the accuracy can be related

1Three sets were used with respectively 526, 243 and 546 bugs
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to the fact that now the dataset is more balanced, lowering the probable overfitting
that was present in the previous scenarios.

These results can be due to two main reasons: the samples in the dataset, or the
algorithm definition. In the former case the problem can be due to the lack of sam-
ples for some classes, making the dataset unbalanced, leading to a wrong analysis
and model. This unbalanceness creates a difficulty for the model, which is not able
to learn enough information from the too few samples provided by the dataset.

On the other hand, also the algorithm can have some blame, since there can be
errors in it, particularly in the feature extractor. Some features can be indeed
useless or they can make classes too much similar to each other. For this reason
the model will not be able to distinguish between some of the classes, lowering its
accuracy with mis-classifications. This problem, even if all the correct features are
selected, can still be present since it can be due to the fact that different problems
are described in similar ways, making them alike to the classifier’s "eyes". Two or
more classes can indeed be really similar to each other for the classifier point of
view, leading to wrong labeling in some cases.

As already mentioned, one modification of this code was to remove the XGBoost
estimator, without obtaining meaningful results, probably because it is a state of
the art library. On the other hand the modification of the estimator passed and the
changes on the dataset brought a different outcomes, showing the highest obtained
accuracy of 73.32% (showed in Section 4.1.3).

4.1.2 Binary Classifier results

The results of the binary classifier (presented in Section 3.3) were more satisfying
than the initial outcomes of the OneVsRest. In all the experiments an accuracy
above 50% was achieved. In deeper details here we run a binary classifier consid-
ering one class against all the other. The class under consideration was labeled
as class 1 while all the other were labeled as 0. With this variation in mind the
experiments performed were equal to the ones above performed on the OneVsRest
classifier.

One experiment was done without using the balancing technique, the results are in
Table 4.2, while another experiment was led applying a balancing technique to the
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Label Type N. of Bugs Accuracy Precision Recall
API General 82 89% 0.0 0.0

Development General 73 81% 0.64 0.45
GUI-related General 109 82% 0.20 0.09

Network Usage General 22 95% 0.0 0.0
Performance General 15 99% 0.0 0.0

Program Anomaly General 240 64% 0.68 0.78
Security General 13 97% 0.0 0.0

Add-on or Plug-in Incomp. Specific 38 99% 0.0 0.0
Compile Specific 19 97% 0.0 0.0
Crash Specific 64 94% 0.87 0.79
Hang Specific 6 98% 0.0 0.0

Incompatibility Specific 25 99% 0.0 0.0
Incorrect Rendering Specific 12 95% 0.0 0.0

Permission/Deprecation Specific 4 100% 0.0 0.0
Test code Specific 58 84% 0.70 0.48

Web Incompatibility Specific 2 99% 0.0 0.0
Wrong Functionality Specific 78 70% 0.52 0.23

Table 4.2: Statistics without using the balancing technique

dataset, the output results are in Table 4.3.

As for the OneVsRest case, changing how the comments were handled did not
change much if not at all the accuracy obtained by the generated models. On the
other hand, the use of a balancing technique here is destructive (see Table 4.3).
The accuracy of each class, both general and specific, were all above 90% before
the introduction of the balancing, while most of them dropped to 50%, 60% or 70%
with it.

The results obtained with this classifier can be related to the fact that for the bi-
nary case the dataset can be seen as more balanced, but, still, some accuracy are
two low for a binary classifier. The low accuracy can be again related to the fact
that some classes can be too alike for the classifier, leading the model to mistakes
in labeling the records belonging to those classes, also in the binary mode.

After the changes in the dataset, which means after the removal of the bugs not
coming from BugZilla the binary classifier reached an average accuracy of 63%,
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Label Type N. of Bugs Accuracy Precision Recall
API General 82 55% 0.20 0.58

Development General 73 81% 0.40 0.76
GUI-related General 109 64% 0.33 0.66

Network Usage General 22 66% 0.07 0.58
Performance General 15 47% 0.02 0.47

Program Anomaly General 240 67% 0.63 0.65
Security General 13 53% 0.02 0.57

Add-on or Plug-in Incomp. Specific 38 63% 0.13 0.66
Compile Specific 19 63% 0.05 0.52
Crash Specific 64 92% 0.68 0.84
Hang Specific 6 58% 0.02 0.40

Incompatibility Specific 25 57% 0.07 0.60
Incorrect Rendering Specific 12 64% 0.04 0.57

Permission/Deprecation Specific 4 66% 0.0 0.0
Test code Specific 58 85% 0.44 0.79

Web Incompatibility Specific 2 99% 0.0 0.0
Wrong Functionality Specific 78 68% 0.28 0.73

Table 4.3: Statistics using the balancing technique

which is still a low accuracy but now only the bugs coming from BugZilla are con-
sidered, i.e., all the bugs have the same kind of information. Table 4.4 shows the
new bug label distribution together with the results obtained by the binary classi-
fier. In this tests the balancing was included in the classifier, this mean that the
learner took care of adjusting the input dataset in order to have it more balanced.

One other test was run on the binary classifier after the additional modification on
the dataset. Using the dataset enhanced with the 300 new bugs, with a total of
546 bugs, the binary classifier reached the accuracy showed in Table 4.5. As it is
clear from the results, the enlarging of the dataset boosted the accuracy, especially
for the classes for which elements were added.
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Label Type N. of Bugs Accuracy Precision Recall
API General 33 55% 0.13 0.45

Development General 42 80% 0.47 0.85
GUI-related General 49 59% 0.27 0.72

Network Usage General 8 61% 0.06 0.60
Performance General 3 60% 0.03 0.40

Program Anomaly General 131 72% 0.77 0.71
Security General 10 70% 0.12 0.80

Add-on or plug-in
incompatibility Specific 11 70% 0.11 0.80

Compile Specific 5 48% 0.02 0.40
Crash Specific 34 87% 0.57 0.72
Hang Specific 3 56% 0.01 0.40

Incompatibility Specific 6 68% 0.01 0.20
Incorrect Rendering Specific 9 41% 0.04 0.80

Permission/Deprecation Specific 1 f f f
Test Code Specific 37 83% 0.52 0.81

Web Incompatibility Specific 2 42% 0.01 0.20
Wrong Functionality Specific 60 66% 0.41 0.69

Table 4.4: Bugs label distribution and results on the cleaned dataset
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4.1 – Tests

Label Type N. of Bugs Accuracy Precision Recall
API General 33 65% 0.65 0.65

Development General 42 76% 0.76 0.76
GUI-related General 49 81% 0.81 0.82

Network Usage General 8 50% 0.50 0.50
Performance General 104 99% 0.99 0.99

Program Anomaly General 232 72% 0.85 0.85
Security General 111 96% 0.97 0.96

Add-on or plug-in
incompatibility Specific 11 90% 0.92 0.91

Compile Specific 5 40% 0.38 0.40
Crash Specific 135 96% 0.96 0.96
Hang Specific 3 75% 0.83 0.75

Incompatibility Specific 6 70% 0.70 0.70
Incorrect Rendering Specific 9 50% 0.50 0.50

Permission/Deprecation Specific 1 f f f
Test Code Specific 37 85% 0.85 0.85

Web Incompatibility Specific 2 50% 0.25 0.50
Wrong Functionality Specific 60 71% 0.72 0.71

Table 4.5: Binary results on the changed dataset
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4.1.3 Modifications

In this section the results obtained by the smaller and different trials are presented.
The algorithm was slightly changed in order to run different scenarios to find mean-
ingful information and possible solutions to the low accuracy obtained in the other
cases.

As mentioned in Chapter 3, the major changes were done in the selection of the
classifier, since the change in the dataset has already been presented. The classifier
used for this tests were Naïve Bayes, K Nearest Neighbours and Support Vector
Machines, all passed to the OneVsRest constructor.

All this experiments were run with three different datasets: the initial one with 526
bugs, the one with 243 bugs after the removal of the bugs not from BugZilla and
the one with 546 bugs after the addition of the new bugs.

Also the first classifier, i.e., the OneVsRest with the XGBoost estimator passed to
the constructor, was tested with the new datasets and obtained: 42% accuracy with
the 243 bugs dataset and 68% with the 546 bugs one.

Naïve Bayes

The first classifier used was the Naïve Bayes. This classifier is usually used as
benchmark in the analysis and it is based on the Bayes Theorem:

P (A|B) =
P (B|A)P (A)

P (B)

The accuracy was probably low for this algorithm because the Naïve Bayes theorem
makes the assumption that the features of the input records are uncorrelated to
each other. In this case there is an high chance that some of the attributes are
somehow related. The best obtained accuracy was 66%. (results in Table 4.6)

Dataset Accuracy Precision
526 bugs 28.7%
243 bugs 44.5% 0.40
546 bugs 65.98% 0.66

Table 4.6: Results Naïve Bayes
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4.1 – Tests

K Nearest Neighbours

On the other hand, the KNN classifier uses the entire dataset to label a new in-
stance, instead of collecting information from the training set and tune some pa-
rameters accordingly. KNN computes the distance between the new instance and
all the records in the set and uses the K nearest samples to label the new input
record. Both the value of K and the measure of the distance have to be carefully
selected. Here a value of K = 19 and the Manhattan distance were used. The best
accuracy obtained was 60%. This model reached usually the lowest accuracy in all
the experiments. (results in Table 4.7)

Dataset Accuracy Precision
526 bugs 23.6%
243 bugs 35.8% 0.27
546 bugs 59.5% 0.59

Table 4.7: Results K Nearest Neighbours

Support Vector Machines

SVM is a linear model for classification and regression problems. The idea of this
algorithm is to find the line or hyperplane which best separates the classes. To
find the best separating line or hyperplane, SVM first finds the points closest to
the line or hyperplane for two classes, these points are called support vectors. Now
the distance of the support vectors and the line or hyperplane is computed. The
best line or the hyperplane is the one for which the distance, also called margin, is
maximised. The process is repeated for every couple of different classes. In formula:

max
w,b

1

||w||
subject to yi[< xi, w > +b] ≥ 1

where w is the vector perpendicular to the hyperplane or line, b is the bias term,
||w|| is the norm of w and the equation yi[< xi, w > +b] ≥ 1 represents the fact
that the SVM has to correctly classify every point xi with label yi. The scikit-learn
LinearSVC2 algorithm was employed here. (results in Table 4.8)

2LinearSVC
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Results

Dataset Accuracy Precision
526 bugs 35.95%
243 bugs 46%
546 bugs 73.32% 0.74

Table 4.8: Results Support Vector Machines

These tests were run only using the general labels, since they are less a better
accuracy is expected. Running the best algorithm, LinearSVC3, on the entire set
of labels, considering also the specific ones, indeed generated an accuracy of 28%
with the dataset of 243 bugs.

4.2 Outcomes

Here a summary of the best obtained outcomes is presented in Table 4.9.

Algorithm Accuracy
Naïve Bayes 65.98%

KNN 59.5%
Binary 75-85% (On Average)

XGBoost 68%
LinearSVC 73.32%

Table 4.9: Results

In conclusion, the best model obtained was the Linear SVM one. The classifier
reached an accuracy of almost 74%.

3LinearSVC scikit-learn
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Chapter 5

Conclusions

Bug triaging is a very important, long and difficult step in the bug removal process,
especially in companies with multiple products receiving thousands of bug reports
every week. Thankfully the software components are the same for a long period
of time, rarely they change, and this means that a good model can be employed
for years. Moreover, it can be easily updated using a new and more comprehensive
dataset.

This thesis proposes a tool that would avoid useless work for the developers, who
will have more time to focus on the removal part of the process. Our project is
based and works with bug related to all the Mozilla products but with few changes
it could be extended to work also with bugs coming from origins different than the
BugZilla database.

Our model takes an untriaged bug and returns a label for it. Depending on the case
the tool can use the OneVsRest (see Section 3.2) or the Binary (see Section 3.3)
classifier. It goes without saying that the binary classifier takes more time than the
others since it has to be run multiple times, i.e., one time for each class. Further-
more, the binary classifier result requires further computation, like comparing all
the results in order to provide a label.

The model is based on the bugs classified by the human classifier, which are bugs
that were randomly picked from the database. This operation may result in a biased
model, since the classes are unbalanced and some classes in the taxonomy are never
classified, like database-related bugs. As showed in Chapter 3, the unbalanceness
was partially resolved after adding some other bug in the dataset and by using a
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balancing technique, but some unbalanceness still persist and can be seen in the
accuracy results (showed in Chapter 4).

5.1 Summary of the obtained results

As mentioned in Chapter 4, two were the main configurations of the experiments
run in this thesis. However they were run multiple times to tune the main hyper-
parameters of the model, especiallymin_diff of the Column Transformer (see Table
4.1). All the test cases were run with the same training and test sets, selecting the
model configuration using the command line arguments passed to the algorithm.

As discussed in Chapter 4, the initial results obtained for the OneVsRest model can
be related either to the dataset or the algorithm. In the former case, the hetero-
geneity and unbalancedness of the data used could have led to a model with pour
classification accuracy. This causes a problem in all the classifiers, since all the dif-
ferent learners do not have enough information on some classes, i.e., the one with
too few elements. For this reason modifications of the dataset were implemented,
leading to 243 bugs and later 546, all coming from the same database, BugZilla.

On the other hand the performance of the same records in the Binary experiment
shows that the data have a good quality, even if also here some classes do not have
an optimal accuracy. This can actually be related to the fact that some classes may
be too similar to each other, creating problems in the classifiers that try to learn
the different characteristics to distinguish between them.

This indeed leads to the ladder case, which is to consider that the poor accuracy
of the OneVsRest model is caused by the algorithm. Since the chosen classifier is
a state of the art classifier, coming from the XGBoost library, the problem can be
in the features selected or in their handling. The feature selected could be not the
perfect subset for the problem at hand. As already said the difficulty of the learner
to distinguish between classes can be either due to the fact that in reality some of
the classes are too close or because the feature extracted from the reports are the
wrong ones to make the classifier strong enough.

In conclusion, after the changes in the dataset, the best classifier turned out to
be the LinearSVC one. In more details, employing the dataset with 546 bugs, all
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coming from BugZilla, with the LinearSVC estimator passed to the OneVsRest’s
constructor produced the best possible classifier with an accuracy of almost 74%.
This can probably due to the fact that Support Vector Machines only take advan-
tage of the samples near the hyperplane, i.e., the support vectors. In this way,
regardless of the position of the other samples the model depends only on those
records. Moreover, even if some elements, belonging to two different classes, are
close to each other they will still be separated by the hyperplane making the model
capable to distinguish between the two different classes, making less mistakes.

All future works have to start by dealing with the problems still present and ex-
plained above before any kind of enhancement or additional component can be
brought to the algorithm.

5.2 Future works

Here a list of a few improvement point is presented. These can be aimed towards
increasing the accuracy of the models or to enhance its capabilities.

• One obvious work could be the enlarging of the dataset with many other
records, especially samples belonging to the less represented classes, i.e., the
classes with fewer elements. A number as 1000 bugs could be the minimum
to provide a better model, regardless the algorithm used;

• Another possible work could be the research of the best feature subset to
extract. Since an accuracy of 74% is good but not perfect a good starting
point could be the analysis of the extracted features;

• Some bugs are generated when resolving other bugs, they are called regression
bug. With the right additional samples the tool can be updated to understand
if a bug is a regression bug;

• Make the algorithm capable to understand if a bug report is of a bug or simply
a feature request or not a bug could be another possible additional feature;

• Extending the tool to be able to handle bug reports coming from different
sources. For now it is able to work only with reports coming from BugZilla,
it would be an enhancement if it was able to label also bugs from other
databases;
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• A possible extension of the algorithm could be the identification of bugs that
are duplicate. These duplicates are eventually found by the triage process,
but finding duplicate bugs as quickly as possible provides more information
for developers trying to diagnose a crash;

• Enhancing the algorithm to be able to understand the importance of a bug,
to signal its priority for a given Firefox release would be an even further step;
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