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Abstract

This thesis presents the design procedure of a control system for a docking mechanism,

developed for on-orbit servicing of cooperative satellites. The mechanism prototype is

part of the SAPERE-STRONG mission, with the aim of performing an active docking

procedure between low-masses satellites, recovering the residual misalignments during

the last approach and dissipating the energy associated with the relative velocities

between spacecrafts upon contact. The chaser element is the active part and consist

of a central docking mechanism, with a sliding probe structure. The control develop-

ment started from the study of the mechanical behaviour of the mechanism and of the

available electrical hardware. The technical specifications of actuators, motor drivers

and sensors were examined and a suitable control architecture has been selected. The

final solution consists of a central control system, where an Arduino MEGA board is

the master controller and the motor drivers are the slave elements. So the control al-

gorithm was implemented onto Arduino board, which manages the actuators motions

and the sensors measurements, communicating with drivers through rs232 serial com-

munication protocol. The docking procedure consist of several phases: the preliminary

mechanism positioning, the alignment, the soft docking, the probe re-centering, the

retraction and the hard docking stage. Their management is done by the use of a

finite state machine. The motion of the motors and the mechanical movements are

performed using the closed loop position and velocity control theory. The results of

the first design iteration are tested over a dedicated test bench in no-load conditions,

where it is checked if the devices work properly and if the control algorithm runs with-

out issues. After, the electrical components are mounted over the mechanism and the

laboratory tests are done. A set of mating trials between the two parts are performed

and the control parameters are regulated, in order to meet the requirements. Also a

PCB shield is designed, in order to integrate all the additional Arduino hardware onto

a single board. The final obtained result is a working prototype of an active docking

mechanism, ready to be subjected to the final mating test, which consist of a dock-

ing simulation by using a robotic manipulator. The active part will be still while the

passive one will be mounted over the manipulator, that simulates the relative motion

between the docking halves through apposite trajectory generation techniques.
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Chapter 1

Introduction

This thesis work starts from the need of an automatic control system for an existing

mechanical plant studied for the mating between two small sized satellites. This work

is part of the SAPERE-STRONG research, a program linked to the on-orbit servicing

and coordinated by Thales Alenia Space.

The target of this thesis is to design and develop a reliable control system that

will be integrated onto the mechanism. It will interface with the hardware in order to

execute all the docking operations in an automatic way. The union of the mechanical

part and the control architecture will give a full working prototype of an original

docking mechanism that will be a first solution to test.

Below the structure of the thesis and a brief description of the chapters content are

exposed. The dissertation, including this introductory part, consist of 6 chapters:

• in chapter 2 (State-of-the-Art) the docking and berthing existing solutions are

studied. Here the inherent definitions to docking and berthing operations are

described, when it is necessary the mating of two satellites and what are the design

parameters that need to take into account. Moreover it is given an overview of

the evolution of the adopted solutions by main space agencies.

• chapter 3 (The STRONG docking Mechanism) explains the design process of the

yet developed mechanical device, referring to the SAPERE-STRONG research

work and underlining the advantages that the found solution has with respect to

the existing ones. Also a detailed description of the mechanical features and of

the adopted electrical devices are given.

• chapter 4 (Control System) reports the design process of the control system that

led to the final control architecture. Here, the adopted design architecture and

strategies are explained and a detailed description of the docking stages performed

through a Finite State machine is given. Also it is reported the Arduino code,

with a step by step explanation of what are the actions performed.
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CHAPTER 1. INTRODUCTION

• chapter 5 (Experimental Tests) describes the two operative tests that are executed

in laboratory, explaining the test procedure and the reached results. Also an

introduction of the final test (still to be performed) with the use of a manipulator

is given, where it is shown the development of the final PCB control board.

• finally the chapter 6 (Conclusions) sum up the obtained results in this thesis work

and lists the remaining issues to solve, suggesting the possible solutions.
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Chapter 2

State-of-the-art

This chapter gives a general overview of what is a mating between two satellites and

what are the parameters to take into account in order to classify the different solutions

adopted, including a brief description of time evolution and some examples coming

from different space agencies. This reference would be an introduction of the scenario

in which this thesis work takes place.

2.1 Definition of mating between satellites

The mating between two satellites is the union, in a solid mechanical way, of two

space vehicles in on-orbit conditions. This becomes essential in the on-orbit servicing

missions when, for example, there is the necessity to transfer cargo, crew or when a ’in

loco’ reparation is needed [13]. A clear examples of how much the on-orbit missions are

important could be the assembly operations of the ISS modules. Another example is

the several refurbishment missions over the Hubble telescope [19], where the measuring

instruments are replaced and updated [10].

In order to mate two spacecrafts, the two parts need to be equipped with a particular

mechanism, able to create a solid mechanical coupling between them. Usually, the two

satellites are called chaser and target, where the first one has the active role and the

target stays in its relative kinematic conditions. The mating operation can be done

using two different approaches: the docking approach and the berthing approach.

• in the DOCKING APPROACH [11] the chaser evaluates its relative state

with the target. So, after reaching the needed conditions (in terms of alignment,

relative velocities, etc), it captures the target and connects the two elements.

A docking operation is usually divided into four phases:

1. approach the chaser starts to move toward the target freely and deploys

the mechanism, ready for the impact

10



2.1. DEFINITION OF MATING BETWEEN SATELLITES CHAPTER 2. STATE-OF-THE-ART

Figure 2.1: The Docking Operation

2. alignment thanks to a dedicated system, the poses interfaces of chaser and

target are aligned

3. soft docking a first connection is executed, the two satellites aren’t solidly

connected yet, but thanks to this phase the energy related to the relative

linear velocities is dissipated

4. hard docking a dedicated mechanism executes a more stiff connection,

making chaser and target cohesive. With this phase the docking is com-

pleted.

A docking system architecture can be of two types: central or peripheral. In the

first case the chaser has a male component (a probe or rod), while the target

has the female part, that guides the probe toward the desired position. In the

peripheral architecture all the docking mechanism is in the perimetric part, both

in the chaser and in the target. The central solution has the advantage to be

simple to study and develop, but it has a drawback: in an on-orbit operation

where the mission is to link two spacecraft in order to create an internal passage

for cargo or astronauts, the central probe obstructs the the central space. The

peripheral architecture gives the solution of this problem, leaving free the central

zone of the linking.

• the BERTHING APPROACH [berthing˙op] consist of the use of a manipu-

lator for the mating [15]. The chaser reach a suitable position in space and ensure

that all the relative velocities (linear and angular) with respect to spacecrafts are

null. Then a manipulator, mounted either on the chaser or on the target, catch

the other part and actuates the mating approach.

Usually a berthing operation consists of seven phases:

1. positioning of the manipulator in ready condition the manipulator

is positioned in a portion of space such that it is possible to start the oper-

ations.

11



2.2. SOME EXAMPLES OF DOCKING SYSTEMS CHAPTER 2. STATE-OF-THE-ART

Figure 2.2: Cygnus Berthing Operation (Credit by NASA)

2. acquisition of the berthing box the chaser reaches a delimited space

inside the workspace of the robot manipulator.

3. initiation of capture the chaser’s thrusters are switched off and the end-

effector of the manipulator starts to reach the grappling fixture over the

chaser.

4. grappling the end-effector reach the desired pose and capture is done.

5. transfer to the berthing port the manipulator drags the chaser, in order

to attach together the link interfaces of the two spacecrafts.

6. insertion into the reception interfaces the relative final pose is reached

and the manipulator push the attachments one inside the other. A properly

designed guide makes the fine alignment between the two interfaces.

7. structural connection a device fastens the connection and a solid union

is done.

In this dissertation only the docking solution are taken into account.

2.2 Some examples of docking systems

The first docking operation ever was performed in 1966, during the NASA Gemini-VII

mission. After a year, in 1967, also the Soviet space agency tested his first docking

system during the Soyuz program. In both cases they opted for a central architecture,

with a probe and a female part. But the main problem of this solution was its inconve-

nience when it needs to transfer cargo or passengers from the chaser to the target. So,

12



2.2. SOME EXAMPLES OF DOCKING SYSTEMS CHAPTER 2. STATE-OF-THE-ART

thanks to the collaboration between NASA and Roscosmos (on the Apollo-Soyuz Test

Project, a.k.a ASTP), on 1975 the first peripheral docking mechanism was tested, be-

coming the basis for the development of the first Androgynous Peripheral Attachment

System (APAS). The APAS technology will be used for several missions, like Buran

orbiter, Shuttle-MIR and more recently in the Chinese Shenzhou missions.

In 2010 all the main space agencies collaborates, establishing a common interface to

use. According to [2] they agreed to use a standard docking interface to enable on-orbit

crew rescue operations and joint collaborative endeavors utilizing different spacecraft.

This is also the standard used in the ISS orbiting station and the latest technologies

are adaptations of this standard.

2.2.1 Gemini and Soyuz docking systems

They are the first two docking solutions implemented in the space exploration history.

In all the two cases a central architecture was used. In the Gemini mission [gemini]

the mechanism consists of a rigid male cone as probe, while a cup interface was used

as drogue, linked to the target spacecraft by seven shock absorbers to dampen relative

longitudinal and lateral velocities. The longitudinal shock absorbers were equipped

with an orifice damper and a spring in parallel for reusability. The probe was equipped

with an alignment system that had as its counterpart a v-shaped guide in the female

cone. So, there was only a possible coupling configuration between the parts. The final

capture was accomplished by three latches.

Figure 2.3: Gemini docking mechanism
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2.2. SOME EXAMPLES OF DOCKING SYSTEMS CHAPTER 2. STATE-OF-THE-ART

Also on the Soyuz mission a probe and drogue system was used (2.4). The first one

was equipped with a small ball screw and a large one that acts the shock attenuation.

The retraction of this element causes the compression of a coil and a Belleville spring

as well as the rotation of an electromechanical brake. The capture was done using two

latches on the probe head that reached the female socket. A transducer on the head of

the probe verified the end of the operation. Through the large ball screw the retraction

of the probe was performed and the misalignment was deleted by female guides. This

solution was used for the first time in 1967 and it’s still in use today, with some reviews:

in order to create a transfer tunnel between the two satellites the original design was

modified, making the probe and drogue mechanism part of the hatches and giving to

mechanism a more compact structure.

Figure 2.4: Soyuz Docking mechanism

2.2.2 The APAS solution

This kind of docking mechanism comes from the ASTP mechanism. It is the result of

the cooperation between American and Russian space agencies [14], that developed the

first peripheral and androgynous docking mechanism. The fact that it was androgynous

means that both the two sides are designed to work actively or not, implying that if one

of the two halves fails the other one could be activated, increasing the probability of

success. The design concept includes a ring equipped with guides and capture latches

that were located on movable rods serving as attenuators and retracting actuators, and

a docking ring on which are located peripheral mating capture latches with a docking

seal. Regarding the attenuation technology the two country decided to use different

solutions: the American used hydraulic dampers while Russians adopted their own

14



2.2. SOME EXAMPLES OF DOCKING SYSTEMS CHAPTER 2. STATE-OF-THE-ART

electromechanical brakes.

In 1989 this technology evolved in the APAS-89 (Androgynous Peripheral Attach-

ment System) [apas]. The main changes were: the adoption of the EMB attenuation

technology, the mechanical latches, loaded by the use of springs for soft docking and

the re-design of the guides, that from an outwards configuration adopted an inwards

one. The APAS was originally studied for the Buran spaceship. It’s subsequent version

were used in different important missions, like Shuttle-ISS (APAS-95) and the Chinese

mission (APAS-2010).

Figure 2.5: APAS Docking mechanism

2.2.3 The IDSS

The IDSS (International Docking System Standard) is the international standard mech-

anism for the spacecraft mating. The first project was developed in 2010 by a collabora-

tion between the main space agencies. The purpose is to provide unique basic common

design parameters that must be followed to create a mating mechanism to use with

the International Space Agency (ISS) [3]. It is a peripheral androgynous system and

it permits the transfer of cargo, crew, energy and data through dedicated connections.

It consists of two identical elements. Every part consists of a ring that represents the

mating surface, three guide petals and a set of guide pins for the correct alignment.

A set of mechanical capture latches represent the soft capture system, while the hard

capture is performed by a set of hooks placed along the mating surface. An example

of a system compliant with the IDSS is the NDS (NASA Docking System) [2]. It is the

evolution of the older APAS mechanism. The ring is equipped with electromechani-

cal actuators, forming an active Stewart-Gough platform. Another example of IDSS

compliant mechanism is the IBDM (International Berthing and Docking mechanism),

developed by ESA. This mechanism has to be tested in space yet.
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2.2. SOME EXAMPLES OF DOCKING SYSTEMS CHAPTER 2. STATE-OF-THE-ART

Figure 2.6: NASA Docking Mechanism in extended position, compliant with the IDSS standards.
Credit by NASA

Figure 2.7: IBDM docking mechanism, compliant with the IDSS standards. Credit by ESA
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Chapter 3

The STRONG docking mechanism

This chapter describes the concept and the evolution of our docking mechanism, ex-

plaining the purpose of the mission in which it take place and the found solutions.

3.1 The SAPERE-STRONG mission

The research work is part of the SAPERE-STRONG project, guided by Thales Alenia

Space. It’s aim is to develop the technologies for cooperative on-orbit missions inside

the space exploration. In particular in the STRONG mission [20] the target is to

achieve a reusable Space Tug able to reach the mating between an orbiting satellite,

in order to optimize the launch’s operations and transfers satellite platforms and tools

from low orbits to the final ones. Also, this Space Tug must be able to perform the

on-orbit refueling from an orbital tank. This permits to execute the on-orbit tasks with

a reasonable reduction of fuel consumption and an optimization of the operations. In

the image 3.1 is represented the behaviour of the chaser spacecraft during the mission.

Figure 3.1: Operations during the STRONG mission

17



3.2. MECHANISM DESCRIPTION CHAPTER 3. THE STRONG DOCKING MECHANISM

An important component of this Space Tug is the docking mechanism. It must be

studied to accomplish the following operations:

• it has to recover the misalignment between the two spacecraft, both in linear and

angular positions

• it has to dissipate the contact forces during the operation, avoiding excessive

stresses over the mechanism and mating failures

• it must be able to create a sufficient solid connection between the two parts

An important factor to take into account is the payload: the Space Tug will dock

with target spacecrafts (orbiting tank and small satellites..) that have masses that goes

from 1000kg to 3000kg, so the inertial properties of the bodies are consistent. In the

next paragraph will be described the found solution starting from this initial premises.

3.2 Mechanism Description

The mechanism took into consideration in this work thesis was developed on the doc-

toral study ”Design, modeling, and testing of a space docking mechanism for coop-

erative on-orbit servicing” [16]. What will be done is to learn how this device was

developed, what are the specifications and constraints considered and what kind of

hardware was chosen.

The architecture for the mechanism was selected through a trade-off study, starting

from the examination of main existing technologies. For each of these it was studied

the compliance with specific criteria, that are the following:

• Mass loads: target plus chaser total mass, less is the mass less is the mission

cost. Also is considered the capability of managing different load masses.

• Mechatronic complexity: the hardware complexity, it considers the mechani-

cal complexity, the number and type of the sensors and actuators used.

• Energy consumption: necessary energy to drive actuators, sensors and all the

hardware over the mechanism.

• Reliability

• Functional confidence

At the end of the examination, the chosen architecture as the best compromise

consists of an active central docking mechanism, composed by a female passive part, to

catch and linked to the target spacecraft, and a male part, the active element, linked to

the chaser spacecraft. The mechanism was studied to perform a phase of approaching,

18



3.2. MECHANISM DESCRIPTION CHAPTER 3. THE STRONG DOCKING MECHANISM

where the misalignment is avoided reaching a first catching, called soft docking, and a

phase where the two elements are solidly engaged, called hard docking.

3.2.1 The male part

With reference of image (3.2) the male element is composed of two main parts: the

probe (Green colored) and the base plate.

The probe consists of an internal part and an external one. This two parts can slide

one respect to the other, giving the possibility to extend and retract the component

along its longitudinal axis. This movement is activated by a ball screw, moved by

an electric motor. The rotation between the two elements is constrained by apposite

slotted guides. The probe is equipped with three latches (8) at its edge, normally

opened by springs. Their retraction is controlled by the translational movement of

the probe through the combined use of three ball plungers, used also to keep in place

the probe, and three ball notches inserted over the external part (1). In this way

it is possible to control the translation and the position of the latches with just a

single motor. At the top of the probe there is also a spring equipped shock absorber

(5). At the base of the probe there is a semi-conical element (9), connected to three

compression springs (10), that can be moved along the longitudinal probe axis. it is

used to store the energy necessary for the undocking operations. At the bottom of

the male cone three rods are fitted (11), they will take part of the passive alignment

mechanism between male part and the female one.

The base plate is composed by three layers: the hard docking mechanism, the

active alignment mechanism and the sensors layer.

• The hard docking mechanism is the one that will execute the final strong connec-

tion with the target. It consist of a plain accommodation (4) and a set of three

hooks (12) that can moves radially respect to the circular section. The hook’s

position is controlled by a slider connected to a roller follower inside a cam profile.

The cams are obtained over a geared ring that can be rotated through a motor.

• The active alignment mechanism is accommodated below the plate of the hard

docking layer. Here the probe is connected to a moving basement with an uni-

versal joint (2), that permits the tilt of the probe around the two normal axes

respect to the base plane. A set of extension springs (6) permits to recover the

orthogonal initial position of the probe. The base where the joint take place is

a rail slide, mounted over an another slide (the red coloured parts) orthogonal

to the first. So the joint, together with the probe, can translate along the hard

docking basement plane. The motion of the rail slides are performed through

a couple of ball nuts, bolted solidly with the slides and coupled with two ball
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screws. The motion is actuated by two motors, geared to the screws. Its rotation

moves the ball nuts along their length, translating the slides with them.

• Above the alignment mechanism there is the sensors accommodation. A basement

is bolted under the last rail slide, over it the sensors (7) are positioned such that

they can measure the tilting of the bottom part of the probe.

Figure 3.2: 2D Design model of the male part, side view

3.2.2 The female part

The female part (3.3) consist of a conical frustum that ends with a cylindrical element.

It has the purpose of acting as a passive guide for the probe, that have to reach the

bottom section. The border of the cone is designed to match correctly the hard docking

mechanism of the male part. Along the cone surface three V-shaped slots are made.
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They are the passive guidelines that will match the probe rods and will perform the

angular alignment. At the vertex of the cylinder a socket is present. It will be reached

by the probe latches performing the soft docking.

Figure 3.3: Cross section of the Female part

3.3 The docking stages

The docking manoeuvre is composed by a set of operations, called stages, executed

sequentially. Below these stages are listed and explained:

• Setup: the device is switched on and checked, verifying that the mechanism is

correctly positioned and ready to start.

• Full Extension: the probe is fully extended at its maximum position and the

petals are opened. In this stage the probe is ready to perform the soft docking.

• Alignment and soft docking: the device is enabled to move the probe’s base

along the hard docking surface. In this stage the mechanism search the accom-

modation with the target inside the female part, avoiding the excessive contact

forces over the probe. Once the petals passes across the narrowest part of the

cone, the target is hooked and the soft docking is done.
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• precharge: the probe is partially retracted pushing the target cone against the

springed conical element of the chaser. This action makes the connection stronger

and permits to store energy, that will be used after during a future undocking

operation.

• Homing: the probe recovers its zero position at the centre of the mechanism.

So the female cone is aligned with the hard docking mechanism with respect to

the linear displacements.

• full retraction: the probe is fully retracted, bringing the cone margins in contact

with the base plate. During the motion the angular displacement is deleted thanks

to the probe’s rods and the V-shaped guides over the cone.

• hard docking: once the female element leans correctly against the base plate,

the geared ring rotates and moves the hooks, that block the cone. At this point

the docking manoeuvre can be considered complete.

The behaviour of the mechanism during the manoeuvre can be described using a

Finite State Machine diagram, where the states are the docking stages. In the figure

(3.4) the FSM diagram is shown.
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Figure 3.4: FSM of the docking manoeuvre
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3.4 Electrical hardware

The active element is equipped with a set of actuators and sensors that performs the

motion of the mechanism. There are a total of four motors, three of which are EC

brushless motors and the remaining one is a stepper. For each EC motor an Hall

sensor and an encoder are used to get information about the rotor angular positions,

velocities and accelerations. Also a couple of optosensors are used to obtain information

about the tilting of the probe. In table 3.1 are reported briefly the components, their

tasks and the stages which are involved:

COMPONENT DESCRIPTION TASK INVOLVED

STAGES

Maxxon EC 22 EC Motor movement along Alignment

100W (2X) with integrated normal axes Homing

Hall sensor, Encoder Full retraction

Maxxon EC-max 16 EC Motor actuation of the Full extension

8W with integrated probe mechanism Precharge

Hall sensor, Encoder Full retraction

CTM21NLF25 Stepper motor actuation of the Hard docking

geared ring

optoNCDT 1420 Position laser sensor caption of the Alignment

(2X) probe’s tilting

Table 3.1: Electrical component and their functionalities

3.4.1 The Motors

The EC motors are supplied by the Maxxon Motor Company. They are brushless mo-

tors equipped with an incremental encoder and Hall sensor. According to the Maxxon

Motor catalog [7] after the specifications of the used motors are listed (tables 3.2 and

3.3):

Motor Name Maxxon EC 22

Nominal Power [W] 100

Nominal Voltage [V] 24

Nominal Speed [rpm] 27000

Nominal Torque [mNm] 48.5

Encoder Type Incremental, Relative

Encoder Resolution [CTP] 128/256/512

Table 3.2: EC 22 motor specification
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The EC22 model is used to apply the motion of the probe structure along the

horizontal axes. Its Nominal speed data is selected to accomplish the speed response

requirement during the alignment phase. Also the nominal torque and power are

evaluated to make sure that the mechanism is able to displace the inertial mass of the

target spacecraft during the Homing phase.

Motor Name Maxxon EC-max 16

Nominal Power [W] 8

Nominal Voltage [V] 24

Nominal Speed [rpm] 7350

Nominal Torque [mNm] 8.19

Encoder Type Incremental, Relative

Encoder Resolution [CTP] 128/256/512

Table 3.3: EC-max 16 motor specification

The EC-max 16 model is employed for the operations of extension and retraction

of the probe. It doesn’t need to operate at high speeds so its speed specification is

sufficient for our purposes. A planetary Gearhead is combined with it. Its specification

is reported (table 3.4):

Transmission rate 157:1

Nominal Efficiency 73%

Max. Input Speed [rpm] 12000

Max. Continuous Torque [Nm] 0.4

Table 3.4: Gearhead specification

Regarding the Stepper motor it is supplied by Danaher Motion. It will actuate the

Hard docking mechanism. In table 4.1 are reported the main characteristic:

Motor name CTM21NLF25FA

Supply DC Voltage [V] 24

Detent Torque [Nm] 0.092

Holding Torque [Nm] 1.84

Detent Torque [Nm] 0.092

Step Angle [DEG] 1.8 ◦

Step Accuracy ±3%

Table 3.5: Stepper motor specification
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3.4.2 The motors drivers

Each motor need to have a driver unit to work properly and to control them. Below

the drivers and the coupled actuators are listed:

Motor Driver

EC 22 (X2) Epos2 24/5 (X2)

EC-max 16 Epos2 24/2

CTM21 Stepper P70530

Table 3.6: actuators and their coupled drivers

For the Maxxon motors the Epos2 family controller are selected [9] [6]. They are

programmable controllers, able to perform several different control techniques over the

motors. The programming is done through the writing and the reading of its dedicated

registers.

They are supplied with a DC voltage of 24V, the maximum absorbed current is

5A in continuous conditions. The connection with the motors is done through the

dedicated connectors, both for the motor supplies and the sensors outputs.

The Epos2 drivers has the option to operate with analog and digital signals, having

dedicated input and output pins. They are multi-purpose inputs and outputs, config-

urable via software. Also several communication ports are available to program the

device and monitor the operations. Below a list of the available input/output ports(3.7)

(3.9) and of the communication ports (3.8) (3.10) is given:

Inputs and Outputs

N. of digital inputs 6

N. of digital outputs 4

Input Voltage [V] 0...30

N. of Analog inputs 2

Input voltage [V] 0...5

Resolution [bit] 12

Banwith [kHz] 5

Table 3.7: Epos2 24/5 Inputs and Outputs
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Communication

Serial Port Serial protocol Max. bit rate

USB USB Standard 2.0 12Mbit/s

RS232 EIA RS232 Standard 115200bit/s

CAN CANopen DS-301 1Mbit/s

Table 3.8: Epos2 24/5 Communication Ports

Inputs and Outputs

N. of digital inputs 6

N. of digital outputs 2 (general purpose)

Input Voltage [V] +2.4...+24

N. of Analog inputs 2

Input voltage [V] 0...+5

Signal Resolution [bit] 12

Table 3.9: Epos2 24/2 Inputs and Outputs

Communication

Serial Port Serial protocol Max. bit rate

USB USB Standard 2.0 12Mbit/s

RS232 EIA RS232 Standard 115200bit/s

CAN CANopen DS-301 1Mbit/s

Table 3.10: Epos2 24/2 Communication Ports

3.4.3 The sensors

The mechanism will be equipped with a couple of optical sensors, mounted under the

hard docking baseplate. They are laser pulsed sensors able to measure the distance

between the beam source and the surface where the laser spot lays [12]. Here in table

3.11 the main technical specification:
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Supplier Micro-Epsilon

Name optoNCDT 1420

Supply Voltage [V] 11-30

Measuring Range [mm]
Measuring Start Range Midrange End Range

25 37.5 50

Measuring Rate [Hz] 250/500/1k/2k/4k

Current signal range [mA] 4-20

Communication Port Serial RS422

Table 3.11: Laser sensors specification

The measurement comes from a current analog signal. If the sensor is working in

out of range conditions, the output current is set to 3mA, otherwise the output assumes

a value between 4 and 20mA. In alternative a serial communication port is available. It

can be used to setup the controller sensor and read the measurement through a digital

data.
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Chapter 4

Control system

Starting from the available hardware it needs to develop a control system able to

manage the electrical components and execute all the docking stages in a correct way.

In this chapter is exposed the design process and the implementation of the main

controller.

4.1 The Control Architecture

The control configuration to use is selected considering the following requirement:

• it must be possible to mount the control system over the docking mechanism,

in order to develop a full working prototype that doesn’t need external control

devices.

• the controller must be lightweight and compact, cause of the previous requirement

• the system needs to work in real-time

• low-power consumption devices is preferred, saving up precious energy coming

from the spacecraft.

The chosen architecture consists of a central control system, with a Master Control

Unit board and the slave elements linked to it, represented by the motor drivers.

The master control unit must be able to communicate with the slave boards, giving

to them the needed commands, and make the acquisition and the elaboration of the

sensors measurements. In figure 4.1 the configuration is exposed:
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Figure 4.1: Control architecture

For this task it is opted to use an Arduino board [18]. It is a good choice for several

reasons:

• it is compact and easy to integrate over the mechanism.

• it works in real-time and it is a device that works with relatively low powers

• it is easy to program and powerful in the prototyping phases, because of its

flexibility of use. During the project’s develop it is very simple to apply upgrades,

reducing the development’s time

• it is possible to acquire, manage and generate a large number of digital and analog

signals, which makes it a good platform for mechatronic applications

• it is compatible with the communication protocols available on our Epos motor

drivers

For our purposes it is chosen an Arduino MEGA model 4.2, because of its number

of available serial communication ports (four) and its large number of programmable

signal pins.
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Figure 4.2: Arduino Mega board Model 2560

Below the tecnhical specifications are listed:

Arduino Model MEGA 2560 rev3

Microcontroller ATmega2560

Operating Voltage [V] 5

Input Voltage (limits) [V] 6-20

Flash Memory [KB] 256, 8 used by bootloader

Clock Speed [MHz] 16

Inputs and Outputs

N. of Digital I/O Pins 54 (14 provide PWM output)

Operating Voltage of Dig. pins [V] 5

N. of Analog Input Pins 16

Operating Voltage of Analog Pins [V] 5 (TYP)

Input Resolution [bit] 10

DC Current for I/O Pin [mA] 40

Communication

Supported Communications TTL, SPI, I2C

Serial Ports Baud Rate [bps] 9600-115200

Table 4.1: Arduino MEGA technical specification

Also more hardware will be used. First of all the opto-sensor’s outputs are current

signals, so it is necessary to convert them into voltage outputs, making them compatible

with the Arduino voltage inputs. A simple resistor will be used, connected between

sensor’s output and signal ground. The sizing of them is done considering the sensor

specifics and following the relation:

V = RI.

From the datasheet:

IMAX = 20mA
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V = 5V

that are the maximum output signal current (sensor) and the nominal input voltage

for analog pin (Arduino). Finally the result is:

R = 250Ω.

In addition it is preferable to insert a voltage follower after the resistor, separating the

impedance and avoiding electrical failures.

Regarding the serial communication with the motor drivers, an hardware interface

is needed. For this project the rs232 communication protocol is selected, so it needs

to interface the TTL port of the Arduino’s microcontroller with the rs232 ports of the

Epos drivers. This is done placing a MAX3232 integrated transceiver. This device

provides to regulate the high and low logic levels of the two ports (0-5V for TTL,

0-15V for rs232) by using charge pumps capacitors.

After these addition the final configuration is the following:

Figure 4.3: Final configuration of Control architecture
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4.2 The Control Strategies

The idea is to manage the docking stages inserting it into a Finite State Machine. At

each state the Master board has to activate the respective actuators and apply to them

the correct control method. In figure 4.4 are shown the docking stages, the involved

devices and the implemented control methods:

Figure 4.4: Control Flow Diagram

The execution of each state take place in this way:

1. The Arduino board calls in action the right driver and configures it, giving in-

formation about the type of control to perform, the input and output to use and
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the control parameters to set [4].

2. The Epos driver perform the selected control strategy over the motor

3. After that the Arduino acknowledges that the operation is done, it sets the Epos

driver in standby mode and scrolls the State Machine passing to the next state,

where it restart from point 1.

Once there are no more states to execute, the Arduino board switch off the Epos

drivers and return to Idle state.

In state 1, 3, 4 and 5 a closed loop position control is applied to the motors. The

control scheme could be the following:

Figure 4.5: Closed Loop position control

The used control parameter is the position of the actuator’s rotor. The control

law to apply is generated by driver setting the ”profile position mode”. The position

parameter is managed by Epos driver using the ”quadcount” unit, defined as:

Quadcount = qc = 4 × Enc.Counts

Revolution

where the Encoder Count/Revolution ratio is the Encoder resolution. So, remembering

that the position sensors are relative and stating that the full retracted position is

equal to 0 qc, it is possible to know the motor positions in qc at which the probe

is fully extended, precharged and so on. The reported positions in qc are calculated

starting from the mechanical dimensions, the fine regulation will be done during the

test sessions.

Full Full Petals Precharge

Retraction Extension Opening

Motor position (qc) 0 -5920000 -5284000 -4149000

Probe Position (mm) 145 215 215 200

Table 4.2: probe’s positions and relative motor positions

In state 2 a closed loop velocity control is applied to the X and Y axis motors.
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Figure 4.6: Closed Loop Velocity Control

The velocity parameters are measured in rpm (revolutions per minute). So for

example, remembering the quadcount definition and considering an encoder resolution

of 500 counts/rev.

1qc/s =
60

4 × 500
= 0.03rpm

In Hard Docking Phase (State 6) an open loop is applied, because it is not possible

to get feedback information about the angular position. What will be done is to find by

trial and error the amount of motor displacement needed to close correctly the hooks.

This displacement will be the target position sent to stepper driver.

4.3 Detailed description of the States

In this section it is given a detailed description, for each state, of what is done by

Arduino board and motors drivers, and of relative actions applied over the mechanism.

All commands names, internal Epos states and internal registers are referenced to

Appendix A.

4.3.1 State 0: Setup

Once the Start command is received, the process exit to Idle state and the Setup state

begins. Here the motor drivers are prepared. The Arduino board send the following

commands to all the Epos devices:

• ”Fault Reset” command is sent, clearing all the errors flags. Now the switching

on is disabled, avoiding any unexpected motor movements

• the ”actual position” register is cleaned, making the current position of the motor

the zero reference position
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• ”Shut Down” command is sent, making the Epos device ready to switch on

Once the last command is sent correctly and the acknowledgement reply is received,

the process can move forward to the next state.

4.3.2 State 1: Full Extension

In this state the mechanism is positioned at its full extended position. The motion

consists of two steps. Firstly, the probe is brought from its totally retracted position

to the maximum extension where the latches mechanism (ball plungers) reach the ball

notches. The second step consists of a partial probe mechanism retraction, that doesn’t

move the external part but opens the latches. In Figure 4.7 the motion steps are shown:

Figure 4.7: Full extension steps: from the full retracted position (a) to maximum extension (b) and
the latches opening (c)

To do that the Arduino board configures the driver relative to the probe motor in

order to apply a position controlled motion. That is done as follows:

• the modes of operation and the control parameters are set

• the probe’s motor is armed, sending the ”Switch On” command

• the target position is set, writing it onto the appropriate Epos register

• the motor is switched on sending the ”Enable Operation” command

• the motion continues until the target position is reached. Then the motor is

stopped by Epos controller

• once the Arduino acknowledges that the target position is reached, it sends the

”Quick Stop” command, disarming the motor

This procedure is done both for full extension and for open the petals, where a

counterwise motion of the motor is applied. When the operation is finished and no

errors occurs, the state machine goes on.
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4.3.3 State 2: Alignment and Soft Docking

Here the mechanism has to be prepared for the alignment with the soft docking female

target. To do that the Arduino selects the X and Y axes motor drivers and performs

a series of operations, as depicted in figure 4.8:

Figure 4.8: Flow Diagram of the Arduino processes during the Alignment phase

The first thing to do is the setup of drivers. The modes of operation is set up

such that a closed loop velocity control will be applied to the motors. The control

parameters are defined, regulating the maximal allowed speed and acceleration. Also

the driver is programmed to receive the reference velocity for the control from a specific

configurable GPIO pin.

Then the probe alignment process is started. The following operations are per-

formed cyclically, until the soft docking is reached:
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The Arduino makes the acquisition of laser measurement, obtaining informa-

tion about how much is the tilting of the mechanism. Then the acquired signal is

conditioned, in order to generate a reference signal compatible with the Epos input

pin. Here a dead band is applied, in order to avoid noises coming from vibrations

around the zero degree of tilting position, and through a DAC module a continuous

voltage signal is created. In Figure 4.9 is shown how the reference signal is done,

starting from the tilting measurement, and how the conversions are done.

Figure 4.9: Conditioning process of the laser measurement

The motion is allowed until the ball bearing stays between the low and high end-

runs given by the screw edges. If the ball bearing goes out of the working range, the

mechanism is forced and fault may occurs. A current protection is already implemented

inside the driver, checking that the amount of demanded current doesn’t exceed the

fault threshold. To reduce faults occurrence a position thresholds are inserted, just

before the screw mechanical endruns.
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Figure 4.10: Ball screw endruns

The Arduino reads the motor position through Epos query. If the motor is out

of the range, the velocity reference signal is not sent, the motor is blocked and the

process return to acquire the laser measurement. If the actual position stays inside its

range, the velocity reference signal is sent by Arduino to Epos.

When the ”soft docking accomplished” signal is received, the motors are shut down

and electrical brake are applied, avoiding undesired displacements during the next

stages.

4.3.4 State 3: Precharge

In this state a partial retraction of the probe is performed. Having the female part

hooked to the probe through soft docking, this operation pushes the cone element

against the springed base, charging the springs. This state is useful for two reasons:

firstly it permits to create a more solid connection between the two part respect to just

the petals hooking, furthermore the springs compression allows to store energy to use

during the undocking operation.

The motion is done configuring the probe motor applying a position control loop.

The Arduino sending commands are the same of the full extension state, with the

difference that the motor position reference sent is different.
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Figure 4.11: Precharge of the mechanism, from soft docking position (a) to precharge position (b)

Once the Arduino aknowledges that the desired position is reached, the state ma-

chine is ready to go ahead.

4.3.5 State 4: Homing

At the end of the alignment stages the probe is displaced from its initial central position.

In State 4 the mechanism has to recover the probe at its initial central position and to

drag the female cone aligning it with the hard docking mechanism. The Arduino board

activates the driver of the X and Y axis motors and performs the following commands:

• the drivers are set in ”profile position mode”, acting a closed loop position control

to the motors.

• the motion is performed sending the ”Enable Device” command. Having relative

encoders the starting position of the mechanism is memorized as zero position.

It implies that the target position reference to send to Epos is zero.

• the Arduino asks to motor drivers if the target position is reached without errors.

If the answer is positive, the electrical brakes are applied over the actuators, in

order to avoid undesired displacements from zero position.

4.3.6 State 5: Full Retraction

In this state the probe is fully retracted and the female cone is placed in contact

with the hard docking baseplate. Again, a position control over the probe motor is

implemented, through the same Arduino commands used in stage 1 and 3. The zero

position of the motor is used as reference position signal.
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Figure 4.12: Full Retracion Stage, the probe is moved from precharge (a) to fully retracted position
(b)

When the Arduino obtains as motor position actual value 0qc, the full retraction

is complete and the motor is disabled.

4.3.7 State 6 and 7: Hard Docking and Shutdown

In the last docking stage the hard docking is performed. The Arduino board calls in

action the stepper motor to move the hooks mechanism. The actuation’s control is

done by using three digital signals related to step, direction and enable motor [5]. The

stepper driver was previously configured using the dedicated PC software (P700 Tools

2.11), where it was selected the motor type and the control parameters as follows:

Motor Type DC CTM21xxx25

Step Resolution 1000 steps/rev

Enable Polarity Low Active

Jog and Stop Parameters

Accel/Decel 20 Revs/s2

High Speed 2 Revs/s

Low Speed 0.5 Revs/s

Stop Rate 100 Revs/s2

Table 4.3: stepper driver’s parameters

In the following figure the digital levels and the timing of the three signals are

shown:
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Figure 4.13: Timing of stepper digital signals

So, after entering the state the stepper is enabled and the correct direction of

rotation is selected. Then the steps are sent by creating a square wave with duty cycle

of 50%. The number of steps are calculated taking into account the step resolution

and the fact that to have a complete closing of the hooks it needs a little more than

a single revolution of the rotor. When the last step is sent the Enable signal is set to

”1” and the stepper is turned off.

The last operation done by Arduino is to shutdown all the devices. in this stage

the ”shutdown” command is sent to each drivers through serial communication ports.

After that the state machine is ended and the process returns to Idle state.

4.4 Code implementation

The Arduino code is written using the Arduino IDE [17]. The sketch is composed by

four sections: the variable definitions, the setup function, the loop function and the

control functions definitions.

In the variable definitions section are defined all the variable that must be used

as global. The set data are:

• Data Registers, the data strings to send to Drivers in order to write or read a

specific register. According to (communication appendix) they are strings of bytes

that contains information about what kind of operation is done, the register’s

address to consider and the value to store inside it. All the strings are written in

exadecimal.

• Endrun Positions, the relative endrun positions of the motor in qc. Here are

stored the endruns of the alignment mechanism and the maximum extension of

the probe. They are in exadecimal too.

• Laser data, the definitions necessary for DAC converters. Here the ”Adafruit

MCP4725” and ”WIRE” libraries are included to the sketch and the DAC mod-

ules parameters are defined.
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• Pins and Internal variables, the Arduino Input and Output pins used and

the internal flags and variable used during the process.

1 // --- DATA REGISTERS ---

2 byte dataStartMotor []= {0x11 ,0x03 ,0x60 ,0x40 ,0x02 ,0x00 ,0x00 ,0

x0F ,0x00 ,0x00};

3 byte dataStopMotor []= {0x11 ,0x03 ,0x60 ,0x40 ,0x02 ,0x00 ,0x00 ,0

x0B ,0x00 ,0x00};

4 byte dataShutdown []= {0x11 ,0x03 ,0x60 ,0x40 ,0x02 ,0x00 ,0x00 ,0

x06 ,0x00 ,0x00};

5

6 byte dataProfilePositionMode []= {0x11 ,0x03 ,0x60 ,0x60 ,0x02 ,0x00 ,0x00 ,0

x01 ,0x00 ,0x00};

7 byte dataStartMoving []= {0x11 ,0x03 ,0x60 ,0x40 ,0x02 ,0x00 ,0x00 ,0

x3F ,0x00 ,0x00};

8 byte posCompareEn []= {0x11 ,0x03 ,0x20 ,0x7A ,0x02 ,0x01 ,0x00 ,0

x41 ,0x00 ,0x00};

9

10 byte posActualValue_req [6]= {0x10 , 0x01 , 0x60 , 0x64 , 0x02 , 0x00};

11 byte actualPosition_X [4]= {0x00 , 0x00 , 0x00 , 0x00};

12 byte actualPosition_Y [4]= {0x00 , 0x00 , 0x00 , 0x00};

13 byte actualPosition_Probe [4]= {0x00 , 0x00 , 0x00 , 0x00};

14

15 // motors endruns positions in qc

16 byte LowEndRun_X []= {0xFF ,0xFC ,0xE5 ,0xB0};

17 byte HighEndRun_X []= {0x00 ,0x03 ,0x26 ,0x50};

18 byte LowEndRun_Y []= {0xFF ,0xFD ,0x80 ,0x00};

19 byte HighEndRun_Y []= {0x00 ,0x02 ,0x52 ,0x00};

20 byte MaxProbeExt []= {0xFF ,0xAD ,0x9A ,0x00};

21

22 // --- DEFINITIONS FOR THE LASERS ---

23 #include <Adafruit_MCP4725.h>

24 #include <Wire.h>

25

26 Adafruit_MCP4725 dac_1;

27 Adafruit_MCP4725 dac_2;

28 int valDac_1 =0;

29 int valDac_2 =0;

30 int valSensor_1 =0;

31 int valSensor_2 =0;

32 int acq_time =2000;

33 int jj=1;

34 // --- ENABLE SIGNALS FOR EPOS DRIVERS ---

35 int EposEnable_1 =10; //X axis

36 int EposEnable_2 =12; //Y axis

37 // --- DIGITAL PINS FOR STEPPER CONTROL ---

38 int Enable_Pin =51;

43



4.4. CODE IMPLEMENTATION CHAPTER 4. CONTROL SYSTEM

39 int Step_Pin =52;

40 int Direction_Pin =53;

41 // --- INTERNAL VARIABLES AND FLAGS ---

42 char check=’0’; // variable for reading commands from

terminal

43 volatile int allignm_ok = 0; // interrupt flag for allignment

44 volatile bool EM = LOW; // interrupt flag for emergency stop

45 uint8_t state =0; // state variable for state machine

In the Setup Function stays the code that must be executed once at the beginning

of the process. The the serial ports are initialized, setting the baudrate, the GPIO pins,

and the DAC modules. Also the interrupt signal pins are defined.

1 void setup() {

2 // serial port inizialization

3 Serial.begin (115200);

4 Serial1.begin (115200);

5 Serial2.begin (115200);

6 Serial3.begin (115200);

7 pinMode (13, OUTPUT);

8 //pin stepper setting

9 pinMode(Enable_Pin , OUTPUT);

10 pinMode(Direction_Pin , OUTPUT);

11 pinMode(Step_Pin , OUTPUT);

12

13 digitalWrite(Enable_Pin , HIGH); // stepper disabled

14

15 pinMode(EposEnable_1 , OUTPUT);

16 pinMode(EposEnable_2 , OUTPUT);

17 // interrupt for alignment complete signal

18 attachInterrupt(digitalPinToInterrupt (2), allign_status , FALLING);

19 // interrupt for emergency Stop

20 attachInterrupt(digitalPinToInterrupt (3), emergencyStop , FALLING);

21

22 // inizializzation of DAC modules

23 dac_1.begin (0x60);

24 dac_2.begin (0x61);

25 dac_1.setVoltage (1, false);

26 dac_2.setVoltage (1, false);

27 }

28

Inside the Loop Function there is the core of the process that has to run repeat-

edly. A serial monitor check procedure is inserted at the beginning of the loop. This

serves to control the state machine flow through serial terminal and to pass from a state

to the next one. If this code is uncommented the process is controlled by PC. This is

usefull during testing. If the code is commented the sketch can run independently onto
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Arduino board.

1 void loop(){

2

3 while (! Serial.available ());

4 Serial.println(F("Enter any key"));

5 while (Serial.available () == 0);

6 while (Serial.available () != 0){

7 Serial.read();

8 }

After the state machine is implemented. A Switch-Case structure is used, where

the switch variable is an integer representing the state number. Note that, before the

SWITCH structure an IF statement is inserting. It verifies if the Emergency button is

pressed, if yes the actual state to run is set to 8, which means the shutdown state will

be executed independently at which stage the state machine is.

1 if(EM==HIGH) //if emergency stop button is pressed the state

machine is forced to

2 state =8; // shutdown the motors (’shutdown state ’)

3

4 switch(state){

5

6 case 0: //--IDLE --

7 Serial.println(F("idle state , press G to continue"));

8 while (Serial.available () == 0); // waiting for start command

9 check=Serial.read();

10 if(check ==’G’)

11 state =1;

12 break;

13

14 case 1: //-- SETUP OF THE MOTORS --

15 Serial.println(F("state 1 active"));

16 setupEpos (1);

17 setupEpos (2); //setup di tutti i motori

18 setupEpos (3);

19 Serial.println(F("all Epos set up"));

20 state =2;

21

22 break;

23

24 case 2: // --- FULL EXTENSION ---

25 Serial.println(F("state 2 active"));

26 moveMotor(’C’, 3); //max. extension motion

27 moveMotor(’D’, 3); // petals opening

28 state =3;

29 break;

30
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31 case 3: //-- ALLIGNMENT --

32 Serial.println(F("state 3 active"));

33 // driver x and y set in velocity mode

34 SetAllignment (1);

35 SetAllignment (2);

36

37 dac_1.setVoltage (2048 , false);

38 dac_2.setVoltage (2025 , false);

39

40 sendMessageToEPOS(dataStartMotor ,sizeof(dataStartMotor), 1);

41 delay (1);

42 sendMessageToEPOS(dataStartMotor ,sizeof(dataStartMotor), 2);

43 delay (1);

44 digitalWrite(EposEnable_1 ,HIGH);

45 digitalWrite(EposEnable_2 ,HIGH);

46

47 while(allignm_ok ==0 && EM==LOW){

48 // acquiring laser signals

49 valSensor_1 = analogRead(A0) ;

50 valSensor_2 = analogRead(A3) ;

51 // acquiring actual position of the motors

52 readRegister(posActualValue_req , 1, actualPosition_X );

53 /*for(int i=0; i<sizeof(actualPosition_X); i++){

54 Serial.println(actualPosition_X[i], HEX);

55 }*/ // uncomment to read actual pos. from terminal

56 readRegister(posActualValue_req , 2, actualPosition_Y );

57 /*for(int i=0; i<sizeof(actualPosition_Y); i++){ //

uncomment to read actual pos. from terminal

58 Serial.println(actualPosition_Y[i], HEX);

59 }*/

60

61 //X Motor

62

63 //check of low endrun

64 if(( actualPosition_X [0] == LowEndRun_X [0] && actualPosition_X

[1] <= LowEndRun_X [1] && actualPosition_X [2] <= LowEndRun_X [2]) &&

valSensor_1 >600){

65 digitalWrite(EposEnable_1 ,HIGH);

66 }

67 //check of high endrun

68 else if(( actualPosition_X [0] == HighEndRun_X [0] &&

actualPosition_X [1] >= HighEndRun_X [1] && actualPosition_X [2] >=

HighEndRun_X [2]) && valSensor_1 <600){

69 digitalWrite(EposEnable_1 ,HIGH);

70 }

71 //check of dead band and out of range

72 else if (valSensor_1 <190 || (valSensor_1 >576 && valSensor_1

46



4.4. CODE IMPLEMENTATION CHAPTER 4. CONTROL SYSTEM

<636)){

73 digitalWrite(EposEnable_1 ,HIGH);

74 }

75 else{

76 digitalWrite(EposEnable_1 ,LOW);

77 // signal mapping to send with DAC , digital input from

0 to 4095

78 valSensor_1=map(valSensor_1 , 190, 1023, 4095, 0);

79 dac_1.setVoltage(valSensor_1 ,false);

80 }

81

82 // Y Motor

83

84 if(( actualPosition_Y [0] == LowEndRun_Y [0] && actualPosition_Y

[1] <= LowEndRun_Y [1] && actualPosition_Y [2] <= LowEndRun_Y [2]) &&

valSensor_2 <600){

85 digitalWrite(EposEnable_2 ,HIGH);

86 }

87 else if(( actualPosition_Y [0] == HighEndRun_Y [0] &&

actualPosition_Y [1] >= HighEndRun_Y [1] && actualPosition_Y [2] >=

HighEndRun_Y [2]) && valSensor_2 >600){

88 digitalWrite(EposEnable_2 ,HIGH);

89 }

90

91 else if (valSensor_2 <190 || (valSensor_2 >576 && valSensor_2

<636)) {

92 digitalWrite(EposEnable_2 ,HIGH);

93 }

94 else {

95 digitalWrite(EposEnable_2 ,LOW); //low means motor

active

96 valSensor_2=map(valSensor_2 , 190, 1023, 0, 4095);

97 dac_2.setVoltage(valSensor_2 ,false);

98 }

99 }

100 digitalWrite(EposEnable_1 ,LOW);

101 digitalWrite(EposEnable_2 ,LOW);

102 sendMessageToEPOS(dataShutdown ,10, 1);

103 sendMessageToEPOS(dataShutdown ,10, 2);

104 Serial.println(F("soft docking completed"));

105 state =4;

106 break;

107

108 case 4: //-- PRELOAD --

109

110 Serial.println(F("state 4 active"));

111 moveMotor(’B’, 3);
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112 state =5;

113 break;

114

115 case 5: //-- HOMING --

116

117 Serial.println(F("state 5 active"));

118 digitalWrite(EposEnable_1 ,LOW);

119 moveMotor(’0’, 1);

120 digitalWrite(EposEnable_2 ,LOW);

121 moveMotor(’0’, 2);

122 sendMessageToEPOS(dataStartMotor ,sizeof(dataStartMotor), 1); //

arm the motore , inserting a brake

123 delay (1);

124 sendMessageToEPOS(dataStartMotor ,sizeof(dataStartMotor), 2);

125 Serial.println(F("home position reached"));

126 state =6;

127 break;

128

129 case 6: //-- RETRACTION --

130 Serial.println(F("state 6 active"));

131 moveMotor(’A’, 3);

132 Serial.println(F("full retraction completed"));

133 state =7;

134 break;

135

136 case 7: //-- HARD DOCKING --

137 Serial.println(F("state 7 active"));

138 moveStepper ();

139 Serial.println(F("hard docking completed"));

140 state =8;

141 break;

142

143 case 8: //--SHUTDOWN -- stato per arrestare tutti i motori

144 Serial.println(F("state 8 active"));

145 sendMessageToEPOS(dataShutdown ,sizeof(dataShutdown), 1);

146 delay (1);

147 sendMessageToEPOS(dataShutdown ,sizeof(dataShutdown), 2);

148 delay (1);

149 sendMessageToEPOS(dataShutdown ,sizeof(dataShutdown), 3);

150 digitalWrite(EposEnable_1 ,HIGH);

151 digitalWrite(EposEnable_2 ,HIGH);

152 digitalWrite(Enable_Pin ,HIGH);

153 Serial.println(F("shutdown completed"));

154 state =0;

155 break;

156 }

157 }
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In the last code section there is the definition of the functions used during the

process. They can be divided in two categories: the communication functions and the

operational functions.

The communication functions are the ones that are used to implement the

communication protocol between Arduino and Epos controllers (see Appendix A.3).

• sendMessageToEPOS: it is the function used to send a request to write a

register of the Epos controller. It receives as input a string of bytes, containing

the register’s address and the data register to write, an integer that represents the

length of the string in bytes, and an integer that defines the controller number

to send the command.

1 void sendMessageToEPOS(byte data[], int lengths , int index){

2 byte opcode = data [0];

3 uint16_t crcCode = CRC_XModem(data , lengths);

4 byte dataToSend[lengths + 2];

5 dataToSend [0] = data [0];

6 dataToSend [1] = data [1];

7 for (int i = 2; i < lengths; i++){ // Transmit order is

different from oringial ,a word ‘s high byte is transmit after

low byte

8 if (i % 2 == 0) // Replace the position of each high

and low byte in one word.

9 dataToSend[i] = data[i + 1];

10 else

11 dataToSend[i] = data[i - 1];

12 }

13 uint8_t highByteCrc = (crcCode >> 8) & 0x00FF;

14 uint8_t lowByteCrc = crcCode & 0x00FF; //Get crc code

15 dataToSend[lengths] = lowByteCrc;

16 dataToSend[lengths + 1] = highByteCrc;

17

18 #ifdef DEBUG

19 debug_println(F("Origin data:"));

20 for (int i = 0; i < lengths; i++){

21 debug_print_int(data[i]);

22 debug_println(" ");

23 }

24 debug_println ();

25 debug_print(F("CRCCode:"));

26 debug_print_int(crcCode);

27 #endif

28 char datatemp;

29 flag1:;

30

31 SerialSend(opcode , index); //Firstly ,sending the
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opcode

32 debug_println(F("Write opcode ,waiting for response"));

33 long int now = millis ();

34 while (SerialAvailable(index) == 0){

35 if (millis () - now > 50) //Go out of the loop in

case of error

36 goto flag1;

37 } //wait for response

38 debug_print(F("Send opcode ,Recv:"));

39 while (SerialAvailable(index) != 0){

40 datatemp = SerialRead(index);

41 delay (1);

42 debug_print(F(","));

43 }

44 debug_println(F(""));

45 if (datatemp == ’O’){ // Response correct , send

other data

46 debug_println(F("Response correct ,continue !\nSend data"));

47 for (int i = 1; i < lengths + 2; i++)

48 SerialSend(dataToSend[i], index); // Sending all the

data

49 debug_println(F("Finish sending other data now wait for

response ..."));

50

51 while (SerialAvailable(index) == 0); //wait for another

respnse

52 debug_print(F("Receive data:"));

53 debug_println(F("Finish sending"));

54 }

55 else{

56 debug_println(F("First response is not okay"));

57 goto flag1;

58 }

59 }

60

• readRegister: it is the function used to send a request to read a register of the

Epos controller. It receives as input a string of bytes, containing the address of

the register to read, an integer that represents the length of the string in bytes,

and an integer that defines the controller number to send the command.

1 void readRegister( byte Data[], int serialnum , byte pdata [])

//Data is the command , serialnum is the motor number , pdata

the received data you want to read

2 {

3 byte dataRead []= {0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0

x00 , 0x00 , 0x00 , 0x00 , 0x00};
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4 byte inputData [] = {Data[0], Data[1], Data[2],Data[3],

Data[4], Data [5]};

5

6 flag2 :;

7 Serial.println("trying to read actual position: ");

8

9 debug_println("sending position request: ");

10 sendMessageToEPOS(inputData , sizeof(inputData), serialnum); //

sending reading request

11

12 byte tx_req;

13 while (SerialAvailable(serialnum) != 0)

14 {

15 tx_req = SerialRead(serialnum);

16 debug_print("tx_req: ");

17 debug_print_int(tx_req);

18 debug_println("");

19 delay (1);

20

21 debug_println("aspe ");

22 }

23 if(tx_req == 0x00) // verifica se Epos

risponde "0x00"

24 {

25 debug_println("ricevuta risposta 0x00");

26 SerialSend (0x4F , serialnum);

27 }

28 else

29 {

30 debug_println("reading failed , try again");

31 goto flag2;

32 }

33

34 long int now = millis ();

35 while (SerialAvailable(serialnum) == 0)

36 {

37 if (millis () - now > 50) //Go out of the loop in case of

error

38 goto flag2;

39 } //wait for response

40 debug_print("receiving data.. ");

41

42 int i=0; // receiving bytes

43 while (SerialAvailable(serialnum) != 0)

44 {

45 debug_println("byte received! ");

46 dataRead[i] = SerialRead(serialnum);
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47 i++;

48 delay (1);

49 }

50 if(SerialAvailable(serialnum)== 0)

51 {

52

53 for(int i=0;i<4;i++) //save data to read

54 {

55 pdata[i]= dataRead[8-i];

56 }

57

58 #ifdef DEBUG

59 for(int i=0; i<sizeof(pdata);i++) // print data to read

60 {

61 Serial.print(pdata[i], HEX);

62 Serial.print(" ");

63 }

64 #endif

65 }

66 }

67

• CRC XModem: the function used to create the CRC code, which is used by

Epos driver to check the correctness of communication.

1 uint16_t CRC_XModem(byte bytes[], int lengths) {

2

3 uint16_t crc = 0x00; // initial value

4 uint16_t polynomial = 0x1021;

5 for (int index = 0 ; index < lengths; index ++) {

6 byte b = bytes[index];

7 for (int i = 0; i < 8; i++) {

8 boolean bits = ((b >> (7 - i) & 1) == 1);

9 boolean c15 = ((crc >> 15 & 1) == 1);

10 crc <<= 1;

11 if (c15 ^ bits)

12 crc ^= polynomial;

13 }

14 }

15 crc &= 0xffff;

16

17 return crc;

18 }

19

The operational functions is the ones that performs the actions to apply over

the motors.
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• setupEpos: clean all faults and resets the selected driver. As input it received

an integer indicating the driver to set up.

1 void setupEpos(int serialnum){

2

3 byte dataCleanExecMask []= {0x11 ,0x03 ,0x20 ,0x7D ,0x02 ,0x00 ,0x00

,0x00 ,0x00 ,0x00};

4 byte dataSetVelocity []= {0x11 ,0x03 ,0x60 ,0x81 ,0x02 ,0x00 ,0

x1F ,0x40 ,0x00 ,0x00};

5 byte dataCleanPosition []= {0x11 ,0x03 ,0x20 ,0x62 ,0x02 ,0x00 ,0x00

,0x00 ,0x00 ,0x00};

6 byte dataCleanTarget []= {0x11 ,0x03 ,0x60 ,0x7A ,0x02 ,0x00 ,0x00

,0x00 ,0x00 ,0x00};

7 byte dataClearFault []= {0x11 ,0x03 ,0x60 ,0x40 ,0x02 ,0x00 ,0

x00 ,0x80 ,0x00 ,0x00};

8

9 Serial.println(F("cleaning the epos"));

10 sendMessageToEPOS(dataClearFault ,10, serialnum);

11 delay (1);

12 sendMessageToEPOS(dataShutdown ,10, serialnum);

13 sendMessageToEPOS(dataCleanExecMask ,10, serialnum);

14 delay (1);

15 sendMessageToEPOS(dataCleanPosition ,10, serialnum);

16 if(serialnum ==3){

17 sendMessageToEPOS(dataSetVelocity ,10, serialnum);

18 }

19 delay (1);

20 sendMessageToEPOS(dataCleanTarget ,10, serialnum);

21 delay (1000);

22 Serial.println(F("registers cleaned"));

23 }

24

• moveMotor: function to move a motor using the profile position mode. It sends

to selected device the target position, enables the motion, checks if the desired

position is reached and finally disable the motion.

1 void moveMotor(char pos , int serialnum){

2

3 byte targetPos [10]= {0x11 ,0x03 ,0x60 ,0x7A ,0x02 ,0x00 ,0x00 ,0

x00 ,0x00 ,0x00};

4

5 if(serialnum ==3){

6 if(pos==’C’){

7 targetPos [6]=0 xA9; // max extension position

8 targetPos [7]=0 xDD;

9 targetPos [8]=0 xFF;

10 targetPos [9]=0 xA5;

53



4.4. CODE IMPLEMENTATION CHAPTER 4. CONTROL SYSTEM

11 }

12 else if(pos==’B’){ // partial retraction

13 targetPos [6]=0 xB0;

14 targetPos [7]=0 x00;

15 targetPos [8]=0 xFF;

16 targetPos [9]=0 xC0;

17 }

18 else if(pos==’A’){ //full retraction

19 targetPos [6]=0 x00;

20 targetPos [7]=0 x00;

21 targetPos [8]=0 x00;

22 targetPos [9]=0 x00;

23 }

24 else if(pos==’D’){

25 targetPos [6]=0 x5D;

26 targetPos [7]=0 x8D;

27 targetPos [8]=0 xFF;

28 targetPos [9]=0 xAF; // petal open position

29 }

30 }

31 else {

32 targetPos [6]=0 x00;

33 targetPos [7]=0 x00;

34 targetPos [8]=0 x00;

35 targetPos [9]=0 x00;

36 }

37

38 readRegister(posActualValue_req , serialnum , actualPosition_Probe

);

39

40 sendMessageToEPOS(dataProfilePositionMode ,sizeof(

dataProfilePositionMode), serialnum);

41 delay (1);

42 sendMessageToEPOS(dataStartMotor ,sizeof(dataStartMotor),

serialnum);

43 delay (1);

44 sendMessageToEPOS(targetPos , sizeof(targetPos), serialnum);

45 delay (1);

46 sendMessageToEPOS(dataStartMoving ,sizeof(dataStartMoving),

serialnum);

47

48 while(( actualPosition_Probe [2]!= targetPos [6] ||

actualPosition_Probe [3]!= targetPos [7] || actualPosition_Probe

[0]!= targetPos [8] || actualPosition_Probe [1]!= targetPos [9]) &&

EM==LOW){

49

50 readRegister(posActualValue_req , serialnum ,
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actualPosition_Probe );

51 debug_println(F("leggo "));

52 for(int i=0; i<sizeof(actualPosition_Probe); i++){

53 Serial.println(actualPosition_Probe[i], HEX);

54 }

55 }

56 sendMessageToEPOS(dataShutdown ,sizeof(dataShutdown),

serialnum);

57 Serial.println(F("position reached"));

58 }

59

• moveStepper: function to move the stepper motor. It generates the required

signals and sends them to stepper controller.

1 void moveStepper (){

2 digitalWrite(Direction_Pin , LOW); // direction selected

3 digitalWrite(Enable_Pin , LOW); // stepper enabled

4

5 for (int i=0; i <=1050; i++){

6 if (EM==HIGH)

7 i=1050;

8 digitalWrite(Step_Pin , HIGH);

9 delay (10);

10 digitalWrite(Step_Pin , LOW);

11 delay (10);

12 debug_println(F("step sent"));

13 }

14 digitalWrite(Enable_Pin , HIGH); // stepper disabled

15 Serial.println(F("hooks closed correctly"));

16 }

17

• SetAlignment: function to set the X and Y axes motors drivers to work with

velocity control mode. Here the control parameters and the programmable GPIO

pins are set.

1 void SetAllignment(int serialnum) {

2

3 byte dataVelocityMode []= {0x11 ,0x03 ,0x60 ,0x60 ,0x02 ,0x00 ,0

x00 ,0xFE ,0x00 ,0x00};

4 byte dataMaxSpeed []= {0x11 ,0x03 ,0x60 ,0x7f ,0x02 ,0x00 ,0

x61 ,0xA8 ,0x00 ,0x00};

5 byte dataInputConfig []= {0x11 ,0x03 ,0x20 ,0x7B ,0x02 ,0x01 ,0

x00 ,0x01 ,0x00 ,0x00};

6 byte dataExecMask []= {0x11 ,0x03 ,0x20 ,0x7D ,0x02 ,0x00 ,0

x00 ,0x02 ,0x00 ,0x00};
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7

8 // --- Input Parameter for Analog Input ---

9 byte dataSetpoint_Scaling []= {0x11 ,0x03 ,0x23 ,0x02 ,0x02 ,0x01 ,0

x13 ,0x88 ,0x00 ,0x00}; //rpm/volt

10 byte dataSetpoint_Offset []= {0x11 ,0x03 ,0x23 ,0x02 ,0x02 ,0x02 ,0

xCF ,0x2B ,0xFF ,0xFF}; // Negative Offset , -12500, offset

= -2.5* scaling

11 // --- Configuration Digital Input ---

12 byte dataConf_Digital_Input []= {0x11 ,0x03 ,0x20 ,0x70 ,0

x02 ,0x03 ,0x00 ,0x05 ,0x00 ,0x00}; // Configuration digital

input 3 as Quickstop

13 byte dataDigital_Input_Exec_Mask []= {0x11 ,0x03 ,0x20 ,0x71 ,0

x02 ,0x04 ,0x00 ,0x20 ,0x00 ,0x00}; // Esecution Mask for Quick

stop and position Marker

14

15

16

17 sendMessageToEPOS(dataShutdown ,10, serialnum);

18 sendMessageToEPOS(dataVelocityMode ,10, serialnum);

19 sendMessageToEPOS(dataMaxSpeed ,10, serialnum);

20 sendMessageToEPOS(dataInputConfig ,10, serialnum);

21 sendMessageToEPOS(dataSetpoint_Scaling ,sizeof(

dataSetpoint_Scaling),serialnum);

22 sendMessageToEPOS(dataSetpoint_Offset ,sizeof(

dataSetpoint_Offset),serialnum);

23 sendMessageToEPOS(dataExecMask ,10, serialnum);

24 sendMessageToEPOS(dataConf_Digital_Input ,10, serialnum);

25 sendMessageToEPOS(dataDigital_Input_Exec_Mask ,10, serialnum);

26 sendMessageToEPOS(dataShutdown ,10, serialnum);

27 delay (50);

28 Serial.println(F("Set allignment ended"));

29 }

30

31

• ISR: they are the Interrupt Service Routine, used in combination with two push-

buttons: one for the Emergency Stop command and one for the alignment oc-

curred command.

1 // --- ISR for interrupt ’alignment ok’ ---

2 void allign_status (){

3 allignm_ok =1;

4 detachInterrupt(digitalPinToInterrupt (2));

5 }

6

7 // --- ISR for interrupt ’Emergency stop’ ---

8 void emergencyStop (){
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9 EM=HIGH;

10 digitalWrite(Enable_Pin , HIGH);

11 digitalWrite (13, HIGH);

12 }

13
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Chapter 5

Experimental tests

5.1 Benchmark test

The first trial done consists of a benchmark test for the electrical elements. They are

disassembled from the mechanism and positioned over a testing board, built for the

purpose, such that the motors can move freely without an applied inertial load. All

the cables connections are wired and the power supply is provided through a variable

bench power supply [8]. In figure 5.2 are presented the developed test environment,

where they can be seen, starting on the left, the actuators, the drivers, the Arduino

Mega board with its additional hardware and the lasers sensors. On the bottom left

corner of the picture there is the wiring supply panel, connected to the power supply.

Figure 5.1: Picture of the developed testbench
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This test has the following purposes: for first it is useful to check if all the devices

work correctly and if the communication protocol is effective without faults, debugging

the Arduino code. Also the test permits to see if it needs to make changes over the

control architecture or if additional hardware is necessary.

The testbench trial was conducted in this way:

1. the power supply cables of motor drivers and of the sensors are connected to

power supplier, that is set to provide a DC Voltage of 24V, with a maximum

current threshold of 2A (calculated referring to datasheets and set in order to

avoid low current supply faults)

2. the Arduino board is connected to PC through USB cable. The algorithm code

is uploaded using the Arduino IDE. The USB connection provides both serial

communication for debug commands from terminal and power supply for the

board. The sketch is the one discussed in chapter 4.4, with the difference that

all the velocity setting values are reduced. This because high speed motions of

the motors in no load conditions may damage them.

3. The control algorithm is started. At the beginning of each docking stage a serial

command from keyboard is requested to go ahead. At every docking stage it

is checked if the correct driver and motors are configured correctly and if the

expected rotor motions are performed.

4. when the last stage is performed and the state machine returns in idle state the

test ends

After, a set of test executions the following features are added to the system:

• a control panel is added. It consists of two normally open push buttons, one for

the Emergency stop and the other for the alignment completed commands. The

first permits to stop the docking execution at any time and shutdown the motors.

The second push button is used during the ”alignment and soft docking” state

to notify that the soft docking is performed. This two push button are connected

to Arduino such that once they are pressed the 5V logic level is connected to the

respective Arduino input pins. These pins are attached to two interrupts and to

respective ISR.

• two more digital pins are configured, one for each Epos2 24/5. They are used

by Arduino board to send the ”stop motor” command without using the rs232

protocol. During the tests it has been noticed that when the velocity control

mode is applied to the motors, the stopping of the motion is not immediate and

the serial communication causes delays. The use of a dedicated digital command

signal permits to stop the motion faster and avoid undesired movements.
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The schematics in figure 5.2 shows the schematic of the connections of the Arduino

Mega with the additional hardware mounted on a breadboard:

Figure 5.2: Arduino board and the additional hardware schematics

5.2 test over the docking mechanism

This benchmark test is done to verify the control system behaviour with the electrical

hardware mounted over the male mechanism to control. The main purposes of this

operation are the following:

• test the mechanical movements

• select the driver parameters that regulate the motors motion (such that the con-

trol gains, the maximal profile velocities, accelerations etc.)

• define and study the power consumption in steady state and in execution of the

system

• define the execution time for each docking stage

Before the execution the mechanism must be prepared. The actuators and the

sensors are placed and screwed on their accommodations. The mechanism is positioned

at its initial position, with the probe at the fully retracted position and the rail slides at

the central zero position. The Arduino board and its external hardware are connected

as the benchmark test previously discussed and the power supply is provided to all

the devices. Before the stages execution it is necessary to run the regulation tuning
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through the Epos Studio software. This tool permits to tune automatically the PID

controller parameters of the control loops and to save it on the motor’s drivers.

Again the docking stages are performed one at a time, using the PC keyboard

command and the Arduino serial terminal to skip from a state to the next one. The

following results are obtained:

• the control parameters are set and the relative positions of the probe and the

sliders are defined. In tables 5.1 and 5.2 these parameters are reported.

Control Parameters

Epos2 24/5

Max. Profile Velocity [rpm] 11000

Profile type in pos. Mode trapezoidal

Max. Following Error [qc] 1000

Setpoint Scaling Factor [rpm/V] 2500

Setpoint Offset [rpm] -6250

Epos2 24/2

Max. Profile Velocity [rpm] 12000

Profile type in pos. Mode trapezoidal

Max. Following Error [qc] 2000

QuickStop Deceleration (rpm/s) 10000

Table 5.1: Epos Control Parameters

Relative Positions

Probe Positions [qc]

Full Retraction 0

Precharge -4149248

Petals Opening -5284467

Full Extension -5920291

Sliders Positions [qc]

Home position 0

High Endrun X Axis +206416

Low Endrun X Axis -203344

High Endrun Y Axis +152064

Low Endrun Y Axis -163840

Table 5.2: Relative Motors positions

The velocity and acceleration parameters are selected in order to avoid sudden

movements, that may causes peak currents and mechanical failures. In particular
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in the ”alignment and soft docking” phase the control parameters are set such that

the velocity control loop was as responsive as possible and the maximum normal

force applied on the probe edge never exceed the value of 10N. If this constraint

is not respected an hypothetical soft docking on orbit with two satellites with

our specifications fails.

• A study of the power consumption of the system is performed. The Epos con-

trollers, the stepper driver and the laser sensors are powered by the use of a

variable power supplier. All the devices can work with a supply voltage of 24V.

The power consumption is obtained inspecting the absorbed current by each de-

vices. The measurements are collected in the worst case conditions, with the

maximum loads that the motors have to mode during the mating operations.

Absorbed current [mA]

Device Stand by State Operating State

Epos2 24/5 40 90 in pos. Mode

180 in vel. Mode (Max)

Epos2 24/2 20 80

P7000 Stepper 40 800

uEpsilon Sensor 35 40

Table 5.3: Absorbed devices currents when they are in stand by mode and when enabled

The Arduino Mega board uses a separate supply, given by USB connection. It

also provides the supply power to the additional elements (max3232 shields, DAC

converters, pushbuttons) through its dedicated output voltage pins. The DAC

converters use a 3.3V DC voltage, while DAC modules and pushbuttons a voltage

of 5V. To measure how much current the Arduino modules need it is supplied

with the laboratory power supply through the dedicated voltage input pin and it

is inspected the absorbed current displayed on the power supplier. The maximum

current value reached during the operation is 200mA.

From the measurements stated before it is possible to calculate the power con-

sumptions through the relation:

P [W ] = V [V ] ∗ I[A]
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Max. Power Consumption [W]

Device Stand by State Operating State

Epos2 24/5 0.96 2.16 in pos. Mode

4.32 in vel. Mode (Max)

Epos2 24/2 0.48 1.92

P7000 Stepper 0.96 19.2

uEpsilon Sensor 0.84 0.96

Arduino Modules 1

Table 5.4: Power consumption of each devices

To identify the worst case and therefore the maximum power needed, the sin-

gle docking stages are examined and for each of them the absorbed power is

calculated, considering what are the devices that are enabled in that stage:

Stage Operating Devices Total Power Cons. [W]

Full Extension Epos2 24/2

Precharge Arduino Modules 7.48

Full Retraction

alignment and Soft Docking Epos2 24/5 (x2)

Arduino Modules 13

uEpsilon Sensors (x2)

Homing Epos2 24/5 (x2) 8.44

Arduino Modules

Hard Docking P7000 Stepper 24.28

Arduino Modules

Table 5.5: Power consumption at each stage’s execution

• The last study over the mechanism concerns the execution time. It is measured

the time required to perform each docking stage, deriving an estimation of the

total execution time. In the case of stage 2 the timing cannot be determined

a priori, because it depends on the relative distance and velocities of the two

spacecrafts.
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Execution Time of Docking Phases

Stage 1 (Full Extension)

Extension 85s

Petals Opening 10s

TOTAL 95s

Stage 2 (Alignment and Soft Docking)

Drivers Config. 10s

Alignment –

TOTAL 10s + alignment time

Stage 3 (Precharge)

TOTAL 18s

Stage 4 (Homing)

X Axis Motion 25s (Max.)

Y Axis Motion 20s (Max.)

TOTAL 45s

Stage 5 (Full Retraction)

TOTAL 61s

Stage 6 (Hard Docking)

TOTAL 22s

Total Docking Execution Time 251s + alignment time

5.3 Final test introduction

The last experimental test to perform on the mechanism consist of the execution of

the mating approach involving the use of a robotic manipulator. For this purpose a

dedicated test environment was designed. It consist of a cage structure, composed by

aluminium profiles, where the male half part is bolted at the top in vertical position.

Below it the manipulator is posed with the female passive part connected to its end-

effector joint 5.3.
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Figure 5.3: Testing environment with robotic manipulator

The chosen manipulator is a POWERBALL LWA 4 6DOF, manufactured by Schunk

GmbH, in combination with a force/torque sensor FTM 115, also manufactured by

Schunk.

The task of the manipulator is to simulate the relative motions of the two spacecrafts

in on orbit conditions. To do that a set of fixed trajectories will be used, coming from
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the multibody models developed in [16]. In this way, during the docking operations

the male element remains still in his housing, while the female part is moved by the

robotic arm.

Talking about the male control architecture, it is chosen to think about a suitable

solution for the integration of the hardware in the test rig. For this reason a PCB

shield is designed, where all the additional electrical components that the Arduino

needs are placed together and the Arduino Mega board is accommodated over it. The

PCB schematics and layout are developed using the KiCad program. The 3D model

of the board is shown in figure 5.4. This solution, in addition to being a more orderly

one, decreases the fault probability caused by jumper cable disconnection, and permits

to have all the control hardware in an unique device.

Figure 5.4: 3D Model of the developed Control Board

This experimental test has yet to be done. The purpose of this section was to

prepare the test environment, provide the necessary devices and tools and give an

introduction of the test execution for future works.
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Conclusions

In this chapter the obtained results in this thesis work are summarized, and the envis-

aged future work is discussed.

The target of this project was to design and develop a suitable control system for a

docking mechanism for on orbit servicing missions between spacecrafts. The first step

was to study the state of the art of the present docking mechanism technologies, in

order to create a solid knowledge about it.

A deep study of the mechanical plant that was already assembled in TAS-I labo-

ratory was conducted, taking into account the final mission, the expected behaviour

and all the possible issues. The technical specifications of the mechanical parts and

of the electrical one are collected and the compatibility of the components with the

mechanism is tested.

Once the central docking mechanism behaviour is known it was selected an ap-

propriate control architecture to implement over it and the selection of the additional

electronic hardware was done. A central control architecture was designed, using an

Arduino Mega board as master and the motor controller drivers as slaves. The Arduino

board communicate with the driver using the rs232 serial protocol and have to manage

the docking motion using also a couple of position sensors.

The docking operations were examined and scheduled, highlighting the necessary

actions to performs. So, the docking manoeuvres were organized though a finite state

machine. It consists of seven states, that correspond to the seven docking stages: Full

Extension, Alignment and Soft Docking, Precharge, Homing, Full Retraction, Hard

Docking and Shutdown. For each stage it was studied what could be the best control

strategy to apply to the motors and how to manage the sensors measurements.

The control software was written, implementing the state machine into Arduino

code. A set of communication functions were developed to communicate with the

controller through the selected serial protocol. Also the motion function were written,

able to manage the desired mechanism movements. The result was an Arduino sketch

to upload on the Arduino memory, which can works in debugging mode with an USB
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connected PC or in standalone mode.

The control system was assembled and tested in two test sessions. The first was

a benchmark test, with the actuators disjointed to the mechanism and in no load

conditions. In this session it was checked the correctness of the communications and

of the motions. Also additional improvements are added to the control system in view

of future tests. In the second session all the components were assembled together with

the mechanical plant and a full docking operation was performed. Here it was possible

to check the mechanical movements, finely adjust the control parameters, collect the

power consumption during the operations and define the execution timing.

The result of this thesis work is a full working prototype of a central docking

mechanism for small satellites, able to accomplish a docking manoeuvre and ready to

the final docking tests. Currently the final test environment is under construction and

the final technical refinements are in development.

There are still some issues to be solved:

• the state transition between the soft docking and the precharge states has to be

implemented yet. For now the transition is done by the use of a manual pushbut-

ton. A reasonable idea could be to insert a time counter in the process such that

when the probe position adjustments along the base plan are not requested for a

certain amount of time, the soft docking could be considered performed. This is

a software solution that doesn’t needs of additional hardware sensors.

• the operation of undocking has yet to be implemented. This could be done easily

improving the developed state machine and reusing the docking Arduino control

functions.

• a fault error management could be implemented. Actually, if the docking ma-

noeuvre fails it is necessary to reset the devices and restart the operations from

the beginning.
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The Epos drivers

A.1 Device Control

Figure A.1: Epos driver-States of the drive

The state machine describes the device states and the possible control sequence. Each

single state represents a special internal or external behavior. The state of the drive

also determines which commands are accepted. States may be changed using the

Controlword register and/or according to internal events. The current state can be
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read using the Statusword read command [1].

Figure A.2: State Machine of the Device Control Architecture
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Figure A.3: Epos driver-Transition events
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A.2 Modes of Operation

Figure A.4: Velocity Mode Block Diagram

Figure A.5: Velocity Control Function

72



A.2. MODES OF OPERATION APPENDIX A. THE EPOS DRIVERS

Figure A.6: Profile Position Mode Overview Diagram

Figure A.7: Profile Position Mode diagram
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Figure A.8: Profile Position Control Function

A.3 Communication

Sending Data Frame

When sending a frame to Epos, you will need to wait for different acknowledgment

[1].

• After sending the first frame byte (OpCode), you will need to wait for the EPOS

“Ready Acknowledge”.

• Once the character “O” (okay) is received, the slave is ready to receive further

data.

• If the character “F” (failed) is received, the slave is not ready to send data and

communication must be stopped.

• After sending the checksum, you will need to wait for the “End Acknowledge”.

The slave sends either “O” (okay) or “F” (failed).
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Figure A.9: Sending a data frame to Epos through rs232

Reading Data Frame

The data flow sequence is identical as for sending a data packet, only in the other

direction. The master must also send the two acknowledges to the slave.

• The value of the first field must always be 0x00, thus representing the operation

code describing a response frame.

• After receiving the first byte, the master then must send the “Ready Acknowl-

edge”.

• Send character “O” (okay) if you are ready to receive the rest of the frame.

• Send character “F” (failed) if you are not ready to receive the rest of the frame.

• If the EPOS2 does not get an “O” within the specified timeout, the communica-

tion is reset. Sending “F” does not reset the communication.

• After sending the “Ready Acknowledge” (“O”), EPOS2 sends the rest of the

data frame. Then the checksum must be calculated and compared with the

one received. If the checksum is correct, send acknowledge “O” to the EPOS2,

otherwise send acknowledge “F”.
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Figure A.10: Reading a data frame from Epos through rs232

Frame Structure

The data bytes are sequentially transmitted in frames. A frame composes of a

header,a variably long data field and a 16-bit long cyclic redundancy check (CRC) for

verification of data integrity.

Figure A.11: Epos data frame for rs232 communication

HEADER It consists of 2 bytes. The first determines the type of data frame to

be sent or received. The next field contains the length of the data fields.

OpCode Operation command to be sent to the slave.

Len-1 represents the number of words (16-bit value) in the data fields. It contains

the number of words minus one. The smallest value in this field is zero, which represents

a data length of one word. The data block must contain at least 1 word. DATA The

data field contains the parameters of the message. This data block must contain at

least one word. The low byte of the word is transmitted first.

Data[i] The parameter word of the command. The low byte is transmitted first.

CRC The 16-bit CRC checksum. The algorithm used is CRC-CCITT. The CRC

calculation includes all bytes of the frame. The data bytes must be calculated as a

word.
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