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Abstract

Solar energy is a clean, available and renewable source of energy. Deployment of photo-
voltaic panels is trending to take advantage of solar energy for electrical power generation.
Intermittent nature of solar energy results in variable generated power. This uncertainty
could be alleviated by taking advantage of energy storage systems and accurate solar power
forecast. This thesis aims to implement a solar forecast module to take part in an optimized
Energy Management System (EMS). Different solar power prediction methods are studied
including statistical methods, sky imagers, satellite imaging and Numerical Weather Pre-
diction (NWP). Artificial neural networks (ANNs) which are a subset of statistical methods
are chosen as prediction method to satisfy requirements imposed by EMS. The require-
ments include precise forecast in short-term prediction horizon for proper functionality of
the EMS. Prediction horizon is amount of time in future for which prediction is needed.
Multiple ANN architectures suitable for time-series prediction are investigated and com-
pared, including Long Short-term Memory (LSTM), Long- and Short-term Time Series
Network (LSTNet) and Temporal Convolutional Network (TCN). Although all the afore-
mentioned methods have acceptable performance, TCN architecture shows more promising
results.

In order to further improve the prediction accuracy, effect of clustering the dataset
into sunny and cloudy sub-datasets and using a dedicated prediction module for each sub-
dataset is studied. Results show that prediction accuracy is improved by clustering the
dataset for all the models. Moreover, simulation results on datasets of multiple geograph-
ical locations with different climate conditions show that prediction accuracy is higher in
locations having more stable weather and sunny days.

A Graphical User Interface (GUI) is implemented to simplify working with the forecast
module. Service is made available to users through exposing REST APIs on a remote
server to facilitate user interactions with the forecast service.
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Chapter 1

Introduction

1.1 Motivation
Nowadays, renewable energy sources have become of paramount importance in power gen-
eration due to concerns regarding greenhouse gas emissions and environmental pollution
issues that are consequences of excessive consumption of fossil fuel energy sources [1].
Moreover, fossil fuel energy sources are limited and will run out someday in future. There-
fore, it’s necessary to look for other sources of energy to substitute fossil fuels. By end of
2018, in some locations electricity generation from new wind and photovoltaic (PV) plants
had become more economical than power generation from fossil fuel-fired plants. Also, in
some places building new wind and solar PV plants cost less than continuing execution of
current existing fossil fuel power plants [2]. Since solar energy is a clean, available, free and
renewable source of energy, deployment of PV panels has increased in recent years in order
to generate electricity from solar energy [3]. Due to interest of countries in investment of
renewable sources of energies, it is likely that installment of PV panels continue to increase.
Fig. 1.1 shows solar photovoltaics global capacity from 2008-2018.

Figure 1.1. Solar PV global capacity and annual additions [2]
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Since solar photovoltaics is one of the energy technologies that are growing rapidly and
Italy is one of the top ten countries in the sense of solar PV capacity, research in these
fields are crucial and inevitable. Fig. 1.2 illustrates top ten countries having the most solar
PV capacity around the world [2].

Figure 1.2. Solar PV capacity of top 10 countries

Use of photovoltaic panels is spreading for commercial and residential applications.
With technical advances and economic feasibility, integrating renewable resources in mi-
crogrids is becoming more trending. Microgrids are localized energy networks that utilize
local energy sources like solar energy and wind power to generate electricity. A microgrid
contains a cluster of loads, electricity generator units and energy storage systems that op-
erate in coordination. Microgrids can operate in isolated mode independently of the main
grid system or they can operate in grid-connected mode which is in collaboration with the
main grid. Fig. 1.3 shows schematic of a microgrid system. However, integration of solar
energy in microgrids is challenging in sense of operation due to intermittent nature of solar
energy. Power generation of photovoltaic panels depends on meteorological factors such as
solar irradiance, air temperature and relative humidity [4]. As a result, output power of
photovoltaic panels varies with respect to the other parameters. The uncertainty of output
power can strongly affect reliability and stability of the power system. Fig. 1.4 depicts
the sudden power output variation in a PV array in Florida that can jeopardize reliability
and stability of the power system. But the uncertainty can be alleviated by taking advan-
tage of energy storage systems. Energy Management Systems (EMS) monitor, control and
optimize the performance of the grid system. EMS responsibility is making sure of grid
operation in reliable, secure and economical way both in grid-connected and isolated mode
[5].

Energy management system can optimize utilization cost and energy storage level of
energy storage systems. Various ways exist for microgrid energy storage systems optimiza-
tion. One possible way of microgrid management that is used in [6], is implementation
of hierarchical state-machine based energy management method to reduce cost of energy
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1.1 – Motivation

Figure 1.3. An example of microgrid system schematic

Figure 1.4. Sudden PV array power output variation

storage system and maintaining the energy storage level. This method also supports use
of multiple energy storage systems. The method contains two management layers. Each
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layer has a different responsibility. The bottom layer is responsible of controlling storage
devices and the top layer oversees the state machine. In any case, energy storage system
performance must be optimized by advanced control techniques using EMS system. It is
worth mentioning that precise prediction is essence of efficiency in energy management
systems.

Due to increase of PV installment in microgrid systems, need of accurate solar prediction
is becoming more evident. On the other hand, solar prediction is a challenging task due
to variation of meteorological variables that have direct effect on output power of PV
panels. Specifically, the prediction task becomes more challenging when prediction horizon
increases. Prediction horizon indicates the amount of time in the future that target variable
should be predicted.

Increasing importance of accurate solar prediction, has made solar forecasting an at-
tractive field of research. Therefore, a lot of research and studies took place in the recent
years in order to fulfill the required prediction precision. Moreover, advances in machine
learning has result in progress in a lot of research areas including time series prediction.
Various machine learning models and techniques have been proposed in recent years to deal
with time series forecast tasks. Also, computational capacity of devices is improving which
is helpful for machine learning tasks that require a lot of computations. Another help-
ful advance is availability of high-quality data that is an essential requirement for proper
training of machine learning models.

1.2 Thesis Objectives
Current research took place in Punch Torino facility. One of the project opportunities
that the innovation team of Punch torino is investigating is about the energy management
systems in microgrids. The thesis activities were focused into development of an algorithm
for the forecasting of power generation from a solar array. The output of the calculation
will be used by the Energy Management System, in development phase by the Innovation
team of Punch Torino, in charge of the optimized operational planning of a microgrid.

Due to the importance of precise solar forecasting, the thesis works aims to address
the necessity to have accurate solar power forecast for an optimized EMS and finding an
efficient method for forecasting solar power to be included in the microgrid control system.
Solar power prediction can help to optimize the usage of energy storing devices based on
the final user consumption and estimated generated power.

Moreover, solar forecast module deployment phase needs to be considered to simplify
user interaction with the implemented forecast module. Implementation of a Graphical
User Interface (GUI) and REST APIs are valid choices for deployment that can ease user
interactions with solar forecast module.

1.3 Thesis Structure
The rest of the thesis is organized as follows. Chapter 2 provides literature review about so-
lar forecasting techniques. Reviewed techniques include statistical methods, sky imagers,
satellite imaging and numerical weather prediction methods. Then different prediction
horizons and prediction modes are discussed, and proper values are selected to satisfy

12
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the application requirements. Based on selected values for prediction horizon and mode,
suitable forecasting technique is selected among the mentioned techniques and different ar-
chitectures suitable for time series forecasting such as Long short-term Memory (LSTM),
Long- and Short-term Time Series Network (LSTNet) and Temporal Convolutional Net-
work (TCN) are further investigated.

Description of data and tools used during this research are presented in chapter 3.
Chapter 4 discusses data exploration and preprocessing. Performance metrics used dur-

ing this research are introduced. Hyperparameter tuning is used to find the best set of
hyperparameters. Results obtained from different architectures are compared. In order to
further improve prediction accuracy, possibility of dataset clustering into sunny and cloudy
days and using multiple prediction modules is studied. All the results and their interpreta-
tion are presented. After finding the best method for this research, model performance is
studied in different locations and weather conditions around the world to understand how
well model performs in different weather conditions.

Chapter 5 discusses deployment scenarios. A Graphical User Interface (GUI) implemen-
tation is presented. Moreover, implementation of a remote server and APIs are described.

Finally, chapter 6 concludes the thesis research by pointing out the findings and outcome
of this work. Moreover, possibile improvements are proposed for further research.

13
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Chapter 2

Literature Review

This chapter is dedicated to literature review and study of existing solar forecast methods
and characteristics of each technique.

2.1 Solar Power Prediction Methods
Existing solar power prediction methods are divided into different categories based on pre-
diction horizon, including statistical methods, sky imagers, satellite imaging and Numerical
Weather Prediction (NWP) [3]. In all the methods, solar irradiance is predicted and con-
verted to power. Except for statistical methods, which can also predict power directly
without need of conversion. Different methods and their proper prediction horizons are
depicted in Fig. 2.1.

2.1.1 Statistical Methods
Artificial neural networks (ANNs), regression models, support vector machines and Markov
chains are different kinds of statistical methods [3]. Historical observations are used to
train statistical methods. Output predictions are computed based on historical values of
input variables [7]. For this reason, depending on input variables, power output can be
predicted in direct mode and also it can be predicted indirectly by forecasting irradiance
and converting the result to power. Pros and cons of both options are investigated in
section 2.2.2.

2.1.2 Sky Imagers
Sky imagers are digital cameras that provide high quality ground-based images from sky.
Clouds have strong effect on solar irradiance at ground’s surface. For this reason, deter-
mining clouds state is useful for solar irradiance forecasting. Sky imagers detect clouds,
estimate cloud height from ground and detect cloud motion velocity from consecutive im-
ages. Since sky imagers recognize cloud shadows, they can detect abrupt changes in solar
irradiance [7].
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Figure 2.1. Overview of solar prediction methods based on forecast horizon [3]

However, Prediction horizon of sky imagers is very short and is up-to 30 minutes. Also,
Sky imagers are expensive to use with respect to other forms of short-term prediction
methods [3].

2.1.3 Satellite Imaging

Geo-stationary satellites can provide information about clouds states and their movement.
From images gathered by satellites clouds can be detected, and their characteristics can
be determined. From the obtained information, irradiance can be predicted as far as six
hours ahead [7].

2.1.4 Numerical Weather Prediction (NWP)

NWP model can predict solar irradiance based on numerical dynamic atmosphere model-
ing. NWP predicts state of atmosphere based on current state of atmosphere and correct
physical laws. NWP is suitable for predictions up-to two weeks. In general NWP methods
outperform satellite imaging predictions in sense of accuracy when prediction horizon is
beyond 4 hours. On the other hand, due to spatial and temporal limitations, character-
istics of most clouds is unresolved and for this reason NWP methods are not suitable for
prediction horizons less than several hours [7].
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2.2 – Prediction Method Selection

2.2 Prediction Method Selection

2.2.1 Prediction Horizon Selection
In order to be able to choose a proper method, prediction horizon should be determined.
Prediction horizon is the future amount of time for which PV output power is predicted.
The concept of prediction horizon and window length is illustrated in Fig. 2.2. Solar power
generation can be classified into four categories based on prediction horizon [7], [8].

1. Very short-term Prediction Forecasting of generated power is done from a few seconds
to minutes. This type of forecasting is suitable for PV and storage control and
forecasting sudden fluctuations in power generation.

2. Short-term Prediction This category includes prediction horizon up to 72 hours ahead
and is appropriate for ensuring unit commitment, scheduling, dispatching of electrical
power, etc.

3. Medium-term Prediction Forecasting is done for up to a week ahead and is useful for
maintenance and scheduling

4. Long-term Prediction Includes prediction horizon up to a year which is useful for
generation expansion planning.

Different prediction horizons and their applications are depicted in Fig. 2.3.

Figure 2.2. Prediction horizon and window length concept

Since very short-term and short-term predictions are suitable for plant operation, schedul-
ing and storage control in energy management systems, two different prediction horizons
have been chosen: 5-minutes horizon and 24-hours horizon.

Based on specified prediction horizons, statistical methods in particular ANNs are se-
lected for solar prediction task.

2.2.2 Prediction Mode Selection
PV solar prediction can be performed in indirect and direct mode. In indirect mode,
environmental variables like irradiance, temperature and humidity are predicted and are
inputted in PV simulator in order to predict output power. On the other hand, in direct
mode historical data of PV power output is used for predicting the output power. In ad-
dition to output power, some other related meteorological data can be used for prediction.
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Figure 2.3. Classification of different forecasting horizons and their application

Gigoni, Betti, Crisostomi, et al. in [9] discussed the reasons why direct methods predic-
tions are more accurate than indirect methods predictions. One of the mentioned reasons
is that PV models used in indirect prediction are approximations of the real plant and
are not able model every possible physical phenomenon occurring in real-world. Moreover,
physical variables degrade over time due to aging which again makes the predictions less
accurate. As a result, for this project direct methods are considered.

2.3 Time Series Forecasting with Artificial Neural Net-
works (ANNs)

Solar power forecasting is a subset of Time Series Forecasting which is an important field
in machine learning. Time Series Forecasting is challenging because of existence of mixture
of short-term and long-term repeating patterns.

Recurrent neural networks (RNN) are mainly used in sequential data processing. Long
Short-Term Memory (LSTM) [10], and Gated Recurrent Unit (GRU) [11] are one of the
most effective variants of RNNs [12]. In order to improve performance, variant versions
of hybrid architectures using advanced RNNs have been developed. This includes Long-
and Short-term Time Series Network (LSTNet) architecture, which combines strengths
of convolutional and recurrent neural networks. The convolutional layer detects short-
term patterns, the recurrent layer detects long-term patterns. Moreover, Recurrent-skip
structure detects very long-term dependence patterns [13].

In 2018 Bai, Kolter, and Koltun [14] introduced Temporal Convolutional Network
(TCN) family of architectures based on CNNs for sequential tasks. TCN models use
dilated causal convolutions, also they take advantage of residual connections [15].
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In this project, LSTM architecture is chosen as a baseline for comparison of other
models. LSTNet model which is an advanced hybrid architecture is a suitable candidate
for solar prediction task. Moreover, since TCN architecture outperforms baseline recurrent
architectures in several sequence modeling tasks, it is motivating to use TCN architecture
on solar prediction task.

2.3.1 Long Short-term Memory (LSTM)
Training Recurrent Neural Networks through time is difficult due to vanishing gradient
problem [16]. Vanishing gradient problem causes exponential decrease or increase in influ-
ence of a given input on hidden layer and output during backpropagation [17].

LSTM is able to preserve information over long periods of time and does not suffer from
vanishing gradient problem due to usage of gates [18].

Figure 2.4. LSTM unit architecture [19]

LSTM architecture is made of a series of recurrently connected LSTM units also called
memory blocks. Each LSTM unit has three different gates including input gate, output gate
and forget gate. Input gate controls what to store in memory block, output gate controls
output flow of information to the rest of network [10]. Forget gate allows LSTM unit to
self-reset memory contents when they become irrelevant [20]. LSTM unit is illustrated in
Fig. 2.4 and can be described mathematically through the following equations:

it = σ(Wixt + Uiht−1 + bi) (2.1)

ft = σ(Wf xt + Uf ht−1 + bf ) (2.2)

ot = σ(Woxt + Uoht−1 + bo) (2.3)

c̃ = tanh(Wcxt + Ucht−1) (2.4)

ct = ft ¤ ct−1 + it ¤ c̃t (2.5)

ht = ot ¤ tanh(ct) (2.6)
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W and U are weights of the connections. And b is bias vector parameters. xt is input
of LSTM and ht is output also called hidden state of LSTM unit. ct refers to memory
cell state at time t. c̃ is new memory cell state candidate which is generated from current
input and past hidden state and includes aspects of new input xt. Input gate (i) it is
responsible for determining valuable parts of new input by considering xt and previous
hidden state. Forget gate (f) assess usefulness of past memory state for computation of
current memory state. New memory cell is generated by forgetting a portion of previous
cell state determined by forget gate and gating a portion of new cell state determined by
input gate. Output gate (o) separates final memory from hidden state by determining
what portion of cell state is required to be stored on hidden state.

2.3.2 Long- and Short-term Time Series Network (LSTNet)
LSTNet [13] is a strong hybrid model introduced by Lai et al. in 2017. Architecture of LST-
Net is illustrated in Fig. 2.4 . LSTNet is composed of convolutional component, recurrent
component, recurrent-skip component and autoregressive component. Each component is
described and formulated.

Figure 2.5. LSTNet architecture [13]

Convolutional Component

Convolutional layer is responsible for short-term pattern extraction and finding dependen-
cies among variables. Output of each filter of this layer can be formulated mathematically
in equation 2.7:

hk = RELU(Wk ∗ x + bk) (2.7)

Recurrent Component

Output of Convolutional layer is fed into recurrent component. GRU is the recurrent
component of LSTNet. Authors of [13] believe that RELU activation function has better
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performance with respect to tanh for usage in GRU gates due to easier gradient backprop-
agation. Recurrent component can be described mathematically by following equations:

zt = σ(Wzxt + Uzht−1 + bz) (2.8)
rt = σ(Wrxt + Urht−1 + br) (2.9)

h̃t = RELU(rt ¤ (Uhht−1) + Whxt + bh) (2.10)
ht = (1 − zt) ¤ ht−1 + zt ¤ h̃t (2.11)

r is reset gate and is responsible to find importance of previous hidden state (ht−1) in
computation of new memory (h̃t). Update gate z determines how much of new memory
and previous hidden state should be carried forward to next hidden state (ht).

Recurrent-skip Component

Although gating has alleviated gradient vanishing problem in LSTM and GRU, these ar-
chitectures still have difficulties in capturing very-long term patterns in data. In case of
solar forecasting, prediction is more efficient when both most recent records and records
of same hour in adjacent days are used, due to the 24-hour daily basis pattern that exists
in solar data. But this 24-hour periodic pattern is difficult to catch by RNNs due to long
length of each period. To solve this issue recurrent skip-connections are used. Recurrent
skip-connections extend temporal span and connect hidden units that have same phase in
different periods.

zt = σ(Wzxt + Uzht−p + bz) (2.12)
rt = σ(Wrxt + Urht−p + br) (2.13)

h̃t = RELU(rt ¤ (Uhht−p) + Whxt + bh) (2.14)
ht = (1 − zt) ¤ ht−p + zt ¤ h̃t (2.15)

In above equations p is the number of hidden cells skipped through. Skip length in case
of solar forecasting is set to 24 for hourly prediction.

A dense layer combines output of recurrent layer and recurrent-skip layer. Hidden state
at time t is composed of hidden state of recurrent component at time t and p hidden states
of recurrent-skip component from timestamp t − p + 1 to t. output of dense layer can be
formulated as 2.16

hD
t = W RhR

t +
p−1Ø
i=0

W S
i HS

t−i + b (2.16)

Autoregressive Component

Neural networks output is not sensitive to scale of inputs due to non-linearity of CNNs
and RNNs. This is problematic in case of solar forecast that input data scale changes
constantly and results in reduction of prediction accuracy.

LSTNet output is composed of two parts, linear part and non-linear part. The non-
linear part is the output of recurrent units that focuses on recurring patterns. Linear part
focuses on scaling issue. Autoregressive model is used in LSTNet for handling linear part
of architecture.

Output prediction of LSTNet is the result of integration of linear and non-linear parts.
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2.3.3 Temporal Convolutional Network (TCN)
TCN [14] was introduced in 2018 by Bai, Kolter, and Koltun. as a substitute for recurrent
neural networks in time series forecasting tasks. TCN is based on CNN architecture and
has two main characteristics:

1. Causal convolutions are used in TCN architecture, therefore there is no leak from
future to past.

2. Like RNNs, TCN can have input sequence of arbitrary length and maps it to output
sequence of same length.

Main components of TCN architecture are dilated causal convolutions with residual
connections. For having same sequence length in input and output, TCN uses 1D fully
connected convolutional network (FCN) with zero padding.

Moreover, for not having leakage from future to past TCN uses causal convolutions so
that output at time t is result of convolutions from time t and earlier times in previous
layers.

Causal convolutions receptive field grows linear with depth of the network. In order to
alleviate difficulties of handling tasks that require larger receptive field, dilated convolutions
are used in TCN architecture. The advantage of using dilated convolutions is exponential
growth of receptive field. Dilation adds fix-sized steps between adjacent filter taps. In
TCN dilation is increased exponentially with depth of the network. In this way all inputs
are hit by filters in receptive field.TCN block is illustrated in Fig. 2.6.

Figure 2.6. TCN architecture [14]

Effective history of each layer is computed by (k − 1)d. K is filter size and d is dilation
factor. Therefore, for increasing receptive factors filter size and/or dilation factor can be
increased.

Residual connections are useful specially in very deep networks. For having very large
receptive field sometimes it is necessary to use very deep TCN architecture. For more

22



2.3 – Time Series Forecasting with Artificial Neural Networks (ANNs)

stabilization of deep networks TCN takes advantage of residual connections. TCN residual
block is demonstrated in Fig. 2.7.

Figure 2.7. TCN block architecture [14]

Each residual block contains two dilated causal convolution layers, ReLU non-linearity,
weight normalization and spatial dropout for regularization.

Since in TCN input and output can have different widths, residual connections are
occurred through 1x1 convolutions.

One of the main advantages of TCN is the ability to compute convolutions in parallel,
because same filter is used in all layers. Therefore, unlike sequential processing in RNNs,
TCN can compute long input sequence as a whole.

TCN does not suffer from gradient vanishing because backpropagation path is different
from temporal direction of sequence.
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Chapter 3

Data and Tools

3.1 Data
Public power output data from a PV panel installation of 227 MW capacity in Florida,
USA is used for better demonstration of results [21]. The historical data is regarding year
2006 and contains information about generated power (MW) with 5 minutes sampling rate.
In order to have a general view, some rows of the power dataset are illustrated in Fig. 3.1.

Figure 3.1. General view of power dataset

Since, meteorological data was not available another dataset is used that contains infor-
mation about solar irradiance ( w

m2 ), relative humidity (%), temperature (F) and amount
of rain fall (in) of same location during 2006 [22]. In the weather dataset sampling rate is
one hour. In order to have a general view, some rows of the weather dataset are illustrated
in Fig. 3.2.

Figure 3.2. General view of weather dataset

The two datasets are merged to form a unit dataset. The required steps for merging
the two datasets are further explained in Chapter 4. The resulting dataset is used to find
the best architecture.
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After finding the best architecture, in order to test the model performance on different
weather conditions around the world public datasets containing power and meteorological
data during year 2016 for Italy, Spain and Oman are used [23]. Data refers to an installed
peak PV power of 1 KW with system loss of 14%. The datasets contain information
about date and time, generated power (W), solar irradiance on the plane of the PV arrays
( w

m2 ) and air temperature (C◦). Italy, Spain and Oman datasets do not contain the field
regarding relative humidity. In order to have a general view of the datasets some rows of
the aforementioned datasets are illustrated in Fig. 3.3-3.5.

Figure 3.3. General view of Italy dataset

Figure 3.4. General view of Spain dataset

Data and time format in the datasets are different. This issue will be dealt with in
Chapter 4.
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Figure 3.5. General view of Oman dataset

3.2 Implementation Tools
The following tools and libraries have been used during implementation of this project:

• Visual Studio Code (VS Code) is a lightweight, powerful source code editor. VS
Code supports Python through usage of extensions. One of the points that has made
VS Code such a strong editor is possibility of using the third-party extensions that
has made the programmers lives easier.

• Python programming language is one of the languages that are commonly used
for Machine Learning purposes and a lot of Machine Learning libraries exist for
Python language.

• PyTorch is and open source Machine Learning library that facilitates building Ma-
chine Learning projects.

• Numpy manages array and matrix data structures.

• Pandas is built on NumPy package and uses DataFrames to manipulate tabular
data.

• Pvlib is used to estimate clear sky irradiance.

• Matplotlib is a plotting library for Python are used.

• Flask is a micro web framework written in Python. In section 5 Flask is adopted for
server implementation.

• TKinter is the standard Python interface to the TK GUI toolkit and it is used
to create a GUI (Graphical User Interface) to simplify modification of configuration
parameters.

• Python threading module is used to facilitate running multiple threads at the
same time. Threading is used in GUI to prevent it from freezing and it is used in
server to manage different requests from users.
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Chapter 4

Implementation and Results

4.1 Data Exploration and Preprocessing
In order to merge the datasets and create a unit dataset some preliminary steps have been
taken:

1. The time column format in the two datasets are not compatible and has string format,
therefore strptime() function from Python datetime module is used to create datetime
object from the string.

2. The created DateTime column is set as index of the data frame so that the datasets
could be merged based on the index variable.

3. In order to solve inconsistency due to different sampling rates in the two datasets,
data is averaged on hourly basis.

4. Then the two datasets are merged based on date and time in order to create a single
dataset.

4.1.1 Missing Values
Next step is dealing with missing values. Missing data is detected and results are shown
in Fig. 4.1. Four missing values exist in Temperature, SolarIrradiance, RainTotal and
RelativeHumidity features. There are no missing values in Power feature. Interpolation
method is used to fill missing values instead of hard coding them.
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Figure 4.1. Missing values detection

4.1.2 Statistical Measures
In order to better understand the data, statistical measures can be used:

• Count indicates number of records for each attribute.

• Mean indicates the average value of each attribute.

• Std indicates the standard deviation of each attribute, that can be used to understand
data dispersion around the average.

• Min minimum value of the attribute.

• 25% the lower percentile

• 50% the median, unlike average value it provides information on the distortion of the
distribution

• 75% the upper percentile

• Max maximum value of the attribute

Tab. 4.1 shows statistical measures. Visualizing these numerical results graphically
gives better intuition of data.

Table 4.1. Statistical measures
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4.1.3 Data Visualization
Fig. 4.2 shows evolution of features over time. It can be seen that Power and SolarIrra-
diance have similar trends and have higher values during spring and summer. Moreover,
temperatures value is higher during summer months as expected then it reduces.

Figure 4.2. Data visualization
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4.1.4 Box Plots
Box plots can be used for demonstration of data distribution based on minimum, first
quartile, median, third quartile and maximum. From box plots illustrated in Fig. 4.3 it can
be seen that RainToral mostly contains outliers. Data is scaled for better demonstration
of features in same figure.

Figure 4.3. Box plots

4.1.5 Features Selection
The goal of feature selection is removing irrelevant and redundant data in order to improve
performance. A proper feature subset contains features that are highly correlated with the
output but are uncorrelated with each other [24]. For better demonstration of correlation
between features, correlation matrix is demonstrated in Fig. 4.4.

Correlation between features is defined by a number between [−1,1]. Negative corre-
lation coefficient indicates there is negative relationship between variables, which means
increase in one variable results in decrease in another variable, and vice versa. Absolute
value of correlation coefficient demonstrates intensity of correlation between the features.
0 indicates there is no correlation between the two features. |1| means variables are com-
pletely correlated.

Fig. 4.4 shows strong correlation between power and irradiance (0.86). Moreover, there
is a moderate positive correlation between power and temperature (0.52) and a moderate
negative correlation exists between power and relative humidity (-0.59), but there is no
correlation between power and rain fall amount. For this reason, the selected features are
power, solar irradiation, relative humidity, and temperature. For better comparison, anal-
ysis is performed both in single variant mode by considering only power and in multivariate
mode by considering all the selected features for power prediction.

Adam [25] optimization is used as optimization method for this project.
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Figure 4.4. Correlation matrix

4.1.6 Data Scaling
Cost function is easier and faster to optimize when features have similar scale. Otherwise,
there could be more emphasis on parameters with larger scale. Therefore, all the features
are scaled by maximum value of the corresponding feature. Effect of scaling is illustrated
in Fig. 4.5 on cost function optimization.
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(a) Feature with larger scale
dominates the update

(b) Scaled parameters have
similar influence

Figure 4.5. Effect of features scaling on cost function optimization

4.2 Performance Metrics

Supposing power time series is Yt = y1, y2, ..., yt, Ŷ is predicted time series, t indicates time
and ΩT est is the set of time stamps used for testing.

Two evaluation metrics are considered for better comparison of results.

4.2.1 Root Relative Squared Error (RSE)

RSE is scaled version of Root Mean Square Error (RMSE). The reason of choosing this
metric is having more readable evaluation, regardless of data scale [13]. The lower the
value of RSE the better is the result.

RSE =

ñq
t∈ΩT est

(Yt − Ỹt)2ñq
t∈ΩT est

(Yt − mean(Y ))2
(4.1)

4.2.2 Empirical Correlation Coefficient (CORR)

Empirical Correlation Coefficient shows how correlated is prediction with respect to real
output. Higher values for correlation are better.

CORR =
q

t (Yt − mean(Y ))(Ỹt − mean(Ỹ ))ñq
t (Yt − mean(Y ))2(Ỹt − mean(Ỹ ))2

(4.2)
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4.3 Hyperparameters Tuning
In order to find best hyperparameters, hyperparameters tuning is necessary. The process
of finding best hyperparameters to have better accuracy is called hyperparameter tuning.
Different approaches exist for hyperparameter tuning including manual tuning, grid search
and random search.

• In manual tuning, based on current value of hyperparameters and obtained results
new hyperparameters are chosen manually without automation of selection process.

• In grid search model is trained for every possible combination of hyperparameters
values and selects the best performing set of hyperparameters on validation set.

• Random search does not try all the hyperparameters sets and chooses hyperparameter
sets randomly instead of performing exhaustive search.

Selecting few sets of hyperparameters decreases the chance of finding the best combi-
nation. And selecting too many hyperparameter sets increases processing time.

Some hyperparameters are more important with respect to other hyperparameters and
their value has more influence on prediction accuracy. In this research grid search method
was chosen for hyperparameters tuning and window length, learning rate and epoch num-
bers are tuned.

Model is trained for 30 epochs at each set and the number of epochs that obtained best
results on validation set is chosen and used for testing the model on test set.

The results of hyperparameters tuning for TCN architecture are illustrated in Fig. 4.6-
4.14. In all the simulation results regarding hyperparameters tuning prediction horizon is
set to 24 hours.
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WindowLength = 24, LearningRate = 0.0001, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.6. Learning and simulation results, window = 24, lr = 0.0001, max-epoch = 30

Test set RSE = 0.4994
Test set CORR = 0.8875
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WindowLength = 24, LearningRate = 0.001, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.7. Learning and simulation results, window = 24, lr = 0.001, max-epoch = 30

Test set RSE = 0.4804
Test set CORR = 0.8840
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WindowLength = 24, LearningRate = 0.01, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.8. Learning and simulation results, window = 24, lr = 0.01, max-epoch = 30

Test set RSE = 0.4638
Test set CORR = 0.8877
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WindowLength = 100, LearningRate = 0.0001, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.9. Learning and simulation results, window = 100, lr = 0.0001, max-epoch = 30

Test set RSE = 0.4679
Test set CORR = 0.8944
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WindowLength = 100, LearningRate = 0.001, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.10. Learning and simulation results, window = 100, lr = 0.001, max-epoch = 30

Test set RSE = 0.4421
Test set CORR = 0.8992
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WindowLength = 100, LearningRate = 0.01, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.11. Learning and simulation results, window = 100, lr = 0.01, max-epoch = 30

Test set RSE = 0.4451
Test set CORR = 0.8991
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WindowLength = 168, LearningRate = 0.0001, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.12. Learning and simulation results, window = 168, lr = 0.0001, max-epoch = 30

Test set RSE = 0.4755
Test set CORR = 0.8844
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WindowLength = 168, LearningRate = 0.001, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.13. Learning and simulation results, window = 168, lr = 0.001, max-epoch = 30

Test set RSE = 0.4524
Test set CORR = 0.8941
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WindowLength = 168, LearningRate = 0.01, MaxEpochNumber =30

(a) Learning Curve

(b) Simulation Results

Figure 4.14. Learning and simulation results, window = 168, lr = 0.01, max-epoch = 30

Test set RSE = 0.4801
Test set CORR = 0.8847
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Comparison

Tab. 4.2 summarizes hyperparameters tuning results. Best set of hyperparameters is (win-
dow length = 100, learning rate = 0.001 and number of epochs = 6).

Window Length Learning Rate Max Epoch Number Best Epoch Number Test RSE Test CORR
24 0.0001 30 28 0.4994 0.8875
24 0.001 30 6 0.4804 0.8840
24 0.01 30 21 0.4638 0.8877
100 0.0001 30 28 0.4679 0.8944
100 0.001 30 6 0.4421 0.8992
100 0.01 30 10 0.4451 0.8991
169 0.0001 30 16 0.4755 0.8844
169 0.001 30 4 0.4524 0.8941
169 0.01 30 2 0.4801 0.8847

Table 4.2. Hyperparameters tuning results summary

Learning Rate is a hyper-parameter that controls how much the weights of the network
will be adjusted. Generally, large learning rate allows the model to learn faster, at the
cost of arriving on a sub-optimal final set of weights. A smaller learning rate may allow
the model to achieve higher prediction accuracy, but it may take significantly longer time
to train. A very large learning rate can cause undesirable divergent behavior in the loss
function. Learning rate values used for hyperparameters tuning are 0.01, 0.001, 0.0001.

Window Length represents number of samples in time series that are considered as
input for prediction. Sliding window is used in this research. Concept of sliding window
is illustrated in Fig. 4.15. The window slid over time series. At each step elements within
window are used as input of the model to make predictions, then the window is slid further
and this procedure repeats. Larger windows consider more information to make predictions
but very large window can decrease sensitivity of the predictions and results in very smooth
predictions. Window length values used for hyperparameters tuning are 24, 100, 168.
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Figure 4.15. Sliding window illustration

4.4 Model Architecture Selection
Results obtained from multivariate and univariate time series forecasting using LSTM,
LSTNet and TCN architectures are summarized in Tab. 4.3. In multivariate forecasting
power is predicted from power and meteorological variables. In univariate forecasting power
is only predicted from data regarding power in previous timestamps. Prediction horizon
is set to 5 minutes and 24 hours in univariate mode. Since sampling rate is 5 minutes in
univariate prediction both short-term and very short-term horizons can be investigated.
On the other hand, in multivariate prediction sampling rate is one hour, and prediction
horizon is set to 24 hours.
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4.4.1 LSTM
Simulation results using LSTM architecture are illustrated in Fig. 4.16.

(a) Univariate prediction, Prediction horizon = 5 Minutes, RSE =
0.1466, CORR = 0.9895

(b) Univariate prediction, Prediction horizon = 24 Hours, RSE = 0.5634,
CORR = 0.8385

(c) Multivariate prediction, Prediction horizon = 24 Hours, RSE
=0.5162, CORR = 0.8633

Figure 4.16. Power prediction using LSTM
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4.4.2 LSTNet
Simulation results using LSTNet architecture are illustrated in Fig. 4.17.

(a) Univariate prediction, Prediction horizon = 5 Minutes, RSE =
0.1389, CORR = 0.9904

(b) Univariate prediction, Prediction horizon = 24 Hours, RSE = 0.4891,
CORR = 0.8827

(c) Multivariate prediction, Prediction horizon = 24 Hours, RSE
=0.4613, CORR = 0.8904

Figure 4.17. Power prediction using LSTNet
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4.4.3 TCN
Simulation results using TCN architecture are illustrated in Fig. 4.18.

(a) Univariate prediction, Prediction horizon = 5 Minutes, RSE =
0.1412, CORR = 0.9901

(b) Univariate prediction, Prediction horizon = 24 Hours, RSE = 0.4767,
CORR = 0.8972

(c) Multivariate prediction, Prediction horizon = 24 Hours, RSE
=0.4421, CORR = 0.8992

Figure 4.18. Power prediction using TCN
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4.4.4 Comparison

Univariate Multivariate
Horizon Horizon

Method Metric 5 Minutes 24 Hours 24 Hours

LSTM RSE 0.1466 0.5634 0.5162
CORR 0.9895 0.8385 0.8633

LSTNet RSE 0.1389 0.4891 0.4613
CORR 0.9904 0.8827 0.8904

TCN RSE 0.1412 0.4767 0.4421
CORR 0.9901 0.8972 0.8992

Table 4.3. Results summary of all methods

For better comparison of methods, results of output power prediction in same time span
is also demonstrated in Fig. 4.16-4.18.

Multivariate approaches have better results in terms of accuracy and correlation with
respect to univariate approaches. As expected by increasing prediction horizon, accuracy
of prediction decreases and forecasting very large horizons (for example 24 hours) is a chal-
lenging task. In case prediction horizon is set to 24 hours, TCN outperforms LSTNet and
LSTM. When prediction horizon is set to 5 minutes, all methods have acceptable perfor-
mance and LSTNet has the best performance in this case. LSTNet performs better that
simple LSTM due to enhancements of architecture. LSTM has the simplest architecture
among the three models and has higher RSE error with respect to other models. On the
other hand, LSTNet that takes advantage of both CNN networks and RNN networks has
impressive results, but the problem is high computational cost due to complex architecture.
At last, TCN architecture which is the newest architecture among the three architectures
and has medium level of architecture complexity was able to achieve the best simulation
results. This conclusion is very promising in sense of use of Convolutional Neural Net-
works for time series prediction tasks instead of Recurrent Neural Networks that have
been traditionally used for time series predictions.

4.5 Model Performance Improvements
In order to improve prediction accuracy model can be improved by applying some modi-
fications. Two approaches were chosen for performance improvements. First approach is
about modifying the best performing architecture to further improve the prediction accu-
racy. For, this reason TCN architecture which is the best performing model among the
investigated models is chosen. Some modifications were applied using TCN architecture
and results of the modifications is studied in section 4.5.1.

Since in cloudy days much less power is generated with respect to sunny days, power
value varies significantly from day to day in the dataset. This results in lower prediction
accuracy since variability in power value is significant. Dataset clustering approach can
alleviate this issue by clustering the dataset into sunny and cloudy days so that days having
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more similar trend are clustered into same category. The influence of dataset clustering is
studied in section 4.5.2.

4.5.1 Architectural Modifications Using TCN
Inspired by LSTNet architecture, a convolutional component can be added to the archi-
tecture to extract short-term pattern and find dependencies among variables. The con-
volutional component is added before TCN architecture and output of the convolutional
component is fed to TCN. The proposed architecture is depicted in Fig. 4.19.

Figure 4.19. Proposed architectural modifications

Input data can be formulated as XT = {y1, y2, ..., yT } ∈ Rn×T which T denotes the
timestamp and n is number of variables. The convolutional layer filters has width ω and
height n. The height of the filters is set to the number of variables. Sweeping kth filter
through input data produces the following output:

hk = RELU(Wk ∗ X + bk) (4.3)

hk is output vector of matrix, ∗ shows convolution operation and RELU is the RELU
activation function formulated as RELU(x) = max(0, x). hk has length T due to applied
zero padding on matrix X. The input of TCN is output of convolutional layer which has
size of dc × T . dc is number of filters. The rest of the architecture is kept intact.

The simulation results are illustrated in Fig. 4.20. The prediction results RSE value is
0.4437 and CORR value is 0.9039. The results did not show any significant improvements,
therefore TCN architecture is still the best performing architecture.
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Figure 4.20. Simulation results of the modified architecture

4.5.2 Dataset Clustering
In order to deal with variability of power value from day to day which has made prediction
task more challenging, dataset is clustered into sunny and cloudy days [26] and each set
of days are trained on a separate model. In this method two models are used, one model
for sunny days and the other for the cloudy days. Sunny days are trained on the model
dedicated to sunny days and this model will be used for power prediction of sunny days.
Also, the situation is similar for the cloudy days. By this way the days that are more like
each other in sense of generated power are clustered in same category and variability of
data is reduced within each set. The effect of data clustering on prediction accuracy is
investigated in this section.

First step is clustering the dataset. Since solar irradiance is highly correlated with power
output as discussed earlier in section 4.1, the dataset can be classified by considering the
mean value of irradiance during each day. Clear sky condition can be defined as absence
of visible clouds across the sky and clear sky irradiance is the global horizontal irradiance
(GHI) that occurs during clear sky condition. Clear sky models estimate the clear sky
irradiance as a function of location and atmospheric conditions. To compute clear sky
irradiance PVLIB python library is used [27]. PVLIB get_clearsky() function receives
location’s latitude, longitude and elevation level from sea and requested time span to
deliver the time series of clear sky irradiance for the corresponding time span. Different
clear sky models can be used to compute clear sky irradiance. Ineichen clear sky model is
used for estimating clear sky irradiance during this research [28].

Clear sky models are used to compute clearness index (K) which is computed by di-
viding the irradiation (GIrradiance) by the estimated irradiation under clear sky conditions
(GClearSkyIrradiance) (i.e. the output of clear sky model)

K = GIrradiance

GClearSkyIrradiance
(4.4)

A threshold value could be set for clearness index so that if clearness index is higher
than the threshold the day is classified as sunny otherwise it is classified as cloudy. Higher
threshold values consider less days as sunny and lower threshold values considers more days
as sunny.
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Dataset Clustering Approach

This section focuses on predicting next day generated power. Three Forecasting modules
are required in this approach. For better result comparison experiments were executed with
LSTM, LSTNet and TCN. The modules are named ’Irradiance Module’, ’Sunny Module’
and ’Cloudy Module’. Flowchart of the proposed procedure is illustrated in Fig. 4.21. The
elaborated steps of the procedure are:

1. ’Irradiance Module’ predicts next day solar irradiance.

2. Clearness index is computed based on predicted irradiance and output of clear sky
model.

3. If clearness index is higher than the specified threshold next day is classified as sunny,
otherwise next day is classified as cloudy.

4. If next day is classified as sunny, ’Sunny Model’ that is only trained on sunny days is
used for power prediction. Otherwise, ’Cloudy Model’ that is trained on cloudy days
is used for power prediction.
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Start

Predict Irradiance of
Next Day (GIrradiance)

Calculate Clear-
ness Index (K)

K > Kth?

Predict Power
by Sunny Model

Predict Power by
Cloudy Model

Stop

yes
No

Figure 4.21. Flowchart of dataset clustering approach

4.5.3 Dataset Clustering Optimization
In order to find the optimized value of clearness index for the current dataset, multiple
threshold values are used for clearness index and each time dataset is divided into sunny
sub-dataset and cloudy sub-dataset. Each sub-dataset is split into train set, validation set
and test set with ratio of 0.6, 0.2 and 0.2 respectively. For each sub-dataset RSE value
of power prediction should be computed, therefore a model is trained on train set, best
performing model on validation set is saved to be used for testing the model performance
on test set. In this way the RSE value for each sub-dataset is computed, but in order
to compare the performance of different threshold values RSE should be computed on
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the whole dataset instead of separately on each sub-dataset. To solve this issue, after
forecasting power value for test set the prediction results should be added into the original
dataset. In this way real power values and prediction values both exist in the original
dataset and RSE could be computed on the whole dataset. By using this method computed
RSE values can be utilized to compare different threshold values of clearness index. This
procedure is graphically illustrated in Fig. 4.22.

Figure 4.22. Visialization overall RSE computation
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Simulations

In this sections simulation results of dataset clustering using TCN architecture are illus-
trated in Fig. 4.23-4.28.

Threshold = 0.6 OverallRSE = 0.3981, Totalnumberofdays = 365

Sunny Dataset RSE = 0.3737, Numberofsunnydays = 317

Figure 4.23. Simulation results for sunny dataset with threshold value equal to 0.6

Cloudy Dataset RSE = 0.6136, Numberofcloudydays = 48

Figure 4.24. Simulation results for cloudy dataset with threshold value equal to 0.6
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Threshold = 0.7 Overall RSE = 0.3982, Total number of days = 365

Sunny Dataset RSE = 0.3500, Number of sunny days = 277

Figure 4.25. Simulation results for sunny dataset with threshold value equal to 0.7

Cloudy Dataset RSE = 0.5649, Number of cloudy days = 88

Figure 4.26. Simulation results for cloudy dataset with threshold value equal to 0.7
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Threshold = 0.8 Overall RSE = 0.4301, Total number of days = 365

Sunny Dataset RSE = 0.3289, Number of sunny days = 203

Figure 4.27. Simulation results for sunny dataset with threshold value equal to 0.8

Cloudy Dataset RSE = 0.5810, Number of cloudy days = 162

Figure 4.28. Simulation results for cloudy dataset with threshold value equal to 0.8

58



4.5 – Model Performance Improvements

Results

Results of simulation without performing database clustering and with performing database
clustering using different values for clearness index threshold and different architectures are
summarized in Tab. 4.4

Target Threshold # Days LSTM LSTNet TCN
RSE CORR RSE CORR RSE CORR Overall RSE

Wole Dataset Irradiance - 365 0.4862 0.8767 0.4189 0.9139 0.4467 0.9165 0.4467
Whole Dataset Power - 365 0.5162 0.8633 0.4613 0.8904 0.4421 0.8992 0.4421
Sunny Power 0.6 317 0.4380 0.9045 0.3932 0.9225 0.3737 0.9275 0.3985Cloudy 48 0.9476 0.6610 0.6421 0.7926 0.6136 0.8046
Sunny Power 0.7 277 0.4001 0.9196 0.3499 0.9370 0.3500 0.9393 0.3982Cloudy 88 0.7352 0.7515 0.5409 0.8494 0.5649 0.8268
Sunny Power 0.8 203 0.3794 0.9328 0.3391 0.9448 0.3289 0.9435 0.4301Cloudy 162 0.6537 0.7700 0.5823 0.8400 0.5810 0.8472

Table 4.4. Simulation results summary for Florida dataset

From Tab. 4.4 valuable information can be observed. First of all the results are con-
sistent with results obtained from Table 4.3. TCN has the best prediction accuracy and
LSTM has the worst prediction accuracy due to the reasons mentioned in previous sections.

One other observation is that clustering the dataset reduced prediction error, and from
the experiments it is evident that threshold value of 0.8 has improved prediction accuracy
less that other threshold values. The goal of dataset clustering is grouping the days with
more similar trends together and increasing the threshold value classifies more days in
cloudy category, this experiment helped us to find the appropriate threshold value for this
dataset and threshold 0.6 is chosen as the best threshold value for Florida dataset.

Forecasting performance for cloudy days is significantly lower than sunny days. A
possible explanation could be high variability of power variable within cloudy dataset,
while in sunny dataset, days usually follow the same trend and their peek value is closer
to maximum obtainable value, therefore training on sunny dataset leads to more repeated
predictions.
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4.6 Model Performance in Different Locations
Different locations around the world have different climates. In order to understand how
well model generalizes to different weather conditions the experiments were repeated on
datasets containing power and weather information from Italy and Oman.

4.6.1 Italy Dataset
Threshold = 0.6

(a) Sunny Sub-dataset, Threshold = 0.6

(b) Cloudy Sub-dataset, Threshold = 0.6

Figure 4.29. Italy dataset simulation results, Threshold = 0.6
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Threshold = 0.7

(a) Sunny Sub-dataset, Threshold = 0.7

(b) Cloudy Sub-dataset, Threshold = 0.7

Figure 4.30. Italy dataset simulation results, Threshold = 0.7
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Threshold = 0.8

(a) Sunny Sub-dataset, Threshold = 0.8

(b) Cloudy Sub-dataset, Threshold = 0.8

Figure 4.31. Italy dataset simulation results, Threshold = 0.8

Results

Italy Dataset Target Threshold # Days TCN
RSE CORR Overall RSE

Sunny Power 0.6 153 0.4849 0.8951 0.5451Cloudy 213 0.7908 0.7039
Sunny Power 0.7 139 0.4676 0.8871 0.5467Cloudy 227 0.7503 0.7222
Sunny Power 0.8 112 0.4045 0.9152 0.5317Cloudy 254 0.6875 0.7470

Table 4.5. Simulation results summary for Italy dataset
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4.6.2 Spain Dataset
Threshold = 0.6

(a) Sunny Sub-dataset, Threshold = 0.6

(b) Cloudy Sub-dataset, Threshold = 0.6

Figure 4.32. Spain dataset simulation results, Threshold = 0.6
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Threshold = 0.7

(a) Sunny Sub-dataset, Threshold = 0.7

(b) Cloudy Sub-dataset, Threshold = 0.7

Figure 4.33. Spain dataset simulation results, Threshold = 0.7

64



4.6 – Model Performance in Different Locations

Threshold = 0.8

(a) Sunny Sub-dataset, Threshold = 0.8

(b) Cloudy Sub-dataset, Threshold = 0.8

Figure 4.34. Spain dataset simulation results, Threshold = 0.8

Results

Spain Dataset Target Threshold # Days TCN
RSE CORR Overall RSE

Sunny Power 0.6 242 0.4314 0.9184 0.4811Cloudy 124 0.8239 0.7126
Sunny Power 0.7 228 0.4196 0.9207 0.4909Cloudy 138 0.7984 0.7231
Sunny Power 0.8 112 0.4058 0.9288 0.4788Cloudy 254 0.6955 0.7910

Table 4.6. Simulation results summary for Spain dataset
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4.6.3 Oman Dataset
Threshold = 0.6

(a) Sunny Sub-dataset, Threshold = 0.6

(b) Cloudy Sub-dataset, Threshold = 0.6

Figure 4.35. Oman dataset simulation results, Threshold = 0.6
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Threshold = 0.7

(a) Sunny Sub-dataset, Threshold = 0.7

(b) Cloudy Sub-dataset, Threshold = 0.7

Figure 4.36. Oman dataset simulation results, Threshold = 0.7
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Threshold = 0.8

(a) Sunny Sub-dataset, Threshold = 0.8

(b) Cloudy Sub-dataset, Threshold = 0.8

Figure 4.37. Oman dataset simulation results, Threshold = 0.8

Results

Oman Dataset Target Threshold # Days TCN
RSE CORR Overall RSE

Sunny Power 0.6 320 0.1123 0.9949 0.1388Cloudy 46 0.2843 0.9590
Sunny Power 0.7 277 0.1159 0.9940 0.1451Cloudy 89 0.2241 0.9754
Sunny Power 0.8 238 0.097 0.9954 0.1207Cloudy 128 0.1605 0.9872

Table 4.7. Simulation results summary for Oman dataset
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4.6.4 Comparison
Tab. 4.8 summarizes best model performance in different locations and climate conditions.
Countries like Oman which most of the time sky is clear, more days are sunny and follow
the same trend tend to have higher prediction accuracy. In weather conditions that tend
to change and there are numerous cloudy days with different cloud intensity model perfor-
mance decreases due to variability of power and irradiance within the dataset that makes
prediction task more challenging. Optimum threshold value depends on target location’s
climate and it’s better to be tuned for each dataset.

Dataset Data Best Threshold # Days Test RSE Test CORR Overall RSE

Florida Sunny 0.7 277 0.3500 0.9393 0.3982Cloudy 88 0.5649 0.8256

Italy Sunny 0.8 112 0.4045 0.9152 0.5317Cloudy 254 0.6875 0.7470

Spain Sunny 0.8 112 0.4058 0.9288 0.4788Cloudy 254 0.6955 0.7910

Oman Sunny 0.8 238 0.0987 0.9954 0.1207Cloudy 128 0.1605 0.9872

Table 4.8. Summary of model performance in different locations
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Chapter 5

Deployment

For code deployment different scenarios are considered. One possible scenario is that user
has access to the code and wants to run the code on an arbitrary device. In this case user
should be able to modify configuration parameters to satisfy the requirements.

Solar forecast module is configured to read the configuration parameters from a specified
JSON file. Users can customize configuration parameters by modifying the JSON file. In
order to simplify configuration parameters customization, a Graphical User Interface (GUI)
is also implemented. In this way in case GUI is not available user is still able to modify
the configuration parameters by modifying the JSON file.

Another possible scenario is running the code on a remote server and exposing the
service to the users through APIs.

In first scenario code can be executed on any arbitrary machine and user should be able
to modify the configuration parameters. For this purpose, two methods are implemented.
User can directly modify the JSON file that solar forecast module uses for reading the
configuration parameters from. Another method is using a GUI to modify the JSON file
and automatically starting solar forecast execution.

5.1 Configuration Parameters JSON File
Configuration parameters can be updated through a JSON file. User can modify parame-
ters.json file. When solar forecast code runs, configuration parameters are captured from
the JSON file. This implementation is clean and easy and is always available even to the
users that their device does not support GUI. Fig. 5.1 shows the structure of the parame-
ters.json file. Users are able to specify whether GPU or CPU executes the code. Moreover,
number of epochs used for training the model can be modified by the user. Another con-
figuration parameter is prediction horizon and window length. Prediction horizon specifies
the time span in future that model should predict, and window length specifies the number
of samples used as input of the model used for predictions. Also, user can specify the
target variable. If only power is chosen as target variable predictions take place without
dataset clustering. In case both power and irradiance are selected dataset is clustered into
sunny and cloudy and predicted irradiance value is used for classifying the target day as
sunny or cloudy then power prediction takes place.
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Figure 5.1. Configuration parameters JSON file

5.2 Graphical User Interface (GUI)
GUI is implemented using Tkinter which is the standard Python interface to the TK GUI
toolkit. TK is a cross-platform toolkit that provides a library of basic GUI elements. TK
allows GUI implementation in different programming languages.

5.2.1 Implementation Steps
In order to use Tkinter for developing GUI application following steps are required:

1. Import Tkinter Module
Tkinter library should be imported by using the usual command for importing li-
braries.

from t k i n t e r import ∗

2. Implement Main Window
Tk() method of Tkinter library creates the main window. Main window can be
implemented using the following command:

window = Tk( )

Moreover, Tkinter mainloop method is used when application is ready for execution.
Mainloop is an infinite loop that constantly refreshes the window and checks for
modifications in GUI window as long as window is open.

3. Add GUI Widgets to Main Window
Grid method is used to organize the widgets in table-like structure inside the window.
Tkinter offers different widgets. The widgets are described in further subsections.

4. Capture Entered Information
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Button widgets can be used for this purpose, because user is able to associate a
user-defined function to each button. Therefore, when button is pressed Tkinter
automatically calls the associated function.
In the associated function entered value to each widget can be captured and in this
project the JSON file containing configuration parameters is updated accordingly.

5.2.2 Widgets
The widgets included in GUI implementation are explained below:

Button

In order to add button to GUI application Button widget can be used and a user-defined
function can be associated to the button. When the button is pressed Tkinter automatically
calls the associated function.

In the below code a button is implemented in the parent window that is shown by
window parameter. "text" parameters define the text that is displayed on the button and
"command" parameter calls the user-defined function when button is clicked.

btn = Button (window , t ext = " Star t " , command = c l i c k e d )

Radio Button

Radio button allows choosing one option among multiple choices. The following code is
used for radio button creation. "text" parameter defines the text that is displayed for the
radio button. When a radio button is selected the value is set to the variable.

rad1 = Radiobutton (window , t ext=’CPU’ , va lue=’ cpu ’ , v a r i ab l e=
ñ→ device_value )

Check Button

Check buttons allow choosing multiple choices. A variable is associated to each check
button. In the following code the variable is Boolean and its default value is true.

pred ic t ion_1_state = BooleanVar ( )
pred ic t ion_1_state . set (True )
pred ict ion_1 = Checkbutton (window , t ex t=’ I r r ad i an c e ’ , var=

ñ→ pred ic t ion_1_state )

Entry

Single line text entry is possible by this widget. The window and width of the entry box
are defined in the following code:

epochs_value = Entry (window , width=10)
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Label

Is a widget that can be used to display a text f image. "text" parameters define the displayed
text on label widget. An example of label widget implementation is shown in the following
code:

window_label = Label (window , t ext="Window length : " )

The implemented GUI is illustrated in Fig. 5.2. GUI execution steps are described as
follows:

1. gui.py execution

• GUI window appears

2. Entering the configuration parameters in GUI window

3. Pressing the Start button in GUI window

• JSON file containing configuration parameters is updated by new entered pa-
rameters

• Solar forecast module starts execution
• GUI window terminates
• Solar forecast module captures configuration parameters from JSON file
• Solar forecast module continues execution and computes the predictions

5.2.3 GUI Freezing Issue
When solar forecast module is executed on the same thread as mainloop method of Tkinter
library, mainloop stops until the code execution is finished, this results in GUI freezing.
Multi-threading programming is able to solve this issue. When solar forecast code is
executed on a separate thread GUI does not freeze anymore. In order to use multi-threading
programming Python threading library is used. In the implemented solution main thread
creates two threads. One thread is responsible of GUI and the other thread executes the
solar forecast module. Main thread starts the GUI thread and then waits for the GUI
thread and the solar forecast thread to join. When user clicks on the start button second
thread that is responsible for solar forecast module starts. Then GUI window is closed by
using window.destroy() command and first thread terminates.

5.3 Remote Server
One possible scenario is to run the solar forecast code on a remote server and expose the
service to clients through APIs. One of the advantages of this method is that service does
not depend on the user device characteristics. Therefore, users can take advantage of the
service by sending HTTP requests without any concerns about their device characteristics.
Moreover, when updates are available users do not have to download any updates and they
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Figure 5.2. GUI implementation

Figure 5.3. Remote server

can continue using the service without any extra effort. The main idea of using a shared
server among the users is illustrated in Fig. 5.3.

To implement the paradigm illustrated in Fig. 5.3, a web server is required. The web
server should be able to handle incoming HTTP requests, perform some initial checks on the
current system status and hand them over to the Machine Learning engine running as the
python code. Since, the webserver shall also be able to execute the CPU/GPU consuming
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tasks at the same time, conventional web hosting plans are not the best choice for this task.
Instead, more resources should be allocated to perform this task. At this point there are
mainly two options to choose from, dedicated servers or virtual private servers. Dedicated
servers can provide a great amount of resources in exchange to an expensive subscription
fee. However, VPS plans are designed to exploit the powerful features of dedicated servers
such as the freedom to install specific operating systems and setup the environment in
a customized manner while spending less amount of money for the subscription fees. In
the VPS architecture, a dedicated server shares its resources to the underlying virtual
private servers. These virtual private servers are isolated from each other thanks to the
virtual machine architecture. For the purpose of this research, since for the moment there
is only one potential user to access the service, Virtual Private Server (VPS) is a well-
fitting candidate. There are multiple web hosting and cloud infrastructure providers which
rent virtual private servers. In order to minimize the costs of this research, DigitalOcean
Company has been selected to rent a virtual machine and setup the remote server. In the
following sections, the steps to setup the environment is introduced.

5.3.1 Environment Setup
1. The first step is to create a new account on DigitalOcean website1.

2. As soon as the account is ready and payment method is configured, a new project
can be started. The project is the location to gather all the occupied resources.

3. In DigitalOcean terms, a virtual machine running on the VPS is called a Droplet.
Next step is to create a droplet and selecting the required specifications. At this step
the amount of resources dedicated to the virtual private server should be carefully
chosen. It will be possible to increase some of the resources such as memory in future
however down-sizing is not natively supported by the platform. For the starting
point of this project, a VPS with following specifications has been created. Different
starting plans of DigitalOcean droplets are listed in figure Fig. 5.4.

• Operating System: Ubuntu 18.04.3 LTS (No GUI)
• CPU: 1 vCPU
• Memory: 2GB
• SSD: 50GB
• Transfer Traffic: 2TB

The data center can be selected based on the available locations. In order to have the
VPS in Europe, Amsterdam data center has been chosen. For accessing the droplet,
two methods can be utilized. A password key or SSH keys. SSH keys are more reliable
and secure, so in the next step, an SSH key is generated to attach to the VPS.

4. Generate SSH key using git bash on the local PC. If ssh public and private key has
not been generated for the current user on local PC, they can be generated using git

1https://cloud.digitalocean.com/registrations/new
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Figure 5.4. Plans for VPS resources

bash and the private key should be added to the droplet. Figure Fig. 5.5 illustrates
the generated public key. The file content is added to the droplet settings.

Figure 5.5. Fetch SSH public key

5. After setting up the droplet, the platform requires some time to process the request,
deploy the virtual machine, set up the requested operating system and enable the
access. In the DigitalOcean platform portal the progress is tracked with a progress
bar. It usually takes up to 10 minutes to set up the whole droplet. When setup is
complete, the ssh connection can be tested by using git bash terminal. To access the
droplet with SSH, the ip address of the VPS can be fetched from the DigitalOcean
portal. Note that no password would be required to authenticate as the public key
is already shared with the VPS previously. ssh root@remote_server_ip. Figure
Fig. 5.6 shows that the droplet is deployed correctly and it is up and running.

6. For faster access, a meaningful name can be chosen for the ip address to store it inside
the ssh config file. This will eliminate the necessity to enter the ip address every time
to access to the VPS. So the VPS can be accessible with a command similar to ssh
server.

7. Now that the SSH connection is up and running, the machine learning engine code can
be cloned into the server. To do so, a new directory is created under home directory
and the project is cloned.

8. Before starting to run the code, it is necessary to install following programs and
libraries.

• Anaconda: apt-get install libgl1-mesa-glx libegl1-mesa libxrandr2 libxrandr2 libxss1
libxcursor1 libxcomposite1 libasound2 libxi6 libxtst6

• PyTorch: conda install pytorch torchvision cpuonly -c pytorch Note that PyTorch
can be also used with GPU, however the affordable droplets do not have GPU
installed, so the PyTorch is installed in CPU only mode.
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Figure 5.6. Droplet creation status on DigitalOcean portal

• Matplotlib: To generate the graph results, this library is also required and can
be installed using python well known package manager pip. pip install matplotlib

9. At this point, all the required materials are ready to execute the code. To setup ad-
ditional tools to ease the remote development following actions have been performed.

10. On local PC, install VS Code. VS Code is a brand-new multi-platform IDE developed
by Microsoft. This idea exploits the power of plugins and extensions to add powerful
features to the integrated development environment.

11. A very interesting extension developed by Microsoft is called Remote Development
extension. Upon activation, it deploys a micro server on the target remote machine
and then it is possible to open the code physically stored on remote machine seam-
lessly. So, all the modifications are applied in real time to the remote code and also
the terminal section will be executed on remote server. To install this remote ex-
tension, it is enough to open the VS code, navigate to extensions section, select and
install the remote development extension. Then it automatically reads the SSH con-
figuration file to find already configured targets. It is also possible to add manually
the target. When the SSH connection is established with the target and VS code
initialized the remote environment, it would be possible to open the cloned code to
eventually modify it. The IDE also integrates the git functionality, so new commits
could be made directly from the IDE.

5.3.2 Application Setup
Flask [29] is a micro web framework written in Python and can be used to run a web server
and let the server listen to incoming HTTP requests. Flask application object implements
a Web Server Gateway Interface (WSGI) application. WSGI is a web server that runs
Python code to create a web application.

Application setup code is demonstrated in Fig. 5.7. Where web server is implemented
using Flask and listens to incoming post HTTP requests to target Uniform Resource Lo-
cator (URL) and sends a success message in case service is alive. Detailed steps are
enumerated below:

1. Flask class should be imported to provide the WSGI application.

2. An instance of Flask class should be created.
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3. route() decorators specify the Uniform Resource Locators (URLs) that trigger Flask
application functions.

4. when function is triggered by receiving post request on the target URL root route, /,
status code 200 that indicates the request is successfully received and server is alive
is set with a message body showing success.

from f l a s k import Flask

HOST = ’ 0 . 0 . 0 . 0 ’
PORT = 80

app = Flask (__name__)

@app . route ( ’ / ’ , methods = [ ’GET’ , ’POST ’ ] )
def index ( ) :
r e s u l t = {

’ message ’ : ’ s u c c e s s ’
}
r e s u l t = j s o n i f y ( r e s u l t )
return r e su l t , s t a tu s .HTTP_200_OK

i f __name__ == ’__main__ ’ :
app . run ( host = HOST, port = PORT, debug = False )

Figure 5.7. Web application setup

5.3.3 Application Programming Interface (API)
After application setup, APIs need to be defined and implemented. In this scenario, users
need to send request with configuration parameters to the server and receive the prediction
results from the server. Moreover, when server is busy running the solar forecast module
new training requests should be rejected until solar forecast module execution is completed.
Two different APIs are required for this project. One API for receiving requests from
the users and starting execution of solar forecast module, another API for delivering the
prediction results to the users. Therefore, in this case two different APIs are defined.
/execute API receives configuration parameters and starts solar forecast module execution.
/get − results API sends the prediction results to the user when results are ready. The
schematic of APIs are illustrated in Fig. 5.8.

As of Flask version 1.0, Flask runs in threaded mode by default. Therefore, Flask is able
to handle multiple requests simultaneously by running each request in a separate thread
and serve multiple users at the same time. Prior to version 1.0 or in case threaded mode
is disabled, server runs in single-threaded mode. This means that server is only able to
handle one request at a time.
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Figure 5.8. APIs illustration

During server implementation two points need to be considered:

• When server is busy with execution of solar forecast module, new train requests are
rejected in order to prevent server from overloading.

• Results should be available to users only after solar forecast module execution is
properly finished and prediction results are available, otherwise a proper message
should be delivered to the users indicating execution is already in progress.

In order to deal with the mentioned points, a global variable is used in API implemen-
tations indicating busy status. When server is busy with solar forecast module execution,
Busy global variable is set to True. Therefore, new execution and get-results requests are
terminated by sending proper messages to users. When solar forecast module execution is
completed Busy global variable, value is set to False and new requests can be accepted.

Execute API

When a new request triggers /execute API and Busy global variable is False, if request
is valid in sense of method and variables, Busy global variable is set to True and new
thread is created for execution of solar forecast module. Because, solar forecast module
execution may take several minutes to complete, another thread is created for handling the
execution. Also, user will be notified by receiving a response with status code 200 and a
message indicating start of solar forecast module execution.

Get Results API

Upon triggering of /get − results API if request is valid and Busy global variable is False,
the csv file containing the prediction results will be sent to the user with status code 200
that shows success. Otherwise, user will be notified by proper messages showing possible
errors or if code execution is already in progress.
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Conclusion

This research aimed to develop an accurate solar power forecast module to be used in
optimized Energy Management Systems (EMS). EMS systems require very short and short
prediction horizons for plant operation, scheduling and storage control. Due to strength
of machine learning models in solar forecast prediction tasks for aforementioned horizons,
different architectures from recurrent neural networks, convolutional neural networks and
also a hybrid architecture were further investigated. The studied architectures are LSTM,
TCN and LSTNet respectively. Simulation results indicate that TCN outperforms LSTM
and LSTNet in terms of prediction accuracy and correlation. Two different prediction
horizons are used during simulations, 5 minutes and 24 hours. By comparing prediction
accuracy of these simulations, it is evident that increase of prediction horizon results in
decrease of the prediction accuracy. It can be concluded that forecasting becomes more
challenging when prediction horizon increases.

By clustering dataset into sunny and cloudy days and using a separate prediction code
module for each set, prediction accuracy was improved for all the models. Clustering
dataset using TCN architecture has the best prediction results among the models. More-
over, results show that multivariate forecasting by considering meteorological parameters
in addition to output power, results in better prediction accuracy with respect to univariate
forecasting that only uses output power for prediction. Training and testing the prediction
module on different datasets containing data of different locations and climate conditions
shows that prediction accuracy is higher for places that have more stable sunny weather
conditions and have less cloudy days around the year. This is due to variability of power
and solar irradiance within the datasets having unstable weather conditions that makes
prediction task more challenging.

A Graphical User Interface (GUI) is implemented to ease the use of prediction module
for users who access the source code. GUI receives configuration parameters from the user
and starts prediction module execution. Configuration parameters can also be customized
by modification of the JSON file containing the configuration parameters directly. In order
to deal with GUI freezing issue multi-threading programming is used. Moreover, service is
made available by utilizing a remote server and exposing REST APIs to the users. In this
case users send HTTP requests containing proper configuration parameters to server and
receive a CSV file containing the prediction results. The implemented prediction module
can be included in EMS to optimize the system performance and also can be utilized
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directly by users for further analysis.
Further studies could improve prediction accuracy by improving architecture of predic-

tion module. Moreover, a front-end website could be developed to create a user-friendly
environment to the users.
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Appendix A

GUI Implementation Details

from t k i n t e r import ∗
import j s on
import os
from main import main as s o l a r f o r e c a s t
import thread ing

def gui ( ) :
window = Tk( )

window . t i t l e ( " So la r Forecast Module " )

window . geometry ( ’ 500x500 ’ )
welcome = Label (window , t ext=" Please ente r parameters : " )
welcome . g r id ( column=0, row=0)

device_value = Str ingVar ( )
dev i ce = Label (window , t ex t=" Device : " )
rad1 = Radiobutton (window , t ext=’CPU’ , va lue=’ cpu ’ , v a r i ab l e=

ñ→ device_value )
rad2 = Radiobutton (window , t ext=’GPU’ , va lue=’ gpu ’ , v a r i ab l e=

ñ→ device_value )
dev i ce . g r i d ( column=0, row=1)
rad1 . g r i d ( column=1, row=1)
rad2 . g r i d ( column=2, row=1)

epochs_labe l = Label (window , t ex t=" Total epochs : " )
epochs_labe l . g r i d ( column=0, row=2)
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epochs_value = Entry (window , width=10)
epochs_value . g r id ( column=1, row=2)

hor i zon_labe l = Label (window , t ext=" Pred i c t i on hor i zon : " )
hor i zon_labe l . g r i d ( column=0, row=3)
horizon_value = Entry (window , width=10)
horizon_value . g r i d ( column=1, row=3)
horizon_comment = Label (window , t ext=" Choose 24 f o r next day

ñ→ p r e d i c t i o n s . " )
horizon_comment . g r i d ( column=2, row=3)

window_label = Label (window , t ext="Window length : " )
window_label . g r i d ( column=0, row=4)
window_value = Entry (window , width=10)
window_value . g r i d ( column=1, row=4)
window_comment = Label (window , t ext=" 100 i s recommended . " )
window_comment . g r i d ( column=2, row=4)

p r ed i c t i on_ labe l = Label (window , t ex t=" S e l e c t Pred i c t i on
ñ→ t a r g e t s : " )

p r ed i c t i on_ labe l . g r i d ( column=0, row=5)
pred ic t ion_1_state = BooleanVar ( )
pred ic t ion_1_state . set (True ) #s e t check s t a t e
pred ict ion_1 = Checkbutton (window , t ex t=’ I r r ad i an c e ’ , var=

ñ→ pred ic t ion_1_state )
pred ict ion_1 . g r id ( column=1, row=5)
pred ic t ion_2_state = BooleanVar ( )
pred ic t ion_2_state . set (True )
pred ict ion_2 = Checkbutton (window , t ex t=’Power ’ , var=

ñ→ pred ic t ion_2_state )
pred ict ion_2 . g r id ( column=2, row=5)

p lo t_ labe l = Label (window , t ext="Number o f samples to be
ñ→ p lo t t ed : " )

p l o t_ labe l . g r i d ( column=0, row=6)
plot_value = Entry (window , width=10)
plot_value . g r id ( column=1, row=6)

t r a i n_ labe l = Label (window , t ex t=" Train s e t r a t i o : " )
t r a i n_ labe l . g r i d ( column=0, row=7)
tra in_value = Entry (window , width=10)
tra in_value . g r i d ( column=1, row=7)
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va l i d a t i on_ l abe l = Label (window , t ext=" Va l idat i on s e t r a t i o : "
ñ→ )

va l i d a t i on_ l abe l . g r i d ( column=0, row=8)
va l idat i on_va lue = Entry (window , width=10)
va l idat i on_va lue . g r i d ( column=1, row=8)

def c l i c k e d ( ) :
parameters ={
" dev i c e " : device_value . get ( ) ,
" epochs " : epochs_value . get ( ) ,
" hor i zon " : hor izon_value . get ( ) ,
"window " : window_value . get ( ) ,
" P r ed i c t i on_ i r r ad i ance " : pred ict ion_1_state . get ( ) ,
" Predict ion_power " : pred ict ion_2_state . get ( ) ,
" po in t s " : p lot_value . get ( ) ,
" t r a i n_ra t i o " : t ra in_value . get ( ) ,
" v a l i d a t i on_ra t i o " : va l idat ion_va lue . get ( )
}

# S e r i a l i z i n g j son
j son_object = j son . dumps( parameters , indent = 4)

# Writing to parameters . j son
with open( os . path . j o i n ( os . getcwd ( ) , ’ data ’ , ’ parameters .

ñ→ j s on ’ ) , "w" ) as o u t f i l e :
o u t f i l e . wr i t e ( j son_object )

t2 . s t a r t ( )
window . des t roy ( )

btn = Button (window , t ext=" Star t " , command=c l i c k e d )

btn . g r i d ( column=0, row=10)

window . mainloop ( )

t1 = thread ing . Thread ( t a r g e t=gui , a rgs = [ ] )
t2 = thread ing . Thread ( t a r g e t=s o l a r f o r e c a s t , a rgs = [ ] )
t1 . s t a r t ( )
t1 . j o i n ( )
t2 . j o i n ( )

85



86



Appendix B

Remote Server Execute API
Implementation Details

@app . route ( ’ / execute ’ , methods = [ ’POST ’ ] )
def execute ( ) :

global BUSY
i f (BUSY == False ) :

worker = thread ing . Thread ( t a r g e t=di spatcher , a rgs = [ ] )
try :

# check i f h t t p method i s POST
i f r eque s t . method == ’POST ’ :

dev i ce = reques t . va lue s . get ( ’ dev i c e ’ )
epochs = reques t . va lue s . get ( ’ epochs ’ )
hor i zon = reque s t . va lue s . get ( ’ hor i zon ’ )
window = reque s t . va lue s . get ( ’window ’ )
Pred i c t i on_ i r r ad i ance = reques t . va lue s . get ( ’

ñ→ Pred i c t i on_ i r r ad i ance ’ )
Prediction_power = reques t . va lue s . get ( ’

ñ→ Prediction_power ’ )
po in t s = reque s t . va lue s . get ( ’ po in t s ’ )
t r a i n_ra t i o = reques t . va lue s . get ( ’ t r a i n_ra t i o ’ )
v a l i d a t i on_ra t i o = reque s t . va lue s . get ( ’

ñ→ va l i d a t i on_ra t i o ’ )

BUSY = True
worker . s t a r t ( )
r e s u l t = {
’ message ’ : ’ t r a i n i n g i s s t a r t ed ’
}
r e s u l t = j s o n i f y ( r e s u l t )
return r e su l t , s t a tu s .HTTP_200_OK
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else :
# s p e c i f y the method must be POST
# return error code 400
r e s u l t = {

’ message ’ : ’ a ccept s POST parameters ’
}
r e s u l t = j s o n i f y ( r e s u l t )
return r e su l t , s t a tu s .HTTP_400_BAD_REQUEST

except :
r e s u l t = {

’ message ’ : ’ Error during execut ion ’
}
r e s u l t = j s o n i f y ( r e s u l t )
return r e su l t , s t a tu s .HTTP_400_BAD_REQUEST

else :
r e s u l t = {

’ message ’ : ’ Execution a l r eady in p rog r e s s . . . ’
}
r e s u l t = j s o n i f y ( r e s u l t )
return r e su l t , s t a tu s .HTTP_400_BAD_REQUEST

def d i spa t che r ( ) :
r e s u l t = s o l a r f o r e c a s t ( )
global BUSY
BUSY = False
return 0
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Remote Server Get Results
Implementation Details

@app . route ( ’ / get−r e s u l t s ’ , methods=[ ’POST ’ ] )
def ge t_re su l t s ( ) :

global BUSY
i f (BUSY == False ) :

try :
# check i f h t t p method i s POST
i f r eque s t . method == ’POST ’ :

path = reques t . va lue s . get ( ’ path ’ )
i f path i s None :

r e s u l t = {
’ message ’ : ’ mis s ing or bad parameters {} ’

ñ→ . format ( r eque s t )
}
r e s u l t = j s o n i f y ( r e s u l t )
return r e su l t , s t a tu s .HTTP_400_BAD_REQUEST

try :
return s end_f i l e ( path , as_attachment=True ) ,

ñ→ s t a tu s .HTTP_200_OK
except Exception as e :

return str ( e )

else :
# s p e c i f y the method must be POST
# return error code 400
r e s u l t = {

’ message ’ : ’ a ccept s POST parameters ’
}
r e s u l t = j s o n i f y ( r e s u l t )
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return r e su l t , s t a tu s .HTTP_400_BAD_REQUEST
except :

r e s u l t = {
’ message ’ : ’ Error during opera t i on ’

}
r e s u l t = j s o n i f y ( r e s u l t )
return r e su l t , s t a tu s .HTTP_400_BAD_REQUEST

else :
r e s u l t = {

’ message ’ : ’ execut ion in p rog r e s s . . . ’
}
r e s u l t = j s o n i f y ( r e s u l t )
return r e su l t , s t a tu s .HTTP_400_BAD_REQUEST
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