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Abstract

During the recent years, the transportation of persons and items has changed drastically. Shared
mobility systems are now providing flexible public travel modes comparable to private trans-
portation systems at accessible prices. Companies like Uber, Lyft, Postmates are developing
algorithms for managing their fleets of vehicles to accommodate ever-growing demands. In 2014
Uber announced UberPool, a ride-sharing service that nowadays accounts for 20% of the total
Uber rides. Ride-sharing was born to accommodate the requests of more customers in one sin-
gle vehicle ride, so that to decrease the service costs both for the providers and the customers.
The complexity of the problem derives from the number of constraints influencing the system.
The goal is to efficiently manage the fleet, by reducing transportation costs and increasing the
occupancy ratio of vehicles, while at the same time satisfying the most customers.
In this thesis, a dynamic ride-sharing algorithm for the assignment of vehicles to customers has
been developed together with a demand forecasting algorithm to predict the number of pick-ups
requests that will happen in the different areas of a map.
Specifically, the first part of the thesis will deal with the development of the dynamic ride-sharing
algorithm.
Our ride-sharing algorithm is dynamic because it can add requests to vehicles when vehicles are
already serving other requests, while meeting all the time requirements of the customers on the
departing and arrival times.
Dynamic systems must be able to manage and process data that change over time, and to com-
pute assignments under strict temporal constraints.
The algorithm works by matching requests using network theory by building a so called share-
ability graph, that describes which requests can be shared and which vehicles can serve them,
depending on the time windows of the different tasks and on the capacities of the vehicles.
Then, on top of this graph, a set of feasible trips is generated. An integer linear programming
problem (ILP) will assign vehicles to trips by choosing them from the set of feasible trips. Great
emphasis will be given to the execution time of the algorithm, since the future scope is to have
it running on a real application for dynamic vehicle assignment, which will need to manage
real-time data from incoming requests of customers.
In our case, since it is not needed to assign all requests, imbalance between the distributions of
the demand and of the vehicles can leave some customers unserved. To try to serve previously
unassigned customers a rebalancing phase is designed where idle vehicles, if present, are matched
with requests that are still pending via the solution of a linear programming problem. Indeed,
it is imperative for transportation companies to prevent imbalances in the distribution of the
fleet in the areas covered by the service by predicting what will be the demand for taxis in the
different regions. To this aim, in the second part of the thesis we build a model to predict the
hourly number of pickups in different areas of the map. For this thesis, we have used the dataset
of the yellow taxi trips record data of New York City from three months of years 2015 and 2016.
The data have been preprocessed so that to generate a dataset that can give spatiotemporal
information of the pickups distribution. Also, weather conditions have been added as an ad-
ditional feature to the dataset. Finally, we have made a comparison between näıve prediction
approaches and more advanced techniques like gradient boosting and LSTM recurrent neural
networks, investigating what could be the advantages of more complex algorithms.
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Chapter 1

Introduction

With this thesis we want to build an algorithm for a dynamic ride-sharing service, where
vehicles will be optimally assigned to rides so that to minimize the total time travelled
by vehicles while at the same time trying to maximize the number of tasks served. To
this aim, it is convenient that vehicles (or robots) can work on more tasks at the same
moment. This is what we call ride-sharing, that is when rides are sharing the same vehicle
in a so called shared ride. Therefore, the problem becomes more complex since we will
have to verify fot the possibility for multiple tasks to be on board of the same vehicle
given their position in space, their time requirements, the capacity and state of the robots.
Moreover, it is called dynamic because there is the possibility for tasks to be added to
existing rides that are already on board of vehicles. The dynamism of the algorithm will
require the computation to be able to manage real-time data that are describing the status
of tasks and vehicles, which are changing over time. Ride-sharing belongs to the wider
class of problems called multi-robot task-a.location (MRTA) that is a subfield of the task
allocation problems. We want to spend part of the introduction of the thesis to define
what is task allocation and what is multi-robot task allocation, since they are needed to
later discuss about dynamic ride-sharing. Indeed, all these classes of problems share most
of the aspects and the way the problems are handled are similar.
Task allocation is of huge importance in the transportation industry, warehouse man-
agement, reconnaissance missions, mapping and missions in unknown environments and
many other fields where it is convenient to use more than one robot to complete the task.
Also, in the autonomous cars industry, having vehicles to exchange information about
the environment, where each of the vehicle is required to monitor a certain portion of
the space, is convenient since managing the whole set of inputs by one vehicle would be
computationally impossible.
Therefore, some cooperation is needed between the robots of the team, so that to have
them working for the sake of a global goal, that a single robot cannot accomplish.

In recent years, research have begun to investigate problems involving multiple, rather
than single, robots. Since the beginning the complexity of the problem has grown, due
to the added complexity of the tasks that teams would need to accomplish [40]. Re-
searchers added features like time windows for tasks, spatial constraints and probabilistic
and stochastic models to handle uncertainty [72].
The diversity of the various applications required also that many different approaches
were studied and used nowadays. This also increases the complexity of studying such a
wide topic. From the different approaches a huge classification arises.

3



1.1 Terminology

To begin speaking about task allocation, some definitions are needed for what concerns
the terminology in this field. [72].

� A robot is an autonomous agent responsible for performing some actions. Robots in
Multi-Robot Task Allocation (MRTA) are modelled as holonomic or point robots,
that is, as simple as possible, since the focus of the research is not to study low level
behavior of the robots and how they interact with the environment to do the task;

� A team is a set of different robots. They can be of same capabilities (homogeneous
robots) or of different capabilities (heterogeneous robots). The whole team is in-
volved in accomplish the global goal;

� A task is the action to be performed, also referred as a work unit. In some cases,
the task can be split in simpler tasks, that can themselves be assigned to different
robots. In other cases, the tasks are part of a more general task, or goal that the
team has to accomplish as a whole;

� A time window is a time interval related to the execution of the task. It starts at
the earliest time a task can start, and it ends at the latest time the task can end. A
time window is said to be closed when both the start and end times are given;

� Synchronization constraints are restrictions on the way more tasks are related in
time to each other. For example, some tasks must start or end at the same time;

� Precedence constraints specify ordering in time between tasks. For instance, a task
must start when another task already ended. It differs from synchronization by the
fact that for synchronization, a specific time is involved.

� A schedule is a timetable in which each task has a specific time to start, end or both.
In some cases each robot has its own individual schedule, while in others all robots
share a single schedule;

� The makespan is the time difference between the end of the last task and the start
of the first task;

� A route is a sequence of location to visit to accomplish one or different tasks. Routes
concern spatial distribution of the task or of a set of tasks;

� A task release (or request) refers to a task becoming available for execution.

1.2 Generic problem formulation

1.2.1 Robots and tasks

We assume there are finite sets of robots and tasks in our problem. Robots (or vehicles)
may have a state represented by location, speed, schedule, capabilities specifications.
A task may have states as location, earliest start, latest finish time, duration, cost, size,
reward and other possible specifications depending on the problem.
These states should represent entirely the robots and tasks for the specific problem, so
that to have the necessary information to solve the assignment problem.
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1.2.2 Constraints

Constraints are potentially arbitrary functions that restrict the space of feasible solutions
of the problem. They can be present as time windows, so they require the start and the
end of the task to lay on a specified time interval.
Ordering constraints specify a dependency between tasks or between different actions of a
single tasks (for instance, for pick-up and delivery tasks, the pick-up action must happen
before the drop-off action).
In the literature, a general approach to represent tasks is to have them as nodes of a
graph, where edges instead, represent relation or precedence constraints between tasks.
Constraints can also be related to the capabilities of the robots, that define which robots
are capable of performing which tasks. For instance, the fleet can be characterized by a
certain fleet heterogeneity, where some robots have facilities that others have not, and
this will end up in them being able to operate in conditions the other robots cannot [57].
Capacity constraints instead, define how many tasks a given robot can perform at the
same time. When robots are cars, for example, they have a limited seats capacity so no
more than a certain number of passengers can fit in the vehicle.
Temporal constraints are of huge importance in the field of task allocation, because of
implications due to the nature of the problem (like the sequence of actions that needs to
be observed for the fulfillment of the goal) and also because of requirements needed so
that to guarantee a good quality of the assignments in terms of timing of task execution
and possible delays with respect to the tasks’ deadlines.

Many temporal relationships are possible between a couple of tasks [4], as shown in
Figure 1.1. In this figure we can see all the possible temporal combinations between two
tasks.
These relationships can be used to define ordering and synchronization constraints be-
tween the tasks and can also be used as criteria for the combination of tasks when tasks
are grouped in sets.

Figure 1.1: Possible time order and synchronizations between two tasks.

Time windows

A time window is a temporal interval constraint on the start and the finish time of a
task. The task has usually a lower bound that is the earliest starting time, and an upper
bound that is the latest finish time. For more complex formulations we can have latest
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start time and earliest finish time. We can therefore define:

� Start time: is the time from when the task can be executed, the beginning of its
time window. Before this time, the task does not exist;

� End time: is the last moment in time an agent can work on the task. It marks the
end of the time window of the task. After this time, the task does no longer exist;

� Duration: is the time it takes an agent to do the task, once it is in the task location.
Its length is at most the length of the task time window;

A task is doable if the agent can reach it no later than the interval given by the end time
minus duration: otherwise the task cannot be completed before its end time [41].
Task allocation problems with time windows are generally NP-hard [88] and finding fea-
sible solutions is NP-complete [84].
Precedence and synchronization constraints impose partial ordering between tasks, which
can be used to eliminate candidate solutions that violate the ordering.
Instead, tasks with time windows are independent of each other and can be performed in
any order, as long as the robots can reach the tasks and execute them within the time
windows of the tasks.
Time windows can be used to describe many different types of temporal constraints be-
tween the tasks, so that in the scheduling, tasks are linked to each other depending on
their own time windows.

Hard and soft temporal constraints

When speaking about temporal constraints, there could be other additional informa-
tion we can give on the kind of temporal constraints the robots have to deal with. For
instance, we can have hard and soft temporal constraints. Soft temporal constraints allow
the assignment to violate the temporal constraints, knowing though that the quality of
the assignment will decrease as the constraint is violated. When the outcome of a task
depends softly on its time window, the later the task is fulfilled, the less useful the result
of the operation will be.
Instead, when we have hard temporal constraints, the accomplishment of the task has no
longer any value if the task is completed after its deadline.
Sometimes, the unfeasibility of a problem can be given by constraints that are too tight
so that we have no space to find for feasible solutions. In these cases, some applications
allow to soften some temporal constraints (especially when dealing with hard temporal
constraints), in order to define a set in which feasible solutions exist. Soften the temporal
constraints can also speed up the computation of the assignment and improve the quality
of heuristic search.

1.2.3 Optimization objectives

When tasks have been defined and the relationships between the tasks have been analyzed,
an assignment to vehicles has to take place. Applications of MRTA/TOC (Multi-Robot
Task Allocation with Temporal and Ordering Constraints) at the end require the robots
to achieve the goal minimizing (or maximizing) a certain cost function. To this purpose
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an optimization problem for the minimization or maximization of a certain cost function
is solved. Costs can be in the form of temporal measures (time spent, or delay on task
execution) or spatial measures (travelled distance) or related to the number of tasks ex-
ecuted, depending on the assignment quality criteria involved in the application. There
can be cases where we have single or multiple objectives. Multi-objective is used when we
want to find a trade-off between many criteria with which we want to evaluate the quality
of our assignment. For example, it could be that we want to minimize the total distance
travelled by the robot fleet while also minimize the time from the end time required by
the task and the actual time the task is completed by the robot (in case of soft temporal
constraints).
Objective functions are functions that related the variables of our problem to the cost
of the assignment. They may describe, as previously mentioned, the total cost as the
time delay with respect to tasks deadlines, the total travelled distance, the total time
distance, or to maximize a certain quantity that could be a score, a reward or the number
of satisfied tasks in the assignment.
The general framework will generate a solution in which the given robots are efficiently
allocated to the given tasks in such a way to maximize the overall performance of the
whole assignment problem.

We want to show now a very simple example of task allocation, referring to the case of
ST-SR-IA that is Single-Task robots, Single-Robots tasks and Instantaneous Assignment
(no schedule for future assignments).
This problem can be represented by a linear assignment problem, where N is the number
of robots and M is the number of tasks to be assigned [95].
Following, the mathematical model for such case from the combinatorial optimization
literature:

max
x

∑
i∈N

∑
j∈M

ui,jxi,j
(1.1)

subject to:
∑
i∈N

xi,j = 1, ∀i ∈ N∑
j∈M

xi,j = 1, ∀j ∈M

xi,j ∈ {0, 1}

(1.2)

The objective function in this case, that is the most general case, is a matrix of dimensions
N ×M that associates to every possible robot-task assignment x a utility (or score) u.
The larger the score, the greater is the productivity.
In this case a utility function u is used, but it is common that a cost function c is used
instead. In that case the problem is formulated so that to minimize the total cost of the
assignment.
An example of the minimization case is when ci,j represents the distances in time or space
between each robot and each task. If this is the case, we want that the optimal assignment
is such that the total time spent by the robot is the less possible, so that to save energy
and have an efficient system.
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For a feasible solution to this problem, the number of agents N must be equal the number
of tasks M. In the case they are not equal we can add as many ”dummy” agents or tasks
as needed. These dummy agent/tasks must have very low utility values with respect to
all tasks/agents in the system [57].
The linear assignment problem can be solved in polynomial time with algorithm such as
the Hungarian algorithm [58].

Utility

As said before, being this an optimization problem, we are trying to define a feasible
asignment of tasks to the robots that optimizes some objective. This objective can be
described as an utility function. To better understand the concept of utility we try to
give a definition that is taken from [40].

Given a robot r and a task t, if r is capable of executing t, then one can define, on some
stadardized scale, Qrt and Crt as the quality and cost, respectively, expected to result from
the execution of t by r. This results in a combined, utility measure:

Urt =

{
Qrt − Crt if r is capable of executing t

−∞ otherwise

There are problems, where the agent-task utility is independent of the other utilities
between the same robot and the other tasks. This happens for example in the case a fleet
of robots is required to pick-up some objects scattered on a map, and bring them to their
starting location. Every robot will departure from a different location and it is required
to bring the object to that location after having picked it up.
Therefore, we can define a value Qrt of the object and a cost Crt for that object t relative
to a specific robot r. The cost can be representative of the time required to complete the
task or of the energy consumption of the robot.
In this case we can say that the utilities of the different objects relative to robot r are
independent of each other, since the robot has to go back to its starting location after the
object is picked-up.
The global optimal solution to this task allocation problem for the entire fleet would be
to allocate each robot to the most convenient object.
Now, if we consider a different scenario in which the robots of the fleet have the capability
to carry more than one object at a time, they have the possibility of taking one object
first and then heading to other objects to pick them up too.
For example, if we consider robot R1 and objcets T1 and T2, and the algorithm knows
that the distance to travel between the two objects is smaller than the distance to go from
object T1 to the starting location of R1 and again going from starting location of R1 to
object T2, then the robot will travel directly form T1 to T2 since it is more convenient.
This is the case where the two utilities UR1T1 and UR1T2 are related to each other, since
there is the possibility of combining the two tasks for robot R1.
We can formalize this by extending the previous definiton of utility function, as suggested
in [57]. The utility function will now not only refer to single robots and single tasks but to
subsets of robots and subsets of tasks. R represents a subset of robots while T represents
a subset of tasks.
The utility function will be:
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URT =

{
QRT − CRT if R is capable of executing T
−∞ otherwise

For each subteam of agents we can define an effective utility, eURTrt , for an agent r ∈ R
and task t ∈ T such that:

URT =
∑
r∈R

∑
t∈T

eURTrt

(1.3)

Depending if the agent-task utilities are independent or dependent, we can define the
effective utility as:

�
eURTrt = Urt in the case of independent utilities;

�
eURTrt 6= Urt in the case of interrelated utilities;

An example of a problem with in-schedule dependencies, is the case of a fleet of vehicles
that has to pick-up different customers and there is the possibility that more customers
are on board the vehicle at the same time. This is called ride-sharing and it is a problem
where the utility function is strictly related to routing costs.
When it is possible to travel from every location to every other location in the map, we
can represent the problem as a Multiple Traveling Salesman Problem (m-TSP) that is a
generalization of the Traveling Salesman Problem (TSP) [12].
m-TSP requires that all salesmen (robots) start from the same location, but in the liter-
ature we have generalizations called Multi-Depot Multiple Traveling Salesman Problem,
where robots can depart form different locations.
If the robots have to pick-up objects, and can collect more than one object but they have
a limited capacity, which means that they can carry a maximum number of objects, we
call the problem a Capacitated Vehicle Routing Problem [92].
One application of the vehicle routing problems is the transportation of passengers or
items.
The assignments have to be made taking into account the resource availability of each
agent. These problems are derived from the classical Assignment Problem and by tak-
ing into account these capacity constraints they are also called Generalized Assignment
Problems (GAP) [3].
Usually, solving a vehicle routing problem involes that a feasible solution is found that
meets all the requirements given by customers and vehicles, while a global transportation
cost is minimized. The majority of this problems are solved through an integer or mixed
integer programming problems with many constraints depending on the requirements of
the system.

A simple formulation of the problem with capacity constraints is the following:

min
x

∑
i∈N

∑
j∈M

ci,jxi,j
(1.4)
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subject to:
∑
i∈N

xi,j = 1, ∀i ∈ N∑
j∈M

di,jxi,j 6 bi, ∀j ∈M

xi,j ∈ {0, 1}

(1.5)

Where ci,j is the cost of assigning task j to agent i, di,j is the resources needed by robot i
to perform task j, bi is the resource capacity of agent i (with i ∈ I). xij takes value 1 if
job j is assigned to agent i, and 0 otherwise.

We can notice that the constraint from 1.5 that force every robot to be assigned only
one job is not present anymore. Instead, there is a set capacity constraints that limits
the robots to do only a certain number of jobs depending on the capacities of the jobs
(energy or number of items that are taking) that are specified by bi.
In this case we are no longer speaking of utilities but the objective function is character-
ized by a cost function to be minimized.

1.3 Categorization (taxonomy)

To begin with a first presentation of the different task assignment problems, in the litera-
ture we find a basic classification that works by categorizing robots, tasks and scheduling
along three axis [40].
The first axis distinguishes between single-task robots (ST) and multi-task robots (MT),
that is, some robots are capable of executing only one task at a time while other robots
can execute multiple tasks at the same time.
The second axis states a distinction between single-robot tasks (SR) and multi-robot tasks
(MR), that is, some tasks need only one robot to be executed, while other tasks need more
robots to be accomplished.
The third axis instead depict the difference between instantaneous assignment (IA) and
time-extended assignment (TA). The former says that the assignment is made at a mo-
ment in time and no scheduling for future assignments is of interest, while the TA says
that a schedule also for future assignments of tasks to robots is made. With TA we will
have robots with queues of tasks that have been assigned. Otherwise, when working with
IA, we will know only about the current allocation, with no reference to what is next
for each of the robots. In this case, when one or more robots have finished their jobs,
there will be the need to run another optimization problem to assign the tasks that are left.

ST-SR-IA problem is an instance of the optimal assignment problem in combinatorial
optimization and is the only problem in the space depicted above that can be solved in
polynomial time.
MT-SR-IA problem is significantly harder, since robots can execute more tasks simultane-
ously and therefore many combinations arise [40]. In this case, robots will collaborate to
execute tasks. Some tasks may need robots to work in a certain order and robots can also
have different capabilities. These problems push the problem to a very high complexity
level.
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Figure 1.2: Representation of the three-axes classification for multi-robot task assingment ty-
pologies.

To focus on what we just mentioned, we can try to distinguish between complexities of
tasks. Tasks can be simple tasks, where the task is a basic task. On the other hand, tasks
can be seen as compound tasks [57], that are tasks that can be decomposed into a set of
simpler or compound subtasks, with the requirement that there is exactly one fixed full
decomposition for the task (like pick-up and delivery can be seen as two separate action
while the whole task can be seen as the route form the pick-up point to the drop-off
point). Using compound tasks can help in the assignment problem when different robots
have to work on the different small tasks or when we want some tasks to be executed in
a certain order.
For compound tasks, task allocation can be preceded by task decomposition, during which
a compound task is broken up into several simple tasks. On the other hand, multiple el-
emental actions can be compounded into more complex tasks, so that the sequence of
actions is seen as a single task.

1.3.1 Different problems categorization

We want now to go deeper into the categorization of the problems, trying to classify them
for what are the constraints of the problem and for what is the goal of the task assignment
to the robots.
We especially focus on highlighting the importance of temporal and ordering constraints
among the tasks and to how the inclusion of such constraints can increase the complexity
of the task allocation problem [72].
This formulation, which we have already mentioned, is called MRTA/TOC (Multi-Robot
Task Allocation with Temporal and Ordering Constraints) and comes as a general case
of more specific problems that we are going to briefly introduce.

� VRPTW (Vehicle Routing Problem with Time Windows): it requires solving alloca-
tion, routing and scheduling simultaneously. An example is the online pickup and
delivery problem with transfers, where a team of vehicles has to pick-up a set of
items at certain locations and deliver them to other locations. Usually, VRPTW
problems assume that all vehicles start from a single depot point and after the job
is successfully completed, they return at their original location.
VRPTW often assume homogeneous vehicles within the fleet, with respect to their
capabilities and capacities.
This problem formulation, as almost every other vehicle routing problem, is NP-hard
and unlikely to be solved in polynomial time [60]. Thus, typically these problems
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are too complex to be solved within a reasonable amount of time and heuristic or
approximation algorithms become the methods of choice [36];

� TOPTW (Team Orienteering Problem with Time Windows): the goal is to search for
control points to visit between the starting point and the destination. One instance
of this problem formulation is the Dial-a-Ride problem, that is an over-constrained
problem, which means not all the tasks can be satisfied. In this case the goal is to
find the subset of tasks that maximizes the total profit.
The most common example of Dial-a-Ride problem is the door-to-door transporta-
tion for elderly people. Many heuristics have been developed during the years and
now we can solve Dial-a-Ride problem efficiently also when the number of customers
is high [30];

� JSP (Job-Shop Scheduling Problem): the problem is to assign groups of activities,
called jobs, to a set of machines with the goal of minimizing the cost of completing
the jobs, alone or in combination with other objectives.

1.4 Typical approaches for solving the MRTA/TOC

� Market-Based Approach: here the principles of market economy are applied to multi-
robot coordination [9] [35].
Market based approaches are focused on the concept of utility functions. Which can
represent the ability of the agents (the robots) to measure their interest in specific
tasks for trading.
Auctions, used to then assign the tasks to a winner robot, can be performed in a
centralized or distributed manner. In general auctions are computationally cheap
and have reduced communication requirements [9].
Decentralization of the auction system can help in scenarios where no global state
information are available (missing communication for example).
With this approach, to design vehicle utilities it essential to obtaining desirable
collective behavior through self-interested vehicles [6]. The vehicle utility should
be aligned with the global utility function in the sense that agreeable assignments
between robots should lead to high, ideally maximal, global utility.
A negotiation mechanism then is needed, so that vehicles reach an equilibrium in
the task assignment.

� Optimization-Based approach: optimization techniques are applied in order to max-
imize or minimize certain cost functions. The set of available solutions is restricted
by a set of constraints and the optimal solution is chosen within these constrained
solutions according to certain criteria.
Usually optimization approach is used when good knowledge of the environment and
good communication between agents is available. Most of the optimization-based
approaches make use of centralized algorithms to solve the task-assignment.
Sometimes heuristic approaches are used to speed up the algorithms when the size
of the problem is huge and to solve unfeasibility, because they are proved to provide
satisfying solutions.
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Chapter 2

Problem definition

2.1 Evolution of pick-up and delivery services and enabling tech-
nologies

2.1.1 Pick-up and delivery sevices

Our scenario is composed of a fleet of robots that is thought to be deployed to satisfy a
delivery service on a university campus, where customers can specify pick-up and drop-off
locations using the delivery service.
This is a typical pick-up and delivery problem, where vehicles have tasks composed of
a pick-up activity and a drop-off activity and those activities have to be executed in a
specific order, otherwise the task is not realized.
One of the most important realization of the pick-up and delivery problem is the taxi ser-
vice in big cities like New York pr London where the taxi demand is extremely high (not
only on peak hours) and there is the need for a centralized management of the vehicles
so that to try to satisfy the incoming demand for service.
The urge for an optimal assignment of vehicles to customers meets the needs of both
customers and service providers. Both parties are interested in getting the most valuable
result with the less expense, that is: customers want to go from a specific place to another
paying the less amount of money possible, while the provider wants to service an high
number of requests by making its fleet to travel the less miles possible, so that to save on
fuel and time.
Having a service that can optimally manage the many requests that come from the thou-
sands of customers, is a big step ahead with respect to the traditional taxi system, where
customers look for free taxis on the street.
Since 1950 the taxi experience has changed little, where people have not imagined there
could have been a better way to manage taxi rides and booking them [34].
During the automobility era, private vehicle ownership has been encouraged and wel-
comed as facilitating the opportunities of those who were forced to take public transports
walking from home to the nearest stop.
Lot of effort and investments have been put on the highway infrastructure, so that to
create a system ready to accommodate a very large number of vehicles on the roads.
Taxi operators themselves, operated in monopolistic and highly regulated environments,
had little interest in investing money to innovate the system, where system drivers are
asked to drive around in search for potential customers. In this situation even experienced
drivers, who know which areas to go at what time of the day to have the higher chance
of incurring in a customer, will consume high amount of fuel in idle travels looking for a
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rider. Also, from the rider point of view, it can happen that no taxi is in sight and that
waiting times extend to a point that the service is devalued.
All these factors influence the efficiency and equilibrium of the system and can lead to
unbalanced taxi distribution and lot of time and energy wasted.
Some of the solutions for crowded environments have been to put customers in queues or
to set certain pickup points where customers can look for taxis in an easier way.
Other solutions include to book rides by phone via a customer service, but also this often
results in being unreliable. Taxis may arrive early or on late and there is little communi-
cation between the rider and the driver until they meet at the pick-up point.
Other issues can be related to language barriers between the customer and the customer
service or between the customer and the driver. Pick-up and drop-off locations may be
misunderstood and this would lead to low service effectiveness.

2.1.2 The arrival of the app-based tranportation systems

Companies like Uber and Lyft have challenged all the issues presented in the previous
section giving customers an easier way to book rides and giving drivers a more efficient
way to move riders around, decreasing the idle times between two rides and thus saving
time and fuel. This has been possible because of the availability of highly connected de-
vices such as smartphones and the availability of better connections with Internet offering
real-time delivery of information and higher connection coverage. Whithin technologies
that allowed these changes, there are software that rely on location-aware capabilities such
as Global Positioning System (GPS) that is common in every smartphone nowadays [2].
The platforms are designed to provide ride-matching services via smartphone applications
differing from early systems that used non-real time services such as internet forums, or
telecommunications, where responses were not immediate [34].
Nowadays, great part of the research to try to reduce carbon emissions is focused on look-
ing for solutions at the vehicle level, therefore trying to move from typical ICE (Internal
Combustion Engines) to more efficient combustion engine systems (improving fuel econ-
omy), hybrid systems where electric motors and ICE collaborate in providing the power
to the traction system or fully electric vehicles. Other solutions are trying to move to
alternative fuels such as bio-diesel, hydrogen, non-fossil natural gas and others.

Solutions at the system levels are needed also. Some rudimentary solutions are deci-
sions made regarding when and how to reach certain places so that to regulate the traffic
and try to decrease pollution.
But one of the main factors influencing the impacts on the environment of the transporta-
tion sector is its efficiency. According to [24] the average occupancy of personal vehicles
is 1.7 passengers per vehicle. This means that most of the trips made by car have only
one passenger (they are the so called SOVs: single-occupant vehicles). This is a problem
both for the number of vehicles that are on the street at the same moment, increasing
the total amount of emission per person, and because the high number of vehicles can
generate congestions, slowing the vehicles and therefore increasing the trip time and so
also emissions.
Incentives that have been given to try to push against SOVs and facilitate traffic flow
for high-occupancy vehicles includes the introduction of Carpool lanes for example, so to
reduce fuel consumption per person [30].
The increased communication between customers has allowed to investigate solutions that
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wants more persons to get on board the same vehicle, thus increasing the vehicle occu-
pancy rate in private and public vehicles. This is the reason why ride-sharing methodolo-
gies are considered to be potential techniques to highly increase the transportation sector
efficiency. The sharing of the ride between customers will match rides between two cus-
tomers that are strangers to each other and that are eventually going in different places.
The spatiotemporal similarity of their routes will determine if they can be merged in the
same route. The users have the choice whether to participate or not to the ride-sharing
option and what will be the delay interval to which the desired trip will be affected. The
user can usually also decide what level of delay to have on its original route.

2.2 Dynamic ride-sharing

2.2.1 Introduction

Before saying what dynamic ride-sharing is, we want to highlight the main assumption of
static ride-sharing, so that to be able to catch the difference between the two services.
Static Ride-Sharing assumes that all the information regarding the taxis (locations and
capacities) and the customers (pick-up and drop-off locations, time windows) are available
before the global assignment problem. In this case the optimal assignment is run once,
when all information are collected.
In a dynamic environment taxi requests arrive in real-time and therefore the assignment
is usually performed every time a new request arrives.
Dynamic ride-sahring (DRS) is allowing customers to be added to existing trip when the
trip is already on its way, so when another customer is already on board of the taxi. DRS
differs from regular ride-sharing, known also as carpooling, in that it is an ad-hoc service
arranging single shared rides on short notice, or even on the way.
This gives even more flexibility to the service and contribute in maximizing the system
efficiency and the benefits of the service. The dynamic ride-sharing system notifies the
driver of the possibility to add a new client along the way and makes aware the driver of
the additional delay on the current route. Then the driver will have to ask the rider if
he/she is okay with picking-up a new rider, to share the ride.
The additional costs regarding the longer route will be charged to the new rider and the
customer of the original trip will be refunded of part of what he is supposed to pay, for
having accepted a delay on his/her arrival time.
Evidence indicates that specific demographic subgroups are inclined to use Dynamic Ride-
Sharing. In particular, subgroups of 18-34 years-olds, have negative attitudes towards
private car ownership [70].
These same subgroups represent about half of the dynamic ride-sharing demand.
Some Automobile companies have already indicated the potential economic harm that
DRS presents to the car industry.
Dynamic Ride-Sharing is an emerging method of personal mobility based on the tradi-
tional concept of ridesharing. DRS algorithms want to match the vehicle drivers with
riders in real-time using online technology platforms [2].
In 2016, Uber and Lyft launched for their first time their ride-sharing services that are
UberPool and Lyft Line respectively, giving customers the possibility of sharing the ride
with other customers that are picked-up and are heading to similar places. Uber states
that around 20% of its rides are UberPool rides.
Studies show that switching form traditional taxis to shared autonomous taxis can po-
tentially reduce the fleet size by 59% while maintaining the service level and without
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significant increase in wait time for the riders [62].
Also, increasing the average occupancy rate of vehicles, the total travel distance is de-
creased (up to 55%) and carbon emissions are reduced. In 2018, the transportation sector
accounted for 28% of all greenhouses gas (GHG) emissions seen the United States, which
is just in front the electric power sector [46].

(a) (b)

Figure 2.1: a. Shows the gases by source for year 2018, b. Shows what are the sources of
greenhouse gas emissions for the year 2018 [46].

The more seats are filled during a trip, the less the traffic congestions and therefore the
more the environmental benefits. Reduction of traffic congestion will allow vehicle flow to
move faster and on average the travel time will become shorter. This will allow customers
to spend less time stuck in traffic lines and so to compensate for the delay accepted when
joining the ride-sharing ride.
Among the different challenges that have been identified when trying to solve the dynamic
ride-sharing problem, the service pricing and passenger matching (to form ridesharing
instantaneously) are some who also are taking the great attention from the researchers
around the world [39]. Even though, there has been less attention to the pricing problem
compared to the ride-matching optimization problem.

The campus pick-up and delivery scenario as a ride-shaing application

Our original scenario is an implementation of the dynamic ride-sharing service, where
instead of passengers we deal with items, food and other goods to be delivered in specific
locations.
Robots can satisfy more than one task at a time, by picking up different items and deliv-
ering them to the corresponding drop-off points.
The primal objective of our problem is to minimize customer’s waiting time [24], but it
also has enormous potentials for possible impacts with respect to pollution, energy con-
sumption, congestions and costs of the taxi service both for customers and the service
provider.
In our specific case, robots are powered by battery packs, so they need to be charged at
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charging stations located in specific locations and no direct carbon emissions are of inter-
est. Anyway, it is of high interest to reduce the costs related to the energy consumption of
those vehicles, also because robots that are at the charging stations cannot join the fleet
and cannot be assigned to trips, thus reducing the availability for robots and increasing
the waiting time of customers.
This means that the more energy is saved, the more efficient the system is, both from an
energy point of view and from the perspective of the service outcomes.
The advantages of applying vehicle dispatching and ride-sharing strategies to the delivery
system are that the average waiting time of users is reduced and the utilization rate of
the robots is increased.
When the sharing rate of rides is high (this means the relative number of shared rides
versus the total number of rides) the user of the delivery service will face less average
delay on his/her delivery. This because the delivery has not to wait for a private dedi-
cated robot to become available but can dynamically be assigned to pre-existing rides if
the time windows of the two deliveries are satisfied. Otherwise, the new service request
will simply wait for a robot to become available, as in any traditional delivery service.

The goal is to deliver as many items as possible at the lowest cost while obeying a set of
constraints, such as time windows and capacities of the vehicles.
Transfers of carried objects can also be introduced to the problem but the complexity
grows as the search space of solutions expands exponentially, for a problem that is al-
ready NP-hard [26].
The problem of pick-up and delivery task assignment has been solved in literature with
many heuristic and metaheuristic algorithms. Also, optimal approaches have been studied
but then, when the size of the problem is increased, the algorithm is not able to work dy-
namically in real-time. Threfore, we need quick assignment strategies to avoid customers
to wait long time for their routes to be assigned [48].
The problem is strictly related to vehicle-routing problems [42] [13], whose solution is com-
putationally demanding. Ride-sharing strategies has typically fundamental limitations on
scalability as its underlying problem can be reformulated as the travelling salesman prob-
lem, which is NP-complete complexity.

2.2.2 Inputs and outputs of the assignment algorithm

Dynamic ride-sharing services should satisfy the requests for rides from customers by
trying to merge, when possible, those rides. Also, the vehicles of the fleet have to be
assigned following certain criteria. Therefore we can define what are the inputs to the
dynamic ride-sharing algorithm and what are the outputs it has to deliver to constitute
a usable service.

Inputs

The data that are being fed as inputs to our program are:

� Tasks : these are pick-up and delivery tasks, characterized by pick-up location, drop-
off location, starting time, estimated arrival time (computed on the route that the
single task is requiring), maximum delay on pick-up and drop-off, size of the request
(number of passenger or weight of the item), priority level and status (whether it is
pending, assigned or picked up). We will call the tasks also rides, referring to the
dynamic ride-sharing application;
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� Vehicles : a vehicle is the robot that is assigned to the tasks and it is characterized
by: location in space at the algorithm call, capacity and its status (busy or idle);

� Already existing assignments : a file containing information about already assigned
trips is provided to the algorithm. This list tells what are the vehicle-customer
couplings so that is clear what tasks and vehicles are already. This list contains only
trips of size one, that are trips composed only of one ride. In this way, if reconsidered
in the optimal assignment, it can be assigned other one or two rides.
This is the core of Dynamic Ride-Sharing, which allows to add customers to routes
when routes are already started and some passenger has already been picked-up. In
fact, while having one passenger on board, the route can still be modified if the time
requirements of an incoming task meet the time windows of the customer on board
of the vehicle. This means that until a rider has been dropped-off, there will be
always the possibility that his/her driver is going to service other requests.

Outputs

The output of our program will be an optimal assignment of the vehicles to routes,
where the routes can contain up to three tasks.
The assignment is of IT type (instantaneous assignment), so every time it generates an
assignment that regards only customers that are asking for immediate/short term service
and vehicles that are idle at the moment the algorithm is called.
No schedule is produced for future assignments. The algorithm can work in an online
manner at the arrival of new tasks or when there are pending tasks and any vehicles
becomes idle.
This means that for a vehicle there will not be subsequent assignments, but we will assign
to the vehicle only one route (the route can change if other customers are added to the
route).
When any of the vehicles drop-off the last rider of a route, the rider (or the robot if it is
an autonomous vehicle) will notify the system that its state has changed to available and
it will enter a list of vehicles that can be considered during the optimization problem.

2.2.3 Clustering the rides

Applications of spatial clustering in transportation have received more attention in the
last years.
New strategies are being developed that want the set of tasks to be divided in clusters so
that later vehicles can be assigned to the subsets in an optimal way, trying to satisfy the
greatest number possible of requests.
After the clustering phase, the different trips will be assigned to vehicles following the
criteria that suits the best for the specific application.
A number of clustering algorithms have been proposed and applied in a variety of fields.
Some of the typical models that are used for clustering are [38]:

� Connectivity-based models or hierarchical models : they are based on the idea that
objects are more related to nearby objects than those far away. Clusters are therefore
created based on the distance between objects in the data space. They should be
used carefully when dealing with outliers to avoid cluster merging. To define clusters,
we have to decide which linkage criterion to employ to link together data. Then,
a distance function will define the size and what partition is best suitable for our
application;
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� Centroid-based models : the centroid of the cluster is representative of a cluster. One
of the most popular is the k-means clustering (Lloyd’s algorithm), which forms the
basis for centroid clustering techniques. The number k of clusters has to be defined
in advance and then the k-means clustering will use optimization techniques to find
the k centers of the dataset, and will assign data to the k-th centers as belonging to
the k-th cluster. When the dataset is large, k-means algorithm is computationally
demanding, that is why researchers have proposed algorithms such as mini batch
k-means algorithm [11];

� Distribution-based models : these models are closely related to statistics and they
are used to filter objects most likely belonging to the same distribution. For the
generation of clusters, distribution models (Gaussian/Normal) are used. Clusters
are defined on how likely the objects included are likely to belong to the same
distribution;

� Density-based models : In this group of models, clusters are defined based on identi-
fying areas of higher density that can be found in the remainder of the data space.
The resulting clusters can have an arbitrary shape, and the points within can be
arbitrarily distributed. Density clustering is able to handle noise when noisy objects
are sparse in the dataspace. Some algorithms are DBSAN, OPTICS, DENCLUE,
CLIQUE;

Clustering of “similar” objects is an inherently ambiguous task unless a measure of simi-
larity is well defined. This also makes difficult to validate clustering algorithms, since the
quality of the clustering highly depends on the similarity measure used and by its imple-
mentation. Moreover, if the number of clusters is not given in the clustering algorithm
(like the case of k-means algorithm), then it is not trivial to find the optimal number of
clusters and some criteria have to be involved.

Figure 2.2: Elementary example of the clustering of a two-dimensional dataset(on the left and
the same dataset divided in clusters (on the right).

Trajectory-based clustering

Some algorithms, inspired by clustering theory, consider not only the pick-up and drop-
off locations but want to consider the spatiotemporal occupation of trajectories to try
to determine if two trips are similar to each other. Trajectories are sequences of points
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distributed in time and space [47].
These trajectories are clustered with different density-based clustering algorithms and
criteria that could be:

� DBSCAN-based algorithms (Density-Based Spatial Clustering of Applications with
Noise) that are unsupervised learning algorithms which group together points that
are closely packed together. It means that it separates high density clusters form
clusters of low density. Usually DBSCAN fails when dividing clusters of similar
densities [34]. Such algorithms are for example TRACLUS [20], NETSCAN [52];

� NEAT algorithm, which works well for a road network model, while DBSCAN al-
gorithms were considering only Euclidean distances between points for objects that
can freely move in a two-dimensional space;

� TOPOSCAN [34], which still makes use of DBSCAN for the path clustering phase,
the one that reveal potential carpool commuting routes. This algorithm consider
the possibility of network-constrained movements for the vehicles.

A global decision maker, that has real-time information about vehicles and requests is
needed. It then will be responsible for managing the acquired data and assign vehicles to
tasks or sets of tasks. When a set of tasks is served by only one vehicle, it is needed that
pick-up and drop-off of each of the tasks of the group satisfy the timing constraints of the
single tasks, therefore minimizing the delay of the arrival time of the tasks.
The service has to provide transportation options in real-time, so that the service can be
deployed for applications on site to offer the delivery service.

2.2.4 Trips generation from clustered rides

Taking inspiration from connectivity-based clustering techniques, we want an algorithm
that is able to couple different routes coming from different customers. The algorithm
should be able to recognize when two requests are similar in space and time in the two-
dimensional space over which the pick-up and drop-off locations are spread.
To this aim, we need to define the similarity criteria that our algorithm will use to deter-
mine couplings between different rides.
We know that ride-sharing occurs frequently when the origins and/or destinations of two
groups of passengers are close in location and time, that is:

If a vehicle can travel through all the pick-up and drop-off locations of two tasks (while
respecting the pick-up/drop-off order of the single tasks), then the two tasks can be coupled
and clustered together in one single route.

For the vehicle to be able to travel through all the pick-up and drop-off locations of
the tasks, it is needed that there exists an order of pick-up and drop-off locations which
allows the vehicle to move from one destination to the other within the time windows of
the two tasks.
After all the possible matching between the different trips have been found and we have
a set of possible trips (the different clusters) that are satisfying the customers requesting
for a vehicle, we want to assign the available vehicles to the trips, so that to start the ride.

With the methodology we used, we will not find only a single configuration for the cluster
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separation, but we will define a huge number of combinations between the tasks. There-
fore, every task eventually belongs to more clusters. Then, we need to adopt a decision
process able to assign the different rides (or clusters) to the vehicles.
A special attention has to be given to the fact that two different clusters containing the
same task, cannot be assigned at the same time.
From now on, the clusters will be called trips and identified by the T .

2.2.5 Optimal assignment of the trips to vehicles

The assignment problem is addressed by solving an optimization problem for the assign-
ment of vehicles to routes. The constraints of the optimization problem will define the
feasible set on which to search for optimal solutions. The feasibility set defines that if
a trip Ti containing task rk is assigned, then another trip Tj, containing the same task
rik cannot be assigned. Otherwise, task rk would be assigned to two or more different
vehicles.
The choice whether to assign between trip Ti, trip Tj and all the other trips, will depend
on the optimization of a certain cost function.
The maximum number of trips that can be assigned when the optimization is run, is at
most equal to the number of vehicles that have notified to be available for assignment.
They could be idle vehicles (vehicles with no passengers on board) or vehicles that already
have assigned one ride.

2.2.6 Rebalancing of the vehicle fleet

After the optimal assignment problem is run, it could happen that some rides have not
been assigned or that some vehicles remained not assigned. This happens because of
imbalances in the fleet of vehicles with respect to the incoming requests or because some
tasks where far away from areas of high demand density and for them to be assigned
resulted impractical in the optimal assignment.
If new tasks continue to arrive in areas of interest (that are areas with lot of pick-up
demand), it is most likely that those not assigned task will not be assigned also the next
time the assignment algorithm is called. This because it will always result more conve-
nient (lower total cost) to service tasks in dense demand areas.
Therefore, these tasks run into the risk of remaining in a pending status for a long time
unless we take care of them separately. The longer the ride will remain pending, the less
will be the satisfaction of the customer with the service provided.
This is the reason why an add an additional feature is added to the algorithm in order to
manage those unassigned requests, when possible. Indeed, not always it will be possible
to match vehicles with unassigned requests. For example, if no vehicle is idle, it would
be impossible to assign those requests, unless we accept to relocate an already busy ve-
hicle to that task. For reasons regarding the satisfaction of the customers, though, we
do not accept already assigned vehicles to be relocated when they are already heading to
a pick-up point. We do not want buzzy assignments that jumps from one customer to
the other. It would mean to have the customer seeing his ride always relocated to other
vehicles. Moreover, given the frequency of the assignment algorithm call, it would not be
feasible in certain situations for vehicles to continuously change the heading location and
this may also lead to inefficiency and the system could be severely affected.
Therefore, if idle vehicles are available, we will assign them to unassigned requests, so
that to head the vehicles towards areas where requests were not considered.
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2.2.7 Additional observations on the choosen method

Many other approaches found in literature are based on heuristic solutions to the task
assignment problem [64] [29], and many others solve it optimally. Solving the assignment
in an optimal way, when the size of the problem is big, for example with dozens of tasks
and dozens of vehicles, could be computationally impractical.
Our goal is to study an optimal assignment that is solved through the solution of a Mixed-
Integer Linear Programming (MILP) after the matches between tasks and between tasks
and vehicles have defined the feasible set of the problem.
The matching phase is taking the most part of the effort of the algorithm, since it has to
analyze the possibility of sharing every ride with every other ride. Therefore, the space
of possible combinations is large and to check for every possible combination is computa-
tionally inefficient.
This is the reason why a random factor is added in the generation of the shared routes,
so that to limit the time spent in finding for combinations.
In fact, the possible combinations are so many that this limiting factor is highly influenc-
ing the computational performance of the algorithm.
Therefore, we want to study the influence of this added randomness to the quality of the
assignment and evaluate in what measure the random factor can operate depending on
the size of the problem, keeping in mind that our first goal is to satisfy as many requests
as possible while minimizing the cost of doing so.
The algorithm has been tested with large size instances with hundreds of vehicles and
hundreds of requests received simultaneously.
The algorithm can be called once every fixed time interval or at a task arrival, depending
on the environment in which it will be deployed.
When new tasks arrive, and vehicles become available, the algorithm will be able to
recompute a new assignment, fulfilling the requirement that already assigned trips will
remain assigned. For instance, when a vehicle is assigned to pick-up one task, if a new
task arrives, the algorithm will take into consideration of assigning also that task to the
same vehicle, if that vehicle is still capable of satisfying the first task within its time
window.
Moreover, priority can be assigned to task, for instance, if the customer is willing to pay
an extra price for a “as soon as possible” delivery option. In that case, if some vehicle is
free, we can guarantee that those priority tasks will be assigned prior to the other tasks.
Otherwise, the chances of a priority tasks to be assigned will be increased.
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Chapter 3

Method of solution

3.1 Algorithm workflow

As we briefly introduced before, the approach decouples the problem in three main steps:

� Feasible trips generation: At this stage, we are only interested in defining a feasible
set of possible routes that the algorithm can assign. A trip exists and is said feasible
only when the tasks composing it can share the same route and when at least one
of the idle vehicles can satisfy the time windows of all the tasks composing the trip.

� Optimal assignment : At this step, we find an optimal assignment within all the
possible feasible trips (that constitute the feasible set). This means that only part
of all the possible combinations we found will be executed, seeking the best possible
solution with respect to the cost function. The optimization problem is solved as a
Mixed-Integer Linear Programming. Since one ride might belong to more than one
trip and one trip might be feasible for more than one vehicle, a set of constraints
will make sure that tasks are assigned to only one trip and that vehicles are assigned
to only one trip.

� Rebalancing : At this stage, we run a Linear Program (LP) to match unassigned
tasks to idle vehicles, if any is present. With the rebalancing phase, we are trying to
compensate the imbalance that may arise when there are areas with high density of
requests while other requests are therefore considered too expensive to be satisfied,
because of their distance in the two-dimensional space.
Using the rebalancing strategy, we are forcing those tasks to be assigned, to avoid
that they remain pending for a long time.

These three phases together constitute the core of the algorithm for the assignment of the
vehicles to the different rides. Each of the three phases contains additional details and
features that will be treated deeply in the next sections.

3.2 The core idea for the generation of shared rides

The generation of feasible trips is based on the idea of looking at the links existing be-
tween rides (if they can be shared) and between the rides and the vehicles.
The high-level idea is to cast the problem of identifying the best trip sharing as a network
problem.
A common use in the literature to describe the space of rides and vehicles and to define
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Figure 3.1: Representation of the generic flow of the algorithm from the inputs to the outputs.

the relations in between, is to use graph representation. In this way we can manipulate
the information contained in the matrix representing the links between objects (rides and
vehicles) in our space.
After comparing and analyzing possible matches between rides and robots, we obtain a
network called shareability network [82]. Every task is defined by a starting time and an
ending time, and a maximum allowed delay ∆ that we assume equal for all the tasks. If we
wanted to consider a different ∆ for each task we could have simply add this information
to the task data structure and use it every time the comparison between the task is done.
We think that a unique ∆ is more representative of what the service can offer instead
allowing users to customize their maximum allowed waiting time would lead to make
shareability very difficult since every customer would like to have to wait the less amount
of time possible. This come in contrast with the basic idea of ride-shareability where
customers accept the service to not be exclusive by paying less.
The parameter ∆ represents the service quality, which defines the maximum time the
assigned customers will have to wait for their vehicle to pick them up and what will be
the maximum delay at the arrival.

The shareability network we want to build is an undirected graph G(N, E) that is build
on the idea of using the maximum delay ∆ to define if two tasks are likely to be shared
in a single trip.
If the nodes of the network represent the tasks and the robots of our problem, then the
links will be representative of the possibility to share the two tasks or, in the case of a
link between a task and a vehicle the link will represent the possibility for that vehicle to
serve the task.
Thus, we can say:

� An edge exists between two tasks if they can by combined under some shareability
criteria, given by the time windows of the tasks.

� An edge exists between a request and a vehicle if the vehicle could travel to that
request and satisfy its pick-up and drop-off within the time window of the request.

The objective now is to compute the graph adjacency matrix for the graph containing the
requests and vehicles nodes, that from now on we will call RV-Graph.
Tasks can also be considered as trips of size one.
From now on, the tasks will be also called requests and we will refer to single tasks as r
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or to subsets of tasks as R. The word request is referred to the action of the customer
requesting the pick-up and delivery task. Requests and Tasks will be interchangibly used.
Whether two tasks ri and rj can be combined, depends on the spatial/temporal properties
of the two trips and on the upper bound ∆ which is the maximum delivery delay.
The temporal dependence is related to the parameter ∆ while the spatial dependence is
due to the location of the pick-ups and drop-offs of the two tasks.
Another constraint regards the maximum capacity of the vehicles participating the ride-
sharing service. Thus, if the sum of the sizes (number of passengers of the single ride)
of the two tasks is greater than the maximum size of the available vehicles, then the two
tasks cannot be combined.
The adjacency matrix will describe the links set that defines the relationship between all
the tasks and vehicles.

This new approach allows polynomial-time, i.e. feasible, computation of the optimal
ride-sharing strategy when at most two trips can be combined, and polynomial-time com-
putation of a constant-factor approximation of the optimal solution when k > 2 trips can
be shared [82]. The degree of the involved polynomials increases with k.
The shareability matrix is somewhat sparse which means that the average node degree is
not high and not depend on n.

3.3 RV-Graph (shareability graph)

To build the shareability graph (RV-Graph) we need to understand if two tasks are com-
patible when we consider the delay parameter ∆ and the location of pick-ups and drop-offs.
Nodes of the RV-Graph are requests and vehicles, links can exist between two different
requests (if shareable) or between a request and a vehicle (if the vehicle can serve the
request).
We want to look at the two pick-up and delivery tasks as tasks made of two separate
actions. One is to pick-up the item/customer the other one is to drop it off.
We assume the actions of picking-up and dropping-off to be instantaneous. In real appli-
cations, these actions not only require the physical time to enter/exit the vehicle or to
take/release the object, but we would encounter many other problems, like delays of the
customer, difficulty in recognizing the passenger, time spent for approaching the vehicle
when there are no parking spots right in front of the customer, time to grab the object,
obstacles that hinder the passage and so on.
We can think our problem to be on a very high level of hierarchy, we think that those
delays and inefficiencies could be modeled by a waiting time slot that if not satisfied,
simply gives the permission to the vehicle/robot to abort the request and ignore the pas-
senger/task when this is no more feasible inside the allowed time window. This has not
been implemented.

3.3.1 Request - request couplings

To satisfy all the pick-ups and drop-offs we want to think of an imaginary vehicle that
starting from the first location, will visit all the other three locations travelling from one
to another until it reaches the last location.
Building the shareability graph for shared rides of size two starting from the task set
R = {r1, . . . , rn} requires O(n2) where n is the number of rides (tasks).
This is true in the worst case, that is when all the possible combinations between pick-up
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and delivery events of the two tasks are verified. But in the real case, the precedence
constraint between the pick-up and the drop-off events is constraining that only four of
the combinations are possible between the two tasks.
Therefore, the possible combinations are:

1. oi → oj → di → dj;

2. oi → oj → dj → di;

3. oj → oi → dj → di;

4. oj → oi → di → dj;

where ox and dx are the origin and destination of task x.

We already have a formal order of the possible pick-ups and drop-offs of two tasks when
they belong to a shared ride. Now we give a definition of what we mean by shared ride,
that is a ride composed of two different tasks. A coordinated trip Ti,j (or shared ride) is
a trip composed of two requests ri and rj.

Definition [82]: The coordinated trip Ti,j is feasible if and only if a trip route can be
found such that the following conditions are satisfied:

1. sti ≤ pti ≤ sti + ∆;

2. stj ≤ ptj ≤ stj + ∆;

3. dti ≤ ati + ∆;

4. dtj ≤ atj + ∆;

with ptx the pick-up time at ox in the combined trip and dtx the delivery time at dx in the
combined trip.

Conditions 1 and 2 are not allowing the pick-up to happen earlier than expected, but
it is required that the rider is there from the time the pickup should start until the time
the pickup has to be completed. Instead, conditions 3 and 4 allow the ride to arrive earlier
than expected, considering it as a point in favor for the service. These conditions both
consider that a customer is willing to wait at most some extra time ∆.

From [82]: Theorem. Building the shareability network S = (R, L) starting from the
trip set R = {r1, ..., rn} requires O(n2) time.

Proof. In the worst-case, we have to consider all O(n2) possible pairs of requests ri,
rj. For each pair, the feasibility condition for the combined trip Ti,j can be verified in
O(1) as follows.
The following is the procedure used to verify if two trips can be matched or if they cannot.
It makes use of combinations 1-4 and of conditons a-d to build constraints that must be
verified so that the two requests ri and rj are shareable.
We take as an example combination 1 and first define the time distances between points
so that to define, with respect to the first pick-up, all the pick-ups and drop-offs in time
domain.
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We call tt(x, y) the function that computes the travel time between two any points on our
map, and we will use it to compute the time between the different points of the route oi,
oj, di, dj. This function makes simple use of a constant to relate the so called Manhattan
distance (L1 distance) between two points in the 2D map and the travel time. We are
assuming the most possible ideal conditions for the computation of the travel time. In a
real evnironment, when a complete application has been developed and therefore a net-
work representation of the map is available, standard techniques for efficiently computing
shortest paths can be used. The best methods can compute shortest paths on networks
with 70 millions edges in less than a millisecond.
At the end, we will have:

ptj = pti + tt (oi, oj)

dti = ptj + tt (oj, di)

dtj = dti + tt (di, dj)

(3.1)

Where pti is trivially verified to be inside or outside the boundary imposed in condition
a.
We can now combine equations 3.1 with conditions a− d and obtain the new conditions
that will be used to find out if request ri and request rj can be combined in one trip.
These conditions are, for pick-ups/drop-offs combination 1:

sti 6 pti 6 sti + ∆ (A1)

stj 6 pti + tt (oi, oj) 6 stj + ∆ (A2)

pti + tt (oi, oj) + tt (oj, di) 6 ati + ∆ (A3)

pti + tt (oi, oj) + tt (oj, di) + tt (di, dj) 6 atj + ∆ (A4)

(3.2)

Conditions A1 − A4 refers to the case where tasks ri and rj are related by oi → oj →
di → dj. For this route, the feasibility can be verified by checking whether a value of the
variable pti that simultaneously satisfies the four conditions A1− A4 exists.
For the other combinations of pick-ups and drop-offs, the feasibility condition is verified
in a similar way. Following, we will show what are the conditions to be satisfied for tasks
ri and rj in the other cases (combinations 2− 4):

� In the case the combination is oi → oj → dj → di, we have:

sti 6 pti 6 sti + ∆ (B1)

stj 6 pti + tt (oi, oj) 6 stj + ∆ (B2)

pti + tt (oi, oj) + tt (oj, dj) 6 atj + ∆ (B3)

pti + tt (oi, oj) + tt (oj, dj) + tt (dj, di) 6 ati + ∆ (B4)

(3.3)
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� In the case the combination is oj → oi → di → dj, we have:

stj 6 ptj 6 stj + ∆ (C1)

sti 6 ptj + tt (oj, oi) 6 sti + ∆ (C2)

ptj + tt (oj, oi) + tt (oi, di) 6 ati + ∆ (C3)

ptj + tt (oj, oi) + tt (oi, di) + tt (di, dj) 6 atj + ∆ (C4)

(3.4)

� In the case the combination is oj → oi → dj → di, we have:

stj 6 ptj 6 stj + ∆ (D1)

sti 6 ptj + tt (oj, oi) 6 sti + ∆ (D2)

ptj + tt (oj, oi) + tt (oi, dj) 6 atj + ∆ (D3)

ptj + tt (oj, oi) + tt (oi, dj) + tt (di, dj) 6 ati + ∆ (D4)

(3.5)

If one of the systems of equations described by the sets of equations A, B, C, D, is
defining a non empty set on the variable pti (when task i is the first to be picked up) or
on the variable ptj (when task j is the first to be picked up), then a solution exists and
the two tasks can be combined.
Depending on what is the set of equation for which a non-empty set of solutions exists,
then we will have the corresponding feasible matching order of pick-up and drop-off actions
between the two tasks.
When two tasks ri and rj can be shared, then the link e (ri, rj) between the two nodes
representing the two tasks in the RV-Graph will be generated.
Notice that two tasks can be shared in more than one order. This means, for instance,
that both orders oi → oj → dj → di and oj → oi → di → dj can result feasible for two
tasks i and j. In this case we have many choices on how to procede. We will treat this
topic in more details later.

3.3.2 Vehicle - request couplings

The next stage is to verify if any of the available vehicles (that are nodes in the RV-Graph)
can serve any of the pending requests. If this is true, a link will exist between the vehicle
node and the request node.
To find out if the vehicle is able to serve the request, we will use function travel(v, r)
where v and r are a specific vehicle and a specific request for which we are computing the
matching.
Vehicle v is characterized by location coordinates vx and vy, by a status that tells if it
has any request already assigned (and if yes, what requests), and by a capacity cv, that is
representative of the number of passengers the vehicle can accomodate at the same time.
In the case of robots carrying objects, the capacity will represent the number of items
that the robot can collect at the same time.

Function travel(v, r) will make sure that the vehicle respects all the requirements of
task r.
The conditions to be verified so that the vehicle is able to serve the task are the following:
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1. Tclock + tt (vxy, or) 6 str + ∆;

2. Tclock + tt (vxy, or) + tt (or, dr) 6 atr + ∆;

3. rpass 6 cv;

Where Tclock is the time at which function travel() is called, vxy is the location of vehicle
v, or and dr are the origin and destination location coordinates of the request r, str and
atr are the starting and arrival time of the request and ∆ is the maximum allowed delay.

When all the conditions 1, 2 and 3 are satisfied, then the link e (vv, rr) is generated
between vehicle v and task r, otherwise the function travel(v, r) will return false.
Condition 2 is automatically verified when condition 1 is true. This becasue the arrival
time at of a task is computed on the base of the minimum time required to reach the
destination from the starting point of the task, knowing its starting time st.
If the conditions are satisfied it means that the vehicle can successfully serve the task.
Function travel(v, r) will be called for each v ∈ V , and for each r ∈ R, where V is the set
of available vehicles and R is the set of pending requests at the time of the assignment
algorithm call.
When the number of tasks and vehicles is high, and especially if the density of tasks and
vehicles in an area is high, then the possibility of matching requests and vehicles will be
high. This means that many links will be formed between tasks and between tasks and
vehicles. A maximum number of edges (links) per node can be fixed, so that to decrease
the average computation time for the matching phase.

Example. Representation of the adjacency matrix for the RV-Graph:



r1 r2 · · · rn v1 v2 · · · vm

r1 0 1 . . . 0 0 1 · · · 0

r2 1 0 . . . 1 0 1 · · · 1
...

...
...

. . .
...

...
...

. . .
...

rn 0 1 . . . 0 1 0 · · · 1

v1 0 0 · · · 1 0 0 0 0

v2 1 1 · · · 0 0 0 0 0
...

...
...

. . .
...

...
...

. . .
...

vm 0 1 . . . 1 0 0 0 0


(3.6)

The matrix represented in Equation 3.6 is the adjacency matrix for the RV-Graph.
The RV-Graph is a simple graph with vertex set N = {N1, N2, ..., Nn+m} and its
adjacency matrix Adj is a square |N | × |N | matrix.
The rows and columns of the matrix represent the vertexes of the RV-Graph net-
work, that are nodes N = R ∪ V with R = {r1, r2, ...rn} that is the set of tasks
and V = {v1, v2, ..., vm} that is the set of vehicles.
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Adjij =

{
1 if e(Ni, Nj) exists

0 otherwise

The entries of the adjacency matrix are one when there is an edge from vertex Ni

to vertex Nj, and zero when there is no edge [15]. The network is an undirected
graph therefore its adjacency matrix is symmetric.
The diagonal elements of the matrix are all zero, since edges from a vertex to itself
(loops) are not allowed in simple graphs.

Once the sets of requests and vehicles have been analyzed to find the possible matchings,
we want to build a set of trips T that represent tasks that can be matched with vehicles
and the matchings between tasks that can be served by vehicles.
This set of trips will be represented by another network, that is called RTV-Graph [5].
The next chapter will treat in detail the RTV-Graph.

(a) (b)

Figure 3.2: a) RV-Graph for a small-size instance with 15 requests and 7 vehicles. b) RV-Graph
for a medium-size instance with 40 requests and 30 vehicles.

3.4 RTV-Graph

The RTV-Graph is a new network generated in order to identify all the possible feasible
trips. By feasible we mean that a vehicle is actually able to reach the first task, pick it up
and heading to its destination within the task time window (defined by delay ∆). Then,
if any other task belongs to the feasible trip, the vehicle will also be able to pick-up and
drop-off all the other tasks within the respective time windows.
We call ‘trips of size k‘ the trips that are composed of k (two or more) requests that can
be matched. In particular, we will build trips of size two and trips of size three.
First, we want to introduce how trips of size one are built. Then, we will explain how trips
of size two are built and finally how trips of size three are generated. For both sections we
will follow the procedures explained in [5], making some changes where necessary because
of choices due to computation time required for finding a solution to the RTV-Graph
generation.
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3.4.1 Trips of size one

Trips of size one are the simplest in our set of trips, because they are simply composed
by one single task and linked to a vehicle. They are the first of the trips that we will find
vehicle after vehicle, in such a way to ease later the generation of trips of greater sizes.
Indeed, trips are added to the RTV-Graph by increasing size, for each vehicle.
All the information we need to generate the trips of size one can be found into the RV-
Graph of our set of tasks and vehicles. In fact, when we used function travel() to see
if the vehicles were able to satisfy single requests, we were actually verifying whether
that candidate trip of size one was feasible or not. Therefore, what we need to do is
to look back at the RV-Graph adjacency matrix and gather the information we need.
Indeed, we know that every task r that is linked to vehicle v in the adjacency matrix
could be satisfied by that vehicle. This means that the task is part of a trip of size one
T1. Therefore, everytime a link between a vehicle vj and a task rk exists in the RV-Graph,
we will add a trip Ti to the RTV-Graph as a new node and add the edge e(rk, Ti) between
the task and the trip and edge e(vj, Ti) between the vehicle and the trip. We can have
a look at the simple Algorithm 1 that add the trips to a list of trips of size one for each
vehicle v ∈ V . We will discuss later about the sampling phase at line 3 and 4 of the
pseudocode.

Algorithm 1 Size one trips generation

1: for each vehicle v ∈ V do
2: Generate trips of size one:
3: if RV-edges[v].size > n1 then
4: RV-edges[v] ← sample(RV-edges[v], n1)

5: for each e(ri, v) ∈ RV-edges[v] do
6: if ( thenT1(= {r1}) ∈ T1)
7: Generate e(T1, v) in RTV-Graph
8: else
9: T1 ← T1 = r1

10: Generate e(ri, T1), ri ∈ T1, and e(T1, v) in RTV-Graph

3.4.2 Trips of size two

Even if the trips of size two are generated on top of the trips of size one, we still need to
go back to the information stored in the RV-Graph to be able to build trips of size two.
Indeed, we will analyze the regions of the RV-Graph to find what of its induced subgraphs
are complete. The complete subgraph of a network are also called cliques. Cliques are
subset of vertices of a graph (induced graph) such that any two vertices of the subset or
adjacent (connected). As explained in Figure 3.4 a clique is a fully connected induced
subgraph. Therefore, what we are looking for is a clique of the RV-Graph composed by
one vehicle vertex and at most two request vertexes.
If we can find such a clique, it means that the request vertexes composing that clique
will consitute a candidate feasible trip. This because the two request nodes are adjacent
(linked to each other) and a vehicle vertex is connected to both of them, which means
that vehicle can serve the requests if served singularly.
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Figure 3.3: Example of a graph made of six vertices with one maximum clique. The maximum
clique is the subset of vertices 1, 2, 5. They are all connected with each other, so it is a complete
induced graph of the original network. Other maximal cliques are the pairs {2, 3}, {3, 4}, {4,
5} and {4, 6}. Maximal cliques are the ones to which no more vertexes can be added. So for
example cliques {1, 2}, {1, 5} and {2, 5} are not maximal beacuse other vertices can be added
to form the bigger clique {1, 2, 5}.

We want to state a necessary condtion for the existence of a trip:

A trip Ti,j, composed by tasks ri and rj, is feasible only if both tasks ri and rj can be
served by the same vehicle vv when considered singularly.

This can be formalized with the lemma proposed in [5]:

Lemma (Cliques). A trip T can be feasible only if a clique in the RV-Graph exists
for all the requests in T and some vehicle v. Namely, if T is valid, then,

∃ v ∈ V such that ∀r1, r2 ∈ T, e(r1, r2) and e(r1, v) exist (3.7)

The reason why both the tasks has to be connected is because if one of the two tasks
was not linked (adjacent in the graph) to the considered vehicle, that task could not be
served by that vehicle. Therefore, it is trivial to state that this task could not be served
in a shared route if it cannot even be served by itself.
This is why we look for cliques of the RV-Graph to find candidate feasible trips.

After having found a candidate feasible trip we need to call a function that can ver-
ify that the two tasks can actually be served by that vehicle (for cliques with one vehicle
and one request, we already know that, if a link exist, they can be considered feasible
trips).
We need to define a function travel size two(v, ri, rj) that computes the feasibility of the
candidate trip Ti,j based on some conditions, so that to satisfy constraints like the vehicle
capacity cv, the starting time st and arrival time at of the two tasks, knowing that a
maximum delay ∆ is allowed.

One important thing is that function travel size two() will also get as argument a num-
ber that tells what is the order linking the two tasks, considering that the first of the two
tasks is always the first task passed as argument.
This means that we will pass as argument a state 1 if the order linking the two tasks is
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oi → oj → di → dj, state 2 if oi → oj → dj → di is the possible combination and state 3
if both the combinations are possible.
The infomration about the most convenient (or the only possible) order with which the
tasks are combined is contained in the matrix kind of link, that is a square matrix of
dimension n× n where n is the total number of tasks.

Example. An example of kind of link matrix is the following:



r1 r2 · · · rn

r1 0 1 . . . 0

r2 1 0 . . . 2
...

...
...

. . .
...

rn 0 2 . . . 0

 (3.8)

In this example, since the entry of the kind of link matrix for tasks r1 and r2 is 1,
it means that the two tasks are linked by the first of the possible orders, that is
oi → oj → di → dj. Instead, tasks r2 and rn can be shared following the pick-ups
and drop-offs order 2, that is oi → oj → dj → di.

In the case in which both the combinations are possible, and both the combinations re-
sult feasible, we will take as feasible trip the one with the lower cost, but we will save the
information that the trip could be done in both ways.
The reason why we choose only one of the two trips is that there is not reason in con-
sidering as trip the one with the higher cost, if then the choice on the assignment of the
trips is based on minimizing the total cost of the assignment.
It is important, though, to save the information about the possibility of doing the trip
with another combination of pick-ups and drop-offs, because this information will be used
when looking for trips of size 3.
The following are the conditions that are verified by travel size two(v, ri, rj) in order to
say if the size two trip is feasible:

� In the case the two tasks can be shared by oi → oj → di → dj:

1. Tclock + tt (vxy, or1) + tt (or1 , or2) 6 str2 + ∆;

2. Tclock + tt (vxy, or1) + tt (or1 , or2) + tt (or2 , dr1) 6 atr1 + ∆;

3. Tclock + tt (vxy, or1) + tt (or1 , or2) + tt (or2 , dr1) + tt (dr1 , dr2) 6 atr2 + ∆;

4. r1.pass + r2.pass 6 cv;

� In the case the two tasks can be shared by oi → oj → dj → di:

1. Tclock + tt (vxy, or1) + tt (or1 , or2) 6 str2 + ∆;

2. Tclock + tt (vxy, or1) + tt (or1 , or2) + tt (or2 , dr2) 6 atr2 + ∆;

3. Tclock + tt (vxy, or1) + tt (or1 , or2) + tt (or2 , dr2) + tt (dr2 , dr1) 6 atr1 + ∆;
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4. r1.pass + r2.pass 6 cv;

If the conditions are not satisfied, the function will return false and the two tasks will be
considered only as size one trips.

After the the analysis of the RV-Graph and generation of the RTV-Graph we will end up
with a set of trips T = {T1, ..., Tw} each of which will be of the type T = {r1, ..., rnT

}.
A request ri may be part of several feasible trips of varying sizes, and a trip might ad-
mit several different vehicles for execution. The request-trip-vehicle RTV-Graph contains
edges e(r, T ), between a request r and a trip T and edges e(T, v), between a trip T and
a vehicle v.
We can formalize as [5]:

∃ e(r, T )⇔ r ∈ T
∃ e(T, v)⇔ travel(v, T ) = ”valid”

(3.9)

All the trips that are added in the RTV-Graph are linked to vehicles nodes and so they
are feasible. All of these trips will be taken into account during the optimization process.

Algorithm 2 Size two trips generation

1: for each vehicle v ∈ V do
2: Generate trips of size one:. . .
3: Generate trips of size two:
4: if T1 list[v] 6= ∅ then
5: for each r1 ∈ T1 list[v] do
6: for each r2 ∈ T1 list[v] do
7: if r1 6= r2 then
8: if travel size two(v, {r1, r2}) = valid then
9: if T2(= {r1, r2}) ∈ T∈ then

10: Generate e(T2, v) in RTV-Graph
11: else
12: T∈ ← T2 = {r1, r2}
13: Generate e(ri, T2), ∀ri ∈ T2, and e(T2, v) in RTV-Graph

3.4.3 Trips of size three

We want now to treat the generation of trips of size three, which are those feasible trips
composed by three tasks ri, rj and rq and that have at least one vehicle that can pick-up
and drop-off all of the tasks within the respective deadlines imposed by the time windows.
Looking to all the possible combinations of trips of size one and trying to prove on these
combinations the feasibility with functions similar to travel() and travel size two() would
be computationally infeasible.
We need therefore a way to exclude combinations that we could tell, before calling a fea-
sibility check function, if that specific combination is feasible or not.
To this aim, we recall a lemma stated in [5]:

Lemma (Sub-feasibility). A trip T can be feasible only if there exists a vehicle v for
which, for all r ∈ T , the sub-trips T ′ = T \ r are feasible (a sub-trip T ′ contains all the
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requests of T but one). Namely,

T feasible ⇒ ∃v ∈ V such that ∀r ∈ T, e(T \ r, v) exists. (3.10)

Therefore, a trip T only needs to be checked for existence if there exists a vehicle v for
which all of its sub-trips T ′ present an edge e(T ′, v) in the RTV-Graph

Since our objective is to obtain trips of size three, we need to combine trips of size
one with trips of size two. There could be the possibility of combining three size one
trips only, and then check for the different combinations. This, fortunately, is not needed,
becasue for the lemma stated before, if a trip of size three is feasible, this means that all
of the size two sub-trips T \ r need to exist. If this is true, all of the three tasks, if taken
two by two, will constitute size two trips.
Therefore, it is more clever, during the analysis, to consider size three trips as composed
of one size one trip and one size two trip. This will help us in discarding the combination
that we can a-priori consider unfeasible.

Example. Try to consider three tasks ra, rb and rc so that Ta = {ra} and
Tb,c = {rb, rc} where Ta is a trip of size one and Ta,b is a trip of size two. We
have that Ta ∈ T v

1 where T v
1 is the set of all the trips of size one for a certain vehicle

v and Tb,c ∈ T v
2 where T v

2 is the set of all the trips of size two for a certain vehicle
v. Assume we want to find out if the set of the three tasks can be considered a
candidate feasible trip of size three. As the lemma is suggesting, we start looking
for the T ′ = Ta,b,c \ r ∀r ∈ {ra, rb, rc} where T ′ ∈ T v

2 . For instance, we found that
Tb,a ∈ T v

2 but not trip Ta,c or Tc,a exists within T v
2 .

Therefore, the three tasks cannot be considered a candidate trip of size three.
If at least one between Ta,c and Tc,a existed in T v

2 , then the three tasks would have
been considered as a candidate trip of size three.

Once we have a size one trip combined with a size two trip, we need to take into con-
sideration all the combinations between the trips. This means that having tasks ri, rj
and rq we can define six combinations for the pick-up order and six combinations for the
drop-off order.
If we consider that the pick-ups must happen before the drop-offs of the respective tasks,
and if we consider that we want all the pick-ups to happen before all the drop-offs we will
obtain two sets of possible combinations: one for the pick-ups of the tasks, one for the
drop-offs of the tasks.
We want therefore to define what are the possible combination of pick-ups and drop-offs
for the three tasks.
The possible orders for the pick-ups of the three tasks are:

1. pr1 → pr2 → pr3

2. pr1 → pr3 → pr2

3. pr2 → pr1 → pr3

4. pr2 → pr3 → pr1

5. pr3 → pr1 → pr2
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6. pr3 → pr2 → pr1

where prx is the pick-up of task x.

For the drop-offs orders of the three tasks we have:

1. dr1 → dr2 → dr3

2. dr1 → dr3 → dr2

3. dr2 → dr1 → dr3

4. dr2 → dr3 → dr1

5. dr3 → dr1 → dr2

6. dr3 → dr2 → dr1

where prx is the pick-up of task x.

Since vehicles that picks-up requests have also to drop them off, then we will have a
total of 36 combinations with which the candidate trips of size three can be executed.
These 36 possible combinations derive from the need of defining trips of size three, which
means that at a certain time during the trip, all the 3 requests will be present inside the
same vehicle. To this aim, all the pick-ups must happen consecutively. If the drop-off of
one of the rides on board the vehicle happens before the pick-up of the third task, then
the trip will be considered as an original trip of size two that temporally becomes a trip
of size one (after dropping off the passenger) and then picks-up the new passengers to
become again a trip of size two.
In this case there is the need for the vehicle to notify about the change of its status from
having two rides on board to having only one. This becasue our algorithm is doing istan-
taneous assignment (IA) and we are not planning future assignments ahead in time.

We now want to define a function travel size three() which is used to compute the fea-
sibility of candidate feasible trips.
This function works in a similar way to travel() and travel size two() functions. It takes
as arguments the three tasks that are candidates to be matched in a size three trip, the
vehicle that is supposed to serve the candidate trips and the possible orders that are
feasible (considering the a-priori knowledge of the shareability of requests).
Following, we show the conditions that function travel size three() have to verify to re-
turn the feasibility of the candidate trip:

1. Tclock + tt (vxy, or1) + tt (or1 , or2) + tt (or2 , or3) 6 str3 + ∆;

2. Tclock + tt (vxy, or1) + tt (or1 , or2) + tt (or2 , or3) + tt (or3 , dr1) 6 atr1 + ∆;

3. Tclock + tt (vxy, or1) + tt (or1 , or2) + tt (or2 , or3) + tt (or3 , dr1) + tt (dr1 , dr2) 6 atr2 + ∆;

4. Tclock+tt (vxy, or1)+tt (or1 , or2)+tt (or2 , or3)+tt (or3 , dr1)+tt (dr1 , dr2)+tt (dr2 , dr3) 6
atr3 + ∆;

5. r1.pass + r2.pass + r3.pass 6 cv;
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Where the notations or1 , or2 , or3 , dr1 , dr2 and dr3 are generic notations given to the pa-
rameters of the function, that indicates what is the order of the pick-ups and what is the
order of the drop-offs. This means that or1 and dr1 are not, in general, related to the
same task. Instead, or1 tells what is the first task to be picked up (for the candidate trip)
and dr1 tells what is the first task to be dropped off (for the candidate trip). They will
be passed as argument in the specific order of the candidate trips.
Since trying all 36 different combinations would be computationally infeasible, we need a
way to discard a-priori some of the combinations. In this way we will try only a limited
number of combinations.
The solution consists in focusing on the sub-trips of size two that compose our combina-
tion.
When starting the exploration for trips of size three, we start by having a set of three
tasks r1, r2 and r3, for which we are going to search for sub-trips of size two. We remem-
ber that if all the possible trips of size two between the three tasks exists for at least one
vehicle, then the three tasks together with the vehicle will be candidates to become a trip
of size three.
We now want to recall the adjacency matrix of the RV-Graph. At that point, when build-
ing the RV-Graph we were also paying attention to what was the order of the pick-ups and
drop-offs for the two tasks, and saving this information in a matrix named kind of link
that has entries equal to zero when two tasks cannot be shared, and a number specifying
the kind of combination when the two tasks can be shared.
Using these information, we can take two of the three tasks at a time, and at the same
moment of verifying if they are shareable, verify what is the order of pick-ups and drop-
offs that is feasible between the two tasks when they belong to a trip of size two.

Example. For instance, we can consider tasks r1, r2 and r3 and assume that it has
been verified that all the sub-trips T ′ = T \ r exist for a certain vehicle v. Now,
suppose the following are the feasible trips:

� T1,2 such that {or1 , or2 , dr2 , dr1} is the order of the pick-ups and drop-offs.
We will call this trip T1→2→2′→1′

� T1,3 such that {or1 , or3 , dr1 , dr3} is the order of the pick-ups and drop-offs.
We will call this trip T1→3→1′→3′

� T3,1 such that {or3 , or1 , dr1 , dr3} is the order of the pick-ups and drop-offs.
We will call this trip T3→1→1′→3′

� T3,2 such that {or3 , or2 , dr2 , dr3} is the order of the pick-ups and drop-offs.
We will call this trip T3→2→2′→3′

Given these feasible trips of size two for the three tasks, we can define what are the
possible combinations for the pick-ups and the possible combinations for the drop-
offs. To this aim, starting from the pick-ups, we can define a set of constraints that
will tell what are the orders in which the tasks can be picked up. The conditions we
have form the pick-ups order are:

� pr1 can precede pr2 ;

� pr1 can procede pr3 ;

� pr3 can procede pr1 ;

� pr3 can procede pr2 ;
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That translate in the constraints:

tpr1 6 tpr2 ;

tpr3 6 tpr2 ;
(3.11)

where tpx is the pick-up time of task x.

This means that the only feasible combinations for the pick-ups for the given tasks,
given the constraints 3.11 are:

� 1→ 3→ 2;

� 3→ 1→ 2;

If we procede in the same way for the drop-offs case, we obtain constraints tpr2 6
tpr1 , tpr1 6 tpr3 and tpr2 6 tpr3 that lead to following possible combinations for the
drop-off of the three tasks:

� 2′ → 1′ → 3′;

As we can notice we went from the need to check for 36 combinations to being able
to check only 2 possible combinations for the candidate trip of size three composed
by the three tasks.
At this point, the function travel size three() will only try these two combinations.
Since the number of vehicles and of tasks are huge, then also the number of trips of
size one and trips of size two will be great. This shows that exploiting the a-priori
information contained in the trips definition and on the RV-Graph and all the data
structures related to it, like the kind of link matrix, will save a lot of computation
time to the algorithm.
The pseudocode contained in the Algorithm 3 regards generation of trips of size
three. At lines 6 and 7 we use a random sampling function to decrease the number
of trips of size two that will be used to investigate for trips of size three.
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Algorithm 3 Size three trips generation

1: for each vehicle v ∈ V do
2: Generate trips of size one:. . .
3: Generate trips of size two:. . .
4: Generate trips of size three:
5: if T2 list[v] 6= ∅ then
6: if T2 list[v].size > n2 then
7: T2 list[v] ← sample(T2 list[v], n2)

8: for each T1 ∈ T1 list[v] do
9: for each T2 ∈ T2 list[v] do

10: if T1 ∩ T2 = ∅ then
11: {r1, r2, r3} = T1 ∪ T2

12: if ∀i = 1, . . . , 3 : {r1, r2, r3} \ ri ∈ T2 list then
13: pickup order = ∅, dropoff order = ∅
14: if e(r3, r1) and e(r3, r2) ∈ ERV -Graph then
15: pickup order.push({r3, r1, r2})
16: if e(r3, r1) and e(r3, r2) ∈ ERV -Graph then
17: pickup order.push({r1, r3, r2})
18: if e(r3, r1) and e(r3, r2) ∈ ERV -Graph then
19: pickup order.push({r1, r2, r3})
20: if T12 : 1→ 2→ 1′ → 2′ then
21: if {r3, r1, r2} = valid in kind of link ⇒ dropoff order.push
22: if {r1, r3, r2} = valid in kind of link ⇒ dropoff order.push
23: if {r1, r2, r3} = valid in kind of link ⇒ dropoff order.push

24: if T12 : 1→ 2→ 2′ → 1′ then
25: if {r3, r2, r1} = valid in kind of link ⇒ dropoff order.push
26: if {r2, r3, r1} = valid in kind of link ⇒ dropoff order.push
27: if {r2, r1, r3} = valid in kind of link ⇒ dropoff order.push

28: if travel size three(v,pickup order, dropoff order) = valid then
29: if T3(= T1 ∪ T2) ∈ T3 then
30: Generate e(T3, v) in RTV-Graph
31: else
32: T3 ← T3 = T1 ∪ T2

33: Generate e(ri, T3), ∀ri ∈ T3, and e(T3, v) in RTV-Graph

Another trick we use to decrease the computation time of function travel size three() is
to quit the function as soon as a size three trip is found for the possible combinations.
This avoid to check for all the possible combinations within the function. This heuristic
will make us save some computation time at the cost of loosing some optimality. After
the computation of the trips of size three we end up having a set of feasible trips T =
{T1 ∪ T2 ∪ T3} where T1 is the set of trips of size one, T2 is the set of trips of size two
and T3 is the set of trips of size three.
It can be that a set T ∈ T can be served by more then one vehicle, because the route
results feasible for more than a vehicle.
Every different trip - vehicle edge e(T, v) will be considered as a candidate assignment for
our assignment problem.
For instance, if T1 is linked to both v1 and v2, there will be two candidate assignments
related to T1, and these will be represented by the RTV-Graph links e(T1, v1) and e(T1, v2).
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The next phase is related to the assignment of the feasible trips to vehicles, while satisfying
a set of constraints that tells what trips can be simultaneously assigned or not.
We don not want two different trips that contains the same task to be assigned at the
same moment. This would result in a system inefficiency, since some other tasks may
have been discarded to accomodate that assignment.
It is important to build carefully the set of constraints of our problem so that to avoid
failures in the assignment.

3.5 Optimization problem for the optimal vehicle assignment

3.5.1 Formulation of the ILP optimization problem

The assignment of the vehicles to the trips is obtained through the solution of an opti-
mization problem. The goal of a generic optimization problem is to make the best choice
of a vector from a set of candidate choices. Firm requirements or specifications limit the
possible choices and the objective value.

Example. The following is the generic formulation of an optimization problem from
[17].

minimize
x

f0(x)

subject to: fi(x) ≤ bi, i = 1, . . . ,m (3.12)

Where the vector x = (x1, ..., xn) is the optimization variable of the problem, the
function f0 is the objective function, the functions fi, i = 1, . . . ,m, are the (inequal-
ity) constraint functions and the constants b1, . . . , bm are the limits, or bounds, for
the constraints. A vector x∗ is called optimal, or a solution of the problem 3.12, if
it has the smallest objective value among all vectors that satisfy the constraints.

Due to the integrality requirement on the variables of our problem, we will need to solve an
ILP (Integer Linear Programming). We want to introduce now how to build specifically
the problem regarding the task assignment from the knowledge of the RTV-Graph. Also,
we will have an insight on how the ILP is formulated and how it is solved in general.

Problem variables

Our goal is to find the best vector of assignments out of the many possible feasible
combinations, so that to minimize the cost related to the global travel time of our appli-
cation.
To this aim, a vector of binary variables εi,j = {0, 1} is introduced for each edge e(Ti, vj)
between a trip Ti ∈ T and a vehicle vj ∈ V in the RTV-Graph [5]. We denote with ETV

the set of indexes for which an edge e(Ti, vj) exists in the RTV-Graph.
After the optimization problem is solved, we will have:

εi,j =

{
1 if vehicle vj is assigned to trip Ti

0 if the candidate assignment is not assigned

40



Ideally speaking, all the requests shall be assigned to a vehicle, but given the constraints,
this might not always be the case. Therefore, we define an additional vector of binary
variables χk that has an element for each request rk ∈ R. We will have:

χk =

{
1 if request rk is not assigned in any of the trips in T
0 if request rk is assigned

We can now define the set of variables:

X = {εi,j, χk; ∀e(Ti, vj) edge in RTV-Graph, ∀rk ∈ R} (3.13)

Because our optimization variable is constrained to the values {0, 1} we call this problem
a binary linear programming that is a special case of the integer linear programming (ILP)
problems.
Integer linear programming are very complex problem and are classified as NP-complete
problems. The problem therefore belongs to the hardest problems in the complexity NP
[85].

Problem constraints

In our optimization problem, two types of constraints are present. One regards the
fact that the vehicles cannot serve more than one trip at a time (remember that trips are
already a combination of the different requests when possible). The other constraints are
saying that a request can be assigned to one single trip at most, or ignored.
Solutions where requests are ignored exist, but our goal will be to try to have the most
number of requests satisfied.
To formalize the first constraint we say that:

∑
i∈IVj

εi,j ≤ 1 ∀vj ∈ V (3.14)

where IVj is the set of indexes i for which an edge e(Ti, vj) exists in the RTV-Graph.
We can write the constraints in matrix form, that is the form used in most of the solvers:

[
A1 | 0m×n

] [εi,j
χk

]
≤ 1m×1 −→ A1,extended

[
εi,j
χk

]
≤ 1m×1 (3.15)

where A1 is a rectangular matrix of dimensions m × l with m the number of vehicles
and l the length of the vector of variables εi,j that is the number of edges e(Ti, vj) in the
RTV-Graph for our instance of the problem. Notice that formulation 3.15 is considering
also variables χk. This because we need to consider also variables χk when building the
constraints in matrix form, because the vector of variables is X = [εi,j;χk], even if the
first of the two sets of contraints does not concern those variables. Therefore, we need to
consider a matrix A1,extended of size m× (l+ n) that accounts also for additional columns
of zeros, to match the size (l + n) of the variables vector X.
We want now to show with an exmaple how matrix A1 is built so that to represent the
constraints of our problem.
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Example. Here we show an example of the implementation of matrix A1 for rep-
resenting the first set of constraints in a matrix formulation.


e(T1, v1) e(T1, v2) e(T2, v1) e(T3, v2) e(T3, vm) · · · e(T10, v1) · · · e(Tt, v2)

v1 1 0 1 0 0 . . . 1 · · · 0
v2 0 1 0 1 0 . . . 0 · · · 1
...

...
...

...
...

...
. . .

...
. . .

...
vm 0 0 0 0 1 . . . 0 · · · 0



And the vector of variables ε is:

ε =



e(T1, v1)
e(T1, v2)
e(T2, v1)
e(T3, v2)
e(T3, vm)

...
e(T10, v1)

...
e(Tt, v2)


We can see that matrix A1 associates row elements (that are vehicles) to column
elements (that are candidate solutions). When the vehicle vj, i = 1, . . . ,m, is ap-
pearing in the candidate solution εc, c = 1, . . . , l then the entry A1ij will be equal
to one.
We will need later to add n columns of zeros to matrix A1 so that to take into
account the n χ variables, which represent whether tasks have been assigned or not.
The presence of these columns is due to the fact that sizes of the matrixes have to
match. Also the variables vector will be of size l + n.
Therefore, we are describing a set of inequalities that tells that the sum of the as-
signments related to a single vehicle, can be at most 1.
For our specific example we have the following set of inequalities:

e(T1, v1) + e(T2, v1) + . . .+ e(T10, v1) + . . . ≤ 1

e(T1, v2) + e(T3, v2) + . . .+ e(T10, v2) ≤ 1

...

e(T3, vm) + . . . ≤ 1

(3.16)

This constraint will make sure that none of the vehicles is assigned to more than
one trip.
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To formalize the second constraint we say:

∑
i∈IRk

∑
j∈ITi

εi,j + χk = 1 ∀rk ∈ R
(3.17)

where IRk is the set of indexes k for which the edge e(rk, Ti) exists in the RTV-Graph. We
remind that an edge e(rk, Ti) exists between a task rk and a trip Ti when rk ∈ Ti.
ITi represents the indexes j for which an edge e(Ti, vj) exists in the RTV-Graph. An edge
e(Ti, vj) exists between the vehicle vj and the trips it can serve.

For this set of constraints, having two sum operations, we decide to consider a matrix
product to be able to represent the constraints in matrix form. The product of the two
matrices will be a new matrix that will be used in the matrix representation of the set of
constraints.
We can represent the set of constraints in matrix form as:

[
AIR

] [
AIT , extended

] [εi,j
χk

]
= 1n×1 −→

[
AIR

] [
AIT | 0t×n

] [εi,j
χk

]
= 1n×1

(3.18)

where matrix AIR is used to account for the IRk indexes and matrix AIT is used to account
for the ITi indexes.
Matrix AIT , extended is a block matrix composed of the constraint matrix AIR and by a
t× (l + n) matrix of zeros.
We deal first with the inner summation of the constraint equations and therefore with
matrix AIT , extended. We have that indeces ITi tells when an edge of the RTV-Graph is
linked to a trip T ∈ T . This means that the matrix representing the sum operation will
be a rectangular matrix of size t × (l + n), where t is the total number of trips of the
RTV-Graph, l is the number of edges in the RTV-Graph (which represents the number
of candidate assignments) and n is the number of tasks of our problem, that is also the
dimension of the vector of additional variables χ. l + n will be the total number of vari-
ables of our problem. Therefore, the first l variables represent the assignments and the
last n variables represent assigned/unassigned tasks.
Following, we show with an example how matrix AIT , extended is defined.

Example. In this example we have a set of trips T ∈ T and a set of edges
e(Ti, vj) ∈ E . We want to show how the matrix relates the two sets.
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e(T1, v1) e(T1, v2) e(T2, v1) e(T3, vm) · · · e(Tt, v2) r1 · · · rn



T1 1 1 0 0 . . . 0 0 · · · 0
T2 0 0 1 0 . . . 0 0 · · · 0
T3 0 0 0 1 . . . 0 0 · · · 0
...

...
...

...
...

. . .
... 0

. . . 0
T10 0 0 0 0 . . . 0 0 · · · 0
...

...
...

...
...

. . .
... 0

. . . 0
Tt 0 0 0 0 . . . 1 ︸ ︷︷ ︸

0t×n

0 · · · 0

The columns of AIT are the edges of the RTV-Graph, the rows are all the trips T
of the RTV-Graph. The entries of AIT are one when the trip Ti, i = 1, . . . , t, is
contained in the candidate assignment represented by columns c = 1, · · · , l. The
last n columns of matrix AIT ,extended represent what tasks of our problem have been
assigned. There is no direct relation between the trips T and these variables as we
can see from equation 3.19. The only reason why these columns of zeros are present
is because we need consistency in the matrices sizes when building the matrix for-
mulation of our set of constraints.

The outer summation of the constraint is represented by matrix AIR that is related to
indexes IRk . AIR is a rectangular matrix of size n× t where n is the total number of the
tasks and t is the toal number of trips in the RTV-Graph. We show with an example how
matrix AIR is shaped.

Example. In this example we want to show how matrix AIR that relates trips T
and tasks R is shaped.



T1 T2 T3 · · · Tt
r1 1 1 0 . . . 0
r2 0 0 1 . . . 1
r3 1 0 1 . . . 0
...

...
...

...
. . .

...
rn 0 0 1 . . . 1


The columns of AIR are all the trips Ti ∈ T for t = 1, . . . , t in the RTV-Graph while
the rows of the matrix are the requests rk ∈ R for k = 1, . . . , n. This means that
the entries of the matrix are one when the task on the k-th row is part of the trip
in the i-th column and they are zero otherwise.
Notice that trip T1 is at least a trip of size two because from matrix AIR we know
that T1 = {r1, r3, . . . }, T2 is at least a trip of size one because T2 = {r1, . . . } and T3
is a trip of size three T3 = {r2, r3, rn}.
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Once we have the two matrices AIT and AIR, extended we can do the matrix product to find
the direct relation between the vector of the variables and the known vector:

[
AIR

] [
AIT , extended

] [εi,j
χk

]
= 1n×1 −→ A2

[
εi,j
χk

]
= 1n×1 (3.19)

Now we know how to build the matrixes A1 and A2 to define the constraints of our prob-
lem.
One set of constraints is left, and it is stating that all the variable can only be either
zero or one. Because of these constraints the problem is an Integer Linear Programming
Problem (ILP) and more specifically a binary linear programming problem. The set of
constraints is expressed by:

X = {x : x ∈ {0, 1}} (3.20)

Problem cost function

The objective of our algorithm is to minimize the cost that is defined by the travel time
of all the different assigned vehicles once a trip is assigned. The cost function may be any
mix of travel time, distance, toll, energy consumpiton etc. associated with the edges [33].
Another objective that usually is used is to consider the delay on the original planned
arrival time before a ride-sharing option was proposed to the rider, for each of the rides
composing the trip. This cost would be given by:

ci,j =
∑
r∈Ti

(tdr − t∗r) (3.21)

where tdr is the drop-off time for task r and t∗r is the best possible arrival time for that task
(that previously we considered being the arrival time atr). ci,j is computed for each of the
candidate assignments e(Ti, vj). It means that each candidate assignment is associated
with a cost by definition. We will generally use that cost to build the cost function.
We decided instead to consider as cost of the candidate assignments the total travel time
from the location of the vehicle at the time of the algorithm call until the last passenger
of the trip for the specific assignment is dropped-off.
Consider a 2D-vector named Loc, composed by the pivot locations defining the route of
a trip. These are the vehicle starting location coordinates vxy, the pick-ups coordinates
o1,xy and o2,xy and the drop-offs coordinates d1,xy and d2,xy of the two tasks. We can define
the cost ci,j as:

ci,j =

|Loc|−1∑
i=0

tt(Loci+1 − Loci)
(3.22)

Where |Loc| is the length of the vector and depends on the size of the trip, since trips
composed of more rides have more pivot points. tt() is the function computing the travel
time between two location coordinates.

We define now the cost function of our problem, where ci,j and the variables vectors
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εi,j and χi,j have already been defined:

C(X ) =
∑

i,j∈ETV

ci,jεi,j +
∑

k∈{0,...,n}

ckoχk (3.23)

This cost function wants to be a tradeoff between the total time spent on travelling by
the vehicles (that has to be minimized) and the fact that we want as many requests
satisfied as possible. The second term of the cost function is assigning a cost cko to each
unassigned request (when χk is one). By using a large constant as cko we want that the
quantity

∑
k∈{0,...,n} ckoχk is as small as possible so that the number of assigned requests

is as big as possible.

The ILP optimization problem

Once we have defined what are the variables of our problem, what are the constraints
and how they are built and what is the cost function of our problem, we can formulate
the optimization problem as:

min
x

∑
i,j∈ETV

ci,jεi,j +
∑

k∈{0,...,n}

ckoχk

subject to:
∑
i∈IVj

εi,j ≤ 1, ∀vj ∈ V

∑
i∈IRk

∑
j∈ITi

εi,j + χk = 1 ∀rk ∈ R

εi,j, χk ∈ {0, 1}

(3.24)

The problem is solved with IBM ILOG CPLEX optimizer [31], that provides a set of
libraries for the construction of the problem and provide tools for the solution of the
problem. The CPLEX algorithm makes use of one of the most used algorithms for MILP
problems which is the Branch-and-Cut algorithm. The next paragraph will treat what is
the branch-and-cut algorithm, and what is the theory behind its working procedures.

3.5.2 Methods for solving integer linear programs

In this paragraph we want to introduce the currently most successful method for solving
integer linear programming (ILP) problems, that is the so called Branch-and-Cut algo-
rithm. Most of the theoretical aspects are taken form [27]. For convenience, most of
the literature assumes the more general case of mixed-integer linear programming (MILP)
problems, where part of the variables are constrained to be nonnegative integers, while
other variables are allowed to take any nonnegative real value.
Solving integer programs is a difficult task in general since, as we anticipated, they are
considered NP-complete problems. In the case for example of binary integer linear pro-
gramming problems, where the variables are constrainted to take value 0 or 1, one possible
approach could be of trying all the possible combinations of the variables, since they are
restricted to a finite number of values. Even if logically simple, this is applicable in theory
but is not practical when the number of variables is large. One approach commonly used
is to find a relaxation of the problem that is numerically easier to solve and that gives a
good approximation of the solution.
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Linear programming relaxations are mainly used because of its success in computational
mathematics and the high results achieved in solving them. Relaxations can be solved in
reasonable time because of the efficiency of the algorithms that exist nowadays. Another
reason why to use linear programming relaxations is that we can generate a sequence of
linear relaxations of our set that provide increasingly tighter approximations.
We now give a formulation of the generic MILP problem:

max
x

cx+ hy

subject to: Ax+Gy ≤ b

x ≥ 0 integral

y ≥ 0,

(3.25)

The feasible set of solutions of 3.25 will be the mixed integer set :

S = {(x, y) ∈ Zn
+ × Rp

+ : Ax+Gy ≤ b} (3.26)

where n is the number of the x nonnegative integer variabels and p is the number of the
y nonnegative real variables.
For the case of binary integer linear programming we will have a mixed 0,1 linear set that
is in general:

S = {(x, y) ∈ {0, 1}n × Rp
+ : Ax+Gy ≤ b} (3.27)

The so called natural linear relaxation, is the linear relaxation of the set S, and this is:

P0 = {(x, y) ∈ Rn
+ × Rp

+ : Ax+Gy ≤ b} (3.28)

that is obtained simply discarding the integrality constraint for the variables x. Thus, it
derives also a natural linear programming relaxation of the MILP problem 3.25 and this
is, in short: max{cx+ hy : (x, y) ∈ P0}.

Figure 3.4: Example of mixed integer linear set and of a pure integer linear set, where all the
variables are constrained to take integer variables.

Branch-and-cut for solving the MILP

The CPLEX solver uses Branch-and-Cut search when solving mixed integer linear pro-
gramming models. The branch-and-cut procedure manages a search tree consisting of
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nodes. To speak of the branch-and-cut algorithm is better first to introduce the so called
Branch-and-Bound algorithm. Branch and cut involves running a branch-and-bound al-
gorithm and using cutting planes to tighten the linear programming relaxations. Branch-
and-bound and the cutting plane methods are based on simple ideas but they are at the
heart of the state-of-the art software for integer programming.
We now write in short the problem formulated in 3.25 denoting it as MILP:

MILP : max{cx+ hy : (x, y) ∈ S} (3.29)

where S as before is S = {(x, y) ∈ Zn
+ ×Rp

+ : Ax+Gy ≤ b}. We assume that our prob-
lem admits a finite optimum, to ease the explanation. We then call (x∗, y∗) the optimal
solution of our problem and z∗ the value of the cost function at the optimum.
Let then (x0, y0) and z0 be the optimal solution and the optimal vlaue of the natural
linear programming relaxation of our MILP problem. The relaxation is:

relaxed MILP : max{cx+ hy : (x, y) ∈ P0} (3.30)

where P0 = {(x, y) ∈ Rn
+ × Rp

+ : Ax + Gy ≤ b} is the natural relaxation of the set S.
(x0, y0) and z0 are computed with a generic LP solver. Since P0 is a relaxation of the set
of integers S, we have S ⊆ P0 and therefore z∗ ≤ z0. This beacause the range of possible
solutions in the relaxed set P0 is bigger than the set of solutions in S, therefore the value
z0 of the cost function in P0 will be at least equal to the value z∗ in S, if not greater (in
case of maximization).
If solution x0 is an integral vector, then (x0, y0) ∈ S and therefore z∗ = z0 and the MILP
would be solved. Instead, if at least one of the components of x0 is fractional (not an
integer), then we need to use one of the algorithm proposed for solving MILP.

We call x = (x1, . . . , xn) the vector of variables of our problem that are constrainted to be
integer. Since the vector x0 of solution we have found for the LP relaxation is fractional
(which means that at least one of its elements is fractional) we pick one of its elements of
index j, where 1 ≤ j ≤ n such that x0j is fractional. We call this fractional value f = x0j
and we define the sets:

S1 = S ∩ {(x, y) : xj ≤ bfc} and S2 = S ∩ {(x, y) : xj ≥ dfe} (3.31)

where bfc denotes the largest integer k ≤ f and dfe denotes the smallest integer l ≥ f .
We can now define two new mixed integer linear programming problems MILP1 and
MILP2:

MILP1 : max{cx+ hy : (x, y) ∈ S1} and MILP2 : max{cx+ hy : (x, y) ∈ S2} (3.32)

Since the solution of the MILP is the best between the solutions of the two problems
MILP1 and MILP2, then we will say that the solution of the original MILP is reduced to
the solution of two subproblems.
As we have done for the original MILP, we can relax the new problems MILP1 and MILP2

by relaxing the sets S1 and S2 with the natural linear relaxations P1 and P2. These new
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relaxed sets will be:

P1 = P0 ∩ {(x, y) : xj ≤ bfc} and P2 = P0 ∩ {(x, y) : xj ≥ dfe} (3.33)

And the two corresponding natural linear programming relaxations of the MILP subprob-
lems will be:

LP1 : max{cx+ hy : (x, y) ∈ P1} and LP2 : max{cx+ hy : (x, y) ∈ P2} (3.34)

Now we will procede considering the following criteria as described in [27]:

1. If one of the linear porgrams LPi is infeasible, i.e., Pi = ∅, then we also have Si = ∅
since Si ⊆ Pi. Thus MILPi is infeasible and does not need to be considered any
further. We say that this problem is pruned by infeasibility.

2. Let (xi, yi) be an optimal solution of LPi and zi its value, i = 1, 2.

(a) If xi is an integral vector, then (xi, yi) is an optimal solution of MILPi and a
feasible solution of MILP. Problem MILPi is solved, and we say that it is pruned
by integrality. Since Si ⊆ S, it follows that zi ≤ z∗, that is, zi is a lower bound
on the value of MILP. This is true because the set S that contains Si has more
possible solution so the cost function can improve.

(b) If xi is not an integral vector and zi is smaller than or equal to the best known
lower bound on the value of MILP, then Si cannot contain a better solution and
the problem is pruned by bound.

(c) If xi is not an integral vector and zi is greater than the best known lower bound,
then Si may still contain optimal solution to MILP. Let xij, be a fractional com-

ponent of vector xi. Let f ′ = xij, define the sets Si1 = Si ∩ {(x, y) : xj′ ≤ bf ′c},
Si2 = Si ∩ {(x, y) : xj′ ≥ df ′e} and repeat the above process.

By following these rules, the procedure is searching for an optimal solution by branching,
that is, partitioning the set S in smaller subsets with the goal of bounding the objective
value of the suproblems.
Bounding the objective value of a subproblem is done by solving its natural linear pro-
gramming relaxation. This is called linear programming bounding.
The branch-and-bound algorithm has a list of linear programming problems obtained by
relaxing the integrality requirements on the variables xj, j = 1, . . . , n and imposing linear
constraints, such as bounds on the variables xj ≤ uj or xj ≥ lj. Each such linear program
corresponds to a node of the enumeration tree.

A branch is the creation of two new nodes from a parent node. A branch occurs when
the bounds on a single variable are modified, with the new bounds remaining in effect
for that new node and for any of its descendants. For example, if a branch occurs on a
binary variable, that is, one with a lower bound of 0 and an upper bound of 1, then the
result will be two new nodes, one node with a modified upper bound of 0 (the downward
branch, in effect requiring this variable to take only the value 0), and the other node with
a modified lower bound of 1 (the upward branch, placing the variable at 1). The two new
nodes will thus have completely distinct solution domains.
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Denote with L the list of nodes that must still be solved (not pruned nor branched), Ni is
the i-th node and N0, called the root node is the node associated with the original linear
programming relaxation. zi is the optimal value associated with LPi relaxation of node
Ni, and z is a lower bound on the optimum value z∗. Good lower bounds on z can be
derived by any heuristic method for the solution of the original MILP.
This process implies the construction of a search tree. Due to the exponential growth in
the size of such a tree, exhaustive enumeration would quickly become hopelessly compu-
tationally expensive for MILP problems with even dozens of variables. The effectiveness
of the branch-and-bound algorithm depends on its ability to prune nodes [54]. This is
why in the branch-and-bound approach, the tightness of the upper bound is crucial for
pruning the enumeration three. Tighter upper bounds can be calculated by applying the
cutting plane approach to the subproblems. This leads to the Branch-and-Cut method.
Before the branching phase usual of the branch-and-bound procedure, a cutting-plane is
added.
A cutting-plane term derive from the definition [27] of a new inequality that is added into
our problem. The idea is to find an inequality αx + γy ≤ β such that it is satisfied by
every poitnt in S and such that αx0 + γy0 > β, when x0 /∈ S.
An inequality αu ≤ β is valid for a set K ⊆ R if it is satisfied by every point ū ∈ K. A
valid inequality αx+γy ≤ β for S that is violated by (x0, y0) is a cutting plane separating
(x0, y0) from S. Let αx+ γy ≤ β be a cutting plane and define:

P1 = P0 ∩ {(x, y) : αx+ γy ≤ β} (3.35)

Since S ⊆ P1 ⊂ P0, the linear programming relaxation of MILP based on P1 is stronger
than the natural linear programming relaxation used in the branch-and-bound approach,
in the sense that the optimal value of the linear program:

max{cx+ hy : (x, y) ∈ P1} (3.36)

is at least as good as z0 as an upper-bound on the value z∗, while the optimal solution
(x0, y0) of the natural linear programming relaxation we know does not belong to P1

because of the cutting-plane. We want to generalize the past definition to be repeated
iteratively, where the root node will generally be the i-th node, and the child branches will
be the (i + 1)-th. In practice it is good to generate multiple cutting-planes to separate
(xi, yi) from the set S. All of the cutting planes will be used to create the successive
subsets.

In practice the cutting-plane is called cut and this is a constant added to the model
with the purpose of limiting the size of the solution domain for the continuous LP or
QP problems (problem relaxations) represented at the nodes, while not eliminating legal
integer solutions. The outcome is thus to reduce the number of branches required to solve
the MILP. There exist both global cuts and local cuts. A global cut is a cut that is valid
for all nodes of the branch-and-bound tree, even if that global cut was found during the
analysis of a particular node. In contrast, a local cut is a cut that is valid only for a
specific node and for all of its descentant nodes.
The branch-and-cut procedure, consists of performing branches and applying cuts at the
nodes of the tree.
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Branch-and-Cut Algorithm

1. Initiate
L = {N0}, z = −∞ or initial guess, (x∗, y∗) = ∅.

2. Terminate?
if L = ∅, the solution (x∗, y∗) is optimal.

3. Select node
Choose a node Ni in L and delete it from L.

4. Bound
Solve LPi. If it is infeasible, go to Step 1. Else, let (xi, yi) be an optimal solution of
LPi and zi its objective value.

5. Prune
If zi ≤ z go to Step 1.
If (xi, yi) is feasible to MILP, set z = zi, (x

∗, y∗) = (xi, yi) and go to Step 1.

Otherwise:

6. Add cuts?
Decide whether to strengthen the formulation LPi or to branch.
In the first case strengthen LPi by adding cutting planes and go back to Step 3.
In the second case, go to Step 6.
The decision of whether to add cuts or not is made empirically, basing the choice on
the success of previously added cuts and the characteristics of the new cuts such as
their density.

7. Branch
From LPi, construct k ≥ 2 linear programs LPi1 , . . . , LPik with smaller feasible
regions whose union does not contain (xi, yi), but contains all the solutions of LPi

with x ∈ Zn. Add the corresponding new nodes Ni1 , . . . , Nik to L and go to Step 1.

CPLEX heuristics

In practice, CPLEX will operate as the algorithm proposed above, but it implements
some additional features to speed up computation, so trying to give an optimal solution,
or a good approximation quickly.
When processing a node, CPLEX starts by solving the continuous relaxations (LP) of its
subproblems, that are the subproblems with no integrality constraints, as extensively ex-
plained above. If the solution violates any cuts, CPLEX may add some or all of the to the
node problem and may resolve it, if CPLEX has added cuts. This procedure is iterated
until no more violated cuts are detected by the algorithm. If at any point in the addition
of cuts the node become infeasible, the node is pruned (as in Step 5). Otherwise (as
the second condition of Step 5) CPLEX checks whether the solution of the node-problem
satisfies the integrality constraints. If so, and if the objective value is better than that
of the current bound z, the solution of the node-problem is used as the new z. If not,
branching will occur (Step 7), but first a heuristic method may be tried at this point to
see if a new incumbent can be inferred form the LP-QP solution at this node.
At any point in the algorithm there is a node Ni whose zi is better (less, in the case of
minimization problem, or greater for a maximization problem) than all the other nodes.
The best node value can be compared to the objective function value of the current best
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solution. The resulting MILP gap, expressed as a percentage of the best solution, serves
as a measure of progress toward finding and providing optimality. The two values will
converge while the algorithm iterates, and thus the gap will become zero. CPLEX stops
when the gap is lower than 0.01%, that is sooner than a completed proof of optimality.
Going on with the computation will require additional computaion time with low increase
in the quality of the solution.

In CPLEX, heuristics are procedures that try to produce good or approximate solutions
to a problem in few time but which lack theoretical guarantees. When solving a MILP,
a heurisitc method may produce one or more solutions that satisfy all the constraints
of the problem but which lack an indication of whether it has found the best solution
possible. Heuristics can speed up the final proof of optimality, or they can provide a sub-
optimal but high-quality solution in a shorter amount of time than by branching alone.
For example, node heuristics apply heuristic approach to find a feasible solution to the
branch-and-cut node. RINS (Relaxation Induced Neighborhood Search) is a heuristic that
explores a neighborhood of the current incumbent (the current best solution) solution (it
implements a local search) to try to find a new improved bound. The neighborhood is
constructed using information contained in the continuous relaxation of the MILP mode.
Neighborhood search is formulated as a MILP model itself and solved recursively [32].

Solvers can solve the problem even when a given starting point is not a feasible solution
to our problem or it is incomplete. They will first of all test for the feasibility of the start-
ing point, and if not feasible they will search for a feasible starting point in an iterative
fashion.
When providing a starting point to a MILP, CPLEX will process it before starting the
branch-and-cut. If the starting points (it is possible to give more than one) define a so-
lution to the MILP, then CPLEX will use the best of these solutions as the incumbent
solution, that is the best solution present for the kind of problem (maximization or min-
imization).
The advantage of having a feasible starting solution from the beginning of the the branch-
and-cut algorithm call is that CPLEX can eliminate portion of the search space and thus
it may result in smaller branch-and-cut trees. Moreover, having an incumbent also allows
CPLEX to use heuristics which require an incumbent, such as Relaxation Induced Neigh-
borhood Search (RINS heuristic).
To this aim, in order to give to the algorithm a good starting point for the solution of
the MILP, we used a feasible starting solution that also tries to satisfies the criteria on
which our optimization problem is based. A greedy assignment [5] has been designed
for planning a first coarse assignment algorithm that still respect the constraints of our
problem.

3.5.3 A greedy assignment as a starting solution for the ILP

A first heuristic assignment wants to match vehicles with trips in a way that maximizes
the number of requests while minimizing the global cost of the assignment. The greedy
algorithm is allocating trips to vehicles, assigning trips by decreasing size and by growing
cost, from the set of edges εi,j. This means that it will assign trips of size k first, then
trips of size k − 1 and so on, if present. The last trips to be assigned will be trips of size
one.
Assigning by increasing cost means that the trips sets will be ordered by increasing cost
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and the assignment of the trips of a certain size f ≤ k will start from trips that have a
lower cost within the trips of the set Tf .
As we assign trips to vehicles we need to keep track of the vehicles that have been assigned
and of the tasks contained in the trips that have already been assigned. Doing that way
we will guarantee that our solution is feasible and the branch-and-cut algorithm of the
CPLEX solver will not need to find for a feasible starting point. Moreover, the cost has
been already taken into consideration and the global cost is assumed to be not as far
from the optimal solution of the MILP. This will help the algorithm when searching for a
solution.

3.6 Vehicles fleet rebalancing phase

Due to imbalances of the distribution of vehicles with respect to the distribution of the
service requests, it may happen that some requests remain unassigned during the optimal
assignment phase (solution of the MILP) and some vehicle remain idle. Indeed, it was
not a constraint of the problem that all requests and vehicles must be assigned. This
would be in contrast with the temporal constraints imposed during the matching phase
and therefore against constraints expressed by equations 3.14, 3.19.
Therefore, we want to give the possibility to those unassigned tasks to be assigned. It
may happen, though, that the assignment of these tasks to vehicles is in contrast with
the delay constraints imposed by the parameter ∆ in our system. If the task is located
in a place of high request, it might be probably served at the next algorithm call or when
a new vehicle in its neighbors becomes available. This, even if not always true, is highly
probable.
Instead, if the request is located in a place where the service is low (for instance a subur-
ban area), then it is difficult that the request would be reconsidered even at future calls
of the optimal assignment.
It is up to the customer to accept an assigned vehicle/route based on his/her common
sense to understand that the area where the request has been located is not suitable for
being served under strict delay constraints.
As in [5] we call Rko the set of tasks that have not been assigned during the optimal
assignment problem and Vidle the set of vehicles that have remained idle with no trip to
serve.
The goal of the rebalancing phase is to assign single tasks to vehicles building a new
optimization problem.

Cost function: The first step will be to compute the cost of each r-v possible match-
ing based on the travel time required by the vehicle to move from its current position
to the pick-up location of the task and then travel with the passenger on board to the
drop-off location of the task.
We compute the cost as in 3.22:

cv,r =

|Loc|−1∑
i=0

tt(Loci+1 − Loci) (3.37)

where Loc is the 2D-vector of all the pivot points of the route for all the possible v-r
combinations.
The cost function is a linear combination of the variables yv,r ∈ Yv,r by the cost vector
cv,r where Yv,r = {y1, . . . , yn} that represent all the possible couples v-r. n = lRko

× lVidle
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is the dimension of the variable vector lRko
is the number of unassigned tasks and lVidle is

the number of idle vehicles. The cost function will be:∑
v∈Vidle

∑
r∈Rko

cv,ryv,r
(3.38)

Constraints: In this phase we want that each of the idle vehicle has maximum one task
assigned and that every task is assigned to one vehicle only. The set of constraints that
we will use in order to satisfy these requirements is similar to that described by equations
3.14 and 3.19.
The first of the requirements, the one stating that each of the vehicles must be assigned
a maximum of one task, is formalized as follows:∑

r∈IRV =v

yv,r ≤ 1, ∀v ∈ Vidle
(3.39)

where IRV=v is the set of the indeces r of the tasks in R that have been matched with
vehicle v ∈ V . Because of how we have build the matchings, every vehicle will be linked
to every task. With the following example we want to show the matrix formulation of the
set of constraints 3.39 and show how the matrix is shaped.

Example. We consider to have a problem with three vehicles V = {v1, v2, v3} and
three requests R = {r1, r2, r3}. m = 3 will be the number of vehicles and n = 3 will
be the number of requests. The set of constraints can be written in matrix form as:

Areb
1 yv,r ≤ 1m×1

(3.40)

where matrix Areb
1 has size m×(n ·m) and has entries equal to one when the request-

vehicle couple represented by column r · v is matched with the vehicle represented
by column v:


yv1,r1 yv1,r2 yv1,r3 yv2,r1 yv2,r2 yv2,r3 yv3,r1 yv3,r2 yv3,r3

v1 1 1 1 0 0 0 0 0 0
v2 0 0 0 1 1 1 0 0 0
v3 0 0 0 0 0 0 1 1 1



The second set of inequality constraints that we need is used in order to avoid that a task
is assigned to more than one vehicle. This is formalized with:∑

r∈IVR=r

yv,r ≤ 1 ∀r ∈ Rko

(3.41)

where IVR=r is the set of indeces that tells what vehilce v has been matched with what
request r. With an example we will show how to build the constraint and how it is shaped.
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Example. We consider the same problem of the previous example, with three ve-
hicles V = {v1, v2, v3} and three requests R = {r1, r2, r3}. The matrix formulation
of 3.41 is the following:

Areb
2 yv,r ≤ 1n×1

(3.42)

where matrix Areb
2 has size n×(n ·m) and has entries equal to one when the request-

vehicle couples represented by column r · v is matched with the request represented
by column r:


yv1,r1 yv1,r2 yv1,r3 yv2,r1 yv2,r2 yv2,r3 yv3,r1 yv3,r2 yv3,r3

r1 1 0 0 1 0 0 1 0 0
r2 0 1 0 0 1 0 0 1 0
r3 0 0 1 0 0 1 0 0 1



Areb
2 is made of m identity matrix blocks of size n× n.

Next, we need to add some additional constraints since the maximum number of vehi-
cle/requests that can be assigned depends on the number of idle vehicles and number of
unassigned requests. Therefore, the maximum number of total assignments during the
rebalancing phase will be the minimum between the number of idle vehicles in Vidle and
the number of unassigned requests in Rko. We will formulate this as:

∑
v∈Vidle

∑
r∈Rko

yv,r = min(|Vidle|, |Rko|)
(3.43)

Next, we want that the variables of our problem are subject to the constraints 0 ≤ yv,r ≤
1 ∀yv,r ∈ V , so that our problem can be formulated as a linear programming problem.
The optimal assignment for the rebalancing phase is the solution to the following opti-
mization problem:

min
x

∑
v∈Vidle

∑
r∈Rprior

cv,ryv,r

subject to:
∑

r∈IRV =v

yv,r ≤ 1, ∀v ∈ Vidle

∑
r∈IVR=r

yv,r ≤ 1, ∀r ∈ Rprior

∑
v∈Vidle

∑
r∈Rprior

yv,r = min(|Vidle|, |Rprior|)

0 ≤ yv,r ≤ 1 ∀yv,r ∈ Vidle

(3.44)
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The optimization problem has been solved by CPLEX that uses a dual simplex method
as default option. There are many different options and algorithms to be used in CPLEX
to solve linear programming problems, but this has been proven experimentally by the
IBM community to provide the best overall performances.

3.7 Priority assignment

When a customer is using the service, it may be that he is willing to pay more to have the
item delivered or the vehicle available for pick-up as soon as possible. A trivial example is
the possibility that Uber gives to customers to decide whether to use the UberPool option
or going with the standard private vehicle service. This depends on the freedom given to
the client to customize the service. For example, if this was a taxi service, it might be
the case where the customer can decide whether to share its vehicle with someone else,
because of privacy issues and social attitude [83], or simply because of the need to hurry.
In this case, the customer is the one having direct beneficts on these kind of choices.
Having to wait on the street for lot of time to share the ride, or in the case of adverse
weather condition, the customers might prefer to pay a higher amount to be served as
soon as possible.
Instead, if the service was a food delivery service, the customer could be less interested in
the fact that the food is being transported in the same vehicle of other customers. Larger
waiting times could be acceptable, because maybe the order has been placed from indoor
location and even in case of bad weather, a large waiting time may not have much influ-
ence. Customers may want to pay an additional fee to have the food delivered directly to
them respecting the estimated arrival time of the delivery. It can also be the case where
priority is given in the sense that the request asking for priority is being dropped-off first.
In this case, the matchings should take into account that this task is not allowing to be
dropped-off as second task.

In our case we want to give the possibility to the customer of the service to ask for
priority. Since our algorithm never guarantee that all the tasks of the set are satisfied,
with our priority mode we want to make the prioritized tasks to be assigned for sure when
vehicles are assigned to trips during the ILP solution. Priority can be guaranteed only
when there are free vehicle in Vidle. If no vehicle is free at the moment of the algorithm
call, it will be difficult to assign priority. However, in the case no vehicle is available to
ensure a task to be picked up and served, we can try to increase the chance for that task
to be assigned. One idea could be to increase the parameter of delay ∆ of such tasks
when finding for matchings, so that to increase the chances to be assigned. This, though,
cannot be a service that is charging an additional cost to the customer. In this case,
priority could be assigned to tasks that requires because of their nature. For example, in
a service whose purpose is to deliver items, we can give priority to items such as food and
other fresh products that otherwise would loose their value if received with a lot of delay.
If we increase parameter ∆, there is more possibility for the task to be shared with other
tasks, because of the increased flexibility of its time windows.
In other scenarios, where customers might pay more to be served as soon as possible, we
can implement a system that checks for availability of vehicles and then, if there is any,
the algorithm assign at most a number of tasks equal to the number of available vehicles.
Then the application can notify the customers and ask for the confirmation of the priority
option. If approved, the prioritized assignment v − r will be executed. Instead, in the
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case the vehicle are not enough to ensure the coverage of all the tasks asking for priority,
the algorithm will assign the most convenient one (it will require the solution of another
optimization problem) and the remaining tasks will be denied priority.
Actually, it is not true that paying for the priority option will result in decreased travel
time. Indeed, if the priority is assigned to the task (in the case priority has been asked and
later confirmed because of the presence of idle vehicles) the algorithm will make sure that
the task is served, according to the need also of the other prioritized tasks. Unfortunately,
it could be that with the solution to the main optimization problem, the same task (but
with no priority) is assigned to more convenient vehicles. Again, we remark that in this
case, the task would be assigned for sure.

We decided to implement the prioritized assignment in a similar way the rebalancing
phase assignment is implemented. Therefore, for assigning vehicles to tasks that ask for
priority, we will solve a linear programming problem to select the couples v − r within
the possible matchings that we will generate.
We can guarantee priority only to a number of tasks that is at most equal to the number
of available vehicles in the fleet. In this way, we will know that some or all of the idle
vehicles will have to guarantee some requests to be served.
Given a set of requests asking for priority defined as Rprior and a set of free vehicles Vidle
we will generate all the possible matchings between requests and vehicles. To each of the
matchings we will link a cost that is given by the travel time required by the vehicles
vj ∈ Vidle with j = 1, . . . ,midle to completely operate the rides of tasks rk ∈ R with
k = 1, . . . , nprior taken singularly. The assignments for the priority phase are only trips
of size one. The cost used is similar to 3.37:

cv,r =

|Loc|−1∑
i=0

tt(Loci+1 − Loci)
(3.45)

The formulation of the set of constraints for the priority assignment are of the same kind
of the ones used during the rebalancing phase. Indeed, the two problems are very similar.
In both cases our aim is to produce a number of optimal assignments that is at most equal
to the minimum between the number of requests entering this assignment phase and the
number of vehicles ready to be assigned.
Therefore, from set of constraints 3.39 and 3.41 we have:∑

r∈IRV =v

pv,r ≤ 1, ∀v ∈ Vidle

∑
r∈IVR=r

pv,r ≤ 1 ∀r ∈ Rprior
(3.46)

where pv,r for v ∈ Vidle and r ∈ Rprior is our optimization variable. Similarly to the re-
balancing problem, to guarantee that a number of requests at most equal to the available
vehicles is assigned, we will define a set of constraints similar to 3.43:∑

v∈Vidle

∑
r∈Rprior

pv,r = min(|Vidle|, |Rprior|) (3.47)
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The linear programming problem for the priority assignment will be, analogously to the
rebalancing problem:

min
x

∑
v∈Vidle

∑
r∈Rprior

cv,rpv,r

subject to:
∑

r∈IRV =v

pv,r ≤ 1, ∀v ∈ Vidle

∑
r∈IVR=r

pv,r ≤ 1, ∀r ∈ Rprior

∑
v∈Vidle

∑
r∈Rprior

pv,r = min(|Vidle|, |Rprior|)

0 ≤ pv,r ≤ 1 ∀pv,r ∈ Vidle

(3.48)

Once the priority assignment has been completed, we will end up with a set of assignments
v − r. Next, it will be the turn of the main assignment algorithm to work on the tasks
and vehicles to find the the global optimal matchings of vehicles to tasks. At this point, if
the main algorithm, which involves the generation of the shareability network RV-Graph
and of the feasible trips set RTV-Graph, was called with no knowledge of the priority
assignments, the priority assignments would be lost. Indeed, RV-Graph and RTV-Graph
do not account for priority assignments by this point.
In order to consider the computed priority assignments we decided to forcibly add them
to the list of edges e(Ti, vj), if not already present. We remind that those edges exist
when a trips Ti ∈ T of any size can be satisfied by vehicle vj. To every edge, a cost of
the assignment is associated, and it depends on the choice of the cost representing our
problem.
After the set of edges of our problem is updated with the priority assignments, we want
to make sure that the tasks with priority are assigned during the solution of the mixed
integer linear programming. To this aim, we need to add a set of constraints that forces
the algorithm to assign those tasks. The assignment will be feasible, since the number of
tasks assigned is at most equal to the number of idle vehicles and all the other constraints
are satisfied.
It may happen that some or all of the r − v matchings from the priority assignment al-
ready exist in the set of edges of our problem. In this case, the priority assignment is not
added. Another case is when one or more edges of the RTV-Graph contain one or more
of the requests that belong to priority matchings. In this case, the algorithm will force
the fact that at least one of the edges containing tasks with priority is assigned.
Instead, in the case a vehicle vj that belongs to a priority assignment vj − rk, is also part
of one or more edges e(Ti, vj) where Ti is a trip not containing task rk, we will need to
suppress those edges, forcing the MILP problem to not assigned them. We will add these
constraints to the set of equality constraints 3.19.
Given a set of priority assignments of the kind vj − rk, to force task rk to be assigned we
need that: ∑

j∈IRk

εi,j = 1, ∀rk ∈ Rprior,ass

(3.49)
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where IRk is the set of indeces j of vehicles vj ∈ Vidle such that the trip Ti corresponding
to edge e(Ti, vj) has task rk in its route and vehicle vj can serve that trips. This means
that Ti = {. . . , rk, . . . } and that edge e(Ti, vj) exists. Rprior,ass is the set of tasks with
priority that has succeded in obtaining a priority assignment.

We then want to deny some edges to be assigned. These are edges that contains the
vehicle vj belonging to the priority assignment vj − rk, but linked to trips Ti that do not
have task rk in their route. To this aim we need a constraint of the kind:∑

i∈IVj

εi,j = 0, ∀vj ∈ V (3.50)

where IVj is the set of indexes i of the trips that are linked to vehicle vj but not to the
corresponding task rk in the priority assignment. Also, it is the set of indexes i of trips
such that rk ∈ Ti but vj is not the assigned vehicle for that edge.
We want to show with an example how such constraints are build.

Example. We assume to have a set of requests R = {r1, r2, r3} and a set of ve-
hicles V = {v1, v2}. From the RTV-Graph of this problem we have the set of trips
T = {T1, T2, T3, T1,2, T1,3, T3,2} and a set of edges E . Suppose that tasks r1, r2 and
r3 are asking for priority and that only vehicles v1 and v2 are idle. At this point
only two of the three tasks could be assigned with priority. Suppose these are r1
and r3, so that the priority matchings are r1 − v1 and r3 − v2. Now we need to
build constraints so that request r1 is assigned with vehicle v1 in at least one of the
possible trips and that tasks r3 is assigned to vehicle v2 in at least one of the trips.
From constraint 3.49 we have, for requests r1 and r3, assuming a certain set of edges
between trips and vehicles:

e(T1, v1) + e(T1,2, v1) = 1;

e(T3, v2) + e(T1,3, v2) = 1; (3.51)

where we are guaranteeing that at least one of the edges containing matchings r1−v1
and r3− v2 is assigned. Trip T3,2 does not appear because this trip cannot be served
by vehicle v2 but only by vehicle v1.
In matrix form, we will have a matrix A1

1 of size |Rprior,ass| × l, where entries are
one if the edge in the j-th column has the entire matching (both vehicle vj and task
rk), zero otherwise.
Instead, to avoid that vehicles other than v1 for task r1 and v2 for task r3 can serve
the requests, we need to forcibly unassign the candidates containing these other
vehicles and the tasks within the respective trips. The following equations are a
possible implementation for our example of the constraints 3.50, that want to make
sure that the vehicles and tasks of the priority assignments r1 − v1 and r3 − v2 are
not split up:

e(T1, v2) + e(T1,2, v2) + e(T2, v1) = 0;

e(T3, v1) + e(T2, v2) + e(T1,3, v1) + e(T3,2, v1) = 0; (3.52)
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where equations 3.52 are reffering respectively to the two priority assignments that
we have. These constraints can also be written in compact form in one equation,
forcing the sum of all the terms to be zero.
In matrix form we will have a vector Ap

2 of size 1× l of which entries are one when
the j-th edge does not respect the math vj − rk in any way, either because vehicle
vj is not assigned to task rk or because task rk is assigned to a vehicle that is not
vj. In Algorithm 4 we have an example of the computation of the matrixes used to
ensure the assignment of tasks with priority.

Algorithm 4 ILP constraints to preserve the priority assignment

1: if priority list 6= ∅ then
2: A1 = 0priority list.size

3: for each ride p ∈ priority list do
4: for each edge e ∈ E do
5: if (∀re) ∈ p then
6: Ap

1 [p] .push(1)
7: else
8: Ap

1 [p] .push(0)

9: if (∀re) ∈ p then
10: Ap

2.push(1)
11: else
12: Ap

2.push(0)

13: insert(A2, A
p
1)

14: insert(A2, A
p
2)

15: insert(b2, 1priority list.size×1)
16: insert(b2, 0)

3.8 Dynamic algorithm design

Measure the dynamism of a dynamic vehicle routing system is not a trivial assignment.
In contrast to a static vehicle routing problem, the performance of the dynamic counter-
part is assumed to be dependent not only on the number of customers and their spatial
distribution, but also on the number of dynamic events and the time when these events
actually take place [59].
In dynamic problems, with respect to static problems, fast computation is required. In
a static setting, the dispatcher may afford the luxury of waiting for a few hours. In a
dynamic setting this is not possible, because the dispatcher needs a solution to the as-
signment as soon as possible.
We need also an information update mechanism to check the state of vehicles and tasks.
This is not needed in a static problem instead. We need therefore to know at any time
the position of our vehicles and requests. In a static case the location of vehicles and their
capacity over time is not a requirement, since it is important that it is known only at the
beginning. Therefore a dynamic systems needs a very good communication system and
a software infrastracture able to manage the information of the fleet and the information
of the incoming requests. A definition of dynamic system comes from [79]:

� A dynamic system is one that manages dynamic data;
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� A model is dynamic if it incorporates explicitely the interaction of activities over
time;

� We have a dynamic application if a model is solved repeatedly as new information
is received.

Dynamic data are a set of information that are constantly changing. They might include
real-time customer demands, traffic conditions, or driver statuses. Dynamic applications
of models place tremendous demands on access to real-time data and on the performance
of algorithms. Typically, it is necessary to update information, optimize and return results
in a matter of minutes, seconds or even less.
There are two main possibilities to use the algoirthm in a dynamic manner. These depend
on the size of the problem. The first would be to call the algorithm as soon as a new task
is added to the set of pending tasks. This solution is more suitable for small size problem,
where the frequency of new arriving requests is not very high and the computation time
of the algorithm is on average shorter than the time between two consecutive algorithm
calls. This possibility would require the estimation of a worst case execution time, without
knowledge of the frequency of tasks. Instead, the second possibility could be of calling
the algorithm every fixed period of time. In this case, the algorithm will still have to be
executed before the next call, but being the number of tasks smaller, its execution will
be faster. Knowing the size of the problem and the number and frequency of the arriving
tasks, we can estimate a worst case execution time and call the algorithm every fixed time
step. All the requests arrived within a certain time period, will be processed at the next
algorithm call. This solution is suitable for big size problem, where the algorithm is not
fast enough to withstand the frequency of the new arriving tasks.
The next step for the implementation of the possibility for trips to be added to routes when
they have already been assigned or picked-up is to include already computed assignments
to the new pending tasks set. We decided that a new task can only be added to trips
of size one. This because the total number of trips of size three out of the total number
of trips is low, and the computational effort added to transform size two trips into size
three trips is higher than its benefits. In fact the chance of having size three trips is a lot
lower than having trips of size one and two. Therefore, we think that the possibility that
a new trips of size three is built on top of a size two trip is very low, and so we discard
this possibility.
There are two cases for trips of size one that can accept new tasks dynamically:

� The vehicle vj has been assigned to a trip Ti and it is heading to the pick-up location
of the request rk that composes that trip.

� The vehicle vj has already picked up the task of trip Ti and it is now heading to the
destination of the task.

In the first case, the task to which the vehicle is heading to may become the second task
to be picked up, only if the maximum delay constraints given by ∆ are still satisfied.
Therefore, if this is the case, we will only need to consider that the vehicle is not in its
original position but in a different location. The conditions to verify if the share route is
feasible or not is the same of travel size two().
Instead, in the case the task of trip Ti has been already picked-up and the vehicle is
on his way to the destination, we have to plan a change in the route, where we need to
be able to still satisfy the delay constraint on the arrival time of the original task of trip Ti.
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Example. Assume to have a trip Ti of size one, composed of request rk. A vehicle
vj has been assigned to the trip and the task has already been picked up at ok
location. Assume also that there is a new pending request rd that is seeking for
a vehicle to be assigned. We will include task rk in the assignment problem as it
was a new task, but its status will specify that it has already been picked-up by
vehicle vj. At this point we procede with the generation of the RV-Graph as it was
the standard case of two new pending tasks. In fact, the assumption made when
looking for the possibility to share two requests, is that a vehicle starting from the
origin of the first of the two tasks, is able to satisfy constraints 3.2 or 3.3. At this
point, when a vehicle is on its way to reach the destination dk of the already picked-
up task rk and the vehicle is deviated from its way to be able to pick-up also task
rd at origin od then, if the two tasks had not the possibility to be matched with a
shortest path through pivot points ok → od → dk → dd (or ok → od → dd → dk),
then they would have not the possibility to be matched with a dynamic assignment.
We can see an example of these situation in Figure 3.5, where we clearly see that
path1 + deviation < path3. If the red path do not exist in the RTV-Graph, then
the two tasks cannot be shared with the rerouting of the vehicle.

Figure 3.5: Example of dynamic deviation of the vehicle to pick-up a new task.

Instead, when generating the RTV-Graph, at the moment of checking for the feasibility
of a candidate trip of size two using function travel size two(), we will need to take into
account that part of the candidate trip (path3 in Figure 3.5) has already been travelled
by the vehicle. Function travel size two() will have to be modified in order to verify
whether task rk is already picked-up, and if this is the case, then it needs to implement
new conditions to verify the feasibility of the candidate trip. The new conditions to be
satisfied when task rk is already on board of the vehicle are:

� If the two tasks can be combined by route od → dk → dd:

1. Tclock + tt (vj,xy, ord) 6 strd + ∆;

2. Tclock + tt (vj,xy, ord) + tt (ord , drk) 6 atrk + ∆;

3. Tclock + tt (vj,xy, ord) + tt (ord , drk) + tt (drk , drd) 6 atrd + ∆;

4. rk.pass + rd.pass 6 cvj ;

� If the two tasks can be combined by route od → dd → dk:

1. Tclock + tt (vj,xy, ord) 6 strd + ∆;

62



2. Tclock + tt (vj,xy, ord) + tt (ord , drd) 6 atrd + ∆;

3. Tclock + tt (vj,xy, ord) + tt (ord , drd) + tt (drd , drk) 6 atrk + ∆;

4. rk.pass + rd.pass 6 cvj ;

If these conditions are verified, then a trip of size two Ti = {rk, rd} is generated and added
to the set of trips T . Therefore, edges e(rk, Ti), e(rd, Ti) and e(Ti, vj) are added to the
RTV-Graph, and will be variables of the optimization problem 3.12.
In addition, we need to make sure that the already picked-up task rk will still be assigned
to vehicle vj even if no other task is added dynamically. To this aim, we need similar
constraints to 3.49 and 3.50, so that to force task rk to vehicle vj to be matched and avoid
that task rk is assigned to other vehicles (or not assigned) and that vehicle vj is assigned
to other tasks.
If we were not making sure of this, it would be possible that the pre-existent assignment
rk − vj is violated and this would lead to instability in the assignment and failure of the
system, even if the mathematical problem was feasible.
We call Rassigned the set of the requests that are assigned to trips of size one, and Edyn the
set of r − v matchings that can be dynamically modified. These are all the assignments
of trips of size one. The constraints we need to ensure a safe assignment of vehicles to
trips are the sets of equality constraints:∑

j∈IRk

εi,j = 1, ∀rk ∈ Rassigned

∑
i∈I
Edyn
j

εi,j = 0, ∀(rk − vj) ∈ Edyn
(3.53)

where IRk is the set of indeces j of the set of edges εi,j that has the couple rk − vj in the

clique represented by the edge, and IEdynj is the set of indeces i for which the dynamic
candidate assignment rk − vj is corrupted.
Algorithm 5 is used to update the constraints in order to implement the dynamic assign-
ment in the optimal assignment phase using the ILP.

Algorithm 5 ILP constraints for the dynamic assignment of tasks

1: if rides list 6= ∅ then
2: Aok = 0rides list.size, Ako = 0
3: for each ride a ∈ rides list do
4: for each edge e ∈ E do
5: if (∀re, ve) ∈ a then
6: Aok [a] .push(1)
7: else
8: Aok [a] .push(0)

9: if (ve ∈ a and ∀re /∈ a) or (ve /∈ a and re ∈ a) then
10: Ako.push(1)
11: else
12: Ako.push(0)

13: insert(A2, Aok)
14: insert(A2, Ako)
15: insert(b2, 1rides list.size×1)
16: insert(b2, 0)
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where rides list is the vector containing the size one assignment that are already assigned
or picked up, A2 and b2 are the matrix and vector of known terms for the equality con-
straints of the ILP for the optimal assignment. Also function travel size two() and part
of the RTV-Graph generation has to be adapted to the dynamic arrival of tasks. However,
the pseudocode represents the main concept behind adding tasks to already existent trips.

3.8.1 Future improvements for dynamic assignment

Previously, we stated that our algorithm is not able to plan future assignments. This is
true if we consider a schedule that tells each vehicle, what would be the entire tasks queue
for a certain time period in the future. However, there is a possibility to have a one-task
ahead scheduled assignment using our assignment algorithm.
When considering trips of size two, we consider only tasks combination that lead to a the
tasks interleaving, so there is an overlap between the two. This means that there will be
a time, even if small, where the vehicle will have both tasks on board. These situations
are represented by cases c)-g) of Figure 1.1.
Instead, try to imagine a task combination where the first task can end before, or at the
same time when the second task starts. These are represented by cases a), b) and h) of
Figure 1.1. To be able to match the two requests, though, we need to add these possible
additional combinations to the set that has been considered by now. The additional
possible combinations are:

� oi → di → oj → dj

� oi → di ≡ oi → dj

From which we derive a set of time windows conditions to be respected when looking for
shareability, similar to conditions 3.2-3.5:

sti 6 pti 6 sti + ∆1 (Cond 1)

ati 6 pti + tt (oi, di) 6 ati + ∆1 (Cond 2)

pti + tt (oi, di) + tt (di, oj) 6 stj + ∆2 (Cond 3)

pti + tt (oi, di) + tt (di, oj) + tt (oj, dj) 6 atj + ∆2 (Cond 4)

(3.54)

where ∆1 and ∆2 are generally different, since the second customer, that is sending re-
quest rj will have to accept to wait a certain amount of time so that to let the other task
to finish. ∆1 and ∆2 can be dynamically changed by the algorithm so that to increase/de-
crease the chance of matching the requests.
These combinations are a formalization of how most of the Uber and Lyft routes are
planned dynamically when requesting for a ride. At the time of the confirmation of the
request form the user, the application tries to match the new request to nearby vehicles.
The ride must be accepted by a driver via the app. If the driver denies the matching,
a new assignment is proposed to another vehicle. If the driver has a ride on board of
the vehicle, he can still accept the new ride and this will become a dynamic matching.
The matching will require the first rider to be dropped off at a certain location and
the new customer to be picked up at her/his location. There will be the need for the
second ride to have a large pick-up time window so that to accomodate the end of the
other task within the maximum delay time allowed. Therefore, in this case, the system
could ask the second customer to wait a longer time than usual at its pick-up location.
During this waiting time, the customer can move from her/his original pick-up location
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and meet the vehicle in another location that is more convenient for both the driver and
the customer, so that to cut the waiting time simply by using part of it by moving to a
different location, if accessible. The change in the meeting points is also an aspect that
interest the matching of rides, since the possibility of matching more rides increases as we
increase the possible pick-up locations for the two tasks. This problem is addressed in [90].

Since the number of possible matchings increases drastically when we allow also for the
new tasks combination, we have to consider that the algorithm will take longer to com-
pute the RV − Graph and in particular the RTV − Graph. This suggests us to try to
decrease the the number of tasks to be matched, so that to lower the number of possible
combinations to analyze. One possibility is to implement a regional assignment, so that
to exclude the possibility to combine tasks that are too distant form each other. Dividing
the set of requests into regions with hard clustering techniques will deny requests that are
close to the borders to be matched with requests close to the same border but belonging
to the neighbor regions. An approach could be therefore to try to match requests from
adjacent clusters or to use overlapping clusters. Unfortunately, overlapping clusters have
a very high computational complexity thus making them unrealistic for real-life problems
[8].

3.9 Randomization of the algorithm for better performance

Since most of the code is implemented by using for cycles in order to scan the entire
set of possible requests matchings and the possible couplings between vehicles and the
feasible trips, when the number of requests and vehicles increase the algorithm takes longer
to compute the optimal assignment. Therefore, we want to make our algorithm robust
against the size of the problem, so that it is considerable scalable to real-life problem
instances.
There are two parameters that we introduce to solve two very computationally demanding
steps of our algorithm. These steps are:

1. Vehicles-requests search in the RV-Graph: When building a trip of size one for a
vehicle. For each vehicle we build size one trips from requests that are linked to the
vehicle. This information is stored in the RV-Graph adjacency matrix. Though, this
operation could be time consuming in the case the RV-Graph has vehicles linked
to many tasks (because maybe of high demand density in its surroundings). We
introduce a limit n1 on the number requests that will be analyzed for that vehicle.
Therefore, using function std::sample we pick randomly n1 requests for each vehicle
from each vehicle tasks list, as we can see at lines 3 and 4 of Algorithm 1.

2. Trips of size two search: When building a trip of size three, since we try to merge
size one trips with size two trips for each vehicle, we need to scan the size two trips
linked to that vehicle in the RTV-Graph adjacency matrix. In a similar way to the
previous case, the adjacency matrix is representing lists of trips that are linked to
the vehicles. If the number of tasks is high, the number of trips of size two linked
to one vehicle might be high as well. Hence, we introduce a parameter n2 that will
randomly pick size two trips from the lists using again function std::sample, as
shown at lines 6, 7 of Algorithm 3. This way the number of possible combinations
to be checked decreases and so it does also the computation time.

Unfortunately, by randomly picking just some of the possible combinations, we will loose
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some degree of optimality with respect to the complete analysis of all the possible com-
binations. However, we will show how the loss in optimality will be highly compensated
by a steep decrease of the computation time. Also, we will see what parameter will affect
more the computation time and the total cost of the assignment.

66



Chapter 4

Problem instances and algorithm
performance

The algorithm has been first designed in Matlab because of the simplicity in debugging
the algorithm and the simple interface to access data structures, especially when work-
ing with vectors and matrices. Moreover, Matlab environment provides a good plotting
tool that was useful in proving the solutions with graphical reuslts. In Matlab, to solve
the integer linear programming and linear programming problems, we used IBM ILOG
CPLEX Optimization Studio to model and solve the optimal assignment problem. The
Matlab interface for CPLEX Studio resumes the classic interface of the built-in functions
of the Optimization Toolbox of Matlab. Indeed, once the cplex library path is set on
Matlab, then it is possible to simply use functions cplexbilp() when solving the inte-
ger linear programming (this actually is the function to solve the binary integer linear
programming) and function cplexlp() when solving the linear programming problem for
the rebalancing phase.
After having designed the algorithm and all its functionalities in the Matlab environment,
we decided to implement it in C++ programming language, in order to ease the devel-
opment process of a future application where vehicles are actually addressed to tasks in
a real environment. Also, C++ gives us the possibility to build an optimized application
where we can measure the performance of the algorithm in different working scenarios.
The C++ application has been developed in VisualStudio IDE (integrated Development
Environment) and for the modeling and solution of the optimization problems, we still
relied on CPLEX Optimization Studio. In this case, we need to make use of the CPLEX
Concert Technology libraries. This time, the modeling of the optimization problems re-
quired to dig into the library objects and methods in order to be able to build a working
and efficient optimization application. After the implementation of the algorithm in C++,
we started testing the algorithm to try do discover its potentials and its limits. Since our
greatest concern is about the execution time, because of the possibility then to use the
algorithm in a real setting, we introduced some heuristic (these are parameters n1 and
n2, that we already explained in the previous chapter) in order to solve the assignment
in an acceptable time. Otherwise, due to the complexity of the algorithm and the great
number of variables and related constraints, it would be difficult if not impossible (the
development PC ran out of memory in certain big size instances of the problem) to solve
the assignment in tolerable execution times. The aformentioned randomization of the al-
gorithm made it possible to have the software to work in stressful conditions and produce
good results for the optimization. Following, we have some of the instances we used to
compare the different performances and to study the effects of the randomness introduced
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into some of the steps of the algorithm.

4.1 Tests and algorithm evaluation

For each test we have carried out five simulation and computed the average value of the
outcomes. We specifically are interest in: execution time, cost of ILP assignment, number
of tasks served by the ILP assignment, relative number of trips of different sizes, number
of idle vehicles after the assignment. In the following pictures we do not show all the
metrics of evaluation but we will highlight the most important ones.

4.1.1 Effect of the randomization parameters on the algorithm performance

The first test we are interested in is about the effect of the first randomization parameter
n1 that will decrease the number of trips of size one per vehicle. In Figure 4.1 we see the
effects on the execution time, total cost of the assignment and number of tasks assigned,
when we decrease the value of n1. The number of tasks and vehicles is big, and the
execution time is exponentially affected by a decrease on parameter n1. For n1 > 10
the execution time is so big that we cannot even end the simulation. We computed an
instance for n1, n2 = 100 and we got a computation time of about 12715 seconds while
the optimal cost was about 50% less than the case with n1 = 2 and n2 = 100. Indeed, if
we look at the cost, we can see that the trend is not as steep as the one of the execution
time. Even more impressive is that the number of assigned tasks is always constant within
all the istances. Therefore, these results can suggest that tuning the randomization, we
can strongly improve the computational performance of our algorithm without infering
too much on the cost of the assignment and quality of the service. It will follow a series
of tests where we will focus on the effect of the randomization parameters for different
instances with different number of tasks and vehicles.
We want to say that we also tested the effect of parameters n2 only. Its effects, though,
are not as strong as the ones of n1. Hence, leaving n1 with a high value and tuning n2 do
not bring to satisfying results. This is why, from the next tests, we will tune n1 and n2

together, so that to consider their effects together.
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(a) (b)

Figure 4.1: a) Execution time of the algorithm for varying n1 parameters. For this instance we
have 100 tasks and 100 vehicles. b) The first plot is the cost of the assignment for decreasing
values of parameter n1. The second plot is the number of tasks assigned by the ILP optimization
stage.

Changes in the sizes of the vehicles and requests sets

With this set of tests we want to see the effects of the randomization parameters (n1

and n2) when the size of the problem changes. In this case we are changing the size of
both the set of tasks and the set of vehicles. As we can see in Figure 4.2, the execution
time highly depends on the size of the problem when there is no randomization (we could
not even compute the optimal results for the instances when dim(R) and dim(V) were
close to 100 or 150. Indeed, for instances with 150 tasks and 150 vehicles the development
PC ran out of memory). Moreover, as we have seen in Figure 4.1, the relation between
the execution time and n1 and n2 is exponential. Although we could think that bigger
size problems could make the problem unfeasible, we verified that when n1 and n2 are
very small, the difference between problems of different sizes is attenuated. Indeed, for
n1, n2 < 5 the execution time is under 10 seconds, that still is an acceptable timing. This
means that for small randomization parameters, the execution time does not grow a lot
with the problem size. Moreover, we see from Figure 4.3 that low n1 and n2 values are
not making the cost of the assignment too high and that the percentage of assigned tasks
is still large (very close to 100%). The cost is increasing in the same proportion for all
the problem sizes and this happens also for the number of tasks assigned.
The choice of whether to have some low values for n1 and n2 or high values depends on
the purpose of the application. First, we need to know what is the maximum allowed
execution time and if not fixed, we need to trade off with the other metrics of evaluation.
We may prefer to have very low execution time and accept that 95% of the tasks are
satisfied, at higher cost, or we might prefer to satisfy 100% of tasks at lower cost and with
longer execution time. These factors all depend on the design of the final application due
to its purposes. Usually the purpose of dynamic ride-sharing services is to satisfy the most
nnumber of customers as possible, while having them to wait the less amount of time. If
we can satisfy almost 100% of the tasks while satisfying all the time windows of all the
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tasks, then we should be happy with the algorithm’s outcome. This is the reason why
very low randomization parameters could be a great choice, when the need is to provide
a very good service to the customers. The algorithm will have the possibility to be run
with high frequency by assigning vehicles to tasks almost instantly.

(a) (b)

Figure 4.2: a) Execution time for decreasing values of parameters n1 and n2, for three different
instances with different number of tasks and vehicles. For the three different instances, we
have that both the number of tasks and the number of vehicles are increased. The instances
represented are: 50 tasks and 50 vehicles (blue), 100 tasks and 100 vehicles (red), 150 tasks and
150 vehicles (green). b) Close up of image (a).
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(a) (b)

Figure 4.3: a) Cost of the assignment in minutes after the ILP problem is solved for decreasing
values of n1 and n2. For the three different instances, we have that both the number of tasks and
the number of vehicles are increased. The instances represented are: 50 tasks and 50 vehicles
(blue), 100 tasks and 100 vehicles (red), 150 tasks and 150 vehicles (green). b) Percentage of
the number of tasks assigned, out of the total number of tasks, after the ILP problem solution
for decreasing values of n1 and n2. Three instances are represented: 50 tasks and 50 vehicles
(blue), 100 tasks and 100 vehicles (red), 150 tasks and 150 vehicles (green).

Changes in the size of the requests set only

As we can see in Figure 4.4 the execution time now depends less on the size of the
problem. Indeed, a variation on the tasks set only is giving the algorithm the possibility
of having higher parameters n1 and n2. This time, when setting n1, n2 = 7 we still have
execution time texe < 5 for all our instances. We have less increase in the cost required to
have small running time. In fact, the cost is falling back to almost optimal values when
the randomization parameters have small values. This therefore comes to the cost of
having less assigned requests, because the number of size one trips is increasing (because
we have less possible combinations to assign). Indeed, especially for big tasks sets, the
percentage of assigned requests is decreasing with respect to the previous cases. This is
mostly due to the fact that the vehicles and tasks sets are not even, and therefore there is
a problem of fleet unbalance with respect to the demand of customers. Again, the choice
of the randomization parameters depends on the purpose and use of the algorithm.
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(a) (b)

Figure 4.4: a) Execution time for decreasing values of parameters n1 and n2, for three different
instances with different number of tasks and vehicles. For the three different instances, we have
that only the number of tasks is increased, while the number of vehicles is fixed to 50. The
instances represented are: 50 tasks and 50 vehicles (blue), 100 tasks and 50 vehicles (red), 150
tasks and 50 vehicles (green). b) Close up of image (a).

(a) (b)

Figure 4.5: a) Cost of the assignment in minutes after the ILP problem is solved for decreasing
values of n1 and n2. For the three different instances, we have that only the number of tasks is
increased, while the number of vehicles is fixed to 50. The instances represented are: 50 tasks
and 50 vehicles (blue), 100 tasks and 50 vehicles (red), 150 tasks and 50 vehicles (green). b)
Percentage of the number of tasks assigned, out of the total number of tasks, after the ILP
problem solution for decreasing values of n1 and n2. Three instances are represented: 50 tasks
and 50 vehicles (blue), 100 tasks and 50 vehicles (red), 150 tasks and 50 vehicles (green).
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4.1.2 Effect of the randomization parameters on the shareability of rides

Although the main objective of the algorithm is to assign as many tasks as possible, we also
want to analyze what kind of trips the algorithm preferred to assign when seeking for an
optimal solution. We will see what is the amount of shared rides when the randomization
parameters n1 and n2 are tuned, and what is their effect for different size problems.
First, we compare Figures 4.6, 4.7 and 4.8 where the size of the vehicles and tesks set are
both growing. We can see that as the randomization paramater increases, the number
of trips of size one decreases and consequently the number of trips of size two increases.
This is probably due to the fact that as n1 and n2 increases, tthe more matchings are
found and consequently the set of the solutions will grow, therefore allowing for a more
optimal solution. This means that, as we have seen before in Figure 4.5 a) and Figure
4.3 a), the cost will decrease for increasing n1 and n2. At the same time, as we just
noticed, the number of shared trips will increase. This is a proof that shareability is able
to manage a set of tasks by decreasing the total travel costs. This is verified for all the
three instances with different numbers of vehicles and tasks. In the case both tasks and
vehicles numbers grow, the number of trips of size three remains low even when global
shareability increases. This is maybe due to the fact that the number of vehicles with
respect to the tasks is higher and the fleet is well distributed in the 2D-map.
Instead, when we compare Figures 4.6, 4.9 and 4.10, we see that shareability grows even
faster than the previous case, especially in the case of 150 tasks and 50 vehicles. In Figure
4.10 we can notice the speed with which size one trips are no longer assigned as soon as
the randomization parameters increase. When a trade-off between number of assigned
requests and fleet capabilities is needed, size one requests are becoming inconvenient.
Now the number of vehicles is low with respect to the number of tasks for two of three
instances, and this is probably why vehicles need to be assigned in a more complex way
in order to satisfy more requests. Also, in this case the number of size three trips is
more consistent than the prevous case. In the case of Figure 4.9 it reaches a peak to
then go down back to zero. Instead, in the case represented in Figure 4.10 the number
of trips of size three constitutes a consistent portion of the total number of trips, being
around 20% when n1 and n2 are big. We could not push further the analysis because of
the computational requirements. In fact, for instances with 150 requests and 50 vehicles,
the running time for n1, n2 = 45 is about texe = 2880 sec with exponential growth for
increasing randomization parameters.
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(a) (b)

Figure 4.6: a). Area plot of the percentage of the different size trips with respect to the total
number of assigned trips, for increasing values of n1 and n2. b) Again, plots for the representation
of the percentage of different size trips. In both plots we have a single instance with 50 tasks
and 50 vehicles.

(a) (b)

Figure 4.7: a). Area plot of the percentage of the different size trips with respect to the total
number of assigned trips, for increasing values of n1 and n2. b) Again, plots for the representation
of the percentage of different size trips. In both plots we have a single instance with 100 tasks
and 100 vehicles.
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(a) (b)

Figure 4.8: a). Area plot of the percentage of the different size trips with respect to the total
number of assigned trips, for increasing values of n1 and n2. b) Again, plots for the representation
of the percentage of different size trips. In both plots we have a single instance with 150 tasks
and 150 vehicles.

(a) (b)

Figure 4.9: a). Area plot of the percentage of the different size trips with respect to the total
number of assigned trips, for increasing values of n1 and n2. b) Again, plots for the representation
of the percentage of different size trips. In both plots we have a single instance with 100 tasks
and 50 vehicles.
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(a) (b)

Figure 4.10: a). Area plot of the percentage of the different size trips with respect to the total
number of assigned trips, for increasing values of n1 and n2. b) Again, plots for the representation
of the percentage of different size trips. In both plots we have a single instance with 150 tasks
and 50 vehicles.
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Chapter 5

Conclusions

The first part of the thesis studies and implements a dynamic ride-sharing vehicle as-
signment algorithm, where the vehicles of a fleet are assigned to trips. The trips can
be constituted of up to three tasks. This means that a vehicle can have more than one
request on board at the same time while satisfying the time constraints of the single tasks
on board. The tasks can be dynamically assigned to vehicles, with constraints allowing
to reassign vehicles to trips by adding rides to the trips on board the vehicles. To avoid
that customers can see their rides reassigned to new vehicles, we do not allow for match-
ings to be cancelled, but only that the corresponding trips are increased in size, with the
addition of new tasks on the way. The matchings of the tasks and vehicles, that together
will constitute the set of feasible trips (the feasible set of our optimal assignment) are
computed exploiting the properties of network theory. First, a shareability graph (RV-
Graph) will compute the possibility of matching together two tasks and the chance of
having vehicles serving single rides. Then, another graph (RTV-Graph) is built on top
of the shareability graph, by investigating what are its complete subgraphs, to later call
functions that will analyze these subgraphs and eventually tell if the trip is feasible or
not, given all the tasks and vehicles information and constraints. The RTV-Graph will
constitute the feasible set of the integer linear programming (ILP) for the assignment of
the trips. The optimal assignment from the set of feasible trips is computed with the
use of the IBM ILOG CPLEX Concert Technology libraries, which allow for fast compu-
tation of an optimal solution. Also, we implemented a priority assignment, which only
is available when there are idle vehicles in the fleet. Tasks with priority are assigned to
free vehicles via the solution of an LP problem, that simply minimizes the total cost of
the priority assignment. Then, these assignments will enter again the main problem to
explore for possible trips of size greater than one that can still meet the requirements
of the priority tasks. After the solution of the optimal assignment, unassigned requests
are assigned to idle vehicles through the solution of an LP problem. This phase is called
rebalancing phase, since we try to balance the unbalances between the fleet and the taxi
demand.
The algorithm is randomizing the search for trips of size one and trips of size three in
order to reduce the execution time of the matching phase, that otherwise would have to
go through every possible combination in the set, given the high shareability of rides when
the area is dense in the number of tasks. Many tests have been carried out to prove that
randomization can bring to very good results by asking just for little computation time,
even in the case of large size problems. While the travel cost for a randomized assignment
can increase of up to 30-50%, the computation time is decreased of almost 99.9% and the
number of assigned tasks in some cases do not change. This might motivate the choice of
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considering the use of strong randomization.
We later had a look at how the shareability is affected from the randomization parame-
ters. We have verified how randomizing the trips search is decreasing the possibility of
finding matching between tasks and therefore the possibility of finding convenient shared
rides. Therefore, we have low-medium shareability (60-80% of trips are of size one) for
strong randomness while we could find that shareability has a steep increase (80-90% of
total of trips are of size two) when the random search for trips is slightly decreased.
By now the algorithm considers trips to be of size greater than one only if the tasks are
together on board the vehicle for at least some time during their ride. In the future, we
want to implement the possibility of having trips of size two also when the first passenger
is dropped off before the second ride is picked up. Unfortunately, this new task combi-
nation increases the number of possible matchings to be analyzed and therefore also the
execution time.
Another important further step would be the implementation of a more complex function
for the computation of the travel times between the locations of the vehicles and the
tasks on the map. By now, we have used a trivial function that assumes constant velocity
of the vehicle and the L1 distance between points in the map. Possibly, a network of
points could be implemented and locations could be assigned to the nodes of the network.
Then, a path planning algorithm like the Dijkstra’s algorithm can be used to compute
the shortest route travel time between nodes. The thesis has focused on the high-level
implementation of the task assignment without concerning the low-level implementation
of the road network. Also, another way to improve the algorithm would be to make the
generation of the RV and RTV graphs more efficient, in order to decrease the compu-
tation time required. In fact, they are the most time demanding steps of the algorithm.
Specifically, it is needed a faster way to gather information about pre-existing trips from
the RTV-Graph.
The priority assignment can be revisited, in order to implement queues of tasks with pri-
orities. This would allow to have more levels of priorities, depending on multiple criteria,
like the order the tasks have entered the problem.
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Part II

Taxi Demand Forecasting
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Chapter 6

Introduction

It is a fact that in cities, taxi service is imbalanced. In some areas passengers wait too
long for a ride, while in other areas many taxis roam without passengers. As we have
seen in the first part, one of the problems of any transportation system is the presence of
vacant vehicles, which have not been assigned because they are not able to accomodate
a certain ride either because of its capabilities or because it is too far from the points of
interest in the map.
Understanding the taxi demand in the future would give an opportunity to organize the
taxi fleet better. It also reduces the waiting time of passengers and cruising time of taxi
drivers. The information about taxi demand in the future can be used to guide both in-
experienced and experienced drivers to withstand the taxi demand in the city in a smaller
time, without having passengers to wait for long times. Demand forecasting is thought
to help balancing the demand for service with the distribution of the fleet in space and
time.
In this way, taxi drivers can drive to high demand areas, and taxi companies may re-
allocate their vehicles in advance to meet passenger demand. If ride quantities can be
estimated in the proper way, it can give taxi companies (e.g. Uber, Lyft) a larger picture
of how to position their vehicles and is thus a potentially stronger tool than the predictive
capability of an individual driver. We can also think of introducing the forecast in the
assignment problem, so that to ease the allocation of rides in order to have the drop-off
locations close to the next points of interest. In this way, taxis will be slowly heading to
different regions accordingly to the forecasted demand distribution.
The digital transformation of the tansportation systems and the emergence of sharing
economy have given rise to vast amounts of spatiotemporal data. Hence, spatiotemporal
traffic network analysis has become a crucial subject for traffic managers, route planning,
traffic policy adjustments and transportation network planning [100].

6.1 Recent technological improvements

The past decade has seen a phenomenal growth of Internet and social network services, an
explosion of sensor-equipped mobile devices. Indeed, within the improvements that are
allowing a fast and radical change of the transportation systems, sensors are playing one
of the most important roles. It is called Urbanet a new type of spontaneous urban network
composed of heterogeneous and potentially mobile sensors. Sensors create a rich, open
sensing environment where people can share resources to give mobile users a real-time
acces to sensed data [81]. The large scale of the shared data is making new-generation
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sensors different from what where first-generation sensors. The sensors installed in each
vehicle are providing new opportunities to automatically discover knowledge, which in
return deliver information for real-time decision making.
In particular, the recent advances GPS (Global Positioning System), GSM (Global Sys-
tem for Mobile Communication) and WiFi have provided a new way to communicate
with running vehicles whilst collecting relevant information about their status and loca-
tion [68].
These sensors are nowadays available in almost every vehicle and every personal mobile
device. Even when the vehicle is not equipped with one of these instrumentations, it
is likely that the driver is using some mobile application running on a personal mobile
device, and therefore it is still providing data to a network about its status.
Cell phones and portable computers leave digital footprints of their user’s activities, which
are a reflection of the economical and societal interactions of a community. Researchers
have sought to extract communal behaviors and intelligence from this data to obtain a
better understanding of the hidden dynamics of individuals and communities. Social and
community intelligence (SCI) is an emerging research field that leverages the capacity to
collect and analyze these footprints to reveal human behavior, patterns and community
dynamics. Wearable sensors, in contrast to static sensing infrastractures that are con-
strained to a fixed location, transform people and vehicles into mobile sensors for both
personal and environment monitoring [98].
We call social dynamics the field studying the collective behavior of a city’s population,
as observed by their movement in the city. Researchers are interested in where people
are heading, what are the points of interes (or also called hottest spots), what are the
connections between different areas of a city. Operational dynamics instead refers to the
general study of the modus operandi of taxi drivers. This methods want to study and
learn from taxi drivers’ excellent knowledge of the city [21]. This both are two of the
methods how to study social and community behaviors.
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Chapter 7

Data acquisition

The GPS traces of a taxi or customer can tell us, with a fair amount of precision, where
passengers were picked up, where they were dropped off, which route was taken and what
steps the driver took to find a new passenger. We want now to use the classification of
[100] for what can be the sources of traffic data. These can be divided into:

� Location-based data are usually gathered from traffic surveillance systems, e.g. road
cameras, inductive loop detectors, and wireless sensor networks in urban traffic net-
works;

� Vehicle-based data are collected and achieved in our daily lives with the help of GPS-
equipped vehicles (such as taxis, probe cars and public buses). The trajectory data
usually constitute series of location information with corresponding time stamps,
which can be a fundamental source for traffic management;

� Human-based data, with the developement of mobile devices, are recording users real-
world movements in the form of spatiotemporal data streams, both intentionally and
unintentionally. Intentional data is when travelers log travel data into applications
that share those information, unintentional data is when the user is not aware of
sharing location information through some app or some automatic service;

� Supplementary data: various other sources can provide data, like weather data,
road infrastructure data, traffic management status data. They can be provided in
spatiotemporal format as well, so that they are compatible with the other data;

Our project is based on the analysis of a dataset defined by GPS locations. It is char-
acterized by rides containing information about the trip, regarding both the vehicle and
the customers of the ride. We can think of our data as a vehicle-based dataset, where
locations, corresponding time stamps and other information are stored row-by-row. Our
dataset is a real-world data generated by yellow taxis in New York City, USA from April
1 to June 30, of years 2015 and 2016. This is a public dataset provided by the Taxi and
Limousine Commission (TLC) [73].
The data was recorded through meters installed in each taxi. The dataset specifies for
each trip event the pick-up and drop-off GPS locations together with the corresponding
timestamp. In total it contains 19 columns, which inlcude pickup time, dropoff time, num-
ber of passengers, trip distance, pickup location longitude, pickup location latitude, dropoff
location longitude, dropoff location latitude, trip fare within other information that will
not be useful in our case. We need now to introduce some basic techniques used to process
a spatiotemporal traffic network database that are noise filtering, compression, segmen-
tation and heterogeneous data management. To load and manage the dataset, we have
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used Pandas libraries [76] [66] for Python. We also have used Pandas dataframe methods
to perform noise filtering and segmentation of the dataset, with the help of Scikit-learn
libraries [77].

84



Chapter 8

Data preprocessing

8.1 Noise filtering

In real-time systems, data are naturally noisy. This may be casued by instrumentation
failure, incomplete or missing data or other reasons. Those noisy data could affect the
performances of our algorithms, introducing outliers and data carrying information that
will deviate from the generalization capabilities of the data mining techniques.
Some of the types of the noisy data include [21]:

� Missing Data Entries : Occasionally, the GPS data is not received properly, with a
lapse of several minutes or even hours between entries. The reasons for this lapse
could be errors in the GPS device or a lack of GPS signal due to a location with
low GPS signal coverage. This can lead to a jump between locations since there is
no information about locations where the GPS signal was not received.

� Erroneous Data Entries : Some of the entries to our dataset include erroneous data,
that could be wrong longitude and latitude or time information. These entries
usually can be identified looking at the average behaviour of the surrounding entries.
They will be labeled as outliers in our dataset.

� Occupied Flag Improperly Set/Detected : The state flag that marks vehicles as oc-
cupied/available may have some malfunctions or be set not properly by the driver.
This may cause some information to be erroneously provided to the central system,
negatively affecting the vehicle statistics.

Noise reduction can improve the quality of the information provided by our dataset.
Existing methods for noise reduction fall into two major categories [100]:

� Data Smoothing and Inference Methods : The most common method in this category
is Kalman filtering (KF), a real-time algorithm for traffic estimation using an ex-
tended Kalman Filter (EKF), or using the KF in combination with other tools [96].
Other methods use Bayes estimation based data fusion. This process in general is
referred to as data fusion.

� Outlier elimination methods : In contrast with replacing noisy data with estimated
values, outlier elimination methods were proposed to identify outlier noise data and
delete them from the dataset. Outliers can be identified on the basis of some metric
chosen to analyze the average behaviour of the dataset. We might for example
investigate the average duration and speed of normal trajectories and identify some
ranges within which entries of our dataset should lay [94].
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We decided to use the second method in order to clean the dataset of most of the noisy
data. It is possible that the metrics used are not able to identify all the outliers of our
system, but we are confident about the fact that most of the noise will be cancelled. The
metrics we use to identify the outliers are: longitude and latitude of pick-up and drop-off
locations, trip duration, vehicle speed, trip travel distance and trip fare.
We first need to generate a new dataframe containing information about the speed of the
vehicle during the trip and a converted time measure for the pick-up and drop-off times.
In fact, we need to convert the date and time from YYYY-MM-DD, hh:mm:ss to the Unix
time format. Unix time is a system for describing a point in time and it is defined as the
number of seconds that have elapsed since the Unix epoch minus leap seconds. The Unix
epoch is fixed at 00:00:00 UTC on 1 January 1970. After having converted the time into
the new Unix time format, we will be able to trivially compute the speed of each of the
trip (that is, each entry of our dataset) as:

Speedentry =
Distanceentry
Timeentry

(8.1)

where Timeentry is defined as the difference between the Unix time at drop-off and the
Unix time at pick-up: Timeentry = tUnix

dropoff,entry − tUnix
pickup,entry. After the new dataframe

with the updated time feature and the speed information is generated, we can start the
investigation to find and delete outliers from the dataset. Most of the preprocessing phase
has been inspired by [87].

8.1.1 Trip duration

First, we want to look at the durations of the trips in order to identify some of the outliers
by the duration in minutes of each trip. We want to compare the duration of each single
trip with a known threshold for the total duration of the trip. Therefore, we need first
to find a trip duration threshold that can consider trips to be valid or not depending
on their time duration. Then, given the duration in minute of each trip, we will delete
trips from the dataset when they have duration longer than the fixed threshold. The
threshold in this case could be chosen according to the New York City Law stating that
taxi drivers cannot drive for longer than 12 hours a day because of issues related to the
physical fatigue of the driver and therefore to safety measures. However, printing the trip
duration percentiles division (Table 8.1) of the probability density function distribution of
the trip duration we see that 99.9% of the trips has a duration lower than 119.13 minutes.
Therefore we will use this as an upper limit instead of the limit imposed by the New York
City Government.
We call tupper the upper limit of time duration that we have fixed and we suppose that
the lower bound tlower is 1 minute. We have chosen the lower bound to be 1 minute
in order to consider invalid all the trips that have negative time duration and to have a
safety interval of one minute for erroneous trip duration, being a 1 minute ride very close
to the 0 minutes bound.
Hence, we will filter out all entries that satisfy the following inequalities:

durationentry < 1 min ∨ durationentry > 119 min; (8.2)

Following, we can see in Figure 8.1 the boxplot of the quartile distribution of trips’ time
durations for the whole dataset before cleaning the dataset. Instead, Figure 8.2 is showing
the boxplot quartile distribution of the trip durations after having cleaned the dataset.
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Figure 8.1: Boxplot of the trip durations in minutes of all the entries of our dataset for the
month of June 2015 before the dataset is filtered using the trip duration metric. As we can
see, some of the trips have duration of 5000 minutes or higher, which is not allowed by our
constraints. Moreover, we can notice that some trips have negative duration, which is physically
impossible.

Figure 8.2: Boxplot of the trip durations in minutes of all the entries of our dataset for the
month of June 2015 after the dataset has been filtered using the trip duration metric. As we
can see, all the trips now are within the interval [1, 119] minutes. After the analysis, the 99.9th

percentile is telling us that 99.9% of the trips have duration of less than 119 minutes.

Table 8.1 contains the percentile analysis for the duration of the trips in the dataset for
June 2015.

87



Percentile analysis for the trip duration

Percentile Trip duration
(minutes)

0th -6729.22

10th 4.15

20th 5.95

30th 7.63

40th 9.40

. . . . . .

90th 28.35

91st 29.55

. . . . . .

99th 60.23

99.1th 61.92

. . . . . .

99.9th 119.13

100thth 3.49× 105

Table 8.1: In this table we show the percentiles from 0th to 100th, where higher percentile
accuracy is used from percentiles from 90th to 100th first and then from 99th to 100th. Decreasing
the step of the percentile, gives the possibility of having higher precision when looking for the
upper bound of the time duration value.

8.1.2 Speed of the trip

Another of the metrics used to evaluate whether the trips are valid or not is to verify that
their average speed is compatible with physical limits of standard vehicles. We want to
fix both lower and upper bounds on the speed of the vehicle. If one of the two bounds is
not satisfied, the entry of the dataset will be discarded.
First, we can fix as lower bound a minimum speed of 0 miles/hour. Instead, the upper
bound needs to be found by investigating the statistics of the entire dataset, since we do
not have any knowledge of what could be an acceptable average speed for taxis in New
York City. Therefore, we will analyze the percentile distribution of the speed probability
density function of the dataset, as we already have done for the trip duration analysis. In
order to do this, we first need to plot and print the percentiles for the speed probability
density function and find a speed upper bound whithin which the majority of the trip
speeds lay. Then, given the speed of each trip, we will delete trips from the dataset when
they have speed greater than the threshold or smaller than the lower bound. The level
of trust of the threshold for the upper bound is given by the percentage of entries of the
dataset that have speed within that limit.
We call vupper the upper limit of speed that we will identify via the percentile analysis
and vlower will be the lower bound.
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Percentile analysis for speed of trips

Percentile Speed
(miles/hr)

0th 0.00

10th 5.63

20th 7.12

30th 8.33

40th 9.47

. . . . . .

90th 19.81

91st 20.48

. . . . . .

99th 34.23

99.1th 34.81

. . . . . .

99.9th 44.85

100thth 1.03× 108

Table 8.2: In this table we show the percentiles from 0th to 100th where higher percentile accuracy
is used from percentile 90th to 100th first and then from 99th to 100th. Decreasing the step of the
percentiles, gives the possibility of having higher precision when looking for the upper bound of
the speed value.

Following, Figure 8.3 represents the boxplot regarding the speeds in our dataset.

Figure 8.3: Boxplot of the speed, in miles/hour in our dataset before filtering the speed outliers.
We can see that there are entries of our dataset that have speeds in the order of millions of
miles/hour. Since none existent ground vehicle is capable of reaching these speeds values, we
will discard the corresponding dataset entries, according to the percentiles of the data.
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We can see from Table 8.2 that 99.9% of trips have speed under 44.85 miles/hour. There-
fore, we can keep these 99.9% of data and discard the 0.1% that have velocity such that
v0.1% > 44.85 and v0.1% ≤ 1.03× 108.
The average speed of all the rides that have been kept for June 2016 is vave = 11.93 miles/hour.
Figure 8.4 shows the boxplot of the speed distribution for the cleaned dataset, where all
the speed outliers have been removed.

Figure 8.4: Boxplot of the speed, in miles/hour in our dataset after filtering the speed outliers.
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8.1.3 Trip distance

Another metric we use to clean the dataset from noise data, is to look at the distance
travelled by the trips. In contrast with the previous two metrics, this is closely related
to errors in the coordinates of the locations of pick-up and drop-off. It could be that
some pick-up or drop-off location coordinates have been mistaken by the GPS device and
therefore the corresponding route ends up to be unfeasible for realistic conditions.
We will analyze the percentiles that divide the probability density function of the distance
of all the trips that are left in our dataset. Hence, we will print the percentile as in table
8.3.

Percentile analysis for travel distance of trips

Percentile Distance (miles)

0th 0.01

10th 0.07

20th 0.94

30th 1.20

40th 1.49

. . . . . .

90th 7.0

91st 7.64

. . . . . .

99th 18.64

99.1th 18.88

. . . . . .

99.9th 24.04

100thth 155.54

Table 8.3: This table shows the percentiles that divide the probability density function of the
distances of each trip. First a step of 10% has been used and it has been seen that 90% of data
have an associated trip distance of about 7 miles, while the 100th has associated a distance of
155.54 miles. Therefore, we need higher accuracy to investigate what is happening for percentiles
close to the 100th. This is the reason why from the 90th percentile to the 100th percentile we use
a step of 1%. The improved accuracy made us discover that 99% of data lays within a travel
distance of 18.64 miles. Going further, we use a step of 0.1% form 99th percentile to 100th.
Doing so, we figure out that 99.9% of data has a travel distance below 24.04 miles. Therefore,
we will exlude only 0.1% of the dataset.

As we can see in Table 8.3, 99.9% of trips data have a travel distance smaller than 24.04
miles, while 0.1% of the data have travelled a distance that is t0.1% > 24.04 miles and
t0.1% ≤ 155.54 miles. This means that we will keep 99.9% of the data that underwent the
distance filtering step.
Following, Figure 8.5 shows the boxplot of the travel distance before filtering, Figure 8.6
shows the boxplot of the travel distance after filtering.
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Figure 8.5: Boxplot of the trip distances in miles in our dataset before filtering the travel
distance outliers.

Figure 8.6: Boxplot of the trip distances in miles in our dataset after filtering the travel distance
outliers.

8.1.4 Trip fare

The next metric we want to use to evaluate if the entries of the dataset are outliers, is
the fare of the trip, which is the total cost of the trip for the customer. The trip fare
usually is computed with algorithms that accounts for the taxi call and dispatch service,
the travel time of the ride. Additional charges depend mainly on the time of the day that
accounts for rush hours, the fact that trips could require mainly fast track lines, road
tolls, the tip and many other factors like weather conditions [74]. Because of all these
factors, trips fare is difficult to predict and it is even more difficult to estimate what could
be an upper bound for our case, given the great number of influencing factors and an
incomplete knowledge of the dynamics behind the taxi service dispatcher of New York
City. Therefore, we want to use statistical analysis to try to find an upper bound for the
trip fare for our case so that to exlude entries that do not enter on that threshold we will
fix.
Indeed, it is probable that if the fare is greater than the threshold, some error may have
occured when acquiring GPS and ride status data. An excessive fare might also simply
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suggest that a trip is so peculiar that it should not enter our taxi demand modelling, since
it could deviate from a generalization of the forecast process.
We will do a percentile analysis of the probability density function of the trip fare of our
dataset. Table 8.4 shows what are the bound values for the percentiles of our dataset.

Percentile analysis for fare of trips

Percentile Fare (US Dollars)

0th -317.8

10th 6.80

20th 8.16

30th 9.30

40th 10.79

. . . . . .

90th 30.25

91st 32.16

. . . . . .

99th 69.99

99.1th 69.99

. . . . . .

99.8th 80.55

99.9th 94.8

100thth 8002.8

Table 8.4: This table shows the percentiles that divide the probability density function of the
fares of each trip. First a step of 10% has been used and it has been seen that 90% of data
have an associated fare of about $30, while the 100th has associated a fare of $8002.8. It is
unlikely that a customer would be willing to spend that amount for a taxi trip. Therefore, we
need higher accuracy to investigate what is happening for percentiles close to the 100th. This
is the reason why from the 90th percentile to the 100th percentile we use a step of 1%. The
improved accuracy made us find out that 99% of data have an upper bound fare of $69.99. It is
still significant the difference between the 99th and the 100th percentiles. Going further, we use
a step of 0.1% form 99th percentile to 100th. Doing so, we figure out that 99.9% of data have
a fare below $94.8. This fare, though, is not close to the $80.55 bound of the 99.8th percentile.
Therefore, we will exclude only 0.2% of the dataset and keep the 99.8% of data that has a fare
upper bound of $80.55.

Figure 8.7 and 8.8 show the boxplots of the taxi trip fare before and after filtering the
dataset, respectively.
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Figure 8.7: Boxplot of the trips fares, in USDollars in our dataset before filtering the ride fare
outliers.

Figure 8.8: Boxplot of the trips fares, in USDollars in our dataset after filtering the ride fare
outliers.

8.1.5 Pick-up and drop-off locations coordinates

The terrain of a city is a continuous two-dimensional area (i.e. a subset of R2) and can
be defined as [21]:

D = [lonmin, lonmax]× [latmin, latmax] (8.3)

where D ⊆ R2 is the area covering all of the GPS entries within the city limits that are
defined by lonmin, lonmax, latmin, and latmax. The boundaries for the city of New York
are published on the website of the Department of City Planning (DCP).
Therefore, we can define the area D as:

D = [−74.257159,−73.699215]× [40.495992, 40.915568] (8.4)

Our filtering algorithm will remove from the dataset all the trips that have pick-up or
drop-off coordinates outside of the city boundaries. The following will be the conditions
to be verified for each entry of the dataset:
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− 74.257159 ≤ plon ≤ −73.699215

40.495992 ≤ plat ≤ 40.915568

− 74.257159 ≤ dlon ≤ −73.699215

40.495992 ≤ dlat ≤ 40.915568

(8.5)

where [plon, plat] are the coordinates of a generic pick-up point and [dlon, dlat] are the
coordinates of a generic drop-off point.
Figures 8.9 and 8.10 show, respectively, the pickup and dropoff locations that have been
removed from the dataset because they were outside the city boundaries.

Figure 8.9: Taxicab rides pick-up locations that are placed outside the NYC boundaries, on a
map of the city of New York and surrounding areas.

Figure 8.10: Taxicab rides drop-off locations that are placed outside the NYC boundaries, on a
map of the city of New York and surrounding areas. As we can see, many drop-off locations are
outside the city limits.
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Figures 8.11 and 8.12 show, respectively, the pickup and dropoff locations that are still
part of the dataset since they are within the area defined by the city boundaries of
Equation 8.4. The two images show 100 samples each, from the filtered dataset locations.
These are only portion of the pick-up and drop-off locations that would include millions
of entries.

Figure 8.11: Taxicab rides pick-up locations that are placed inside the NYC boundaries, on a
map of the city of New York and surrounding areas. These are only 100 random samples from
the entire dataset of pick-up locations inside the city boundaries.

Figure 8.12: Taxicab rides drop-off locations that are placed inside the NYC boundaries, on a
map of the city of New York and surrounding areas. These are only 100 random samples from
the entire dataset of drop-off locations inside the city boundaries.
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After having completed the filtering of the data following the aforementioned criteria, we
will end up with a new dataset, that we can consider to be clean of most of the outliers
that could badly affect the perdormance of our forecasting. The filtering operation have
removed about 3.3% of the original entries of the dataset. Therefore, we will end up
having 96.7% of the original data.

8.2 Segmentation

Segmentation is part of data preprocessing and it is used to reorganize our dataset so
that it gains meaning for the purposes of our analysis. Segmentation not only reduces
computational complexity, but also enables us to mine more specific patterns, such as
day-to-day or regional traffic patterns.
Generally, segmentation is done on the basis of three different criteria:

� Based on time intervals : Traffic data usually are characterized by some sort of peri-
odicity. The demand for taxi services exhibits, like other modes of road transporta-
tion, a periodicity in time on a daily basis (see Figure 8.13) that reflects patterns
of the underlying human activity [68]. We can therefore divide the rides dataset
into smaller segments that could represent the rush hours at different moments of
the day. We can also use hourly time bins by calculating the aggregated demand in
every hour [94]. These data segmentation helps in highlighting what are the time
patterns of our dataset.

Figure 8.13: Example of taxi demand when data have been organized in hourly time bins. We
can see a strong periodicity of 24 hours.

� Based on space: Data can be divided into sub datasets by regions for regional
pattern study or specific research objectives. Some of the possibilities for spatial
segmentation could be of dividing the map previosuly defined as D with a grid [21].
This simple approach can decompose a city map into equal sized areas. The sub-
areas of the map can be further clustered using some distance function that describe
some property within the sub-areas so that they are placed in the same cluster.
Another possibility is when we have a digital map of the city available, which means
we have a network of pivot points represented by nodes V in a graph (V,E). Streets
in this case are composed of one or more edges of the graph. An example of the
use of a graph to represent the road network is given in [22] to study the presence
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of anomalies in the traffic flow, where regions are nodes and roads are edges. A
hierarchical road network can be used to ease the manipulation of the digital map.
This is one of the clustering methods used to cluster a digital map. We will assign
roads to groups of higher and lower importante in the network, in a multi-level
organization of the road set.
Another way to spatially segment data is to use a cluster algorithm to divide the set
of rides in regions. Spatial clustering is one of the main techniques used in spatial
data mining.

� Based on other factors : Other factors such as weather can influence the traffic
on a road network and therefore also the number of taxi rides. Especially rain is
influencing traffic not only for changes in the quantity of people deciding to move
with personal vehicles but also for an increase in car accidents and a consequent
traffic slowdown [51].

Segmentation in general is useful to brought up the characteristics and information of our
dataset that will be useful for our purposes. In fact, our aim is to predict the number of
pick-up requests that will happen in the next hour, knowing what was the historical trend
of the pick-ups. Morevover, we are interested in differentiating between areas of the map
in order to have a prediction that spans both in time and space, so that we will be able
to suggest vehicle where to head to pick-up the most customers and avoid imbalances.
Therefore, we need to have a dataset where the information about the hourly pick-ups for
each region of our dataset is easily accessible.

8.2.1 Temporal clustering

We divided the dataset into hourly time bin that is, we will have a set of time slots
that all together will decribe completely the time span of our dataset. For instance, if
we consider the dataset of June 2016, knowing that June is a 30-days month, we can
compute the total number of time bins needed to divide the dataset by hour. This will
simply be 24 · 30 = 720 time bins. For the dataset of April 2016 and May 2016 we will
have, respectively, 720 time bins and 744 time bins.
It may happen that some of the bins have no pick-up occurring for that area and hourly
time bin. This happens usually in areas of low demand. Even if rare, we need to fill
those gaps, to not incur in errors and misinterpretation of the dataset. What we do, is
to fill those gaps with time bins having as number of pickups the average of the number
of pickups of the last existing time bin in the sequence before the gap and the upcoming
existing bin. In Figure 8.14 we show an example of what we intend by filling the missing
data in the time bins of our dataset for some regions. We will fill the gaps with time bins
containing the sum of the two time bins adjacent to the two ends of the gap (one time
bin for case b) and c) of Figure 8.14) divided by the number of time bins in the gap plus
the number of adjacent time bins. Therefore, referring to the proposed example, in case
a) we will use Equation 8.6 in case b) we will use Equation 8.7 and in case c) we will
use equation 8.8, similarly to case b), where ti is the i-th time bin identifier and pi is the
number of pickups occurring during the i-th time bin.

p7 = p8 = p9 = p10 =
p7 + p10

4
(8.6)

p1 = p2 = p3 = p4 =
p4
4

(8.7)
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p15 = p16 = p17 =
p15
3

(8.8)

Figure 8.14: In example a), the missing data are in the middle of the time bins sequence, we will
add time bins t8 and t9. In case b) the missing value are at the beginning of the time sequence,
we will therefore add time bins t1, t2 and t3. In case c) the missing values are at the end of the
time bins sequence, therefore we will add time bins until the number of supposed time bins is
reached, in this case we add t16 and t17.

Table 8.5 is showing how data have been segmented so that they are meaningful to our
purposes.

Segmented dataset

Spatial cluster Temporal cluster Number of Pick-
ups

Region 1 Hour 1 50
Hour 2 25
...

...

Hour n 34

Region 2 Hour 1 18
Hour 2 20
...

...

Hour n 12
...

...
...

Region m Hour 1 123
Hour 2 108
...

...

Hour n 110

Table 8.5: How the main body of the dataset is structured. For each region of the map, we have
the time bins that divide into equal spots the time of the entire month in hours. n is 720 if the
dataset is a 30-days month, and 744 if the dataset is a 31-days month. As a third column, we
have the number of pick-ups that happened for the specific region at the specific time bin.
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The next step will be to use this dataset and integrate additional information such as the
day of the week and weather to obtain a new more complete dataset with features that
are influencing the prediction of the number of pick-ups.

8.2.2 Spatial clustering

During segmentation, as anticipated, our goal is to obtain a dataset that is both tem-
porally and spatially segmented, which means we have extraced information from the
entries of our dataset to position them in new temporal and spatial sets that will identify
the original dataset entries from then on. This means that the single trip, represented
by an entry of the dataset will lose its specific information about pick-up and drop-off
locations coordinates and the respective pick-up and drop-off date and time. Instead, this
information will be substituted with location and time that are now identifying the entry
as belonging to a group of data.
For what concern the spatial clusters, they have to be defined and at the same time the
different taxi rides have to be assigned to these clusters. Then, the single taxi ride will
be identified by a certain cluster pick-up location, that at the same time identifies other
tasks belonging to the same cluster.
As explained is Part 1, clustering is the process of grouping a set of physical or abstract
objects into classes of similar objects. Classification also is an effective method to distin-
guish groups or classes of objects, but usually requires costly collection and labelling of
a large set of training tuples or patterns, which the classifier uses to model each group.
Instead, clustering does not require such labeling at all [56].
Clustering can be used to deal with large dataset and is frequently used in data mining
applications, and is a useful tool in geographical data analysis. Geographic data can in
general have different forms, but in our case we are dealing with point data, which are
defined by the coordinates of the pick-up locations in particular. One of the most trustest
application to divide geographic points into clusters is to use hexagons, in a similar way
to how grids are used. Indeed, hexagons have some nice properties that made them on
of the most accurate way to divide a map into areas, and then assign the points to one
of the areas defined by the hexagons, based on the location of the points. The main idea
behind the use of hexagons, is that they reduce the sampling bias form edge effects of
the grid shape, which is related to high perimeter to area ratios. Theoretically, the circle
would have the lowest ratio, but it cannot form a continuous grid. Thus, hexagons are
used since they are the closest to circle that can still form a grid. Other advantages of
hexagons are the possibility of represeting curves and curvatures of the surface, the easier
management of neighbor definition and neighbors search [16].
In Section 1 we mentioned how clustering algorithms such as DBSCAN can be used to
create groups of trajctories [47], that are sequences of points in time, hence more difficult
to describe and classify by similarity because of the strong relation they have with the
time dimension. Given the kind of data and the freedom we have in deciding how many
regions we want in our map, we decided to use the k-means clustering method to divide
our set of pick-up point data.
Our objective is to divide the entire set of pick-ups into regions. Each region will be
labeled by a center, identified by latitude and longitude.
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8.2.3 K-means algorithm for spatial clustering

We remind that we are interested in k-partition clustering that is, given a set of n points
in Euclidean space (in general it is a d-dimensional space Rd) and an integer k, find
a partition of these points into k subsets, each with a representative, also known as a
center [10]. We can distinguish between three different formulations of k-partitioning
clustering [49] and these depend on the objective function being used: k-center, where
the goal is to minimize the maximum distance between a point of a cluster and the closest
cluster representative, k-median, where the goal is to minimize the sum of the distances
between the points and their closest cluster representatives, and k-means, where the goal
is to minimize the sum of the squares of these distances. All these three formulations
are NP-hard, but constant factor approximations of the optimal value is known. The k-
means clustering algorithm is an unsupervised algorithm that is used for quickly predicting
grouping within an unlabeled dataset. It is by far the most popular clustering algorithm
used in scientific and industrial applications [55]. The goal of clustering is to assign data
points to a finite system of k subsets (clusters). These subsets do not intersect (however,
this requirement is sometime violated in practice) and their union is equal to the full
dataset with the possible exception of outliers.

X = C1 ∪ · · · ∪ Ck ∪ Coutliers, Ci ∩ Cj = 0,∀i, j such that i 6= j (8.9)

The advantage of k-means is its simplicity: starting with a set of randomly chosen initial
clusters, one repeatedly assigns each input point to its nearest center, and then recomputes
the centers given the point assignment [10]. This local search, called Lloyd’s iteration,
continues until the solution does not change between two consecutive rounds. Theoreti-
cally the algorithm is not efficient and the running time can be exponential in the worst
case. In practice, k-means remains a fast and simple clustering algorithm.
k-means is under the class of partitioning relocation methods, together with k-medoids
and probabilistic clustering. Because checking all possible subsets is computationally in-
feasible, certain greedy heuristics are referred to collectively as iterative optimization.
As previously outlined, iterative optimization refers to different relocation schemes that
iteratively reassign points between the k clusters. Hierarchical clustering, another of the
clustering methodologies, do not revisit clusters after construction, while relocating algo-
rithms can gradually improve clusters, by iterating.
Partitioning relocation clustering approaches starts with the definition of an objective
function, then also, we can distinguish between clustering detection methods by other
aspects. One group of techniques examine the points pairwise to see if they are closer to
each other than expected or if similar measurements (variables measured at the point lo-
cations) are closer to each other than expected [63]. Pairwise (between all combinations)
distances or similarities can be used to compute the measures of intercluster and intra-
cluster relations. From these distances we can obtain the value of the objective function.
In iterative improvement approaches, such pairwise computations would be too expensive.
For this reason, in the k-means and k-medoids approaches, each cluster is associated with
a unique cluster representative, such that we will compute the distance function for all
points but only with respect to the cluster representatives. In this case, the computation
of an objective function becomes linear in the number of elements N and the number of
clusters k. In k-medoids, the cluster representatives are actual elements of the clusters,
while in k-means, the representatives are abstract points, computed as the mean between
the points belonging to the cluster. k-means is sensitive to the presence of outliers and
noise data, since a small number of such data can substantially influence the mean value.
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The k-means algorithm is sensitive to outliers because an object with an extremely large
value may substantially distort the distribution of data. This effect is particularly due to
the use of the squared-error function as a distance criterium. This squared error criteria
is, typically [67]:

E =
k∑

i=1

∑
p∈Ci

|p−mi|2 (8.10)

where mi is the mean of all the points in the i-th cluster, that is the representative of
cluster i. With k-means algorithm, the representative of the set is always the mean of the
points belonging to the set.
The cluster is found based on a distance function that expresses the distance between
elements of the cluster and its centroid. The objective function to find for the best cluster
division will be the sum of these distance functions. For example, the L2 norm-based
objective function, that is the sum of the squares of the distances between the points of
the cluster and the corresponding centroid, is also equal to the total intracluster variance.

E(C) =
k∑

i=1

∑
pj∈Ci

||pj −mi||2 (8.11)

Following, we want to talk about Lloyd’s method, the most famous algorithm implementa-
tion for k-means. Usually referred to simply as k-means, Lloyd’s algorithm begins with k
arbitrary centers, typically chosen uniformly at random from the data points. Each point
then is assigned to the nearest centroid, and each centroid is recomputed as the center of
mass of all points assigned to it. These two steps (assignment and center calculation) are
repeated until the process stabilizes. Lloyd’s algorithm is based on the simple observation
that the optimal placement of a center is at the centroid of the associated cluster [49].
Formalizing we will have that given any set of k centers Z, for each center z ∈ Z, let
V (z) denote its neighborhood, that is, the set of data points for which z is the nearest
neighbor. In geometric terminology, V (z) is the set of data points lying in the Voronoi
cell of z. Each stage of Lloyd’s algorithm moves every center point z to the centroid of
V (z) and then updates V (z) by recomputing the distance from each point to its nearest
center. These steps are repeated until some convergence condition is met.
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Figure 8.15: A schematic illustration of the k-means algorithm for two-dimensional data clus-
tering with k = 3.
a) Set of data points to be clustered in two− dimensional space.
b) The hollow circles represent the random location of the cluster centers. We will associate
each point of the dataset to the center that is cosest in euclidean distance.
c) Now the space is divided into three subspaces through three decision boundaries, each con-
taining the corresponding data points whose closest center is within the subspace. At future
iterations, it may be that data points will not belong to the same cluster (subset).
d) The center of the cluster is computed as the mean of the data points within each cluster. The
black arrows show how the centers are moving from the starting positions to the mean positions.
e) We assign data points to clusters according to the new centers locations. Steps c) and d) are
repeated iteratively until convergence.
f) This is the final clusters we obtain from the original dataset.

The method is relatively scalable and efficient in processing medium size data sets because
the computational complexity of the algorithm is O(nkt) where n is the total number of
objects, k is the number of clusters and t is the number of iterations. Normally, k << n
and t << n. The method often terminates at a local optimum. In fact, randomness
introduces heuristic in the cluster search. [18] shows how to scale k-means clustering to
very large data sets through sampling and pruning. In fact, they state how it would be
in principle necessary to scan multiple times the dataset, and for large dataset it would
be prohibitively expensive. Moreover, note that Lloyd’s algorithm does not specify the
initial placement of centers. Therefore, the algorithm might encounter scenarios in which
it degenerates to brute-force search, so very little pruning takes place and the algorithm
has to undergo a brute force O(knt) search [49]. By augmenting k-means with a very
simple, randomized seeding technique, we obtain an algorithm that improves both speed
and accuracy of k-means [7].
The default k-means algorithm of MiniBatchKMeans() available with Python libraries
Scikit-learn [77], makes use of k-means++ to choose the initial points. k-means++ is
an algorithm to choose the initial values (also called seeds) for the k-means clustering
algorithm. This should speed up convergence of the main clustering algorithm. As is
well-known, a proper initialization of k-means is crucial for obtaining a good final solu-
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tion. The recently proposed k-means++ initialization algorithm achieves this, obtaining
an initial set of centers that is provably close to the optimum solution [10]. A major
downside of the k-means++ is its inherently sequential nature, which limits its applica-
bility to massive data: one must make k passes over the data to find a good initial set of
centers.
Using k-means++ improves both the speed and the accuracy of k-means algorithm. [7]
proves that their k-means++ algorithm is O(logk)-competitive on all data sets while [75]
proves it also gives a constant approximation to the optimum when data are well dis-
tributed.
Some näıve implementation of the k-means++ will have to make k passes over the data
in order to produce good initial centers. In [10] they develop a parallel version of the
k-means++ initialization algorithm and they empirically demonstrate its practical effec-
tiveness. Also, we can change the number of iterations that are used by the algorithm in
order to decrease the computation time, therefore loosing optimality.
MiniBatchKMeans() function implements a mini-batch optimization for k-means cluster-
ing. This reduces computation cost by orders of magnitude compared to the classic batch
algorithm while yielding significantly better solutions [86]. The standard batch algorithm
is slow for large dataset. As outlined before, the classic batch k-means algorithm is requir-
ing O(knt) computations. In mini-batch k-means, at each iteration, a subset b (that we
call mini-batch) of randomly sampled elements x ∈ X where X is the set of all the points
in our dataset is used to compute then the standard Lloyd’s algorithm. This method
drastically cut the computation time required for clustering the dataset.

Since, as we mentioned, the k-means algorithm needs the number k of clusters to be
known a-priori, we want to use some criteria to define what might be the optimal number
of cluster for our case.
We know, from the first analysis of the dataset that the average speed of the vehicles in-
volved in the trip of our dataset is about 12 miles/hour. Hence, we can do some reasoning
about the region-to-region movements of the vehicles. We can suppose that, having a one
hour prediciton for what will be the pick-ups in the different areas of the city, we need to
tell vehicles with little advance where to head in the next hour. We hope that the vehicles
are already distributed in such a way that they are not far from the optimal configuration,
since the forecast algorithm has already worked on distributing the vehicles according to
the past predictions. Consequently, we can think of a limited time that the vehile require
to move from one area to another, hopefully with some customer on board, so that to
have the most of the next time slot available to serve the requests in the vicinity of the
assigned region.
We will see that, with 30 regions, taken one of the clusters, approximately 75% of the
remaining clusters will be at an average distance d > 2;miles from the chosen cluster,
while the remaining 25% will be at an average distance d < 2;miles. This reflects the
fact that moving to adjacent clusters will require the vehicle about 10minutes, since it is
travelling at an average speed of 12 miles/hour. Therefore, if a vehicle spends 10 minuts
to move from the center of a region to the center of a neighbor region, it will have about
50 minutes left to work in that region.
On the other hand, we can think of fixing a minimum intercluster distance between the
different regions of the map. This will avoid to have too narrow regions, that would other-
wise lead to too high particularisation of the map and this would result in loss of freedom
from the vehicle assignment point of view. Indeed, when moving vehicles to satisfy rides,
it is likely that the vehicles will move far away (with narrow regions) from their original
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location, and as a result the optimal distribution of vehicles will be lost. This is why we
think it is not worth to have regions that are closer than 2−3 minutes travel time distance.
We have decided that the minimum distance between clusters should be around 2.5 minutes
travel time, that with a speed of 12 miles/hour corresponds to about 0.5 miles minimum
intercluster distance.
The intercluster distance is computed using the coordinates of the clusters centers in lat-
itude and longitude and computing the haversine distance between the two points. The
haversine distance has been computed with a method of the object geo defined in the
library gpxpy (this is a Python library used for parsing and manipualating GPX files.
GPX is an XML based format for GPS tracks).
In Table 8.6 we present the results of one instance running the function MiniBatchKMeans

with varying number of clusters k. We start from k = 10 and we try multiples of 10 until
k = 90.

Distances between cluster centers

N. Clusters Minimum distance (miles) N. clusters for d < 2 N. clusters for d > 2

10 0.99 2 8

20 0.79 4 16

30 0.46 7 23

40 0.45 8 32

50 0.41 11 39

60 0.29 14 46

70 0.29 17 53

80 0.20 21 59

90 0.29 20 70

Table 8.6: This table shows an instance of the problem with data relative to June 2015. The
first column represents the number of cluster k for that specific call of the MiniBatchKMeans

function. The second column represents the minimum distance between two differents cluster
centers. The third column represents the average number of clusters that results closer than
2 miles if we measure the distance between one center and the other for all the k cluster centers
of the set. The fourth column represents instead the average number of clusters that are more
than 2;miles away from each cluster taken one at a time.

For our case, we chose the number of cluster k to be 30, so that the minimum intercluster
distance will be roughly 0.5;miles. Consequently, it means that all our pick-ups data
have been assigned to one of the 30 clusters that divide the entire map into subregions. A
visualization of a sample of our pick-up data divided per region is represented in Figure
8.16.

105



Figure 8.16: This example shows a sample of 7000 pick-ups from our dataset divided into the
30 clusters. Each cluster, then, will have associated a representative, which is an abstract point
computed as the mean of the elements inside the cluster. The centers have their own longitude
and latitude coordinates.

8.3 Feature selection

Many are the factors that can influence the taxi traffic in a city. Other than the very
strong spatial and temporal dependencies, there could be other influences for the trend in
pick-up demand to change. Additional factors can be modeled as a separate input to the
problem. Such external factors who might affect the number of pick-ups are, for example,
weather conditions and city events [61]. The reason why to add external factors to the
model is to try to improve the prediction accuracy. Unfortunately, not all the external
factors that are usually tested in the literature, such holidays, weather conditions, par-
ticular events like concerts, traffic congestions data and road constructions are not easily
accessible.
Weather data is one of the easiest dataset to obtain, because of the many fileds in which
it is involved. [61] makes use of a very detailed weather data record, which include hourly
data regarding: temperature, wind speed, precipitation, weather type, snow fall, snow depth,
sustained wind speed, weather type. A complete analysis of what are the most influencing
weather factors on traffic in a city environment is explained in details in [71]. They show
how especially pavement conditions can highly influence the capacity of roads and their
occupancy, therefore influencing the traffic congestions that then generate traffic slow-
downs. Sadly, it is hard to quantify pavement conditions and therefore it is even harder
to be able to accurately build models to relate pavement conditions to road traffic.
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The study [28] indicates how precipitations, cloudiness, and wind speed have a clear
diminishing effect on traffic intensity, while maximum temperature and hail have a sig-
nificant increasing effect on traffic intensity.
Weather effect has also been analyzed in [43], where they try to estimate what is the
effect of temperature and precipitation on the taxi demand of New York City. Analyzing
the effect of temperature, they find out that from a mild temperature of 64°F to colder
temperatures and to hotter temperatures, the frequency of pick-up requests is becoming
higher towards both very cold and very hot temperatures. This means that temperature
has a great influence on the taxi demand as we can suppose that with cold temperatures,
people ask for taxis to move within the city to avoid getting cold, while very hot tempera-
ture might coincide with good weather days, presumably summer days, were many people
are visiting the city and the demand for taxi services becomes high also on average, with
less fluctuations. Instead, the effect of the temperature, is that fluctuations of the taxi
demand are accentuated. This is given probably by the fact that during rainy days people
try to move as less as possible and plan ahead exits. Then, it is likely that most of the
planned exits occur at the same moments, that are the peak times.
Our dataset covers the periods that go from April 2015 to June 2015 and from April 2016
to June 2016. In this time span we have examples of both cold days in April, where
we still reach temperatures of around 20°F and hot periods in June, where temperatures
reach about 86°F.
In [69] they use both amount of precipitations (in mm) and the air temperature (in °C) as
additional features to their data to predict taxi demand in the city of Tokyo. We would
like to include the same weather data in our dataset, but unfortunately, the weather
dataset that we have available has very poor rain data, because of very low accuracy in
the measurements of the amount of precipitations. Hence, we decided to use temperature
data, so that to capture at least the effects of temperature peaks on the taxi demand.
We decided to include weather conditions [93] although [97] is showing that the influence
of weather is not very strong on the prediction of the number of pick-ups. In Figure 8.17
we can see how weather is not as influencing as other parameters like pick-up locations,
day of the week or drop-off locations. Instead, we can see from Figure 8.18 that models
where the pick-up locations feature and the other features are combined have similar per-
formances. The reason probably is that the information about the pick-up location is so
informative that makes the effect of other factors very small. In both images, the accu-
racy of the prediction is measured with the sMAPE (symmetric mean absolute percentage
error), a common measure of relative error in prediction problems. The drop-off location
has been proved by [97] to be a high influencing factor in predicting the taxi demand. This
means that the drop-off pattern has a close relation to the pick-up pattern. In our case,
it is difficult to include the drop-off locations information on our dataset, because of the
data segmentation we have used. In fact, many pickups are gathered together into time
bins and it would impractical if not impossible to include the different drop-off locations
for these pickups. Therefore, we are forced to loose the information about the drop-off
locations, because of the nature of our dataset.
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Figure 8.17: Example of prediction performances with respect to different single impacting
factors [97]. The performance is evaluated using the sMAPE.

Figure 8.18: Example of prediciton performances on different impacting factors, where pick-up
location information is integrated with the other factors one at a time [97]. The performance is
evaluated using sMAPE.

Moreover, we want to add information to each entry about the previous pick-ups that
happened in the cluster before the considered time bin. This will be useful to the predic-
tion model to collect information about the dynamics of the pick-up trend for that region.
Consequently, we added to each entry (which represent a time bin of a certain region) the
previous five pick-ups quantity of that region. Therefore, we are forced, when building
the dataset, to not include in our new dataset time bins from t0 to t4, since they do not
have a previous history of five time bins. We will start, for each region, from time bin t5
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until tn, where n = 720 for 30-days months and n = 744 for 31-days months.
The features that will compose our dataset and therefore the input to our prediction
model will be:

� pick-up cluster latitude: This is the latitude coordinate of the center of the cluster
to which the entry of the dataset belongs.

� pick-up cluster longitude: This is the longitude coordinate of the center of the cluster
to which the entry of the dataset belongs.

� time bin: This is the hourly time span of the month to which our dataset belongs.
It goes from 1 to 720 for 30-days months and from 1 to 744 for 31-days months.

� day of the week : We assign to each entry a number representing the day of the week
to which it belongs. Monday will be 1 while Sunday will be 7. The other days of
the week are the values in between.

� previous five pick-ups : Each entry has associated the number of pickups of the
previous five time bins for the region where the entry is located.

The label data, that is the data we want to predict, and it is the number of pickups for
the present time bin.
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Chapter 9

Powerful tools for demand
forecasting

9.1 Statistical modeling vs. machine learning

As we have seen, the accuracy of the prediction is influenced by many parameters like
weather, accidents, holydays and many others. Moreover, the city network is a set of
several segments, and therefore, segments and regions can be influenced by the neighbor
regions and these increase a lot the complexity of the study. Usually traffic forecasting
is treated as a typical time series forecasting model, and the long temporal dependency
of historical observations is hard to capture with traditional forecasting approaches, es-
pecially when modelling periods and trends [91].
Traffic flow forecasting is usally treated with both statistical and machine learning meth-
ods.
The correlations that exist in the successive observations of traffic state evolutions has
made many researches to use time-series prediction models to solve traffic prediction prob-
lems. ARIMA (Autoregressive Integrated Move Average) has been widely used in traffic
flow prediction. In [68] they present a model to predict the number of services that will
emerge at a given taxi stand, that has been identified as an hot-spot for the arrival of
taxis, which represent the 76% of the taxi demand of the city. Their algorithm solves the
spatiotemporal distribution taxi-passenger demand using streaming data, that is, it can
work in an online environment. Although statistical methods have been widely adopted,
they cannot effectively extract inherent spatial and temporal dependencies and remain
limited to a single road segment or single region scenarios. To predict city-wide traffic
flow volume, a large number of independent models must be constructed. This limits the
further application of statistical methods in the city-wide traffic flow prediction problem
[91]. Statistical methods fail when dealing with complex and highly nonlinear data (curse
dimensionality, that is when we analyze high-dimensional spaces, therefore with many
features describing our data).
Neural networks (NN), have been widely applied to various transportation problems,
partly because they are very generic, accurate and convenient mathematical models able
to easily simulate numerical model components [50]. In trasportation research, Neural
Networks have been mainly used as data analytic methods because of their ability to
work with massive amounts of multi-dimensional data, their modeling flexibility, their
learning and generalization ability, their adaptability and their good predictive ability.
New neural networks software packages have simplified the development of extremely
sophisticated NN models, while the corresponding statistical models would be almost im-
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possible to develop, because of the complexity the algorithm can reach. Another problem
of time series fitting models is that they have to be trained separately for each area, hence,
the patterns learned in one area can not be used in other areas [97]. Some of the most
used neural network algorithms for time series prediciton are recurrent neural networks
(RNN) that have backward connections between hidden layers. The recurrent neural net-
works have internal memory which allows them to operate over sequential data effectively.
Therefore, RNNs are one of the most popular models for dealing with sequential tasks
such as handwriting recognition, language modeling and time series prediction. Although
we could achieve good predictions with RNNs, there are some problems related to their
use. Indeed, RNNs cannot train on time series with long time lags. Moreover, RNNs need
to learn a time sequence on predetermined time lags. Lastly, they suffer of the gradient
vanishing problem. Consequently, we will make use of LSTM (Long-Short Term Memory)
recurrent neural networks.
Another class of machine learning algorithms that has gained attention for regression
and classification is gradient boosting. Gradient boosting of regression trees produces
competitive, highly robust, interpretable procedures for both regression and classification
[38]. Later we will address specifically the use of LSTM recurrent neural networks and of
gradient boosting algorithm for prediction.

9.2 Predictability

An interesting point, is the one assessed in [99] about predictability of a time serie. Given
that public and private vehicles are the main transportation means in a city, we know that
people use vehicles for commuting to and from work, for regular and irregular transfers.
When public transportation vehicles are equipped with a GPS that gives information
about their locations, we have a set of data about regular trips, that therefore will be
predictable. Indeed, those vehicles have to follow fixed routes under specified schedules.
On a similar way, also private vehicles give information about almost predictable routes,
since it is probable that the vehicle owner is travelling to and from work with a certain level
of periodicity. On the other hand, taxis serve the transportation need of an heterogeneous
set of requests, that are driven by different needs. Some routes may be considered as
predictable, if they happen often from and to frequent points of interest.
Given a predictive algorithm, considering both randomness and temporal correlation of the
taxi demand sequence, what is the upper bound of the potential accuracy that a predictive
algorithm can reach? The objective of [99] is to quantify the interplay between the
regular and thus predictable and the random and thus unforeseeable human mobility. The
maximum predictability is defined by the entropy of the taxi demand sequence, considering
both the randomness and the temporal correlation of our data. Entropy is probably the
most fundamental quantity capturing the degree of predictability characterizing a time
series [89].
We aim to illustrate what past studies on predictability have proven, displaying their
results. We will not directly study predictability for our case.
By measuring the human mobility it is possible to draw conlusions on the maximum
predictability, which captures the temporal correlation of taxi demand. We know, as
mentioned above and as shown in Figure 8.18, that great part of the prediction of the
taxi demand depends on the pickup location. Therefore, the predictability of a region
would be influenced by the location in the 2D-space as well. This means that different
regions (or cluster) will have different predictabilities. In [99] they found that taxi demand
in New York City has a strong temporal pattern.

112



As already said, entropy is a good measure to identify predictability of some area under
study. Entropy can capture the temporal correlation of the taxi demand. In general, a
lower entropy means higher predictability. They use three kinds of entropies:

1. Random entropy :
S
(i)
random = log2N

(i) (9.1)

2. Shannon entropy :
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3. Real entropy :
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If we call Π the predictability and Πrandom, Πshannon and Πreal the predictabilities related
to the aforementioned entropies, it has been proven that Πrandom ≤ Πshannon ≤ Πreal [89],
therefore we will have that Πmax = Πreal. This means that the maximum predictability
we were looking at, will be given by Πreal and will be related to Sreal.
Small entropies are related to high predictability that is when we have high temporal
patterns. Unfortunately, it is not possible to use a unique entropy for the entire dataset
but we need to differentiate the entropy depending on the location of a subset of pick-
ups. Therefore, we will observe that different regions will exhibit different maximum
predictabilities. Finally, it is shown that residential and working areas have high pre-
dictability and thus exhibit strong temporal patterns. For other places such as hotels and
transportation centers, the predictability is not high. The taxi demand for these regions
is mainly dependent on the events happened during the day [99].
One very interesting point is the one addressed in [1]. Indeed, studying the number of
pickups is not realistically describing the real behaviour of the demand for taxis. To really
meet the request for taxis from customers we should be able to include in our prediction
model also the requests that have not been picked up. These requests, together with the
served requests, reflects the real number of people that were present at a certain spot or
certain region waiting for a pickup. If they, either by seeing the mobile application was
taking to long to assign a vehicle or by being proposed a too expensive route, have declined
the taxi request, they will never be satisfied and they will never be considered into the
predictive model. The only time we can trust the number of boardings into the cabs, is
when taxis are in abundance with respect to the requests. In this case, the abundance of
taxis might be reallocated to areas in need of taxis. The unmet demand is estimated via
heuristic, accounting for the observed taxi demand, the imbalances between supply and
demand and other parameters. Imbalance is measured on the states of the taxis which
tells what is the amount of time vehicles are seen in a free state in the different areas
of the city. High unmet demand areas will correspond to very little free status time of
vehicles in these areas. Indeed, when an area is busy of taxi requests, the free status of
the vehicle is immediately consumed by another request boarding the taxi.
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Chapter 10

Demand forecasting models

10.1 Recurrent neural networks

A recurrent neural network (RNN) is an extension of a conventional feedforward neural
network, which is able to handle variable-length sequence inputs. They belong to a
class of artificial neural networks where connections between units form a directed cycle.
This allows the network to have a loop where the signal is sent back to itself. As a
result, it creates an internal state of the network which allows the network to exhibit
dynamic temporal behaviour [80]. Because of these capabilities, RNNs are mainly used for
dynamic information processing and sequential tasks like time series prediction, language
modelling. However, because of the way RNNs are designed, the information about long-
term dependencies is lost. They have a limited memory capacity and therefore they are
not able to completely capture the periodicity of signals. In Figure 10.1, we can see a
simple example showing a sequence of inputs, each characterized by some features, which
are reflected into the input layer of the network. Then, the general architecture is of the
same kind of any other artificial neural network.

Figure 10.1: This is the general architecture of a recurrent neural network. This architecture
is composed of an input layers with as many node as the number of features describing our
input elements, an hidden layer whose number of neurons is arbitrary, and a dense output layer
composed of just one neuron. The inputs x are represented to show how multiple time instances
of the input sequence can be passed as inputs.

Figure 10.2 shows a typical RNN to illustrate the information about the hidden state h
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flowing within the neuron at different time instants. From this figure it should be clear
to understand how the sequential information is managed by the network.

Figure 10.2: On the left, a recurrent neural network showing the feedback action on the weights
of the hidden state. On the right, again a recurrent neural network in an unrolled version,
showing clearly the flow of the weight matrix information.

Given an input of time series X = {x1, x2, . . . , xt}, the RNN computes the hidden state
sequence H = {h1, h2, . . . , ht} and output sequence Y = {y1, y2, . . . , yt} iteratively, ac-
cording to the equations [94]:

ht = f(Whxxt +Whhht−1 + bh)

yt = g(Wyhht + by) (10.1)

where Whx, Whh and Wyh denote the input-to-hidden weight matrix, the hidden-to-hidden
weight matrix and the hidden to output weight matrix respectively. The vector bh and by
are the bias of the hidden layer and the output layer respectively. Usually, since the bias is
not affected by any input of the network it can be considered as a generalization unit that
assists the net in outputting the more common results [37]. Biases assist the networks in
making more general predictions, to avoid overfitting of the training data. On the other
hand, if we have a bias that is too large, we will underfit data, which means that our
model is not able to fit the given data. Functions f() and g() are the activation functions
of the hidden layer and the output layer respectively. Activation functions are functions
used in neural networks to compute the weighted sum of input and biases. Activation
functions can be either linear or non-linear depending on the functions they represent,
and are used to control the outputs of our neural network. A special property of the
non-linear activation functions is that they are differentiable, otherwise they cannot work
during backpropagation, that is how weights at the nodes are updated during learning.
In order to deal with the short memory problem, a more sophisticated neural network
called Long Short-Term Memory (LSTM) recurrent neural network was developed.

10.2 Long short-term memory recurrent neural networks

Lond short-term memory neural network is proposed here to predict the number of pick-
ups in different areas of the city of New York City. Long short-term memory neural
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networks can capture traffic dynamic in an effective manner. The LSTM neural network
overcomes the issue of backpropagated error decay through memory blocks, so that it can
capture and model long-term dependencies and determine the optimal time lag. Indeed,
in conventional recurrent neural networks, error signals, by ”flowing backwards in time”,
tend to either blow up or vanish. Specifically, an error that blows up during the backpro-
gagation for the learning process may lead to oscillating weights. On the other hand, in
the second case where the error approximates to zero because of the vanishing gradient
problem, the algorithm may take a prohibitive time to bridge all the time lags, or it is
not even able to learn and update the weights at all. The LSTM is designed to fix these
error back-flow problems. This is achieved by an efficient, gradient-based algorithm for an
architecture enforcing constant error flow through internal states of special units [45]. By
constant error we mean that it is neither exploding to huge values nor vanishing towards
zero.
Therefore, what LSTMs want to achieve is to undergo a constant error backpropagation.
In the case where the error is exploding, we have that it can grow exponentially with q
which measures the step of delay of the backpropagation process. If this happens, the
error blows up and conflicting error signals arriving at a certain unit of the network can
lead to oscillating weights and unstable learning. On the other hand, when the error is
vanishing, it happens that the error decreases exponentially with q. If this happens, the
error is close to zero and nothing can be learned in acceptable time.
The naive approach to constant error flow is introducing a basic case where we are able
to achieve a constant error flow though a single unit j of the network. From [45] we have
that the constant error flow for unit j, at time t, is given by:

ϑj(t) = f
′

j(netj(t))ϑj(t+ 1)wjj (10.2)

It is trivial to notice that to have constant error flow we need to impose:

f
′

j(netj(t))wjj = 1 (10.3)

By integrating 10.3 we obtain fj(netj(t)) =
netj(t)

wjj
for arbitrary netj(t). This means that,

having a constant derivative, fj has to be linear, and unit j’s activation function has to
remain constant as:

yj(t+ 1) = fj(netj(t+ 1)) = fj(wjjy
j(t)) = yj(t) (10.4)

This implies that the identity function fj : fj(x) = x, ∀x has to be always verified.
Moreover wjj = 1. This is the main feature of LSTM neural networks, and it comes
under the name of constant error carrousel (CEC). However, unit j is not connected only
to itself, but it is connected to other units. This means that we will have to manage
problems related to connections between different units also, like in every other gradient-
based approach. Paricularly, we can distinguish the input connection of the unit and the
output connection:

1. Input weight conflict : we focus on the additional input coming from a single unit i.
It may happen that at the same time, the weight wji associated to input in unit j
from unit i, needs to have conflicting values (0 or 1) depending on the instance of
the input received. In fact, it may be that for some input of the model, a certain
value of wij (assume 1) is required to decrease the total error while for other inputs
of the sequence, it is needed that wij has another value (assume 0). Therefore, the
same weight wij has to be used to store some inputs and neglect others. Obviously,
this creates a contrast.
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2. Output weight conflict : It may happen that unit j has to provide unit k with some
information about its state, and to this aim, a weight wkj is used. During training
it could be that weight wkj is used to retrieve content of unit j while other times it
has to prevent j from disturbing unit k. Hence, it would generate conflicts between
needs for the use of wkj. Sometimes, wkj will provide information about the state
stored in j and other times it will be used to protect unit k from the state of j.

Therefore, when using LSTM networks with long lags, the effect of conflicting weight
values is particularly strong and can badly affect the performances of the model.

Looking now at the architecture of an LSTM neural network, we say that it is com-
posed of one input layer, one recurrent hidden layer and one output layer. The basic
unit of the hidden layer is a memory block, similarly to what we have seen for RNNs.
The memory blocks contains memory cells with self-connections memorizing the temporal
state, and a pair of adaptive, multiplicative gating units to contro information flow in the
block [65]. The self-connection is what we called the constant error carrousel (CEC) and
it describes the connection between unit j and itself through a linear relationship.
Moreover, as we just said, an LSTM comes also with a miltiplicative input gate, to protect
the memory contents of a unit j from information of irrelevant inputs, and a multiplicative
output gate that is used to protect other units k from possible perturbations by irrelevant
contents that may be stored in unit j.
Additionally, more recent LSTM implementations have a forget gate that is introduced to
throw some of the contents of the cell state, in order to clean the state of some undesired
or useless information. The forget layer will operate on the cell state feedback, depending
on the information of the new incoming input and of the hidden state of the cell.
We will present the case in presence of the forget gate, since it is the closest to the most
modern implementations of the memory cells of LSTMs. In Figure 10.3 we can see an
example of the memory cell of an LSTM NN in an unrolled version. This view of the
memory cell allows us to observe the cell state moving through time and allows us to see
the internal structure of the cell.

Figure 10.3: The repeating module of an LSTM recurrent neural network. It is an unrolled
version of its memory cell, so that we can follow the cell state information flowing through
different time instants.

The key feature of the LSTM is the cell state, the horizontal line running through the
top of the diagram. Gates like the input gate, output gate and forget gate are a way
to optionally let information through. They usually are composed of a sigmoid neural
net layer and a pointwise multiplication operation. The sigmoid layer outputs numbers
between zero and one, describing how much of each component should be let through.
Figure 10.4 shows an example of gate.
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Figure 10.4: Example of a gate with a sigmoid neural net layer and a pointwise multiplication
operation. It is used to implement the input gate, output gate and forget gate.

where the outputs from the three gates are respectively represented as it (for the input
gate), ot (for the output gate) and ft (for the forget gate). The sigmoid function is
represented by σ() that denotes the standard logistics sigmoid function defined as [65]:

σ(x) =
1

1 + e−x
(10.5)

10.2.1 Step-by-step LSTM memory cell process

Referring to Figure 10.3, the first step in the LSTM is to decide what information we’re
going to toss from the cell state. This decision is made by a forget layer of the kind of
Figure 10.4. The exogenous input xt is concatenated with cell hidden state at previous
time step ht−1, and the forget layer assigns to each element a 0 or 1 depending on the
values of the cell states Ct−1. The forget vector ft, that is composed of zeros and ones,
will moltiply element of the cell state vector Ct−1 to decide what to keep from the past
state and what to throw. This is computed as:

ft = σ(Wf · [ht−1, xt] + bf ) (10.6)

Second, we are interested in knowing what new information we are going to store in the
state cell of the unit. First, the already mentioned input layer will decide which value of
the cell state we will update using a sigmoid activation function that produces a vector
it of zeros and ones. This step is the one mentioned before, when speaking of the conflict
on the weight wji at the input. Then, a tanh activation function (as the one of Equation

10.8) will create a vector of new candidate values C̃t that will later be added to the cell
state in order to update it. it and C̃t are computed as:

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC̃ · [ht−1, xt] + bC̃)
(10.7)

where tanh() is the hyperbolic tangent activation function and it is defined as:

tanh(x) =
ex − e−x

ex + e−x
(10.8)

After obtaining it and C̃t vectors, we can procede updating the cell state by first computing
the element-wise product it � C̃t and then adding the result to the cell state Ct. Ct−1
itself has already been cleaned by the forget layer as Ct = ft � Ct−1. Therefore, we will
have:

Ct = ft � Ct−1 + it � C̃t (10.9)
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The cell state Ct is the state that we will feedback again to the memory cell for instant
t+1. From Ct we will obtain Ct+1 with analogous procedure to the one just seen. Finally,
we need to decide what we are going to output from the memory cell and what will be
the hidden state that we will input to the next time instant. We can compute the vector
ot which represents what our output gate is deciding to omit of our cell state to not
perturbate the behavior of the units connected to the output of the current unit. Hence,
the hidden state will depend on the vector ot. We will have:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot � tanh(Ct)
(10.10)

At the end, we will obtain the output of our unit at time t as:

yt = Wy · ht + by (10.11)

10.2.2 LSTM implementation with Keras API

For the implemetation of the LSTM recurrent neural network we used Keras API [25] [19].
It is an open-source deep neural network library written in Python. Keras offers simple
APIs that are running on top of Tensorflow, R, Theano and other machine learning and
neural network software libraries. These APIs make it easy to work with and implement
the most sofisticated neural-network building blocks such as layers, obejctives, activation
functions and optimizers. Keras offers support also for recurrent neural networks. In
particular, it offers the implementation of LSTM recurrent neural networks as one of the
classes of its libraries. Specifically, when using Keras, if we want to build the architecture
of our model (which has to be defined prior to the training phase) we need to create
an object of class tf.keras.model.Sequential. By passing to the Sequential construc-
tor a list of layers we will be able to build our neural network. Therefore, we will use
tf.keras.layers.LSTM for our purposes, which allows to build an LSTM layer. Through
the use of different parameters of the LSTM class we can customize our memory units in
the LSTM layer. Default values have been chosen, which coincide with the LSTM architec-
ture previously described. In particular, we will have parameters activation = ’tanh’

as activation function of the gate layers and recurrent activation = ’sigmoid’ as ac-
tivation function for the candidate hidden state and output hidden state of the unit.
This LSTM layer will choose different implementations (cuDNN-based or pure-TensorFlow)
to maximize the performances of the model architecture and of the training. If a GPU
is availbale and all the arguments of the layer meet the requirements of the cuDNN ker-
nel, the layer will use a fast cuDNN implementation. Unfortunately, our model has been
developed on a personal PC that makes use of a CPU Intel Core i7-6560U (2.20GHz -
2.21 GHz), 16 GB LPDDR3 RAM and an Intel Iris HD Graphics 540 graphics processing
unit which is not capable of running GPU supported machine learning software by Ten-
sorFlow. Consequently, training the model was taking a lot of time and the development
and tuning of the model parameters required to train it several times.
Our best performing model has a single layer made of 100 memory cells and a final dense
layer, which is a regular densely-connected neural network layer. The dense layer is made
of one single neuron and has linear activation function. It is implemented by providing the
model constructor argument tf.keras.layers.Dense where we can specify as argument
of the layer the number of neurons composing it. To capture the one-day periodicity of
the traffic demand data, we want to input 24 lagging timesteps to our model. Hence, the
input will be represented by the sequence X = {xt−1, xt−2, . . . , xt−24}. To this aim, we
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need to reshape the input in order to specify the number of features of the input and the
time length of the input sequence provided.
Then, through method compile we can specify the optimizer, the loss function to be used
and the metrics to be evaluated by the model during training and testing. Adam opti-
mizer has been chosen, given its wide use in recent NN studies and examples found in the
literature to implement the neural network learning phase. Adam is a computationally
efficient algorithm for gradient-based optimization of stochastic objective functions. It is
designed to work with large datasets and/or high-dimensional parameter spaces given its
little memory requirements [53].
When dealing with regression problems, which have to predict real-valued quantities, it is
suggested to use one of the default loss functions such as mean squared error (MSE) and
mean absolute error (MAE). Many other loss functions can be used, but we will limit our
study on testing these two loss functions to find the most suitable for our purposes.
As we can see from 10.12 MSE is more sensitive to bigger errors, because of the squared
term. This metric will assign more weight to big errors such as outliers in the dataset.

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (10.12)

where yi is the i-th term of the real data of our test set and ŷi is the i-th prediction made
by our model from the test input. On the other hand, MAE is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (10.13)

it is the average absolute difference between real values and predictions. MAE is sensible
in the same way to small and large errors, since it is proportional to the absolute value of
the error, as opposed to MSE, which involves the square of the error. Both loss functions
summarize performances in ways that disregard the direction of over-prediction or under-
prediction. After having tested our model with both MSE and MAE loss functions, we
have concluded that we can obtain far better learning curves by using the mean absolute
error (MAE). Therefore, further implementations and changes to the model have always
involved the use of MAE as a loss function for our model.

10.2.3 Model training and prediction

The next step is to train the model. Keras has built-in methods that are optimally
implemented to ease the learning process of the model. Hence, we will use fit method
wich will ask for some simple arguments in order to then continue with the training phase.
Prior to this step, we need to divide our dataset into training set, validation set and test
set. The training set is the one on which the model is trained. The test set is instead a
set that is used to evaluate the performances of our model. It has to be a portion of data
that our model has never seen before, in order to evaluate the generalization capabilities
of our NN model. Our dataset is composed of yellow taxi ride data of April 2015, May
2015, June 2015, April 2016, May 2016 and June 2016. Each of the monthly data has
been split as: 70% of the data as training set and 30% as validation set. We split each
of the 30 spatial clusters taken singularly in order to have information about each cluster
into the training set and also into the validation set. Otherwise, the model might have
no example for some of the 30 clusters, and this would lead to failures in the prediction
when evaluating the demand for these clusters.
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As far as the test set is concerned, we decided to use the training set from June 2015,
that was originally supposed to be used for training. Therefore, this set of data will not
be provided to the model during the training phase.
Finally, we trained the model for 100 epochs, looking at the training curve after each
training instance was completed. The training of the model required long time, because of
the limited capacity of the development PC with which the model has been implemented.
The best performances, as we anticipated, have been achieved using a single LSTM layer
with 100 neurons, a dropout layer (implemented by tf.keras.layer.Dropout) and a
dense layer of only 1 neuron. The dropout layer is used to drop some of its inputs, in
order to help the model avoid overfitting. It is represented by a float that goes from 0 to
1, which represents the fraction of inputs that are dropped to 0. We choose to apply a
dropout of 0.3. Figure 10.5 is the the training curve for 100 epochs training, where the
loss is evaluated with MAE using Equation 10.13.

Figure 10.5: Training curve for a 100 epochs training for an LSTM recurrent neural network
with one hidden layer of 100 neurons and dropout of 0.3. The loss is represented by the mean
absolute error (MAE) between the true data y and the predictions ŷ.

Now we compare part of the prediction on the test dataset with the corresponding real val-
ues, just with the purpose of visualize the prediction accuracy. Figure 10.6 is representing
the prediction versus the real data on the test set for cluster 2 of our regions.
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Figure 10.6: Comparison between real data (orange) and predicted data (blue) from the Keras
LSTM recurrent neural nework.

10.3 Gradient boosting

Tree boosting is a highly effective and widely used machine learning method. It is a
technique for machine learning regression and classification problems, that produces a
predictive model in the shape of an ensamble of weak predictive models, that are simple
functions. The main idea of boosting is to merge this set of weak learners into a strong
one, in an iterative fashion. Using a training sample (xi, yi) of known (x, y) vlaues, the

goal is to obtain an estimate or approximation F̂ (x) of the function F ∗(x) mapping x to
y, that minimizes the expected value of some specified loss function (or objective function)
L(y, F (x)) over the joint distribution of all (x, y) values [38]. Frequently employed loss
functions L(y, F ) include squared-error and absolute error for regression and negative bi-
nomial log-likelyhood for classification.

F ∗(x) = arg min
F (x)

Ey,xL(y, F (x)) (10.14)

Function estimation/approximation is viewed from the perspective of numerical optimiza-
tion in function space, rather than parameter space. Having functions as parameters, the
model cannot be optimized using traditional optimization methods. Instead the model
is trained in an additive manner. A general gradient descent boosting paradigm is de-
veloped for additive expansions based on any fitting criterion. For instance, boosting
approximates function F ∗(x) by an additive expansion of the form:

F (x) =
K∑
k=0

βkf(x, ak) (10.15)

where the functions f(x, a) are the base learners and are chosen to be simple functions of
x with parameters a = {a1, · · · , an}. Coefficients β and a are fit to the data to minimize
the objective of Equation 10.14. Because greedy strategies choose one weak model at a
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time that most improves our model according to our objective in 10.14, we can say that
boosting models use this recursive formulation:

Fk(x) = Fk−1(x) + βfk(x, a) (10.16)

The algorithm can choose to stop adding weak models when ŷ = F̂ (x) performances are
good enough or when fm(x) does not add anything.
Special enhancement are derived for the particular case where the individual additive
components are regression trees [38]. For a given data set with n instances and m features
defined as [23]:

D = {(xi, yi)}(|D| = n, xi ∈ Rm, ui ∈ R) (10.17)

a tree ensamble model uses K additive functions to predict the output.

ŷi = F̂ (xi) = f1(xi) + · · ·+ fK(x) =
K∑
k=1

fk(xi), fk ∈ F (10.18)

where F = {f(x) = wq(x)} (q : Rm → T,w ∈ RT ) is the space of regression trees. Here
q represents the structure of each tree that maps an instance to the corresponding leaf
index. Being q the structure of the tree, it is describing a set of rules in the specific tree.
T is the number of leaves in the tree. Each function fk, the base learner, corresponds to
an independent tree structure q and leaf weights w.
For fixed tree structures q(x) we compute the optimal weights of the single leafs. After
having computed the weights of the leafs, we can calculate the optimal value of our loss
function. In this way, we will be scoring the tree structures q of our model. One of the
solutions is to use the so called exact greedy algorithm which enumerates all the possible
splits in each variable. The best split then is chosen according to the loss function. First
the algorithm sorts the data according to feature values and visit the data in sorted or-
der to find the gradient statistics. Usually, we need to evaluate, through the objective
function, the two branches in which a node has been split. Each split identify a new tree
sctructure, that is q. Therefore, doing the analysis for all the tree structures is obviously
computationally unfeasible, given the number of instances of our dataset and the number
of features that describe our data.
This is why approximate algorithms have been developed in order to efficiently evaluate
the tree structure q that will be needed to build the ensamble model. Some of these algo-
rithms find candidate splitting points according to the percentiles of feature distribution.

10.4 XGBoost algorithm for gradient boosting

XGBoost [23] is an open-source software libray which provides a gradient boosting frame-
work for C++, Python, Java and other programming languages. It aims to a scalable,
portable and distributed gradient boosting library. The library is focused on computa-
tional speed and model performances. Some of the performances of XGBoost on build-
ing gradient boosting models are: scalability, regularization, parallel processing, handling
missing values and sparsity, non-greedy tree pruning. Scalability comes from the many
improvements that have been developed to manage the tree construction and the gradient
boosting.
Split finding : When dealing with large datasets, the search for the split requires a lot
of computation being it a non-trivial operation. Most of the existing techniques rely on
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confining the data on subsets that are randomly picked. Instead XGBoost has imple-
mented a distributed weighted quantile sketch algorithm to find efficiently the splitting
points from the quantile analysis of the feature distribution. Additionally, XGBoost can
handle sparsity patterns in a unified way. Indeed, it is common that data are sparse or
some of the data are missing. XGBoost has predetermined paths designed to handle such
situations so that to visit only non-missing split nodes.
Regularization: It helps to smooth the final learnt weights to avoid over-fitting. The reg-
ularized ojective will tend to select a model employing simple and predictive functions.

L(y, F (x)) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) where Ω(f) = γT +
1

2
λ||w||2 (10.19)

The regularization term helps in keeping low the complexity of the regression tree func-
tions, by penalizing the weights, in order to help avoid overfitting of the test data.
Other techniques used to avoid overfitting are shrinkage and column susbampling: Shrink-
age scales newly added weights by a factor η after each step of the tree boosting. It reduces
the influence of each three and leaves for future trees to improve the model. Individual
observations are penalized by the presence of paramete η. Moreover, also column (or
feature) subsampling is used in order to reduce the possibility of overfitting. It means
that each individual tree will be built with only a percentage of the independent variables
of our input chosen randomly. Also, a large motivation in restricting th enumber of pre-
dictors available to each learner is to encourage variance between trees, even if it is not
a huge concern in boosting. Subsampling will allow the model to converge faster with
boosting.
Parallel processing : XGBoost implements functionalities to improve the memory usage of
the machine by enclosing bunch of data in blocks with each column sorted by the corre-
sponding feature value. Most of the processes in gradient boosting, like the approximate
algorithms for split search, are optimized by the use of blocks, allowing for easy handling
and scan of the dataset. In addition, collecting the statistics for each column, can be
parallelized giving a parallel algorithm for split finding. These methodologies solve the
big problem of split search, that otherwise would be computationally expensive.
To use the XGBoost library for our prediction problem, we can rely on the scikit-learn
API for XGBoost random forest regression. To use XGBoost on Python we do not need
to do particular manipulation of the data except separating the label data from the pre-
dictors of our dataset. First we will create an object of class xgb with the constructor
XGBRegressor since the goal of our model will be to predict an outcome from the inputs.
By now, though, the model is only initialized and we need to do further considerations
in order to add details to the model architecture. In fact, we need to find the hyper-
parameters who describe our gradient boosting model. The ones we are interested in are
maximum depth of the trees and number of trees. The maximum depth of the model is
related to the number of layers of the trees in our model. The deeper are the trees, the
more complex our model and the more accurate the predictions will be. However, we need
to consider that having higher complexity in our model will make it more computationally
expensive to build. Also, if our predictions are too accurate with respect to the training
set, then it is likely that our model has only learned to perfectly mimic the training data,
while it will not be able to accurately predict new data. A similar discussion applies to the
choice of the number of trees. We know that to build the ensamble, we need to generate
many trees so that to be able to build an accurate prediction model. However, also in this
case, we must be careful on the choice of the number of trees, because an high number of
trees will make our model to overfit, which means we are able to almost perfectly fit the
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train data but the model is not able to generalize to unseen data.
Once we have defined the set of possible maximum depth and number of trees (by using
two distinct vectors), we need to choose the best ones with respect to our data. In order
to tune the hyper-parameters from the possible choices provided in the vectors, we would
need to do a fine search of these parameters based on our training data and some evalu-
ation metric. To this aim we use the scikit-learn class GridSearchCV. A scoring function
is used in order to evaluate the prediction of the candidate models on the test set. In
fact, when comparing multiple algorithms with different hyper-parameters, we need to
assign a score to each model in order to choose the best one based on that score. To this
aim, GridSearchCV ranks all the algorithms and tells which is the best depending on the
assigned score. Scikit-learn will rank with highest score the model with the highest score
on the evaluation metric we have provided as a parameter. Since we use typical error
metrics such as MAE, scikit-learn will rank the model with the highest MAE as the best
model, but this is actually the opposite of what MAE is intended for. This is why we
will use a negative mean absolute error which will always be a negative quantity. There-
fore, the closer to zero the score, the better the model will be. Moreover, we can specify
parameter cv, which determines the cross-validation strategy for our exhaustive search,
specifically it tells what is the value of K for K-Fold Cross-Validation. This means that
the training data will be divided into K subsets. Each time the grid search will tune our
parameters using K − 1 subsets as training set and one subset as the test set. The grid
search will find a set of hyper-parameters that yields an optimal model which minimizes
a predefined loss function. With method fit of the object of class GridSearchCV we will
be able to tune the hyper-parameters following the instructions we provided. The optimal
maximum depth for our model is 7, while the optimal number of regression trees is 20.

10.4.1 Model training and prediction

After having found the optimal value of the hyper-parameters, we can build our gradient
boosting model for regression by calling again the constructor XGBRegressor, this time
specifying the optimal values of the maximum depth allowed for each tree and the max-
imum number of regression trees to build the ensamble model. Then, we can train our
model with the train data using method fit, in order to find the ensamble model which
consitute the gradient boosting estimator. To evaluate our model, we use again a regional
symmetric mean absolute percentage error (Equation 10.21) on a test set (month of June
2015) that is a portion of data that our model has never seen. In Figure 10.7 we can see
a comparison between the pickups occured in cluster 2 of our regions of New York and
the predicted number of pickups for the same region using the gradient boosting model.
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Figure 10.7: Comparison between real data (blue) and predicted data (green) using a gradient
boosting model with XGBoost algorithm.

10.5 Baseline prediction model

In order to evaluate the performances of the LSTM model and the gradient boosting
model we need to design some simple prediction model to compare with. Our baseline
model consists of a näıve forecasting approach. This estimating technique uses the last
period’s number of pickups as the current period’s forecast, without adjusting them or
attempting to establish causal factors. The näıve forecasting model will be only used as
a comparison with the other more complex models. The model is forecasting the output
according to the simple relation:

ŷt = yt−1 (10.20)

The same test dataset of the other models has been used in order to directly compare the
performances and try to evaluate if the LSTM and XGBoost models are able to beat this
very simple forecasting model.

10.6 Comparison between the prediction models

10.6.1 Metrics for the evaluation

Finally, as metrics for the evaluation of our model, we have chosen to use the symmetric
mean absolute percentage error (sMAPE) which is widely used when evaluating perfor-
mance of time series forecasting. Its advantage is that it avoids the problem of giving
different error values when the forecast is higher or lower than the actual value differently
from MAPE (mean absolute percentage error) [44]. When evaluating the sMAPE for our
test set, we will distinguish between different spatial regions of the map. The sMAPE is
defined as:

sMAPEi =
1

n

n∑
t=1

|yi,t − ŷi,t|
yi,t + ŷi,t + c

for i = 1, . . . , NC (10.21)
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where n is the number of time samples for each region, NC is the number of regions in
our map and c is a small constant that is used to avoid that the error can take very large
values if the denominator of the t-th error term is zero.
To compute the sMAPE for the entire test dataset, we need to average the NC sMAPE
we have computed as:

sMAPE =
1

NC

NC∑
i=1

sMAPEi (10.22)

sMAPE is a relative (computed as percentage) error. This means that the size of our
problem (the absolute number of pickups per region) do not influence the size of the er-
ror. Conversely, error metrics such as MAE, MSE, or RMSE (root mean squared error)
depend on the number of pickups of the problem instance. We think that using a relative
error is more significant when evaluating the prediciton accuracy of our model. It would
be different if the algorithm was designed with the goal of having an absolute limit on the
maximum allowed error. We will not use this approach because this is very application
specific and depends on the particular use of the algorithm.

To evaluate and compare the different models we have also used the RMSE, that is
the root mean squared error, although we do not think it is representative of the accuracy
of the prediction. In fact, it completely depends on the size of the problem. This means
that the RMSE will depend on the absolute number of pickup. If instead of New York
City we had used another city in which the hourly number of pickups is not in the order
of hundreds but in the order of dozens, then we would have ended up, with considerably
different RMSE, with no clue on what is the best of the models. Moreover, RMSE is
difficult to use to compare the performances of the different regions. Indeed, we would
need some clues on the average absolute number of pickups for that region. However,
RMSE is giving us a measure of what is the size of the missed requests on the prediction.
Therefore, we can have an idea of the order of the missing demand in the case of both
high and low sMAPE. In fact, we are more interested in being able to cover the areas with
the highest densities of taxi demand. This means that we might consider less important a
huge sMAPE error in a suburban region than a big sMAPE in one of the main city areas.
In the case of bad prediction and big sMAPE, we can rely on the RMSE to have an idea
of the size of the missing demand. The RMSE is defined as:

RMSEi =

√√√√ 1

n

n∑
t=1

(yi,t − ŷi,t)2 for i = 1, . . . , NC (10.23)
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Regional sMAPE [%] Regional RMSE

Region Näıve LSTM RNN XGBoost Näıve LSTM RNN XGBoost

1 18.408 49.517? 15.806 109.413 63.333 82.517

2 12.288 4.898 7.210 229.650 104.479 136.773

3 13.543 4.848 7.135 180.274 52.621 116.936

4 16.234 23.912? 16.075 109.870 108.055 130.926

5 12.349 4.159 7.812 239.176 90.100 146.749

6 14.805 5.425 8.273 236.525 103.394 162.224

7 13.694 4.481 7.281 143.967 52.892 93.791

8 12.544 9.228 10.649 72.950 45.336 62.761

9 16.976 23.130? 14.265 44.084 38.500 45.963

10 13.255 4.646 7.601 197.480 92.659 143.110

11 11.968 3.919 6.175 239.927 103.007 147.582

12 14.503 6.280 8.269 166.951 69.969 124.086

13 11.158 4.331 7.042 185.448 78.471 122.729

14 13.244 12.648 11.789 74.853 27.041 52.190

15 11.968 6.072 8.104 87.717 44.512 59.068

16 17.767 233.014? 19.670 13.621 19.411 21.515

17 13.988 3.993 7.691 247.615 91.752 140.665

18 15.671 9.543 11.152 90.206 44.067 69.361

19 12.636 4.257 7.380 117.878 47.972 75.765

20 11.352 3.838 6.895 181.439 75.391 121.343

21 15.856 6.355 7.824 178.289 66.532 107.148

22 11.243 12.563 10.397 49.192 34.955 44.573

23 12.721 5.335 7.212 124.204 63.534 92.096

24 10.316 4.194 6.661 188.764 96.010 135.138

25 10.138 4.148 6.729 242.641 122.963 174.099

26 12.645 4.732 6.569 188.143 62.419 116.003

27 11.683 4.214 7.472 192.651 81.614 135.053

28 15.836 238.588? 14.417 53.486 12.564 43.835

29 18.796 385.159? 17.459 20.700 22.598 17.913

30 14.271 5.602 7.993 180.245 74.059 113.891

Average 13.729 36.434 9.634 148.3310667 66.340 101.193

Table 10.1: sMAPE (symmetric mean absolute percentage error) and RMSE (root mean squared
error) for testing of the näıve approach, LSTM recurrent neural network and gradient boosting
models. (?) sMAPE values are showing anomalous behaviour with respect to the other metric
of the same model for other clusters.

10.6.2 Performance comparison

As we can see, LSTM model outperforms both the näıve and the XGBoost models in
many of the 30 regions. Unfortunately, if we compute the average sMAPE between all
the regions, we find out that LSTM is making poor predictions with respect to the other
two models. However, if we have a look at all the i-th individual sMAPE for the different
regions, we can notice that for some clusters (specifically the ones noted with (?), which
are the regions identified by numbers: 1, 4, 9, 16, 28, 29), the prediction performance
given by sMAPE is very poor. In Figures 10.8 - 10.11 we can see the comparison between
the predicted and real data for clusters 4, 16, 28, 29. It is clear how predictions are
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not accurate at all for areas of clusters 16, 28, 29. They present irregular demand and
therefore the algorithm is not able to generalize the model learning. Instead, the training
sets for these area have pretty accurate predicitons, which means the model has overfitted
the training data. For what concerns the airpot area (JFK Airport, cluster 4) in Figure
10.8, the predictions can be considered more accurate. We will see that this is related to
geographical reasons that highly influence the demand trend.

Figure 10.8: Comparison between predic-
tion and real data for cluster 4.

Figure 10.9: Comparison between predic-
tion and real data for cluster 16.

Figure 10.10: Comparison between predic-
tion and real data for cluster 28.

Figure 10.11: Comparison between predic-
tion and real data for cluster 29.

Nevertheless, we do not want to give up the entire LSTM prediction model because of
these poor local prediction indicators. We rather want to understand why these clusters
are not prone to be modeled by the LSTM recurrent neural network. We also want to
emphasize the fact that those regions are also the regions where XGBoost is not showing
good performances, although XGBoost’s predictions for those clusters are still acceptable.
Given the good performances of the LSTM and XGBoost on most of the regions, we
suppose that poor predicitons in clusters 1, 4, 9, 16, 28, 29 could be caused by how
data are shaped for these regions. One assumption is that some geographical factors are
influencing the distribution of the demand, and therefore its predictability. Thus, we
want to plot the cluster centers in the New York City map, to see where these clusters are
located. In Figure 10.12 we plot the representative of the clusters who are experiencing
poor LSTM predictions.
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Figure 10.12: Enumerated markers in the New York City map for the centers of the clusters
that have poor sMAPE performance for LSTM prediction.

It is clear from Figure 10.12 that the clusters where the prediction is poor are influenced
by some geographical factors regarding the difference between the Manhattan area and
the Brooklyn-Queens area. Instead, if we plot the cluster centers of the regions who have
sMAPE lower than 5 (taken as a threshold just with the purpose of choosing some good
predictions), we figure out that they are located into the Manhattan area and specifially
they are spread over the Midtown and Downtown districts. We can see it in Figure 10.13
.

Figure 10.13: Enumerated markers in the New York City map for the centers of some of the
clusters that have good sMAPE performance for LSTM prediction.

The dataset we use for our study contains information about the Yellow Taxi Cabs of
New York CIty. Though, we need to consider that from August 2013, the NYC Taxi
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& Limousine Commission (NYCTLC) introduced a new taxi fleet of Green cabs. These
Green cabs were introduced with the goal of providing the residents of Brooklyn, Queens,
the Bronx and Upper Manhattan more access to metered taxis. In fact, Yellow cabs prefer
to operate in the high demand density areas of Manhattan, and this makes the pickups
density very low in the suburban areas of the city. This fact was confirmed by a statement
that, tracking the GPS routes of Taxis, found out that 95% of the Yellow cabs pickups
happened in Manhattan, and at JKF and LaGuardia airports. Green cabs can only pick-
up rides outside of the Manhattan, JFK and LaGuardia airports. Moreover, from years
2014-2015, there has been an increase on the number of pickups operated by Uber com-
pany, especially in the outer boroughs where Uber has realised most of its growth [78]. In
fact, most of the rides taken outside of the Manhattan and airports areas, are operated by
Uber as we can see in Figure 10.14. Uber is increasing in strength outside of Manhattan:
its biggest market-share increases came notably in northeastern Queens and southwestern
Brooklyn, two of the areas the farthest from Midtown [14]. Therefore, the presence of
Green cabs and companies like Uber and Lyft, and the historical trend of Yellow cabs,
suggest that clusters C16, C28 and C29 can be highly influenced by these factors. This
means that in these areas, Yellow taxis do not follow a regular trend but rather an almost
random distribution of the demand, making it difficult for the LSTM to build a prediction
model. Cluster C9 has not too poor prediction, having sMAPE = 23.13%, and as we
see in Figure 10.14 this is an area which is still slightly dependent on the Yellow cabs
operation.

Figure 10.14: Share of all Uber, Yellow cabs and Green cabs pickups from April through Sept-
member 2014 [14]. As we can see, areas of poor predictability for our dataset are areas where
the use of Uber is strongly preferred to the use of Yellow cabs, implying low regularity in the
use of the yellow taxis.

On the other hand, clusters C1 and C4 are located respectively at the LaGuardia and
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JFK Airports. Although these two clusters do not show high predictability, we cannot
say that prediction is completely messed up. Even if in this area we have high demand (as
Yellow cabs are highly operating in these clusters), prediction is poor probably because
influenced by other factors that are not purely geographical. Some of these factors are
related to the airport operation and the high competition with the Uber and Lyft compa-
nies, that are very active in these areas, because of the high demand. Moreover, airports
have other means of transport that NYC is providing.

Given the reasoning on what could be the factors influencing the taxi demand in the
different areas of New York City, we decide to confine the use of the LSTM prediction
model to the New York Manhattan borough. In fact, the results obtained for the LSTM
(and also for the gradient boosting model) show an high level of predictability and we
can think of doing separate pickups demand studies depending on the specific city region.
Hence, we define a new set of regions DMAN which will not account for the suburban
clusters. This is:

DMAN = DNY C \ CBQ with CBQ = {C1, C4, C9, C16, C28, C29} (10.24)

where CBQ is the set of the clusters representing the areas of Brooklyn and Queens while
DNY C is the set of clusters for the entire city of New York. If NC = 30 was the number
of all the clusters of DNY C , we now define N∗C = 24 as the number of clusters in DMAN .
Thus, we can now compute the global sMAPE for DMAN as:

sMAPEMAN =
1

N∗C

∑
Ci∈DMAN

sMAPECi (10.25)

For the LSTM model we have sMAPELSTM
MAN = 5.821%. If we decide to include also

clusters C1 (LaGuardia Airport), C4 (JFK Airport) and C9, we will have an average
sMAPELSTM

MAN,air = 8.751% which is better than the näıve approach but slightly worse than

the gradient boosting algorithm. Indeed, the gradient boosting has sMAPEXGBoost
MAN,air =

8.481. For XGBoost, not considering also the clusters of the airport regions we will
have an average sMAPEXGBoost

MAN = 7.972%, which means that in the Manhattan area
it performs worse than the LSTM model. Instead, the näıve approach has an average
sMAPENaive

MAN,air = 12.8266%, and sMAPENaive
MAN = 12.827% for the only Manhattan area.

Finally, we can conclude that, on top of all the considerations on the predictability and
completeness of our dataset about the overall taxi demand of New York City, the XGBoost
model can improve the average prediction on the Manhattan and airports areas over the
näıve approach of about 34%, while LSTM can improve the average forecast of about 32%.
If we focuse only on the Manhattan borough, though, we have sMAPENaive

MAN = 12.823%,
sMAPELSTM

MAN = 5.821% and sMAPEXGBoost
MAN = 7.972% which means an improvement

of about 55% (54.6%) for the LSTM and of 38% (37.9%) for XGBoost over the näıve
method.
We can also notice, looking at Figure 10.6 and Figure 10.7, that are the representations
of the predictions for cluster 2, which is a good performance cluster both for the LSTM
(sMAPELSTM

2 = 4.898%) and the gradient boosting models (sMAPEXGBoost
2 = 7.210%),

that LSTM is able to better follow the dynamics of the pickups demand trend, meaning
that it is more prone to learn from the behaviour of the previous time instants and to
find relations between them.
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Chapter 11

Conclusions

The second part of the thesis has deepened what is the problem regarding the imbal-
ance of the vehicles fleet with respect to the demand of pickups from customers of the
transportation service. To this aim, we try to balance the distribution of the vehicles by
developing a prediction model in order to forecast the hourly number of pickups requests
in different areas of a map. The models are built for the case of New York City after
having gathered the most important information from the dataset of the yellow taxi cabs
rides for April, May and June of years 2015 and 2016. The dataset has open access and
contains the information for each single route performed. With the use of Pandas and
Scikit-learn libraries for Python, we have preprocessed the dataset by filtering the noisy
data and segmenting it to extract the information about the spatiotemporal distribution
of the pickups. Indeed, noisy data (that come mainly from failures in the GPS tracking
systems) have to be removed from the dataset in order to avoid afflicting the quality of
the model training phase. Filtering has been performed under some metrics regarding the
percentile analysis of the vehicle speed, trip distance, trip duration and trip fare.
Furthermore, we have removed all data that have pickup or dropoff outside the New York
City area. We obtained a new cleaned dataset that contains about 97% of the data of
the original dataset. Segmentation is required to divide the pickups dataset into clusters.
We used a k-means algorithm to divide the dataset into 30 clusters, that is the number
of clusters which avoids regions centers to be too close to each other. Later, we divided
the monthly data into hourly time bins. In this way we will obtain a dataset that has for
each cluster a set of time bins. In every time bin we have the number of pickups occurred
during that time slot. Weather hourly data has been added to the dataset in order to
further characterize the data with the objective of improving the prediction.
After the preprocessing phase, the dataset has been used to train two different machine
learning models that are the LSTM recurrent neural network and the gradient boosting
model. For the implementation of the LSTM model, we used the Keras API that runs on
top of Tensorflow, while for the implementation of the gradient boosting model we relied
on the XGBoost algorithm, that is nowadays on of the most performant prediction algo-
rithms. The results of the two models have been compared with the results from a very
simple näıve prediction model. To evaluate the performances of the models we used a test
dataset and we computed the sMAPE and RMSE of the next hour forecast for each of
the 30 clusters. We found out that the LSTM model outperforms the XGBoost algorithm
in most of the regions of the map with average sMAPE (in these regions) of 5.8% and
8.0% respectively. Unfortunately, the LSTM performs really bad in some regions of the
city with respect to the other models.
Brooklyn boroughs and airports areas seem to be unpredictable for the LSTM, maybe
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because of the random behavior of the data due to a low usage of the yellow cabs with
respect to the Uber and Lyft services and the green cabs, that were introduced in order
to balance the absence of yellow taxis in these areas.
To conclude, the best model for the overall average predictions turns out to be the XG-
Boost gradient boosting. Indeed, it is capable of very good predictions in most of the
clusters with a prediction sMAPE of about 9.6% when including the Brooklyn and air-
ports areas, with an improvement of 30% on average over the näıve approach.
Further improvements can include merging the Uber, Lyft and green cabs pickups data
to the yellow cabs rides dataset, in order to cover the complete taxi demand in the whole
New York City area and obtain better forecasts. Another improvement that could bring
to more realistic applications is to implement an hexagon clustering technique for the
pickup locations. This would bring to a more reliable division of the pickups into regions
because of the nice properties that have been proved about the use of hexagons.
Moreover, we could think of linking the demand forecasting model to the vehicle as-
signment algorithm, in such a way to optimize the vehicles distribution and ease the
assignment process in order to satisfy a larger number of customers and decrease the
travel and waiting times.
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[6] Gürdal Arslan, Jason R. Marden, and Jeff S. Shamma. Autonomous vehicle-target
assignment: A game-theoretical formulation. 2007.

[7] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. Technical report, Stanford, 2006.

[8] Said Baadel, Fadi Thabtah, and Joan Lu. Overlapping clustering: A review. In
2016 SAI Computing Conference (SAI), pages 233–237. IEEE, 2016.

[9] Mohamed Badreldin, Ahmed Hussein, and Alaa Khamis. A Comparative Study be-
tween Optimization and Market-Based Approaches to Multi-Robot Task Allocation.
Advances in Artificial Intelligence (16877470), 2013.

[10] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei
Vassilvitskii. Scalable k-means++. arXiv preprint arXiv:1203.6402, 2012.
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