
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Virtual Tool-boxing for Robust
Management of Cross-layer
Heterogeneity in Complex
Cyber-physical Systems

Supervisors
prof. Stefano Di Carlo
prof. Alessandro Savino

Candidate
Simone Dutto

October 2020

This work is subject to the Creative Commons Licence

politecnico di Torino

Abstract

Computer Engineering
Master’s Degree

Virtual Tool-boxing for Robust Management of
Cross-layer Heterogeneity in Complex Cyber-physical

Systems

Nowadays, due to technology enhancement faults are increasingly compro-
mising all kinds of computing machines, from servers to embedded systems.
Many methods have been proposed in these years, however, machine learning
brought many possibilities to empower faults detection exploiting hardware
metrics inspection, and it is now possible to explore the opportunity of avoid-
ing the use of heavy software techniques or product-specific errors reporting
mechanisms.
In this thesis, data analysis will be performed on several datasets collected
by many simulated runs, with and without faults injection. The final goal of
this work is to find the best machine learning model to cope with the task
and ultimately to build an initial implementation of a monitoring tool, able
to detect faults process-wise using pre-trained models on hardware metrics
extracted by a kernel module.

iii

Contents

Abstract iii

1 General Introduction 1

2 Simulations Environment 7
2.1 Gem5 . 7

2.1.1 Gem5 Architecture . 7
2.1.2 Gem5 Simulation Parameters 8
2.1.3 Configuration Script 9
2.1.4 Simulation . 12

2.2 FIMSIM . 12
2.2.1 FIMSIM basic functioning 12
2.2.2 FIMSIM faults injection 13

2.3 Data Collection . 15
2.3.1 Faults Injection . 16
2.3.2 Simulation Statistics 18
2.3.3 Simulations Hardware 19

3 Data Analysis and Models 21
3.1 Data Engineering . 21

3.1.1 Data Preparation . 21
3.1.2 Features selection . 23
3.1.3 Training and Test Procedure 26
3.1.4 Feature Analysis . 27

3.2 Models Analysis . 29
3.2.1 Introduction to machine learning 30
3.2.2 Fault detection: related works 32
3.2.3 Proposals . 36

3.3 Experiments . 43

iv

3.3.1 Neural Network and Transfer Learning 45
3.3.2 DANN . 47
3.3.3 Sparse-Stacked-AutoEncoder 47

3.4 Fault types . 48
3.5 Conclusion . 49

4 OS implementation 51
4.1 Introduction . 51

4.1.1 Linux Kernel . 51
4.1.2 Linux Kernel Development 55

4.2 PMCTrack . 56
4.2.1 PMC . 56
4.2.2 Architecture . 56
4.2.3 Functionalities . 57
4.2.4 Limitations . 58

4.3 Proposed Infrastructures . 59
4.3.1 Completely in-kernel infrastructure 59

4.4 Kernel Module Infrastructure 60
4.4.1 Kernel Module Facilities 60
4.4.2 Monitoring system . 62

4.5 User-level Infrastructure . 64
4.6 Experiments . 64
4.7 Conclusion . 65

5 Conclusion and Future Works 67

v

Chapter 1

General Introduction

«Error monitoring is a critical procedure for most computing systems,
varying from HPC to embedded systems domains.» [9]
Hard errors always have been an issue faced during the design of a circuit.
These types of faults can be caused either by project bugs or materials ware
out. However, technology scaling (increasing transistors density, low energy
consumption requirements) has been discovered being a key factor in high-
ering the rate of soft errors in hardware devices. [3]
This situation puts in the hand of researchers the goal of finding a way to
cope with errors: for example, a hardware protection technique fairly known
and used in lots of cache memories is Error Correction Codes. In addition to
hardware mechanism also software error detection has been developed, many
of these works are based on redundancy to ensure error detection. In fact,
these techniques impact the performance of systems. Just to give an idea,
according to Mukherjee et al. [32] his technique called RMT (redundant
multithreading), which consists of detecting a fault by running two identi-
cal copies of the same program as independent threads and compares their
outputs, has a degrade percentage on performance on commercial micropro-
cessors of 30%.
After that there has been a lot of interest in creating fault monitors built as
Linux kernel extension: HealthLog [9] is one of the most comprehensive and
powerful monitoring tools, it is based on errors reporting from hardware and
a kernel module able to handle these report messages and react accordingly
to user specifications.
All of these methods have some limitations: first of all, they require specific
hardware supports, they either work at the hardware level directly or exploit-
ing hardware error reporting. This is, indeed, the safest way to detect errors

1

1 – General Introduction

but it is dependent on hardware manufacturers to add reporting mechanisms
for this or that specific error. Also, hardware techniques are not process-
wise, because they keep tracks agnostically of errors in memory structures.
Exactly for these reasons, it is interesting to explore faults detection using
hardware metrics monitoring (not error reporting) and machine learning, to
enable flexibility and precision trying to keep the mechanism as lighter as it
is possible both hardware and software-wise.
The ultimate goal of my thesis is to discuss what can be done in terms of
machine learning models to detect faults and finally to give a primal imple-
mentation of a tool to monitor processes in a Linux environment.
Building a machine learning-based faults monitor is composed of three parts:
the first is collecting several datasets to work on, the second is investigating
different models to cope with faults detection, and lastly designing an infras-
tructure that integrates metrics inspection and fault detection.
In the following chapters, a fault is considered to be an inspected behavior in
a processor structure (i.e. Program Counter, Register File, Arithmetic and
Logic Unit).

Figure 1.1. Two types of fault in a Program Counter: the address
that will be used is not the one that was written. The first fault is
caused by a permanent 0 in the memory, the second is caused by a bit
flip due to a cosmic ray

Of course, during the execution of a program, there are a lot of memory or
address references and these faults can severely affect a running system [11].
Unfortunately, faults are difficult to be injected arbitrarily into a processor for
their unpredictable nature. For example, «Given 1000 – 1500 FIT/Megabit
on a device with 48Kbyte of RAM and an operating lifetime of 104 hours,
one out of every 175 to 250 devices should be expected to see a RAM bit

2

1 – General Introduction

flip at some point in their operating lifetime» [23]. It is really difficult to ob-
serve the effects of a rare fault like this. For this reason, the gem5 simulator
[5] in combination with FIMSIM has been used. Gem5 is a simulator able
to simulate full computer system architecture, run a Linux OS, and extract
hardware metrics. FIMSIM [51] is an add-on to gem5 that enables different
types of fault injections. It is very important to notice not all the hardware
metrics extracted by the simulations exist in current systems.
The first chapter will explain how the simulated system is created and how
it is handled by the simulator implementation-wise. Later the FIMSIM func-
tionality will be inspected and explained alongside the different types of faults
and their respective effects on the system. Finally, the metrics generated from
different simulations are explained in the context of models creation.

Figure 1.2. Metrics collection

After having collected the dataset, in the second chapter topics covered are
three: data analysis, models inspection, and experiments results.
Data analysis consists of extracting the data from the simulation metrics and
cleaning up the stats. After the extraction a features selection is analyzed:
preparing the features is key for the final application. Both because the num-
ber of metrics inspected highly impacts the performances of a system and
also because a different number of features implies different models.
At least, a review of related works on fault detection is investigated. it must
be pointed out the simulations datasets are created for this work only and
they are not part of a benchmark suite for faults detection, as S5 Yahoo
Anomaly Dataset [48]. So, there is no literature regarding models applied
to the datasets taken into consideration in this thesis. Hence, a different
approach has to be adopted.

3

1 – General Introduction

Figure 1.3. Fault detection Model

Different architecture and domain in the fault detection research field are an-
alyzed and taken as inspiration for models used later on the actual datasets.
At last, each model is tested and performances are compared. Again, the
goal is not to find the best model to beat the accuracy on a competition
dataset but to find the best model to perform on the task and propose ideas
to further investigate fault detection in operating systems.
The third chapter is about implementing the whole system on a current Linux
distribution. During this chapter the basic functioning of a Linux kernel will
be explained and how it is possible to interact with it exploiting the ker-
nel API to build complex systems through a kernel module. In addition to
that, PMCTrack [36], a hardware metric extractor, will be analyzed in depth.
This module is the core of the chapter because from this work it is possible
to extract important concepts to build the actual monitor. However, it is
important to remind what it has been said at the start: most of the metrics
collected are not present in nowadays system. As a consequence, the sys-
tem implemented is a proof-of-concept of what could be achieved with better
hardware support.
The system designed, Figure 4.3, is based on expanding PMCTrack to use
the metric extractor to evaluate a process to decide whether or not there has
been a fault during its execution.
The system decouples the machine learning evaluation from the kernel for
simplicity reason: floating-point operations are not permitted kernel level
and ML libraries are based on them, and also because it is common to make
this kind of operations on machines with special hardware (GPU) and it is
not given each machine with a fault monitor has that hardware.

4

1 – General Introduction

Figure 1.4. Final system: the monitor kernel module is used to handle the
whole process, the PMCTrack module to extract the metrics then forwarded
to a Machine Learning process running inside (or outside) the machine that
gives the evaluation back to the monitor module

The last chapter will have final thoughts and mostly what the author consid-
ers to be the best ways to continue the thesis and expand what it has been
done.

5

6

Chapter 2

Simulations Environment

2.1 Gem5
Gem5 [5] is a configurable simulation framework, it is a combined work of
several academics and companies, including AMD, ARM, HP, MIPS, Prince-
ton, MIT, and the Universities of Michigan, Texas, and Wisconsin. It has
been used in thousands of publications, it is community-led and released un-
der a BSD license.
The main aspects of gem5 are flexibility, availability, and encouraging devel-
oper work to expand the simulator.

2.1.1 Gem5 Architecture
Understanding gem5 inner implementation is very valuable in order to set
up simulations.
Gem5 is written in C++ and Python and it is based on 4 pillars:

• pervasive object orientation: all components are SimObject and share
common behavior for configuration, initialization, statistics, and serial-
ization. Each SimObject has 2 classes: one in C++ and the mutual in
Python. Python classes are used to compose the initialization scripts
and exposing a common interface and the C++ ones are used to imple-
ment the specific behaviors during the simulation.

• Python Implementation: Python as mentioned before is used for the
startup scripts and simplifies the configuration of each object.

• Domain-specific languages: in some cases we need the flexibility to
explain very domain-specific behavior of components. For this reason,

7

2 – Simulations Environment

gem5 supports DSLs. To give an example, it supports SLICC, which is
a DSL to define cache coherence protocols.

• standard interfaces: they come after the object-oriented design. For
example, each object has a port interface, through this the SimObject
communicates with other SimObjects. This gives maximum flexibility,
decoupling implementation of the SimObject from the communication
with others.

2.1.2 Gem5 Simulation Parameters

CPU Model. It is possible to simulate two families of processors. The first
is based on SimpleCpu implementation. This class implements in-order not-
pipelined models, defining functions to handle interrupts, setting up fetch
requests, advancing PC, and implementing the ExecContext interface (re-
sponsible for RW operation on memory, ALU, PC, Cache). In this family,
there are two distinct subclasses, AtomicSimpleCPU and TimingSimpleCPU.
They are different because the first one uses atomic memory access and the
latter timing memory access. One is implemented with a one-way message
without a real sender/receiver queue and response time is just approximated,
the other is more detailed and is implemented with 2 one-way messages. This
way the simulation reflects better the realistic timing of memory access.
The second family of processors is more complex, and it comprehends In-
Order CPU and O3 CPU. The first is a configurable in-order pipelined CPU.
The second one is the most complex CPU, it simulates out-of-order pipelined
CPU, with reorder buffer. This last one permits to simulate superscalar ar-
chitectures and hardware multi-threading.

Memory System. Memory system is implemented through MemObject
implementing a memory structure (CacheObject for example) and ports to
communicate with other SimObjects through a master/slave interface. Usu-
ally, each master port is connected to an interconnect component, like a bus
or bridge.
Once connected, it is possible to send messages (a Request or a Packet).
This is where most of the statistics not usually present in real systems are
extracted because each Request/Packet object can be expanded with new
attributes (ex. time request was created, ID of CPU/thread that causes the
request).
To better understand from where statistics are coming from, in figure 2.1 is

8

2.1 – Gem5

presented the flow of a Request Object with a 2-level cache memory archi-
tecture.

Figure 2.1. Request message flow from CPU to principal memory
and back. We can notice how it is organized to interact with each
SimObject. Figure from [5].

At last, gem5 includes two different types of memory system coherence: clas-
sic and Ruby. The classic cache is a non-blocking cache with MSHR (miss
status holding register) and WB (Write Buffer) for read and write misses.
Substantially with Ruby it is possible to declare MemObject with complex
cache coherence protocol, topology and other custom parameters.

Execution Mode. There are two execution modes in gem5. The first
one is Full Simulation, it simulates a bare-metal environment running a Linux
Kernel image. It is the most complete and accurate simulation. The second
one is System-call Emulation, in this mode whenever there is a system-call
is trapped and passed to the host running gem5.

ISA. With gem5 is possible to simulate different Instruction Set Architec-
ture without having to specialize each Object for each ISA. This is achieved
by a ISA DSL, which unifies the decoding of binary instructing. It exploits
a C++ base class and derived classes for each ISA which override methods
like execute() to implement opcodes (ex. ADD, SUB).

Devices. Additionally is possible to add any kind of I/O device(DMA,
NIC), but if it is used in FS mode it is needed to having working drivers.

2.1.3 Configuration Script
Configuration scripts are really easy to set up thanks to Python and SimOb-
ject abstraction.

9

2 – Simulations Environment

The following code is a stripped-down version of the actual script that has
been executed for the final simulations, it is simplified to avoid showing de-
tails about x86 specific implementation and other build options. In a few
words in this file, this script creates the MySystem object, this object will be
used later to execute simulations.

1 # Set up the c l o ck domain and the vo l tage domain
2 s e l f . clk_domain = SrcClockDomain ()
3 s e l f . clk_domain . c l o ck = ’ 3GHz ’
4 s e l f . clk_domain . voltage_domain = VoltageDomain ()
5

6 mem_size = ’ 512MB’
7 s e l f . mem_ranges = [AddrRange (mem_size) ,
8 AddrRange (0 xC0000000 , s i z e=0x100000) , # For I

/0
9]

10

11 # Create the main memory bus
12 # This connects to main memory
13 s e l f .membus = SystemXBar ()
14 s e l f .membus . badaddr_responder = BadAddr ()
15 s e l f .membus . d e f au l t = s e l f .membus . badaddr_responder . p io
16

17 # Set up the system port f o r f un c t i o n a l a c c e s s from the
s imula tor

18 s e l f . system_port = s e l f .membus . s l a v e
19

20 # This w i l l i n i t i a l i z e most o f the x86−s p e c i f i c system
parameters

21 # This i n c l ud e s th ing s l i k e the I /O, mu l t i p ro c e s s o r support ,
BIOS . . .

22 x86 . i n i t_ f s (s e l f , s e l f .membus)
23

24 # Change t h i s path to po int to the ke rne l you want to use
25 # Kernel from http ://www.m5sim . org / d i s t / cur rent /x86/x86−system .

ta r . bz2
26 s e l f . k e rne l = ’ b i n a r i e s /x86_64−vmlinux −2 .6 .22 .9 ’
27

28 # Options s p e c i f i e d on the ke rne l command l i n e
29 boot_options = [’ e a r l yp r i n t k=ttyS0 ’ , ’ c on so l e=ttyS0 ’ , ’ l p j

=7999923 ’ ,
30 ’ root=/dev/hda1 ’]
31 s e l f . boot_os f l ags = ’ ’ . j o i n (boot_options)
32

33 s e l f . setDiskImage (’ d i s k s / l inux−x86 . img ’)
34

10

2.1 – Gem5

35 # Create the CPU f o r our system .
36 s e l f . cpu = AtomicSimpleCPU ()
37 s e l f .mem_mode = ’ atomic ’
38

39 # Create the cache he i ra r chy f o r the system .
40 s e l f . cpu . i ca che = L1ICache (s e l f . _opts)
41 s e l f . cpu . dcache = L1DCache (s e l f . _opts)
42

43 # Connect the i n s t r u c t i on , data , and MMU caches to the CPU
44 s e l f . cpu . i ca che . connectCPU(s e l f . cpu)
45 s e l f . cpu . dcache . connectCPU(s e l f . cpu)
46

47 # Hook the CPU port s up to the membus
48 s e l f . cpu . i ca che . connectBus (s e l f .membus)
49 s e l f . cpu . dcache . connectBus (s e l f .membus)
50

51 # Connect the CPU TLBs d i r e c t l y to the mem.
52 s e l f . cpu . i t b . walker . port = s e l f .membus . s l a v e
53 s e l f . cpu . dtb . walker . port = s e l f .membus . s l a v e
54

55 # Create the memory c o n t r o l l e r f o r the sytem
56 s e l f . mem_cntrl = DDR3_1600_x64(range = s e l f . mem_ranges [0] ,
57 port = s e l f .membus . master)
58

59 # Set up the i n t e r r up t c o n t r o l l e r s f o r the system (x86 s p e c i f i c)
60 s e l f . cpu . i n t e r r up t s [0] . p io = s e l f .membus . master
61 s e l f . cpu . i n t e r r up t s [0] . int_master = s e l f .membus . s l a v e
62 s e l f . cpu . i n t e r r up t s [0] . i n t_s lave = s e l f .membus . master

Listing 2.1. Configuration Script for MySystem: it contains definition and
connections between different SimObjects

This script creates a system with single AtomicSimpleCpu with 2-level cache
with x86 ISA.
Before continuing it is important to introduce briefly what are some SimOb-
jects instantiated that were not explain before:

• Bus. The Bus Object has multiple slave port interface, and it is used
to connect multiple MemObject. It works in the exact same way of a
physical bus, and it transfers requests between the different components.

• Memory controller. The memory controller is an Object to handle
data flowing from and to the principal memory of the system.

• APIC. It is initialized in the x86.init_fs() function and it is an interrupt
controller, in charge of handling interrupt requests.

11

2 – Simulations Environment

2.1.4 Simulation
After having defined the system it is time to start the simulations. It is simple
and it provides some additional functionalities to custom the runs.

1 # crea t e the system we are going to s imulate
2 system = MySystem(opts)
3 # se t up the root SimObject and s t a r t the s imu la t i on
4 root = Root (fu l l_system = True , system = system)
5 # in s t a n t i a t e a l l o f the ob j e c t s we ’ ve c rea ted above
6 m5. i n s t a n t i a t e ()
7 # s t a r t from a cherckpo int
8 m5. checkpo int (j o inpath (cptd i r , " cpt .%d"))
9 pr in t " Running the s imu la t i on "

10 exit_event = m5. s imulate (num_tick)
11 pr in t ’ Ex i t ing @ t i c k %i because %s ’ % (m5. curTick () ,
12 exit_event . getCause ())

Listing 2.2. Simulation script to estabilish MySystem and run it

As it is written in the code above, it is possible to start the simulation from an
arbitrary checkpoint if there is the architectural state dump file and simulate
for a certain number of ticks. After the simulation is finished, the current
architectural state of the simulation is saved in a .cpt file and a file full of
statistics about each Object simulated is created.

2.2 FIMSIM
FIMSIM [51] is a fault injection infrastructure built upon gem5. It is used to
inject different types of faults at an arbitrary tick in multiple components.

2.2.1 FIMSIM basic functioning
Gem5 was chosen because it has 3 key properties to make a fault injector
beneficial.

• Possibility to simulate a full system, so effects of faults can be observed
both on OS and applications.

• Checkpointing mechanism and deterministic simulations: so it is possi-
ble to start whenever we want simulations(after booting the system for
example) and it is guaranteed to have the same results with the same
conditions.

12

2.2 – FIMSIM

• Command lines option: in gem5 basically everything can be modified
by a command-line option, so it is easy to start different simulations
without having to touch a line of code

• gem5 is object-oriented: the authors modified the nextCycle() function
in the System Object to support fault injection without interfering with
other parts of the code.

Figure 2.2. FIMSIM functioning: shaded boxes are objects added
upon gem5. Figure from [51].

2.2.2 FIMSIM faults injection
Faults Definition The injection list in the figure 3.6 it is initialized at the
start of the simulation, it just take a list of parameters for each fault:

• Cpu Id. CPU to inject the fault on.

13

2 – Simulations Environment

• FaultType and faultyStructure. In semiconductors there are 3 types
of faults.
The first is transient, it is a bit flip due to some radiation event or power
supply noise. These errors are nondestructive and they are restored after
a write operation. However, they can lead to major problems [4].
For example, if a bit flips in the Program Counter can cause a segmen-
tation fault at best or even crash the OS.
The second fault type is permanent. Permanents faults are indeed de-
structive and they cannot be reversed, the structure must be discon-
nected and then substituted. This fault can be divided in stuck-at-0
and stuck-at-1. Stuck-at-1 tends to be more harmful because 0 is more
common in structure, so a fixed 1 sooner or later is gonna cause some
serious problem.
The last type is intermittent, these faults are usually caused by wear-out,
voltage, and temperature fluctuations and they are a burst or faults that
last from some cycle to some seconds. They are simulated in FIMSIM
via several subsequent stuck-at faults.
All of these faults can be singular or multi-bit. Due to the shrinking
size of the transistors, it is common that irradiations strike two bits, for
example.
All these types of faults can be injected in several structures: ALU, PC,
intRF, ALU.

• FaultyLine and bitPosition. Each fault can be injected at any lines
in a structure and in an arbitrary position. It is possible to use -1 in the
definition string to randomize the position.

• FastForwardCycle and faultCycle. Fast forward cycle permits to
set an initial cycle to start to inject fault. It is used to avoid injecting
faults at boot time but during application execution. FaultCycle is the
initial cycle to start to inject. A common combination used is: 30000 on
fastForwardCycle, so the system can boot, and then -1 at faultCycle, so
the start of the fault during an application execution is random but the
system can boot safely.

• Intermittent cycle. Intermittent cycle defines the period between
burst of faults in intermittent fault type

14

2.3 – Data Collection

• NeighboorFault and directionFault. NeighboorFault defines the
number of bit in multi-bit fault, directionFault the direction, it can be
either vertical or horizontal.

Faults Results A fault can result in 3 categories: benign, error, and crash.
The fault is spotted comparing the checkpoint in the golden run (run without
faults injected) and the checkpoint with the fault injected.
Benign is when the fault has not produced any effects, so the two checkpoints
are equals. E.g. this happens when a registry is modified by a transient fault
but before it is read it is written, so the fault is masked.
Error arises when the two checkpoints are different. This implies there was
a change in the architectural state because the check is independent of the
output of the applications.
Crash occurs when the application crashes before the checkpoint. Unluckily
this causes the loss of data and these simulations need to be discarded from
the analysis. Nonetheless, crashes are not so interesting to analyze because
they are already statically checked by hardware watchdogs.

Figure 2.3. FIMSIM functioning: golden and faulty run. Figure from [51].

2.3 Data Collection
For the analysis data were collected running multiple simulations with 2 types
of faults on a vanilla Linux kernel executing 4 binaries.

15

2 – Simulations Environment

2.3.1 Faults Injection
Faults definition. Faults injected types are permanent (both stuck-at-0
and stuck-at-1) and transient.

Permanent faults were injected from the start of the binary execution, and
the checkpoint analyzed was the last checkpoint after the execution end. The
faulty structure was the intRF 1 and bitPosition and bitLine were pseudo-
randomically chosen.

Transient faults are the same to configure despite the fact the injection
point is pseudo-random after the binary is loaded into memory. Since the
transient fault is just a flip in a random place in a structure, it is better to
make random the injection time to have a better diversity in the data.

Faults results. As it is discussed before, each fault injection can lead to
different results. It is then useful to understand which are the rates of the
3 categories to have an idea on how to collect sufficient data, Figure 2.4 2.5
2.6.

Binaries The injections were made on some MiBench [17] C programs:

• qsort: sorting algorithm

• basicmath: simple C math library testing (square root and angle con-
version)

• bitcount: different algorithms to count number of bit equals to 1 in a
given number

• ssearch: algorithm to find a string inside another string

1Register files are temporary storage locations inside the CPU that hold data and
addresses.

16

2.3 – Data Collection

Figure 2.4. Faults results stuck-at-0

Figure 2.5. Faults results stuck-at-1

17

2 – Simulations Environment

Figure 2.6. Faults results transient

Note. Crashes lead to discarding the simulation.
In addition it is possible to notice transients produce a lot of benign errors
and stuck-at-1 tends to result in crashes instead. And this is aligned with
the brief descriptions I gave in subsection 2.2.2.

2.3.2 Simulation Statistics
The statistics file is generated after the end of the simulation. It is compelling
to figure out how this is generated because it is the center of my analysis.
Each statistic is originated dynamically because each SimObject defines a
set of statistics though Stat objects as attributes. The Stat interface defines
methods to initialize, give a description, set value type (counter, average,
percentage), etc. Then, values are updated after the nextCycle() function,
or wherever we have access to them, and finally each Stat object of each sim-
ulated SimObject is dumped in a file with name, value, and description.

1 −−−−−−−−−− Begin Simulat ion S t a t i s t i c s −−−−−−−−−−
2 sim_seconds 0.047551 # Number o f seconds s imulated
3 s im_ticks 47550712000 # Number o f t i c k s s imulated
4 f i n a l_ t i c k 5171294315000 # Number o f t i c k s from beginning
5 sim_freq 1000000000000 # Frequency o f s imulated t i c k s
6 host_inst_rate 681632 # Simulator i n s t r u c t i o n ra t e (i n s t / s)

Listing 2.3. Example of statistics file

18

2.3 – Data Collection

2.3.3 Simulations Hardware
gem5 and FIMSIM add-on were built inside a Docker running Ubuntu 14.04.6
LTS.
All of gem5 runs were executed on 32 Intel(R) Xeon(R) Silver 4110 CPU
@2.10GHz, 93GB RAM and 5.5T disk space.
Each simulation lasts approximately 80 seconds, and it takes 6.4MB of disk
space.
Here there is the bash script to launch several simulations and defining check-
points and fault injections.

1 # $1 i s the s t a r t number o f s imu la t i on
2 # $2 f i n a l number o f s imulat ions ,
3 # $3 d e f i n e s how many s imu la t i on in p a r a l l e l
4 HOMEDIR=/FIMSIM
5 TESTDIR=/s imu la to re
6 #de f i n e binary name
7 ap=" b i tcount "
8 prog=" b i t "
9 i=" 1 "

10 #de f i n e t i c k to f i n i s h s imu la t i on
11 cp_f ina l =5600000000000
12 #de f i n i t i o n o f f a u l t parameters
13 echo " 0 intRF −1 −1 30000 0 stuck−at−0 −1 1000 " > ${HOMEDIR}/

f f a u l t . txt
14 f o r ((i=$1 ; i<=$2 ; i+=$3))
15 do
16 a l l_p id=()
17 f o r ((j =0; j<$3 ; j++))
18 do
19 l=$ ((i + j))
20 # setup f o l d e r s to s t a r t from a checkpo int
21 mkdir ${TESTDIR}/${ap}_${ l }
22 cp −r f ${HOMEDIR}/ f a u l t I n j e c t i o n S c r i p t s /goldenCPSpec/${

ap}/ cpt .5123743603000 ${TESTDIR}/${ap}_${ l }/ .
23 # launch s imu la t i on with a timeout to avoid
24 # a s imu la t i on being stuck
25 t imeout 60 s ${HOMEDIR}/ bu i ld /X86_docker/gem5 . opt −f ${

HOMEDIR}/ f f a u l t . txt −s ${ l } −d ${TESTDIR}/${ap}_${ l } ${
HOMEDIR}/ c on f i g s /example/ f s . py −n 1 −−checkpoint−d i r ${
TESTDIR}/${ap}_${ l } −−take−checkpo int s=${ cp_f ina l
} ,50000000000 −−max−checkpo int=1 −−caches −−s c r i p t=${HOMEDIR
}/run_${prog } . rcS −r 1 &

26 # add pid to p i d l i s t
27 pid=$!
28 a l l_p id+=($pid)

19

2 – Simulations Environment

29 done
30 # wait f o r p r o c e s s e s to f i n i s h be f o r e s t a r t i n g another bash
31 f o r p in $a l l_pid
32 do
33 wait $p
34 done
35 rm ${TESTDIR}/${ap}∗/ cpt ∗/ system∗ #remove u s e l e s s f i l e s
36 done

Listing 2.4. Bash script to launch simulations

20

Chapter 3

Data Analysis and Models

In this chapter it will be explained the data exploration, features selection
and finally the models implemented. Alongside performances will be dis-
cussed, and contextualized with mathematical details and rationale behind
each choise.

3.1 Data Engineering
Data engineering is a big part of a classification model because firstly it helps
to understand how models can be constructed and secondly it is necessary
to interpret results.
Usually, data preparation is split in: data extraction, data cleaning, data
enrichment (this step will be skipped because there is the necessity in this
case), and finally data are ready to be used.

3.1.1 Data Preparation
Several simulation statistics has been collected, they are different from the
collection perspective (different binary or different fault type) but they are
similar in the structure, so in the next paragraph there will be the general
data preparation pipeline used for each different dataset.

Data Extraction After having a folder with all sub-folders regarding the
simulations, it is necessary to extract the actual data to build the cvs file.
First of all, the fault’s results are decided with a script running the decision
process I explained in section 2.2.2.

21

3 – Data Analysis and Models

This bash script generates a file with name {fault(error), nofault(benign er-
ror)} or no file if there was a crash of the simulator. After that, subfolders
containing the fault result files will be inspected by a Python script to ex-
tract statistics from the stats.txt file and add the fault label. The Python
script avoids collecting percentage or statistics containing multiple values (30
of 600 in total) for simplicity reasons and because usually each statistic is
replicated in different formats so dropping some values is not a big deal.
In this way is generated the dataset with one entry with all the attributes
for each simulation that did not crash. It is very simple but it is important
to add a data cleaning process because bash and python scripts don’t handle
missing values.

Data Cleaning Since the stats are generated dynamically at each run the
number of features is not fixed for reasons that are not cited in the paper or
explained in gem5 documentation. Therefore sometimes some statistics are
bad formatted, absent, or present for the first time after 100 equal simula-
tions. For this reason, I will refer to the number of features approximately
and I put in place three steps cleaning process:

• Drop feature columns with more than 20 entries as Not-a-Number. Since
there are a lot of features it is better to drop columns containing not well-
collected data. This process approximately takes out up to 30 features.

• Drop entries with NaN values. This is to avoid handling missing values.
Since I have enough entries to train models this process does not cause
much loss of information.

• Drop semi-constant columns with less then 1% variance. This process
takes out half of the atributes. This is not surprising because there are
a lot of constant metrics, for example the voltage domain of the CPU,
that will not change if there were a fault or not.

Data Domain Domain, as it will be clear later, is a big part of the analysis.
Different datasets for different binaries were collected, these datasets are
of course different but structurally the same, and to distinguish one from
another it is usually said they are coming from different domain.
The process explained before is applied to all datasets, there will be domain
distinctions when the model is trained on the actual data.

22

3.1 – Data Engineering

3.1.2 Features selection
At the end of the below process it remains \300 features and the fault label,
if the fault detection mechanism is built inside a OS is safe to say for the
majority of these statistics there is not a monitor for all of them already
implemented. For this reason, it is good to evaluate a features selection that
results in a minimum set to make models work reasonably good.
All of the following analysis have been made on a single dataset, that will be
used to build the baseline for all the future models.

Pearson Correlation There are several ways or choosing a feature selec-
tion. The most common is to find which features are the most correlated to
the label.
Pearson correlation expresses how linearly related are two features: the
higher the absolute value the more related they are.

ρX,Y = cov(X, Y)
σXσY

(3.1)

Where σ is the standard deviation and cov is the covariance between X (fea-
ture column) and Y (the label column).
After having calculated the topmost correlated attributes to the label we
choose them to be our feature selection.
This method is very simple yet it has some major problem, one of them is
that the attributes selected can be highly correlated between them and so
the selection cannot conserve much variance of the original data.

PCA Another method to make dimensionality reduction is Principal Com-
ponent Analysis. Principal Component Analysis functions by transforming
a large set of variables into a smaller one that still contains most of the in-
formation. In particular, each principal component is perpendicular to the
preceding and it points toward the maximum variance and minimum recon-
struction error. This graph is useful to comprehend how many principal
components we need to express a certain amount of variance. It is visible
that it is convinient to reduce the dimensionality of our datasets with PCA
(99% variance explained with 19 components). However, even PCA for the
dataset would have been very powerful it was not applied because it makes
the attributes losing their metrics meaning, which will be fundamental to
build the OS monitor later on.

23

3 – Data Analysis and Models

Figure 3.1. PCA cumulative variance explained

Feature Importance Another way to evaluate a feature selection is to
build a model, like a Random Forest [7] and calculating the features impor-
tance factors. The important factor expresses how each feature decreases the
weighted impurity in a tree, so how much each feature is important to build
the best model.

fii =
q

j:node j with split on feature i nijq
k∈allnodes nik

, ni is the gini importance coefficient

normfii = fiiq
j∈allfeatures fij

, normalize with respect to other scores

RFfii =
q

j∈alltrees normfii

Number of trees , average for all the trees

(3.2)

Using a Random Forest helps to avoid searching only for linear relation-
ships, as with PCA or correlation coefficients. In this figure 3.2 there are the
features importance out of the 600 initial attributes, remember half of them
are constant values.
It is also important to avoid having in between high correlated features se-
lection, this is because highly correlated attributes will bring the same in-
formation to the model and sometimes having too many highly correlated
attributes can even worsen the performances. In Figure 3.3 it is possible to
see these correlations graphically.

24

3.1 – Data Engineering

Figure 3.2. Feature Importance Score for the 600 attributes

Figure 3.3. Correlation of 107 features with importance score > 0

25

3 – Data Analysis and Models

Final Selection In a fashion of keeping the things as simple as possible,
the top 20 importance score features is selected to be the final set. In this
way, the number of features is as low as possible and the meaning of each
feature is save.
Alongside this selection, I will consider the totality (300) of features with
types of models requiring a high number of features (ex. CNN).

3.1.3 Training and Test Procedure
For the training procedure the classical three-way split has been adopted:

• Train set(50%) is used to train the model,

• Validation set(20%) is used to tune the model. Validation is used to
avoid ’cheating’ and tune the model to have the best performances just
in the test set and not in general.

• Test set(30%) is the ultimate test to evaluate the performances of models
on unseen data

The important concept to understand is the seen/unseen difference. The seen
is all has to be known during the training: for example the train set is known,
its attribute distribution, its features importance. The unseen is what the
model cannot know before test time: an example is the feature importance of
test or validation set, either for example if the test set is normalized it needs
to be scaled with the mean and variance of the train set. So, in every choice
is important to keep in mind the model is trained on the seen and tested on
the unseen, in this way we are sure if the model performs in the unseen is
because the model was able to generalize.

Domain and Testing Domain is a part of the analysis, so it is introduced
the concept of domain testing. Basically, I have different datasets and each
one can be trained and tested separately but obtaining the best performance
on a single dataset is not the main goal of this work. The idea of this thesis
would be to obtain a general model, able to work on different binaries without
major training phases.
So, two different testing procedure are used:

• For transfer learning models: train/validate on a domain, train/test
again on another domain.

26

3.1 – Data Engineering

• Cross-domain validation for domain adaptation models: in this case, the
model is trained on two domains (source and target), then it is validated
on other domains to avoid ’cheating’ and test on target domain.

3.1.4 Feature Analysis
In this section I will list the top features I have used for my dimensionality
reduction procedure.
The features are the top 19 most correlated features to the fault label in the
basicmath binary dataset. The description is given referring to configuration
created in section 2.1.3. I report a figure to make the descriptions clearer.

Figure 3.4. Architecture Hardware Configuration. Figure from [5].

Instruction TLB The Translation Look-aside Buffer is used as a cache
to save recent physical memory to user memory translation. It is faster and
smaller than a cache, and it is used in the instruction pipeline. A TLB is

27

3 – Data Analysis and Models

composed by a value and a tag, the tag is used to retrieve the value.
The first is the average number of references to valid (the value is up-to-date)
block, the next three are counter related to the number of Read Request
accesses and hits(when the value searched is present), the fifth is the average
of occupied block in the tbl and the last is the overall number of misses.

Statistics name: system.cpu.itb_walker_cache.tags.avg_refs,
system.cpu.itb_walker_cache.ReadReq_accesses::cpu.itb.walker,
system.cpu.itb_walker_cache.ReadReq_hits::total,
system.cpu.itb_walker_cache.ReadReq_accesses::total,
system.cpu.itb_walker_cache.tags.occ_blocks::cpu.itb.walker,
system.cpu.itb_walker_cache.overall_misses::total

Data TLB It is the same concept of the metrics before. The first counter
in the number of demand (read+write request) accesses and the second is
the number of misses.

system.cpu.dtb_walker_cache.demand_accesses::total,
system.cpu.dtb_walker_cache.demand_misses::cpu.dtb.walker

Instruction Cache Instruction is the level-1 cache used to store instruc-
tions. The first counter represents the time passed by a task in the cache
by task id 4, the second is the number of demand access, the third and the
fourth are the number of misses for CPU instruction and hits for read re-
quest, and the fifth are counters related to the number of hits in the cpu for
the cpu instructions.

Statistics name: system.cpu.icache.tags.age_task_id_blocks_1024::4,
system.cpu.icache.demand_accesses::cpu.inst,
system.cpu.icache.ReadReq_misses::cpu.inst,
system.cpu.icache.ReadReq_hits::total,
system.cpu.icache.overall_hits::cpu.inst,

Data Cache Data Cache is the level-1 cache used to store data, and this
counter is the number of misses cause by SoftPF requests, which are a par-
ticular type of read request.

Statistics name: system.cpu.dcache.SoftPFReq_misses::total

28

3.2 – Models Analysis

IO Cache IO cache is the cache for IO requests. This counter is referred to
the number of hits for write invalidate requests(WriteInvalidateReq ensures
that a whole-line write does not incur the cost of first doing a read exclusive,
only to later overwrite the data).

Statistics name: system.iocache.WriteInvalidateReq_hits::total

Memory Bus These metrics refer to the bus linking cache to memory
controller. The first refers to the total cumulative size of every packet flowing
into the membus from the instruction cache to the memory controller and
the second is referred to cumulitive number of packets flowing from the TLB
to the memory controller.

Statistics name: system.membus.pkt_count_system.cpu.dtb_walker_cache.mem_side::system.mem_ctrls.port,
system.membus.pkt_size_system.cpu.icache.mem_side::system.mem_ctrls.port

IO bus The IO bus carries the IO request from devices to the CPU. The
transation distribution is counting the different type of commands, this met-
ric measures the number of read requests flowing in this bus.

Statistics name: system.iobus.trans_dist::ReadReq

Memory Controller The memory controller is a circuit in charge of man-
aging the flow of data from the CPU to the main memory.
This counter is the number of read request for CPU instruction.

Statistics name: system.mem_ctrls.num_reads::cpu.inst

Final consideration Some of the attributes I have presented sometimes
are really similar or even equals and this can be redundant or useless. How-
ever, I have decided to keep all these 19 attributes because the dimension-
ality reduction was already enough (600 → 19) and in some more complex
simulated hardware architectures things could be change slightly and these
attributes could be needed.

3.2 Models Analysis
Faults detection offers multiple benefits, improve security, reliability and
most importantly can improve performances of a system. In the past, faults

29

3 – Data Analysis and Models

detection or health analysis was made through physic-based model [49]. Be-
cause the problem faced in this work involves too much components to be
modelled different ML models will be evaluated to solve faults detection.

3.2.1 Introduction to machine learning
Arthum Samuel invented the word machine learning in 1959. The main as-
pect of these algorithms is the ability to build a mathematical structure over
the so-called train-data and then being able to make predictions without be-
ing programmed to do so.
Later machine learning has become a huge word in computer science and
it is used pratically everywhere. However, before starting to enter in more
complicated models a simple Feed-forward Neural Network will be presented.
It is one of the simplest machine learning models and having solid knowledge
on this will be useful later on.
Feed-Forward Neural Network [39] is the simplest deep neural network exist-
ing, usually used for classification. Each layer is composed of several neurons
and the network is composed of several layers. Each neuron is based on a

Figure 3.5. Feed-forward Neural Network. Figure from [50].

simple linear algebra operation:

y = σ(
iØ

i=0
wT

i xi) (3.3)

Y will be the response variable (0 or 1 in a binary classification), x will be
the features vector and w is the unknown weights vector.
The σ function is called activation function and it is used to map values and
add non-linearity. The simpliest example is the sigmoid, which squeezes the
values in the range [1,-1]
Now the question is: how do we find w?

30

3.2 – Models Analysis

Learning Algorithm. The simplest learning algorithm is mini-batch
learning and goes like this:

• Calculate the loss through a loss function: this function expresses how
different is the result from the expected value.

• The loss is backpropagated into the layers, each neuron will receive a
fraction of the total signal of the loss dependently on how much it con-
tributed.

• This portion of the loss is then concordantly used to update the value
contained by each neuron (the w).

This is repeated for each data batch in the train set. The idea behind this
learning process is to minimize the loss (total loss equals to 0 → data points
classified correctly).
To update the weight it can be used the so-call gradient descent. Gradient
descent uses the first derivative (gradient) of the loss function when updat-
ing the parameters. The process consists of chaining the derivatives of the
loss of each hidden layer from the derivatives of the loss of its upper layer,
incorporating its activation function in the calculation. The weight in each
neuron is updated in the opposite direction of the gradient, so the loss tends
to a minimum.

∆w = ∇wL(xi, yi, w), For each neuron in each layer
w = w − λ∆w, Where λ is the learning rate

(3.4)

This is repeated for each neuron for each layer for each batch. In this way,
the network learns in a sense that tends to a state where the loss on the train
set is very close to zero, so if the train set is well-built the network will be
general enough to be used for classification.

Limitations. Of course this very simple model has a lot of limitations.
The first one is that it is very slow to converge, the second is that with many
neurons the learning phase is very slow and computational expensive and the
third is that for the preceding reasons it can be really difficult to obtain a
general model without any tweaks.

Improvements. To overcome some of the limits computer scientists came
up with different solutions:

31

3 – Data Analysis and Models

• Different architectures like CNN [13] to fasten train phase and to gener-
alize better or RNN [41] to evaluate time as a variable of the model.

• Different learning algorithm like Adam or SGD.

• Different layer construction like batch normalization layer or different
activation function

3.2.2 Fault detection: related works
Fault detection has been an interesting field of studies in the last year. The
dataset used is custom-made and these works that will be presented here
come from a wide range of different domains(IoT device, Cloud-based data
centers, HCP systems, bearing systems, semiconductor materials), so the
concept of each model structure will be explained to give an idea where the
models that will be utilized later took ispiration from.

FFNN and Transfer Learning FFNNs, explained in the section before,
are very powerful and they can model non-linearity very well, however they
tend not to work well with domain-shift. Hence, researchers invented a new
learning process. At first, the network is trained fully on a dataset, secondly,
we freeze the some layers and just train the remaining layers on another
dataset(usually smaller and in less epochs). This makes sense because the
different layers carry different information, like in object-recognition the first
layers ’search’ for shapes and shapes recognition is good for each domain so
the first layers do not have to be trained each time [52].
In conclusion, it is possible to create different specialized models for each
domain.
In this work [53] they focus on how difficult is to obtain enough data for
different rotary equipment to build a reliable fault detection model. So, they
used simulations to build the general model and then train specifically for
different components with less data and time.

Deep Belief Network Deep Belief Network are a special type of Deep
Neural Network model, that can be seen as a stack of multiple restricted
Boltzmann machines.
RBM is composed of 2 layers: one visible and one hidden, and it is used

to learn a distribution. The train procedure consists of gradient-based con-
trastive divergence algorithm and backpropagation. Basically, in the first

32

3.2 – Models Analysis

Figure 3.6. Deep Belief Network. Figure from [35]

phase weights are updated for each sample transforming from visible to in-
visible layer (positive phase), then the input is reconstructed passing from
hidden to visible (negative phase).

∆w = λ(évk, hkêdata − évk, hkêrecon) (3.5)

Where λ is the learning rate, v and h are the states of the layer after the
positive and negative phase.
Intuitively, the RBM tries to learn the distribution by premiating how much
’information’ of the input is carried by the output. What happens with DBN
is that each RBM is trained one after another.
After that, the model is trained as an FFNN with backpropagation and
labeled data.
DBN is used from Tamilselvan [45] to analyze the health state of an engine
through sensors data, reaching very good results because the strength of
DBN is tending to converge faster and better because the backpropagation
is used just to fine-tune the model after it has been initialized by RBMs
unsupervised training.

Fuzzy Neural Network Fuzzy Neural Network is an enhancement of
FeedForward Neural Network to handle instability and uncertainty in the
data. Each feature is converted into a fuzzy set and to each category in
the set is assign a degree of membership. This assignment is embedded into
fuzzification layer, and it precedes a FFNN classifier.
Steady, Increase, Decrease is defined in relation of a single IoT measurement
with respect to the average of the others. This technique was used in an IoT
water monitoring system to detect faults of one of the IoT systems [10] and

33

3 – Data Analysis and Models

Input Fault Symptom Decrease Steady Increase
X1 Water Temperature 0.1 0.5 0.9
X2 Supply Voltage 0.2 0.5 0.8

Table 3.1. Fuzzy Set definition

it obtained very good results. The main problem is that the choice of mem-
bership degree relies on experts, and it needs multiple sensors measuring the
same metric.

CNN FFNN bears with a problem: as we see in Figure 3.5 layers are fully
connected (each neuron is connected with each neuron of the following layer),
so the number of operations for each train step is very high.
Hence, convolutional filters were put in practise: essentially a convolution
filter is used to reduce the dimension of data without loosing too much in-
formation, expecially if close features are related (like pixels in a picture).

Figure 3.7. Convolutional filter. Figure from [8].

A CNN is composed of several convolutional filters and an FFNN to trans-
form the features extracted by filters in the final classification result.
CNNs are also used for fault detection in bearing systems. In this work [24]
the input is vibration data referring to bear fault. Lately, CNNs were also
applied to semiconductor manufacturing processes by Lee et al. [25] in a very
clever way. Sensor data are aggregated to be used as a matrix: each row is a
set of measurements in a certain time. In this way also the time is a ’feature’
without recurring to more complex architecture like RNN.

AutoEncoder Another approach is using unsupervised models: the differ-
ence is that with unsupervised models data does not have to be labeled.

34

3.2 – Models Analysis

AutoEncoders, Figure 3.13, are very similar to RBM, but the structure and
training are different. Basically with RBM stochastic representation of the
data is searched and the training phase is done from the two sides of the
RMB. While AE is composed of an encoder (mapping the input to a lower
dimension), and a decoder (reconstructing the output of the layer before back
to its dimension), and the loss is the difference between the input and the
reconstructed input (also called reconstruction error).
It is possible to have multiple encoder layers followed by multiple decoders,
this model is called Stacked AutoEncoder.
Bolegnesi et al. [6] used metrics and data collected by monitors installed on

Figure 3.8. AutoEncoder. Figure from [20].

HPC. They trained AEs to work with non-labeled data coming from an HCP.
After having calculated the mean reconstruction error for the training phase,
they stated that if the reconstruction error of a run in a node is particularly
higher relative to the training phase’s one then there has been a fault. As
a fault, they considered hardware faults, misconfigurations, software bugs,
basically any ’problem’. This approach is a very handful because it does not
need any faulty run sample to work.
Another way of using AEs is to remove the decoder and use the encoder as a
features compression network. The concept behind that is that the decoder
should learn the latent representation of the data. In this paper [31], the
authors trained an S-AE on data corresponding to patients with no heart
disease, and then they used the decoder followed by a FFNN classifier. This
improves the performance of the models because the SAE before the classifier

35

3 – Data Analysis and Models

helps to ’distantiate’ positive cases from negative cases.

Spiking Neural Network Non so se metterlo ma lo lascio un attimo qui

3.2.3 Proposals
All of the modelspresented before are related to different datasets, for the
dataset analyzed there is a domain issue to solve. Different faults on dif-
ferent binaries produce different outcomes and one model cannot cope with
differences.
In the next two paragraphs 3 models will be presented, they are different in
the concept and in the implementation and it is a attempt to see what works
better on this type of problem.

FFNN-Transfer Learning This model is very simple yet powerful, it
makes use of the 19 features selection analyzed in section 3.1.4, and it is
inspired by the work [53].
The rationale is straightforward: train the model on a binary dataset for N
epochs and then specialize the model to work with another dataset training
it for N/5 epochs.
The model, Figure 3.10, is composed of several components:

• Linear layer: it applies a linear transformation to the data.

y =
iØ

i=0
wT

i xi

• Batch Normalization Layer : models benefit from normalized data be-
cause it squeezes data in a smaller range and it helps avoid a feature
that prevails on others and big weight updates which cause ’bouncing’
around the minimum.
Usually, data are normalized before entering the model but then it is
not predictable what will happens after the first layer. So, batch nor-
malization layer comes in place and normalizes output after the linear
transformation.

ynorm = y − µbatch

σbatch

In addition, batch normalization helps the train phase by permitting
higher learning rates, by reducing the effect of bad initialization and by

36

3.2 – Models Analysis

containing the so-called covariate-shift effect [19] (the higher the effect
the lower is the generalization).

• Dropout Layer, Figure 3.11: this layer is in charge of excluding a neuron
from the net with a certain probability (usually 50%) at each train-step.
Dropout has the effect of making the training process noisy, forcing nodes
within a layer to probabilistically take on more or less responsibility for
the inputs, and this reduces overfitting. [43]

Figure 3.9. Dropout functioning. Figure from [40]

• Leaky Relu Layer : this is the activation function that maps the output of
the linear transformation into a number in a certain range to be passed
to the next layer.

f(x) =
0.01x, if x < 0

x, if x >= 0

It is the most used activation function because it helps train faster be-
cause it does not saturate, unlike sigmoid, and prevent neuron death in
the negative region. region.[29]

37

3 – Data Analysis and Models

Figure 3.10. Neural Network

The model is trained using:

• CrossEntropyLoss: the loss function defines how the model learns. Cross-
entropy loss is the standard for categorical problem but it can be used
for binary classification too.
It is calculated:

loss(x, class) = −exp(x[class])q
j exp(x[j])

Where class is the correct class of the x, and x is the vector containing
the score for each class(N=2). This formula it is iterated and averaged
for all points in a minibatch.
The final score summarizes the average difference between the actual
and predicted probability distributions.

• Adam optimizer : vanilla Stochastic Gradient Descent is good but tends
to stuck in local minima or saddle point. So researchers found it was
a good idea to add momentum to build up velocity to overcome saddle
point or saddle.

mt = β1mt−1 + ∇L(xt−1)

wt = wt − αmt

38

3.2 – Models Analysis

β1 is the friction to avoid velocity to build too quickly (usually 0.9), ρv
is the momentum, α is the learning rate and L is the loss function.
Just with momentum the step starts to get very big very quickly, so
these steps can be regularized by adding another term.

vt = β2vt−1 + (1 − β2)∇2L(xt−1)

Then the estimators are corrected (bias correction), for the fact that first
and second moment estimates start at zero.

m̂t = mt

1 − βt
1

v̂t = vt

1 − βt
2

At this point, the final weight update will be:

wt = wt−1 − α
m̂t√
v̂t + Ô

Adam [22] optimizer helps overcoming area with tiny gradient while
avoiding big updates, in addition the updates are bounded to α which
is the only parameters to tune.

• StepLR scheduler : it performs the very simple operation to scale the
learning rate after a number of epochs by a factor.

αnew = γαold After each N epochs

The parameter to choose are N and γ. This allows large weight updates
in the beginning of the learning process and fine-tuning towards the end
of the learning process.

• CycleLR: this is based on another way of scheduling the learning rates.
The idea is very simple: the learning rate is scheduled in a triangular
shape over the epochs. The 3 parameters to define are: initial lr, final
lr, step size.

According to this paper [42] this scheduling technique with SGD+momentum
permits to obtain very good performances in few cycles.

39

3 – Data Analysis and Models

Figure 3.11. LR cyclical learning. Figure from [21]

DANN Domain Adversarial Neural Network [15] is a model to cope with
domain adaptation problems, where data at train and test time are struc-
turally similar but distributed differently.
The approach consists of training on a so-called source domain labeled data
and target domain unlabelled data. The resulting model should then be able
to perform on the task independently from the domain.
Since the description before seems to fit with the datasets collected for this
work, I decided to use DANN. Intuitively metrics are like pixels, close metrics
are near because they refer to the same hardware for the way metric output
is organized. For this reason, I thought it could be a good idea to use DANN
with 1d Convolution Layer on the totality of features .
The model, Figure 3.15, is composed by:

• 1d Convolutional Layer : it is in charge of performing the convolution
operation on the input.

(N, Cin, L) → (N, Cout, Lout)

Out(Ni, Cout) = bias(Coutj) +
Cin−1Ø
k=0

weight(Coutj , k) õ input(Ni, k)

Cin/Cout refers to the number of channels in input and output, N is the
batch size, õ is the cross-correlation operator which is the main difference
with a Linear Layer, k is the size of the filter(weight), L is the length of
the signal.

• Relu Layer : this layer is used to define the activation function. The
difference with Leaky ReLU is that ReLU is 0, for x<0, and it is the de
facto standard for CNN.

40

3.2 – Models Analysis

• MaxPool Layer/AvgPool Layer : the pooling operation is used to down-
sample the features maps obtained by the convolutional layer. It is used
to regularize the model and avoid filters being too sensible to minor
movements in the input.

(N, C, L) → (N, C, Lout)

Out(Ni, Cout) = oper
m=0,..,kernel_size−1

input(Ni, Cj, stride × k + m)

The operation applied to each patch define the layer: max is a MaxPool
Layer, Avg AvgPool Layer.

• Gradient Reversal Layer : this layer places a simple operation. Its use
will be clear later.

Gradnew = −α · Gradold

• Task Classifier : FFNN similar to the one explained in paragraph 3.2.3,
it is used to classify the fault label.

• Domain Classifier : FFNN similar to the one explained in paragraph
3.2.3, it is used to classify the domain label.

Figure 3.12. DANN: k=kernel of the filter, s=stride of the filter, p=padding
of the filter, maps=output maps

The rationale is to have two branches after the features extractor: the label
classifier is in charge of learning the actual task of the network, in this case
the fault detection; the domain classifier learns to distinguish between the
source domain and the target domain.
So, while the model in the first branch is learning the task, on the other
branch the reversal gradient layer pushes the feature extractor not to dis-
tinguish between the domain while the domain classifier becomes better to
guess it. The loss of the domain classifier will grow because the gradient used

41

3 – Data Analysis and Models

to minimize the loss is reversed, so the model is updating toward domain in-
variance. And this is the reason why this model is called adversarial, because
while the domain tries to learn to guess the domain the features extractor
will make it progressively more difficult.
As a consequence, without target labeled data it will achieved a model able
to learn the task independently from the domain, source or target. To train
this model I made use of:

• CrossEntropy Loss for both domain and task classifier.

• Adam Optimizer : this is used to optimize both of the loss.

• StepLR Scheduler : this is used on both optimizer too.

Sparse Stacked Autoencoder+Classifier SS-AE is one of the main ap-
proaches to fault detection. It is used to ’transform’ data before going into
the classifier. I used it on the totality of attributes as a features extractor
for a FFNN classifier.
The model, Figure 3.13, is composed of:

• 1d Convolutional Layer

• Relu Layer

• MaxPool Layer

• Task Classifier

• Upsampling1d Layer : the upsampling layer is the opposite of the max-
pool layer. In fact, it is used to upscale the input data in a very simple
way:

Xout = åXin × scale factoræ

[1 2 3] scalefactor=2−−−−−−−−→ [1 1 2 2 3 3]

The concept here is to train the autoencoder (encoder+decoder) to recon-
struct the input correctly, then we drop the decoder and we use the encoder
as a features extractor for a fault classifier.
To do so the training phase adopts:

42

3.3 – Experiments

• Loss: the loss function is composed of different factors. Firstly a function
to calculate the mean squared error between points.

MSE(Xin, Xout) =
qn

i (xin[i] − xout[i])2

n

To improve the performances usually, it is added a term called L1 spar-
sity.
L1 sparsity forces the model to tend to lower weights values and this
helps the model generalizing and not straight copying the input.

L1 = λ
Ø

i

|wi|

The final loss function will be:

Loss = MSE + L1

• CrossEntropy Loss: this is used then to train the encoder+classifier.

• Adam Optimizer : it is used to train both autoencoder and classifier.

• StepLR Optimizer

Figure 3.13. Stacked-AutoEncoders and Encoder+ Classifier: k=kernel of
the filter, s=stride of the filter, p=padding of the filter, maps=output maps

3.3 Experiments
In the following section, the results obtained by the models will be discussed.
However, there are many ways of evaluating a model. There is:

43

3 – Data Analysis and Models

• Accuracy: is the simplest, and it is the number of correctly predicted
points over the total.

Accuracy = Correctly Predicted
Total

• Precision and Recall: accuracy is not able to cope with unbalanced
classes and for some analysis can be misleading, like fault detection.
In fault detection, it is interesting to find the faulty run much more than
finding the non-faulty run. So it is better to use other metrics:

Precision = True Positive
True Positive+False Positive

Recall = True Positive
True Positive+False Negative

Here is the confusion matrix 3.14 to help navigate these definitions. So,

Figure 3.14. Confusion Matrix

precision expresses indeed how precise we are when assign the fault la-
bel, recall instead gives a measure of how many faults we manage to find.

• F1 score: this score is defined to be a balance between recall and preci-
sion.

F1 = 2Precision · Recall
Precision+Recall

What is the best is not possible to choose apriori, the ’best’ model is related
to the application. Nonetheless, the f1 score highlights performances on fault
class and the best models will be chosen according to it.

44

3.3 – Experiments

3.3.1 Neural Network and Transfer Learning
This section will make clear the validation process to build the baseline model
(trained on one binary only) to be used the for transfer learning. Then, it
will be shown the enhancement introduced by transfer learning.

Hyperparameters Tuning Evaluating a model it is essential to babysit
the learning process, to make sure the network is learning well.
When a model is learning correctly the loss on train and validation set con-
verge to the same values with the shape of an elbow. This specific shape
expresses the loss of the network is decreasing to a point of stability and the
gap between the train set and validation set means how much the train set
is representative of the validation set.

Figure 3.15. Loss over epochs, with LR=0.001 and 50 epochs

After ensuring the model is set up to learn correctly it is time to fine-tune it.
As explained in section 3.2.3 the updates are bounded to the learning rate,
the other two hyperparameters β1 and β2 are usually not changed and they
are 0.9 and 0,999, both in Adam and SGD+Momentum. The scheduler and
its parameters must be choosen as well.

Since all the performances are comparable, Table 3.2, I decided to keep the
model with Adam, StepLR and the lowest LR.

45

3 – Data Analysis and Models

Optimizer Scheduler Epochs F1 score
Adam: LR=0.1,
Beta1=0.9, Beta2=0.999

StepLR: N=30 Epochs,
gamma=0,1

50 0.8693

Adam: LR=0.01,
Beta1=0.9, Beta2=0.999

StepLR: N=30 Epochs,
gamma=0,1

50 0.8693

Adam: LR=0.001,
Beta1=0.9, Beta2=0.999

StepLR: N=30 Epochs,
gamma=0,1

50 0.8693

Adam: LR=0.0001,
Beta1=0.9, Beta2=0.999

StepLR: N=30 Epochs,
gamma=0,1

50 0.8655

SGD+Momentum:
LR=0.1, Beta1=0.9

CycleLR: LR_f=LR,
LR_i=LR*0.1

50 0.8692

SGD+Momentum:
LR=0.01, Beta1=0.9

CycleLR: LR_f=LR,
LR_i=LR*0.1

50 0.8651

SGD+Momentum:
LR=0.001, Beta1=0.9

CycleLR: LR_f=LR,
LR_i=LR*0.1

50 0.8693

SGD+Momentum:
LR=0.0001, Beta1=0.9

CycleLR: LR_f=LR,
LR_i=LR*0.1

50 0.8195

Table 3.2. Validation scores to select the best baseline model

Results Now the best model with the last 2 layers froze is used as a baseline
to perform the transfer learning task, remembering the ’baseline’ has been
trained on the basicmath binary only.
Table 3.3 is telling the model can work with different binaries, sometimes
even maximizing the precision, with few epochs of training after having built
the baseline.

Binary Precision: baseline Precision: after Recall: baseline Recall: after
basicmath 1.00 / 0.74 /
qsort 0.38 1.00 (+0.62) 1.00 0.82(-0.18)
search 0.46 0.82 (+0.36) 1.00 0.33(-0.67)
bitcount 1.00 1.00(+0.0) 0.73 0.74(+0.01)

Table 3.3. Performances on test set after 10 epochs of transfer learing

Disclaimer: An high recall is not always a good sign, if the model predicts
always fault it will have 1 recall but it is not a good model. High precision
indeed is a good measure of how the model is able to spot the faulty runs.

46

3.3 – Experiments

3.3.2 DANN
This model is trained based on a totally different approach. The concept
here is to have a model trained on two different domains, one labeled and
the other not, and see how the model performs on both domains after the
training.
The validation set will be on the other two domains.

Hyperparameters Tuning The parameters to tune are related to Adam
optimizer, so the learning rate, and the α, which represents how much reverse
gradient is flowing into the features extractor.

LR/ALPHA 0.1 0.01 0.001
0.01 0.59 0.75 0.59
0.001 0.59 0.62 0.59
0.0001 0.59 0.76 0.75

Table 3.4. F1 score on validation set

Remember the model is not trained on domains coming from the validation
set.

Results Having selected the best hyperparameters it is time to use this
model using as target all the domains and see how it performs.

Binary Precision: before Precision: after Recall: before Recall: after
basicmath 1 \ 0.80 \
qsort 0.23 1 1(+0.0) 0.77
search 0.36 0.46(+0.10) 0.8 1
bitcount 0.33 0.38(+0.05) 0.8 1

As it is noticeable, from unlabeled data the model is not able to generalize.

3.3.3 Sparse-Stacked-AutoEncoder
Hyperparameters Tuning Firstly it is trained the autoencoder, using
MSE and L1 sparsity using only non-faulty runs.
The two hyperparameters to tune are the learning rate and the α L1 sparsity
coefficient.
The encoder from the best model from above is then trained on the whole

47

3 – Data Analysis and Models

LR/α 0.01 0.001 0.00001
0.01 0.0704 0.0427 0.0704
0.001 0.0355 0.0704 0.0462
0.0001 0.0355 0.0413 0.0704

Table 3.5. Best (the lowest) loss on non-faulty dataset on a single domain

(faulty and non-faulty) dataset on a single domain.
This model will be used as a baseline to confront performances on other
domains before and after some epochs of training on them.

Results It is interesting to notice in the first column of Table 3.6 that this
model has the best precision on unseen domains.

Binary Precision: before Precision: after Recall: before Recall: after
basicmath 1.00 \ 0.80 \
qsort 1.00 1.00(+0.0) 0.20 0.78
search 0.86 0.83(-0.03) 0.11 0.32
bitcount 0.12 1.00(+0.88) 0.23 0.77

Table 3.6. Scores on test set before and after 10 epochs of training on the binary

3.4 Fault types
All the models and results discussed in this chapter are related to stuck-at-0
fault datasets.
However, datasets regarding other type of faults 2.2.2 has been collected
to make minor experiments in order to get an idea on how to expand the
models already present for future works. The same FFNN model, explained
in section 3.2.3, and a simple 20-top correlated features selection will be used
on a single domain to see if the different essence of faults cause models not
to cope with the detection anymore.

Transient Fault In short transient faults happens when a bit is flipped
due to cosmic rays hitting a flip-flop.
The best model on validation set is able to reach 1.00 precision and 0.37
recall after 50 epochs on the transient fault test set.

48

3.5 – Conclusion

Stuck-at-1 fault Stuck-at-1 fault are the opposite as stuck-at-0, the fault
is permanent and the bit is stucked at 1.
The best model on validation set is used on test set and it reaches 0.90
precision and 1.00 recall after 50 epochs on the transient fault test set.

All faults together After these results the datasets regarding the basic-
math binary with the all three different faults (stuck-at-1, stuck-at-0 and
transient) have been merged, the performance on test set (1.00 precision and
0.45 recall) by a model trained for 50 epochs on train set suggests the effects
on the architectural state caused by a stuck-at-1 or stuck-at-0 or even tran-
sient faults seems to be the same for the same binary.
More data can be collected to work on more general models, able to dis-
tinguish from fault type to fault type and maximizing the recall and these
results suggests it is feasible.

3.5 Conclusion
In conclusion, for the amount of data that were collected the best performing
model is the FFNN with transfer learning for each domain.
Not only it reaches the best performances, Figure 3.16, on each domain but it
is also the simplest and it works with 20 features. The small features selection
is crucial considering the next chapter will be about an implementation of
the whole monitor architecture.
In addition it is important to notice the precision before transfer learning of
the SSAE architecture could mean something in the ability of the model of
generalizing for many domains. However, for the data that were collected for
the goal of this work a result better than that has not been obtained but it
needs further investigation in the future.

49

3 – Data Analysis and Models

Figure 3.16. Test set precision scores on different binaries from different
models before and after the training on the specific domain. Basicmath is
used to build the baseline

50

Chapter 4

OS implementation

In this chapter, the focus will be to present a way to implement inside a
Linux distribution.
Before entering the details of the monitor application, the general function-
ing of the Linux will be displayed along with the development of a kernel
module. After that, the PMCTrack, a kernel module for hardware metrics
inspection will be analyzed in-depth to show potentiality and possibility of
future expansion. Finally, some proposed architecture will be shown.
It is important to highlight this chapter is part of an attempt to show what
models can be used. For the intrinsically limited time of this work it is shown
the path suggested to follow to further implement a working monitoring sys-
tem inside an OS, but the resulting product is not complete and it needs
hardware support to add essential metrics to be inspected and developers
work on the kernel module.

4.1 Introduction
Each program to run needs at least a processor and memory system to run,
so a lot of requests toward hardware units are generated, there must be a
mechanism on top of them in charge of handling these requests most effi-
ciently.

4.1.1 Linux Kernel
The Linux Kernel [46] is, indeed, the mechanism to do so and much more.
The Linux kernel is monolithic with modular design: monolithic means the

51

4 – OS implementation

entire operating system runs at kernel level and the modular design implies
the possibility to add functionalities run time, more on this later ??.
The Linux kernel main features are:

Memory management each variable in each program needs a place to
be stored, this place needs to be fast to access. Fast memory is of course
not free and not infinite, so there must be a way to manage this resource.
The kernel, then, is in charge of allocating and freeing memory for programs.
Specifically, the Linux kernel implements a paged virtual memory, which
is an abstraction where the programs see a very large portion of memory
and access it using virtual addresses, these addresses will be then converted
to access the physical memory. This technique improves the isolation of
processes because it avoids having to share memory between processes.
Also, with paging, each program can ’use’ more memory than the physically
available because some pages can be store in secondary memory, and will
be the kernel in charge of keep available in the principal memory the pages
used.

Figure 4.1. Virtual addresses are converted and the corresponding page is
searched in principal memory. If there is it is swapped from the secondary
memory to the principal memory. Figure from [14]

52

4.1 – Introduction

Process management Along with programs there are processes: a process
is the instance of a computer program that is being executed by one or
many threads. The scheduler is in charge of scheduling threads, which are
a small set of instructions that belonged to a process. Of course, Linux
kernel supports multi-threads process, multi-task preemptive scheduling, and
concurrent computing (true parallel execution in case of multiple CPUs).
The Linux kernel default scheduler is the Completely Fair Scheduler [26],
which implements the idea of assigning each task a period that is proportional
to its weight (execution time) divided by the total weight of all the runnable
tasks.

Figure 4.2. The task_struct contains information about the pro-
cess, the code, the data, and their relative addresses in the virtual
memory. Figure from [18]

Device drivers Devices are pieces of hardware attached to the processor,
and they communicate with the CPU through a bus. Access to them has to
be regulated to avoid conflicts and maximize efficiency. A device driver is an
interface to the hardware, that can be used either from kernel or user space
to access the functions offered by the hardware or to handle the interrupt

53

4 – OS implementation

requests coming from it.
They are strongly hardware-dependent and operating system specific.

System calls Usually in computing systems there are 2 running levels:
the first is the user level, where applications live and they cannot access
the hardware directly. The second is kernel-level or privileged level and it
has unrestricted access to hardware, such as scheduling on CPU, disk, or
principal memory. This multi-layered architecture is needed to protect the
system from user-level applications harming other applications or even the
entire system, so the kernel exposes system calls to permits user applications
to transfer the control to the kernel to execute the privileged tasks, like
allocating a variable.

Figure 4.3. Device driver works at kernel level and they are a bridge
towards hardware. Systems call serves the purpose of connecting user-
level application to the kernel to perform privileged operations. Eg. to
access the standard output

54

4.1 – Introduction

4.1.2 Linux Kernel Development
All of these high-level concepts must be translated into C code. Since Linux
is an open-source project it is possible to access the code, make some changes,
build the kernel with a C compiler and finally run the modified version of
the kernel.
It seems easy, however, the Linux kernel has approximately 28 million lines
of code [1], so developers needed a way to develop using the kernel API yet
avoiding rebuilding the kernel.
This brought, in 1995, the concept of Loadable Kernel Modules, which are
pieces of code added while the system is running. They work at the kernel-
level and they are used for device drivers, system calls, and filesystem drivers.
They are very convenient for different reasons [38]:

• They are as fast as the functions would have been implemented inside the
kernel and they can make use of in-kernel API, which are kernel functions
exposed especially for kernel modules. Still, the modular approach is in
contrast with the monolithic Linux kernel because it breaks the idea of
having the kernel on contiguous memory space and degrades a bit the
performance because there are more TLB misses.

• The change is not bounded to the kernel, so it is easier to debug. This
is because the module is loaded after the system is already booted, so if
there is a problem in the module is easier to track.

• They save memory and time because they are loaded only if they are
needed, and the building time is negligible with respect to building the
entire kernel.

• Even it is suggested to have a good understanding of the kernel, writing
a kernel module does not require to have full control of memory manage-
ment, scheduling, or low-level interaction with hardware. The approach
is closer to implementing user-level applications than changing the kernel
itself.

• It is easy for user applications to interact with kernel modules thanks
to the /proc file system. It is possible to declare an entry in the
file system that is treated just like a file, so, knowing the file name
(Ex. /proc/monitor) open(), read(), write() operations can be
performed. It is possible to declare functions to handle these inter-
actions in different ways, for example, adding a PID to a list in a kernel
module when the process performs a write on the /proc/monitor file.

55

4 – OS implementation

• The only ’disadvantage’ is that, since they are implemented at kernel
level, they can easily crash the entire system because there are not the
protections reserved for user-level programs.

4.2 PMCTrack
«Hardware performance monitoring counters (PMCs) have proven effec-

tive in characterizing appli- cation performance.» [36] In this paper Saez et
al. demonstrate how the scheduler can be improved if it is fed with high-level
information about applications like cache hit ratio or energy consumption.
To do so they develop a complex monitoring system that is gonna be an-
alyzed and explained in this section to better understand how to use this
infrastructure for another task: fault detection.

4.2.1 PMC
Performance Monitoring Counters are present practically in all modern com-
puting systems, they are special-purpose registers used to keep track of events
(i.e. count the number of cache hit).
These hardware counters are used for performance fine-tuning and this is
becoming increasingly important for two reasons. The first is to save money:
having a 2% faster machine when a company is dealing with many computing
systems can be a huge saving of time. The second is related to the nature
physic of modern processing units: it has been demonstrated they work bet-
ter in certain thermal and voltage conditions [33]. However, inspecting these
registers is not trivial because their implementations differ from CPU to
CPU.

4.2.2 Architecture
PMCTrack is designed following 3 principles, Figure 4.4: exposing high-level
metrics to the kernel (i.e. Hit rate per thread), exposing metrics to user-
level applications or collect data to be inspected offline by developers as well
(i.e. energy consumption per application), and maintaining an architecture-
independent core.

56

4.2 – PMCTrack

Metrics extraction PMCTrack developers wanted to decouple hardware
metrics extraction and hardware metrics utilization. Thus, the access to
PMCs is hardware-independent from the kernel or user level perspective.
Configuration, sampling is configured equally from the programmer side if
he is working with ARM or Intel. The specific implementation is hidden
behind a common interface, and supporting additional hardware facilities is
a matter of implementing the correct behaviors in the interface’s callbacks.

Kernel module The whole project is developed into a kernel module, in
fact it needs a small minor kernel patch to handle the interaction between
the kernel module and the kernel itself, and to change the scheduler. This is
needed both to collect per-thread data and to implement kernel PMCTrack
API.
The kernel module is composed of:

• PMCTrack architecture-independent core: this part is in charge of ex-
posing the interface to access metrics to libpmctrack, that will expose
again metrics to the PMCTrack command-line tools or PMCTrack GUI.
Also, the same interface is used by the in-kernel API, for example, to
implement new scheduling policies.

• PMC access layer: this layer is to give PMC access to the PMCTrack
core. It needs to implement specific configuration, direct extraction and
it is where developers need to work if they want to add support for
different CPU architectures.

• Monitoring modules: this layer has been added later to PMCTrack and
it is different from PMCs because it is used to gather information from
other than CPU hardware pieces (i.e. dram energy consumption)

4.2.3 Functionalities
This framework has been used for optimizing scheduling policies, optimize
programs or even compare pieces of hardware [16, 37, 44], however PMCs
as it is demonstrated by the preceding chapters they can be useful to detect
faults but there are few considerations to point out.
First of all, the data collected by the gem5 simulations are system-wide, al-
though the simulation environment is built just to run the particular binaries
and the operating system (scheduler), so it is a good approximation of per-
thread data.

57

4 – OS implementation

Figure 4.4. PMC Infrastructure: the /proc entry is used as a broker toward
libpmctrack, and PMCTrack architecture-independent core is used as a bridge
for both user and kernel level access to PMC. Figure from [36].

Secondly, the sampling frequency is different. With simulations, the data
were collected after the end of the program, with PMCTrack is decided with
a command-line option.
Finally, the number of hardware metrics inspected by PMCTrack, Table 4.1,
on a common PC is significantly lower respect to the gem5 simulator.

4.2.4 Limitations
The metrics collection structure is complex and it is easy accessible from
PMCTrack interfaces, but it is very difficult to customize and for the moment

58

4.3 – Proposed Infrastructures

PMC gem5 correspondant Meaning ρ
instr_retired_fixed system.cpu.committedInsts How many instruction were really exectuted 0.79
unhalted_core_cycles_fixed system.cpu.num_busy_cycles Number of cycles puts in HALT by the OS 0.8
instr sims_insts The number of ticks simulated 0
cycles system.cpu.numCycles Number of CPU cycles simulated 0.81
llc_references system.cpu.dcache.overall_accesses::total Number of accesses to cache 0.71
llc_misses system.cpu.dcache.overall_misses::total Number of cache misses 0.75
branch_instr_retired system.cpu.Branches Number of branch instructions 0.7

Table 4.1. PMCTrack features translated in gem5 metrics with respective
correlation with fault labels

it does not have an interface towards other kernel modules.
So in the next section, the architecture will be explained as there is, to show
the potentialities of this kind of monitoring system, even if the kernel module
communication at the moment is not permitted and it has been bypassed
using the PMCTrack user-level libraries.

4.3 Proposed Infrastructures

4.3.1 Completely in-kernel infrastructure
OS/161 [47] is a very simple operating system, with basic memory and pro-
cess management. So to avoid dealing with the complex kernel, like Linux,
OS/161 has been modified to extend the proc struct to include some ran-
domly generated metrics and a flag to detect if the process is monitored and
if there has been a fault during its execution.
This approach had some interesting features that are useful to cite not to
forget if this work will progress:

• The system emulated was multi-processors and the fault detector and
OS were scheduled to work on a CPU and the monitored processes on an-
other CPU. This improves the reliability of the system because OS+fault
detector and monitored processes are on different CPU so a fault is ei-
ther compromising processes and the fault detector can see them or it is
compromising the OS and this usually generates crashes, so it is not so
interesting to detect as it is explained in paragraph 2.2.2.

• The processes flagged as faulty are signaled to the stdout and rescheduled
instantly by the fault detector. In this way, it does not need a manual
restart each time there is a fault.

59

4 – OS implementation

• The scheduler is aware of processes monitored and this can be used to
modify scheduling procedure.

Unfortunately, OS/161 has a lot of limitations which made the progress im-
possible. First of all, it does not support math library, so it was impossible
to support even the simplest machine learning model (e.g. Logistic Regres-
sion requires exponential, logistic function, square product). Then it does
not have already implemented sockets, so it was also impossible to demand
machine learning operations to other OS or machine. Finally, the metrics col-
lection system is really difficult to implement because it is run on a QEMU
simulator and it does not have the permission to access directly hardware.
For all these reasons, it has been decided to pass to Linux kernel to have a
full-featured kernel and PMCTrack to demand the metrics collection to an
already implemented module.

4.4 Kernel Module Infrastructure
The preceding framework would have full control on everything, from PMCs
collection to scheduling, however, it needs a massive work and it is usually
better to use an already existing platform and build on them despite having
to invent the wheel each time.
So in this section, there will be explained how PMCTrack is used to extract
metrics and how these metrics are redirected to perform the fault detection
tasks.

4.4.1 Kernel Module Facilities
In this little section, different tools exposed by the kernel API will be ex-
plained because they are used later on.

RCU List Read, Copy, Update [34] is a synchronization mechanism op-
timized for read-only situation. The idea is to split the update phase into
removal and reclamation.
The removal phase references the data and it can be accessed concurrently
by readers. It does not generate problems because modern CPU guarantees
the reader either read the old or the new version of the referenced data (tem-
porary or intermediate data are read).
The reclamation phase is in charge of free data in a structure, and it is exe-
cuted once all active removal phases are terminated.

60

4.4 – Kernel Module Infrastructure

The main advantage is that the readers do not require strong synchronization
methods, because the writer waits for old readers to finish before updating
the data and new readers cannot access old values. So, this algorithm is
excellent in the case of read-mostly data, and in many situations is real-time
responsive because it does not even need a synchronization method.

Figure 4.5. RCU update: the two readers read two different versions of the
lists, the first without waiting and the second waiting only the grace time.
The difference between RCU and lock-based approach is that the first reader
would have been locked out for the whole updating time. Figure from [12].

Socket interface Inside the Linux kernel is even possible to access to a
socket interface [27]. This is another way of contacting user-level applications,
however, it must be handled carefully because it lacks the support conceived
to user-level applications, so configuration, sending, and receiving messages
is much more complex, even if it is possible to have TCP support.

61

4 – OS implementation

Work queue Work queue [] are special structure offered by the kernel
API to declare special functions that will be later executed by special kernel
threads, these functions will be run in process context so they can block for
I/O operations or wait operations.
The worker thread most of the time will sleep and it will wake up when work
will be added to the work queue. The work struct contains the function to
be executed and it can even enclose some data.

Figure 4.6. Worker thread and work queue: each work struct con-
tains the function to be executed and other information (i.e. values,
pointers). Figure from [28].

4.4.2 Monitoring system
The monitoring system, Figure 4.8 is composed making use of all the com-
ponents and facilities explained before:

• PID RCU list: this list contains the PID of processes signaled to be
monitored and their respective last features extracted.

• Update feature work queue: this work queue is in charge of updating
the features related to a PID entering the list. The evaluation work is
invoked after a PID has been newly inserted or after it has been evaluated
and it resulted non-faulty. This is done to avoid updating the metrics
many times before the evaluation process has taken place.
This part has interaction with the PMCTrack cite in section 4.2.4.

• Evaluate process work queue: this queue has at least a work as long as
there is a PID in the list. Its job is to extract the features from the PID
lists, and demand the job to another queue to send the features thought
the socket, wait for the response, and update the PID list accordingly
(reinsert the PID if the process is not faulty).
The evaluation is made user level by a Python program using pre-trained

62

4.4 – Kernel Module Infrastructure

models, the fact it is contacted using the socket suggests that in the
future, for example in a data center, the machine learning evaluations
can be made on a predisposed machine reachable from any nodes.

• Command-line utility: the command monitor is used to start the mon-
itor process PMCTrack side and to inform the monitor module a PID
must be added to the list. This is done making use of the /proc entry,
so executing a write operation on the /proc/monitor file with the PID.

Figure 4.7. Monitoring module

63

4 – OS implementation

Lifespan of a monitored process:

⇒ 1. The process is started using the monitor process (and this is the only
thing the final user has to do).

⇒ 2. The command signals both the monitoring module and PMCTrack
to start to monitor the process.

⇒ 3. After a configurable (inside the kernel module) lap of time the fea-
tures about the process are extracted and put into the RCU list.

⇒ 4. After another configurable lap of time the features extracted are
extracted and forwarded to the ML user-level process which responses
with 0 (non-faulty) or 1(faulty).

⇒ 5. if the process is faulty the kernel module is informed and it can do
whatever it wants. If not the control restarts from point 3.

Figure 4.8 is the monitoring system inserted in a common computer to show
how it does not interact with other running processes and the kernel, beside
a minor patch, is the common Linux kernel.
Performance wise the whole infrastructure is design to leverage the PM-
CTrack optimized metrics extraction and work on them without affecting
further (PMCTrack adds an overhead on tracked process because it needs
to collect the metrics) the monitored process and have little impact on the
operating system.

4.5 User-level Infrastructure
Another way of implementing the monitor process would have been to im-
plement all at user-level using the libpmctrack. However, this very simple
approach has the disadvantage of not being predisposed to additional expan-
sion or optimization because it relies on a continuous switching between user
and kernel space.

4.6 Experiments
Just to demonstrate the concept, some minor experiments has been tried. In
fact, it is possible to simulate a fault in the program counter very easily.

64

4.7 – Conclusion

Figure 4.8. Monitoring system: this is the system as it will be on a
common computing machine. Remember that the ML process can be
even on another machine

1 i n t ptr1 , ptr2 , i = 1000 ;
2 ptr1 = &i ;
3 ptr2 = (i n t ∗) ((u intptr_t) ptr1 | (u intptr_t) 0xFFF000) ;
4 // the f a u l t r a t e i s 50%
5 i f ((rand ()%2)==0)
6 i = ∗ptr2 ;
7 e l s e
8 i = ∗ptr1 ;

Listing 4.1. C program that simulates a fault in its PC during the execution

The resulting PMCTrack metrics are notably different, Figure 4.9, and this
is interesting in sight of what machine learning models could do in a different
more complex scenario with more metrics.

4.7 Conclusion
This chapter is an analysis on frameworks created and possibly doable in
terms of fault detection monitoring system.
The best option for simplicity and performance seems to be the monitoring

65

4 – OS implementation

Figure 4.9. Difference between metrics evaluation on faulty and non-faulty
run, the second figure gives the % difference to give a scale-relative view

kernel module in combination with the PMCTrack. It is relatively easy to
set up, simple for the final user, expandable in the future and it relies on
a well-known metrics collection system. However, it needs some work on
the interface between PMCTrack and kernel modules, and to be fully func-
tional it needs support for other metrics to use the models to their full extent.

66

Chapter 5

Conclusion and Future
Works

All this project concludes that it is possible to detect faults using hardware
metrics, and it is even possible to do so without designing complex model
architectures. However, a lot of work needs to be done before the whole sys-
tem can work reliably, and in this final chapter, some hints for future works
will be presented. This part has the goal to be a call for actions to pursue
the final goal of this project: to build a system able to detect any type of
fault and take consequent responses.
As the thesis is divided into three chapters there will be presented improve-
ments for any of this chapter.

Simulation Environment Nowadays data are the core of each analysis,
without them it is impossible to make fundamental steps in any direction
and this project is not different. The analysis in 2 involved mainly stuck-at-0
faults, even if there was a minor experiment to demonstrate these models
can be applied to other types of faults, it is safe to say it is needed a broader
analysis. In fact, given the nature of transient faults, it is suggested to in-
vestigate the problem with many more runs than the ones collected for this
work.
In addition to that, it would be important to study the correspondence be-
tween PMCTrack and gem5 metrics. This is very useful to understand if the
approximation made in Section 4.2.3 holds for different processor architec-
tures or fault types. This requires to work with gem5 internal structure and
adapt the actual Linux kernel in use to work with PMCTrack.
Last because it requires modifying the checkpointing system of gem5, it would

67

5 – Conclusion and Future Works

be interesting to organize the output as a stream of data from the simulated
hardware. This permits the usage of models that will be explained in the
next paragraph.

Data analysis and Models After having collected other data, it would be
interesting to study different and more complex models to cope with different
binaries. For instance, as suggested in the paragraph before, if the output
is organized as a stream it is possible to put in place models able to work
with time, Recurrent Neural Network [41], or Spiking Neural Network [30].
These models could obtain much better results in detecting faults without
specializing on a single binary, so it is worth the analysis.
Also, it is important to evaluate other features selection. Maybe reducing
again the number of features, or maybe expanding the number of features
with data augmentation techniques to find the minimal set of attributes to
simplify the metrics extraction mechanism.

OS Implementation This paragraph is the most important because it
contains the improvements needed to implement the architecture described
in Chapter 4.
It is needed to expand the number of metrics supported by the kernel module
and it is a work that involves both hardware and kernel development.
After that it might be insightful to see the whole architecture in action on
the simple C program implemented in Section 4.6.
Also, there is a fascinating field of study that tries to bring machine learning
to work inside the kernel [2], so in the future, it could be possible to have
a self-contained kernel module able to extract and evaluate metrics without
relying on space-level applications.
At last, a proper analysis from the performance point of view is mandatory
to ensure the whole framework (PMCTrack or whatever module) is not too
heavy on the operating system.

In conclusion, what matters is that this field is engaging and it is stimu-
lating the opportunity of enhancing the current state-of-art operating sys-
tems by improving the reliability, which is becoming one of the keystones of
automotive, space, or cryptography applications.

68

Bibliography

[1] Swapnil Bhartiya. Linux in 2020: 27.8 million lines of code in the ker-
nel, 1.3 million in systemd. 2020. url: https://www.linux.com/
news/linux- in- 2020- 27- 8- million- lines- of- code- in- the-
kernel-1-3-million-in-systemd/.

[2] Ibrahim Umit Akgun, Ali Selman Aydin, and Erez Zadok. «KMLIB:
TOWARDS MACHINE LEARNING FOR OPERATING SYSTEMS».
In: ().

[3] Robert Baumann. «Soft errors in advanced computer systems». In:
IEEE Design & Test of Computers 22.3 (2005), pp. 258–266.

[4] Nematollah Bidokhti. «SEU concept to reality (allocation, prediction,
mitigation)». In: 2010 Proceedings-Annual Reliability and Maintainabil-
ity Symposium (RAMS). IEEE. 2010, pp. 1–5.

[5] Nathan Binkert et al. «The Gem5 Simulator». In: SIGARCH Com-
put. Archit. News 39.2 (Aug. 2011), 1–7. issn: 0163-5964. doi: 10 .
1145/2024716.2024718. url: https://doi.org/10.1145/2024716.
2024718.

[6] Andrea Borghesi et al. «Online anomaly detection in hpc systems». In:
2019 IEEE International Conference on Artificial Intelligence Circuits
and Systems (AICAS). IEEE. 2019, pp. 229–233.

[7] Leo Breiman. «Random forests». In: Machine learning 45.1 (2001),
pp. 5–32.

[8] Bringing Parallelism to the Web with River Trail. url: http://intellabs.
github.io/RiverTrail/tutorial/.

[9] Athanasios Chatzidimitriou, George Papadimitriou, and Dimitris Gi-
zopoulos. «HealthLog monitor: A flexible system-monitoring Linux ser-
vice». In: 2018 IEEE 24th International Symposium on On-Line Testing
And Robust System Design (IOLTS). IEEE. 2018, pp. 183–188.

69

https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
http://intellabs.github.io/RiverTrail/tutorial/
http://intellabs.github.io/RiverTrail/tutorial/

BIBLIOGRAPHY

[10] Yingyi Chen et al. «Application of fault tree analysis and fuzzy neural
networks to fault diagnosis in the internet of things (IoT) for aquacul-
ture». In: Sensors 17.1 (2017), p. 153.

[11] Cristian Constantinescu. «Trends and challenges in VLSI circuit relia-
bility». In: IEEE micro 23.4 (2003), pp. 14–19.

[12] Mathieu Desnoyers et al. «Supplementary Material for User-Level Im-
plementations of Read-Copy Update». In: MONTH (Jan. 2010).

[13] Kunihiko Fukushima. «Neocognitron: A hierarchical neural network ca-
pable of visual pattern recognition». In: Neural networks 1.2 (1988),
pp. 119–130.

[14] Peter B Galvin, Greg Gagne, Abraham Silberschatz, et al. Operating
system concepts. John Wiley & Sons, 2003. Chap. 9.

[15] Yaroslav Ganin et al. «Domain-adversarial training of neural networks».
In: The Journal of Machine Learning Research 17.1 (2016), pp. 2096–
2030.

[16] Adrian Garcia-Garcia, Juan Carlos Saez, and Manuel Prieto-Matias.
«Contention-aware fair scheduling for asymmetric single-isa multicore
systems». In: IEEE Transactions on Computers 67.12 (2018), pp. 1703–
1719.

[17] M. R. Guthaus et al. «MiBench: A Free, Commercially Representative
Embedded Benchmark Suite». In: Proceedings of the Workload Charac-
terization, 2001. WWC-4. 2001 IEEE International Workshop. WWC
’01. USA: IEEE Computer Society, 2001, 3–14. isbn: 0780373154.

[18] Greg Hankins. Linux Documentation Project. Linux Documentation
Project (LDP), 2001. Chap. 4.

[19] Sergey Ioffe and Christian Szegedy. «Batch normalization: Accelerating
deep network training by reducing internal covariate shift». In: arXiv
preprint arXiv:1502.03167 (2015).

[20] Jeremy Jordan. Introduction to autoencoders. 2018. url: https://www.
jeremyjordan.me/autoencoders/.

[21] Jeremy Jordan. Setting the learning rate of your neural network. 2020.
url: https://www.jeremyjordan.me/nn-learning-rate/.

[22] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic
optimization». In: arXiv preprint arXiv:1412.6980 (2014).

70

https://www.jeremyjordan.me/autoencoders/
https://www.jeremyjordan.me/autoencoders/
https://www.jeremyjordan.me/nn-learning-rate/

BIBLIOGRAPHY

[23] Kevin Lavery. «Discriminating Between Soft Errors and Hard Errors in
RAM». In: SPNA109. 2008.

[24] Dean Lee et al. «Convolutional neural net and bearing fault analy-
sis». In: Proceedings of the International Conference on Data Mining
(DMIN). The Steering Committee of The World Congress in Computer
Science, Computer . . . 2016, p. 194.

[25] Ki Bum Lee, Sejune Cheon, and Chang Ouk Kim. «A convolutional
neural network for fault classification and diagnosis in semiconductor
manufacturing processes». In: IEEE Transactions on Semiconductor
Manufacturing 30.2 (2017), pp. 135–142.

[26] 05 Feb 2019Marty Linux Kernel Documentation. CFS: Completely fair
process scheduling in Linux. url: https://www.kernel.org/doc/
Documentation/scheduler/sched-design-CFS.txt.

[27] Linux Kernel Networking. url: https://linux-kernel-labs.github.
io/refs/heads/master/labs/networking.html.

[28] Vita Loginova. Multitasking in the Linux Kernel. Workqueues. 2015.
url: https://kukuruku.co/post/multitasking-in-the-linux-
kernel-workqueues/.

[29] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. «Rectifier non-
linearities improve neural network acoustic models». In: Proc. icml.
Vol. 30. 1. 2013, p. 3.

[30] Piotr S Maciąg et al. «Unsupervised Anomaly Detection in Stream Data
with Online Evolving Spiking Neural Networks». In: arXiv preprint
arXiv:1912.08785 (2019).

[31] Ibomoiye Domor Mienye, Yanxia Sun, and Zenghui Wang. «Improved
sparse autoencoder based artificial neural network approach for pre-
diction of heart disease». In: Informatics in Medicine Unlocked (2020),
p. 100307.

[32] Shubhendu S Mukherjee, Michael Kontz, and Steven K Reinhardt. «De-
tailed design and evaluation of redundant multi-threading alternatives».
In: Proceedings 29th annual international symposium on computer ar-
chitecture. IEEE. 2002, pp. 99–110.

[33] George Papadimitriou et al. «Harnessing voltage margins for energy effi-
ciency in multicore CPUs». In: Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. 2017, pp. 503–516.

71

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html
https://kukuruku.co/post/multitasking-in-the-linux-kernel-workqueues/
https://kukuruku.co/post/multitasking-in-the-linux-kernel-workqueues/

BIBLIOGRAPHY

[34] RCU List. url: https://www.kernel.org/doc/Documentation/RCU/
whatisRCU.txt.

[35] Yara Rizk et al. «Deep belief networks and cortical algorithms: A com-
parative study for supervised classification». In: Applied Computing and
Informatics 15.2 (2019), pp. 81–93.

[36] J. C. Saez et al. «PMCTrack: Delivering Performance Monitoring Counter
Support to the OS Scheduler». In: The Computer Journal 60.1 (Jan.
2017), pp. 60–85. issn: 0010-4620. doi: 10 . 1093 / comjnl / bxw065.
eprint: https://academic.oup.com/comjnl/article-pdf/60/1/
60/10329287/bxw065.pdf. url: https://doi.org/10.1093/comjnl/
bxw065.

[37] Juan Carlos Saez et al. «On the interplay between throughput, fair-
ness and energy efficiency on asymmetric multicore processors». In:
The Computer Journal 61.1 (2018), pp. 74–94.

[38] Peter Jay Salzman, Michael Burian, and Ori Pomerantz. The linux ker-
nel module programming guide. 2007. Chap. 2.

[39] Jürgen Schmidhuber. «Deep learning in neural networks: An overview».
In: Neural networks 61 (2015), pp. 85–117.

[40] Rajalingappaa Shanmugamani. Deep Learning for Computer Vision:
Expert techniques to train advanced neural networks using TensorFlow
and Keras. Packt Publishing Ltd, 2018.

[41] Alex Sherstinsky. «Fundamentals of recurrent neural network (rnn) and
long short-term memory (lstm) network». In: Physica D: Nonlinear
Phenomena 404 (2020), p. 132306.

[42] Leslie N Smith. «Cyclical learning rates for training neural networks».
In: 2017 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE. 2017, pp. 464–472.

[43] Nitish Srivastava et al. «Dropout: a simple way to prevent neural net-
works from overfitting». In: The journal of machine learning research
15.1 (2014), pp. 1929–1958.

[44] Ashraf Suyyagh and Zeljko Zilic. «Real-time benchmark set synthesis
based on pWCET estimation and bounded hyper-periods». In: 2017
International Conference on Circuits, System and Simulation (ICCSS).
IEEE. 2017, pp. 129–133.

72

https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
https://doi.org/10.1093/comjnl/bxw065
https://academic.oup.com/comjnl/article-pdf/60/1/60/10329287/bxw065.pdf
https://academic.oup.com/comjnl/article-pdf/60/1/60/10329287/bxw065.pdf
https://doi.org/10.1093/comjnl/bxw065
https://doi.org/10.1093/comjnl/bxw065

BIBLIOGRAPHY

[45] Prasanna Tamilselvan and Pingfeng Wang. «Failure diagnosis using
deep belief learning based health state classification». In: Reliability
Engineering & System Safety 115 (2013), pp. 124–135.

[46] The Linux Kernel Archives. url: https://www.kernel.org/.
[47] The OS/161 Instructional Operating System. url: http : / / os161 .

eecs.harvard.edu/.
[48] Markus Thill, Wolfgang Konen, and Thomas Bäck. «Online anomaly

detection on the webscope S5 dataset: A comparative study». In: 2017
Evolving and Adaptive Intelligent Systems (EAIS). IEEE. 2017, pp. 1–
8.

[49] Tiedo Tinga. «Application of physical failure models to enable usage
and load based maintenance». In: Reliability Engineering & System
Safety 95.10 (2010), pp. 1061–1075.

[50] Understanding, Building and Using Neural Network Machine Leaning
Models using Oracle 18c. url: https : / / developer . oracle . com /
databases/neural-network-machine-learning.html.

[51] Gulay Yalcin et al. «FIMSIM: A fault injection infrastructure for mi-
croarchitectural simulators». In: 2011 IEEE 29th International Confer-
ence on Computer Design (ICCD). IEEE. 2011, pp. 431–432.

[52] Jason Yosinski et al. «Understanding neural networks through deep
visualization». In: arXiv preprint arXiv:1506.06579 (2015).

[53] Cheng Zhang et al. «A method of fault diagnosis for rotary equipment
based on deep learning». In: 2018 Prognostics and System Health Man-
agement Conference (PHM-Chongqing). IEEE. 2018, pp. 958–962.

73

https://www.kernel.org/
http://os161.eecs.harvard.edu/
http://os161.eecs.harvard.edu/
https://developer.oracle.com/databases/neural-network-machine-learning.html
https://developer.oracle.com/databases/neural-network-machine-learning.html

	Abstract
	General Introduction
	Simulations Environment
	Gem5
	Gem5 Architecture
	Gem5 Simulation Parameters
	Configuration Script
	Simulation

	FIMSIM
	FIMSIM basic functioning
	FIMSIM faults injection

	Data Collection
	Faults Injection
	Simulation Statistics
	Simulations Hardware

	Data Analysis and Models
	Data Engineering
	Data Preparation
	Features selection
	Training and Test Procedure
	Feature Analysis

	Models Analysis
	Introduction to machine learning
	Fault detection: related works
	Proposals

	Experiments
	Neural Network and Transfer Learning
	DANN
	Sparse-Stacked-AutoEncoder

	Fault types
	Conclusion

	OS implementation
	Introduction
	Linux Kernel
	Linux Kernel Development

	PMCTrack
	PMC
	Architecture
	Functionalities
	Limitations

	Proposed Infrastructures
	Completely in-kernel infrastructure

	Kernel Module Infrastructure
	Kernel Module Facilities
	Monitoring system

	User-level Infrastructure
	Experiments
	Conclusion

	Conclusion and Future Works

