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Abstract

Nowadays, the concept of Immutable Decentralized/Centralized Distributed Ledger Technol-
ogy, otherwise called Blockchain, is rising in many fields of the society. It is easy to hear about
it in fields as energy [48], automotive [47], economy, voting, law, insurance, cloud computing,
supply chain management, etc. [34].

However, many problems are present. In particular, from a technological point of view,
the problem of scalability-intended as the capability to maintain the network, composed by a
very huge number of nodes, up, with a reasonable operational velocity- should be solved in
order to be really suitable in production; as well as the question of maintaining a high level of
security in terms of data exchanged and identity of members, is an important issue, and has
taken central stage thanks to legislation like the European Union’s General Data Protection
Regulation (GDPR). Finally, it is not always guaranteed that the system is truly decentralized.
This is known as the Blockchain Trilemma. It is a fundamental problem that must be addressed
before a global adoption of blockchain ecosystems.

To face such a problem, a remarkable number of solutions have been proposed in recent
literature. In particular, several types of consensus’ protocols have been conceived, in order to
achieve scalability and velocity. In particular the Proof of Stake consensus approach was the
first to show that a balanced combination of all these three properties may be possible.

Within this context, the main goal of the thesis’ job is to design a Neural Fairness Consensus
Protocol (NFCP) to validate transactions while, at the same time, preserving the privacy of the
identity members, as well as the data exchanged into the network and assuring a scalability for
the entire system.

The NFCP is a blockchain-based distributed ledger secured using neural networks and
machine learning algorithms, enabling a permission-less participation in the process of transition
validation while concurrently providing strong assurance about the correct functioning of the
entire network.

1



Contents

1 Concepts Introduction 4
1.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 What problems does a blockchain solve? . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Consensus protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Consensus’ procedure steps . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Blockchain fork events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Proof of Work consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Proof of X consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.5 Hybrid consensus: single committee . . . . . . . . . . . . . . . . . . . . . 14

2 Neural Fairness Consensus Protocol 15
2.1 Consensus Protocol Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Blocks and Transactions definition . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Consensus logical steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Services composing the Consensus 22
3.1 Utility Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Utility Factor Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Utility formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Baseline Utility Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Reinforcement Learning Utility algorithm . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Discount Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Q-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 The Bellman Optimality Equation . . . . . . . . . . . . . . . . . . . . . 28
3.2.5 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.6 Deep Q-Learning (DQL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.7 DQN utility model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.8 DQN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.9 Hyperparameters and Metrics . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.10 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.11 Train Main Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.12 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Conflict of Interest (CoI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Board Election Algorithm: Cryptography Lottery . . . . . . . . . . . . . . . . . 37

3.4.1 Is the Cryptography Lottery algorithm a Pseudorandom Generator? . . . 40

2



4 Obtained results 42
4.0.1 Blockchain Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.0.2 DQN evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion 48
5.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Lottery Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Page 3 of 72



Concepts Introduction

Before to describe the protocol and its features, a brief introduction to the Blockchain
technology is given, in order to underline fundamental concepts as well as terminologies, for
making the rest of work more easy to follow. In particular, the main components of a blockchain
system are described, and the consensus procedure is discussed in depth allowing to understand
its crucial rule in a blockchain system.

1.1 Blockchain

The starting point of the blockchain technology is often indicated with the date of the
published paper "Bitcoin: A peer-to-peer Electronic Cash system [28], by the pseudonym
Satoshi Nakamoto1. However, similar technologies were already known. In particular, the idea
of immutably chaining blocks of information with a cryptographic hash function appears in the
1979 dissertation of Ralph Merkle, in which Merkle explains the concept of Merkle hash trees,
which are crucial tools for the blockchain, as explained soon.
Arguably, many of the blockchain’s elements are present in the David Chaum’s 1979 vault
system. Chaum describes the design of a distributed computer system that can be established,
maintained, and trusted by mutually suspicious groups [27].
However, the work done by the pseudonym Satoshi Nakamoto (SN), was the first to define a
digital-currency in which the double-spending problem is solved without the need of a trusted
authority or central server. This was possible thanks to the mechanism of an ordered list of blocks
composed of transactions which are cryptographically secured by the Proof of Work (PoW)
consensus protocol or Satoshi consensus to prevent double-spending in a trustless environment.

The double-spending problem arises when two parts want to exchange some stake, using
some digital payments channel, but there is no possibility to certificate that such stake was
already been used. In Finance this is known as accountability.
In order to better understand the problem, it may be useful to catch up how transactions are
defined in a digital payment.

Transactions in a digital Payment: in a digital payment each transaction should be
created, propagated on the network, validated, and finally added to a ledger of transactions.
A transaction implies a change of ownership of a particular stake. In figure 1.1 a chain of
transactions is shown. Let assume Alice wants to send money to Bob. It means a quantity q of
Alice’s money must pass from the Alice’s balance to the Bob’s balance, so a change of money’s
ownership must happen. Ownership of money in digital payments are defined with the use of the
Digital Signature DS. A DS is a cryptographic tool used for providing authenticity, integrity

1consequently the Bitcoin term is easily jointed to the term Blockchain.
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1.1

as well as non-repudiation, in the context of asymmetric cryptography. When Alice wants to
send money to Bob, she must compute a message defined as the hash of the Bob’s public key
and the hash of the transaction containing the quantity of money to be transferred. In order
to authenticate the message Alice firms it with its private key, while Bob verifies the message
authentication with the Alice’s public key. At the end of the story, the ownership of a stake has
passed from Alice to Bob.
Until now, there are no possibility to establish if such transaction has been already used many
times. Indeed, Alice may be send the same authenticated message to many persons just using
the same transaction hash but changing the Owner’s public key. Here is where the role of a
third trusted entity comes into play. If there is a third person, for which Alice and Bob trust, a
such person may take into count the ownership passage and memorizing when such transaction
has happen saving it on a ledger. This is, more or less, what a central server, like a central
bank, does when Alice sends money to Bob. The Alice’s bank sends money from the Alice’s
balance to the Bob’s balance located at the Bob’s Bank. Both balance banks are updated by the
central banks, that acts as a Trusted-Third-Party (TTP), assuring to avoid the double-spending
problem.

Figure 1.1: How Digital Payment transactions are defined.

Satoshi Nakamoto understood that in order to solve the double-spending problem each
transaction should be seen by all the nodes and all of them must agree on a history describing
when such transaction was created. In this way the TTP’s role is assigned to nodes of a
distributed peer-to-peer network. In this context it is the network that assures a validation
of transactions, and the distributed ledger where all those transactions are memorized is the
blockchain: a chain of hashed blocks containing several transactions that have been validated
by the network when a distributed consensus is reached.

In figure 1.2 a simple Bitcoin chain, composed of three blocks, is shown.
It is possible to define a Bitcoin block as follows:

• A Tx_root: it is a Merkle root hash representing a bunch of transactions. The crypto-
graphic hash function used assures that if some transaction will change even in a minimum
part the Tx_root will change too.2
• Prev_hash: this is the hash of the previous block of the chain.
• A timestamp, indicating the time in which such block was created.

2this phenomena is known as the avalanche effect of cryptographic hash functions [42].
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1.1

Figure 1.2: Bitcoin blockchain architecture.

• a Nonce is a value to be used just once, it is founded by the miner and its use is related
to the PoW mechanism: the first peer that founds it becomes the leader and therefore
gets the right to propose a block of transactions to be validated.

Once a new Block is created it will be chained with a previous block via its own Hash value.
This mechanism allows to know if in the mean time some transaction has changed, because in
this case the block hash must changed too, besides offering a way for establishing a chronological
shared memory. A bunch of transactions are hashed into a unique Merkle root, forming the
Tx_root hash. The Merkle tree’s properties allow to detect even the minimum changing in any
transaction. This allows to avoid tampering actions.
Summarize, a blockchain is a sequence of blocks, which holds a complete list of transactions
records which have been verified through a distributed consensus in an untrusted environment.
Transactions between peers are executed using asymmetric cryptographic primitives. In particular
digital signature is used to exchange transactions. Each peers has its own pair of private and
public keys. The private key is used to sign a transaction, the public key is used to verify a
transaction.
It can be concluded that:

• A blockchain allows to exchange transactions of goods and values, assuring accountability
without the needed of a Trusted-Third-Party (TTP);
• these transactions are grouped into blocks;
• blocks are chained together, creating a chronological order over the blocks and therefore
about the transactions contained within them: each block contains a reference to a
previously founded block (the hash block);
• the transactions that must be validated are decided by an elected node: the leader. It is

the leader that proposes a block of transactions to be validated, and therefore decides the
chronological order of transactions validation. In Bitcoin the leader is selected through
the PoW : a cryptographic game, where the winner is the first peer that finds a nonce
that combined with the block header results in a hash Hb with a given number of leading
zero-bits, or target.

A blockchain system can be classified in according to the used rules for accessing to the system
itself. When anyone can get access to the system without any restriction, the blockchain is said
to be permissionless. Bitcoin and Ethereum [43] are examples of permissionless Blockchain.
Here, any peer can join and leave the network, as reader and writer at any time. When the
access to the network is allowed to only authorized limited set of readers and writers, the
system is said to be permissioned blockchain. Here, a central entity decides and attributes the
right to individual peers to participate to the blockchain operations. The most widely known
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1.2

permissioned blockchain is Hyperledger Fabric [22].
Depending on the particular types, blockchain systems allows to reach some features, [55], [24]:

• Decentralized: in a centralized system, each state change must be validated through the
central trusted agency acting as a third party. In a blokchain system there is no need
of a third party for validating changes of the system, because the distribute consensus
algorithm allows to maintain data consistency between distributed nodes, and therefore a
consensus can be reached in an untrusted environment. A clear advantage of decentralized
systems, is that the system is able to manage failure without compromising the entire
normal process, because there is no a central entity that produces bottlenecks.
• Public Verifiability: it is intended as the possibility to anyone to verify the correctness of

the state of the system. In a permissionless blockchain system, even if the state transition
is confirmed by a restricted set of participants, anyone, however, can verify the state of the
ledger, verifying if or not its state has changed in according to the protocol. In addition,
all observers may have eventually the same view of the ledger. In a centralized system,
the state transactions are not directly observable by anyone.
• Integrity : ensures that information is protected from unauthorized modifications. It is
closely related to public verifiability, because if anyone can verify the states changes, it
can be verified also the integrity of the information. In a centralized system integrity is
provided only if the system is not compromised.

1.2 What problems does a blockchain solve?

Bitcoin and blockchain technologies have shown big advantage in finance applications, where
the possibility to reach consensus in an untrusted environment without relying on an always
on-line TTP gives a clear advantage with respect to a centralized scenario, allowing to decrease
cost for managing transactions.
However, a blockchain allows to solve specific problems not all problems. It is important to have
a big picture of what a blockchain can solve in order to better understand when its utilization
can be profitable or not.
In according to the analysis of [24], we analyse some features that clarify when the use of a
blockchain system can be profitable or not.

In figure 1.3 a flow chart for helping in a decision making process is shown. In general a
blockchain system allows multiple untrusted parties to agree on the same history of events about
states changes of a system, without utilizing a TTP.
The flow chart 1.3 explains that a blockchain system is useful when:

1. Database: there is something to store;
2. Writers: there are multiple writers that do not trust each other;
3. TTP: it would like to avoid to rely on a TTP.

when all the above items are present, the analyse continues to distinguish cases:

• if all writers are not known a permissionless Blockchain should be preferred. Otherwise, if
all the known writers do not trust each other if public verifiability is not needed a private
permissioned blockchain is suggest otherwise a public permissioned one is preferred.

When the above items are not present, a blockchain system could be useless, and its use
should be avoid.
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1.2

Figure 1.3: Do you need a blockchain? credit [24].

Doubtless, a blockchain acts as a distributed ledger, so if there are nothing to store its use is
useless. If there is only one writer, intended as an entities with write access in a typical database
system, a blockchain should be avoided, because in this case a regular database is enough, both
for efficiency and ease of use. However, when multiple writers are present a blockchain could be
preferred. But still, if all writers trust each other, a database with shared write access should
be used, because data integrity would be guaranteed equally.
Finally, the question to ask is if it would be better to remove the intermediary, if there is one,
and therefore choosing to use a blockchain? a blockchain utilization allows to reduce transactions
cost with respect to the use of a TTP, in addition it implies automatic reconciliation, new
regulation and robustness against central attacks, therefore, its use should be preferred.
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1.3

1.3 Consensus protocols

An important blockchains feature is its capacity to offer disintermediation: multiple untrusted
parties can directly and transparently interact with each other without the needed of a trusted
intermediary. This makes blockchains well suitable for finance applications, as well as supply
chain applications in general. However, its spreading is directly correlated to its scalability and
performance. These properties are closely linked to the specific consensus protocol a blockchain
system uses.
In this section, the state of art of consensus protocols are reported, as well as a deeper under-
standing on what a consensus protocol is and solves in a distributed system, in order to outline
the main targets a consensus protocol should follow. A scheme for validating performances of
consensus protocol is exposed, in according to [30], [31].

In general, a consensus protocol defines how processes3 of a system can agree on requests
that will produce a change on the current state of the system itself.

The problem of achieving a consensus in a distributed system is not new, indeed -even if in
a different environment with respect to the blockchain- several approaches were investigated in
the literature, producing interests and studies on Fault-tolerant distributed consensus protocol.
L. Lamport et al. [32], defined the Byzantine General Problem, where possible anomalous
system’s behaviours that give conflict information to different parts of a system, are sketched
abstractly in terms of a group of generals of the Byzantine army camped with their troops
around and enemy city. In this context the main goal is to reach a distributed consensus, even
if some faults (Byzantine Faults) are present. When this is reached, the system is defined as
fault-tolerant, meaning it is able to tolerate a number of failures in a network continuing to
work even in the presence of faults. Faults are solved via replications, where several copies of
data are distributed across all processes in a distributed system. In particular, State machine
replication (SMR) is a de facto technique that is used to provide replication services in order to
achieve fault tolerance in a distributed system [35], [36].
Process failures can be separated into two types: crash failure, when nodes may fail at any time,
stopping to process, emit or receive any messages, and Byzantine failure, when failed nodes may
take arbitrary actions-including sending and receiving crucial messages to defeat property of
the consensus protocol. In according to these two types of failures, Fault-tolerant consensus
protocols can be classified into two categories:

• Crash fault-tolerant (CFT): covers only crash faults, excluding the possibility of
faults created by malicious entities4;
• Byzantine fault-tolerant (BFT): deals with types of arbitrary fault, even malicious.

Note that, BFT consensus protocols are able to manage even crash failures, so BFTs are a
bigger set of consensus protocol than CFTs.

Two main properties a consensus protocol should follow are, [46], [40]:

• safety/consistency: if an honest node accepts (reject) a value, other honest nodes must be
accepts (reject) the same value.
• liveness: requests from correct clients are eventually processed.

3a processes can be a machine in a distributed systems or a nodes in a network.
4a malicious entity is defined as a processes that does not follow the rules of a protocol.
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1.3.1

To sum up, Safety property assures that nothing bad happens, Liveness property assures
that something good eventually happens.
There exists four accepted requirements a BFT protocol must have [44], [46], which integrate
and formalize, the objective of safety/liveness :

• Termination: every non-faulty process decides an output.
• Agreement: every non-fault process eventually decides the same output ŷ.
• Validity: if every process begins with the same input x̂, then ŷ = x̂.
• Integrity: every non-fault process’ decision and the consensus value ŷ must have been

proposed by some non-faulty process.

These four requirements provide a general target for distributed consensus protocols. Ter-
mination and validity represent the system’s liveness. Agreement and integrity represent the
system’s consistency/safety.5

The main contribute of these researches is that, for a distributed system, there exist a
minimum available resources to be used, in order to reach a fault-tolerant consensus6. In
particular, in a system where faults are not created by malicious entities (CFT consensus), the
minimum number of processes required for consensus is lower bounded by 2f + 1, where f is the
number of faults. In systems where faults can be produced even by malicious entities (BFT
consensus), the minimum number of resources is lower bounded by 3f + 1, [37] [38].

Another crucial distinction in distributed systems is the way nodes of the system are
coordinated. This distinction defines the Network synchrony. There are three levels of synchrony,
name synchronous, partially synchronous and asynchronous, often assumed in the literature
[44], [46] :

• In a synchronous network, operations of processes are coordinated under a same time
reference. In each round all processes perform the same type of operations. This can be
achieved by a centralized clock synchronization service and good network connectivity. In
practical terms, a network is considered synchronous if message delivery is guaranteed
within a fixed delay ∆.
• In a asynchronous network, operations of processes are hardly coordinated, due to the

absence of a reference time between processes. There is no delay guarantee on a message
except for its eventual delivery. And when some type of coordination between processes
exists, it is based only on message delivery events.
• Finally, a partial synchronous network, operations of processes are loosely coordinated, in

a way that message delivery is guaranteed but with uncertain amount of delays.

Fisher, Lynch and Paterson have proven that under asynchronous case, consensus cannot
be guaranteed with even a single crash failure [49]. This is known as the FLP impossibility.
However, this impossibility can be overpassed, using randomized decisions making and a relaxed
termination property, as for example Nakamoto consensus does [29]. Moreover, blockchains
systems are based on Peer-to-Peer networks, typically, formed over a reliable transport protocol
as TCP, this allows to approximate the environment as at least partially synchronous, especially
thanks to the TCP’s retransmission mechanism.

5We will see how these four requirements can be generalized even for a blockchain consensus protocol.
6Resources can be processes or communication links.
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1.3.1

1.3.1 Consensus’ procedure steps
The goal of a consensus procedure is to ensure all participating nodes agree on a common

transactions chain history. In according with the previous discussion, about distribution systems,
It is possible to individuate four goals a consensus procedure should aim, in a blockchain context
[31]:

• Termination: At every honest node, a new transaction is either discarded or accepted into
the blockchain, within the content of a block.
• Agreement: Every new transaction and its holding block should be valuated in the same
way by all honest nodes. An accepted block should be assigned the same sequence number
by every honest node.
• Validity : If every node receives a same valid transactions/block, it should be accepted

into the blockchain.
• Integrity : At every honest nodes, all accepted transactions should be consistent with

each other (no double-spending). All accepted blocks should be correctly generated and
hash-chained in chronological order.

Termination and Validity requirements represent the liveness property, for which some good
things eventually happen. Agreement and integrity properties assure a chronological agreement
is established between honest nodes, in order to have a coherent transactions chain, where the
double-spending problem is avoided as well as any tampering action, thanks to the hash-chained
mechanism. These are the minimum goals a blockchain consensus procedure should aim.

In according to the work of Yang Xiao et al. [31], we identify five procedures steps that
formalize a blockchains consensus entire procedure. We explain them in the context of a
Committed based Proof of Stake. In figure 1.4 the five steps forming a consensus procedure are
shown. The green boxes contain steps that each committees board must do as an entity, while
white boxes contain step the entire system as a collective must do.

We said a consensus procedure aims to assure an agreement, between distributed nodes, on
the same transactions chain history. The entire procedure starts from a Block proposal, done by
a Leader, in which an elected Leader node, makes a proposal of some transactions it collected.
In order to be validated, the transactions must be analysed by all other committees board.
An information propagation step is needed, where transactions inside the proposal block are
propagated in the network, together the leader response, in order to reach the committees board.
When the under review transactions have reached all committees board, the validation procedure
can start. Here, elected nodes start to analyse the transactions, checking their coherence, in
terms of double-spending and ownership. This step is done at the time t, by looking at the
already validated blocks constituting the blockchain from t-1 to eventually t=0 (the block
genesis). Then, in the Block finalization step, the committee has to find an agreement, looking
at each committee’s board responsum. Here, several rules can be used. In general the agreement
is reached, when at least 2/3 of committees board express a responsus equal to the leader’s
responsus (BZT’s rule). Besides the same version of the responsus between committee and the
Leader, a new block should be added if and only if the block extends the knowing longest-chain
at the nodes. This is the longest-chain rule used in Bitcoin blockchain. This rule avoid to
incentive forks events, for which, at a certain point, different nodes may have different replica of
the blockchain.
Finally, the incentive mechanism is needed in some configuration. This step is needed in order to
incentive honest participation and creating new tokens. This is a mechanism that isn’t present in
distributed systems, where machines are supposed to be fixed, and the continuous participation
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1.3.2

Figure 1.4: Five components that define a a consensus procedure

of honest parties is presumed. In a blockchain system, the network is realized by a peer-to-peer
network formed by distributed nodes around the entire globe, each of them following individual
scopes. An incentive mechanism encourages honest participation, by rewarding honest nodes, so
that to sustain the system’s reliable operation.
These steps are present in every consensus procedure, however consensus algorithms may differ
in several methodologies. Before to discuss some of the most famous consensus algorithms, an
important problem that can affect the validity of a blockchain is described.

1.3.2 Blockchain fork events
A fundamental assumption for assuring a distributed consensus is that there must be a data

consistency between peers. Transactions validations are tracked in the blockchain, and each
peer must keep its own replica of the blockchain locally. It is crucial that such replicas are
consistence between them, because the validity of transactions is verified in according to them.
Let’s describe when data consistency can be lost between peers.
Each blockchain has its own genesis block : a root block of the directed tree forming the
blockchain. The genesis block is an ancestor of all blocks for definition. The blockchain is
defined as the longest-chain from any block to the genesis block. The distance between a block
b and the genesis block is referred to as its block height hb.
The genesis block g has hg = 0, for definition. The block with maximum height, i.e. the block
that is furthest away from the genesis, is referred to be the blockchain head, with height hhead.
Let Bh be the set of blocks with height h. When |Bh| > 1, with h = hhead, a blockchain forks
is happen. During a blockchain fork nodes in the network do not agree of which block is the
blockchain head, therefore as blocks are generated they are attached to different blockchains,
forming an inconsistency between local replicas.

In figure 1.5 a blockchain fork is shown. In PoW blockchain based, if at a same time, two o
more nodes find a valid nonce, they gets the right to propose a new block, at the same height.
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1.3.3

Figure 1.5: Blockchain fork: the common share blockchain is splitting into two branches, therefore different
nodes may have different replica of the blockchain.

If this happens, different cluster of nodes may receive different blocks to be validated, and since
all of the received blocks, have the same height, they both can be considered blocks head, and
therefore they will be added to the existed blockchain, forming several blockchains branches. In
this situation, nodes have a different local replica of the blockchain, therefore there is not more
data consistency.
This situation can be very dangerous. Bitcoin never commits a transaction definitely. Every
transaction can be in any time un-validated, if it is founded a longest chain started below the
block that contains this transaction. Therefore, when a fork event happens, if a single entity
could control a majority of the computational power of the network, and thus be able to find
nonces in a faster way than other nodes, it could revert any transaction.
Decker and Wattenhofer [39] analysed how information is propagated in the Bitcoin network,
considering transactions and blocks propagation time. They deduce that propagation delay is
strictly related to the probability of blockchain forks events. In particular, their conclusion is
that increasing the block size and decreasing inter block interval increases the probability of
fork events. This implies that as Bitcoin utilization increases the propagation delay increases
too, because there will be more transactions to be validated, consequently block size will be
larger than before. In addition, if the inter-block time will be reduced, for assuring block
creation, and therefore validation of transactions, in shorter times than before, the probabil-
ity of fork events will increase, and therefore Bitcoin network will be more sensible to 51% attacks.

Fork events could happen in asynchronous environment as peer-to-peer networks are. Such
events should be avoided, and several attempts have been done, for mitigating or eliminating
them. Now, several consensus algorithms are explained, as well as their attempts to avoid fork
events.

1.3.3 Proof of Work consensus
Proof-of-Work (PoW) was first proposed by Dwork and Naour in 1993 [30] as a technique

for combating spam mail. Sending an email is a free action: it is possible to send multiple emails
without spending any work. PoW requires to spend some work in order to get the right to take
an action. Nakamoto consensus is derived from Hashcash [cite]. It replaces Hashcas’s SHA-1
with two successive SHA-2 hashes, and introduce the possibility to defines a minimum value for
considering the hash valid, introducing a target integer value t. Thus, the difficulty of the game
is controlled by varying the target value: decreasing t increases the number of guesses (and thus
work) required to generate a valid hash. The nodes that generate hashes are called miners and
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the process is referred to as mining. The security of Nakamoto consensus relies on economically
incentivising miners to validate and mine blocks, by rewarding them with new tokens.

1.3.4 Proof of X consensus
PoW is not sustainable as well as not really decentralized, allowing easy formation of

centralization scenario. These limitations motivated a new class of consensus protocol based
on Proof-of-X, where wasteful computations are replaced with more sustainable proof. Proof-
of-Stake [25], [26], is one of the most famous new consensus approach, in the blockchain
environment. In PoW, participants vote on new block weighted by their investment such as
the amount of the currency held in the blockchain. A common theme in these systems is about
select a random peer as Leader among the stakeholders, which then appends a new block to
the blockchain. PoS results in two new attacks compared to Nakamoto consensus. The first is
called nothing-at-stake attack, where miners try to extend any potential fork, for gaining control
on the network. The second attack is called grinding attack where a miner re-creates a block
multiple times until it is likely that the miner can create a second block shortly afterwards. This
attack can be avoided by assuring that a miner is not able to influence the next leader election,
by using a randomness source as seed of the election.

1.3.5 Hybrid consensus: single committee
In PoS there is a single consensus node suffers from poor performance as well as safety

limitations as weak consistency and low fault-tolerance. These problems have generated new
consensus procedure based on multiple consensus nodes forming a committee. Two of these
committee consensus are Algorand [9], and Snow-White [52], where the committee members
are selected for each epoch using randomness generated based on previous blocks. The NFCP
uses a similar technique for selecting the committee members.
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Neural Fairness Consensus Protocol

The Neural Fairness Consensus Protocol (NFCP) aims to offer scalability as well as decen-
tralization in order to achieve a balanced trade-off in according to the trilemma problem [20].
The NFCP allows to achieve a distributed consensus, making use of just a selected sub-set of
nodes of the entire distributed network, which will define a board committee that decide about
the correctness of a block of transactions.
In particular, it is associated an importance to each node in according to its utility on the
network. The grade of importance is represented by an utility factor.
Nodes having a high utility factor have a high probability to be part of the consensus procedure.
Since, the utility factor will change over time, in according to the nodes behaviour in the network,
the probability each node has to be part of the consensus procedure will change over time too.
In addition, in order to perform an ulterior selection of the board committee for the consensus
procedure, another heuristic algorithm is designed. It solves the Conflict of Interest problem,
for assuring that not always the same nodes participate to the board committee. This assures
to reach fairness in the protocol.

The main contribute our protocol gives, is the capacity to assign a level of importance to
each node in the network, and therefore managing the consensus phase, by using an automatic
learning algorithm, identified as a Reinforcement Learning (RL) ones.
RL models are known for their capacity to learn by errors in a unsupervised way, driven by a
global scope, that several agents have in common.
Actually, there are differences between unsupervised and RL models. Unsupervised models aims
to find similarity between data, searching for hidden structures, without imposing any general
rules. A RL model allows several agents to take actions, inside an environment by following a
same policy, in order to maximize a reward signal.

A blockchain creates a community, where different entities, that are following specific rules,
can exchange information, saving it and collaborate for finding distributed agreements. This is
possible if and only if the network is composed by a number of honest entities grater than the
possible number of dishonest entities.
Training a learning model to assign an utility to nodes in the network, in according to outcomes
of events internal to the network itself, allows to create an intelligent environment able to not
only detect attacks but even to predict behaviours nodes that are likely to generate attacks to
the network.

In this chapter, a big picture of the entire system as well as some important definitions as
transactions, blocks, are given, in order to understand how all the micro-services composing the
protocol are dependent from each other.
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2.1 Consensus Protocol Architecture

Before to describe the micro-services that compose the consensus protocol, let’s have a big
picture of the general architecture, in order to define the procedure needed to validate a new
proposed block.

Let’s define some features that allows to summary the NFCP:

• Weighted nodes: utility factor: To prevent Sybil attacks, a neural network model
assigns a weight to each node. The protocol is designed to guarantee consensus as long as
a weighted fraction (a constant greater than 2/3) of the nodes are honest. The weight
of the nodes is based on the score that the neural network calculate each time that a
node is elected to be part of the committee and vote for a set of transactions as well as
considering its behaviour inside the network layer.
• Consensus committee The system achieves scalability by choosing a committee that is
a subset of nodes that are randomly selected by a pseudo random generator lottery, in
order to reach a consensus. The first place of the lottery is designed for the leader. The
leader is the node that starts the consensus phase. All other nodes observe and broadcast
the protocol messages, which allows those that are part of the committee to agreed upon
the proposed set of transactions.
• Cryptographic Random Lottery A Cryptographic Random Lottery is executed start-

ing from the block hash, for finding random peers to form the consensus.
• Reinforcement Learning model The outcome of each committee members, about
transactions, is taken by a dedicated RL model. It re-computes the positive scores of
the peers, weighted the positive votes with their voting power. The nodes composing the
system will have the possibility to learn a new more powerful model for predicting an
utility to assign to nodes.

Using a RL model implies to take into account an essential phase of training, during which
the model learns by its own errors. In a blockchain system errors may refer to accept some
fraud transactions and this means an economic cost to be paid.
In order to manage the train phase, the entire blockchain will be initialised first of all in a
Test-net version, where it is possible to train the agents without compromise anything. Indeed, in
the Test-net version, anyone will be able to join the network and make transactions of test-coin
as well as trying to attack the network itself. The entire system will be exposed to several
attacks and scenarios in order to learn how manage them, and its understanding will be verified
by re-proposing the same attacks and looking to the system’s response. When the network will
show the right balance, being able to predict and detect attacks, besides concluding in a correct
way the normal consensus procedure, the network will be switched to a main-net phase, where
the exchanged tokens will be real tokens.

In figure 2.1 a schematic picture of the logical flow the system must following, in the Test-net
phase, is shown. Each time a new block is added, agents, in an independent way, collect
parameters of other agents, in order to assign an utility to them. In this way, the utility factor
is computed by other agents for other agents, avoiding cheating. Once utilities are assigned to
nodes, the lottery can start, for building the committee. The lottery acts in a way to increase
the probability of extracting winner tickets belonging to nodes with an utility as high as possible.
The elected leader will propose a new block, which is analysed by other committee members,
in order to find a distributed consensus. Finally, each agent will receive rewards from the RL
model, in according to its taken actions. At the very beginning phase, a genesis block is created
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Figure 2.1: Logical flow for the Test-net phase: the first time the block created is the genesis block, while utilities
are initialised to random values.

and all parameters are initialized in a random way. As the system keeps going to manage new
block creations, such parameters will be adjusted in according to the RL model.
In the Test-net phase, the system is continually collecting benchmarks in order to evaluate how
the system is learning. In this phase, a convergence is not assured, therefore there may be the
possibility that the network does not reach the right parameters to be passed to the main-net
phase. In this case, the system will be recomputed by changing the considered features as well
as the possible actions an agent can take.

Let us focus on the assigned utility phase. This can be thought as a learning algorithm that
nodes must running in order to assign an utility to only specific nodes. These selected nodes
will have a probability to be part of the committee, and therefore participating to the lottery.
In figure 2.2 is reported a flow chart describing the logical flow to follow for individuating the
sub set of nodes having the right to be part of the board committee for establishing the final
consensus. It can be thought as a loop the system executes each time a new validated block
hash is available.
The first step is about asking if the node’s total balance is greater than a specific threshold,
if yes it is possible to associate an utility factor to this node, otherwise the node has not the
right to be assigned to an utility as well as to participate to the consensus procedure. This
step assures a first selection in according to the idea of the Proof of Stake consensus procedure
[25, 26], where nodes having too few stakes have less interest in the network than nodes having
more stakes. Once all stakeholders have their utility, the second step is about being sure of
deleting nodes having some conflict between each other nodes. This is a new feature that we
are adding in order to achieve a good level of Fairness, assuring that nodes will have the same
chance to be part of the block formations phase, avoiding always the same nodes participate to
the consensus.
Finally, the subset of node having the right to be part of the consensus procedure is defined.
Once this sub-set of nodes (stakeholder) is individuated, the committee election can start. This
step requires to elect a Leader together others elected members. The Leader will propose a Block
to be validated, the other elected members have to generate a responsus about the transactions
contained in the Block proposed by the Leader. At the end of the procedure a new block will
be added together its validated block hash, so the loop can start again.
From now onwards, we refer to nodes having the right to be associated with an utility factor as
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stakeholders, because nodes having an utility factor have the right to be part of the consensus
algorithm.

Figure 2.2: Logical flow of the procedure executed for establishing which nodes have the right to be part of the
board committee.

2.2 Blocks and Transactions definition

Now, first of all, important elements as blocks and transactions format must be defined.

The way blocks and transactions are defined in our protocol, makes it different from others.
In our idea, the blockchain starts with a predefined number of tokens, belonging to the genesis
address. Tokens are defined as points of a Elliptic Cryptographic Curve (ECC), this is needed
for working with the Cryptographic Lottery. A token Ts is defined by a pair Ts := (xs, ys), where
xs and ys are the coordinates of a specific Elliptic curve’s point.
Each time, a transaction between peers happens, a specific subsets of tokens must change
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ownership, moving from the sender to the receiver. This is done by updating the linked-list of
these specific tokens.

A transaction Trk of the token Tn, from As to Ar, is defined as:

• from: As; to: Ar; token: Tn; ownership: As’s DS

where, from indicates the starting address, to the received address, token the specific token
(point of the ECC) of this transaction, and ownership is a digital signature of the starting
address, indicating the authenticity, as well as the non-repudiation of the transaction.1 Each
time a transaction has reached a node, the node has to check its format consistence as well
as the ownership proof, and if and only if these requirements are verified it can flooding the
transaction to its neighbours. This step allows to avoid flooding the network with malicious or
incorrect information.

As already said, each token has its own linked-list containing all confirmed ownership
(address) changes. This can be thought as the Token’s history. For a token Ts its own linked-list
is defined as shown in figure 2.3, where a possible token’s history is reported:

Figure 2.3: Ts’s linked list: the token Ts has moved from the address Aj to the address Ak. The final owner is
Ak because it is the tail of the linked list.

In figure 2.3, the Ts linked list is shown.
The Ts history starts, as the history of any tokens, from the genesis address indicating with
the symbol: (-). The address Aj was the first address to get the token Ts, which was finally
transferred to the address Ak. The address Ak is the last owner of the token Ts, because it is
the tail block of the linked list.

A linked list of each token can be thought as the entire history of ownership’s changes of
such token. This approach allows to solve the double-spending problem, when transactions are
verified by the committee members.

Each time a transaction must be verified in terms of double-spending, a check that only the
committee members have to do,2 the verifier has to:

1. find the block containing the token’s tail linked list of the transaction;
2. check if the tail box of the linked list has the sender address as node.
3. discarded or admitted the transaction, in according to the previous check.

From the previous items, we can formalise the Blocks content:

• The genesis block is a particular block, which contains all the linked list of all possible
tokens, where the unique owner is the genesis address (-). This defines the maximum size
of a block.

1this helps to avoid that any address can send transactions on behalf of others.
2this is a different step of the simple action of checking the correctness of transaction format. Indeed, in this

step the double-spending check is performed.
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• A generic block contains all the last box of the linked list of tokens (the tail box) that were
present in the last validated transactions as well as the Merkle root of the transactions.
In other words, each block contains only the linked list of the tokens for which a change of
ownership have been validated in the last consensus procedure. In particular a new block
contains:

– The previous block hash;
– The current block hash;
– The timestamp of the block creation;
– The Merkle Tree of the validated transactions;
– The tail of the linked list of the considered tokens.

2.2.1 Consensus logical steps
The consensus procedure starts each time a new block hash is present. In this phase the

network works in a distributed way to elect a committee as much fair as possible. In a nutshell,
the logical steps to follow can be summarized as follows:

1. New block hash? start committee formation.
2. Leader Block proposal.
3. Leader forwards transaction as well as its own responsus.
4. Committees board verification.
5. Leader receives committee’s responsus, if there is agreement, firm block send it to all

committee.
6. committee receives Leader firmed block, checks it and adds it to the blockchain

The entire stakeholders consensus procedure is executed with an algorithm, whose functioning
as pseudo-code can be summarized as shown in 1:
The main loop catches up for a new block hash. When it is available, the CommitteElect()
function is started. It includes, the utility assignments, the CoI procedure and finally the
Cryptography Lottery. All this sub-functions are needed for electing a committee. When the
committee is established a leader is individuated together all others committee members. The
leader will propose a new block, attending the responsus of other members. The new block
proposal is attached to the blockchain if and only if it is validated by at least a portion of 2/3
committee members, and it extends the longest known chain.

Now, a more lower level description is given, where the several micro-services that compose
the entire system are described.
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Algorithm 1: NFCP procedure algorithm

1 Join the network by connecting to know peers ;
2 while True do
3 Main loop;
4 if new block hash then
5 CommitteeElect();
6 if Leader then
7 block proposal;
8 attend committee responsus;
9 if positive then

10 add block;
11 broadcast confirmation;
12 end
13 end
14 if received bloc & validated & extendes the longest chain then
15 send positive responsus;
16 attend Leader confirmation;
17 if positive then
18 add block;
19 end
20 end
21 end
22 end
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In this chapter the micro-services that compose the consensus procedure are described.
First of all the utility factor is defined, as well as all the requirements needed for obtaining it.
There are two models to be described, a baseline model and a reinforcement learning model.
Then, the Conflict of Interest (CoI) is discussed with the relative heuristic algorithm solution.
Finally, the Cryptographic Lottery used for individuating the committee is discussed.

3.1 Utility Factor

The Utility Factor is a value that quantifies how much a node is valuable for the entire
network and so it establishes how much a user has the right to be part of the committee. A
committee member will take part in the consensus procedure, and so it will participate at the
new block creation. This is a crucial task that must be done by nodes as honest as possible.

Minimum required balance to be part of the Consensus Procedure

A mandatory property needed to be part of the committee, is a minimum balance B ≥ ρ,
where ρ is a token quantity to be defined. All nodes having a balance of at least B, have a
probability to be part of the Consensus procedure because if and only if to each of them is
assigned an utility factor. In addition, in order to be considered, the minimum required balance,
must be available for a certain time. A minimum balance available from today has an negligible
importance with respect to a minimum balance available from 30 days.

3.1.1 Utility Factor Definition
The procedure to assign an utility factor, is related to assign a value of importance to a node

being part of a network. The considered network is the network formed by the direct graph of
transactions, formed by the set V of vertices represented nodes in the network that exchange
transactions, and the set of E edges; (i, j) ∈ E iff at least a transaction from the node Ai to the
node Aj is happened.
Transactions information are available to everyone, and the dynamic of validated transactions
is controlled by the consensus protocol. This means that, in order to be considered into the
transaction graph a transaction must be validated by the network trough a distributed consensus.
Therefore, taking the graph transaction as the reference graph to extract the utility of each
node assures:

1. everyone can verify if the utility associated to a node is valid, computing by itself the
value making use of public open data as transactions.
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2. information contained in the transaction graph are not malleable as long as the consensus
procedure is secure.

3. the transaction graph evolve in time assuring to take into account always new information
related to the behaviour of a node.

There are remarkable algorithms for assigning a value of importance to a node in a graph. A
such problem is related to compute a centrality degree to a node for understanding its centrality
in the network. In the context of the Web, one of the most famous is the PageRank algorithm
[21], where the rank of a web page is obtained as the output of an iterative linear process applied
on a Markov chain transition probability matrix.
The PoI is inspired by the NEM project [8] , in particular, the following outlink matrix, is part
of the PoI protocol of NEM.

The outlink matrix

Suppose the PoI calculation is done at height h. The protocol considers, for each node with
a balance b ≥ B, all its transactions with the following properties:

• Transferred an amount of at least φ tokens
• Happened within the last 43k blocks (approximately 30 days)

For each such transaction Tk that transferred an amount θ from the account Ai to the
account Aj and happened at height hijk, a weight is associated to this transaction as follows:

wijk = θ · exp[log(0.9)[
h− hijk

1440
]]

where [x] denotes the floor function. The weight is obtained as the output of an exponential
function depending on the time, so that transaction happened today has an higher associated
weight than transaction happened the last 30 days.
Summing up all transaction

ŵij =
∑
k

wijk

and, setting

ôij =

{
ŵij − ŵji if ŵij − ŵji > 0,

0 otherwise .

finally, the outlink matrix O is obtained as follows:

oij =

{
ôij∑
i oij

if
∑

i oij > 0

0 otherwise.
(3.1)

The outlink matrix element oij gives the weighted net flow of tokens from Ai to Aj during
the (approximately) last 30 days. Summary, the outlink matrix takes into account only positive
net transactions flow between nodes.

Degree and Betweenness Centrality

To catch up how much a node is important for the network, other two quantities are used:
the degree centrality and the betweenness centrality.
The degree centrality is defined as the total number of edges a node has. Since, the transactions
graph is a directed one, it is possible to define a in and out degree for a node. From the 3.1
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matrix is possible to extract the number of degree of a node, counting the number of cells with
a value different from zero.
The betweenness centrality is a measure to quantify how many times a node is present in the
short paths of a network. A node having a high betweenness centrality may act as a bridge
between several clusters in the network.
For a node i, its betweenness centrality BC is defined as:

BC(i) =
∑

s 6=i 6=t∈V

σst(i)

σst

where σst is the total number of shortest paths from node s to node t and σst(i) is the
number of those paths that pass through i.

Finally, for a node i, whose has the right, its utility value is defines as:

Ui = ρi · α +
∑
j

oij +D(i) + BC(i) (3.2)

where ρi is its balance, α a number to be defined, which takes into account how much the total
balance should be considered important for the utility,

∑
j oij is the total weight net flow, D(i)

and BC(i), its degree and betweenness centrality respectively.

3.1.2 Utility formalization
Besides taking into account stakeholders behaviour inside of the transaction graph, the

protocol aims to classify stakeholders behaviour in according to their actions in the network
layer. A final score, to be added to the utility as defined until now, is given in according to
specific features related to the network layer.
The main objective is to individuate stakeholders with a high activity in the network and
with high round-trips-time as well as high throughputs. Imposing a higher utility factor to
stakeholders showing a higher reliability in the context of the network layer, allows to get near
to the assumption of synchronous network, where it is possible to define an upper bound ∆ to
message delays. This assumption allows to operate in a real-time scenario, besides offers several
theoretical advantages for the consensus. Moreover, imposing the committee to be established
by stakeholders which appear available as much as possible, allows to well approximate the
assumption of having a prefix number of stakeholders on-line in the committee, when the
consensus must be reached.

In the table 3.1 the considered features are shown. All of them are collected for a specific
period of time, called epoch. For some of them history is collected, while other are refreshed at
each epoch.

The features described above form the definition of the utility, meaning that a particular con-
figuration of such features individuates the stakeholder for which the best utility must be assigned.

Now, two algorithms for computing the utility are described. In particular, the first one is
thought as a baseline scenario, for investigating the problem without using a computational
expensive approach, while the second one is a more powerful learning algorithm, that can reach
better results, however requiring more computational resources.
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Features Values Desired Value
Total number of TCP connection integer
sum of all uploaded bytes float
sum of all downloaded bytes float
sum of the number of retransmitted bytes from peer float
average round trip time between peers float
average time for processing and returning the first segment with payload since the first flow float
ping float

Table 3.1: Stakeholders features used to estimate the utility.

3.1.3 Baseline Utility Algorithm
The best and the worst stakeholders features configuration that individuate respectively,

the maximum and the minimum utility are selected by the system. A Self-Organizing-Map
(SOM) is trained for individuating the Best Unit Match (BUM) neurons on the map, of these
two selected features, which we will call targets utility stakeholders (TUSs). Subsequently, in
the mapping phase, all stakeholders samples are mapped to the trained grid, where each of them
is assigned to a BUM neuron. An euclidean distance between the weights associated to the
BUM’s TUSs (wtarget1 , wtarget2) and the BUM’s weight w assigned to a stakeholder is computed,
and according to these two distances an utility is assigned to the stakeholders, as follows:

U =

{
1 + exp(−d2) if d1 > d2

1− exp(−d1) if d2 > d1
(3.3)

The pseudocode of the baseline utility algorithm is reported in the algorithm 2:

Algorithm 2: Baseline Utility algorithm pseudo-code
input :Two targets nodes & a subset of samples nodes.
output : a list of utility values to be assigned to the sample nodes

1 Train the SOM with the two target samples nodes ;
2 get targets weights ;
3 foreach node ∈ N do
4 predict the BMU;
5 get weights w associated to the predicted BMU;
6 compute distance d1 between w and wtarget1 ;
7 compute distance d2 between w and wtarget2 ;
8 if d1 > d2 then
9 u = 1 + exp(−d2);

10 else
11 u = 1− exp(−d1);
12 end
13 end

In figure 3.1 the utility function’s 3.3 shape is shown. The utility is a value in the range:
u ∈ [0, 2] ⊂ R. If a stakeholder is associated to the worst target neuron, its utility is in the
range [0, 1], otherwise, if it is associated to the best target neuron, its utility is in the range
[1, 2], in according with the distance between its weights and the target neuron’s weights.

Page 25 of 72



3.2.2

Figure 3.1: Utility function’s shape.

3.2 Reinforcement Learning Utility algorithm

In this section the Deep-Q-Network model used for learning nodes to assign an utility to other
nodes, is described. Before to explain the details, a brief introduction about the Reinforcement
Learning field is given. In particular the Q-learning method is described, and how it is possible
to use the well established supervised Deep Neural Network theory for solving a Reinforcement
Learning problem.

3.2.1 Markov Decision Process (MDP)
Reinforcement Learning is strictly related to MDP. MDP is a discrete-time stochastic control

process. It provides a mathematical framework for modelling decision making in situations
where outcomes are partly random and partly under the control of a decision maker. The main
elements of MDP are:

• Environment
• Agent: a decision-maker interacting with the environment performing subsequent actions.
• States: Representations of the environment under certain conditions.
• Action: Performed by the agent with respect to the state.
• Reward: Consequence of the action given to the agent.

Given a finite set of states S, a finite set of actions A, and a finite set of rewards R, at each
time step t = 0, 1, 2, ... the agent receives some representation of the environment’s state st ∈ S.
Based on this state, the agent selects an action at ∈ A resulting in the state-action pair (st, at).
Time is then incremented to the next time step t+1, and the environment transits to a new state
st+1. At this time, the agent receives a numerical reward rt+1 ∈ R for the action at performed
in the state st. The reward assignment is represented by a function f(st, at) = rt+1.

3.2.2 Discount Return
The importance of the reward relies on the fact that the goal of the agent is to choose the

action that maximizes the cumulative rewards. These rewards can be assessed to through the
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concept of expected return defined as:

Gt =
T∑
j=1

rt+j

where T is the final time step. In this way, the expected return is the sum of the future rewards.
However, it may happens that the considered environment cannot evolve in a finite number
of time steps, making T = ∞. Because of this, the concept of the expected return can be
translated to the discounted return one. This means that the agent will try to perform an action
by maximizing the cumulative rewards, but focusing more on the immediate reward over future
rewards. The discounted return can be defined as:

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+1+k

For every time point, the return is calculated as as um of subsequent rewards, but more
distance rewards are multiplied by the discount factor raised to the power of the number of
steps we are away from the starting point at t.
To know how likely it is for an agent to take any given action from any given state, the policies
are used.
Formally, a policy π is defined as the probability distribution over actions for every possible
state:

π(a|s) = Pr{at = a|st = s}
Since the main objective of the agent in RL is to gather as much return as possible, and

different policies can give the agent different amounts of return, the main goal for a RL algorithm
is to find the best policy in terms of returned rewards.

3.2.3 Q-Value
By recalling that the rewards an agent expects to receive are dependent on what actions the

agent takes in given states, it is possible to define the Q-value as a measure of a state-action
pair goodness in terms of expected/discounted returns. In this way, the state-action Q-value for
policy π, referred as Qπ, tells how good is for the agent to take any given action from a given
state while following policy π. And so, Qπ(s, a) is the expected return from starting from the
state s, taking the action a under the policy π:

Qπ(s, a) = Eπ[Gt|st = s, at = s] = Eπ

[
∞∑
k=0

γkrt+1+k|st = s, at = a

]
Note that, it is possible to define the Q-value in a recursive way, as follows:

Q(s, a) = r(s, a) + γmax
a′∈A

Q(s′, a′)

In the preceding formula, it is assumed that some reward is given to the agent immediately
after executing a particular action a. But if reward is provided for reaching some state, s’, via
action a’, the formula imposes that the Q-value for the action a given the state s, given the new
state s’, will take the optimal action a’ that gives the maximum Q-value. This formula is used
in Deep-Q-Networks models, where the deep network learns the optimal policy the agent has to
follow, as described soon. The Bellman Optimality Equation gets the optimal Q-value using the
recursive formula described above.
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3.2.4 The Bellman Optimality Equation
The goal of reinforcement learning algorithms is to find a policy that will yield a lot of

rewards for the agent if the agent indeed follows that policy. Specifically, reinforcement learning
algorithms seek to find a policy that will yield more return to the agent than all other policies.
For this reason, in terms of return, a policy π′ is considered better with respect to another π if

π′ ≥ π ⇔ Q′π(s, a) ≥ Qπ ∀s ∈ S ∀a ∈ A

Therefore, the optimal policy has an optimal Q-value Q∗ defined as:

Q∗(s, a) = max
π
Qπ(s, a)

If Q∗ is optimal, then the Bellman equation is satisfied:

Q∗(st, at) = E
[
rt+1 + γmax

π
Qπ(st+1, at+1)

]
This means that the optimal Q-value referred to an (s, a) pair at time t is the expected return
rt+1 which can be obtained by choosing the action a from the state s plus the maximum expected
discounted return that can be achieved from any possible next state-action pairs. Once Q∗ is
found, then it is possible to determine the optimal policy because, with Q∗, for any state s, a
reinforcement learning algorithm can find the action that maximizes Q∗(s, a).

3.2.5 Q-Learning
Q-learning is a technique that can solve for the optimal policy in an MDP. The objective of

Q-learning is to find a policy that is optimal in the sense that the expected value of the total
reward over all successive steps is the maximum achievable. So, in other words, the goal of
Q-learning is to find the optimal policy by learning the optimal Q-values for each state-action
pair obtained by interaction with the environment.
The main idea is to iteratively update the Q-values for each state-action pair getting from the
interaction with the environment, without iterating the entire state,action spaces, using the
Bellman equation until the Q-function converges to the optimal Q-function. This approach is
called value iteration or tabular Q-learning.

The algorithm is obtained as follows:

1. Start with an empty table, mapping states to values of actions.
2. By interacting with the environment, obtain the tuple s, a, r, s′ (state, action, reward, and

the new state). In this step, you need to decide which action to take, and there is no
single proper way to make this decision.

3. Update the Q(s, a) value using the Bellman approximation:

Q(s, a)← r + γmax
a′∈A

Q(s′, a′)

4. Repeat from step 2.

The end condition could be some threshold of the update, or we could perform test episodes
to estimate the expected reward from the policy [10].
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Actually, the update rule as reported in step 3 is not used in practice. In general, it is a bad
idea to just assign new values on top of existing values, as training can become unstable. What is
usually done in practice is updating the Q(s, a) with approximations using a blending technique,
which is just averaging between old and nerw values of Q using learning rate α ∈ [0, 1]:

Q(s, a)← (1− α)Q(s, a) + α(r + γmax
a′∈A

Q(s′, a′))

This allows values of Q to converge smoothly.

3.2.6 Deep Q-Learning (DQL)
The Q-learning method reduces iteration over the full set of states, but still can struggle

with situations when the count of the observable set of states is very large. Indeed, storing too
many pair (state, action) in the Q-table could become unsustainable.

As a solution to this problem, DQL translates the problem to a regression ones. The idea
is to build a deep neural network in order to learn a non-linear function that maps both the
state and action onto a value. The method requires to interact with the environment in order
to get data to train on. One method of acting is the epsilon-greedy method. It consists to switch
between random and Q policy in according to an hyperparameter ε. By varying ε we can select
the ratio of random actions. The usual practice is to start with ε = 1.0 (100% random actions)
and slowly decrease it to small values. In this way, the algorithm explores the environment in
the beginning and stick to good policy at the end of the training.
Another problem to be solved is that supervised models require that the samples are independent
and identically distributed (i.i.d), this feature is reached by using the replay buffer technique.
Replay buffer relies on the concept of experience which can be considered as what the agent
learned from the previous state of the environment. More specifically the experience acquired at
time t can be defined as:

et = (st, at, rt+1, st+1)

this means that it is a collection of the current environment state, the performed action, the
resulting reward and the next state in which the agent is after having performed the action.
The current experience of each step is stored in a memory with finite capacity N . This memory
randomly sampled to remove the correlation between the subsequent steps is used as the training
dataset of a neural network. Another issue is related to the natural form of the Bellman
approximation. It provides us with the value of Q(s, a) and Q(a′, s′), where both states s and
s’ are distanced by only one step. This makes them very similar, and it is hard for a NN to
distinguish between them. To make training more stable there is a trick, called target network.
It consists to keep a copy of the used network and using it for getting the value of Q(s′, a′) to
be used in the Bellman equation. This network is synchronized with our main network only
periodically, by defining a number N of training steps N, after which network’s weights are
shared between the two models.

Epsilon-greedy, replay buffer and target network are some tricks used to efficiently training a
DQN. These methods were used in the DeepMind project for training a DQN on a set of 49
Atari games, with substantial advantages [12].
The algorithm for DQN from the preceding papers has the following steps:

1. Initialize the parameters for Q(s, a) and Q̂(s, a) with random weights, ε← 1.0, and empty
the replay buffer.
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2. With probability ε, select a random action a; otherwise a = arg max aQ(s, a).
3. Execute action a and observe the reward r, and the next state s′.
4. Store transaction (s, a, r, s′) in the replay buffer.
5. Sample a random mini-batch of transactions from the replay buffer.
6. For every transaction in the buffer, calculate target y = r if the episode has ended at this

step, or y = r + γmaxa′∈A Q̂(s′, a′) otherwise.
7. Calculate the loss: L = (Q(s, a)− y)2.
8. Update Q(s, a) using the SGD algorithm by minimizing the loss in respect to the model

parameters.
9. Every N steps, copy weights from Q to Q̂.
10. Repeat from step 2 until converged.

Now, we can describe the DQN model that interacting with a Blockchain environment learns
how to assign a value to nodes describing their utility to the network.

3.2.7 DQN utility model
In this section the DQN utility model is described. First of all states, actions and rewards

are defined. Then, the Deep-Q-Network architecture is described, together its hyperparameters
and metrics. Finally, a simulation with its results are described.

In this scenario, nodes (agents) have to select an action for each state. States are samples
reporting some features about the behaviour of each node. Actions indicate how much a node
has the right to participate to the final consensus. Some general consideration are needed.
A Reinforcement Learning (RF) model requires a fundamental training phase, in which agents
learn the best way to take actions in order to maximise a reward signal function. In an Atari
game, errors mean nothing else than losing a game, in a blockchain system, they could mean loss
of stakes. For this reason, it has been decided to train the network in a Test-net phase, where
users can join the network, making transactions by using TestNet Coins. In this phase, users
have to select one of the possible behaviours scenarios, at the beginning of their connection:

1. Honest Player (HP): the user joins the network with the intention of behaving as an honest
player, exchanging transactions with other users, without never acting in a malicious way.

2. Bad Player (BD): the user joins the network for making attacks to the network.

In the TestNet phase, each node (agent) collect in a non-interactive way, features about
other nodes (agents). These features compose the states of the environment. Features, could
change, in a Test Net phase, if the network does not converge to a fixed threshold, described
later on. At the beginning the selected features are:

• UpTime: the total time a node results to be connected to the network.
• OutLink Matrix: as described in 3.1.1.
• Vested Balance: it is the node’s total balance in times, defined as follows:

ρ = β · exp(T ),

where β is the current balance, T is the total time such balance is present.
• Total number of TCP connection (TTCP)

From the features, a state is defined as a 1D tensor of dimension 5, as follows:

s = [UpTime,Outlink Matrix,Vested balance,TTCP,Behaviour]
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where Behaviour, is the selected behaviour scenario each node must choose at the beginning: 1
for HP, 0 for BP.

Agents must choose a particular action, from the available ones. While, states can change,
actions are always the same for all TestNet phase. They are as follows:

1. participate with 100% tickets: 0;
2. participate with 75% tickets: 1;
3. participate with 50% tickets: 2;
4. participate with 25% tickets: 3;
5. participate with 0% tickets: 4

Rewards: agents get rewards for their actions. At the beginning, the system select two
states, representing the best behaviour (sBest) and the worst behaviour (sWorst) a node can show.
These states are used for calculating the rewards. All possible scenarios are as follows: for each
given state a agent must select an action

• If the current state belongs to a HP (Behaviour == 1 ), an agent should choose an action
in the set [0,1,2]. In particular, an Euclidean distance is computed between the given state
and the sBest. If the distance is grater than 2, and the agent has chosen the action 1 or 2,
it receives a reward of +1, otherwise it receives 0 rewards. If the distance is less than or
equal to 2, if the agent has chosen the action 0, it receives a reward of +1, otherwise 0
rewards.
• If the current state belongs to a BP (Behaviour == 0 ), an agent should choose an action

in the set [3,4]. In particular, an Euclidean distance is computed between the given state
and the sWorst. If the distance is grater than 2, and the agent has chosen the action 3, it
receives a reward of +1, otherwise it receives 0 rewards. If the distance is less than or
equal to 2, if the agent has chosen the action 4, it receives a reward of +1, otherwise 0
rewards.

The Behaviour feature is used only in the TestNet phase, and if the system will converge,
and a MainNet phase can start, such feature will not be more present, but the network has
learnt how to choose the right best action given the states represented by the selected features.
In that phase, rewards will be not more necessary, since the network has already been trained,
and nodes having the DQN’s weights will be able to predict the correct action, given a state.

3.2.8 DQN Architecture
The DQN model has been conceived looking at the nature of the states. Since, the states

are 1D tensor, and the problem to be solved is a regression one, its has been decided to build
a Fully-Connected-Neural Network. The architecture is shown in figure 3.2b: it is composed
by three hidden layer and one final layer with a linear activation function, for a total of 929
trainable parameters. All the three hidden layers have a ReLu function as activation function,
for reducing likely problem related to the vanishing gradient problem [14]. The input layer takes
as input vectors s ∈ R5, while the final output layer outputs vectors s ∈ R5, with a dimension
equal to the dimension of the possible actions. A second architecture is used, where there is the
addition of Batch Normalization layers, as shown in figure 3.2d. For the model 3.2c, the total
trainable parameters are 1037.
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Figure 3.2: Models architectures and summaries.

(a) Model 1 Summary: L1 and L2 regu-
larization only.

(b) Model 1 architecture: L1 and L2 reg-
ularization only.

(c) Model 2 Summary: L1, L2 and
Batch Normalization regularizations.

(d) Model 2 architecture: L1, L2 and
Batch Normalization regularizations.
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Table 3.2: Hyperparameters of the learning model.

Type Description Starting value

learning rate its value define the learning rate of the deep
neural network

0.001

discount rate its value define how rewards of future states
are important

0.99

exploration rate its value define the trade-off in the Epsilon-
greedy technique

1

decay exploration rate rate of decay for the exploration rate 0.92

minimum exploration rate it defines the minimum possible value for the
exploration rate

0.001

NShareWeights it gives the number of steps after which shar-
ing weights between the regular model and
the target model.

SIM_TIME*0.56

memory dequeue buffer size for saving samples batch to be
used in the Replay Buffer technique

2000

3.2.9 Hyperparameters and Metrics
The learning model requires six hyperparameters, as shown in the table 3.2. The learning

rate is related to the DQN, while all the others are related to the Reinforcement Learning field.
NShareWeights defines the number of steps after which the target model’s weights are updated
with the weights of the primary model. SIM_TIME is referred to the simulation time.

Huber-Function: as loss function the Huber-loss is used. It graph is shown in figure 3.3.
It is defined as follows:

Lδ(a) =

{
1
2
a2 for |a| ≤ δ

δ(|a| − 1
2
δ) otherwise

(3.4)

where, a = y − ŷ is the residual, or error. The δ is called clip delta, it defines the trade-off
between a quadratic behave or a linear ones. The Huber loss, acts as a quadratic one for
small error (less than δ), while it acts as a linear function for errors smaller than the clip delta.
In particular, residuals larger than delta are minimized with L1 distance or Mean Absolute
Error (MAE) (which is less sensitive to large outliers), while residuals smaller than delta are
minimized "appropriately" with L2 distance or Mean Squared Error (MSE). This loss has shown
significantly advantage used in the context of Reinforcement Learning [13].

In RL models another significant metric is the total rewards gained for episode. We focus
on average total rewards for episode, for evaluating the correctness of the DQN to choose the
optimal Q value.
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Figure 3.3: Huber Loss: it behaves as a quadratic function for small residual, and as a linear function for big
residual.

3.2.10 Regularization
The model is trained using four types of regularizations. First, L1 and L2 regularizations are

used, in kernel, bias and activity layers. These layers expose 3 keyword arguments:

• kernel_regularizer: Regularizer to apply a penalty on the layer’s kernel
• bias_regularizer: Regularizer to apply a penalty on the layer’s bias
• activity_regularizer: Regularizer to apply a penalty on the layer’s output

In particular, in kernel_regularizer it is used both L1 and L2, with L1 and L2 penalties
equal to 1 exp−4, while for both bias_regularizer and activity_regularizer it is used only L2
with penalty equal to 1 exp−4. The architecture model for this configuration is shown in figure
3.2b.
The second model uses Batch normalizations layers, for avoiding covariance shifting, [15].
Finally, a combination of Dropout and L2 regularization are used, following the recent good
results obtained in [18], while it has been avoid to use both Batch normalization and Dropout
together for their inconsistency showing in learning algorithm, as reported in [16].

3.2.11 Train Main Loop
The Train loop is equal to the one described in 3.2.6. The loop is an iterative one, over

EPISODES and TIME. The global variable EPISODES defines the number of episodes, while
TIME define the maximum simulation time each episode can be long. For each episode, after
N = TIME ∗ 0.64 the target model update its weights with those of the primary model,
therefore the episode stops, and a new episode is started. Agents take action following the
ε-greedy strategy, for which an agent chooses an action in a random way with probability ε,
and in a predicted way, with probability 1− ε. The exploration rate ε is reduced at each step,
by multiplying itself with the εdecay = 0.92. If a minimum loss, equal to the LOSS_TH global
constant, is reached, the loop is break, and weights are shared.

3.2.12 Simulations
In order to evaluate the DQN model, a simulation environment is created. The two BEST

and WORST states, are selected, and from them, a method generates a dataset, simulating
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nodes’ states, in a random way, such that to create a equal distributed dataset, contained 50%
of states near to the BEST configuration and 50% near to the WORST configuration. Such
dataset is split in a training, validation and test one. In particular, 80% is used for training (of
which 20% for validation ), the remained 20% is used for the test.
The obtained results are described later one.

3.3 Conflict of Interest (CoI)

In this section, an additional micro-services is described. It could be useful for increasing
Fairness in the network, avoiding to have always the same nodes forming the consensus commit-
tee. Actually, its utilization is quite general and easily adaptable for several situations rising in
a distributed consensus mechanism.

We want to reach a consensus as fair as possible, avoiding centralization scenario, in which
only few nodes have a consensus power equal or greater of the 51 %.
The Fairness in the consensus is reached when all honest nodes have the same probability
to be part of the final board. However, not all nodes, even if honest, have the same utility
in the network. For instance, not all nodes have the capability to cache all the block his-
tory in memory, or not all nodes want to be on-line 24h per day1. Therefore, it rises the
problem of individuating a sub-set of nodes with specific features, able to assure as fast as
possible block creation. But, focusing only on a such utility may take an unbalance to the
boards created for validating blocks. This is solved by introducing the concept of Conflict Graph.

Conflict Graph (CG): relying only on the utility factor could lead to an unbalance situa-
tion in which always the same nodes will be part of the final Board. In order to avoid this, and
therefore guaranteeing a level of fairness as high as possible, a Conflict Graph is used. A CG G
is defined as the set of {V,E} where V is the set of nodes and E the set of edges. An edges
ei,j between the node i and the node j, exists if these nodes may have a Conflict of Interest
(CoI). A CoI exists when two nodes could have either some interests in common or they have
experienced some event together2.

With this in mind the mathematical model that will output which nodes could be part of
the next board3 is as follows:

max .
N∑
i=1

U(ai) · xi (3.5)

s.t xi + xj ≤ 1 if (i, j) ∈ CG (3.6)

where

• U(ai) is the utility associated to the node ai
• xi ∈ {0, 1}, i = 1, · · · , N , where N is the total number of nodes for which an utility exists,

are the binary decision variables
• CG is the Conflict Graph

1these are all crucial assumptions needed for assuring a block creation.
2for example they have been both members of previous board
3and so can participate to the lottery.
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Such problem is known in literature as the Maximum Weight Independent set [1]. This is a
well-known NP-hard problem and several possible solutions and algorithms were proposed.
Rennes [4] proposed an intuitive and straightforward greedy algorithm, which at each iterations
adds the minimum degree vertex to the solution and deletes the neighbours from the solution
space. In this paper, a similar approach is discussed considering different weights of the vertices.
Goldberg and Spencer [6] gave a parallel algorithm for MIS which finds an independent set
of size at least n

dG+1
[6]. If a maximum total weight is considered, the problem reduces to the

disjunctively constrained knapsack problem which can be solved with the heuristic proposed by
Hifi and Otmani [7].

Now, two different heuristics to solve the MWIS problem are presented.

MWIS - Dynamic programming (MWIS-DP)

Here, an heuristic for solving the MWIS problem is described. The algorithm exploits the
dynamic programming approach, in which the entire macro-problem is solved by solving several
smaller sub-problems.

The main algorithm’s idea is that, for each sub-graph defined as the conflict graph that a
node defines with its conflict nodes, the node with the maximum weight is selected as solution
while all others are deleted.

The algorithm explores all the graph node by node. For a given node i, It computes the i’s
conflict nodes, in order to compute a list with the weights of each of them, plus the weight of
the node i. From this list the maximum value is selected, and the node with this weight value is
chosen as solution, while all others are deleted from the initial graph. The algorithm allows
to solve the MWIS in a polynomial time instead of an exponential time, however it obtains an
accuracy lower than the optimal case, of more or less 40% of the optimal solution, as it will be
described later.

The PSEUDO-CODE of the algorithm is as follows:

Algorithm 3: MWIS pseudo-code
input :A weight graph G.
output : A maximum independent subset of G

1 initialize;
2 conflictNodes = ∅;
3 foreach n ∈ G do
4 conflictNodes ← NG(i);
5 totalUtility ← w(NG(i)) + w(i);
6 select the maximum weight ;
7 select the corresponding node which has as weight the maximum value;
8 delete from G all other nodes;
9 end
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Recursive approach:

Here, another heuristic for solving the MWIS is described. The algorithm is a recursive one.
The approach is more or less similar to the previous one, but in order to improve the accuracy
with respect to the previous one, one additional condition is imposed.

While, in 3.3, for each sub-conflict graph, the optimal node is selected as the node with
the maximum weight, here a sort of utility metric is used. For each selected node i and the
corresponding sub-conflict graph NG(i), the node i is selected as the optimal one if:

w(i) >
UT
n
, (3.7)

where UT =
∑n

j=1w(j) j ∈ NG(i) is the total sum utility obtained as the sum of the weights
of the nodes in conflict with the node i, n is the number of conflicts and µ ∈ [0, 1] is an
hyper-parameter to be chosen. Otherwise, only it is deleted from the started conflict graph G
and the algorithm restarts in a recursive way.

This solution allows to reach a better accuracy with respect to the 3.3 algorithm, because the
used criterio for choosing the optimal solution is more restrictive, and at each step the maximum
number of nodes deleted may be: 1 if the query node does not respect the condition; n-1 otherwise.
Therefore a better solution is obtained, however more time is needed in order to solve the problem.

The CoI procedure is a service that can be modified in according to the particular environment
in which the blockchain system is used. The concept of Conflict of Interest can depend on
the context of the specific application. For example, in an application where Smart Contracts
are exchanged, a CoI can arise when in the committee there are members associated with the
organization that is proposing this same smart contract. In this case the evaluation of the
proposing smart contract can be influenced by a clear personal interest, avoiding to have an
impersonal evaluation.

3.4 Board Election Algorithm: Cryptography Lottery

At the end of the CoI procedure, a particular sub-set of the entire network is selected. Nodes
inside this sub-set have the following features:

1. each of them has a balance of at least B;
2. each of them has an utility factor associated;
3. each of them has not conflict of interest between each other.

At this stage, nodes being part of this particular sub-set , have a probability to be part of the
committee board, and so be part of the consensus procedure, in according to their utility.
In order to select the boards committee in a uniform random way, a Cryptography Lottery CL is
executed. It is based on the mechanism of linking an extracted integer to a point of an Elliptic
curve. The lottery outputs are integers, these integers indicate how many operations (additions)
must be done on the chosen Elliptic Cryptography Curve in order to individuate a point on the
curve associated with a specific wallet: the owner of that specific token. The steps needed to
perform such task are as follows:

1. Environment:
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A particular Elliptic Cryptography Curve is selected: ECC of type Secp256k1:

y2 = x3 + 7

P (x1, y1);

Q(x2, y2);

The Secp256k1 is a 256-bit Elliptic Curve defined over a finite prime field Zp.
Its recommended parameters are specified by the sextuple T = (p, a, b, G, n, h) [5], where:

•
p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

= FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F

• The base point, in compressed form is:

G = 0279BE667EF9DCBBAC59F2815B16F81798

• The order n of G is:

n = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141

The ECC fixes a mathematical space where executing some operations in order to find the
winner tickets. The algorithm gives some integers as output, these integers are interpreted as
the extracted tickets giving the number of operations to do on the ECC, starting from the
known points P and Q. In particular, points addition are the operations to be executed.

Figure 3.4: Points addition over elliptic curves.

2. Ticket Generator
The maximum number of tickets [1...N], to be extracted, must be chosen by the systems. This
is a parameter that will change in time, depending on the level of inflation.
The algorithm described in 3.4, will be executed, in a independent way, by each node having an
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utility. The number of possible tickets, each node can extract, depends on its utility: more high
is the utility more tickets can be extracted.
Each extracted ticket is an integer that represents the number of operations to be done on the
ECC to find a point on the ECC representing a specific token:

P +Q = −R = R [Ticket 1]
P +R = −E = E [Ticket 2]
P + E = −F = F [Ticket 3]

... =
... =

...
P + ticketN−1 = −ticketN = ticketN [Ticket N]

If the extracted ticket is 1, the known parameters P and Q must be added once. In general
if the extracted number is n the winner token is the point of the ECC individuated as nP +Q.
Thanks to the nature of the ECC those points (tokens) are all well separated on the plane.

3. Select the Leader: Now, the core algorithm is described. It can be defined as a deter-
ministic random algorithm, because given the same input its output are always the same, but the
possible output are uniform distributed between all the possible cases, as it will be shown later on.

Starting for the hash of the last block that is written into the Blockchain do the following
steps:

1. Starting hash: 4ceb86317d0d4dac6853663589ef02ccb67134cee75bb886a4410b7aedd0e109
2. Split the hash in 4 parts:

(a) 4ceb86317d0d4dac
(b) 6853663589ef02cc
(c) b67134cee75bb886
(d) a4410b7aedd0e109

3. Transform each part into binary

(a) 0100110011101011100001100011000101111101000011010100110110101100
(b) 0110100001010011011001100011010110001001111011110000001011001100
(c) 1011011001110001001101001100111011100111010110111011100010000110
(d) 1010010001000001000010110111101011101101110100001110000100001001

4. Compute the XOR between [part 1 / part 2] and [part 3 / part 4]

• Partial Result 1:
0010010010111000111000000000010011110100111000100100111101100000
• Partial Result 2:

0001001000110000001111111011010000001010100010110101100110001111

5. Compute the XOR between [partial result 1 and partial result 2]

• Final Result :
11011010001000110111111011000011111110011010010001011011101111

6. Transform the Binary number into a decimal number and compute the modulo N function

• Winner (Leader): 919
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Ticket n. 919 is the extracted number. The winner token is the ECC’s point reachable by
computing the operation: 919P +Q. The elected leader is the address having the ownership of
the individuated token.

4. Board Members
We could have several approaches to define the board members. For instance we could

run the functions described into point 3 in a deterministic way (like splitting the hash in
different parts) or more easily starting from the Leader ticket simple count another m (number
of board members) consecutive tickets (ex. 919, 920, ... m-1, m). The fact that they are consecu-
tive tickets do not matter because they are representing points that are far away one to each other.

The number of committees members is in the range [4, 1000]. In particular, at the begging,
the system needs at least 4 nodes to start, therefore the maximum number of members is fixed
to 4. As the number of nodes increases, the number Nc of committee members increases too, as
follows:

Nc = γ · n2

where, n is the current number of nodes, γ is a fixed parameter used to constrain the number
of members to be at maximum 1000. The γ’s value will change in time. Until the number of
nodes is less or equal to 10000, γ will be equal to 1e− 5. As the number of nodes increases γ is
adjusted in order to limit the maximum number of the committee’s member to 1000.

Regarding the number of tickets NT each lottery has to distribute, they are obtained following
an exponential function, as follows:

NT = δ · exp(n)

where n is the current number of nodes, δ is a fixed constant used to have control on the
shape of the exponential function. At the beginning, δ = 1, as the number of nodes increases,
its value is decreased, in order to limit the creation of tokens.

3.4.1 Is the Cryptography Lottery algorithm a Pseudorandom Genera-
tor?

In order to verify if the Board Election algorithm is a Pseudorandom Generator (PRG),
some simulations were carried out. In particular, 10 simulations were made, each of whom is
composed as follows: there are 10 independent experiments (lottery extractions) and in each of
them the same number of tickets have been extracted, varying the percentage for each simulation.
In particular, only the 10 % of the 1000 tickets, for each experiment, in the first simulation, has
been used ; 20%, for each experiment, in the second simulation; 30% for each experiment, in the
third simulation , and so on, until arrive at 100% in the last simulation. Therefore, there are a
total of 10 simulation, and 10 experiment for each of them, for a total of 100 experiments.

From these simulations all data have been collected, in order to build some statistical graphs.
In particular, it has been chosen to use a Density curve Plot instead of an histogram, to
understand the underlying probability distribution of the data. A density curve attempts
to visualize the underlying probability distribution of the data by drawing an appropriate
continuous curve. This curve needs to be estimated from the data, and it has been used, one
of the most frequent method, called kernel density estimation to do that. In kernel density
estimation, it is drawn a continuous curve (the kernel) with a small width (it is controlled by
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a parameter called bandwidth) at the location of each data point, and then it is added up all
these curves to obtain the final density estimate. Density curves are usually scaled such that
the area under the curve equals one. This means that on the Y axis there is not a probability
but a density probability function for the kernel density estimation.
Regarding the bins to be used in the density plot graphs, it has been chosen to use the Freedman-
Diaconis rule (FD rule). The FD rule is designed to minimize the difference between the area
under the empirical probability distribution and the area under the theoretical probability
distribution. Each bin width is computed as follows:

Binwidth = 1
IQR(x)

3
√
n

where IQR(x) is the interquartile range of the data and n is the number of observations in the
sample x.

Moreover, the Empirical Comulative Density Function (ECDF) has been obtained.
It is simply an empirical realization of a Comulative Density Function. The terms empirical
is referred to the fact that the function is made up by using empirical measure of a sample.
The empirical distribution function is an estimate of the cumulative distribution function that
generated the points in the sample. It is defined as follows:
Let {X1, · · · , Xn} be real random variables i.i.d4 with common Comulative Distribution Function
F(t). Then the ECDF is defined as

F̂n(t) =
1

n

n∑
i=1

1Xi≤t
,

where 1A is the indicator of event A. It can be proved that the ECDF is an unbiased estimator
for F(t).

All the resulted plots are shown in the appendix 5.2.1. The algorithm outputs seems to
follow an uniform distribution, as expected from a PRG.

4independent, identically distributed.
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Obtained results

In this chapter the NFCP system is shown, at its actual state, where the logical skeleton
composing the blockchain is done, as well as the Reinforcement Learning model.
An environment for performing simulations has been created. The objective is to show the
entire working flow of the blockchain. Simulations results are showed as well as the evaluations
of the Deep-Q-Network model. Regarding the blockchain environment, a novel technique for
managing the entire storage is used. Each new validated block is stored in a IPFS cluster [45],
allowing to maintain the entire status of the blockchain distributed around the world, in order
to allow even mobile nodes to be participated in the blockchain ecosystem without the needed
of storaging big amount of data on their own memory.
IPFS is a peer-to-peer hypermedia protocol with the aims to overpass the actual limitations of
the HTTP. The main feature IPFS offers is a way to retrieve contents from the web in a dis-
tributed way, overpassing the problematic situations happening in a central-server environment.
In a Nutshell, IPFS can be thought as a distributed file system, where each updated content is
individuating by a unique code of identification, its own fingerprint : Content Identifiers (CIDs).
In the HTTP web, each content is obtainable via its own URL, that indicates where the content
is and nothing about its nature. For example, if today an URL gives a content, tomorrow the
same URL could give a different content. This implies that, a same content can be retrieved
using different URL, producing duplications. IPFS uses content addressing to identify content
by what’s in it, rather than by where it’s located. In IPFS each content has its own fingerprint:
its own CID. The CID is not a URL for reaching a certain content, but it is the unique code that
identifies a certain content, in a unique way. Thus, if two same contents are updated on IPFS,
from two different places, they will have the same CID, avoiding duplicates. Continuing with
the example, these two same contents, will be stored in a distributed way on the peer-to-peer
network. In particular, the content is split in several blocks, each block has its own CID, and is
saved on a IPFS peers. When a peer wants to get the content, the list of peers that have the
blocks forming the content are fund, using a Distributed Hash Table, and the entire content is
restored, because a Direct Acyclic Graph has been used, for linking the content’s blocks together.

Now, let’s describe the logical steps to follow for initializing the blockchain.
In order to start the blockchain system, the following steps must be done:

• Settings: a config file of the Blockchain is edited, and stored on the IPFS cluster. It
contains the hash of the Block Genesisits CID, number of tokens to generate at the
next mining process. The number of token to be distributed with the mining process, is
established, following rules reported in 3.4.
• Start a new Blockchain: The network will start with a number n = 4 of nodes with initial

0 tokens, that will start to communicate. In particular, nodes start to collect Features
(states) from peers, to be used with the DQN model.
• Genesis:
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1. Get the number of token to distribute, from the config file: Es. 40
2. Run the lottery for extracting 40 tokens using the Genesis Hash as retrieved from

the config file. These 40 tokens will be pre-distributed to the nodes, in a random
way. Nodes receiving these tokens do not have yet their ownership. The order of
extractions decides the committee. In particular the node that receives the first
extracted token becomes the Leader, the other members are naturally individuating
as the nodes receiving the subsequent tokens. At this step, nodes have received
tokens in a random way, and some node may have received more tokens than other.

• Consensus Cycle:

1. The Leader, with the data that it knows (collected features) in that specific moment,
run the DQN model. The outputs are actions to assign to other peers. These actions
define the real power of voting of each peers. In particular, now each peer have just
a percentage of the pre-received tokens, as established from the action it received. If
for example, node A has pre-received 20 tokens, but the DQN model has assigned a
power of voting equal to 25%, its real number of tokens will be 5, consequently its
voting power used in the Soft Vote is of just 5.

2. Now, the leader proposes the transactions it collected. Each committee peer validates
such transactions, by checking double-spending and ownership, and sends its vote to
the leader. The Leader verifies all the votes are coming from committee members,
by checking the signature, and weights the received votes with the voting power of
each nodes. Thus, if a node has sent 10 positive nodes, but its voting power is 0%,
such positive votes are excluded from the final consensus, therefore this bad node is
automatically excluded from the final consensus thanks to the DQN model. In other
words, the network is robust against Byzantine Faults because it is able to detect
malicious nodes and excluding them from the final consensus. Finally, the Leader
computes the final consensus as

consensus: Boolean = Positive votes/Total votes > CONSENSUS_RATIO

. If consensuns = True, the block is signed by the leader and sent to all other peers,
otherwise the blocks is rejected.

3. If the consensus is true, Peers verify the signature of the received block (Verify Hard
Vote step), for assuring the proposed block is coming from the Leader, and the block
is added to the blockchain, stored on the IPFS.

• Future Steps:

1. From the new generated block hash run the lottery and execute the steps as reported
in the Consensus Cycle.

4.0.1 Blockchain Application
In figures [4.1a, 4.1d] the Blockchain simulation as described above are shown. The Blockchain

starts with 5 peers, all with a 0 initial balance, and their public key is reported. Starting from
the genesis hash the lottery is run, and some number of tokens are distributed between peers.
The Leader is individuating and the block creation is executed, where some times the process
can reject some block, as happens in figure 4.1d, meaning the consensus has not been reached.
In figures 4.2a the client of the IPFS cluster is shown. Here, it is possible to visualise the
cluster status, checking the coming and outgoing traffic. The cluster manages the storage of the
blockchain. In the folder neural-fairnes-network, there are the config file and all the validated
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blocks.

Figure 4.1: Simulation Blockchain.

(a) Experiment 1: the Blockchain starts (b) Experiment 2: nodes start to mine blocks

(c) Experiment 3 (d) Experiment 4

While the NFCP is at its alpha state, where it is possible to run simulations and evaluating its
DQN model, as well as verifying how the IPFS storage is working, an initial web application, is
done. At this state, from the web application is possible to create a wallet, make real transaction
(relying on the NEM blockchain), storage some encrypted stake on the IPFS cluster.

4.0.2 DQN evaluation
Here the evaluation of the DQN model is shown. Several experiments have been done,

and results about two types of configurations are shown. The two models differ due to the
selected regularization used. In particular, three configurations have been tested: only Batch
normalization, Batch normalization and L2 regularization, Dropout and L2 regularization. The
showed metrics are, as described in 3.2.9, the Huber Loss and the total gained rewards together
the total rewards score defined as the ration between the total rewards and the number of
executed steps. The total number of episodes is 3, while the maximum time an episode can long
is 2000.
In figures In figure 4.4a the result of the model using only Batch normalization (BN model), are
shown, while in figures [4.5a, 4.5e] the results of the model using both Batch normalization and
L2 regularization (BNL2 model), are shown. Finally, the results about the model using both
Dropout and L2 regularization (DL2 model) are shown in figures [4.6a, 4.6e].

The best model, in according to the selected metrics, is the DL2 model, showing a total
rewards score of more than 87%, in the third episode, showing a constant increasing of the score
between episodes. The worst model is individuating with the BN model, where it has been
decided to stop the simulation at the first episode since there were not improvements. The
intermediate model, is the one using both Batch normalization and L2 regularization (BNL2
model), reaching a total rewards score of no more than 48%.
Regarding the model’s losses, already in the first episodes both DL2 and BNL2 reach a minimum
average loss of more or less 0.04, saturating around this value. For this reason the losses of the
other episodes are not reported. The loss results shown that likely the architecture model needs
to be reconsidered, in order to reach lower values, or the number of steps after which updating
the weights of the target model must be tuned.
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Figure 4.2: Simulation Blockchain: IPFS.

(a) IPFS Cluster Status (b) neural-fairness-network directory

(c) contents of the neural-fairness-network
(d) All validated blocks of the blockchain: each of them

has its own CID
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Figure 4.3: Front-End of the Applications:

(a) Login (b) HomePage

(c) Wallet
(d) Making a real transaction on the

NEM blockchain

(e) Transaction done.
(f) Store an encrypted asset on the IPFS

cluster.

Figure 4.4: Batch normalization only: the worst model, there is a problem of vanish exploding, and the total
rewards does not reach neither the 1% of score.

(a) Metrics episode 1
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Figure 4.5: Batch normalization and L2 regularization: The maximum score reached at episode 3 is 47.92%.

(a) Loss episode 1 (b) Metrics episode 1 (c) Metrics episode 2

(d) Metrics episode 3 (e) Total Rewards episode 3

Figure 4.6: Dropout and L2 regularization: The maximum score reached at episode 3 is

(a) Loss episode 1 (b) Metrics episode 1 (c) Metrics episode 2

(d) Metrics episode 3 (e) Total Rewards episode 3
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Conclusion

The job of this thesis gave the starting point of an ambitious project: developing a smart
automatic learning blockchain system. The skeleton of the blockchain is defined and a valid
learning model has been founded. In particular, the DQN model has shown good performance
reached a total rewards score more than 87% percentage, with the Dropout and L2 configuration.
The nature of machine learning algorithm assures to get always a better model, as soon as new
data are available, thus the system is bound to improve with time. The possibility to store the
blockchain on a distributed file system as IPFS could allow to increase the distribution of the
service even for mobile nodes. All these assumption forms a stable ground on which to work for
reaching a scalable, efficient and fairness blockchain.

Surely, the project will keep to grow up. The first step will be founding the best features
configuration for the model, in order to reach a 100% of total rewards score, and switching to a
Main Net phase. Again, several tests must be done for assuring the stability of the IPFS cluster
storage solution. In parallel, the developing of the mobile app will keep to grow by adding other
services.
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5.2.1 Lottery Analysis
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Figure 5.1: Simulation 1: 100 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10

Page 53 of 72



5.2.1

Figure 5.2: Simulation 2: 200 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.3: Simulation 3: 300 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.4: Simulation 4: 400 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.5: Simulation 5: 500 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.6: Simulation 6: 600 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.7: Simulation 7: 700 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.8: Simulation 8: 800 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.9: Simulation 9: 900 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.10: Simulation 10: 1000 tickets extracted.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6 (g) Experiment 7

(h) Experiment 8 (i) Experiment 9 (j) Experiment 10
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Figure 5.11: ECDF Simulation 1: 100 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10

Page 63 of 72



5.2.1

Figure 5.12: ECDF Simulation 2: 200 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10
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Figure 5.13: ECDF Simulation 3: 300 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10
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Figure 5.14: ECDF Simulation 4: 400 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10
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Figure 5.15: ECDF Simulation 5: 500 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10
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Figure 5.16: ECDF Simulation 6: 600 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10

Page 68 of 72



5.2.1

Figure 5.17: ECDF Simulation 7: 700 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10
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Figure 5.18: ECDF Simulation 8: 800 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10
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Figure 5.19: ECDF Simulation 9: 900 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10
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Figure 5.20: ECDF Simulation 10: 1000 tickets extracted.

(a) ECDF Experiment 1 (b) ECDF Experiment 2

(c) ECDF Experiment 3 (d) ECDF Experiment 4

(e) ECDF Experiment 5 (f) ECDF Experiment 6 (g) ECDF Experiment 7

(h) ECDF Experiment 8 (i) ECDF Experiment 9 (j) ECDF Experiment 10
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