
POLITECNICO DI TORINO
Master’s degree course in Computer Engineering

Master’s Degree Thesis

Computer vision for detecting
and tracking players in

basketball videos

Supervisor
prof. Andrea Giuseppe Bottino

Candidate
Sara Battelini

s244091

Internship Tutor
ESTECO SpA

dott. ing. Livio Tenze

Academic year 2019-2020

Summary

The use of Computer Vision in the sports industry is a very new, yet rapidly
growing field. One very prevalent application of computer vision algorithms is
to gather sports analytics to improve a team’s performance. As a team sport,
basketball relies heavily on strategy: for this reason coaches need to gather
and analyse information and statistics on both their own team and their
opponents, a process that can be both long and challenging when executed
manually. This thesis work takes place inside a larger project carried out by
ESTECO SpA which aims to aid coaches in analysing sports games through
the use of different technologies. In particular, the purpose of the thesis is to
design an algorithm that is able to automatically detect and track the players
and the basketball court in broadcast videos: this is achieved through the
use of Computer Vision and Deep Learning. After a comprehensive research
regarding the state of the art in sports players tracking, a new algorithm was
developed following the tracking-by-detection paradigm.

Firstly, an exploration of the best Convolutional Neural Networks for ob-
ject and pedestrian detection was carried out, along with a study on the
standard evaluation metrics. Following a fair comparison of these CNNs
on the same basketball dataset a Cascade Mask RCNN, pre-trained on the
pedestrian detection dataset Caltech, was chosen as the base detector for the
project.

Secondly, a new algorithm was built that is able to robustly track the
basketball field from a video frame to the next. It adopts a semi-automatic
approach and relies on a combination of many simple Computer Vision algo-
rithms. The court detection is used both to refine the detections, excluding
the ones lying outside the playing field, and to create a homography of the
basketball court, useful to project the players’ positions onto a 2-dimensional
model.

Lastly, a research on Multiple Object Tracking was conducted, and some
promising algorithms were applied to the previously found detections, ob-
taining discreet results that will be further improved on in the future.

2

Contents

List of Figures 5

I Introduction 7

1 Introduction 9

2 Introduction to player tracking 11
2.1 State of the art . 11
2.2 Multiple object tracking . 12
2.3 Proposed method . 13

II Implementation 15

3 Pre-processing 17
3.1 Project requirements . 17
3.2 Dataset . 17
3.3 Data format . 18

4 Pedestrian Detection 21
4.1 Multiple Object Detection . 21
4.2 Evaluation metrics . 21
4.3 State of the art . 24
4.4 Network comparison . 25
4.5 Transfer learning . 26

5 Court detection and tracking 31
5.1 Objectives . 31
5.2 Related work . 31

3

5.3 Unsuccessful attempts . 33
5.4 Proposed algorithm . 38

5.4.1 First frame . 38
5.4.2 Following frames . 40
5.4.3 Homography validity check 42

5.5 Results . 43

6 Player Tracking 51
6.1 State of the art . 51
6.2 Evaluation metrics . 53
6.3 Employed algorithms . 55
6.4 Results . 56

III Conclusions 61

7 Conclusions and future work 63

Bibliography 65

4

List of Figures

3.1 Discarded frames . 19
3.2 Selected frames . 19
3.3 CSV data format . 20
3.4 COCO data format . 20
4.1 COCO evaluation metrics . 23
4.2 Examples of tested CNNs . 30
5.1 Examples of different basketball courts 34
5.2 Detecting lines through Canny 35
5.3 Examples of non-dominant court color 36
5.4 Court detection through k-means clustering 37
5.5 Example of invariant point features 38
5.6 Reference 2D court . 39
5.7 Reference points definition . 45
5.8 Detection filtering based on inverse homography 46
5.9 Optical flow . 47
5.10 Homography validity check . 48
5.11 Examples of wrong annotations 49
6.1 Examples of DeepSORT results 56
6.2 Examples of tracking results 59

5

6

Part I

Introduction

7

Chapter 1

Introduction

The popularity of basketball has been growing steadily over the last few
decades, making it one of the most prevalent sports around the world. Thanks
to this rising popularity the market surrounding the sport is also spiking,
raising the stakes for the playing teams. As a team sport, basketball relies
heavily on strategy: for this reason coaches need to gather and analyse in-
formation and statistics on both their own team and their opponents. To
help improve the performance of a team, analysing both individual players’
movements and the overall formation of the team can provide very valuable
insights for the team coach[1].

This thesis work takes place inside a larger project carried out by ESTECO.
The aim of the project is to aid the coaches in the analysis of the games
through the use of different technologies. In particular, this thesis focuses on
the use of computer vision algorithms to obtain the automatic detection and
tracking of players in video clips of basketball games.

People tracking, and consequently players tracking, is a subset of Multi-
ple Object Tracking (MOT). For this thesis work the tracking-by-detection
paradigm has been employed, which involves first finding the detections of
the objects to be tracked, and then linking those detections into tracks by
means of a tracking algorithm. Convolutional Neural Networks have been
analysed and used as a means to detect and track players. Furthermore, a
semi-automatic algorithm has been developed that is able to detect and track
the court in basketball clips, and generate a homography to project the court
and players from the camera view to a 2-dimensional top-view model.

The thesis is organized as follows: chapter 2 introduces the concept of
multiple object tracking and the state of the art regarding the use of com-
puter vision in sports videos. The following part of the thesis describes how

9

Introduction

the project was implemented: chapter 3 describes the project requirements
and the employed dataset; chapter 4 focuses on player detection, comparing
different state of the art convolutional neural networks for object detection
and adapting the best detector to the project; chapter 5 describes the pro-
posed algorithm developed for court detection and tracking, which is used to
find the court homography and to refine the player detection step; chapter 6
is focused on bringing the previous steps together by means of a tracking
algorithm. Finally chapter 7 ties up the thesis by presenting conclusions and
future developments.

10

Chapter 2

Introduction to player
tracking

2.1 State of the art
Tracking players in a game scenario is a challenging task for many reasons
[2][3]:

• the videos are often filmed with a pan-tilt-zoom camera, so the back-
ground is not static;

• cluttering and occlusions are frequent and can be quite long;

• the appearance of players is ambiguous, since players of the same team
wear uniforms of the same colors;

• players move fast and they have complicated motion patterns; further-
more they often assume poses that are not typically seen from people in
common settings;

• players in sports videos move rapidly everywhere within the camera view,
incurring severe scale changes, which degrade the performance of the
tracker.

Over the last decade some research has been conducted regarding the use
of new technologies to aid in tracking and analysing players’ movements in
sports videos. In 2013 Lu et al.[3] used a Deformable Part Model (DPM)
to automatically locate sports players in video frames, a logistic regression
classifier to classify them into teams, and Maximally Stable Extremal Regions

11

Introduction to player tracking

(MSER), SIFT features, and RGB color histograms for feature extraction. In
2014 Parsons and Rogers[4] proposed a MATLAB program which used com-
puter vision tools like MAP detectors and image processing to detect and
track basketball players. In 2015 Cheshire et al.[5] built a similar project,
performing player detection through the use of Histogram of Oriented Gradi-
ents (HOG) and color detection. Zhu et al.[6] performed playfield detection
by means of Gaussian mixture models (GMMs), and used Support Vector
Machine (SVM) and particle filters for player detection and tracking.

More recently, due to the rise of popularity and accuracy of neural net-
works, many projects turned to using Convolutional Neural Networks (CNNs)
to perform player detection. Yoon et al.[7] used YOLO[8], a CNN-based
multiple object detector, and proposed Joy2019, an algorithm that identifies
players’ jersey numbers and uses them to perform the tracking. Acuna[9]
used YOLOv2 for detecting players and performed tracking by means of
SORT [10], a tracking algorithm based on simple techniques such as Kalman
Filter and Hungarian algorithm. Ramanathan et al.[11] used a CNN-based
object detector and a KLT filter for player tracking. Arbués-Sangüesa et
al.[2] proposed a bottom-up approach that uses a CNN to detect anatomical
key points, which are then used for pose estimation and the deriving player
detection; subsequently they used both geometric features and deep learning
features to perform feature extraction on the bounding boxes in order to
match detections into tracks.

2.2 Multiple object tracking
Multiple Object Tracking (MOT) consists in following the trajectory
of different objects in a sequence of images, usually frames of a video. The
employment of MOT has found many uses within evolving technologies such
as robots, autonomous vehicles, video surveillance, medical imaging and, in
general, to aid humans in analysing video footage.

A comprehensive survey conducted by Ciaparrone et al.[12] found that the
standard approach employed in MOT algorithms is tracking-by-detection: a
set of detections are extracted from the video frames first, and then they
are used to guide the tracking process. Furthermore, the majority of MOT
algorithms perform either all or some of the following steps:

• Detection stage: this step is performed by an object detection algo-
rithm, which will output a set of bounding boxes corresponding to the
desired objects;

12

2.3 – Proposed method

• Feature extraction/motion prediction stage: the detections are
analysed to extract features regarding appearance, motion, interaction.
Optionally, a motion predictor predicts the next position of each tracked
target;

• Affinity stage: extracted features and motion predictions are used to
compute a similarity/distance score between pairs of detections and/or
tracklets;

• Association stage: the similarity/distance scores are used to associate
detections into tracks.

With the recent rise of deep learning, MOT algorithms have started using
neural networks in one or more of their stages to increase their accuracy.

2.3 Proposed method
This thesis work makes use of a tracking-by-detection algorithm and follows
the standard steps. In particular the work was divided into three main
sections: player detection, court detection and tracking —this step is
not strictly necessary for player tracking, but it aids in refining the detections
and it is needed to perform the homography of the court and project the
players’ positions to a 2-dimensional court model— and player tracking.

All the tests were performed using a cloud server provided by Amazon Web
Services (AWS). The server runs on Linux Ubuntu and features a NVIDIA
Tesla K80 GPU with CUDA 9.0. The code for the project is written in
Python[13], takes advantage of Anaconda[14] for environment and package
managing, and makes special use of:

• the OpenCV library[15], used for image processing and computer vi-
sion algorithms;

• the Pytorch[16] and Tensorflow[17] frameworks, used to handle neural
networks in the player detection and tracking steps.

The developed algorithm will be explained in detail in Part II.

13

14

Part II

Implementation

15

Chapter 3

Pre-processing

3.1 Project requirements
The work presented in this thesis aims to automatically detect and track
players in the basketball field by analysing basketball broadcast videos. In
these broadcast videos of basketball games several different kinds of shots are
filmed. For example we can often see close-ups of the players or frontal shots,
especially after one of the teams scores a point. These clips are usually just
repetitions of already seen footage, but shown from another point of view.
Furthermore, during broadcasting, statistics and other information might be
shown on the screen, as well as advertisement segments.

Part of the wider project carried out by ESTECO SpA looked at the issue
of automatically splitting broadcast videos into sections, and selecting those
which are of interest to the coaches. These include mainly the clips shot by
the main camera, which is a pan-tilt-zoom camera positioned pitch-side. This
part of the project was carried out by another student during his internship
through the use of computer vision algorithms. Unfortunately this part of
the project was developed simultaneously to this thesis work, so it was not
possible to use its results.

3.2 Dataset
Creating a machine learning dataset from scratch, especially in the case of
multiple object tracking, is an extremely time-consuming and prone-to-errors
process. In the particular case of this project, it would entail watching hours
of video footage to select and extract the desirable clips, then using some

17

Pre-processing

image annotation software like labelImg[18] to manually create the ground
truth boxes for the players in each frame of the clip. Given the scope of
this project, it was deemed more convenient to use an existing dataset, and
instead focus on more important steps like detection and tracking.

After extensive research only one dataset was found that was both com-
patible with the project’s requirements and freely available for use: the Bas-
ketball Attention dataset[11] was created for action recognition, but it also
contains annotations of ground truth boxes for player tracking. Unfortu-
nately this dataset is composed of clips extracted from YouTube videos of
basketball games, which are not in high definition. Most of the frames in
the dataset are 490x360 pixels —from now on these will be referred to as
LQ dataset—, with a few ones being 1280x720 pixels —from here on called
HQ dataset. After downloading the dataset a selection process has been per-
formed to delete all clips that did not fit the project’s needs (for examples
refer to Figure 3.1, Figure 3.2), leaving a final dataset of 424 HQ frames and
6072 LQ frames.

3.3 Data format
Any dataset built for use of object detection algorithms needs a set of pictures
to be analysed, and some information files with the relative ground truths. In
machine learning ground truth is a term used to describe the ideal expected
result. In the specific case of object detection the ground truths correspond
to bounding boxes manually assigned by means of human observation to the
objects that need to be detected. The ground truth is used both for training
a neural network, which will use it as an example to learn how to create its
own bounding boxes, and to test it by comparing the ground truths —the
expected result— to the bounding boxes inferred by the network.

In the chosen dataset the ground truth information is stored in several
CSV files, one for each frame. CSV, or comma-separated values, is a file
format which allows to store data in a tabular format. An example of the
data format can be seen in Figure 3.3. Since this is not the standard format
when it comes to CNNs, a simple Python script was created to automatically
transform all information to COCO format and unite it into a single JSON
file. This process is done separately for the HQ and the LQ datasets, which
will be treated as two different datasets from here onwards. COCO[19] is
the most widely used benchmark API for object detection, so its data format
is recognised by any object detection network. An explanation of the data

18

3.3 – Data format

(a) (b)

(c) (d)

Figure 3.1: Examples of discarded frames: (a) is a close-up, (b) is a frontal
shot (c) is a top view, (d) has graphics displayed over the scene.

(a)
(b)

Figure 3.2: Examples of selected frames: (a) is 490x360 pixels, (b) is
1280x720 pixels.

19

Pre-processing

format can be seen in Figure 3.4.

Figure 3.3: Examples of the information file of a single frame: time is the
time in the video corresponding to the frame, x, y are the coordinates of
the top-left corner of the bounding box, w, h are width and height of the
bounding box, id is the id of the player, necessary for the tracking.

Figure 3.4: Explanation of the information and format required by the COCO
standard.

20

Chapter 4

Pedestrian Detection

4.1 Multiple Object Detection
Nowadays neural networks are widely used in the computer vision field, per-
forming a number of tasks that can be collectively described with the term
object recognition[20]. Within object recognition we can distinguish three
main types of tasks:

• Image Classification involves predicting the class of an input image
and assigning a label to it;

• Object Localisation refers to identifying the location of one or more
objects in an image and drawing a bounding box around them;

• Object Detection combines the previous two tasks to localise and
classify one or more objects in an image.

As stated in section 2.3 this project uses the tracking-by-detection paradigm
to build the basketball player tracker. Therefore the first step is performing
object detection. An extensive literature research has been carried out to
choose the best convolutional neural network to use for the purpose of this
thesis.

4.2 Evaluation metrics
In the machine learning field it is extremely important to have some standard
evaluation metrics that can be used to compare different neural networks. In
the case of object detection a set of metrics have been defined starting from
two simple concepts[21]:

21

Pedestrian Detection

• Confidence score is the probability that a bounding box contains an
object. It is usually predicted by a classifier.

• Intersection over Union (IoU) is defined as the area of the intersec-
tion divided by the area of the union of a predicted bounding box Bp
and a ground-truth box Bgt:

IoU = area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

(4.1)

These two concepts are used to define how a detection is to be considered:

• True positive (TP) if confidence > threshold1, IoU > threshold2;

• False positive (FP) if confidence > threshold1, IoU < threshold2 or
confidence < threshold1, IoU > threshold2;

• False negative (FN) if confidence < threshold1 for a detection that
should correspond to a ground truth;

• True negative (TN) if confidence < threshold1 for a detection that
was not supposed to detect anything.

From these basic concepts we can derive the most common evaluation met-
rics, namely:

• Precision is the number of true positives divided by the sum of true
positives and false positives:

TP

TP + FP
(4.2)

• Recall is the number of true positives divided by the sum of true pos-
itives and false negatives (this sum is equal to the number of ground
truths):

TP

TP + FN
(4.3)

• Precision-recall curve is a curve indicating the association between
the recall (x-axis) and precision (y-axis), drawn by setting the confidence
threshold at different levels;

22

4.2 – Evaluation metrics

• Recall-IoU curve is a curve indicating the association between the
IoU (x-axis) and recall (y-axis), drawn by setting the IoU threshold at
different levels;

• Average Precision (AP) is the precision averaged across all unique
recall levels, and can be derived from the precision-recall curve;

• Mean average precision (mAP) is the mean of average precisions
over all object classes;

• Average recall (AR) is the recall averaged over all IoU ∈ [0.5, 1.0]
and can be computed as two times the area under the recall-IoU curve;

• Mean average recall (mAR) is the mean of average recalls over all
object classes.

Object detection algorithms can be compared by means of object detection
challenges, i.e. yearly competitions where new algorithms must perform de-
tection on the same provided dataset and are evaluated using the same met-
rics. The two most famous object detection challenges are COCO (Com-
mon Objects in Context)[19] and Pascal VOC[22]. The Pascal VOC
challenge relies on the mAP metric, defined using a single IoU threshold of
0.5, while the COCO challenge defines several mAP metrics, calculated using
different IoU thresholds and across different object scales.

Figure 4.1: Evaluation metrics used for COCO challenge.

23

Pedestrian Detection

4.3 State of the art
Deep learning for computer vision is a relatively new field; as such, it has seen
massive improvement over the last few years. This section will present a brief
overview of the latest CNNs proposed for the task of object detection[23]. We
can differentiate networks into two main categories based on their approach
to object detection: two-stage models and one-stage models.

Two-stage models are inspired by image classification: they divide the
task of object detection into two smaller tasks, performing firstly a region
proposal and then applying image classification to each proposed region.
RCNN[24], proposed in 2014, uses selective search to extract around 2000
regions from an image, which are then fed one by one to a CNN for feature ex-
traction and image classification. In the following years other networks were
developed inspired by RCNN: Fast RCNN[25] uses the whole image and its
region proposals as input to its CNN in a single forward propagation instead
of feeding the regions one by one; this change saves disk space and improves
the speed of the process. Faster RCNN[26] improves upon its predecessors
by removing the selective search algorithm, which constituted a bottleneck,
and letting the region proposal prediction to be carried out by a separate
neural network. Cascade RCNN[27], introduced in 2017, extends Faster
RCNN by presenting a sequence of detectors trained with increasing IoU
thresholds, and it manages to avoid the problems of over-fitting at training
and quality mismatch at inference. Mask RCNN[28] extends Faster RCNN
by adding a branch for predicting an object mask in parallel with the existing
branch for bounding box recognition. HTC (Hybrid Task Cascade)[29]
is inspired by Cascade RCNN and Mask RCNN, but instead of performing
cascaded refinement on detection and segmentation separately, it interweaves
them for a joint multi-stage processing; furthermore HTC adopts a fully con-
volutional branch to provide spatial context, which can help distinguishing
hard foreground from cluttered background.

One-stage models bypass the region proposal step, usually by dividing
the image into a NxN grid: each grid cell is then responsible for the object
whose center falls into that grid. Thanks to their simpler architecture one-
stage models usually require less computational resources and are faster than
two-stage models, making them more appealing for use in real-time applica-
tions. While two-stage models generally show higher accuracy than one-stage
models, the latter category is quickly catching up due to the growing com-
puting ability of machines. In one-stage models a single convolutional neural
network predicts the bounding boxes and the class probabilities for these

24

4.4 – Network comparison

boxes. YOLO (You Only Look Once)[8] was the first attempt to build
a real-time object detector. Each image is divided into a grid of SxS and for
each cell N bounding boxes and their confidence scores are predicted. The
confidence reflects the accuracy of the bounding box and whether the bound-
ing box actually contains an object (regardless of class). YOLO also predicts
the classification score for each box for every class in training[30]. SSD
(Single Shot Detector)[31] achieves a good balance between speed and
accuracy by running a convolutional network on the input image only once
and calculating a feature map, then running a small 3×3 sized convolutional
kernel on this feature map to predict the bounding boxes and classification
probability. RetinaNet[32] improves upon the other one-stage detectors by
proposing a new loss function that reduces class imbalance during training.

All of the aforementioned convolutional neural networks have been trained
and tested using the COCO dataset, which is comprised of around 330K im-
ages containing 1.5 million object instances across 80 object categories[19].
This means the CNNs are able to detect and assign labels to many dif-
ferent objects. Sometimes a more specific task is needed, as is the case for
pedestrian detection. In pedestrian detection the network doesn’t need to
know dozens of object categories, but is instead required to be extremely ac-
curate in recognizing a single category: human beings. For this reason some
CNNs have also been trained —or fine-tuned— and tested on pedestrian
detection datasets like Caltech[33], CityPersons[34], EuroCity Persons[35],
CrowdHuman[36], and WiderPedestrian Challenge[37]. Among the research
conducted in the pedestrian detection field some very promising results have
been achieved by Pedestron[38] and MGAN[39].

4.4 Network comparison
To decide which neural network to use for the project, some of the most
commonly used and best performing networks have been tested using the
basketball dataset. The results, calculated using the main COCO API[19]
evaluation metrics, are presented in Table 4.1, while a visual example of the
results can be seen in Figure 4.2.

When reviewing the evaluation results it must be taken into account that
the tested CNNs are trained for detecting either multiple object classes or
pedestrians, not basketball players specifically. This means the models will
detect, along with the players on the court, also the audience, the referees,
and any other people in the frame. For this reason, average precision values

25

Pedestrian Detection

are quite low —there are many false positives because the ground truths
exist only for the players. Nonetheless these results are indicative of the
performance of the networks relatively to each other, so they can be taken
into consideration when choosing how to proceed.

By taking into account both the numerical evaluation and the visual re-
sults, Pedestron’s Cascade Mask RCNN trained on Caltech was cho-
sen to perform the player detection. What was considered most important
when making this decision was the network’s ability to detect the players
even when very occluded or in unusual poses —most networks tend to per-
form worse when people don’t appear in the upright pose which is common
of pedestrians. A short computation time, while always important, is not
essential for this project, since its objective is not to build a real-time appli-
cation.

Table 4.1: Performance of CNNs on the basketball dataset. The CNNs were
tested on both the HQ and LQ dataset. The time field indicates the seconds
to process one image.

Detector Dataset APHQ ARHQ timeHQ APLQ ARLQ timeLQ

Cascade Mask RCNN Caltech 0.249 0.464 1.79 0.279 0.528 0.62
Cascade Mask RCNN WiderPedestrian 0.249 0.464 1.80 0.279 0.528 0.63
HTC CityPersons 0.208 0.458 1.21 0.235 0.448 0.52
Cascade Mask RCNN CrowdHuman 0.216 0.446 1.51 0.225 0.510 0.71
RetinaNet CityPersons 0.424 0.440 0.79 0.191 0.454 0.22
Faster RCNN COCO 0.216 0.435 0.76 0.206 0.367 0.26
SSD COCO 0.192 0.388 0.60 0.138 0.342 0.13
MGAN CityPersons 0.105 0.335 0.77 0.078 0.295 0.40
YOLOv4 COCO 0.010 0.256 2.09 0.016 0.253 0.71
Cascade Mask RCNN EuroCity 0.050 0.262 1.30 0.013 0.160 0.46
Faster RCNN EuroCity 0.035 0.229 0.58 0.029 0.173 0.21

4.5 Transfer learning
A possible course of action to obtain the detection of only the players would
be to perform transfer learning and fine-tune the chosen CNN to the bas-
ketball dataset. Transfer learning consists in taking features learned on one
problem, and adapting them to a new, similar problem. In this case this

26

4.5 – Transfer learning

would mean taking the CNN, which is pre-trained on a pedestrian dataset,
and training it again on the basketball dataset. Transfer learning is used
because training a neural network from scratch requires a dataset of enor-
mous size, which is not often available. For this reason networks are usually
first trained on a standard dataset like Open Images[40] or COCO, and then
transfer learning is performed with a smaller dataset that is specific to the
required task. Two common ways of performing transfer learning are[41]:

• Feature extraction, which involves using the representations learned
by a previous network to extract meaningful features from new sam-
ples. This is done by adding a new classifier, which will be trained from
scratch, on top of the pre-trained model, so that the previously learned
feature maps can be repurposed for the dataset.

• Fine-tuning, which means unfreezing some of the top layers of the
base model and training both the unfrozen layers and the newly-added
classifier layers. This allows to "fine-tune" the higher-order feature rep-
resentations in the base model in order to make them more relevant for
the specific task.

Unfortunately the available dataset was deemed unfit to perform transfer
learning successfully: since the chosen CNN seems to be very effective in
detecting players even under unfavourable conditions like occlusions and un-
usual poses, re-training it with a dataset that is quite small and contains such
low quality images would not only be useless, but could even prove detrimen-
tal to its accuracy. For this reason the process of isolating the bounding boxes
corresponding to the players on the court was carried out by using a com-
bination of simpler computer vision algorithms, as will be explained in the
next chapter.

27

Pedestrian Detection

(a) Cascade Mask RCNN - Caltech

(b) Cascade Mask RCNN - WiderPedestrian

(c) Hybrid Task Cascade - CityPersons

(d) Cascade Mask RCNN - CrowdHuman

28

4.5 – Transfer learning

(e) RetinaNet - CityPersons

(f) Faster RCNN - COCO

(g) Single Shot Detector - COCO

(h) MGAN - CityPersons

29

Pedestrian Detection

(i) YOLOv4 - COCO

(j) Cascade Mask RCNN - Eurocity Persons

(k) Fast RCNN - Eurocity Persons

Figure 4.2: Examples of detections performed by the tested CNNs.

30

Chapter 5

Court detection and
tracking

5.1 Objectives
The next step in the project was to develop an algorithm able to automati-
cally detect and track the basketball court. There are two reasons why this
step is needed:

1. By identifying the court area in each frame the bounding boxes corre-
sponding to basketball players can be isolated, ignoring all detections
that are not inside the playing field;

2. Some known reference points are needed to build the homography of
the basketball court; the homography is a transformation that maps
the points in one image to the corresponding point in another image.
It is needed to project the players’ positions in the 2D space, which is
important for analysing the players’ movements during the game.

5.2 Related work
Some research has been carried out over the last few years about automatic
detection of the playing field in several different sports. Wen et al.[42]
achieved a robust calibration by considering all video frames simultane-
ously to reconstruct the panoramic basketball court, followed by warping the
panoramic court to a standard one (1). Lu et al.[3] made use of Canny edge
detector [43] to find the edges of the basketball field, using previously detected

31

Court detection and tracking

bounding boxes to drop edges caused by players, and then applied an Itera-
tive Closest Points[44] algorithm to estimate the homography (2). Gupta et
al.[45] combined point, line and ellipse matches to get the homography of an
ice hockey field; to find the reference matches they initialised the system by
choosing a set of key-frames (images with overlapping features to cover the
whole range of camera motion) and manually chose point correspondences
between the key-frames and the geometric model to estimate the homogra-
phy for all the key-frames; finally, for each new frame they identified the
closest key-frame, estimated the homography between them, and obtained
the final homography between the new frame and the reference model by
concatenating the homography between the frame and its key-frame, and
that between the key-frame and the reference model (3). Hess et al.[46]
used Harris-affine detector and SIFT descriptor to detect and describe in-
variant image features (features that, in theory, should be equally detected
in two images of the same object related by a reasonable degree of affine
transformation) in American football videos; these features were then used
to match the frames to the 2D field (4). Pourezza et al.[47] extracted the
field lines of a soccer field through a two-step process: firstly they detected
the grass area based on the histogram of Hue component in the HSI color
space; then a combination of white-pixel detection —performed by analysing
the blue component of the input frame in RGB space— and edge detection
—achieved through the use of Sobel operator— applied to the grass area was
used to find good candidates for field lines (5). Fu et al.[48] detected white
line pixels through color filtering, width test and line structure constraint,
then performed Hough transform[49] to extract the court lines in basketball
fields; the camera calibration was then obtained with the intersection points
of the extracted court lines and their corresponding points in the court model
(6). Parsons et al.[4] detected the court pixels by means of a MAP detector,
trained by using training masks on the first 10 frames of the video: by iso-
lating the known court pixels over multiple frames, the MAP detector learns
to recognize the average RGB color values of the court pixels (7). Hayet
et al.[50] tracked a set of locally salient features, detected through a Harris
detector, with a KLT tracker ; they then used the tracked points to determine
the frame-to-frame homographies (8). Farin et al.[51] identified the white
pixels of the court lines through color detection and other constraints, then
found a set of line candidates using a Hough transformation on the white
pixels; line candidates were assigned to lines in the court model using a com-
binatorial search (9). Liu et al.[52] used the assumption that the playfield
color dominates most shots in sports videos by analysing histogram of the

32

5.3 – Unsuccessful attempts

frame in CbCr space, finding its peak and the connected region; finally they
adopted Gaussian mixture model (GMM) in order to model the playfield color
(10).

5.3 Unsuccessful attempts
Many different approaches were attempted in order to tackle the detection
of the court and of its lines, which are needed to find the reference points to
be used in the homography.

Unfortunately trying to detect the field and the field lines by finding pixels
of certain colors like in (5), (6), and (9) proved unfeasible: firstly, the field
lines are not always white in basketball, since the regulations only state thay
must be in a contrasting color to the field; furthermore, even trying to find
these lines by means of thresholding or edge detection does not provide a good
result for the available dataset, since these lines often appear too thin due
to low image quality and other factors. There is also no regulation regarding
the color of the basketball court, therefore different basketball stadiums are
colored quite differently, making it impossible to detect the court by looking
for a certain color range. An example of this can be seen in Figure 5.1.

Some attempts to detect the field lines by means of thresholding, Canny
edge detection, and Hough transform were made, but the results were very
unreliable: while for some images this process worked quite well, for others
it detected either too many lines, or not enough. To perform homography
at least four points are needed, and their correspondence must be known;
furthermore, to obtain a valid homography no three of these points can lie
on the same line. In the case of too few lines detected it was impossible to
find these points as intersections of the lines, while if too many lines were
found it was a very difficult task to automatically decide which ones were
the right ones to be used for finding the reference points. Some examples of
this approach can be found in Figure 5.2.

Isolating the court by finding the most dominant color was also unsuccess-
ful: due to the fact that some basketball courts have more than one color,
sometimes the dominant color of the image is not the dominant color of the
court. This problem is especially common when the camera view closes up
on the players, as can be seen in Figure 5.3. Nevertheless an attempt was
carried out following a similar approach. The image colors were divided by
using K-means clustering —this was tried both on the RGB and on the HSV
color spaces— and the largest cluster was determined. A variant of this step

33

Court detection and tracking

Figure 5.1: Examples of different basketball courts: each one has very differ-
ent colors and color combinations.

was also created, which ignored the highest quarter of the picture when find-
ing the dominant cluster —the reason being that the higher part of a frame
is usually occupied by the stands. The dominant cluster was considered to
correspond to the field color. The following steps were the same as in the
previous attempt: thresholding, Canny edge detection, and Hough transform.

34

5.3 – Unsuccessful attempts

(a) Too many lines detected: difficult to isolate correct ones.

(b) Not enough lines detected: there are no intersections.

Figure 5.2: Detecting lines through thresholding, Canny edge detector and
Hough line transform.

These algorithms were applied to three different variants of the frame:

• the clustered image, i.e. an image where each pixel of the original frame
was colored based on the cluster it belonged to;

• an image in which all pixels not belonging to the dominant cluster were
zeroed —in the hope that they would not interfere with the subsequent
line detection—, thus leaving the original pixels only in some parts of
the picture;

• an image where all pixels not belonging to the dominant cluster were
zeroed, and all pixels belonging to the dominant cluster were colored
with the cluster’s center value.

An example of the process can be seen in Figure 5.4. Unfortunately, due to
the previously explained problems, none of these cases gave a satisfactory
result.

Following a similar approach to (2) (obscuring the detected bounding
boxes to avoid noise from the players when performing line detection) didn’t

35

Court detection and tracking

Figure 5.3: Examples of frames where the court color is not dominant.

yield any better results. In basketball videos the camera shots are often
quite close-up so the players appear quite big: blackening the corresponding
bounding boxes obscured too much of the field lines as well, making it hard
for line detection algorithms to work properly.

Using the technique explained in (1) was impossible, since it needs each
clip to contain a view of all parts of the court, while clips in the available
dataset usually only focus on one half of the court. (4) and (8) didn’t work
either, since unfortunately the SIFT and Harris algorithms weren’t able to
find good invariant point features in the basketball images, placing most SIFT
points on the audience —since the spectators might move independently of
the camera, these points are not reliable— and on the superimposed graphics
showing the teams’ names and scores —the position of these graphics is
constant throughout the video, so these points are useless. An example of
the points found through these algorithms can be seen in Figure 5.5. (7)
was ruled out because it requires the creation of training masks for the first
10 frames of each new video —each time the basketball court changes the
MAP detector must be re-trained to learn its average colors. An interesting

36

5.3 – Unsuccessful attempts

approach derived from this idea would be to train a CNN to be able to
automatically recognize the basketball court and its field lines. Due to time
constraints and lack of an appropriate dataset this path was not explored,
but it can be taken into consideration for future development.

(a) Image is converted to HSV, k-means clustering is performed, non-dominant colors
are blackened, pixels of dominant cluster are flattened to cluster center, bounding
boxes are obscured.

(b) Image is kept in RGB, k-means clustering is performed, all pixels colors are
flattened to their cluster center, clustered image is turned to gray and thresholded.

(c) Image is kept in RGB, k-means clustering is performed, non-dominant colors are
blackened, pixels of dominant cluster keep their color, image is thresholded.

Figure 5.4: Detecting lines through k-means clustering, thresholding, Canny
edge detector and Hough line transform.

37

Court detection and tracking

Figure 5.5: Example of found invariant point features.

5.4 Proposed algorithm
Broadcast basketball videos are usually shot from a single pan-tilt-zoom
camera positioned on the side of the court. The camera is fixed in place,
but it has a wide range of motion, so the view of the court must be tracked
from frame to frame. Unfortunately the camera position is not explicitly
fixed by the game rules, so different stadiums can film from slightly different
positions. Since there are no camera attributes to rely on, it is impossible to
perform a single manual calibration and use it for all videos, or even just for
all frames in a clip.

After trying many different approaches, a process including both manual
and automatic techniques was developed for detecting and tracking the bas-
ketball court. A distinction can be made in the behaviour between the first
frame of a clip and all following ones.

5.4.1 First frame
A manual calibration is needed for the first frame of each clip. The need for
a manual input from the user arises from the fact that any fully automatic
approach was deemed too unreliable. When the analysis of a new clip is
starting, the user is required to select twelve points on the first frame:
these points correspond to twelve reference points with fixed positions on
the reference 2D court —the reference image is the same for all videos. The

38

5.4 – Proposed algorithm

user is asked for the points in order, and can either select their location by
pressing LMB (the left mouse button) on the desired spot or discard them —
if the point is not visible in the current frame— by pressing RMB (the right
mouse button) anywhere on the frame. This process only needs to happen
once per clip: the points are saved in a .txt file, so if the same video needs to
be analysed on other occasions, there will be no need to redo this step. The
reference image with the positions of the points can be seen in Figure 5.6.

Figure 5.6: 2D basketball court with the reference points.

The collected twelve points (marked in black) are then used to construct
the field lines: they are found either through Hough transform or by math-
ematically finding the lines joining the selected points. The last four points
(marked in blue) are found as interceptions of those lines. The lines found
by Hough are supposed to be accurate because they must pass some tests
—their angle must be inside a certain range, and they must pass in the near
vicinity of some of the points selected by the user. During this process the
positions of the first twelve points can also change slightly, since points found
as interceptions of lines detected by Hough transform are deemed more accu-
rate than points given as input by the user —due to the possibility of human
error. A visual example of this process can be seen in Figure 5.7.

These sixteen points —though not all of them will be valid, only the ones
visible in the frame— are stored in an array and used to construct the first
homography, by using the valid points in the frame and the correspondent

39

Court detection and tracking

reference points. The homography can be easily found by inputting these two
sets of points in OpenCV ’s function findHomography(). The homography
will be used to project the players’ positions onto the 2D court model. A
reverse homography is also computed —i.e. a homography from the reference
image to the current frame— and used to create a mask for the frame. This
mask is created by projecting the end lines of the 2D court model onto the
frame and zeroing all pixels outside of the playing field. It will be used to dis-
card the detections corresponding to the audience —i.e. all bounding boxes
outside the playing field (see Figure 5.8). If the homography is considered
valid —the validity check will be explained shortly— it is time to proceed to
the following frame.

5.4.2 Following frames
The position of the court in the following frame is computed by optical flow
using the iterative Lucas-Kanade method with pyramids. Optical flow is the
pattern of apparent motion of image objects between two consecutive frames
caused by the movement of the objects or the camera[53].

This algorithm is often used in conjunction to a corner detector like Harris
or Shi-Tomasi but, since these algorithms don’t work well on the provided
dataset, the points to be tracked are found using a different approach: 100
points are interpolated on each of the straight lines present in the previous
frame, and the optical flow is calculated on them. The reason for this choice
is that the points along those lines will be more easily trackable, as the area
surrounding them is more specific than for points found anywhere else inside
the court —because we have the contrast between the line and the court
colors— and will be more reliable than other points, which may for example
fall on the players or the audience, who might move unpredictably.

Different ways of using these points were attempted, for example using
either the whole lines —from one side of the image to the opposite side—
or just the parts that are effectively court lines in the picture —bounded
by the corners of the playing field— and an attempt was made to use the
previously computed bounding boxes of the players, deleting the points that
fall inside them to avoid outliers —points which moved too much due to
the movement of the player they fall on. Ultimately it was found that the
best results were obtained using the whole lines and not using the bounding
boxes, since this gives the highest number of points to track, and outliers
are thus more easily detected and ignored when computing the homography
with RANSAC algorithm —RANSAC is an algorithm for robust fitting of

40

5.4 – Proposed algorithm

models in the presence of many data outliers[54]. An example of the optical
flow points is shown in Figure 5.9.

The optical flow produces two arrays, one filled with the points used in the
optical flow algorithm, the other filled with the resulting position of those
points in the new frame —only the points which have status=1 and error
smaller than a chosen value are stored. These two sets of points are used to
compute an inter-frame homography, from the previous frame to the current
one; this is where RANSAC finds the inliers and uses them to compute the
best possible homography. The resulting homography matrix is then used to
transform the corner points from the previous frame to the current one, and
then the process of finding the Hough lines and their interceptions is repeated
in the current frame, in order to derive another set of points which should,
theoretically, be more correct, since they are found using image features of
the current frame.

These new corner points are used to compute the homography from the
current frame to the reference 2D model, just like it was done for the first
frame. If the homography is considered valid, the algorithm passes on to the
next frame, using the current frame as reference (i.e. as the "previous frame"
from which optical flow is computed); if it is not considered valid, we per-
form the previously explained process for the following frame, but without
changing the reference frame —the non valid frame will be skipped. If the
following frame’s homography is considered valid, a “backwards” optical flow
is computed from that frame to the skipped one, and a new homography is
computed. If the homography is still not valid the frame is ignored. If two
consecutive frames are not valid, those frames, along with all the following
frames of the clip, are ignored, under the assumption that the optical flow
from the last valid frame to the following frames would give bad results as
well —maybe the camera moved too much between two frames, or the shot is
too close-up and not enough corners are visible in the frames. This behaviour
(ignoring all consequent frames) was used mainly for testing purposes, since
the algorithm was dealing with a big amount of clips: in the final application
it could be possible to ask the user to manually input the corner points again
—in a middle-clip frame— if needed.

41

Court detection and tracking

5.4.3 Homography validity check
The validity of the homography is checked through many consecutive steps,
each performed only if the previous one results in an invalid homography:

1. The homography is computed from the current frame to the reference
image using the points found through Hough line transform. The frame
is warped to create a new image corresponding to the 2D basketball court
view. In the warped image Hough transform is once again performed,
and the lines are counted that abide to certain rules: they must be
either horizontal or vertical (within a small margin) and pass through
—or be in the vicinity of— at least one of the corner points found in the
reference image. If more than one line of similar slope passes through
the same point, only one line is considered. If at least three of these
lines are found, the homography is considered valid. This low threshold
is due to the fact that lines might be missing due to occlusion caused
by players, or due to the distortion introduced when warping the image.
(Figure 5.10a).

2. The same process as (1) is performed, but the homography is computed
using the points found through manual input (in the first frame) or
through optical flow (in following frames). While these points are usually
very similar to the ones found by Hough transform, it is worth doing this
check since there might have been some errors in the lines and points
found using Hough.

3. If both previous points fail, the inverse homography of (1) is computed,
and is used to warp the reference image to the current frame. Hough
transform is applied to the warped image, and a similar (though in-
verted) process to the one explained in the previous points is performed:
lines are accepted if their slope is within certain bounds, and if they
pass through or near to at least one of the corner points found in the
frame. In this case the checks on slope and vicinity to points are more
constricting, since we don’t expect to find inaccuracies due to occlusions
or distortion —the image might be slightly distorted, but since it’s a
drawing the lines will still appear clear enough for Hough transform, if
the homography is correct enough. (Figure 5.10b).

4. The same process as (3) is carried out, but using the points in (2).

5. If none of the previous steps yields a valid homography, a final check is
carried out using the homography found in the previous frame: if the

42

5.5 – Results

camera motion was small enough between the two frames, the previous
homography could be valid for the current frame as well. The same
checks as (1) and (3) are carried out using this homography.

The homography and the corner points which are considered valid are saved
and used as reference for the following frame.

5.5 Results
The performance of the proposed algorithm was tested by performing once
again COCO evaluation on the dataset. Only 2 out of 424 HQ frames
were ignored (i.e. their homography was deemed not valid). The COCO
evaluation resulted in AP @ [IoU=0.50-0.95] = 0.299 and AR = 0.444.
The total process lasted 5.59 seconds per frame. Out of 6072 LQ frames 177
were ignored. The COCO evaluation resulted in AP @ [IoU=0.50-0.95]
= 0.326 and AR = 0.512. The total process lasted 2.88 seconds per frame.

Why are the results of the COCO evaluation so low, while the detections
on the images seem very good visually? This result can be attributed to two
main reasons:

• The values are lowered by the fact that the referees are still being de-
tected —when inside the playing field. This explains the low precision
(since there are still some false positives).

• The available dataset has some incorrect annotations. This can be seen
in images like Figure 5.11: some players are detected but do not have
ground truth boxes, or some additional ground truths are wrongly an-
notated, usually in areas of high occlusion. It is also noticeable that
oftentimes the ground truths have shapes that are not fully compatible
with the player they refer to —e.g. the box does not fully contain the
player due to its position, or the box is too big for the player— while
the detected boxes tend to be more adapted to the player. This might
explain why the AP is quite high for lower thresholds of IoU, but quite
low for IoU=0.5-0.95. Unfortunately there is no way to control these
issues when using a pre-existing dataset.

Time is also an issue: the process of court tracking and homography slows
down the program quite a lot —probably because of the many tests to be
performed in order to make the process more robust.

43

Court detection and tracking

All in all this algorithm yields decent results for the scope of this project,
but it can certainly be reviewed in the future to improve its performance and
robustness.

44

5.5 – Results

(a) Points defined by user.

(b) Lines found from defined points.

(c) New points, found as interceptions of lines.

Figure 5.7: Reference points definition.

45

Court detection and tracking

(a) The mask created through inverse homography.

(b) Bounding boxes that fall outside the playing field are small light blue dots.

(c) Only the bounding boxes of people inside the court (the big dots) are considered.

Figure 5.8: The detections are filtered based on inverse homography. The
center point of the lower bound of each bounding box is considered for check-
ing if a person is inside or outside of the court.

46

5.5 – Results

Figure 5.9: Example of optical flow between two frames.

47

Court detection and tracking

(a) Homography check.

(b) Inverse Homography check.

Figure 5.10: Examples of the checks performed on the homographies: the
two homographies on the right are valid, the two on the left are not.

48

5.5 – Results

Figure 5.11: Examples of wrong annotations in the dataset: detected bound-
ing boxes are in white, ground truths are in purple.

49

50

Chapter 6

Player Tracking

6.1 State of the art
As introduced in section 2.2 MOT algorithms tend to follow some standard
steps: detection, feature extraction, motion prediction, affinity computation,
and association[12]. Nonetheless, with the increasing experimentation with
the use of deep learning in MOT, these algorithms are becoming much more
diverse as they employ different types of neural networks in different steps of
the process. The most common step in which neural networks are utilised is
the detection step, but lately their use has been experimented in other steps
as well, leading to interesting results.

Originally tracking algorithms were based on data association and state es-
timation techniques based on computer vision tools such as Kalman Filter
and Hungarian algorithm: such is the case for Bewley et al.[10]’s SORT.
Bochinski et al.[55] presented a slightly different approach, taking advan-
tage of high precision detections and the high frame rates of video footage
to propose a simple IOU tracker which continues a track by associating the
detection with the highest IOU to the last detection in the previous frame
if a certain threshold is met. Wojke et al.[56] expanded SORT, integrating
appeareance information into the algorithm by means of a CNN for feature
extraction, which was trained on a pedestrian detection database; the new al-
gorithm, which replaces the old association metric with a more informed one
combining motion and appearance information, is called DeepSORT. Other
studies have used deep learning for feature extraction: for example, Kim
et al.[57] incorporated visual feature extraction into the Multiple Hypothe-
sis Tracking algorithm using a pretrained CNN, and Yu et al.[58] used a
modified version of GoogLeNet, pre-trained on a re-identification dataset, for

51

Player Tracking

extracting features.
Some studies have introduced the idea of using Siamese Neural Net-

works, which consist of two identical artificial neural networks working
parallelly in tandem to naturally rank similarity between inputs by com-
paring their outputs[59]. For example Kim et al.[60] introduced a tracking
system based on similarity mapping by Enhanced Siamese Neural Network
(ESNN), which accounts for both appearance and geometric information; in-
spired by Siamese networks, Zhang et al.[61] proposed a loss function called
SymTriplet, wich uses three CNNs with shared weights; in a similar fashion
Son et al.[62] introduced Quad-CNN, which learns to associate object detec-
tions across frames using quadruplet losses by considering target appearances
together with their temporal adjacencies for data association. Furthermore,
sometimes Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM) networks can be employed for motion prediction, as is
shown by Sadeghian et al.[63]; another example of their use can be seen in
Babaee et al.[64]’s method which, in order to preserve the ID number of
targets after occlusion, reconstructs missed detection boxes, predicting the
detections in next frames by learning the motion of targets using a RNN.

Among the top-performing algorithms in MOT 2020 and CVPR 2019
challenges many interesting new approaches are explored: Karthik et al.[65]’s
SimpleReID is an unsupervised re-identification network which first generates
tracking labels using SORT, and then trains a ReID network to predict the
generated labels using cross-entropy loss; Ren et al.[66]’s approach, explic-
itly designed for handling crowded scenes, incorporates object counting into
their model, and solves the multiple object detection and tracking simulta-
neously over the whole video sequence; Zhang et al.[67]’s FairMOT is a new
baseline for one-shot MOT tracking which jointly detects objects and learns
Re-ID features while avoiding the use of anchors, which were found to be the
reason for the bad results in other one-shot algorithms; Bochinski et al.[68]
extended the original IOU tracker by incorporating a visual single-object
tracker to increase the robustness against missing detections; Bergmann et
al.[69] introduced Tracktor, which tackles multi-object tracking by exploiting
the regression head of a detector to perform temporal realignment of object
bounding boxes.

52

6.2 – Evaluation metrics

6.2 Evaluation metrics
Like multiple object detection, MOT also requires a set of standard evalu-
ation metrics to compare the performance of different tracking algorithms.
Three main sets of metrics are commonly used for evaluating MOT algo-
rithms:

1. Classical metrics[70]

• Mostly Tracked (MT): number of ground truth trajectories for
which more than 80% of the trajectory is tracked;

• Mostly Lost (ML): number of ground truth trajectories for which
more than 80% of the trajectory is lost;

• Fragments: number of fragments of trajectories, i.e. result trajec-
tories which are less than 80% of a ground truth trajectory;

• False trajectories: number of false trajectories, i.e. result trajec-
tories corresponding to no real object;

• Identity switches: number of identity exchanges between a pair of
result trajectories.

2. CLEAR MOT metrics[71]

• FP: the number of false positives in the whole video;
• FN: the number of false negatives in the whole video;
• FM: the total number of fragmentations;
• IDSW: the total number of ID switches;
• MOTA Score (accuracy) —with GT being the number of ground

truth boxes:

MOTA = 1− (FN + FP + IDSW)
GT

∈ (−∞, 1] (6.1)

• MOTP Score (precision)—where ct denotes the number of matches
in frame t, and dt,i is the bounding box overlap between the hypoth-
esis i and its assigned ground truth object:

MOTP = 1−
∑

t,idt,i∑
tct

(6.2)

53

Player Tracking

3. ID Scores[72]
Unlike the CLEAR MOT metrics, which measure performance by how
often mismatches occur, these scores focus on how long the tracker cor-
rectly identifies targets. To obtain them a bipartite graph is created that
associates one ground-truth trajectory to exactly one computed trajec-
tory by minimizing the number of mismatched frames over all available
data. The first set of graph vertices VT has a regular node for each true
trajectory, and a false positive node for each computed trajectory; the
second set VC has a regular node for each computed trajectory and a
false negative for each true one. The costs of the edges are set in order
to count the number of false negative and false positive frames in case
that edge were chosen. After association there are four different possible
pairs: if a regular node from VT is matched with a regular node from
VC, a true positive ID is counted. Every false positive from VT matched
with a regular node from VC counts as a false positive ID. Every reg-
ular node from VT matched with a false negative from VC counts as a
false negative ID, and every false positive matched with a false negative
counts as a true negative ID. IDTP, IDFN, and ISFP are the sums
of the weights of the edges selected as, respectively, true positive, false
negative, and false positive ID matches. The ID scores are then defined
as:

• Identification precision:

IDP = IDTP

IDTP + IDFP
(6.3)

• Identification recall:

IDR = IDTP

IDTP + IDFN
(6.4)

• Identification F1:

IDF1 = 2 IDTP

2 IDTP + IDFP + IDFN
(6.5)

54

6.3 – Employed algorithms

6.3 Employed algorithms
Unfortunately most of the methods mentioned in section 6.1 are not open
source, and implementing them from scratch would prove to be an extremely
difficult (if not impossible) task given the time and resources reserved for
this work. Among the open source algorithms many are not suitable for
this project, either because they were created for a different context —for
example, many are built for use in mobile robots— or because they are not
compatible with the other parts of this work. For this reason theDeepSORT
algorithm was chosen to perform the player tracking. This choice was based
on some key concepts:

• it is a simple and fast algorithm, which are very useful features since the
previous steps of the project are quite complex and slow;

• it is very popular and has been shown to offer a good performance and
to be fairly robust;

• its feature extractor is trained on a pedestrian identification dataset,
which supposedly makes it good at recognising human features.

Briefly speaking, DeepSORT works by:

1. receiving a set of bounding boxes from a previous detection step;

2. generating, by means of a deep network, the appearance features from
the image referring to said bounding boxes, and storing them in a
single feature vector: these features will then be used for person re-
identification;

3. building the tracks by means of Kalman filtering and Hungarian algo-
rithm, with the help of the previously extracted appearance features.

Unfortunately the results obtained with this tracking algorithm were subpar:
in particular, the algorithm often ignored players even though they had been
previously detected by the detection algorithm (see Figure 6.1). The disap-
pearance of a bounding box is sometimes expected, denoting the loss of a
track, but in this case it occurred too often to be considered acceptable.

Under the assumption that this problem was mainly caused by the fea-
ture extraction step, the SORT algorithm was selected as a second choice.
This algorithm is the predecessor of DeepSORT: it involves the same track-
ing methodology but foregoes the use of appearance features. Although this

55

Player Tracking

Figure 6.1: Examples of vanishing bounding boxes: original detections are
on the left, DeepSORT results are on the right.

method is a bit outdated, it is still quite popular: in the recent past many
tracking algorithms have started to focus on the use of deep networks, but
many others are being kept simpler, relying on the increasingly accurate ob-
ject detections. With the use of SORT the problem of disappearing bounding
boxes was mostly solved.

6.4 Results
The performance of both DeepSORT and SORT was tested using the most
common MOT evaluation metrics[73]. The results can be seen in Table 6.1a
and Table 6.1b respectively. Some comparison pictures can be seen in Fig-
ure 6.2. While better than those obtained with DeepSORT, the results found
by using SORT are still not perfect.

56

6.4 – Results

Table 6.1: Performance of tracking algorithms on the basketball dataset.

(a) DeepSORT

IDF1 IDP IDR Recall Precision MOTA MOTP
HQ dataset 37.7% 52.6% 29.3% 37.6% 67.3% 17.2% 0.298
LQ dataset 38.0% 57.6% 28.3% 34.6% 70.4% 18.2% 0.293

(b) SORT

IDF1 IDP IDR Recall Precision MOTA MOTP
HQ dataset 51.7% 51.0% 52.5% 75.8% 73.7% 40.5% 0.290
LQ dataset 29.0% 18.8% 63.0% 88.4% 26.5% 19.2% 0.286

There are many factors that come together and hinder these algorithms’
performance:

• as introduced in section 2.1, sports players tracking in general, and bas-
ketball players tracking in particular, is much more challenging than
normal pedestrian tracking: this is due to the frequent and long oc-
clusions, the close similarity between players, and their fast movement,
complicated motion patterns and atypical poses;

• as mentioned in section 5.5, some bounding box correspondences are
lost because of errors in the ground truth annotations of the dataset,
while some false positives are still present because the referees are being
detected along with the players; furthermore, it must be noted that
the ground truths exist for all frames, but the tracking algorithms only
initialise a track after a minimum number of detections are associated,
so the detections on the first few frames are lost.

• the dataset is comprised of several subsets, each containing a set of
frames extracted from a basketball game video: the tracking is thus
applied to these sets of frames as if they were video clips. It is possible
to observe that these frames have been extracted from their relative
clips with a very low frame rate, which causes the players’ positions
and poses to change quite a lot from one frame to the next. This can
rather hinder tracking algorithms, which often rely on the idea that an
object will not move too much between consecutive frames to perform

57

Player Tracking

track association —many algorithms use, among other things, IoU of
bounding boxes between two frames to decide if they belong to the same
track.

While not ideal, these results are good enough for the scope of this project.
They will be improved upon in the future by means of further study and
integration with other technologies, as will be explained in chapter 7

58

6.4 – Results

(a) Example of results on the video frames.

(b) Example of results on the 2D court model.

Figure 6.2: Examples of the player tracking results: SORT results are on the
left, ground truths in the middle, DeepSORT results on the right.

59

60

Part III

Conclusions

61

Chapter 7

Conclusions and future
work

Basketball player tracking presents many challenges with respect to common
pedestrian tracking: the frequent and long occlusions, complicated motion
patterns and unusual poses of the players, fast movement of both the players
and the camera, and the ambiguous appearance of the players make recog-
nising and tracking them a very difficult task.

This thesis proposes a tracking-by-detection algorithm that employs neural
networks and computer vision to obtain the automatic detection and track-
ing of players on video clips of basketball games. Firstly, and open-source
dataset containing basketball game clips and player tracking annotations
was chosen and adapted to the project requirements. Pedestron’s Cas-
cade Mask RCNN trained on Caltech was chosen as the best option to
detect the bounding boxes corresponding to people on each frame. A new
semi-automatic algorithm was created to detect and track the basketball
court, filter the bounding boxes, and project the players’ position on a 2D
court model. Finally two tracking methods were compared and SORT, a
simple and fast tracking algorithm using a combination of Kalman filter and
Hungarian algorithm, was applied to the detections, yielding discreet results.

Further work can be done on the developed system to overcome some of its
limitations. One such limitation is the processing time of the algorithm:
for both the player detection and the basketball court tracking time efficiency

63

Conclusions and future work

was partly sacrificed in favour of accuracy and robustness. This choice was
made because the scope of the project was to develop an off-line application
to help analyse past games. If the need arises to convert the program for
on-line use, e.g. for real-time analysis of an on-going game, a new equilibrium
between time and accuracy must be found. A possible course of action in this
case would be to change the detection network to a one-step CNN, since they
tend to be quite faster than two-step CNNs —albeit slightly less accurate—,
and to find a way to simplify the court tracking algorithm.

Another possible improvement to the project could be the addition of a
ball tracking system which, coupled with the player tracking, would give an
even broader overview of the game. Furthermore, an additional step could be
added to divide the players into teams, possibly based on the dominant
colors in their bounding boxes, which should reflect the color of their uniform;
during this step the referees’ detections could also be discarded based on their
clothes color.

Another limitation is the player tracking algorithm. The tracking re-
sults, while acceptable for the project, would not be good enough for a
commercial product. These results could be improved by studying and imple-
menting a more complex tracking algorithm —keeping in mind, once again,
the trade-off between time and accuracy— or by coupling the developed
computer vision algorithm to other technologies. ESTECO SpA is, in fact,
developing a proprietary system to physically track players through the use of
Ultra Wide Band (UWB) hardware. This technology is able to provide
very precise data on the position of objects and people in closed environ-
ments.

During the course of next year this project will continue thanks to a schol-
arship offered by Trieste’s Area Science Park, and the developed algorithm
will be integrated with the data offered by the UWB sensors, in the hopes of
creating an accurate and robust application for sports games analysis.

64

Bibliography

[1] G. Thomas, R. Gade, T. B. Moeslund, P. Carr, and A. Hilton, “Com-
puter vision for sports: Current applications and research topics,” 2017.

[2] A. Arbués-Sangüesa, C. Ballester, and G. Haro, “Single-camera basket-
ball tracker through pose and semantic feature fusion,” 2019.

[3] W. Lu, J. Ting, J. J. Little, and K. P. Murphy, “Learning to track
and identify players from broadcast sports videos,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1704–
1716, 2013.

[4] S. Parsons and J. D. Rogers, “Basketball player tracking and automated
analysis,” 2014.

[5] E. Cheshire, M.-C. Hu, and M.-H. Chang, “Player tracking and analysis
of basketball plays,” 2015.

[6] G. Zhu, C. Xu, Q. Huang, and W. Gao, “Automatic multi-player detec-
tion and tracking in broadcast sports video using support vector machine
and particle filter,” in 2006 IEEE International Conference on Multime-
dia and Expo, pp. 1629–1632, 2006.

[7] Y. Yoon, H. Hwang, Y. Choi, M. Joo, H. Oh, I. Park, K. Lee, and
J. Hwang, “Analyzing basketball movements and pass relationships us-
ing realtime object tracking techniques based on deep learning,” IEEE
Access, vol. 7, pp. 56564–56576, 2019.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2015.

[9] D. Acuna, “Towards real-time detection and tracking of basketball play-
ers using deep neural networks,” 2017.

[10] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” 2016 IEEE International Conference on Image
Processing (ICIP), Sep 2016.

[11] V. Ramanathan, J. Huang, S. Abu-El-Haija, A. Gorban, K. Murphy,
and L. Fei-Fei, “Detecting events and key actors in multi-person videos,”

65

Bibliography

2015.
[12] G. Ciaparrone, F. Luque Sánchez, S. Tabik, L. Troiano, R. Tagliaferri,

and F. Herrera, “Deep learning in video multi-object tracking: A survey,”
Neurocomputing, vol. 381, p. 61–88, Mar 2020.

[13] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[14] Anaconda Software Distribution. https://anaconda.com.
[15] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Informa-
tion Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran
Associates, Inc., 2019.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for
large-scale machine learning,” in 12th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

[18] Tzutalin, “Labelimg.” https://github.com/tzutalin/labelImg, 2015.
[19] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,

P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco:
Common objects in context.” https://cocodataset.org/, 2014.

[20] J. Brownlee, “A gentle introduction to object recognition
with deep learning.” https://machinelearningmastery.com/
object-recognition-with-deep-learning/, 2019.

[21] N. Zeng, “An introduction to evaluation metrics for object
detection.” https://blog.zenggyu.com/en/post/2018-12-16/
an-introduction-to-evaluation-metrics-for-object-detection/,
2019.

[22] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The pascal visual object classes challenge:
A retrospective,” International Journal of Computer Vision, vol. 111,
pp. 98–136, Jan. 2015.

[23] K. Li, W. Ma, U. Sajid, Y. Wu, and G. Wang, “Object detection with
convolutional neural networks,” 2019.

66

https://anaconda.com
https://github.com/tzutalin/labelImg
https://cocodataset.org/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/

Bibliography

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” 2013.

[25] R. Girshick, “Fast r-cnn,” 2015.
[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” 2015.
[27] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality

object detection,” 2017.
[28] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” 2017.
[29] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu,

J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “Hybrid task cascade for
instance segmentation,” 2019.

[30] A. Sachan, “Zero to hero: Guide to object detection using deep learning:
Faster r-cnn,yolo,ssd.” https://cv-tricks.com/object-detection/
faster-r-cnn-yolo-ssd/.

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” Lecture Notes in Computer
Science, p. 21–37, 2016.

[32] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” 2017.

[33] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
A benchmark,” in CVPR, June 2009.

[34] S. Zhang, R. Benenson, and B. Schiele, “Citypersons: A diverse dataset
for pedestrian detection,” 2017.

[35] M. Braun, S. Krebs, F. B. Flohr, and D. M. Gavrila, “Eurocity persons:
A novel benchmark for person detection in traffic scenes,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[36] S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, and J. Sun, “Crowd-
human: A benchmark for detecting human in a crowd,” arXiv preprint
arXiv:1805.00123, 2018.

[37] C. C. Loy, D. Lin, W. Ouyang, Y. Xiong, S. Yang, Q. Huang, D. Zhou,
W. Xia, Q. Li, P. Luo, J. Yan, J. Wang, Z. Li, Y. Yuan, B. Li, S. Shao,
G. Yu, F. Wei, X. Ming, D. Chen, S. Zhang, C. Chi, Z. Lei, S. Z. Li,
H. Zhang, B. Ma, H. Chang, S. Shan, X. Chen, W. Liu, B. Zhou, H. Li,
P. Cheng, T. Mei, A. Kukharenko, A. Vasenin, N. Sergievskiy, H. Yang,
L. Li, Q. Xu, Y. Hong, L. Chen, M. Sun, Y. Mao, S. Luo, Y. Li, R. Wang,
Q. Xie, Z. Wu, L. Lu, Y. Liu, and W. Zhou, “Wider face and pedestrian
challenge 2018: Methods and results,” 2019.

[38] I. Hasan, S. Liao, J. Li, S. U. Akram, and L. Shao, “Pedestrian detection:
The elephant in the room,” arXiv preprint arXiv:2003.08799, 2020.

67

https://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
https://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/

Bibliography

[39] Y. Pang, J. Xie, M. H. Khan, R. M. Anwer, F. S. Khan, and L. Shao,
“Mask-guided attention network for occluded pedestrian detection,”
2019.

[40] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Fer-
rari, “The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale,” IJCV, 2020.

[41] “Transfer learning and fine-tuning.” https://www.tensorflow.org/
tutorials/images/transfer_learning.

[42] P. Wen, W. Cheng, Y. Wang, H. Chu, N. C. Tang, and H. M. Liao,
“Court reconstruction for camera calibration in broadcast basketball
videos,” IEEE Transactions on Visualization and Computer Graphics,
vol. 22, no. 5, pp. 1517–1526, 2016.

[43] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-8,
no. 6, pp. 679–698, 1986.

[44] Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” International journal of computer vision, vol. 13, no. 2,
pp. 119–152, 1994.

[45] A. Gupta, J. J. Little, and R. J. Woodham, “Using line and ellipse
features for rectification of broadcast hockey video,” in 2011 Canadian
Conference on Computer and Robot Vision, pp. 32–39, 2011.

[46] R. Hess and A. Fern, “Improved video registration using non-distinctive
local image features,” in 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–8, 2007.

[47] R. Pourreza, M. Khademi, H. Pourreza, and H. R. Mashhadi, “Robust
camera calibration of soccer video using genetic algorithm,” in 2008 4th
International Conference on Intelligent Computer Communication and
Processing, pp. 123–127, 2008.

[48] T. Fu, H. Chen, C. Chou, W. Tsai, and S. Lee, “Screen-strategy analy-
sis in broadcast basketball video using player tracking,” in 2011 Visual
Communications and Image Processing (VCIP), pp. 1–4, 2011.

[49] P. V. Hough, “Method and means for recognizing complex patterns,” 12
1962.

[50] J.-B. Hayet and J. Piater, “On-line rectification of sport sequences with
moving cameras,” in Mexican International Conference on Artificial In-
telligence, pp. 736–746, Springer, 2007.

[51] D. Farin, S. Krabbe, W. Effelsberg, et al., “Robust camera calibration for
sport videos using court models,” in Storage and Retrieval Methods and

68

https://www.tensorflow.org/tutorials/images/transfer_learning
https://www.tensorflow.org/tutorials/images/transfer_learning

Bibliography

Applications for Multimedia 2004, vol. 5307, pp. 80–91, International
Society for Optics and Photonics, 2003.

[52] Yang Liu, Shuqiang Jiang, Qixiang Ye, Wen Gao, and Qingming Huang,
“Playfield detection using adaptive gmm and its application,” in Pro-
ceedings. (ICASSP ’05). IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2005., vol. 2, pp. ii/421–ii/424 Vol. 2,
2005.

[53] “Opencv-python tutorials.” https://opencv-python-tutroals.
readthedocs.io/en/latest/index.html.

[54] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and au-
tomated cartography,” Commun. ACM, vol. 24, p. 381–395, June 1981.

[55] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed tracking-by-
detection without using image information,” in 2017 14th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance
(AVSS), pp. 1–6, 2017.

[56] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime track-
ing with a deep association metric,” 2017.

[57] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking
revisited,” in 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 4696–4704, 2015.

[58] F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan, “Poi: Multiple object
tracking with high performance detection and appearance feature,” 2016.

[59] D. Chicco, “Siamese neural networks: An overview,” in Artificial Neural
Networks, pp. 73–94, Springer.

[60] M. Kim, S. Alletto, and L. Rigazio, “Similarity mapping with enhanced
siamese network for multi-object tracking,” 2016.

[61] S. Zhang, Y. Gong, J.-B. Huang, J. Lim, J. Wang, N. Ahuja, and M.-
H. Yang, “Tracking persons-of-interest via adaptive discriminative fea-
tures,” vol. 9909, 08 2016.

[62] J. Son, M. Baek, M. Cho, and B. Han, “Multi-object tracking with
quadruplet convolutional neural networks,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3786–3795,
2017.

[63] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable:
Learning to track multiple cues with long-term dependencies,” 2017.

[64] M. Babaee, Z. Li, and G. Rigoll, “Occlusion handling in tracking multiple
people using rnn,” in 2018 25th IEEE International Conference on Image
Processing (ICIP), pp. 2715–2719, 2018.

69

https://opencv-python-tutroals.readthedocs.io/en/latest/index.html
https://opencv-python-tutroals.readthedocs.io/en/latest/index.html

Bibliography

[65] S. Karthik, A. Prabhu, and V. Gandhi, “Simple unsupervised multi-
object tracking,” 2020.

[66] W. Ren, X. Wang, J. Tian, Y. Tang, and A. B. Chan, “Tracking-by-
counting: Using network flows on crowd density maps for tracking mul-
tiple targets,” 2020.

[67] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “A simple baseline
for multi-object tracking,” 2020.

[68] E. Bochinski, T. Senst, and T. Sikora, “Extending iou based multi-object
tracking by visual information,” in 2018 15th IEEE International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–
6, 2018.

[69] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells
and whistles,” 2019.

[70] Bo Wu and R. Nevatia, “Tracking of multiple, partially occluded humans
based on static body part detection,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 1, pp. 951–958, 2006.

[71] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1–10, 2008.

[72] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Perfor-
mance measures and a data set for multi-target, multi-camera tracking,”
in European Conference on Computer Vision, pp. 17–35, Springer, 2016.

[73] C. Heindl, “Benchmark multiple object trackers in python.” https://
github.com/cheind/py-motmetrics.

70

https://github.com/cheind/py-motmetrics
https://github.com/cheind/py-motmetrics

	List of Figures
	I Introduction
	Introduction
	Introduction to player tracking
	State of the art
	Multiple object tracking
	Proposed method

	II Implementation
	Pre-processing
	Project requirements
	Dataset
	Data format

	Pedestrian Detection
	Multiple Object Detection
	Evaluation metrics
	State of the art
	Network comparison
	Transfer learning

	Court detection and tracking
	Objectives
	Related work
	Unsuccessful attempts
	Proposed algorithm
	First frame
	Following frames
	Homography validity check

	Results

	Player Tracking
	State of the art
	Evaluation metrics
	Employed algorithms
	Results

	III Conclusions
	Conclusions and future work
	Bibliography

